Logo for BCcampus Open Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Chapter 3: Graphing

3.4 Graphing Linear Equations

There are two common procedures that are used to draw the line represented by a linear equation. The first one is called the slope-intercept method and involves using the slope and intercept given in the equation.

If the equation is given in the form [latex]y = mx + b[/latex], then [latex]m[/latex] gives the rise over run value and the value [latex]b[/latex] gives the point where the line crosses the [latex]y[/latex]-axis, also known as the [latex]y[/latex]-intercept.

Example 3.4.1

Given the following equations, identify the slope and the [latex]y[/latex]-intercept.

  • [latex]\begin{array}{lll} y = 2x - 3\hspace{0.14in} & \text{Slope }(m)=2\hspace{0.1in}&y\text{-intercept } (b)=-3 \end{array}[/latex]
  • [latex]\begin{array}{lll} y = \dfrac{1}{2}x - 1\hspace{0.08in} & \text{Slope }(m)=\dfrac{1}{2}\hspace{0.1in}&y\text{-intercept } (b)=-1 \end{array}[/latex]
  • [latex]\begin{array}{lll} y = -3x + 4 & \text{Slope }(m)=-3 &y\text{-intercept } (b)=4 \end{array}[/latex]
  • [latex]\begin{array}{lll} y = \dfrac{2}{3}x\hspace{0.34in} & \text{Slope }(m)=\dfrac{2}{3}\hspace{0.1in} &y\text{-intercept } (b)=0 \end{array}[/latex]

When graphing a linear equation using the slope-intercept method, start by using the value given for the [latex]y[/latex]-intercept. After this point is marked, then identify other points using the slope.

This is shown in the following example.

Example 3.4.2

Graph the equation [latex]y = 2x - 3[/latex].

First, place a dot on the [latex]y[/latex]-intercept, [latex]y = -3[/latex], which is placed on the coordinate [latex](0, -3).[/latex]

image

Now, place the next dot using the slope of 2.

A slope of 2 means that the line rises 2 for every 1 across.

Simply, [latex]m = 2[/latex] is the same as [latex]m = \dfrac{2}{1}[/latex], where [latex]\Delta y = 2[/latex] and [latex]\Delta x = 1[/latex].

Placing these points on the graph becomes a simple counting exercise, which is done as follows:

For m = 2, go up 2 and forward 1 from each point.

Once several dots have been drawn, draw a line through them, like so:

image

Note that dots can also be drawn in the reverse of what has been drawn here.

Slope is 2 when rise over run is [latex]\dfrac{2}{1}[/latex] or [latex]\dfrac{-2}{-1}[/latex], which would be drawn as follows:

For m = 2, go down 2 and back 1 from each point.

Example 3.4.3

Graph the equation [latex]y = \dfrac{2}{3}x[/latex].

First, place a dot on the [latex]y[/latex]-intercept, [latex](0, 0)[/latex].

Now, place the dots according to the slope, [latex]\dfrac{2}{3}[/latex].

When m = 2 over 3, go up 2 and forward 3 to get the next point.

This will generate the following set of dots on the graph. All that remains is to draw a line through the dots.

Line with slope 2 over 3. Passes through (−3, −2), (0, 0), (3, 2), and (6, 4).

The second method of drawing lines represented by linear equations and functions is to identify the two intercepts of the linear equation. Specifically, find [latex]x[/latex] when [latex]y = 0[/latex] and find [latex]y[/latex] when [latex]x = 0[/latex].

Example 3.4.4

Graph the equation [latex]2x + y = 6[/latex].

To find the first coordinate, choose [latex]x = 0[/latex].

This yields:

[latex]\begin{array}{lllll} 2(0)&+&y&=&6 \\ &&y&=&6 \end{array}[/latex]

Coordinate is [latex](0, 6)[/latex].

Now choose [latex]y = 0[/latex].

[latex]\begin{array}{llrll} 2x&+&0&=&6 \\ &&2x&=&6 \\ &&x&=&\frac{6}{2} \text{ or } 3 \end{array}[/latex]

Coordinate is [latex](3, 0)[/latex].

Draw these coordinates on the graph and draw a line through them.

image

Example 3.4.5

Graph the equation [latex]x + 2y = 4[/latex].

[latex]\begin{array}{llrll} (0)&+&2y&=&4 \\ &&y&=&\frac{4}{2} \text{ or } 2 \end{array}[/latex]

Coordinate is [latex](0, 2)[/latex].

[latex]\begin{array}{llrll} x&+&2(0)&=&4 \\ &&x&=&4 \end{array}[/latex]

Coordinate is [latex](4, 0)[/latex].

image

Example 3.4.6

Graph the equation [latex]2x + y = 0[/latex].

[latex]\begin{array}{llrll} 2(0)&+&y&=&0 \\ &&y&=&0 \end{array}[/latex]

Coordinate is [latex](0, 0)[/latex].

Since the intercept is [latex](0, 0)[/latex], finding the other intercept yields the same coordinate. In this case, choose any value of convenience.

Choose [latex]x = 2[/latex].

[latex]\begin{array}{rlrlr} 2(2)&+&y&=&0 \\ 4&+&y&=&0 \\ -4&&&&-4 \\ \hline &&y&=&-4 \end{array}[/latex]

Coordinate is [latex](2, -4)[/latex].

image

For questions 1 to 10, sketch each linear equation using the slope-intercept method.

  • [latex]y = -\dfrac{1}{4}x - 3[/latex]
  • [latex]y = \dfrac{3}{2}x - 1[/latex]
  • [latex]y = -\dfrac{5}{4}x - 4[/latex]
  • [latex]y = -\dfrac{3}{5}x + 1[/latex]
  • [latex]y = -\dfrac{4}{3}x + 2[/latex]
  • [latex]y = \dfrac{5}{3}x + 4[/latex]
  • [latex]y = \dfrac{3}{2}x - 5[/latex]
  • [latex]y = -\dfrac{2}{3}x - 2[/latex]
  • [latex]y = -\dfrac{4}{5}x - 3[/latex]
  • [latex]y = \dfrac{1}{2}x[/latex]

For questions 11 to 20, sketch each linear equation using the [latex]x\text{-}[/latex] and [latex]y[/latex]-intercepts.

  • [latex]x + 4y = -4[/latex]
  • [latex]2x - y = 2[/latex]
  • [latex]2x + y = 4[/latex]
  • [latex]3x + 4y = 12[/latex]
  • [latex]4x + 3y = -12[/latex]
  • [latex]x + y = -5[/latex]
  • [latex]3x + 2y = 6[/latex]
  • [latex]x - y = -2[/latex]
  • [latex]4x - y = -4[/latex]

For questions 21 to 28, sketch each linear equation using any method.

  • [latex]y = -\dfrac{1}{2}x + 3[/latex]
  • [latex]y = 2x - 1[/latex]
  • [latex]y = -\dfrac{5}{4}x[/latex]
  • [latex]y = -3x + 2[/latex]
  • [latex]y = -\dfrac{3}{2}x + 1[/latex]
  • [latex]y = \dfrac{1}{3}x - 3[/latex]
  • [latex]y = \dfrac{3}{2}x + 2[/latex]
  • [latex]y = 2x - 2[/latex]

For questions 29 to 40, reduce and sketch each linear equation using any method.

  • [latex]y + 3 = -\dfrac{4}{5}x + 3[/latex]
  • [latex]y - 4 = \dfrac{1}{2}x[/latex]
  • [latex]x + 5y = -3 + 2y[/latex]
  • [latex]3x - y = 4 + x - 2y[/latex]
  • [latex]4x + 3y = 5 (x + y)[/latex]
  • [latex]3x + 4y = 12 - 2y[/latex]
  • [latex]2x - y = 2 - y \text{ (tricky)}[/latex]
  • [latex]7x + 3y = 2(2x + 2y) + 6[/latex]
  • [latex]x + y = -2x + 3[/latex]
  • [latex]3x + 4y = 3y + 6[/latex]
  • [latex]2(x + y) = -3(x + y) + 5[/latex]
  • [latex]9x - y = 4x + 5[/latex]

Answer Key 3.4

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

2 4 homework writing linear equations

2.2 Linear Equations in One Variable

Learning objectives.

In this section, you will:

  • Solve equations in one variable algebraically.
  • Solve a rational equation.
  • Find a linear equation.
  • Given the equations of two lines, determine whether their graphs are parallel or perpendicular.
  • Write the equation of a line parallel or perpendicular to a given line.

Caroline is a full-time college student planning a spring break vacation. To earn enough money for the trip, she has taken a part-time job at the local bank that pays $15.00/hr, and she opened a savings account with an initial deposit of $400 on January 15. She arranged for direct deposit of her payroll checks. If spring break begins March 20 and the trip will cost approximately $2,500, how many hours will she have to work to earn enough to pay for her vacation? If she can only work 4 hours per day, how many days per week will she have to work? How many weeks will it take? In this section, we will investigate problems like this and others, which generate graphs like the line in Figure 1 .

Solving Linear Equations in One Variable

A linear equation is an equation of a straight line, written in one variable. The only power of the variable is 1. Linear equations in one variable may take the form a x + b = 0 a x + b = 0 and are solved using basic algebraic operations.

We begin by classifying linear equations in one variable as one of three types: identity, conditional, or inconsistent. An identity equation is true for all values of the variable. Here is an example of an identity equation.

The solution set consists of all values that make the equation true. For this equation, the solution set is all real numbers because any real number substituted for x x will make the equation true.

A conditional equation is true for only some values of the variable. For example, if we are to solve the equation 5 x + 2 = 3 x − 6 , 5 x + 2 = 3 x − 6 , we have the following:

The solution set consists of one number: { − 4 } . { − 4 } . It is the only solution and, therefore, we have solved a conditional equation.

An inconsistent equation results in a false statement. For example, if we are to solve 5 x − 15 = 5 ( x − 4 ) , 5 x − 15 = 5 ( x − 4 ) , we have the following:

Indeed, −15 ≠ −20. −15 ≠ −20. There is no solution because this is an inconsistent equation.

Solving linear equations in one variable involves the fundamental properties of equality and basic algebraic operations. A brief review of those operations follows.

Linear Equation in One Variable

A linear equation in one variable can be written in the form

where a and b are real numbers, a ≠ 0. a ≠ 0.

Given a linear equation in one variable, use algebra to solve it.

The following steps are used to manipulate an equation and isolate the unknown variable, so that the last line reads x = _________, x = _________, if x is the unknown. There is no set order, as the steps used depend on what is given:

  • We may add, subtract, multiply, or divide an equation by a number or an expression as long as we do the same thing to both sides of the equal sign. Note that we cannot divide by zero.
  • Apply the distributive property as needed: a ( b + c ) = a b + a c . a ( b + c ) = a b + a c .
  • Isolate the variable on one side of the equation.
  • When the variable is multiplied by a coefficient in the final stage, multiply both sides of the equation by the reciprocal of the coefficient.

Solving an Equation in One Variable

Solve the following equation: 2 x + 7 = 19. 2 x + 7 = 19.

This equation can be written in the form a x + b = 0 a x + b = 0 by subtracting 19 19 from both sides. However, we may proceed to solve the equation in its original form by performing algebraic operations.

The solution is 6.

Solve the linear equation in one variable: 2 x + 1 = −9. 2 x + 1 = −9.

Solving an Equation Algebraically When the Variable Appears on Both Sides

Solve the following equation: 4 ( x −3 ) + 12 = 15 −5 ( x + 6 ) . 4 ( x −3 ) + 12 = 15 −5 ( x + 6 ) .

Apply standard algebraic properties.

This problem requires the distributive property to be applied twice, and then the properties of algebra are used to reach the final line, x = − 5 3 . x = − 5 3 .

Solve the equation in one variable: −2 ( 3 x − 1 ) + x = 14 − x . −2 ( 3 x − 1 ) + x = 14 − x .

Solving a Rational Equation

In this section, we look at rational equations that, after some manipulation, result in a linear equation. If an equation contains at least one rational expression, it is a considered a rational equation .

Recall that a rational number is the ratio of two numbers, such as 2 3 2 3 or 7 2 . 7 2 . A rational expression is the ratio, or quotient, of two polynomials. Here are three examples.

Rational equations have a variable in the denominator in at least one of the terms. Our goal is to perform algebraic operations so that the variables appear in the numerator. In fact, we will eliminate all denominators by multiplying both sides of the equation by the least common denominator (LCD).

Finding the LCD is identifying an expression that contains the highest power of all of the factors in all of the denominators. We do this because when the equation is multiplied by the LCD, the common factors in the LCD and in each denominator will equal one and will cancel out.

Solve the rational equation: 7 2 x − 5 3 x = 22 3 . 7 2 x − 5 3 x = 22 3 .

We have three denominators; 2 x , 3 x , 2 x , 3 x , and 3. The LCD must contain 2 x , 3 x , 2 x , 3 x , and 3. An LCD of 6 x 6 x contains all three denominators. In other words, each denominator can be divided evenly into the LCD. Next, multiply both sides of the equation by the LCD 6 x . 6 x .

A common mistake made when solving rational equations involves finding the LCD when one of the denominators is a binomial—two terms added or subtracted—such as ( x + 1 ) . ( x + 1 ) . Always consider a binomial as an individual factor—the terms cannot be separated. For example, suppose a problem has three terms and the denominators are x , x , x − 1 , x − 1 , and 3 x − 3. 3 x − 3. First, factor all denominators. We then have x , x , ( x − 1 ) , ( x − 1 ) , and 3 ( x − 1 ) 3 ( x − 1 ) as the denominators. (Note the parentheses placed around the second denominator.) Only the last two denominators have a common factor of ( x − 1 ) . ( x − 1 ) . The x x in the first denominator is separate from the x x in the ( x − 1 ) ( x − 1 ) denominators. An effective way to remember this is to write factored and binomial denominators in parentheses, and consider each parentheses as a separate unit or a separate factor. The LCD in this instance is found by multiplying together the x , x , one factor of ( x − 1 ) , ( x − 1 ) , and the 3. Thus, the LCD is the following:

So, both sides of the equation would be multiplied by 3 x ( x − 1 ) . 3 x ( x − 1 ) . Leave the LCD in factored form, as this makes it easier to see how each denominator in the problem cancels out.

Another example is a problem with two denominators, such as x x and x 2 + 2 x . x 2 + 2 x . Once the second denominator is factored as x 2 + 2 x = x ( x + 2 ) , x 2 + 2 x = x ( x + 2 ) , there is a common factor of x in both denominators and the LCD is x ( x + 2 ) . x ( x + 2 ) .

Sometimes we have a rational equation in the form of a proportion; that is, when one fraction equals another fraction and there are no other terms in the equation.

We can use another method of solving the equation without finding the LCD: cross-multiplication. We multiply terms by crossing over the equal sign.

Multiply a ( d ) a ( d ) and b ( c ) , b ( c ) , which results in a d = b c . a d = b c .

Any solution that makes a denominator in the original expression equal zero must be excluded from the possibilities.

Rational Equations

A rational equation contains at least one rational expression where the variable appears in at least one of the denominators.

Given a rational equation, solve it.

  • Factor all denominators in the equation.
  • Find and exclude values that set each denominator equal to zero.
  • Find the LCD.
  • Multiply the whole equation by the LCD. If the LCD is correct, there will be no denominators left.
  • Solve the remaining equation.
  • Make sure to check solutions back in the original equations to avoid a solution producing zero in a denominator.

Solving a Rational Equation without Factoring

Solve the following rational equation:

We have three denominators: x , x , 2 , 2 , and 2 x . 2 x . No factoring is required. The product of the first two denominators is equal to the third denominator, so, the LCD is 2 x . 2 x . Only one value is excluded from a solution set, 0. Next, multiply the whole equation (both sides of the equal sign) by 2 x . 2 x .

The proposed solution is −1, which is not an excluded value, so the solution set contains one number, −1 , −1 , or { −1 } { −1 } written in set notation.

Solve the rational equation: 2 3 x = 1 4 − 1 6 x . 2 3 x = 1 4 − 1 6 x .

Solving a Rational Equation by Factoring the Denominator

Solve the following rational equation: 1 x = 1 10 − 3 4 x . 1 x = 1 10 − 3 4 x .

First find the common denominator. The three denominators in factored form are x , 10 = 2 ⋅ 5 , x , 10 = 2 ⋅ 5 , and 4 x = 2 ⋅ 2 ⋅ x . 4 x = 2 ⋅ 2 ⋅ x . The smallest expression that is divisible by each one of the denominators is 20 x . 20 x . Only x = 0 x = 0 is an excluded value. Multiply the whole equation by 20 x . 20 x .

The solution is 35 2 . 35 2 .

Solve the rational equation: − 5 2 x + 3 4 x = − 7 4 . − 5 2 x + 3 4 x = − 7 4 .

Solving Rational Equations with a Binomial in the Denominator

Solve the following rational equations and state the excluded values:

  • ⓐ 3 x − 6 = 5 x 3 x − 6 = 5 x
  • ⓑ x x − 3 = 5 x − 3 − 1 2 x x − 3 = 5 x − 3 − 1 2
  • ⓒ x x − 2 = 5 x − 2 − 1 2 x x − 2 = 5 x − 2 − 1 2

The denominators x x and x − 6 x − 6 have nothing in common. Therefore, the LCD is the product x ( x − 6 ) . x ( x − 6 ) . However, for this problem, we can cross-multiply.

The solution is 15. The excluded values are 6 6 and 0. 0.

The LCD is 2 ( x − 3 ) . 2 ( x − 3 ) . Multiply both sides of the equation by 2 ( x − 3 ) . 2 ( x − 3 ) .

The solution is 13 3 . 13 3 . The excluded value is 3. 3.

The least common denominator is 2 ( x − 2 ) . 2 ( x − 2 ) . Multiply both sides of the equation by x ( x − 2 ) . x ( x − 2 ) .

The solution is 4. The excluded value is 2. 2.

Solve − 3 2 x + 1 = 4 3 x + 1 . − 3 2 x + 1 = 4 3 x + 1 . State the excluded values.

Solving a Rational Equation with Factored Denominators and Stating Excluded Values

Solve the rational equation after factoring the denominators: 2 x + 1 − 1 x − 1 = 2 x x 2 − 1 . 2 x + 1 − 1 x − 1 = 2 x x 2 − 1 . State the excluded values.

We must factor the denominator x 2 −1. x 2 −1. We recognize this as the difference of squares, and factor it as ( x − 1 ) ( x + 1 ) . ( x − 1 ) ( x + 1 ) . Thus, the LCD that contains each denominator is ( x − 1 ) ( x + 1 ) . ( x − 1 ) ( x + 1 ) . Multiply the whole equation by the LCD, cancel out the denominators, and solve the remaining equation.

The solution is −3. −3. The excluded values are 1 1 and −1. −1.

Solve the rational equation: 2 x − 2 + 1 x + 1 = 1 x 2 − x − 2 . 2 x − 2 + 1 x + 1 = 1 x 2 − x − 2 .

Finding a Linear Equation

Perhaps the most familiar form of a linear equation is the slope-intercept form, written as y = m x + b , y = m x + b , where m = slope m = slope and b = y -intercept . b = y -intercept . Let us begin with the slope.

The Slope of a Line

The slope of a line refers to the ratio of the vertical change in y over the horizontal change in x between any two points on a line. It indicates the direction in which a line slants as well as its steepness. Slope is sometimes described as rise over run.

If the slope is positive, the line slants to the right. If the slope is negative, the line slants to the left. As the slope increases, the line becomes steeper. Some examples are shown in Figure 2 . The lines indicate the following slopes: m = −3 , m = −3 , m = 2 , m = 2 , and m = 1 3 . m = 1 3 .

The slope of a line, m , represents the change in y over the change in x. Given two points, ( x 1 , y 1 ) ( x 1 , y 1 ) and ( x 2 , y 2 ) , ( x 2 , y 2 ) , the following formula determines the slope of a line containing these points:

Finding the Slope of a Line Given Two Points

Find the slope of a line that passes through the points ( 2 , −1 ) ( 2 , −1 ) and ( −5 , 3 ) . ( −5 , 3 ) .

We substitute the y- values and the x- values into the formula.

The slope is − 4 7 . − 4 7 .

It does not matter which point is called ( x 1 , y 1 ) ( x 1 , y 1 ) or ( x 2 , y 2 ) . ( x 2 , y 2 ) . As long as we are consistent with the order of the y terms and the order of the x terms in the numerator and denominator, the calculation will yield the same result.

Find the slope of the line that passes through the points ( −2 , 6 ) ( −2 , 6 ) and ( 1 , 4 ) . ( 1 , 4 ) .

Identifying the Slope and y- intercept of a Line Given an Equation

Identify the slope and y- intercept, given the equation y = − 3 4 x − 4. y = − 3 4 x − 4.

As the line is in y = m x + b y = m x + b form, the given line has a slope of m = − 3 4 . m = − 3 4 . The y- intercept is b = −4. b = −4.

The y -intercept is the point at which the line crosses the y- axis. On the y- axis, x = 0. x = 0. We can always identify the y- intercept when the line is in slope-intercept form, as it will always equal b. Or, just substitute x = 0 x = 0 and solve for y.

The Point-Slope Formula

Given the slope and one point on a line, we can find the equation of the line using the point-slope formula.

This is an important formula, as it will be used in other areas of college algebra and often in calculus to find the equation of a tangent line. We need only one point and the slope of the line to use the formula. After substituting the slope and the coordinates of one point into the formula, we simplify it and write it in slope-intercept form.

Given one point and the slope, the point-slope formula will lead to the equation of a line:

Finding the Equation of a Line Given the Slope and One Point

Write the equation of the line with slope m = −3 m = −3 and passing through the point ( 4 , 8 ) . ( 4 , 8 ) . Write the final equation in slope-intercept form.

Using the point-slope formula, substitute −3 −3 for m and the point ( 4 , 8 ) ( 4 , 8 ) for ( x 1 , y 1 ) . ( x 1 , y 1 ) .

Note that any point on the line can be used to find the equation. If done correctly, the same final equation will be obtained.

Given m = 4 , m = 4 , find the equation of the line in slope-intercept form passing through the point ( 2 , 5 ) . ( 2 , 5 ) .

Finding the Equation of a Line Passing Through Two Given Points

Find the equation of the line passing through the points ( 3 , 4 ) ( 3 , 4 ) and ( 0 , −3 ) . ( 0 , −3 ) . Write the final equation in slope-intercept form.

First, we calculate the slope using the slope formula and two points.

Next, we use the point-slope formula with the slope of 7 3 , 7 3 , and either point. Let’s pick the point ( 3 , 4 ) ( 3 , 4 ) for ( x 1 , y 1 ) . ( x 1 , y 1 ) .

In slope-intercept form, the equation is written as y = 7 3 x − 3. y = 7 3 x − 3.

To prove that either point can be used, let us use the second point ( 0 , −3 ) ( 0 , −3 ) and see if we get the same equation.

We see that the same line will be obtained using either point. This makes sense because we used both points to calculate the slope.

Standard Form of a Line

Another way that we can represent the equation of a line is in standard form . Standard form is given as

where A , A , B , B , and C C are integers. The x- and y- terms are on one side of the equal sign and the constant term is on the other side.

Finding the Equation of a Line and Writing It in Standard Form

Find the equation of the line with m = −6 m = −6 and passing through the point ( 1 4 , −2 ) . ( 1 4 , −2 ) . Write the equation in standard form.

We begin using the point-slope formula.

From here, we multiply through by 2, as no fractions are permitted in standard form, and then move both variables to the left aside of the equal sign and move the constants to the right.

This equation is now written in standard form.

Find the equation of the line in standard form with slope m = − 1 3 m = − 1 3 and passing through the point ( 1 , 1 3 ) . ( 1 , 1 3 ) .

Vertical and Horizontal Lines

The equations of vertical and horizontal lines do not require any of the preceding formulas, although we can use the formulas to prove that the equations are correct. The equation of a vertical line is given as

where c is a constant. The slope of a vertical line is undefined, and regardless of the y- value of any point on the line, the x- coordinate of the point will be c .

Suppose that we want to find the equation of a line containing the following points: ( −3 , −5 ) , ( −3 , 1 ) , ( −3 , 3 ) , ( −3 , −5 ) , ( −3 , 1 ) , ( −3 , 3 ) , and ( −3 , 5 ) . ( −3 , 5 ) . First, we will find the slope.

Zero in the denominator means that the slope is undefined and, therefore, we cannot use the point-slope formula. However, we can plot the points. Notice that all of the x- coordinates are the same and we find a vertical line through x = −3. x = −3. See Figure 3 .

The equation of a horizontal line is given as

where c is a constant. The slope of a horizontal line is zero, and for any x- value of a point on the line, the y- coordinate will be c .

Suppose we want to find the equation of a line that contains the following set of points: ( −2 , −2 ) , ( 0 , −2 ) , ( 3 , −2 ) , ( −2 , −2 ) , ( 0 , −2 ) , ( 3 , −2 ) , and ( 5 , −2 ) . ( 5 , −2 ) . We can use the point-slope formula. First, we find the slope using any two points on the line.

Use any point for ( x 1 , y 1 ) ( x 1 , y 1 ) in the formula, or use the y -intercept.

The graph is a horizontal line through y = −2. y = −2. Notice that all of the y- coordinates are the same. See Figure 3 .

Finding the Equation of a Line Passing Through the Given Points

Find the equation of the line passing through the given points: ( 1 , −3 ) ( 1 , −3 ) and ( 1 , 4 ) . ( 1 , 4 ) .

The x- coordinate of both points is 1. Therefore, we have a vertical line, x = 1. x = 1.

Find the equation of the line passing through ( −5 , 2 ) ( −5 , 2 ) and ( 2 , 2 ) . ( 2 , 2 ) .

Determining Whether Graphs of Lines are Parallel or Perpendicular

Parallel lines have the same slope and different y- intercepts. Lines that are parallel to each other will never intersect. For example, Figure 4 shows the graphs of various lines with the same slope, m = 2. m = 2.

All of the lines shown in the graph are parallel because they have the same slope and different y- intercepts.

Lines that are perpendicular intersect to form a 90° 90° -angle. The slope of one line is the negative reciprocal of the other. We can show that two lines are perpendicular if the product of the two slopes is −1 : m 1 ⋅ m 2 = −1. −1 : m 1 ⋅ m 2 = −1. For example, Figure 5 shows the graph of two perpendicular lines. One line has a slope of 3; the other line has a slope of − 1 3 . − 1 3 .

Graphing Two Equations, and Determining Whether the Lines are Parallel, Perpendicular, or Neither

Graph the equations of the given lines, and state whether they are parallel, perpendicular, or neither: 3 y = − 4 x + 3 3 y = − 4 x + 3 and 3 x − 4 y = 8. 3 x − 4 y = 8.

The first thing we want to do is rewrite the equations so that both equations are in slope-intercept form.

First equation:

Second equation:

See the graph of both lines in Figure 6

From the graph, we can see that the lines appear perpendicular, but we must compare the slopes.

The slopes are negative reciprocals of each other, confirming that the lines are perpendicular.

Graph the two lines and determine whether they are parallel, perpendicular, or neither: 2 y − x = 10 2 y − x = 10 and 2 y = x + 4. 2 y = x + 4.

Writing the Equations of Lines Parallel or Perpendicular to a Given Line

As we have learned, determining whether two lines are parallel or perpendicular is a matter of finding the slopes. To write the equation of a line parallel or perpendicular to another line, we follow the same principles as we do for finding the equation of any line. After finding the slope, use the point-slope formula to write the equation of the new line.

Given an equation for a line, write the equation of a line parallel or perpendicular to it.

  • Find the slope of the given line. The easiest way to do this is to write the equation in slope-intercept form.
  • Use the slope and the given point with the point-slope formula.
  • Simplify the line to slope-intercept form and compare the equation to the given line.

Writing the Equation of a Line Parallel to a Given Line Passing Through a Given Point

Write the equation of line parallel to a 5 x + 3 y = 1 5 x + 3 y = 1 and passing through the point ( 3 , 5 ) . ( 3 , 5 ) .

First, we will write the equation in slope-intercept form to find the slope.

The slope is m = − 5 3 . m = − 5 3 . The y- intercept is 1 3 , 1 3 , but that really does not enter into our problem, as the only thing we need for two lines to be parallel is the same slope. The one exception is that if the y- intercepts are the same, then the two lines are the same line. The next step is to use this slope and the given point with the point-slope formula.

The equation of the line is y = − 5 3 x + 10. y = − 5 3 x + 10. See Figure 7 .

Find the equation of the line parallel to 5 x = 7 + y 5 x = 7 + y and passing through the point ( −1 , −2 ) . ( −1 , −2 ) .

Finding the Equation of a Line Perpendicular to a Given Line Passing Through a Given Point

Find the equation of the line perpendicular to 5 x − 3 y + 4 = 0 5 x − 3 y + 4 = 0 and passing through the point ( − 4 , 1 ) . ( − 4 , 1 ) .

The first step is to write the equation in slope-intercept form.

We see that the slope is m = 5 3 . m = 5 3 . This means that the slope of the line perpendicular to the given line is the negative reciprocal, or − 3 5 . − 3 5 . Next, we use the point-slope formula with this new slope and the given point.

Access these online resources for additional instruction and practice with linear equations.

  • Solving rational equations
  • Equation of a line given two points
  • Finding the equation of a line perpendicular to another line through a given point
  • Finding the equation of a line parallel to another line through a given point

2.2 Section Exercises

What does it mean when we say that two lines are parallel?

What is the relationship between the slopes of perpendicular lines (assuming neither is horizontal nor vertical)?

How do we recognize when an equation, for example y = 4 x + 3 , y = 4 x + 3 , will be a straight line (linear) when graphed?

What does it mean when we say that a linear equation is inconsistent?

When solving the following equation:

2 x − 5 = 4 x + 1 2 x − 5 = 4 x + 1

explain why we must exclude x = 5 x = 5 and x = −1 x = −1 as possible solutions from the solution set.

For the following exercises, solve the equation for x . x .

7 x + 2 = 3 x − 9 7 x + 2 = 3 x − 9

4 x − 3 = 5 4 x − 3 = 5

3 ( x + 2 ) − 12 = 5 ( x + 1 ) 3 ( x + 2 ) − 12 = 5 ( x + 1 )

12 − 5 ( x + 3 ) = 2 x − 5 12 − 5 ( x + 3 ) = 2 x − 5

1 2 − 1 3 x = 4 3 1 2 − 1 3 x = 4 3

x 3 − 3 4 = 2 x + 3 12 x 3 − 3 4 = 2 x + 3 12

2 3 x + 1 2 = 31 6 2 3 x + 1 2 = 31 6

3 ( 2 x − 1 ) + x = 5 x + 3 3 ( 2 x − 1 ) + x = 5 x + 3

2 x 3 − 3 4 = x 6 + 21 4 2 x 3 − 3 4 = x 6 + 21 4

x + 2 4 − x − 1 3 = 2 x + 2 4 − x − 1 3 = 2

For the following exercises, solve each rational equation for x . x . State all x -values that are excluded from the solution set.

3 x − 1 3 = 1 6 3 x − 1 3 = 1 6

2 − 3 x + 4 = x + 2 x + 4 2 − 3 x + 4 = x + 2 x + 4

3 x − 2 = 1 x − 1 + 7 ( x − 1 ) ( x − 2 ) 3 x − 2 = 1 x − 1 + 7 ( x − 1 ) ( x − 2 )

3 x x − 1 + 2 = 3 x − 1 3 x x − 1 + 2 = 3 x − 1

5 x + 1 + 1 x − 3 = − 6 x 2 − 2 x − 3 5 x + 1 + 1 x − 3 = − 6 x 2 − 2 x − 3

1 x = 1 5 + 3 2 x 1 x = 1 5 + 3 2 x

For the following exercises, find the equation of the line using the point-slope formula. Write all the final equations using the slope-intercept form.

( 0 , 3 ) ( 0 , 3 ) with a slope of 2 3 2 3

( 1 , 2 ) ( 1 , 2 ) with a slope of − 4 5 − 4 5

x -intercept is 1, and ( −2 , 6 ) ( −2 , 6 )

y -intercept is 2, and ( 4 , −1 ) ( 4 , −1 )

( −3 , 10 ) ( −3 , 10 ) and ( 5 , −6 ) ( 5 , −6 )

( 1 , 3 )  and   ( 5 , 5 ) ( 1 , 3 )  and   ( 5 , 5 )

parallel to y = 2 x + 5 y = 2 x + 5 and passes through the point ( 4 , 3 ) ( 4 , 3 )

perpendicular to 3 y = x − 4 3 y = x − 4 and passes through the point ( −2 , 1 ) ( −2 , 1 ) .

For the following exercises, find the equation of the line using the given information.

( − 2 , 0 ) ( − 2 , 0 ) and ( −2 , 5 ) ( −2 , 5 )

( 1 , 7 ) ( 1 , 7 ) and ( 3 , 7 ) ( 3 , 7 )

The slope is undefined and it passes through the point ( 2 , 3 ) . ( 2 , 3 ) .

The slope equals zero and it passes through the point ( 1 , −4 ) . ( 1 , −4 ) .

The slope is 3 4 3 4 and it passes through the point ( 1 , 4 ) ( 1 , 4 ) .

( –1 , 3 ) ( –1 , 3 ) and ( 4 , –5 ) ( 4 , –5 )

For the following exercises, graph the pair of equations on the same axes, and state whether they are parallel, perpendicular, or neither.

y = 2 x + 7 y = − 1 2 x − 4 y = 2 x + 7 y = − 1 2 x − 4

3 x − 2 y = 5 6 y − 9 x = 6 3 x − 2 y = 5 6 y − 9 x = 6

y = 3 x + 1 4 y = 3 x + 2 y = 3 x + 1 4 y = 3 x + 2

x = 4 y = −3 x = 4 y = −3

For the following exercises, find the slope of the line that passes through the given points.

( 5 , 4 ) ( 5 , 4 ) and ( 7 , 9 ) ( 7 , 9 )

( −3 , 2 ) ( −3 , 2 ) and ( 4 , −7 ) ( 4 , −7 )

( −5 , 4 ) ( −5 , 4 ) and ( 2 , 4 ) ( 2 , 4 )

( −1 , −2 ) ( −1 , −2 ) and ( 3 , 4 ) ( 3 , 4 )

( 3 , −2 ) ( 3 , −2 ) and ( 3 , −2 ) ( 3 , −2 )

For the following exercises, find the slope of the lines that pass through each pair of points and determine whether the lines are parallel or perpendicular.

( −1 , 3 )  and   ( 5 , 1 ) ( −2 , 3 )  and   ( 0 , 9 ) ( −1 , 3 )  and   ( 5 , 1 ) ( −2 , 3 )  and   ( 0 , 9 )

( 2 , 5 )  and   ( 5 , 9 ) ( −1 , −1 )  and   ( 2 , 3 ) ( 2 , 5 )  and   ( 5 , 9 ) ( −1 , −1 )  and   ( 2 , 3 )

For the following exercises, express the equations in slope intercept form (rounding each number to the thousandths place). Enter this into a graphing calculator as Y1, then adjust the ymin and ymax values for your window to include where the y -intercept occurs. State your ymin and ymax values.

0.537 x − 2.19 y = 100 0.537 x − 2.19 y = 100

4,500 x − 200 y = 9,528 4,500 x − 200 y = 9,528

200 − 30 y x = 70 200 − 30 y x = 70

Starting with the point-slope formula y − y 1 = m ( x − x 1 ) , y − y 1 = m ( x − x 1 ) , solve this expression for x x in terms of x 1 , y , y 1 , x 1 , y , y 1 , and m m .

Starting with the standard form of an equation A x + B y = C A x + B y = C solve this expression for y y in terms of A , B , C A , B , C and x x . Then put the expression in slope-intercept form.

Use the above derived formula to put the following standard equation in slope intercept form: 7 x − 5 y = 25. 7 x − 5 y = 25.

Given that the following coordinates are the vertices of a rectangle, prove that this truly is a rectangle by showing the slopes of the sides that meet are perpendicular.

( – 1 , 1 ) , ( 2 , 0 ) , ( 3 , 3 ) ( – 1 , 1 ) , ( 2 , 0 ) , ( 3 , 3 ) and ( 0 , 4 ) ( 0 , 4 )

Find the slopes of the diagonals in the previous exercise. Are they perpendicular?

Real-World Applications

The slope for a wheelchair ramp for a home has to be 1 12 . 1 12 . If the vertical distance from the ground to the door bottom is 2.5 ft, find the distance the ramp has to extend from the home in order to comply with the needed slope.

If the profit equation for a small business selling x x number of item one and y y number of item two is p = 3 x + 4 y , p = 3 x + 4 y , find the y y value when p = $ 453 and   x = 75. p = $ 453 and   x = 75.

For the following exercises, use this scenario: The cost of renting a car is $45/wk plus $0.25/mi traveled during that week. An equation to represent the cost would be y = 45 + .25 x , y = 45 + .25 x , where x x is the number of miles traveled.

What is your cost if you travel 50 mi?

If your cost were $ 63.75 , $ 63.75 , how many miles were you charged for traveling?

Suppose you have a maximum of $100 to spend for the car rental. What would be the maximum number of miles you could travel?

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/college-algebra-2e/pages/1-introduction-to-prerequisites
  • Authors: Jay Abramson
  • Publisher/website: OpenStax
  • Book title: College Algebra 2e
  • Publication date: Dec 21, 2021
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/college-algebra-2e/pages/1-introduction-to-prerequisites
  • Section URL: https://openstax.org/books/college-algebra-2e/pages/2-2-linear-equations-in-one-variable

© Jan 9, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Mathematics LibreTexts

Chapter 2: Solving Linear Equations

  • Last updated
  • Save as PDF
  • Page ID 33028

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

In this chapter, you will explore linear equations, develop a strategy for solving them, and relate them to real-world situations.

  • 2.1: Prelude to Solving Linear Equations Law enforcement and the military are using drones rather than send personnel into dangerous situations. Building and piloting a drone requires the ability to program a set of actions, including taking off, turning, and landing. This, in turn, requires the use of linear equations.
  • 2.2E: Use a General Strategy to Solve Linear Equations (Exercises)
  • Section 2.3E: Exercises
  • Section 2.4E: Exercises
  • Section 2.5E: Exercises
  • Section 2.6E: Exercises
  • Section 2.7E: Exercises
  • Section 2.8E: Exercises
  • Section 2.9: Chapter 2 Review Exercises

2.4 Writing Linear Equations

  • Write a linear equation in slope-intercept form from a table and word problem
  • Evaluate a linear expression by plugging in a given x-value.
  • Link to all CCSS Math
  • CCSS.PRACTICE.MP4
  • CCSS.PRACTICE.MP7
  • CCSS.HSF.BF.A.1
  • CCSS.HSF.LE.A.1.B
  • CCSS.HSF.LE.A.2
  • Evaluate fee structures of checking accounts
  • 13b: Discuss the costs and benefits of using alternative financial services relative to traditional banking
  • Student Activity Packet
  • Application Problems

2 4 homework writing linear equations

How many squares will be in the 6th figure?

Describe the pattern., how many squares are in figure zero how do you know, write an equation to model the number of squares, y, that are in figure x..

2 4 homework writing linear equations

Write an equation for each of the linear functions described below.

Practice it on your own, practice it on your own.

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

Course: Algebra 1   >   Unit 4

Two-variable linear equations intro.

  • Solutions to 2-variable equations
  • Worked example: solutions to 2-variable equations
  • Completing solutions to 2-variable equations
  • Complete solutions to 2-variable equations

2 4 homework writing linear equations

Want to join the conversation?

  • Upvote Button navigates to signup page
  • Downvote Button navigates to signup page
  • Flag Button navigates to signup page

Great Answer

Video transcript

  • Skip to main content
  • Skip to primary sidebar

CLICK HERE TO LEARN ABOUT MTM ALL ACCESS MEMBERSHIP FOR GRADES 6-ALGEBRA 1

Maneuvering the Middle

Student-Centered Math Lessons

Linear Equations Activity Ideas

Some of the links in this post are affiliate links that support the content on this site. Read our disclosure statement for more information.

2 4 homework writing linear equations

Linear equations require lots of practice as the skill progresses to include more steps and increases in complexity. Any of these activities can be used from the basics of simplifying expressions to solving equations with variables on both sides. 

Model by Using Algebra Tiles

Are you surprised I am starting with Algebra tiles? They are foundational for concrete understanding! You can learn more about using Algebra tiles in your classroom by grabbing our free Getting Started with Algebra Tiles guide, which can be found by checking out our post on Solving Equations . This Modeling Equations with Variables on Both Sides activity is a great way to practice solving equations with Algebra tiles. You just need some Algebra tiles (or your students can draw them!).

2 4 homework writing linear equations

Student Teacher

Put students into pairs and show an equation on the board. Have one student instruct the other on how to solve as the student listening writes each step and solution. Then, show a new equation and have students switch roles. This gives students a chance to teach and reinforce what they remember about linear equations. I love this activity because it is simple and it makes every student explain their thinking. You, as the teacher, can circulate listening to each pair.

Round Table

Give students individual white boards and have them work in teams of 2-4.  With one equation written on the board, the first person will solve step one.  The second person will complete the second step in solving and the third will complete the next step. Keep rotating until the problem is solved and the last person checks the solution.  Have groups hold up their boards when they are finished.  If you want something like this, we have this Solving Equations with Variables on Both Sides Round Table available! 

Linear Equations require lots of practice as the skills continues to increase in difficulty. Keep students engaged with these 5 ideas. | maneuveringthemiddle.com

Board Races

After students have had time to practice, implement “Board Races.” Two students will come up to the board and race to solve an equation shown on the board. The person who solves it correctly first stays up at the board for the next equation with a new competitor. I like to have the students who aren’t at the board working the equations on notebook paper to help check the solutions. An element of competition makes repetitive practice more fun! For race type activities, I like to have teams compete (boys v. girls or one side of the room v. the other side of the room).

Digital Activities 

I love our digital activities! This linear equations set of digital activities includes simplifying expressions, solving one and two-step equations, solving multi-step equations, and equations with variables on both sides, making it the perfect review before a linear equations test. 

Linear Equations require lots of practice as the skills continues to increase in difficulty. Keep students engaged with these 5 ideas. | maneuveringthemiddle.com

What are some fun ways that students practice solving linear equations in your class? You can check out how to turn any worksheet into an activity which can easily be used for linear equations too!

Linear Equations require lots of practice as the skills continues to increase in difficulty. Keep students engaged with these 5 ideas. | maneuveringthemiddle.com

Getting Started with Algebra Tiles

Check out these related products from my shop.

2 4 homework writing linear equations

IMAGES

  1. Linear Equations Worksheet With Answers

    2 4 homework writing linear equations

  2. Writing Linear Equations Worksheet Answers

    2 4 homework writing linear equations

  3. Lesson 6 Extra Practice Write Linear Equations Answer Key

    2 4 homework writing linear equations

  4. Free Printable Writing Linear Equations Worksheet Collection

    2 4 homework writing linear equations

  5. 2 4 Skills Practice Writing Linear Equations

    2 4 homework writing linear equations

  6. Linear Equation Worksheet Pdf

    2 4 homework writing linear equations

VIDEO

  1. Writing Linear Equations in Function form.avi

  2. Systems of Equations Word Problems (Linear Equations with 2 Variables)

  3. Video 3: Re-writing Linear Equations

  4. 4.1 & 4.2 Slope & Equations of Lines

  5. Linear Equations in Two Variables

  6. Math 2240 Section 4.2 Homogeneous Linear Equations:The General Solution

COMMENTS

  1. PDF 2-4 Writing Linear Equations

    2-4 Writing Linear Equations - Practice and Problem Solving 8. 14. 16. ... (4, 2), perpendicular to y = Write an equation in slope-intercept form for the line that satisfies each set of conditions. Substitute = (—4, 12) and (X2,Y2) = (—2, —4) in the slope formula m =

  2. PDF Unit 4a

    Unit 4: Linear Equations Homework 8: Writing Linear Equations REVIEW Direcüons: Write the linear equation in slope-intercept form given the following: 1. slope = Z; ... Unit 4: Linear Equations Homework 10: Parallel & Perpendicular Lines (Day 2) Write an equation passing through the point and PARALLEL to the given line. + 6 5.1 =

  3. Linear equations, functions, & graphs

    This topic covers: - Intercepts of linear equations/functions - Slope of linear equations/functions - Slope-intercept, point-slope, & standard forms - Graphing linear equations/functions - Writing linear equations/functions - Interpreting linear equations/functions - Linear equations/functions word problems

  4. Writing linear equations in all forms (video)

    Well, say the equation is 8x -2y =24. To graph, you must plug in 0 for either x or y to get the y- or x-intercept. So in the equation that I said, let's find the y-intercept first. You would plug in 0 for x. So the equation would be 8*0 -2y =24, or -2y =24. Then you can solve it like a regular equation and you would get y =-12.

  5. PDF A.REI.D.10: Writing Linear Equations 2

    4−0 0−2 =−2; use the given y-intercept (0,4) to write an equation of the line, and substitute into the equation to show that (−25,81) does not lie on line : y=−2x+4 81 ≠−2(−25)+4 REF: 089929a 13 ANS: 390. The cost of joining the club is the y-intercept, $90, and each game costs $30. This function may be written

  6. 2.4: Graphing Linear Equations- Answers to the Homework Exercises

    This page titled 2.4: Graphing Linear Equations- Answers to the Homework Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Darlene Diaz (ASCCC Open Educational Resources Initiative) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

  7. PDF 2.4 Writing Linear Equations

    Algebra 2 2.4 Writing Linear Equations. Find the slope-intercept form of an equation of the line that has a slope of 2 and passes through (-1, 3). Find the slope-intercept form of an equation that has x-intercept = 2 and y-intercept = 4. (c) Write an equation in point slope form through the point (1,2) with a slope of 4.

  8. 3.4 Graphing Linear Equations

    3.4 Graphing Linear Equations. There are two common procedures that are used to draw the line represented by a linear equation. The first one is called the slope-intercept method and involves using the slope and intercept given in the equation. If the equation is given in the form y = mx+b y = m x + b, then m m gives the rise over run value and ...

  9. 2.2 Linear Equations in One Variable

    A linear equation is an equation of a straight line, written in one variable. The only power of the variable is 1. Linear equations in one variable may take the form ax + b = 0 and are solved using basic algebraic operations. We begin by classifying linear equations in one variable as one of three types: identity, conditional, or inconsistent.

  10. Unit 4 Review

    Study with Quizlet and memorize flashcards containing terms like Slope = -8 and y intercept = 5, Slope = 4/3, y intercept = 3, Slope = 0, y intercept = 4 and more.

  11. Writing linear equations word problems

    Writing linear equations word problems. Rachel is a stunt driver. One time, during a gig where she escaped from a building about to explode (!), she drove to get to the safe zone at 24 meters per second. After 4 seconds of driving, she was 70 meters away from the safe zone. Let y represent the distance (in meters) from the safe zone after x ...

  12. PDF Unit 4: Writing Linear Equations

    Unit 4: Writing Linear Equations Day Lesson Topic Textbook Section Homework 1 U4: L1 (Notes) Writing Linear Equations in Slope-Intercept Form 5.1 Pg 276-277 # 1-25 ODDS, 28 , 30 2 U4: L1b (Notes) Writing Linear Inequalities Given a Graph in ... n/a "Lab Prep" - 4.1 & 4.2 6 U4: L3 (Notes) Writing Linear Equations Given Two Points (Also ...

  13. 2.4: Solving Linear Equations- Part II

    Step 2: Use the appropriate properties of equality to combine opposite-side like terms with the variable term on one side of the equation and the constant term on the other. Step 3: Divide or multiply as needed to isolate the variable. Step 4: Check to see if the answer solves the original equation.

  14. Writing Linear Equations 2 Flashcards

    Writing Linear Equations 2. Click the card to flip 👆. y = 2x + 4. Click the card to flip 👆. 1 / 21.

  15. Chapter 2: Solving Linear Equations

    2.2: Use a General Strategy to Solve Linear Equations. Solving an equation is like discovering the answer to a puzzle. The purpose in solving an equation is to find the value or values of the variable that makes it a true statement. Any value of the variable that makes the equation true is called a solution to the equation.

  16. PDF 2-4 Writing Linear Equations

    Lesson 2-4 Writing Linear Equations 83 Write an equation in slope-intercept form for the line that satisfies each set of conditions. 11. perpendicular to y = _3 4 x - 2, passes through (2, 0) 12. perpendicular to y = _1 2 x + 6, passes through (-5, 7) Example 4 (p. 82) Write an equation in slope-intercept form for the line that satisfies each

  17. 2.4 Writing Linear Equations

    Follow your teacher's instructions to review the formula below and practice writing linear equations. 1. 5. Write an equation for each of the linear functions described below. visibility View Drawing. 1. 6. visibility View Drawing. 1. 7. visibility View Drawing. 1. 8. ... Homework: Desmos #2 Application Level 2 ...

  18. Two-variable linear equations intro (video)

    The point-- the point five comma seven is on, or it satisfies this linear equation. So if you take all of the xy pairs that satisfy it, you get a line. That is why it is called a linear equation. Now, this isn't the only way that we could write a linear equation. You could write a linear equation like-- let me do this in a new color.

  19. PDF WWriting Linear Equationsriting Linear Equations

    Given a point on a line and the slope of the line, you can write an equation of the line. — 5 . Write the slope-intercept form. 3 Substitute for m, −5 for x, and — 5 6 for y. Simplify. Solve for b. 9. = m(x − x 1) is in point-slope form. The line passes through the point (x 1, y 1), and the slope of the line is m.

  20. Linear Equations Activity Ideas

    Student Teacher. Put students into pairs and show an equation on the board. Have one student instruct the other on how to solve as the student listening writes each step and solution. Then, show a new equation and have students switch roles. This gives students a chance to teach and reinforce what they remember about linear equations.

  21. Solved Unit 2: Linear Functions Date: Bell: Homework 3:

    a) Write an equation to represent the number of b) If a half-marathon (13.1 miles) is 12 weeks miles Mikayla is able to run after each week. after the start of Mikayla's training program, Define your variables. will she be ready? ** This is a 2-page Point Slope & Two Points: Write a linear equation information. 1. slope = -6; passes through (-4,1)

  22. . A system of equations and their graphs are given. 4x

    Step 2: It is known that the solution of a system of linear equation is graphically obtained by the common intersection point(s) between these system of linear equations. Then, observing the graph in the question, it is clear that the equation (1) [i.e. red straight line] and the equation (2) [i.e. blue straight line] intersect each other at ...