Power & Sample Size Calculator

Use this advanced sample size calculator to calculate the sample size required for a one-sample statistic, or for differences between two proportions or means (two independent samples). More than two groups supported for binomial data. Calculate power given sample size, alpha, and the minimum detectable effect (MDE, minimum effect of interest).

Experimental design

Data parameters

Related calculators

  • Using the power & sample size calculator

Parameters for sample size and power calculations

Calculator output.

  • Why is sample size determination important?
  • What is statistical power?

Post-hoc power (Observed power)

  • Sample size formula
  • Types of null and alternative hypotheses in significance tests
  • Absolute versus relative difference and why it matters for sample size determination

    Using the power & sample size calculator

This calculator allows the evaluation of different statistical designs when planning an experiment (trial, test) which utilizes a Null-Hypothesis Statistical Test to make inferences. It can be used both as a sample size calculator and as a statistical power calculator . Usually one would determine the sample size required given a particular power requirement, but in cases where there is a predetermined sample size one can instead calculate the power for a given effect size of interest.

1. Number of test groups. The sample size calculator supports experiments in which one is gathering data on a single sample in order to compare it to a general population or known reference value (one-sample), as well as ones where a control group is compared to one or more treatment groups ( two-sample, k-sample ) in order to detect differences between them. For comparing more than one treatment group to a control group the sample size adjustments based on the Dunnett's correction are applied. These are only approximately accurate and subject to the assumption of about equal effect size in all k groups, and can only support equal sample sizes in all groups and the control. Power calculations are not currently supported for more than one treatment group due to their complexity.

2. Type of outcome . The outcome of interest can be the absolute difference of two proportions (binomial data, e.g. conversion rate or event rate), the absolute difference of two means (continuous data, e.g. height, weight, speed, time, revenue, etc.), or the relative difference between two proportions or two means (percent difference, percent change, etc.). See Absolute versus relative difference for additional information. One can also calculate power and sample size for the mean of just a single group. The sample size and power calculator uses the Z-distribution (normal distribution) .

3. Baseline The baseline mean (mean under H 0 ) is the number one would expect to see if all experiment participants were assigned to the control group. It is the mean one expects to observe if the treatment has no effect whatsoever.

4. Minimum Detectable Effect . The minimum effect of interest, which is often called the minimum detectable effect ( MDE , but more accurately: MRDE, minimum reliably detectable effect) should be a difference one would not like to miss , if it existed. It can be entered as a proportion (e.g. 0.10) or as percentage (e.g. 10%). It is always relative to the mean/proportion under H 0 ± the superiority/non-inferiority or equivalence margin. For example, if the baseline mean is 10 and there is a superiority alternative hypothesis with a superiority margin of 1 and the minimum effect of interest relative to the baseline is 3, then enter an MDE of 2 , since the MDE plus the superiority margin will equal exactly 3. In this case the MDE (MRDE) is calculated relative to the baseline plus the superiority margin, as it is usually more intuitive to be interested in that value.

If entering means data, one needs to specify the mean under the null hypothesis (worst-case scenario for a composite null) and the standard deviation of the data (for a known population or estimated from a sample).

5. Type of alternative hypothesis . The calculator supports superiority , non-inferiority and equivalence alternative hypotheses. When the superiority or non-inferiority margin is zero, it becomes a classical left or right sided hypothesis, if it is larger than zero then it becomes a true superiority / non-inferiority design. The equivalence margin cannot be zero. See Types of null and alternative hypothesis below for an in-depth explanation.

6. Acceptable error rates . The type I error rate, α , should always be provided. Power, calculated as 1 - β , where β is the type II error rate, is only required when determining sample size. For an in-depth explanation of power see What is statistical power below. The type I error rate is equivalent to the significance threshold if one is doing p-value calculations and to the confidence level if using confidence intervals.

The sample size calculator will output the sample size of the single group or of all groups, as well as the total sample size required. If used to solve for power it will output the power as a proportion and as a percentage.

    Why is sample size determination important?

While this online software provides the means to determine the sample size of a test, it is of great importance to understand the context of the question, the "why" of it all.

Estimating the required sample size before running an experiment that will be judged by a statistical test (a test of significance, confidence interval, etc.) allows one to:

  • determine the sample size needed to detect an effect of a given size with a given probability
  • be aware of the magnitude of the effect that can be detected with a certain sample size and power
  • calculate the power for a given sample size and effect size of interest

This is crucial information with regards to making the test cost-efficient. Having a proper sample size can even mean the difference between conducting the experiment or postponing it for when one can afford a sample of size that is large enough to ensure a high probability to detect an effect of practical significance.

For example, if a medical trial has low power, say less than 80% (β = 0.2) for a given minimum effect of interest, then it might be unethical to conduct it due to its low probability of rejecting the null hypothesis and establishing the effectiveness of the treatment. Similarly, for experiments in physics, psychology, economics, marketing, conversion rate optimization, etc. Balancing the risks and rewards and assuring the cost-effectiveness of an experiment is a task that requires juggling with the interests of many stakeholders which is well beyond the scope of this text.

    What is statistical power?

Statistical power is the probability of rejecting a false null hypothesis with a given level of statistical significance , against a particular alternative hypothesis. Alternatively, it can be said to be the probability to detect with a given level of significance a true effect of a certain magnitude. This is what one gets when using the tool in "power calculator" mode. Power is closely related with the type II error rate: β, and it is always equal to (1 - β). In a probability notation the type two error for a given point alternative can be expressed as [1] :

β(T α ; μ 1 ) = P(d(X) ≤ c α ; μ = μ 1 )

It should be understood that the type II error rate is calculated at a given point, signified by the presence of a parameter for the function of beta. Similarly, such a parameter is present in the expression for power since POW = 1 - β [1] :

POW(T α ; μ 1 ) = P(d(X) > c α ; μ = μ 1 )

In the equations above c α represents the critical value for rejecting the null (significance threshold), d(X) is a statistical function of the parameter of interest - usually a transformation to a standardized score, and μ 1 is a specific value from the space of the alternative hypothesis.

One can also calculate and plot the whole power function, getting an estimate of the power for many different alternative hypotheses. Due to the S-shape of the function, power quickly rises to nearly 100% for larger effect sizes, while it decreases more gradually to zero for smaller effect sizes. Such a power function plot is not yet supported by our statistical software, but one can calculate the power at a few key points (e.g. 10%, 20% ... 90%, 100%) and connect them for a rough approximation.

Statistical power is directly and inversely related to the significance threshold. At the zero effect point for a simple superiority alternative hypothesis power is exactly 1 - α as can be easily demonstrated with our power calculator. At the same time power is positively related to the number of observations, so increasing the sample size will increase the power for a given effect size, assuming all other parameters remain the same.

Power calculations can be useful even after a test has been completed since failing to reject the null can be used as an argument for the null and against particular alternative hypotheses to the extent to which the test had power to reject them. This is more explicitly defined in the severe testing concept proposed by Mayo & Spanos (2006).

Computing observed power is only useful if there was no rejection of the null hypothesis and one is interested in estimating how probative the test was towards the null . It is absolutely useless to compute post-hoc power for a test which resulted in a statistically significant effect being found [5] . If the effect is significant, then the test had enough power to detect it. In fact, there is a 1 to 1 inverse relationship between observed power and statistical significance, so one gains nothing from calculating post-hoc power, e.g. a test planned for α = 0.05 that passed with a p-value of just 0.0499 will have exactly 50% observed power (observed β = 0.5).

I strongly encourage using this power and sample size calculator to compute observed power in the former case, and strongly discourage it in the latter.

    Sample size formula

The formula for calculating the sample size of a test group in a one-sided test of absolute difference is:

sample size

where Z 1-α is the Z-score corresponding to the selected statistical significance threshold α , Z 1-β is the Z-score corresponding to the selected statistical power 1-β , σ is the known or estimated standard deviation, and δ is the minimum effect size of interest. The standard deviation is estimated analytically in calculations for proportions, and empirically from the raw data for other types of means.

The formula applies to single sample tests as well as to tests of absolute difference between two samples. A proprietary modification is employed when calculating the required sample size in a test of relative difference . This modification has been extensively tested under a variety of scenarios through simulations.

    Types of null and alternative hypotheses in significance tests

When doing sample size calculations, it is important that the null hypothesis (H 0 , the hypothesis being tested) and the alternative hypothesis is (H 1 ) are well thought out. The test can reject the null or it can fail to reject it. Strictly logically speaking it cannot lead to acceptance of the null or to acceptance of the alternative hypothesis. A null hypothesis can be a point one - hypothesizing that the true value is an exact point from the possible values, or a composite one: covering many possible values, usually from -∞ to some value or from some value to +∞. The alternative hypothesis can also be a point one or a composite one.

In a Neyman-Pearson framework of NHST (Null-Hypothesis Statistical Test) the alternative should exhaust all values that do not belong to the null, so it is usually composite. Below is an illustration of some possible combinations of null and alternative statistical hypotheses: superiority, non-inferiority, strong superiority (margin > 0), equivalence.

types of statistical hypotheses

All of these are supported in our power and sample size calculator.

Careful consideration has to be made when deciding on a non-inferiority margin, superiority margin or an equivalence margin . Equivalence trials are sometimes used in clinical trials where a drug can be performing equally (within some bounds) to an existing drug but can still be preferred due to less or less severe side effects, cheaper manufacturing, or other benefits, however, non-inferiority designs are more common. Similar cases exist in disciplines such as conversion rate optimization [2] and other business applications where benefits not measured by the primary outcome of interest can influence the adoption of a given solution. For equivalence tests it is assumed that they will be evaluated using a two one-sided t-tests (TOST) or z-tests, or confidence intervals.

Note that our calculator does not support the schoolbook case of a point null and a point alternative, nor a point null and an alternative that covers all the remaining values. This is since such cases are non-existent in experimental practice [3][4] . The only two-sided calculation is for the equivalence alternative hypothesis, all other calculations are one-sided (one-tailed) .

    Absolute versus relative difference and why it matters for sample size determination

When using a sample size calculator it is important to know what kind of inference one is looking to make: about the absolute or about the relative difference, often called percent effect, percentage effect, relative change, percent lift, etc. Where the fist is μ 1 - μ the second is μ 1 -μ / μ or μ 1 -μ / μ x 100 (%). The division by μ is what adds more variance to such an estimate, since μ is just another variable with random error, therefore a test for relative difference will require larger sample size than a test for absolute difference. Consequently, if sample size is fixed, there will be less power for the relative change equivalent to any given absolute change.

For the above reason it is important to know and state beforehand if one is going to be interested in percentage change or if absolute change is of primary interest. Then it is just a matter of fliping a radio button.

    References

1 Mayo D.G., Spanos A. (2010) – "Error Statistics", in P. S. Bandyopadhyay & M. R. Forster (Eds.), Philosophy of Statistics, (7, 152–198). Handbook of the Philosophy of Science . The Netherlands: Elsevier.

2 Georgiev G.Z. (2017) "The Case for Non-Inferiority A/B Tests", [online] https://blog.analytics-toolkit.com/2017/case-non-inferiority-designs-ab-testing/ (accessed May 7, 2018)

3 Georgiev G.Z. (2017) "One-tailed vs Two-tailed Tests of Significance in A/B Testing", [online] https://blog.analytics-toolkit.com/2017/one-tailed-two-tailed-tests-significance-ab-testing/ (accessed May 7, 2018)

4 Hyun-Chul Cho Shuzo Abe (2013) "Is two-tailed testing for directional research hypotheses tests legitimate?", Journal of Business Research 66:1261-1266

5 Lakens D. (2014) "Observed power, and what to do if your editor asks for post-hoc power analyses" [online] http://daniellakens.blogspot.bg/2014/12/observed-power-and-what-to-do-if-your.html (accessed May 7, 2018)

Cite this calculator & page

If you'd like to cite this online calculator resource and information as provided on the page, you can use the following citation: Georgiev G.Z., "Sample Size Calculator" , [online] Available at: https://www.gigacalculator.com/calculators/power-sample-size-calculator.php URL [Accessed Date: 30 May, 2024].

Our statistical calculators have been featured in scientific papers and articles published in high-profile science journals by:

springer

The author of this tool

Georgi Z. Georgiev

     Statistical calculators

Teach yourself statistics

Power of a Hypothesis Test

The probability of not committing a Type II error is called the power of a hypothesis test.

Effect Size

To compute the power of the test, one offers an alternative view about the "true" value of the population parameter, assuming that the null hypothesis is false. The effect size is the difference between the true value and the value specified in the null hypothesis.

Effect size = True value - Hypothesized value

For example, suppose the null hypothesis states that a population mean is equal to 100. A researcher might ask: What is the probability of rejecting the null hypothesis if the true population mean is equal to 90? In this example, the effect size would be 90 - 100, which equals -10.

Factors That Affect Power

The power of a hypothesis test is affected by three factors.

  • Sample size ( n ). Other things being equal, the greater the sample size, the greater the power of the test.
  • Significance level (α). The lower the significance level, the lower the power of the test. If you reduce the significance level (e.g., from 0.05 to 0.01), the region of acceptance gets bigger. As a result, you are less likely to reject the null hypothesis. This means you are less likely to reject the null hypothesis when it is false, so you are more likely to make a Type II error. In short, the power of the test is reduced when you reduce the significance level; and vice versa.
  • The "true" value of the parameter being tested. The greater the difference between the "true" value of a parameter and the value specified in the null hypothesis, the greater the power of the test. That is, the greater the effect size, the greater the power of the test.

Test Your Understanding

Other things being equal, which of the following actions will reduce the power of a hypothesis test?

I. Increasing sample size. II. Changing the significance level from 0.01 to 0.05. III. Increasing beta, the probability of a Type II error.

(A) I only (B) II only (C) III only (D) All of the above (E) None of the above

The correct answer is (C). Increasing sample size makes the hypothesis test more sensitive - more likely to reject the null hypothesis when it is, in fact, false. Changing the significance level from 0.01 to 0.05 makes the region of acceptance smaller, which makes the hypothesis test more likely to reject the null hypothesis, thus increasing the power of the test. Since, by definition, power is equal to one minus beta, the power of a test will get smaller as beta gets bigger.

Suppose a researcher conducts an experiment to test a hypothesis. If she doubles her sample size, which of the following will increase?

I. The power of the hypothesis test. II. The effect size of the hypothesis test. III. The probability of making a Type II error.

The correct answer is (A). Increasing sample size makes the hypothesis test more sensitive - more likely to reject the null hypothesis when it is, in fact, false. Thus, it increases the power of the test. The effect size is not affected by sample size. And the probability of making a Type II error gets smaller, not bigger, as sample size increases.

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

25.1 - definition of power.

Let's start our discussion of statistical power by recalling two definitions we learned when we first introduced to hypothesis testing:

  • A Type I error occurs if we reject the null hypothesis \(H_0\) (in favor of the alternative hypothesis \(H_A\)) when the null hypothesis \(H_0\) is true. We denote \(\alpha=P(\text{Type I error})\).
  • A Type II error occurs if we fail to reject the null hypothesis \(H_0\) when the alternative hypothesis \(H_A\) is true. We denote \(\beta=P(\text{Type II error})\).

You'll certainly need to know these two definitions inside and out, as you'll be thinking about them a lot in this lesson, and at any time in the future when you need to calculate a sample size either for yourself or for someone else.

Example 25-1 Section  

rusted iron rods

The Brinell hardness scale is one of several definitions used in the field of materials science to quantify the hardness of a piece of metal. The Brinell hardness measurement of a certain type of rebar used for reinforcing concrete and masonry structures was assumed to be normally distributed with a standard deviation of 10 kilograms of force per square millimeter. Using a random sample of \(n=25\) bars, an engineer is interested in performing the following hypothesis test:

  • the null hypothesis \(H_0:\mu=170\)
  • against the alternative hypothesis \(H_A:\mu>170\)

If the engineer decides to reject the null hypothesis if the sample mean is 172 or greater, that is, if \(\bar{X} \ge 172 \), what is the probability that the engineer commits a Type I error?

In this case, the engineer commits a Type I error if his observed sample mean falls in the rejection region, that is, if it is 172 or greater, when the true (unknown) population mean is indeed 170. Graphically, \(\alpha\), the engineer's probability of committing a Type I error looks like this:

Now, we can calculate the engineer's value of \(\alpha\) by making the transformation from a normal distribution with a mean of 170 and a standard deviation of 10 to that of \(Z\), the standard normal distribution using:

\(Z= \frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \)

Doing so, we get:

So, calculating the engineer's probability of committing a Type I error reduces to making a normal probability calculation. The probability is 0.1587 as illustrated here:

\(\alpha = P(\bar{X} \ge 172 \text { if } \mu = 170) = P(Z \ge 1.00) = 0.1587 \)

A probability of 0.1587 is a bit high. We'll learn in this lesson how the engineer could reduce his probability of committing a Type I error.

If, unknown to engineer, the true population mean were \(\mu=173\), what is the probability that the engineer commits a Type II error?

In this case, the engineer commits a Type II error if his observed sample mean does not fall in the rejection region, that is, if it is less than 172, when the true (unknown) population mean is 173. Graphically, \(\beta\), the engineer's probability of committing a Type II error looks like this:

Again, we can calculate the engineer's value of \(\beta\) by making the transformation from a normal distribution with a mean of 173 and a standard deviation of 10 to that of \(Z\), the standard normal distribution. Doing so, we get:

So, calculating the engineer's probability of committing a Type II error again reduces to making a normal probability calculation. The probability is 0.3085 as illustrated here:

\(\beta= P(\bar{X} < 172 \text { if } \mu = 173) = P(Z < -0.50) = 0.3085 \)

A probability of 0.3085 is a bit high. We'll learn in this lesson how the engineer could reduce his probability of committing a Type II error.

half empty glass

The power of a hypothesis test is the probability of making the correct decision if the alternative hypothesis is true. That is, the power of a hypothesis test is the probability of rejecting the null hypothesis \(H_0\) when the alternative hypothesis \(H_A\) is the hypothesis that is true.

Let's return to our engineer's problem to see if we can instead look at the glass as being half full!

Example 25-1 (continued) Section  

If, unknown to the engineer, the true population mean were \(\mu=173\), what is the probability that the engineer makes the correct decision by rejecting the null hypothesis in favor of the alternative hypothesis?

In this case, the engineer makes the correct decision if his observed sample mean falls in the rejection region, that is, if it is greater than 172, when the true (unknown) population mean is 173. Graphically, the power of the engineer's hypothesis test looks like this:

That makes the power of the engineer's hypothesis test 0.6915 as illustrated here:

\(\text{Power } = P(\bar{X} \ge 172 \text { if } \mu = 173) = P(Z \ge -0.50) = 0.6915 \)

which of course could have alternatively been calculated by simply subtracting the probability of committing a Type II error from 1, as shown here:

\(\text{Power } = 1 - \beta = 1 - 0.3085 = 0.6915 \)

At any rate, if the unknown population mean were 173, the engineer's hypothesis test would be at least a bit better than flipping a fair coin, in which he'd have but a 50% chance of choosing the correct hypothesis. In this case, he has a 69.15% chance. He could still do a bit better.

In general, for every hypothesis test that we conduct, we'll want to do the following:

Minimize the probability of committing a Type I error. That, is minimize \(\alpha=P(\text{Type I Error})\). Typically, a significance level of \(\alpha\le 0.10\) is desired.

Maximize the power (at a value of the parameter under the alternative hypothesis that is scientifically meaningful). Typically, we desire power to be 0.80 or greater. Alternatively, we could minimize \(\beta=P(\text{Type II Error})\), aiming for a type II error rate of 0.20 or less.

By the way, in the second point, what exactly does "at a value of the parameter under the alternative hypothesis that is scientifically meaningful" mean? Well, let's suppose that a medical researcher is interested in testing the null hypothesis that the mean total blood cholesterol in a population of patients is 200 mg/dl against the alternative hypothesis that the mean total blood cholesterol is greater than 200 mg/dl . Well, the alternative hypothesis contains an infinite number of possible values of the mean. Under the alternative hypothesis, the mean of the population could be, among other values, 201, 202, or 210. Suppose the medical researcher rejected the null hypothesis, because the mean was 201. Whoopdy-do...would that be a rocking conclusion? No, probably not. On the other hand, suppose the medical researcher rejected the null hypothesis, because the mean was 215. In that case, the mean is substantially different enough from the assumed mean under the null hypothesis, that we'd probably get excited about the result. In summary, in this example, we could probably all agree to consider a mean of 215 to be "scientifically meaningful," whereas we could not do the same for a mean of 201.

Now, of course, all of this talk is a bit if gibberish, because we'd never really know whether the true unknown population mean were 201 or 215, otherwise, we wouldn't have to be going through the process of conducting a hypothesis test about the mean. We can do something though. We can plan our scientific studies so that our hypothesis tests have enough power to reject the null hypothesis in favor of values of the parameter under the alternative hypothesis that are scientifically meaningful.

Normal, T - Statistical power calculator

Information.

Calculates the test power for the specific sample size and draw a power analysis chart. For the two-tailed test, it calculates the strict interpretation, includes the probability to reject the null assumption in the opposite tail of the true effect

Distribution

Statistics Tutorial

  • Statistics Tutorial
  • Adjusted R-Squared
  • Analysis of Variance
  • Arithmetic Mean
  • Arithmetic Median
  • Arithmetic Mode
  • Arithmetic Range
  • Best Point Estimation
  • Beta Distribution
  • Binomial Distribution
  • Black-Scholes model
  • Central limit theorem
  • Chebyshev's Theorem
  • Chi-squared Distribution
  • Chi Squared table
  • Circular Permutation
  • Cluster sampling
  • Cohen's kappa coefficient
  • Combination
  • Combination with replacement
  • Comparing plots
  • Continuous Uniform Distribution
  • Continuous Series Arithmetic Mean
  • Continuous Series Arithmetic Median
  • Continuous Series Arithmetic Mode
  • Cumulative Frequency
  • Co-efficient of Variation
  • Correlation Co-efficient
  • Cumulative plots
  • Cumulative Poisson Distribution
  • Data collection
  • Data collection - Questionaire Designing
  • Data collection - Observation
  • Data collection - Case Study Method
  • Data Patterns
  • Deciles Statistics
  • Discrete Series Arithmetic Mean
  • Discrete Series Arithmetic Median
  • Discrete Series Arithmetic Mode
  • Exponential distribution
  • F distribution
  • F Test Table
  • Frequency Distribution
  • Gamma Distribution
  • Geometric Mean
  • Geometric Probability Distribution
  • Goodness of Fit
  • Gumbel Distribution
  • Harmonic Mean
  • Harmonic Number
  • Harmonic Resonance Frequency
  • Hypergeometric Distribution
  • Hypothesis testing
  • Individual Series Arithmetic Mean
  • Individual Series Arithmetic Median
  • Individual Series Arithmetic Mode
  • Interval Estimation
  • Inverse Gamma Distribution
  • Kolmogorov Smirnov Test
  • Laplace Distribution
  • Linear regression
  • Log Gamma Distribution
  • Logistic Regression
  • Mcnemar Test
  • Mean Deviation
  • Means Difference
  • Multinomial Distribution
  • Negative Binomial Distribution
  • Normal Distribution
  • Odd and Even Permutation
  • One Proportion Z Test
  • Outlier Function
  • Permutation
  • Permutation with Replacement
  • Poisson Distribution
  • Pooled Variance (r)
  • Power Calculator
  • Probability
  • Probability Additive Theorem
  • Probability Multiplecative Theorem
  • Probability Bayes Theorem
  • Probability Density Function
  • Process Sigma
  • Quadratic Regression Equation
  • Qualitative Data Vs Quantitative Data
  • Quartile Deviation
  • Range Rule of Thumb
  • Rayleigh Distribution
  • Regression Intercept Confidence Interval
  • Relative Standard Deviation
  • Reliability Coefficient
  • Required Sample Size
  • Residual analysis
  • Residual sum of squares
  • Root Mean Square
  • Sample planning
  • Sampling methods
  • Scatterplots
  • Shannon Wiener Diversity Index
  • Signal to Noise Ratio
  • Simple random sampling
  • Standard Deviation
  • Standard Error ( SE )
  • Standard normal table
  • Statistical Significance
  • Statistics Formulas
  • Statistics Notation
  • Stem and Leaf Plot
  • Stratified sampling
  • Student T Test
  • Sum of Square
  • T-Distribution Table
  • Ti 83 Exponential Regression
  • Transformations
  • Trimmed Mean
  • Type I & II Error
  • Venn Diagram
  • Weak Law of Large Numbers
  • Statistics Useful Resources
  • Statistics - Discussion
  • Selected Reading
  • UPSC IAS Exams Notes
  • Developer's Best Practices
  • Questions and Answers
  • Effective Resume Writing
  • HR Interview Questions
  • Computer Glossary

Statistics - Power Calculator

$ {Power = \ P(\ reject\ H_0 | H_1 \ is \ true) } $

Power of a test is also test by checking the probability of Type I error($ { \alpha } $) and of Type II error($ { \beta } $) where Type I error represents the incorrect rejection of a valid null hypothesis whereas Type II error represents the incorrect retention of an invalid null hypothesis. Lesser the chances of Type I or Type II error, more is the power of statistical test.

A survey has been conducted on students to check their IQ level. Suppose a random sample of 16 students is tested. The surveyor tests the null hypothesis that the IQ of student is 100 against the alternative hypothesis that the IQ of student is not 100, using a 0.05 level of significance and standard deviation of 16. What is the power of the hypothesis test if the true population mean were 116?

As distribution of the test statistic under the null hypothesis follows a Student t-distribution. Here n is large, we can approximate the t-distribution by a normal distribution. As probability of committing Type I error($ { \alpha } $) is 0.05 , we can reject the null hypothesis ${H_0}$ when the test statistic $ { T \ge 1.645 } $. Let's compute the value of sample mean using test statistics by following formula.

$ {T = \frac{ \bar X - \mu}{ \frac{\sigma}{\sqrt \mu}} \\[7pt] \implies \bar X = \mu + T(\frac{\sigma}{\sqrt \mu}) \\[7pt] \, = 100 + 1.645(\frac{16}{\sqrt {16}})\\[7pt] \, = 106.58 } $

Let's compute the power of statistical test by following formula.

$ {Power = P(\bar X \ge 106.58 \ where\ \mu = 116 ) \\[7pt] \, = P( T \ge -2.36) \\[7pt] \, = 1- P( T \lt -2.36 ) \\[7pt] \, = 1 - 0.0091 \\[7pt] \, = 0.9909 } $

So we have a 99.09% chance of rejecting the null hypothesis ${H_0: \mu = 100 } $ in favor of the alternative hypothesis $ {H_1: \mu \gt 100 } $ where unknown population mean is $ {\mu = 116 } $.

To Continue Learning Please Login

IMAGES

  1. How to Get the Power of Test in Hypothesis Testing with Binomial

    hypothesis testing calculator power

  2. Calculating the Power of a Hypothesis Test: Examples

    hypothesis testing calculator power

  3. Power of a hypothesis test

    hypothesis testing calculator power

  4. Sample Size and Power In Hypothesis Testing: Concepts and Application with Minitab Software

    hypothesis testing calculator power

  5. Power Calculations in Hypothesis Testing

    hypothesis testing calculator power

  6. Hypothesis Testing 3

    hypothesis testing calculator power

VIDEO

  1. Perform and Interpret Results of a Hypothesis Test Using a Calculator

  2. Perform and Interpret Results of a Hypothesis Test Using a Calculator

  3. Perform and Interpret Results of a Hypothesis Test Using a Calculator

  4. Computing the power of a hypothesis test

  5. Use Traditional Method of Hypothesis Testing t test given n x bar s Math 160 Stats Final Review 18A

  6. The Power of Hypothesis Testing: Unveiling Insights in Seconds! ⚖️🔬

COMMENTS

  1. Hypothesis Testing Calculator

    Hypothesis Testing. The first step in hypothesis testing is to calculate the test statistic. The formula for the test statistic depends on whether the population standard deviation (σ) is known or unknown. If σ is known, our hypothesis test is known as a z test and we use the z distribution. If σ is unknown, our hypothesis test is known as a ...

  2. All Power Calculator

    Two sample proportion test. The power calculator computes the test power based on the sample size and draw an accurate power analysis chart. Larger sample size increases the statistical power. The test power is the probability to reject the null assumption, H0, when it is not correct. Power = 1- β.

  3. Sample Size Calculator & Statistical Power Calculator

    Using the power & sample size calculator. This calculator allows the evaluation of different statistical designs when planning an experiment (trial, test) which utilizes a Null-Hypothesis Statistical Test to make inferences. It can be used both as a sample size calculator and as a statistical power calculator. Usually one would determine the ...

  4. How to Find the Power of a Statistical Test

    Compute power. The power of the test is the probability of rejecting the null hypothesis, assuming that the true population proportion is equal to the critical parameter value. Since the region of acceptance is 0.734 to 1.00, the null hypothesis will be rejected when the sample proportion is less than 0.734.

  5. 25.2

    In the above, example, the power of the hypothesis test depends on the value of the mean \(\mu\). As the actual mean \(\mu\) moves further away from the value of the mean \(\mu=100\) under the null hypothesis, the power of the hypothesis test increases. It's that first point that leads us to what is called the power function of the hypothesis ...

  6. Power/Sample Size Calculator

    After making your entries, hit the calculate button at the bottom. Calculate Sample Size (for specified Power) Calculate Power (for specified Sample Size) Enter a value for mu1: Enter a value for mu2: Enter a value for sigma: 1 Sided Test. 2 Sided Test. Enter a value for α (default is .05):

  7. Hypothesis Test Calculator

    Use this Hypothesis Test Calculator for quick results in Python and R. Learn the step-by-step hypothesis test process and why hypothesis testing is important. Hypothesis Test Calculator | 365 Data Science

  8. Statistical Power Calculator using the t-distribution*

    Statistical Power Calculator using the t-distribution*. Interactive calculator for illustrating power of a statistical hypothesis test. alpha α α : Difference in means δa δ a : Sample size in each group n n : Standard deviation sa s a : *plot adapted from Behavioral Research Data Analysis with R.

  9. Power of Hypothesis Test

    Effect Size. To compute the power of the test, one offers an alternative view about the "true" value of the population parameter, assuming that the null hypothesis is false. The effect size is the difference between the true value and the value specified in the null hypothesis. Effect size = True value - Hypothesized value.

  10. Lesson 25: Power of a Statistical Test

    In the above, example, the power of the hypothesis test depends on the value of the mean \(\mu\). As the actual mean \(\mu\) moves further away from the value of the mean \(\mu=100\) under the null hypothesis, the power of the hypothesis test increases. It's that first point that leads us to what is called the power function of the hypothesis ...

  11. 25.1

    Now, we can calculate the engineer's value of \(\alpha\) by making the transformation from a normal distribution with a mean of 170 and a standard deviation of 10 to that of \(Z\), the standard normal distribution using: ... Power of the Hypothesis Test. The power of a hypothesis test is the probability of making the correct decision if the ...

  12. Statistical Power in Hypothesis Testing

    Statistical Power is a concept in hypothesis testing that calculates the probability of detecting a positive effect when the effect is actually positive. In my previous post, we walkthrough the procedures of conducting a hypothesis testing. And in this post, we will build upon that by introducing statistical power in hypothesis testing.

  13. Power T Z Calculator

    Information. Calculates the test power for the specific sample size and draw a power analysis chart. For the two-tailed test, it calculates the strict interpretation, includes the probability to reject the null assumption in the opposite tail of the true effect. Use this test for one of the following tests:

  14. Power Calculator

    Fill in the fields and then press the "Caclulate" button. The power for a two-tailed t test will be displayed. If you change a value you can press enter or the tab key to recalculate. This calculator is based on jStat from jstat.org and is distributed under the MIT license: Permission is hereby granted, free of charge, to any person obtaining a ...

  15. Statistical Power and Why It Matters

    Revised on June 22, 2023. Statistical power, or sensitivity, is the likelihood of a significance test detecting an effect when there actually is one. A true effect is a real, non-zero relationship between variables in a population. An effect is usually indicated by a real difference between groups or a correlation between variables.

  16. How to Calculate Sample Size Needed for Power

    Statistical power and sample size analysis provides both numeric and graphical results, as shown below. The text output indicates that we need 15 samples per group (total of 30) to have a 90% chance of detecting a difference of 5 units. The dot on the Power Curve corresponds to the information in the text output.

  17. Power/Sample Size Calculator

    After making your entries, hit the calculate button at the bottom. Calculate Sample Size (for specified Power) Calculate Power (for specified Sample Size) Enter a value for p0: Enter a value for p1: 1 Sided Test. 2 Sided Test. Enter a value for α (default is .05): Enter a value for desired power (default is .80):

  18. Power of a test

    Power of a test. In statistics, the power of a binary hypothesis test is the probability that the test correctly rejects the null hypothesis ( ) when a specific alternative hypothesis ( ) is true. It is commonly denoted by , and represents the chances of a true positive detection conditional on the actual existence of an effect to detect.

  19. Finding the Power of a Hypothesis Test

    To calculate power, you basically work two problems back-to-back. First, find a percentile assuming that H 0 is true. Then, turn it around and find the probability that you'd get that value assuming H 0 is false (and instead H a is true). Assume that H 0 is true, and. Find the percentile value corresponding to.

  20. Statistics

    Statistics - Power Calculator - Whenever a hypothesis test is conducted, we need to ascertain that test is of high qualitity. One way to check the power or sensitivity of a test is to compute the probability of test that it can reject the null hypothesis correctly when an alternate hypothesis is correct. In other words, power of a

  21. hypothesis testing

    As a sidebar, below is some code to estimate the power of the $\chi^2$ test of equality of proportions by simulation by calculating the proportion of times (out of a large number, 1000 in this case) the null hypothesis is rejected.

  22. hypothesis testing

    The R package pwr calculates the power or sample size for t-test, one way ANOVA, and other tests. On the relative sample size required for multiple comparisons , by Witte, Elston AND Cardon discusses the use of the Bonferroni corrected alpha values in the calculations of sample size for multiple comparisons.

  23. Formula for calculating power in hypothesis testing

    1. We calculate power in hypothesis testing as 1-beta (probability that null hypothesis is false given that alternative hypothesis is true). As this probability increases, power also increases. By similar relationship can't we say that power could also be calculated as equal to alpha ( probability that null hypothesis is rejected given that ...

  24. Power Analysis in BI: Planning Effective Hypothesis Tests

    Power analysis is used to estimate the statistical power before conducting the test, aiming for a power of at least 0.80, which means there's an 80% chance of detecting a true effect.