Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • How to Write a Strong Hypothesis | Guide & Examples

How to Write a Strong Hypothesis | Guide & Examples

Published on 6 May 2022 by Shona McCombes .

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism, run a free check.

Step 1: ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2: Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.

Step 3: Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

Step 4: Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

Step 5: Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

Step 6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 27 May 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.

Cambridge University Faculty of Mathematics

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Mathematical mindsets
  • Cross-curricular contexts
  • Physical and digital manipulatives

For younger learners

  • Early Years Foundation Stage

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics

Published 2008 Revised 2019

Understanding Hypotheses

writing a hypothesis ks3

'What happens if ... ?' to ' This will happen if'

The experimentation of children continually moves on to the exploration of new ideas and the refinement of their world view of previously understood situations. This description of the playtime patterns of young children very nicely models the concept of 'making and testing hypotheses'. It follows this pattern:

  • Make some observations. Collect some data based on the observations.
  • Draw a conclusion (called a 'hypothesis') which will explain the pattern of the observations.
  • Test out your hypothesis by making some more targeted observations.

So, we have

  • A hypothesis is a statement or idea which gives an explanation to a series of observations.

Sometimes, following observation, a hypothesis will clearly need to be refined or rejected. This happens if a single contradictory observation occurs. For example, suppose that a child is trying to understand the concept of a dog. He reads about several dogs in children's books and sees that they are always friendly and fun. He makes the natural hypothesis in his mind that dogs are friendly and fun . He then meets his first real dog: his neighbour's puppy who is great fun to play with. This reinforces his hypothesis. His cousin's dog is also very friendly and great fun. He meets some of his friends' dogs on various walks to playgroup. They are also friendly and fun. He is now confident that his hypothesis is sound. Suddenly, one day, he sees a dog, tries to stroke it and is bitten. This experience contradicts his hypothesis. He will need to amend the hypothesis. We see that

  • Gathering more evidence/data can strengthen a hypothesis if it is in agreement with the hypothesis.
  • If the data contradicts the hypothesis then the hypothesis must be rejected or amended to take into account the contradictory situation.

writing a hypothesis ks3

  • A contradictory observation can cause us to know for certain that a hypothesis is incorrect.
  • Accumulation of supporting experimental evidence will strengthen a hypothesis but will never let us know for certain that the hypothesis is true.

In short, it is possible to show that a hypothesis is false, but impossible to prove that it is true!

Whilst we can never prove a scientific hypothesis to be true, there will be a certain stage at which we decide that there is sufficient supporting experimental data for us to accept the hypothesis. The point at which we make the choice to accept a hypothesis depends on many factors. In practice, the key issues are

  • What are the implications of mistakenly accepting a hypothesis which is false?
  • What are the cost / time implications of gathering more data?
  • What are the implications of not accepting in a timely fashion a true hypothesis?

For example, suppose that a drug company is testing a new cancer drug. They hypothesise that the drug is safe with no side effects. If they are mistaken in this belief and release the drug then the results could have a disastrous effect on public health. However, running extended clinical trials might be very costly and time consuming. Furthermore, a delay in accepting the hypothesis and releasing the drug might also have a negative effect on the health of many people.

In short, whilst we can never achieve absolute certainty with the testing of hypotheses, in order to make progress in science or industry decisions need to be made. There is a fine balance to be made between action and inaction.

Hypotheses and mathematics So where does mathematics enter into this picture? In many ways, both obvious and subtle:

  • A good hypothesis needs to be clear, precisely stated and testable in some way. Creation of these clear hypotheses requires clear general mathematical thinking.
  • The data from experiments must be carefully analysed in relation to the original hypothesis. This requires the data to be structured, operated upon, prepared and displayed in appropriate ways. The levels of this process can range from simple to exceedingly complex.

Very often, the situation under analysis will appear to be complicated and unclear. Part of the mathematics of the task will be to impose a clear structure on the problem. The clarity of thought required will actively be developed through more abstract mathematical study. Those without sufficient general mathematical skill will be unable to perform an appropriate logical analysis.

Using deductive reasoning in hypothesis testing

There is often confusion between the ideas surrounding proof, which is mathematics, and making and testing an experimental hypothesis, which is science. The difference is rather simple:

  • Mathematics is based on deductive reasoning : a proof is a logical deduction from a set of clear inputs.
  • Science is based on inductive reasoning : hypotheses are strengthened or rejected based on an accumulation of experimental evidence.

Of course, to be good at science, you need to be good at deductive reasoning, although experts at deductive reasoning need not be mathematicians. Detectives, such as Sherlock Holmes and Hercule Poirot, are such experts: they collect evidence from a crime scene and then draw logical conclusions from the evidence to support the hypothesis that, for example, Person M. committed the crime. They use this evidence to create sufficiently compelling deductions to support their hypotheses beyond reasonable doubt . The key word here is 'reasonable'. There is always the possibility of creating an exceedingly outlandish scenario to explain away any hypothesis of a detective or prosecution lawyer, but judges and juries in courts eventually make the decision that the probability of such eventualities are 'small' and the chance of the hypothesis being correct 'high'.

writing a hypothesis ks3

  • If a set of data is normally distributed with mean 0 and standard deviation 0.5 then there is a 97.7% certainty that a measurement will not exceed 1.0.
  • If the mean of a sample of data is 12, how confident can we be that the true mean of the population lies between 11 and 13?

It is at this point that making and testing hypotheses becomes a true branch of mathematics. This mathematics is difficult, but fascinating and highly relevant in the information-rich world of today.

To read more about the technical side of hypothesis testing, take a look at What is a Hypothesis Test?

You might also enjoy reading the articles on statistics on the Understanding Uncertainty website

This resource is part of the collection Statistics - Maths of Real Life

Accept cookies?

We use cook ies  to give you the best online experience and to show personalised content and marketing. We use them to improve our website and content as well as to tailor our digital advertising on third-party platforms. You can change your preferences at any time.  

Popular search terms:

  • British wildlife
  • Wildlife Photographer of the Year
  • Explore the Museum

Activity: Hypothesis stories

This short activity quickly engages students in the process of science. They develop multiple hypotheses to explain a set of observations and figure out how to test these hypotheses.

  • Key Stage: KS3
  • Time required: 10-15 minutes

writing a hypothesis ks3

About this resource

  • Resource type: classroom activity
  • Theme: Working scientifically

Learning outcomes

  • students pose multiple hypotheses to explain a set of observations
  • students suggest methods to test their hypotheses
  • students understand that scientific methods and theories developed as earlier explanations are modified to take account of new evidence and ideas

Curriculum links

Working scientifically skills.

Experimental skills and investigations

  • ask questions and develop a line of enquiry based on observations of the real world, alongside prior knowledge and experience
  • make predictions using scientific knowledge and understanding

Scientific attitudes

  • understand that scientific methods and theories develop as earlier explanations are modified to take account of new evidence and ideas, together with the importance of publishing results and peer review

Analysis and evaluation

  • present reasoned explanations, including explaining data in relation to predictions and hypotheses
  • identify further questions arising from their results

Third Level Scientific Skills

Inquiry and Investigative Skills:

Plans and designs scientific investigations and enquiries:

  • Demonstrates initiative and increasing independence in identifying a number of key questions and in formulating aims, predictions and hypotheses based on information, observations and knowledge.
  • Designs procedures to test a hypothesis and identifies the independent, dependent and controlled variables, with limited assistance.

Analyses, interprets and evaluates scientific findings:

  • Selects appropriate methods to record data/information and demonstrates increased precision in use of terminology, units and scales.
  • Interprets and analyses data and information to establish relationships between the independent and dependent variables and links to the original hypothesis.
  • Establishes links between the findings, aim and hypothesis.
  • Relates findings to scientific knowledge and understanding.
  • Draws a conclusion based on results gathered and in relation to the aim.
  • Begins to consider alternative explanations and applies or extends conclusions to new situations or to identify further studies.
  • Evaluates a range of aspects of the inquiry/investigation, including the relevance and reliability of evidence, and suggests at least two ways of improving the methodology, if repeated.

Presents scientific findings:

  • Communicates effectively in a range of ways, for example, orally and through scientific report writing.
  • Provides supporting evidence and quotes and acknowledges sources with limited assistance

Northern Ireland

Curriculum subject links.

  • Overarching themes of Science, Technology and Design

Curriculum Skill Links

  • Listen to and take part in discussions, explanations, role-plays and presentations
  • Contribute comments, ask questions and respond to others’ points of view
  • Communicate information, ideas, opinions, feelings and imaginings, using an expanding vocabulary
  • Thinking, Problem-Solving and Decision-Making
  • Develop creative and critical thinking in their approach to solving scientific problems
  • Show deeper scientific understanding by thinking critically and flexibly, solving problems and making informed decisions, using
  • Mathematics and ICT where appropriate
  • Work effectively with others

A person swabbing microorganisms on the wall of the Tower of London for the Microverse project

The Microverse

Discover microscopic life in urban environments using DNA technologies. For secondary schools.

writing a hypothesis ks3

Browse all our Explore: Urban Nature resources

Use our learning resources with your students to explore the nature on your doorstep and discover the challenges it faces.

writing a hypothesis ks3

Do your bit for nature

Biodiversity is connected to almost every aspect of our lives, but it needs our help. Small actions can make a big difference.

Teacher primers

  • A glossary of climate change and biodiversity terms
  • Helping the planet - an illustrated guide
  • What is Climate Change?
  • What is Biodiversity?
  • What is the Anthropocene?
  • What are Invasive Species?
  • A UN Climate Change Conference (COP26) scrapbook

Writing a Hypothesis & Prediction

A prediction and a hypothesis are different. However, experiments should include both a hypothesis and a prediction.

Illustrative background for Hypothesis

  • A hypothesis is normally generated from an idea or observation.

Illustrative background for Examples of hypotheses

Examples of hypotheses

  • Adding water to a sunflower will help it grow.
  • An increase in temperature will increase the rate of reaction.
  • A change in pH will affect how an enzyme works.

Illustrative background for Prediction

  • The prediction will explain how your hypothesis can be tested.
  • The prediction states a relationship between two variables.
  • The stated relationship should be suggested in the hypothesis.

Illustrative background for Examples of predictions

Examples of predictions

  • If I increase the amount of water I use to water the plant, it will grow more.
  • If I decrease the temperature, the rate of reaction will decrease.
  • If I increase the pH, the rate of activity will increase.

Illustrative background for The word 'because'

The word 'because'

  • Once you have written the prediction, you can extend your work by using the word ‘because’.
  • Use your scientific knowledge to explain your prediction.

1.1 Cells, Tissues & Organs

1.1.1 Microscopes

1.1.2 Magnification

1.1.3 Multicellular Organisms

1.1.4 Tissues

1.1.5 Organs

1.1.6 Unicellular Organisms

1.1.7 Diffusion

1.1.8 Factors Affecting Diffusion

1.1.9 Plant Cells

1.1.10 Cellulose

1.1.11 Plant Tissues

1.1.12 Leaves

1.1.13 Animal Cells

1.1.14 Comparing Animal & Plant Cells

1.1.15 How to Make a Model Animal and Plant Cell

1.1.16 Specialised Cells

1.1.17 Stem Cells

1.1.18 Uses of Stem Cells

1.1.19 Disadvantages of Stem Cells

1.1.20 Blood Components

1.1.21 Platelets

1.1.22 End of Topic Test - Cells & Organisation

1.1.23 The Lungs

1.1.24 Breathing

1.1.25 Plant Gas Exchange

1.1.26 Health

1.1.27 End of Topic Test - Living Organisms

1.2 Reproduction & Variation

1.2.1 Reproduction in Humans

1.2.2 Male Reproductive System

1.2.3 Female Reproductive System

1.2.4 Gestation

1.2.5 Pregnancy

1.2.6 Puberty

1.2.7 The Menstrual Cycle

1.2.8 Reproduction in Plants

1.2.9 Pollination

1.2.10 Dispersal Method

1.2.11 Variation

1.2.12 Causes of Variation

1.2.13 Inheritance

1.2.14 Adaptations and Evolution

1.2.15 Species & Selective Breeding

1.2.16 Genetic Conditions

1.2.17 End of Topic Test - Reproduction & Variation

1.3 Ecological Relationships & Classification

1.3.1 Species Interdependence

1.3.2 Food Chains & Webs

1.3.3 Changes to Food Webs

1.3.4 Relationships in an Ecosystem

1.3.5 The Impact of Environmental Change

1.3.6 Decomposers

1.3.7 Decay

1.3.8 Assessing Ecosystems

1.3.9 Ecological Sampling

1.3.10 Required Practical - Estimating Population Size

1.3.11 Pyramids of Number and Biomass

1.3.12 Classification of Living Organisms

1.3.13 Competition Between Organisms

1.3.14 Adaptations of Plants

1.3.15 Natural Selection

1.3.16 Evidence for Evolution

1.3.17 Environmental Changes & Extinctions

1.3.18 The Importance of Biodiversity

1.3.19 Bioaccumulation

1.3.20 End of Topic Test - Material Cycles & Energy

1.4 Digestion & Nutrition

1.4.1 Balanced Diets

1.4.2 Vitamins & Minerals

1.4.3 Protein

1.4.4 Lipids, Oils and Fats

1.4.5 Carbohydrates

1.4.6 Starch

1.4.7 Energy Needs

1.4.8 Dietary Fibre

1.4.9 Diseases Caused by Nutritional Deficiencies

1.4.10 Digestion

1.4.11 Plant Nutrition

1.4.12 Enzymes in Digestion

1.4.13 Required Practical - Enzymes in Digestion

1.5 Plants & Photosynthesis

1.5.1 Roots

1.5.2 Photosynthesis

1.5.3 Leaves

1.5.4 Rate of Photosynthesis

1.5.5 Testing the Rate of Photosynthesis

1.5.6 Water Transport in Plants

1.5.7 Translocation

1.5.8 The Carbon Cycle

1.5.9 Human Activities & Carbon Dioxide

1.6 Biological Systems & Processes

1.6.1 Living Organisms

1.6.2 Dichotomous Keys

1.6.3 Biomechanics

1.6.4 Muscles

1.6.5 The Skeleton

1.6.6 Measuring Forces

1.6.7 Antagonistic Muscle Pairings

1.6.8 The Respiratory System

1.6.9 Structure & Function of the Gas Exchange System

1.6.10 Breathing

1.6.11 Respiration

1.6.12 Respiration During Exercise

1.6.13 Anaerobic Respiration

1.6.14 Lactic Acid

1.6.15 Effects of Smoking on the Respiratory System

1.6.16 Balanced Diets

1.6.17 Human Growth & Development

1.6.19 Alleles

1.6.20 Genotype vs Phenotype

1.6.21 Punnett Squares

1.6.22 Joints

1.6.23 The Renal System

1.6.24 The Circulatory System

1.6.25 The Circulatory System

1.6.26 Glucose

1.6.27 Glucose and Diabetes

1.6.28 The Effects of Recreational Drug Use

1.6.29 Human Illnesses

1.6.30 Antibiotics

1.6.31 Vaccinations

1.6.32 How Antibiotics and Vaccines Work

1.6.33 Mental Health

2 Chemistry

2.1 Particles

2.1.1 Particles

2.1.2 States of Matter

2.1.3 Changes of State

2.1.4 Properties of States of Matter

2.1.5 Diffusion

2.1.6 Changing State

2.1.7 Pressure

2.1.8 Temperature Increase in a Gas

2.1.9 Conservation of Mass

2.1.10 Purity of Substances

2.1.11 Pure Substances

2.1.12 Evaporation

2.1.13 Mixtures

2.1.14 Separating Mixtures

2.1.15 Distillation

2.1.16 Chromatography

2.1.17 Solubility

2.1.18 Investigating Solubility

2.2 Chemical Reactions

2.2.1 Chemical Reactions

2.2.2 Common Reactions

2.2.3 Acids & Alkalis

2.2.4 Reactions of Acids

2.2.5 Testing for Hydrogen

2.2.6 The pH Scale

2.2.7 Titration

2.2.8 End of Topic Test - Chemical Reactions

2.3 Atoms, Elements, Compounds

2.3.1 Atoms

2.3.2 Elements

2.3.3 Compounds & Mixtures

2.3.4 Electron Configuration

2.3.5 Chemical Symbols

2.3.6 Chemical Formulae

2.3.7 Conservation of Mass

2.3.8 Vacuums

2.3.9 Molecules

2.3.10 End of Topic Test - Particles & Atoms

2.4 The Periodic Table

2.4.1 Physical Properties

2.4.2 Chemical Properties

2.4.3 The Periodic Table

2.4.4 Metals

2.4.5 Non-Metals

2.4.6 Alkali Metals

2.4.7 Halogens

2.4.8 Oxides

2.4.9 End of Topic Test - The Periodic Table

2.5 Materials & the Earth

2.5.1 The Composition of The Earth

2.5.2 The Structure of the Earth

2.5.3 Igneous Rocks

2.5.4 Sedimentary Rocks

2.5.5 Metamorphic Rocks

2.5.6 The Rock Cycle

2.5.7 Physical Weathering

2.5.8 Chemical Weathering

2.5.9 Biological Weathering

2.5.10 The Formation of Fossils

2.5.11 Crude Oil

2.5.12 End of Topic Test - Earth

2.5.13 The Earth's Early Atmosphere

2.5.14 The Earth's Atmosphere Today

2.5.15 Oxygen in the Atmosphere

2.5.16 Carbon Dioxide in the Atmosphere

2.5.17 Greenhouse Gases

2.5.18 Climate Change

2.5.19 Resources

2.5.20 Recycling

2.5.21 Ceramics

2.5.22 Polymers

2.5.23 Composites

2.5.24 End of Topic Test - Materials

2.5.25 End of Topic Test - Polymers

2.6 Reactivity

2.6.2 Ionic Bonding

2.6.3 State Symbols

2.6.4 Balancing Chemical Equations

2.6.5 Relative Formula Mass

2.6.6 Calculating the Relative Formula Mass

2.6.7 The Reactivity Series

2.6.8 Carbon & The Reactivity Series

2.6.9 Displacement Reactions

2.6.10 Displacement Reactions - Halogens

2.6.11 Alloys

2.6.12 Metal Alloys

2.7 Energetics

2.7.1 Measuring Gas Production

2.7.2 Observing a Colour Change

2.7.3 Analysing Reaction Rates

2.7.4 Factors Affecting the Rate of Reaction

2.7.5 Catalysts

2.7.6 Testing for Oxygen

2.7.7 Energy Changes During Reactions

2.8 Properties of Materials

2.8.1 Testing for Gases

2.8.2 Alloys

2.8.3 Density

2.8.4 Density of Solids, Liquids & Gases HyperLearning

3.1.1 Energy Stores & Pathways

3.1.2 Energy Transfers

3.1.3 Common Energy Transfers

3.1.4 Wasted Energy

3.1.5 Efficiency of Energy Transfer

3.1.6 Sankey Diagrams

3.1.7 Heat & Temperature

3.1.8 Heat Transfer

3.1.9 Conductors vs Insulators

3.1.10 Reducing Energy Transfers

3.1.11 Energy & Power

3.1.12 Energy in Food

3.1.13 Calories

3.1.14 Food Labels

3.1.15 Energy at Home

3.1.16 Fuel Bills

3.1.17 Calculating Fuel Bills

3.1.18 Non-Renewable Energy - Fossil Fuels

3.1.19 Other Non-Renewables

3.1.20 Renewable Energy - Air & Ground

3.1.21 Renewable Energy - Water

3.1.22 End of Topic Test - Energy

3.2 Forces & Motion

3.2.1 Forces

3.2.2 Contact Forces

3.2.3 Balanced Forces

3.2.4 Force Diagrams & Resultant Forces

3.2.5 Free Body Diagram - Uses

3.2.6 Force & Acceleration

3.2.7 Gravity

3.2.8 Weight

3.2.9 Pressure

3.2.10 Speed

3.2.11 Relative Motion

3.2.12 Friction

3.2.13 Water & Air Resistance

3.2.14 Distance-Time Graphs

3.2.15 Moments

3.2.16 Levers

3.2.17 Work

3.2.18 Machines

3.2.19 Work & Machines

3.2.20 Elasticity

3.2.21 Elasticity - Hooke's Law

3.2.22 Density

3.2.23 Floating & Sinking

3.2.24 End of Topic Test - Forces & Motion

3.2.25 Vacuums

3.2.26 Thermal Energy & Conduction

3.2.27 Convection & Radiation

3.2.28 Evaporation

3.3.1 Waves

3.3.2 Types of Waves

3.3.3 Observing Waves

3.3.4 Wave Speed

3.3.5 Earthquakes

3.3.6 Sound Waves

3.3.7 Uses of Sound Waves

3.3.8 The Interactions of Sound with Different Mediums

3.3.9 Reflecting Sounds

3.3.10 The Speed of Sound

3.3.11 Measuring the Speed of Sound

3.3.12 The Hearing Range of Humans

3.3.13 The Human Ear

3.3.14 Light Waves

3.3.15 Reflection

3.3.16 Drawing a Reflected Image

3.3.17 Refraction

3.3.18 The Human Eye

3.3.19 The Eye as a Pinhole Camera

3.3.20 Lenses

3.3.21 Colour

3.3.22 Seeing Colour

3.3.23 Colours of Light

3.3.24 Drawing Waves

3.3.25 Wave Interactions

3.3.26 Comparing Sound & Light

3.3.27 End of Topic Test - Waves

3.3.28 End of Topic Test - Sound

3.4 Electricity & Magnetism

3.4.1 Circuit Symbols

3.4.2 Resistors & Diodes

3.4.3 Electric Current

3.4.4 Measuring Current

3.4.5 Potential Difference

3.4.6 Series Circuits

3.4.7 Parallel Circuits

3.4.8 Resistance

3.4.9 Charges

3.4.10 Static Electricity

3.4.11 Magnets

3.4.12 Magnetic Fields

3.4.13 The Earth's Field

3.4.14 Electromagnetism

3.4.15 Uses of Electromagnets

3.4.16 Strength of Magnetic Fields

3.4.17 Circuit Symbols HyperLearning

3.5.1 Physical Reactions

3.5.2 Changes of State

3.5.3 Particles

3.5.4 Density

3.5.5 Density & the Particle Model

3.5.6 The Equation for Density

3.5.7 Dissolving

3.5.8 Brownian Motion

3.5.9 Diffusion

3.5.10 Filtration

3.5.11 Solids

3.5.12 Liquids

3.5.13 Gases

3.5.14 Weight & Mass

3.5.15 Gravity

3.5.16 Gravitational Field Strength

3.5.17 Gravity in Space

3.5.18 Atmospheric Pressure

3.5.19 Liquid Pressure

3.5.20 End of Topic Test - Matter

3.6 Space Physics

3.6.1 The Sun

3.6.2 The Planets

3.6.3 Other Astronomical Bodies

3.6.4 The Milky Way

3.6.5 Beyond The Milky Way

3.6.6 The Seasons

3.6.7 Days, Months & Years

3.6.8 The Moon

3.6.9 Light Years

3.6.10 End of Topic Test - Space

4 Thinking Scientifically

4.1 Models & Representations

4.1.1 Strengths & Limitations of Models

4.1.2 Symbols & Formulae to Represent Scientific Ideas

4.1.3 Analogies in Science

4.1.4 Changing Models – Atomic Theory

4.1.5 Working Safely in the Lab

4.1.6 Variables

4.1.7 Writing a Hypothesis & Prediction

4.1.8 Planning an Experiment

4.1.9 Maths Skills for Science

4.1.10 Drawing Scientific Apparatus

4.1.11 Observation & Measurement Skills

4.1.12 Types of Data

4.1.13 Graphs & Charts

4.1.14 Bias in Science

4.1.15 Conclude & Evaluate

Jump to other topics

Go student ad image

Unlock your full potential with GoStudent tutoring

Affordable 1:1 tutoring from the comfort of your home

Tutors are matched to your specific learning needs

30+ school subjects covered

Planning an Experiment

  • Teach Early Years
  • Teach Primary
  • Teach Secondary
  • Advertise With Us

Teach Secondary Logo

  • New for Schools
  • Browse by subject
  • Maths & Science
  • English & MFL
  • Outdoor Learning
  • Product Focus
  • Resource Guide

Lesson Plan: KS3 science – introducing practicals

  • Subject: Maths and Science
  • Date Posted: 27 September 2013
  • View page as PDF: Download Now

Share this:

​Introduce your new Y7s to the thrilling world of scientific experimentation, with the help of Dr Joanna Rhodes inspiring suggestions…

​PRACTICAL MAGIC

Introduce your new Y7s to the thrilling world of scientific experimentation, with the help of Dr Joanna Rhodes inspiring suggestions…

TODAY YOU WILL…

+ LEARN ABOUT THE EXCITEMENT AND ROLE OF EXPERIMENTATION IN SCIENCE

+ LEARN HOW TO CARRY OUT EXPERIMENTS SAFELY AND ANALYSE AND PRESENT THE RESULTS

In walk my year 7 class. Full of excitement and energy, their first question is “Are we doing a practical today Miss?” Over the next few years as they move up through the school the question never changes. This plan is dedicated to turning your students into skilled scientists and experimenters. The focus is not simply on how to do practical work but how to use it for both discovery and verification of scientific facts and information. Used well, experiments can support the curriculum and lead to a deeper more sophisticated understanding that helps students to apply their knowledge.

In this lesson, students will start to understand the excitement of experimentation and the role of experiments in discovering and verifying scientific information. They will learn how to carry our experiments safely and how to obtain information from the experiment that supports or refutes a hypothesis. Pupils will learn about techniques to analyse information such as creating tables and plotting graphs and how to use computer equipment such as a data logger. Cross-curricular links are developed with other practical subjects and also history and English as we look at significant scientific discoveries and how modern discoveries are published and subjected to peer review.

STARTER ACTIVITY

ARE WE DOING A PRACTICAL TODAY?

Before students come into the laboratory set it out with stations containing a range of equipment that they will use over the year.

Good stations to use include a microscope and slides; Bunsen burner and metal salts for flame tests; power pack and leads with a bulb and resistor; measuring equipment with measuring cylinders, volumetric flasks, pipettes and a balance; and a clamp stand, spring and slotted masses. Before students begin to handle the equipment ask them to go to each station and carry out a mini risk assessment based on what they can see. It helps to encourage them to think of ‘Hazard, Risk, Precaution’: what could harm me, how could it harm me, what steps will I take to protect myself?

Allow students to feed back to each other in groups. Use the information generated to create some rules for the lab. Students will be more likely to buy into these having created them. Students then explore the laboratory in groups with a mini experiment to do at each station.

The activity allows students to become familiar with a range of equipment and it will also give them the excitement of anticipating some of the activities that they will be doing in future science lessons.

MAIN ACTIVITIES

MAKING DISCOVERIES

In this activity students investigate some major scientific discoveries. Ask them to log onto Factmonster [Additional Resource 1] and pick one of the summaries including: gravity; electricity; bacteria and health; evolution; the theory of relativity; the big bang theory; discovery of penicillin; and the structure of DNA. Students should then investigate their chosen theory, focusing on the experiments that scientists carried out. They should then produce a presentation. This could be a PowerPoint but encourage students to explore other ways of presenting, too, including acting out a short play of their own or using a scripted play from the ASE [AR2]; producing a Prezi [AR3] and delivering a TED style presentation [AR4]; or designing the front cover of a newspaper announcing the discovery with fabulous graphics from Make the Front Page [AR5].

TESTING A HYPOTHESIS

In this activity students come up with ways to test their own hypothesis. Examples include simple relationships between the height a ball is dropped from and the height it rebounds to; the size of nettle leaves growing in the sun or in shade; and the resistance of a light bulb and the current passing through it. Initially students should investigate what makes a good hypothesis, an example of how to do this can be found at Science Kids at Home [AR6]. They should then design an experiment using a model you have provided which could be the superb worksheet produced by Holt, Rinehart and Winston [AR7]. Developing students’ scientific literacy is a vital process and introducing new vocabulary about the variables they will be testing is appropriate at this stage.

Students should become familiar with the terms independent, dependent and control variable and how these relate to both the measurements they will make and how they will make the experiment a fair test. Science Buddies has a website to help with an excellent range of examples and descriptions in language that students will find easy to understand [AR8].

HOME LEARNING

Pitching for a prac!

The Nuffield Foundation [AR12] in partnership with the Institute of Physics, Royal Society of Chemistry and the Society of Biology has produced sheets for practical work. Give students the web address and ask them to find a practical that inspires them. They should produce a 3-minute pitch for the practical of their choice. Students can then vote for their top three experiments to do in lesson time or as a science club activity. This develops students’ own sense of discovery as they can investigate experiments that fascinate them.

You may also be interested in...

  • Science festival for schools
  • Girls still aren’t switched on to STEM
  • Stuff and nonsense - references

Subscribe to Our Newsletter

I agree to the Terms & Conditions and Privacy & Cookies Policy.

Teach Secondary Free Copy

Recommended for you...

Classroom life -  Bedminster Down School

Classroom life -  Bedminster Down School

Interview tips to help you grab that promotion!

Interview tips to help you grab that promotion!

Top Tips to Engage Parents in their Children’s Learning

Top Tips to Engage Parents in their Children’s Learning

4 easy ways to play cricket at school

Browse by Secondary Subject

Close popup window

  • International
  • Schools directory
  • Resources Jobs Schools directory News Search

Writing a Scientific Method KS3

Writing a Scientific Method KS3

Subject: Physics

Age range: 11-14

Resource type: Lesson (complete)

callum chippendale

Last updated

27 November 2019

  • Share through email
  • Share through twitter
  • Share through linkedin
  • Share through facebook
  • Share through pinterest

writing a hypothesis ks3

Power Point aimed at lower KS3 to learn how to write a Scientific Method for making a cup of tea.

Recommend trying out some of the methods that the students come up with, making sure you are following it word for word and overacting any mistakes or issues to highlight them.

It is important to discuss why each method you go through is good or bad and ask the students to tell you how it could be better. May even be a good idea to give them some more time to try to improve their method and attempt the cup of tea again.

Creative Commons "Sharealike"

Your rating is required to reflect your happiness.

It's good to leave some feedback.

Something went wrong, please try again later.

Really helpful, thank you

Empty reply does not make any sense for the end user

pbrooks-dickens

Just what I was looking for. Thank you.

Report this resource to let us know if it violates our terms and conditions. Our customer service team will review your report and will be in touch.

Not quite what you were looking for? Search by keyword to find the right resource:

IMAGES

  1. How to Write a Strong Hypothesis in 6 Simple Steps

    writing a hypothesis ks3

  2. What is an Hypothesis

    writing a hypothesis ks3

  3. 13 Different Types of Hypothesis (2024)

    writing a hypothesis ks3

  4. How to Write a Hypothesis

    writing a hypothesis ks3

  5. Writing a hypothesis and prediction

    writing a hypothesis ks3

  6. How to write a hypothesis in 5 easy steps: (2023)

    writing a hypothesis ks3

VIDEO

  1. LESSON 3: WRITING HYPOTHESIS

  2. Writing a hypothesis and prediction 1 (Questioning & Scientific Method)

  3. Research Methods Q2: Hypothesis Writing

  4. Writing a Hypothesis

  5. Research Writing; Hypothesis Development; Types of Research

  6. Writing a hypothesis (Shortened)

COMMENTS

  1. Writing a hypothesis and prediction

    Below are two examples of a prediction based on a hypothesis: Hypothesis 1. Prediction 1. Sunlight is necessary for seeds to grow. Seeds grown in bags wrapped in aluminium foil will make shorter ...

  2. Writing hypotheses

    Writing hypotheses In the practical exam you may be required to create a hypothesis and to obtain results from a given experiment method. Scientists use hypotheses to explain things that they observe.

  3. How To Write A Hypothesis

    Step Three - Outline your hypothesis - Frame it as a cause and effect, like "if X is done, then Y will happen.". Make a prediction as to what will happen. You will also need to consider the ethics of what you are doing carefully. Step Four - Do the legwork - Conduct your research, go out into the field and investigate.

  4. Working scientifically

    KS3 Biology Working scientifically learning resources for adults, children, parents and teachers. ... Writing a hypothesis and prediction. A hypothesis is an idea about how something works that ...

  5. How to Write a Strong Hypothesis

    Developing a hypothesis (with example) Step 1. Ask a question. Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project. Example: Research question.

  6. How to Write a Strong Hypothesis

    Step 5: Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  7. Understanding Hypotheses

    A hypothesis is a statement or idea which gives an explanation to a series of observations. Sometimes, following observation, a hypothesis will clearly need to be refined or rejected. This happens if a single contradictory observation occurs. For example, suppose that a child is trying to understand the concept of a dog.

  8. Scientific Skills lessons

    These are a series of 3 lessons aimed at improving student's understanding of hypothesis, variables, method writing, graph drawing and conclusion writing. Each lesson has a booklet or you can print out the complete booklet in one go. All answers to exam questions and recall questions are in the slides.

  9. Lesson: Forming and testing a hypothesis

    Key learning points. In this lesson, we will learn how to write a suitable hypothesis, and the difference between primary and secondary data sources. This content is made available by Oak National Academy Limited and its partners and licensed under Oak's terms & conditions (Collection 1), except where otherwise stated.

  10. Activity: Hypothesis stories

    Activity: Hypothesis stories. This short activity quickly engages students in the process of science. They develop multiple hypotheses to explain a set of observations and figure out how to test these hypotheses. Key Stage: KS3. Time required: 10-15 minutes.

  11. Planning an experiment

    Image caption, STEP 1 - Asking the question. Include the question that needs an answer. A hypothesis can help answer the question too. Image caption, STEP 2 - Identifying variables. Identify ...

  12. Hypothesis Writing Worksheet

    This worksheet walks students through the process of writing a hypothesis with examples and scaffolded exercises. An answer key is also included. Tes paid licenceHow can I reuse this? Review. 2 Something went wrong, please try again later. cvb368. 5 years ago. report. 2. Some good questions, but lots of awkward wording, and way too many typos. ...

  13. How To Write A Hypothesis

    Step Three - Outline your hypothesis - Frame it as a cause and effect, like "if X is done, then Y will happen.". Make a prediction as to what will happen. You will also need to consider the ethics of what you are doing carefully. Step Four - Do the legwork - Conduct your research, go out into the field and investigate.

  14. Scientific Report Writing Guide

    Scientific Report Writing Guide. Subject: Biology. Age range: 11-14. Resource type: Other. File previews. pdf, 12.21 MB. This helpsheet can be used to support KS3 or KS4 scientists in setting up and completing a lab report for an investigation. It contains guidance to each key part of a lab report and allows students to mark these off as they ...

  15. Writing a Hypothesis & Prediction

    KS3. KS3 Science Revision KS3 Maths Revision KS3 Geography Revision KS3 History Revision. GCSE. GCSE Biology Revision; GCSE Chemistry Revision; ... 4.1.7 Writing a Hypothesis & Prediction. 4.1.8 Planning an Experiment. 4.1.9 Maths Skills for Science. 4.1.10 Drawing Scientific Apparatus. 4.1.11 Observation & Measurement Skills.

  16. Planning an investigation (CCEA) Hypothesis

    A hypothesis or prediction is made with limited evidence at the beginning of a scientific investigation. Biological knowledge should be used to justify the prediction. Example

  17. Lesson Plan: KS3 science

    testing a hypothesis In this activity students come up with ways to test their own hypothesis. Examples include simple relationships between the height a ball is dropped from and the height it rebounds to; the size of nettle leaves growing in the sun or in shade; and the resistance of a light bulb and the current passing through it.

  18. Identifying Variables and Writing Hypothesises

    Identifying Variables and Writing Hypothesises. Subject: Chemistry. Age range: 5-7. Resource type: Worksheet/Activity. File previews. docx, 17.46 KB. A homework task a made for my low ability year 10 class for the ISA coursework. Asks the students to identify variables and write a hypothesis from different experiments (including a worked example).

  19. Conclude and evaluate

    Step-by-step guide to using information to support conclusions. Image caption, Step 1 - Data interpretation. A good conclusion describes the relationship between variables, interpreted from a ...

  20. How to Write a Scientific Investigation Report

    Encourage your class to plan out their science experiment and record their predictions using our Scientific Investigation Plan. By documenting their expectations, it keeps learners engaged throughout the process. It also helps learners to understand the importance of accuracy and planning when it comes to scientific investigation.

  21. Writing a Scientific Method KS3

    Writing a Scientific Method KS3. Subject: Physics. Age range: 11-14. Resource type: Lesson (complete) File previews. pptx, 2.1 MB. Power Point aimed at lower KS3 to learn how to write a Scientific Method for making a cup of tea. Recommend trying out some of the methods that the students come up with, making sure you are following it word for ...