• Skip to main content
  • Skip to search
  • Skip to select language
  • Sign up for free
  • Português (do Brasil)

Expressions and operators

This chapter describes JavaScript's expressions and operators, including assignment, comparison, arithmetic, bitwise, logical, string, ternary and more.

At a high level, an expression is a valid unit of code that resolves to a value. There are two types of expressions: those that have side effects (such as assigning values) and those that purely evaluate .

The expression x = 7 is an example of the first type. This expression uses the = operator to assign the value seven to the variable x . The expression itself evaluates to 7 .

The expression 3 + 4 is an example of the second type. This expression uses the + operator to add 3 and 4 together and produces a value, 7 . However, if it's not eventually part of a bigger construct (for example, a variable declaration like const z = 3 + 4 ), its result will be immediately discarded — this is usually a programmer mistake because the evaluation doesn't produce any effects.

As the examples above also illustrate, all complex expressions are joined by operators , such as = and + . In this section, we will introduce the following operators:

Assignment operators

Comparison operators, arithmetic operators, bitwise operators, logical operators, bigint operators, string operators, conditional (ternary) operator, comma operator, unary operators, relational operators.

These operators join operands either formed by higher-precedence operators or one of the basic expressions . A complete and detailed list of operators and expressions is also available in the reference .

The precedence of operators determines the order they are applied when evaluating an expression. For example:

Despite * and + coming in different orders, both expressions would result in 7 because * has precedence over + , so the * -joined expression will always be evaluated first. You can override operator precedence by using parentheses (which creates a grouped expression — the basic expression). To see a complete table of operator precedence as well as various caveats, see the Operator Precedence Reference page.

JavaScript has both binary and unary operators, and one special ternary operator, the conditional operator. A binary operator requires two operands, one before the operator and one after the operator:

For example, 3 + 4 or x * y . This form is called an infix binary operator, because the operator is placed between two operands. All binary operators in JavaScript are infix.

A unary operator requires a single operand, either before or after the operator:

For example, x++ or ++x . The operator operand form is called a prefix unary operator, and the operand operator form is called a postfix unary operator. ++ and -- are the only postfix operators in JavaScript — all other operators, like ! , typeof , etc. are prefix.

An assignment operator assigns a value to its left operand based on the value of its right operand. The simple assignment operator is equal ( = ), which assigns the value of its right operand to its left operand. That is, x = f() is an assignment expression that assigns the value of f() to x .

There are also compound assignment operators that are shorthand for the operations listed in the following table:

Assigning to properties

If an expression evaluates to an object , then the left-hand side of an assignment expression may make assignments to properties of that expression. For example:

For more information about objects, read Working with Objects .

If an expression does not evaluate to an object, then assignments to properties of that expression do not assign:

In strict mode , the code above throws, because one cannot assign properties to primitives.

It is an error to assign values to unmodifiable properties or to properties of an expression without properties ( null or undefined ).

Destructuring

For more complex assignments, the destructuring assignment syntax is a JavaScript expression that makes it possible to extract data from arrays or objects using a syntax that mirrors the construction of array and object literals.

Without destructuring, it takes multiple statements to extract values from arrays and objects:

With destructuring, you can extract multiple values into distinct variables using a single statement:

Evaluation and nesting

In general, assignments are used within a variable declaration (i.e., with const , let , or var ) or as standalone statements.

However, like other expressions, assignment expressions like x = f() evaluate into a result value. Although this result value is usually not used, it can then be used by another expression.

Chaining assignments or nesting assignments in other expressions can result in surprising behavior. For this reason, some JavaScript style guides discourage chaining or nesting assignments . Nevertheless, assignment chaining and nesting may occur sometimes, so it is important to be able to understand how they work.

By chaining or nesting an assignment expression, its result can itself be assigned to another variable. It can be logged, it can be put inside an array literal or function call, and so on.

The evaluation result matches the expression to the right of the = sign in the "Meaning" column of the table above. That means that x = f() evaluates into whatever f() 's result is, x += f() evaluates into the resulting sum x + f() , x **= f() evaluates into the resulting power x ** f() , and so on.

In the case of logical assignments, x &&= f() , x ||= f() , and x ??= f() , the return value is that of the logical operation without the assignment, so x && f() , x || f() , and x ?? f() , respectively.

When chaining these expressions without parentheses or other grouping operators like array literals, the assignment expressions are grouped right to left (they are right-associative ), but they are evaluated left to right .

Note that, for all assignment operators other than = itself, the resulting values are always based on the operands' values before the operation.

For example, assume that the following functions f and g and the variables x and y have been declared:

Consider these three examples:

Evaluation example 1

y = x = f() is equivalent to y = (x = f()) , because the assignment operator = is right-associative . However, it evaluates from left to right:

  • The y on this assignment's left-hand side evaluates into a reference to the variable named y .
  • The x on this assignment's left-hand side evaluates into a reference to the variable named x .
  • The function call f() prints "F!" to the console and then evaluates to the number 2 .
  • That 2 result from f() is assigned to x .
  • The assignment expression x = f() has now finished evaluating; its result is the new value of x , which is 2 .
  • That 2 result in turn is also assigned to y .
  • The assignment expression y = x = f() has now finished evaluating; its result is the new value of y – which happens to be 2 . x and y are assigned to 2 , and the console has printed "F!".

Evaluation example 2

y = [ f(), x = g() ] also evaluates from left to right:

  • The y on this assignment's left-hand evaluates into a reference to the variable named y .
  • The function call g() prints "G!" to the console and then evaluates to the number 3 .
  • That 3 result from g() is assigned to x .
  • The assignment expression x = g() has now finished evaluating; its result is the new value of x , which is 3 . That 3 result becomes the next element in the inner array literal (after the 2 from the f() ).
  • The inner array literal [ f(), x = g() ] has now finished evaluating; its result is an array with two values: [ 2, 3 ] .
  • That [ 2, 3 ] array is now assigned to y .
  • The assignment expression y = [ f(), x = g() ] has now finished evaluating; its result is the new value of y – which happens to be [ 2, 3 ] . x is now assigned to 3 , y is now assigned to [ 2, 3 ] , and the console has printed "F!" then "G!".

Evaluation example 3

x[f()] = g() also evaluates from left to right. (This example assumes that x is already assigned to some object. For more information about objects, read Working with Objects .)

  • The x in this property access evaluates into a reference to the variable named x .
  • Then the function call f() prints "F!" to the console and then evaluates to the number 2 .
  • The x[f()] property access on this assignment has now finished evaluating; its result is a variable property reference: x[2] .
  • Then the function call g() prints "G!" to the console and then evaluates to the number 3 .
  • That 3 is now assigned to x[2] . (This step will succeed only if x is assigned to an object .)
  • The assignment expression x[f()] = g() has now finished evaluating; its result is the new value of x[2] – which happens to be 3 . x[2] is now assigned to 3 , and the console has printed "F!" then "G!".

Avoid assignment chains

Chaining assignments or nesting assignments in other expressions can result in surprising behavior. For this reason, chaining assignments in the same statement is discouraged .

In particular, putting a variable chain in a const , let , or var statement often does not work. Only the outermost/leftmost variable would get declared; other variables within the assignment chain are not declared by the const / let / var statement. For example:

This statement seemingly declares the variables x , y , and z . However, it only actually declares the variable z . y and x are either invalid references to nonexistent variables (in strict mode ) or, worse, would implicitly create global variables for x and y in sloppy mode .

A comparison operator compares its operands and returns a logical value based on whether the comparison is true. The operands can be numerical, string, logical, or object values. Strings are compared based on standard lexicographical ordering, using Unicode values. In most cases, if the two operands are not of the same type, JavaScript attempts to convert them to an appropriate type for the comparison. This behavior generally results in comparing the operands numerically. The sole exceptions to type conversion within comparisons involve the === and !== operators, which perform strict equality and inequality comparisons. These operators do not attempt to convert the operands to compatible types before checking equality. The following table describes the comparison operators in terms of this sample code:

Note: => is not a comparison operator but rather is the notation for Arrow functions .

An arithmetic operator takes numerical values (either literals or variables) as their operands and returns a single numerical value. The standard arithmetic operators are addition ( + ), subtraction ( - ), multiplication ( * ), and division ( / ). These operators work as they do in most other programming languages when used with floating point numbers (in particular, note that division by zero produces Infinity ). For example:

In addition to the standard arithmetic operations ( + , - , * , / ), JavaScript provides the arithmetic operators listed in the following table:

A bitwise operator treats their operands as a set of 32 bits (zeros and ones), rather than as decimal, hexadecimal, or octal numbers. For example, the decimal number nine has a binary representation of 1001. Bitwise operators perform their operations on such binary representations, but they return standard JavaScript numerical values.

The following table summarizes JavaScript's bitwise operators.

Bitwise logical operators

Conceptually, the bitwise logical operators work as follows:

  • The operands are converted to thirty-two-bit integers and expressed by a series of bits (zeros and ones). Numbers with more than 32 bits get their most significant bits discarded. For example, the following integer with more than 32 bits will be converted to a 32-bit integer: Before: 1110 0110 1111 1010 0000 0000 0000 0110 0000 0000 0001 After: 1010 0000 0000 0000 0110 0000 0000 0001
  • Each bit in the first operand is paired with the corresponding bit in the second operand: first bit to first bit, second bit to second bit, and so on.
  • The operator is applied to each pair of bits, and the result is constructed bitwise.

For example, the binary representation of nine is 1001, and the binary representation of fifteen is 1111. So, when the bitwise operators are applied to these values, the results are as follows:

Note that all 32 bits are inverted using the Bitwise NOT operator, and that values with the most significant (left-most) bit set to 1 represent negative numbers (two's-complement representation). ~x evaluates to the same value that -x - 1 evaluates to.

Bitwise shift operators

The bitwise shift operators take two operands: the first is a quantity to be shifted, and the second specifies the number of bit positions by which the first operand is to be shifted. The direction of the shift operation is controlled by the operator used.

Shift operators convert their operands to thirty-two-bit integers and return a result of either type Number or BigInt : specifically, if the type of the left operand is BigInt , they return BigInt ; otherwise, they return Number .

The shift operators are listed in the following table.

Logical operators are typically used with Boolean (logical) values; when they are, they return a Boolean value. However, the && and || operators actually return the value of one of the specified operands, so if these operators are used with non-Boolean values, they may return a non-Boolean value. The logical operators are described in the following table.

Examples of expressions that can be converted to false are those that evaluate to null, 0, NaN, the empty string (""), or undefined.

The following code shows examples of the && (logical AND) operator.

The following code shows examples of the || (logical OR) operator.

The following code shows examples of the ! (logical NOT) operator.

Short-circuit evaluation

As logical expressions are evaluated left to right, they are tested for possible "short-circuit" evaluation using the following rules:

  • false && anything is short-circuit evaluated to false.
  • true || anything is short-circuit evaluated to true.

The rules of logic guarantee that these evaluations are always correct. Note that the anything part of the above expressions is not evaluated, so any side effects of doing so do not take effect.

Note that for the second case, in modern code you can use the Nullish coalescing operator ( ?? ) that works like || , but it only returns the second expression, when the first one is " nullish ", i.e. null or undefined . It is thus the better alternative to provide defaults, when values like '' or 0 are valid values for the first expression, too.

Most operators that can be used between numbers can be used between BigInt values as well.

One exception is unsigned right shift ( >>> ) , which is not defined for BigInt values. This is because a BigInt does not have a fixed width, so technically it does not have a "highest bit".

BigInts and numbers are not mutually replaceable — you cannot mix them in calculations.

This is because BigInt is neither a subset nor a superset of numbers. BigInts have higher precision than numbers when representing large integers, but cannot represent decimals, so implicit conversion on either side might lose precision. Use explicit conversion to signal whether you wish the operation to be a number operation or a BigInt one.

You can compare BigInts with numbers.

In addition to the comparison operators, which can be used on string values, the concatenation operator (+) concatenates two string values together, returning another string that is the union of the two operand strings.

For example,

The shorthand assignment operator += can also be used to concatenate strings.

The conditional operator is the only JavaScript operator that takes three operands. The operator can have one of two values based on a condition. The syntax is:

If condition is true, the operator has the value of val1 . Otherwise it has the value of val2 . You can use the conditional operator anywhere you would use a standard operator.

This statement assigns the value "adult" to the variable status if age is eighteen or more. Otherwise, it assigns the value "minor" to status .

The comma operator ( , ) evaluates both of its operands and returns the value of the last operand. This operator is primarily used inside a for loop, to allow multiple variables to be updated each time through the loop. It is regarded bad style to use it elsewhere, when it is not necessary. Often two separate statements can and should be used instead.

For example, if a is a 2-dimensional array with 10 elements on a side, the following code uses the comma operator to update two variables at once. The code prints the values of the diagonal elements in the array:

A unary operation is an operation with only one operand.

The delete operator deletes an object's property. The syntax is:

where object is the name of an object, property is an existing property, and propertyKey is a string or symbol referring to an existing property.

If the delete operator succeeds, it removes the property from the object. Trying to access it afterwards will yield undefined . The delete operator returns true if the operation is possible; it returns false if the operation is not possible.

Deleting array elements

Since arrays are just objects, it's technically possible to delete elements from them. This is, however, regarded as a bad practice — try to avoid it. When you delete an array property, the array length is not affected and other elements are not re-indexed. To achieve that behavior, it is much better to just overwrite the element with the value undefined . To actually manipulate the array, use the various array methods such as splice .

The typeof operator returns a string indicating the type of the unevaluated operand. operand is the string, variable, keyword, or object for which the type is to be returned. The parentheses are optional.

Suppose you define the following variables:

The typeof operator returns the following results for these variables:

For the keywords true and null , the typeof operator returns the following results:

For a number or string, the typeof operator returns the following results:

For property values, the typeof operator returns the type of value the property contains:

For methods and functions, the typeof operator returns results as follows:

For predefined objects, the typeof operator returns results as follows:

The void operator specifies an expression to be evaluated without returning a value. expression is a JavaScript expression to evaluate. The parentheses surrounding the expression are optional, but it is good style to use them to avoid precedence issues.

A relational operator compares its operands and returns a Boolean value based on whether the comparison is true.

The in operator returns true if the specified property is in the specified object. The syntax is:

where propNameOrNumber is a string, numeric, or symbol expression representing a property name or array index, and objectName is the name of an object.

The following examples show some uses of the in operator.

The instanceof operator returns true if the specified object is of the specified object type. The syntax is:

where objectName is the name of the object to compare to objectType , and objectType is an object type, such as Date or Array .

Use instanceof when you need to confirm the type of an object at runtime. For example, when catching exceptions, you can branch to different exception-handling code depending on the type of exception thrown.

For example, the following code uses instanceof to determine whether theDay is a Date object. Because theDay is a Date object, the statements in the if statement execute.

Basic expressions

All operators eventually operate on one or more basic expressions. These basic expressions include identifiers and literals , but there are a few other kinds as well. They are briefly introduced below, and their semantics are described in detail in their respective reference sections.

Use the this keyword to refer to the current object. In general, this refers to the calling object in a method. Use this either with the dot or the bracket notation:

Suppose a function called validate validates an object's value property, given the object and the high and low values:

You could call validate in each form element's onChange event handler, using this to pass it to the form element, as in the following example:

Grouping operator

The grouping operator ( ) controls the precedence of evaluation in expressions. For example, you can override multiplication and division first, then addition and subtraction to evaluate addition first.

You can use the new operator to create an instance of a user-defined object type or of one of the built-in object types. Use new as follows:

The super keyword is used to call functions on an object's parent. It is useful with classes to call the parent constructor, for example.

This browser is no longer supported.

Upgrade to Microsoft Edge to take advantage of the latest features, security updates, and technical support.

Avoid assigning variables in expressions

  • 1 contributor

PowerShell allows you to use assignments within expressions by enclosing the assignment in parentheses () . PowerShell passes the assigned value through. For example:

While this syntax is allowed, its use is discouraged. There are cases where this does not work and the intent of the code author can be confusing to other code reviewers.

Limitations

The assignment case doesn't always work. When it doesn't work, the assignment is discarded. If you create an instance of a mutable value type and attempt to both save the instance in a variable and modify one of its properties in the same expression, the property assignment is discarded.

The difference is that you can't return a reference to the value. Essentially, ($var = [Foo]::new()) is equivalent to $($var = [Foo]::new(); $var) . You're no longer performing a member access on the variable you're performing a member access on the variable's output, which is a copy.

The workaround is to create the instance and save it in a variable first, and then assign to the property via the variable:

Coming soon: Throughout 2024 we will be phasing out GitHub Issues as the feedback mechanism for content and replacing it with a new feedback system. For more information see: https://aka.ms/ContentUserFeedback .

Submit and view feedback for

Additional resources

Assignment is not allowed inside an expression how to fix

hi so i have a problem where i cant do an equal sign in an if statement for example

var print = 1

func _physics_process(delta): if print = 1: print(“problem”)

can anyone help?

Should be this:

Note the double == …

Assignment not allow in while expression?

I thought I could use the assignment with the Elvis operator, so it would become some kind of getInstance() method:

return resources ?: resources = Resources()

So return resources, but if it is null assign it and return that.

It seems to be that this code is working:

This code prints the last null which is not what you usually want do.

Recently I’ve realized that since break is also an expression in Kotlin, you can take advantage of Elvis operator and write it as follows:

This is such a common use-case that we can even create the following extension function

Note that it support breaking out of the loop using an intermediate object (which should be mostly removed by the git after performing escape analysis).

It of course is a question of fashion, but I think that functional (stream-like) solution is better:

@darksnake , My problem with functional style approach for such cases is that you can implement it in two ways

  • eager - which will buffer to an intermediate, possibly very large, list (on the takeLinesUntil )
  • lazy - which requires constructing a complex set of intermediate objects (the stream and the closures - which cannot be inlined) this approach not only strains your garbage collector but also, with the current tool-set, is a debug hell

I do not agree. The statement about garbage collector need to be proved. There are some minor performance issues with java 8 streams due to generation of additional anonymous classes, but kotlin lambdas are little bit different. Lambdas could be inlined. In fact, internal implementation of takeLinexUntil could be exactly the same as one you proposed, with only difference that it does not consume the line, but delegates it to external consumer. As for debugging, I do not see any problem here. IDEA debugger allows perfectly well to debug lambdas.

As I already said it is just functional style vs imperative style.

In the lazy case (streams) not really - we must store the closures of lazy operations (like the takeLinesUntil ) so that we will be able to invoke them once a terminal operation (the forEach ) is performed - so such lambdas cannot be inlined. In the eager case on the other hand - they can be inlined but then as I mentioned in the previous post - we must create an intermediate (possibly large) list to store the results for the next step

The problem is not debugging once inside the lambda but between lambdas, and in addition the call-stack is a mess

In my work we performed many benchmarks on the case - I cannot publish them but it is quite easy to perform some yourself. In addition, there are many benchmarks on java 8 streams online:

In addition you can read this blog post: https://dzone.com/articles/java-lambdas-and-low-latency keep in mind that once you need to store the closures (as in the stream case) - they most probably will not be removed via escape analysis

link is unavialable

The forEachLine() function is documented here .

“Easier to read” matters mostly if you live in a vacuum and have not been exposed to existing programming languages. The “assignment is an expression” idiom is common and well understood by most anyone that’s coded.

Isn’t one of Kotlin’s claim to fame is that it’s less verbose than Java?

That’s entirely untrue.

val line = reader.readLine() ?: break

THAT IS ABSOLUTELY BEAUTIFUL! A perfect, concise, readable one-liner! Thanks!

Assignment is not an expression, what if make it return some value to become an expression? It’s even more concise than Java~

Where is the assignment in your example? This is just one big expression.

That’s a clever idea, however let expression returns the last statement, so you should replace it with also .

Just do your check in a .also{} that returns false if readLine() is null

The !! is not required, but your IDE may find a false positive, because it does not understand that the null check is in the .also{}

You can even do

I’d be careful with that statement. It is true in your example, but if the nullable value comes from a property there are many reasons why it might be null even after the null check (multithreading and custom get/setters).

You can mark line as lateinit to avoid the null thing.

Related Topics

Python Enhancement Proposals

  • Python »
  • PEP Index »

PEP 572 – Assignment Expressions

The importance of real code, exceptional cases, scope of the target, relative precedence of :=, change to evaluation order, differences between assignment expressions and assignment statements, specification changes during implementation, _pydecimal.py, datetime.py, sysconfig.py, simplifying list comprehensions, capturing condition values, changing the scope rules for comprehensions, alternative spellings, special-casing conditional statements, special-casing comprehensions, lowering operator precedence, allowing commas to the right, always requiring parentheses, why not just turn existing assignment into an expression, with assignment expressions, why bother with assignment statements, why not use a sublocal scope and prevent namespace pollution, style guide recommendations, acknowledgements, a numeric example, appendix b: rough code translations for comprehensions, appendix c: no changes to scope semantics.

This is a proposal for creating a way to assign to variables within an expression using the notation NAME := expr .

As part of this change, there is also an update to dictionary comprehension evaluation order to ensure key expressions are executed before value expressions (allowing the key to be bound to a name and then re-used as part of calculating the corresponding value).

During discussion of this PEP, the operator became informally known as “the walrus operator”. The construct’s formal name is “Assignment Expressions” (as per the PEP title), but they may also be referred to as “Named Expressions” (e.g. the CPython reference implementation uses that name internally).

Naming the result of an expression is an important part of programming, allowing a descriptive name to be used in place of a longer expression, and permitting reuse. Currently, this feature is available only in statement form, making it unavailable in list comprehensions and other expression contexts.

Additionally, naming sub-parts of a large expression can assist an interactive debugger, providing useful display hooks and partial results. Without a way to capture sub-expressions inline, this would require refactoring of the original code; with assignment expressions, this merely requires the insertion of a few name := markers. Removing the need to refactor reduces the likelihood that the code be inadvertently changed as part of debugging (a common cause of Heisenbugs), and is easier to dictate to another programmer.

During the development of this PEP many people (supporters and critics both) have had a tendency to focus on toy examples on the one hand, and on overly complex examples on the other.

The danger of toy examples is twofold: they are often too abstract to make anyone go “ooh, that’s compelling”, and they are easily refuted with “I would never write it that way anyway”.

The danger of overly complex examples is that they provide a convenient strawman for critics of the proposal to shoot down (“that’s obfuscated”).

Yet there is some use for both extremely simple and extremely complex examples: they are helpful to clarify the intended semantics. Therefore, there will be some of each below.

However, in order to be compelling , examples should be rooted in real code, i.e. code that was written without any thought of this PEP, as part of a useful application, however large or small. Tim Peters has been extremely helpful by going over his own personal code repository and picking examples of code he had written that (in his view) would have been clearer if rewritten with (sparing) use of assignment expressions. His conclusion: the current proposal would have allowed a modest but clear improvement in quite a few bits of code.

Another use of real code is to observe indirectly how much value programmers place on compactness. Guido van Rossum searched through a Dropbox code base and discovered some evidence that programmers value writing fewer lines over shorter lines.

Case in point: Guido found several examples where a programmer repeated a subexpression, slowing down the program, in order to save one line of code, e.g. instead of writing:

they would write:

Another example illustrates that programmers sometimes do more work to save an extra level of indentation:

This code tries to match pattern2 even if pattern1 has a match (in which case the match on pattern2 is never used). The more efficient rewrite would have been:

Syntax and semantics

In most contexts where arbitrary Python expressions can be used, a named expression can appear. This is of the form NAME := expr where expr is any valid Python expression other than an unparenthesized tuple, and NAME is an identifier.

The value of such a named expression is the same as the incorporated expression, with the additional side-effect that the target is assigned that value:

There are a few places where assignment expressions are not allowed, in order to avoid ambiguities or user confusion:

This rule is included to simplify the choice for the user between an assignment statement and an assignment expression – there is no syntactic position where both are valid.

Again, this rule is included to avoid two visually similar ways of saying the same thing.

This rule is included to disallow excessively confusing code, and because parsing keyword arguments is complex enough already.

This rule is included to discourage side effects in a position whose exact semantics are already confusing to many users (cf. the common style recommendation against mutable default values), and also to echo the similar prohibition in calls (the previous bullet).

The reasoning here is similar to the two previous cases; this ungrouped assortment of symbols and operators composed of : and = is hard to read correctly.

This allows lambda to always bind less tightly than := ; having a name binding at the top level inside a lambda function is unlikely to be of value, as there is no way to make use of it. In cases where the name will be used more than once, the expression is likely to need parenthesizing anyway, so this prohibition will rarely affect code.

This shows that what looks like an assignment operator in an f-string is not always an assignment operator. The f-string parser uses : to indicate formatting options. To preserve backwards compatibility, assignment operator usage inside of f-strings must be parenthesized. As noted above, this usage of the assignment operator is not recommended.

An assignment expression does not introduce a new scope. In most cases the scope in which the target will be bound is self-explanatory: it is the current scope. If this scope contains a nonlocal or global declaration for the target, the assignment expression honors that. A lambda (being an explicit, if anonymous, function definition) counts as a scope for this purpose.

There is one special case: an assignment expression occurring in a list, set or dict comprehension or in a generator expression (below collectively referred to as “comprehensions”) binds the target in the containing scope, honoring a nonlocal or global declaration for the target in that scope, if one exists. For the purpose of this rule the containing scope of a nested comprehension is the scope that contains the outermost comprehension. A lambda counts as a containing scope.

The motivation for this special case is twofold. First, it allows us to conveniently capture a “witness” for an any() expression, or a counterexample for all() , for example:

Second, it allows a compact way of updating mutable state from a comprehension, for example:

However, an assignment expression target name cannot be the same as a for -target name appearing in any comprehension containing the assignment expression. The latter names are local to the comprehension in which they appear, so it would be contradictory for a contained use of the same name to refer to the scope containing the outermost comprehension instead.

For example, [i := i+1 for i in range(5)] is invalid: the for i part establishes that i is local to the comprehension, but the i := part insists that i is not local to the comprehension. The same reason makes these examples invalid too:

While it’s technically possible to assign consistent semantics to these cases, it’s difficult to determine whether those semantics actually make sense in the absence of real use cases. Accordingly, the reference implementation [1] will ensure that such cases raise SyntaxError , rather than executing with implementation defined behaviour.

This restriction applies even if the assignment expression is never executed:

For the comprehension body (the part before the first “for” keyword) and the filter expression (the part after “if” and before any nested “for”), this restriction applies solely to target names that are also used as iteration variables in the comprehension. Lambda expressions appearing in these positions introduce a new explicit function scope, and hence may use assignment expressions with no additional restrictions.

Due to design constraints in the reference implementation (the symbol table analyser cannot easily detect when names are re-used between the leftmost comprehension iterable expression and the rest of the comprehension), named expressions are disallowed entirely as part of comprehension iterable expressions (the part after each “in”, and before any subsequent “if” or “for” keyword):

A further exception applies when an assignment expression occurs in a comprehension whose containing scope is a class scope. If the rules above were to result in the target being assigned in that class’s scope, the assignment expression is expressly invalid. This case also raises SyntaxError :

(The reason for the latter exception is the implicit function scope created for comprehensions – there is currently no runtime mechanism for a function to refer to a variable in the containing class scope, and we do not want to add such a mechanism. If this issue ever gets resolved this special case may be removed from the specification of assignment expressions. Note that the problem already exists for using a variable defined in the class scope from a comprehension.)

See Appendix B for some examples of how the rules for targets in comprehensions translate to equivalent code.

The := operator groups more tightly than a comma in all syntactic positions where it is legal, but less tightly than all other operators, including or , and , not , and conditional expressions ( A if C else B ). As follows from section “Exceptional cases” above, it is never allowed at the same level as = . In case a different grouping is desired, parentheses should be used.

The := operator may be used directly in a positional function call argument; however it is invalid directly in a keyword argument.

Some examples to clarify what’s technically valid or invalid:

Most of the “valid” examples above are not recommended, since human readers of Python source code who are quickly glancing at some code may miss the distinction. But simple cases are not objectionable:

This PEP recommends always putting spaces around := , similar to PEP 8 ’s recommendation for = when used for assignment, whereas the latter disallows spaces around = used for keyword arguments.)

In order to have precisely defined semantics, the proposal requires evaluation order to be well-defined. This is technically not a new requirement, as function calls may already have side effects. Python already has a rule that subexpressions are generally evaluated from left to right. However, assignment expressions make these side effects more visible, and we propose a single change to the current evaluation order:

  • In a dict comprehension {X: Y for ...} , Y is currently evaluated before X . We propose to change this so that X is evaluated before Y . (In a dict display like {X: Y} this is already the case, and also in dict((X, Y) for ...) which should clearly be equivalent to the dict comprehension.)

Most importantly, since := is an expression, it can be used in contexts where statements are illegal, including lambda functions and comprehensions.

Conversely, assignment expressions don’t support the advanced features found in assignment statements:

  • Multiple targets are not directly supported: x = y = z = 0 # Equivalent: (z := (y := (x := 0)))
  • Single assignment targets other than a single NAME are not supported: # No equivalent a [ i ] = x self . rest = []
  • Priority around commas is different: x = 1 , 2 # Sets x to (1, 2) ( x := 1 , 2 ) # Sets x to 1
  • Iterable packing and unpacking (both regular or extended forms) are not supported: # Equivalent needs extra parentheses loc = x , y # Use (loc := (x, y)) info = name , phone , * rest # Use (info := (name, phone, *rest)) # No equivalent px , py , pz = position name , phone , email , * other_info = contact
  • Inline type annotations are not supported: # Closest equivalent is "p: Optional[int]" as a separate declaration p : Optional [ int ] = None
  • Augmented assignment is not supported: total += tax # Equivalent: (total := total + tax)

The following changes have been made based on implementation experience and additional review after the PEP was first accepted and before Python 3.8 was released:

  • for consistency with other similar exceptions, and to avoid locking in an exception name that is not necessarily going to improve clarity for end users, the originally proposed TargetScopeError subclass of SyntaxError was dropped in favour of just raising SyntaxError directly. [3]
  • due to a limitation in CPython’s symbol table analysis process, the reference implementation raises SyntaxError for all uses of named expressions inside comprehension iterable expressions, rather than only raising them when the named expression target conflicts with one of the iteration variables in the comprehension. This could be revisited given sufficiently compelling examples, but the extra complexity needed to implement the more selective restriction doesn’t seem worthwhile for purely hypothetical use cases.

Examples from the Python standard library

env_base is only used on these lines, putting its assignment on the if moves it as the “header” of the block.

  • Current: env_base = os . environ . get ( "PYTHONUSERBASE" , None ) if env_base : return env_base
  • Improved: if env_base := os . environ . get ( "PYTHONUSERBASE" , None ): return env_base

Avoid nested if and remove one indentation level.

  • Current: if self . _is_special : ans = self . _check_nans ( context = context ) if ans : return ans
  • Improved: if self . _is_special and ( ans := self . _check_nans ( context = context )): return ans

Code looks more regular and avoid multiple nested if. (See Appendix A for the origin of this example.)

  • Current: reductor = dispatch_table . get ( cls ) if reductor : rv = reductor ( x ) else : reductor = getattr ( x , "__reduce_ex__" , None ) if reductor : rv = reductor ( 4 ) else : reductor = getattr ( x , "__reduce__" , None ) if reductor : rv = reductor () else : raise Error ( "un(deep)copyable object of type %s " % cls )
  • Improved: if reductor := dispatch_table . get ( cls ): rv = reductor ( x ) elif reductor := getattr ( x , "__reduce_ex__" , None ): rv = reductor ( 4 ) elif reductor := getattr ( x , "__reduce__" , None ): rv = reductor () else : raise Error ( "un(deep)copyable object of type %s " % cls )

tz is only used for s += tz , moving its assignment inside the if helps to show its scope.

  • Current: s = _format_time ( self . _hour , self . _minute , self . _second , self . _microsecond , timespec ) tz = self . _tzstr () if tz : s += tz return s
  • Improved: s = _format_time ( self . _hour , self . _minute , self . _second , self . _microsecond , timespec ) if tz := self . _tzstr (): s += tz return s

Calling fp.readline() in the while condition and calling .match() on the if lines make the code more compact without making it harder to understand.

  • Current: while True : line = fp . readline () if not line : break m = define_rx . match ( line ) if m : n , v = m . group ( 1 , 2 ) try : v = int ( v ) except ValueError : pass vars [ n ] = v else : m = undef_rx . match ( line ) if m : vars [ m . group ( 1 )] = 0
  • Improved: while line := fp . readline (): if m := define_rx . match ( line ): n , v = m . group ( 1 , 2 ) try : v = int ( v ) except ValueError : pass vars [ n ] = v elif m := undef_rx . match ( line ): vars [ m . group ( 1 )] = 0

A list comprehension can map and filter efficiently by capturing the condition:

Similarly, a subexpression can be reused within the main expression, by giving it a name on first use:

Note that in both cases the variable y is bound in the containing scope (i.e. at the same level as results or stuff ).

Assignment expressions can be used to good effect in the header of an if or while statement:

Particularly with the while loop, this can remove the need to have an infinite loop, an assignment, and a condition. It also creates a smooth parallel between a loop which simply uses a function call as its condition, and one which uses that as its condition but also uses the actual value.

An example from the low-level UNIX world:

Rejected alternative proposals

Proposals broadly similar to this one have come up frequently on python-ideas. Below are a number of alternative syntaxes, some of them specific to comprehensions, which have been rejected in favour of the one given above.

A previous version of this PEP proposed subtle changes to the scope rules for comprehensions, to make them more usable in class scope and to unify the scope of the “outermost iterable” and the rest of the comprehension. However, this part of the proposal would have caused backwards incompatibilities, and has been withdrawn so the PEP can focus on assignment expressions.

Broadly the same semantics as the current proposal, but spelled differently.

Since EXPR as NAME already has meaning in import , except and with statements (with different semantics), this would create unnecessary confusion or require special-casing (e.g. to forbid assignment within the headers of these statements).

(Note that with EXPR as VAR does not simply assign the value of EXPR to VAR – it calls EXPR.__enter__() and assigns the result of that to VAR .)

Additional reasons to prefer := over this spelling include:

  • In if f(x) as y the assignment target doesn’t jump out at you – it just reads like if f x blah blah and it is too similar visually to if f(x) and y .
  • import foo as bar
  • except Exc as var
  • with ctxmgr() as var

To the contrary, the assignment expression does not belong to the if or while that starts the line, and we intentionally allow assignment expressions in other contexts as well.

  • NAME = EXPR
  • if NAME := EXPR

reinforces the visual recognition of assignment expressions.

This syntax is inspired by languages such as R and Haskell, and some programmable calculators. (Note that a left-facing arrow y <- f(x) is not possible in Python, as it would be interpreted as less-than and unary minus.) This syntax has a slight advantage over ‘as’ in that it does not conflict with with , except and import , but otherwise is equivalent. But it is entirely unrelated to Python’s other use of -> (function return type annotations), and compared to := (which dates back to Algol-58) it has a much weaker tradition.

This has the advantage that leaked usage can be readily detected, removing some forms of syntactic ambiguity. However, this would be the only place in Python where a variable’s scope is encoded into its name, making refactoring harder.

Execution order is inverted (the indented body is performed first, followed by the “header”). This requires a new keyword, unless an existing keyword is repurposed (most likely with: ). See PEP 3150 for prior discussion on this subject (with the proposed keyword being given: ).

This syntax has fewer conflicts than as does (conflicting only with the raise Exc from Exc notation), but is otherwise comparable to it. Instead of paralleling with expr as target: (which can be useful but can also be confusing), this has no parallels, but is evocative.

One of the most popular use-cases is if and while statements. Instead of a more general solution, this proposal enhances the syntax of these two statements to add a means of capturing the compared value:

This works beautifully if and ONLY if the desired condition is based on the truthiness of the captured value. It is thus effective for specific use-cases (regex matches, socket reads that return '' when done), and completely useless in more complicated cases (e.g. where the condition is f(x) < 0 and you want to capture the value of f(x) ). It also has no benefit to list comprehensions.

Advantages: No syntactic ambiguities. Disadvantages: Answers only a fraction of possible use-cases, even in if / while statements.

Another common use-case is comprehensions (list/set/dict, and genexps). As above, proposals have been made for comprehension-specific solutions.

This brings the subexpression to a location in between the ‘for’ loop and the expression. It introduces an additional language keyword, which creates conflicts. Of the three, where reads the most cleanly, but also has the greatest potential for conflict (e.g. SQLAlchemy and numpy have where methods, as does tkinter.dnd.Icon in the standard library).

As above, but reusing the with keyword. Doesn’t read too badly, and needs no additional language keyword. Is restricted to comprehensions, though, and cannot as easily be transformed into “longhand” for-loop syntax. Has the C problem that an equals sign in an expression can now create a name binding, rather than performing a comparison. Would raise the question of why “with NAME = EXPR:” cannot be used as a statement on its own.

As per option 2, but using as rather than an equals sign. Aligns syntactically with other uses of as for name binding, but a simple transformation to for-loop longhand would create drastically different semantics; the meaning of with inside a comprehension would be completely different from the meaning as a stand-alone statement, while retaining identical syntax.

Regardless of the spelling chosen, this introduces a stark difference between comprehensions and the equivalent unrolled long-hand form of the loop. It is no longer possible to unwrap the loop into statement form without reworking any name bindings. The only keyword that can be repurposed to this task is with , thus giving it sneakily different semantics in a comprehension than in a statement; alternatively, a new keyword is needed, with all the costs therein.

There are two logical precedences for the := operator. Either it should bind as loosely as possible, as does statement-assignment; or it should bind more tightly than comparison operators. Placing its precedence between the comparison and arithmetic operators (to be precise: just lower than bitwise OR) allows most uses inside while and if conditions to be spelled without parentheses, as it is most likely that you wish to capture the value of something, then perform a comparison on it:

Once find() returns -1, the loop terminates. If := binds as loosely as = does, this would capture the result of the comparison (generally either True or False ), which is less useful.

While this behaviour would be convenient in many situations, it is also harder to explain than “the := operator behaves just like the assignment statement”, and as such, the precedence for := has been made as close as possible to that of = (with the exception that it binds tighter than comma).

Some critics have claimed that the assignment expressions should allow unparenthesized tuples on the right, so that these two would be equivalent:

(With the current version of the proposal, the latter would be equivalent to ((point := x), y) .)

However, adopting this stance would logically lead to the conclusion that when used in a function call, assignment expressions also bind less tight than comma, so we’d have the following confusing equivalence:

The less confusing option is to make := bind more tightly than comma.

It’s been proposed to just always require parentheses around an assignment expression. This would resolve many ambiguities, and indeed parentheses will frequently be needed to extract the desired subexpression. But in the following cases the extra parentheses feel redundant:

Frequently Raised Objections

C and its derivatives define the = operator as an expression, rather than a statement as is Python’s way. This allows assignments in more contexts, including contexts where comparisons are more common. The syntactic similarity between if (x == y) and if (x = y) belies their drastically different semantics. Thus this proposal uses := to clarify the distinction.

The two forms have different flexibilities. The := operator can be used inside a larger expression; the = statement can be augmented to += and its friends, can be chained, and can assign to attributes and subscripts.

Previous revisions of this proposal involved sublocal scope (restricted to a single statement), preventing name leakage and namespace pollution. While a definite advantage in a number of situations, this increases complexity in many others, and the costs are not justified by the benefits. In the interests of language simplicity, the name bindings created here are exactly equivalent to any other name bindings, including that usage at class or module scope will create externally-visible names. This is no different from for loops or other constructs, and can be solved the same way: del the name once it is no longer needed, or prefix it with an underscore.

(The author wishes to thank Guido van Rossum and Christoph Groth for their suggestions to move the proposal in this direction. [2] )

As expression assignments can sometimes be used equivalently to statement assignments, the question of which should be preferred will arise. For the benefit of style guides such as PEP 8 , two recommendations are suggested.

  • If either assignment statements or assignment expressions can be used, prefer statements; they are a clear declaration of intent.
  • If using assignment expressions would lead to ambiguity about execution order, restructure it to use statements instead.

The authors wish to thank Alyssa Coghlan and Steven D’Aprano for their considerable contributions to this proposal, and members of the core-mentorship mailing list for assistance with implementation.

Appendix A: Tim Peters’s findings

Here’s a brief essay Tim Peters wrote on the topic.

I dislike “busy” lines of code, and also dislike putting conceptually unrelated logic on a single line. So, for example, instead of:

instead. So I suspected I’d find few places I’d want to use assignment expressions. I didn’t even consider them for lines already stretching halfway across the screen. In other cases, “unrelated” ruled:

is a vast improvement over the briefer:

The original two statements are doing entirely different conceptual things, and slamming them together is conceptually insane.

In other cases, combining related logic made it harder to understand, such as rewriting:

as the briefer:

The while test there is too subtle, crucially relying on strict left-to-right evaluation in a non-short-circuiting or method-chaining context. My brain isn’t wired that way.

But cases like that were rare. Name binding is very frequent, and “sparse is better than dense” does not mean “almost empty is better than sparse”. For example, I have many functions that return None or 0 to communicate “I have nothing useful to return in this case, but since that’s expected often I’m not going to annoy you with an exception”. This is essentially the same as regular expression search functions returning None when there is no match. So there was lots of code of the form:

I find that clearer, and certainly a bit less typing and pattern-matching reading, as:

It’s also nice to trade away a small amount of horizontal whitespace to get another _line_ of surrounding code on screen. I didn’t give much weight to this at first, but it was so very frequent it added up, and I soon enough became annoyed that I couldn’t actually run the briefer code. That surprised me!

There are other cases where assignment expressions really shine. Rather than pick another from my code, Kirill Balunov gave a lovely example from the standard library’s copy() function in copy.py :

The ever-increasing indentation is semantically misleading: the logic is conceptually flat, “the first test that succeeds wins”:

Using easy assignment expressions allows the visual structure of the code to emphasize the conceptual flatness of the logic; ever-increasing indentation obscured it.

A smaller example from my code delighted me, both allowing to put inherently related logic in a single line, and allowing to remove an annoying “artificial” indentation level:

That if is about as long as I want my lines to get, but remains easy to follow.

So, in all, in most lines binding a name, I wouldn’t use assignment expressions, but because that construct is so very frequent, that leaves many places I would. In most of the latter, I found a small win that adds up due to how often it occurs, and in the rest I found a moderate to major win. I’d certainly use it more often than ternary if , but significantly less often than augmented assignment.

I have another example that quite impressed me at the time.

Where all variables are positive integers, and a is at least as large as the n’th root of x, this algorithm returns the floor of the n’th root of x (and roughly doubling the number of accurate bits per iteration):

It’s not obvious why that works, but is no more obvious in the “loop and a half” form. It’s hard to prove correctness without building on the right insight (the “arithmetic mean - geometric mean inequality”), and knowing some non-trivial things about how nested floor functions behave. That is, the challenges are in the math, not really in the coding.

If you do know all that, then the assignment-expression form is easily read as “while the current guess is too large, get a smaller guess”, where the “too large?” test and the new guess share an expensive sub-expression.

To my eyes, the original form is harder to understand:

This appendix attempts to clarify (though not specify) the rules when a target occurs in a comprehension or in a generator expression. For a number of illustrative examples we show the original code, containing a comprehension, and the translation, where the comprehension has been replaced by an equivalent generator function plus some scaffolding.

Since [x for ...] is equivalent to list(x for ...) these examples all use list comprehensions without loss of generality. And since these examples are meant to clarify edge cases of the rules, they aren’t trying to look like real code.

Note: comprehensions are already implemented via synthesizing nested generator functions like those in this appendix. The new part is adding appropriate declarations to establish the intended scope of assignment expression targets (the same scope they resolve to as if the assignment were performed in the block containing the outermost comprehension). For type inference purposes, these illustrative expansions do not imply that assignment expression targets are always Optional (but they do indicate the target binding scope).

Let’s start with a reminder of what code is generated for a generator expression without assignment expression.

  • Original code (EXPR usually references VAR): def f (): a = [ EXPR for VAR in ITERABLE ]
  • Translation (let’s not worry about name conflicts): def f (): def genexpr ( iterator ): for VAR in iterator : yield EXPR a = list ( genexpr ( iter ( ITERABLE )))

Let’s add a simple assignment expression.

  • Original code: def f (): a = [ TARGET := EXPR for VAR in ITERABLE ]
  • Translation: def f (): if False : TARGET = None # Dead code to ensure TARGET is a local variable def genexpr ( iterator ): nonlocal TARGET for VAR in iterator : TARGET = EXPR yield TARGET a = list ( genexpr ( iter ( ITERABLE )))

Let’s add a global TARGET declaration in f() .

  • Original code: def f (): global TARGET a = [ TARGET := EXPR for VAR in ITERABLE ]
  • Translation: def f (): global TARGET def genexpr ( iterator ): global TARGET for VAR in iterator : TARGET = EXPR yield TARGET a = list ( genexpr ( iter ( ITERABLE )))

Or instead let’s add a nonlocal TARGET declaration in f() .

  • Original code: def g (): TARGET = ... def f (): nonlocal TARGET a = [ TARGET := EXPR for VAR in ITERABLE ]
  • Translation: def g (): TARGET = ... def f (): nonlocal TARGET def genexpr ( iterator ): nonlocal TARGET for VAR in iterator : TARGET = EXPR yield TARGET a = list ( genexpr ( iter ( ITERABLE )))

Finally, let’s nest two comprehensions.

  • Original code: def f (): a = [[ TARGET := i for i in range ( 3 )] for j in range ( 2 )] # I.e., a = [[0, 1, 2], [0, 1, 2]] print ( TARGET ) # prints 2
  • Translation: def f (): if False : TARGET = None def outer_genexpr ( outer_iterator ): nonlocal TARGET def inner_generator ( inner_iterator ): nonlocal TARGET for i in inner_iterator : TARGET = i yield i for j in outer_iterator : yield list ( inner_generator ( range ( 3 ))) a = list ( outer_genexpr ( range ( 2 ))) print ( TARGET )

Because it has been a point of confusion, note that nothing about Python’s scoping semantics is changed. Function-local scopes continue to be resolved at compile time, and to have indefinite temporal extent at run time (“full closures”). Example:

This document has been placed in the public domain.

Source: https://github.com/python/peps/blob/main/peps/pep-0572.rst

Last modified: 2023-10-11 12:05:51 GMT

Rule 1121 (assignments in sub-expressions) should exclude "while" conditions

I understand the motivation behind rule 1121 , and it has identified a number of places where my code would be clearer by separating a complex line into two simpler ones. The only thing I take exception to is this very common pattern:

To comply with this rule, the code needs to be rewritten to

This doesn’t seem so bad, but it gets ugly when your broken-out assignment increases in complexity, like item = parent.child.method("event name", arg1, arg2.sub3) . I would argue that reducing duplication by writing the assignment once should take precedence over reducing ambiguity by breaking the assignment out of the conditional clause.

While researching this post, I read the linked reference from the original rule. It has many more examples and helped me understand the rule better. It sounds like while( (item = getNext()) !== undefined) should be compliant, because of this guidance:

As an exception to this guideline, it is permitted to use the assignment operator in conditional expressions when the assignment is not the controlling expression (that is, the assignment is a subexpression)

So, item=getNext() is a subexpression, and (...) !== undefined is the (legal) controlling expression. This is directly counter to the docs for typescript:S1121 which gives a noncompliant example of if ((str = cont.substring(pos1, pos2)) != '') . That’s what the CERT page says you should do!

I’m going to try rewriting my while-loop to match the CERT guidance, and if it still gets flagged I’ll come back here and update my post (and probably file an issue on GH/Jira as well).

Update: I changed my code to while ((match = QUOTE_RX.exec(str)) !== null) which is exactly the same construct used in the CERT “compliant solution”, while ((line = reader.readLine()) != null) , and the rule still flags it. That means the TS implementation of this rule does not match the official guidance.

Should I open a bug report on GH? Should I edit this post to make it clear that the current behavior is buggy, or maybe make a new post here?

It looks like one of the mods removed the Java and CSharp tags – is that because this works as it’s supposed to in those languages?

Hello @Thw0rted ,

Thank you for your feedback. Indeed, I agree there should be an exception for while conditions on this rule, as described in the reference you linked.

However, I think S1121 is a bit broader than the reference you linked, as it tries to discourage assignments in sub-expressions in general (whereas the reference discourages assignments in conditional expressions specifically). Therefore, I think the recommendation to extract assignments that are part of sub-expressions in a if conditional expression to a dedicated statement is still valid.

I created https://github.com/SonarSource/SonarJS/issues/2169 to track this.

I think I understand your clarification. The linked reference gives this example as compliant:

and you’re saying that this should still be flagged by the rule. For what it’s worth I agree – unlike a while loop, I can’t think of a case where refactoring to put the assignment on a separate line would make the code more complicated.

This topic was automatically closed 7 days after the last reply. New replies are no longer allowed.

noAssignInExpressions (since v1.0.0)

Diagnostic Category: lint/suspicious/noAssignInExpressions

  • Inspired from: no-cond-assign

Disallow assignments in expressions.

In expressions, it is common to mistype a comparison operator (such as == ) as an assignment operator (such as = ). Moreover, the use of assignments in expressions is confusing. Indeed, expressions are often considered as side-effect free.

Related links

  • Disable a rule
  • Rule options

IMAGES

  1. are not expressions/School subjects basics

    assignments are not expressions

  2. 8 Tips to Overcome Your Assignment Writing Problems

    assignments are not expressions

  3. PPT

    assignments are not expressions

  4. What Are the Assignment Types and How to Cope With Each of Them

    assignments are not expressions

  5. 1.4. Expressions and Assignment Statements

    assignments are not expressions

  6. Idioms Anchor Chart- This blog post features Five FREE Idiom Activities

    assignments are not expressions

VIDEO

  1. statements assignments and expressions

  2. conversational video assignments (Expressions for starting, continuing, and ending a conversation)

  3. Core

  4. not expressions a very tensed situation

  5. Storing Values with the Assignment Operator

  6. Что делать, если нет результата?

COMMENTS

  1. kotlin

    An assignment is something that assigns a value to a variable or property. x *= y is an assignment that is shorthand for x = x * y. You cannot return an assignment, because it does not evaluate to a value. An assignment contains an expression on the right side of the equals sign, but as a whole does not represent an expression.

  2. Assignments are not expressions and only expressions are allowed in

    Assignments are not expressions, and only expressions are allowed in this context. android; android-studio; kotlin; Share. Improve this question. Follow asked Jul 23, 2018 at 11:04. hetsgandhi hetsgandhi. 776 3 3 gold badges 9 9 silver badges 26 26 bronze badges. 2.

  3. Assignments are not expressions and only expressions are allowed in

    Assignment not allow in while expression? 62: 90740: January 7, 2022 Why I can't apply value inside while loop? Support. 13: 20065: October 25, 2019 Assignments as expressions. Language Design. 1: 4409: March 29, 2016 Kotlin compiler: ExpressionCodegen and when conditions. 1: 1033: April 27, 2012 ...

  4. Kotlin language specification

    Note: Kotlin assignments are not expressions and cannot be used as such. Simple assignments. A simple assignment is an assignment which uses the assign operator =. If the left-hand side of an assignment refers to a mutable property, a value of that property is changed when an assignment is evaluated, using the following rules (applied in order

  5. Why Kotlin doesn't allow assignments as expressions?

    Kotlin was influenced by Scala, even if in a lot of cases in how not to do things. In Scala, like several newer languages, assignments are "statements". (Technically, Scala doesn't have statements, everything is an expression, but assignments evaluate to which is the singleton inhabitant of the Unit type which denotes a useless return value.)

  6. Assignment not allow in while expression?

    That only works if you are incrementing by 1. ++current. is the same as { current = current + 1; return current; } In fact, ++i is a perfect example of an assignment as an expression and it is immensly useful. ++i both assigns to i and as an expression it returns the value that was assigned to i. Increment and decrement operators are just examples of situations where assignments as expressions ...

  7. Why I can't apply value inside while loop?

    There are two problems in your Java, for Kotlin: assignment is a statement in Kotlin and therefore cannot appear as a subexpression (because it's not an expression at all) Kotlin strings don't answer to .charAt () So, minimally changing and adding to your code to make it work: fun main() {. val str1 = "00010".

  8. Assignment Expression Syntax

    Assignment Expression Syntax. For more information on concepts covered in this lesson, you can check out: Walrus operator syntax. One of the main reasons assignments were not expressions in Python from the beginning is the visual likeness of the assignment operator (=) and the equality comparison operator (==). This could potentially lead to bugs.

  9. Assignment statement vs assignment expression vs expression ...

    Expressions can be used where statements are expected (but not vice versa). Such expressions are called statement expressions (they are statement-ified expressions, if you will). Normally, only expressions that have side effects are used as statement expressions. Benefit of assignments being expressions - you can do (line A):

  10. Expressions and operators

    The assignment expression x[f()] = g() has now finished evaluating; its result is the new value of x[2] - which happens to be 3. x[2] is now assigned to 3, and the console has printed "F!" then "G!". Avoid assignment chains. Chaining assignments or nesting assignments in other expressions can result in surprising behavior. ...

  11. Assignment are not allowed in an Expression

    Var direction = Input.getaxis ('ui_left','ui_right') Move and slide () updateanimations (direction) else:. '''. =< is not an operator. Try <= instead. Since =< starts with = and isn't followed by another =, Godot treats it as an assignment, like you would assign < 0 to velocity.y. Change =< to <= and you should be fine.

  12. Avoid assigning variables in expressions

    Limitations. The assignment case doesn't always work. When it doesn't work, the assignment is discarded. If you create an instance of a mutable value type and attempt to both save the instance in a variable and modify one of its properties in the same expression, the property assignment is discarded. # create mutable value type PS> Add-Type 'public struct Foo { public int x; }' # Create an ...

  13. Assignment is not allowed inside an expression how to fix

    jgodfrey. This code…. if print = 1: Should be this: if print == 1: Note the double == …. :information_source: Attention Topic was automatically imported from the old Question2Answer platform. :bust_in_silhouette: Asked By AriDavNath hi so i have a problem where i cant do an equal sign in an i….

  14. Assignment not allow in while expression?

    This code prints the last null which is not what you usually want do. antonin.brettsnajdr August 8, 2017, 5:33pm 24. Recently I've realized that since break is also an expression in Kotlin, you can take advantage of Elvis operator and write it as follows: val input = "ABC\nDEF". val reader = input.reader().buffered() while (true) {.

  15. PEP 572

    An assignment expression does not introduce a new scope. In most cases the scope in which the target will be bound is self-explanatory: it is the current scope. If this scope contains a nonlocal or global declaration for the target, the assignment expression honors that. A lambda (being an explicit, if anonymous, function definition) counts as ...

  16. spring

    I want to create user register service ,Store the data in mongodb But when I pass all the required data in user build function I get some issue like Assignments are not expressions, and only expressions are allowed in this context at the builder function but I am not sure how store user provide data in Mongodb, Here is the my code patter for ...

  17. Rule 1121 (assignments in sub-expressions) should exclude "while

    While researching this post, I read the linked reference from the original rule. It has many more examples and helped me understand the rule better. It sounds like while( (item = getNext()) !== undefined) should be compliant, because of this guidance:. As an exception to this guideline, it is permitted to use the assignment operator in conditional expressions when the assignment is not the ...

  18. "Assignment is not allowed inside an expression."

    This expression must evaluate to a boolean value. So if the expression is just a single value, as long as that value is a boolean, it will work. This is why you have "Assignment is not allowed in an expression". A single equals sign is the assignment operator, and is not allowed in an expression (which is what the if statement is looking for).

  19. How To Use Assignment Expressions in Python

    Python 3.8, released in October 2019, adds assignment expressions to Python via the := syntax. The assignment expression syntax is also sometimes called "the walrus operator" because := vaguely resembles a walrus with tusks. Assignment expressions allow variable assignments to occur inside of larger expressions.

  20. android

    Assignments are not expressions, and only expressions are allowed in this context i know its alreaduy disccused but didn't unders. Ask Question Asked 4 years, 1 month ago. Modified 4 years, 1 month ago. Viewed 48 times Part of Mobile Development Collective ...

  21. noAssignInExpressions (since v1.0.0)

    Disallow assignments in expressions. In expressions, it is common to mistype a comparison operator (such as ==) as an assignment operator (such as =). Moreover, the use of assignments in expressions is confusing. Indeed, expressions are often considered as side-effect free.