helpful professor logo

Directional Hypothesis: Definition and 10 Examples

directional hypothesis examples and definition, explained below

A directional hypothesis refers to a type of hypothesis used in statistical testing that predicts a particular direction of the expected relationship between two variables.

In simpler terms, a directional hypothesis is an educated, specific guess about the direction of an outcome—whether an increase, decrease, or a proclaimed difference in variable sets.

For example, in a study investigating the effects of sleep deprivation on cognitive performance, a directional hypothesis might state that as sleep deprivation (Independent Variable) increases, cognitive performance (Dependent Variable) decreases (Killgore, 2010). Such a hypothesis offers a clear, directional relationship whereby a specific increase or decrease is anticipated.

Global warming provides another notable example of a directional hypothesis. A researcher might hypothesize that as carbon dioxide (CO2) levels increase, global temperatures also increase (Thompson, 2010). In this instance, the hypothesis clearly articulates an upward trend for both variables. 

In any given circumstance, it’s imperative that a directional hypothesis is grounded on solid evidence. For instance, the CO2 and global temperature relationship is based on substantial scientific evidence, and not on a random guess or mere speculation (Florides & Christodoulides, 2009).

Directional vs Non-Directional vs Null Hypotheses

A directional hypothesis is generally contrasted to a non-directional hypothesis. Here’s how they compare:

  • Directional hypothesis: A directional hypothesis provides a perspective of the expected relationship between variables, predicting the direction of that relationship (either positive, negative, or a specific difference). 
  • Non-directional hypothesis: A non-directional hypothesis denotes the possibility of a relationship between two variables ( the independent and dependent variables ), although this hypothesis does not venture a prediction as to the direction of this relationship (Ali & Bhaskar, 2016). For example, a non-directional hypothesis might state that there exists a relationship between a person’s diet (independent variable) and their mood (dependent variable), without indicating whether improvement in diet enhances mood positively or negatively. Overall, the choice between a directional or non-directional hypothesis depends on the known or anticipated link between the variables under consideration in research studies.

Another very important type of hypothesis that we need to know about is a null hypothesis :

  • Null hypothesis : The null hypothesis stands as a universality—the hypothesis that there is no observed effect in the population under study, meaning there is no association between variables (or that the differences are down to chance). For instance, a null hypothesis could be constructed around the idea that changing diet (independent variable) has no discernible effect on a person’s mood (dependent variable) (Yan & Su, 2016). This proposition is the one that we aim to disprove in an experiment.

While directional and non-directional hypotheses involve some integrated expectations about the outcomes (either distinct direction or a vague relationship), a null hypothesis operates on the premise of negating such relationships or effects.

The null hypotheses is typically proposed to be negated or disproved by statistical tests, paving way for the acceptance of an alternate hypothesis (either directional or non-directional).

Directional Hypothesis Examples

1. exercise and heart health.

Research suggests that as regular physical exercise (independent variable) increases, the risk of heart disease (dependent variable) decreases (Jakicic, Davis, Rogers, King, Marcus, Helsel, Rickman, Wahed, Belle, 2016). In this example, a directional hypothesis anticipates that the more individuals maintain routine workouts, the lesser would be their odds of developing heart-related disorders. This assumption is based on the underlying fact that routine exercise can help reduce harmful cholesterol levels, regulate blood pressure, and bring about overall health benefits. Thus, a direction – a decrease in heart disease – is expected in relation with an increase in exercise. 

2. Screen Time and Sleep Quality

Another classic instance of a directional hypothesis can be seen in the relationship between the independent variable, screen time (especially before bed), and the dependent variable, sleep quality. This hypothesis predicts that as screen time before bed increases, sleep quality decreases (Chang, Aeschbach, Duffy, Czeisler, 2015). The reasoning behind this hypothesis is the disruptive effect of artificial light (especially blue light from screens) on melatonin production, a hormone needed to regulate sleep. As individuals spend more time exposed to screens before bed, it is predictably hypothesized that their sleep quality worsens. 

3. Job Satisfaction and Employee Turnover

A typical scenario in organizational behavior research posits that as job satisfaction (independent variable) increases, the rate of employee turnover (dependent variable) decreases (Cheng, Jiang, & Riley, 2017). This directional hypothesis emphasizes that an increased level of job satisfaction would lead to a reduced rate of employees leaving the company. The theoretical basis for this hypothesis is that satisfied employees often tend to be more committed to the organization and are less likely to seek employment elsewhere, thus reducing turnover rates.

4. Healthy Eating and Body Weight

Healthy eating, as the independent variable, is commonly thought to influence body weight, the dependent variable, in a positive way. For example, the hypothesis might state that as consumption of healthy foods increases, an individual’s body weight decreases (Framson, Kristal, Schenk, Littman, Zeliadt, & Benitez, 2009). This projection is based on the premise that healthier foods, such as fruits and vegetables, are generally lower in calories than junk food, assisting in weight management.

5. Sun Exposure and Skin Health

The association between sun exposure (independent variable) and skin health (dependent variable) allows for a definitive hypothesis declaring that as sun exposure increases, the risk of skin damage or skin cancer increases (Whiteman, Whiteman, & Green, 2001). The premise aligns with the understanding that overexposure to the sun’s ultraviolet rays can deteriorate skin health, leading to conditions like sunburn or, in extreme cases, skin cancer.

6. Study Hours and Academic Performance

A regularly assessed relationship in academia suggests that as the number of study hours (independent variable) rises, so too does academic performance (dependent variable) (Nonis, Hudson, Logan, Ford, 2013). The hypothesis proposes a positive correlation , with an increase in study time expected to contribute to enhanced academic outcomes.

7. Screen Time and Eye Strain

It’s commonly hypothesized that as screen time (independent variable) increases, the likelihood of experiencing eye strain (dependent variable) also increases (Sheppard & Wolffsohn, 2018). This is based on the idea that prolonged engagement with digital screens—computers, tablets, or mobile phones—can cause discomfort or fatigue in the eyes, attributing to symptoms of eye strain.

8. Physical Activity and Stress Levels

In the sphere of mental health, it’s often proposed that as physical activity (independent variable) increases, levels of stress (dependent variable) decrease (Stonerock, Hoffman, Smith, Blumenthal, 2015). Regular exercise is known to stimulate the production of endorphins, the body’s natural mood elevators, helping to alleviate stress.

9. Water Consumption and Kidney Health

A common health-related hypothesis might predict that as water consumption (independent variable) increases, the risk of kidney stones (dependent variable) decreases (Curhan, Willett, Knight, & Stampfer, 2004). Here, an increase in water intake is inferred to reduce the risk of kidney stones by diluting the substances that lead to stone formation.

10. Traffic Noise and Sleep Quality

In urban planning research, it’s often supposed that as traffic noise (independent variable) increases, sleep quality (dependent variable) decreases (Muzet, 2007). Increased noise levels, particularly during the night, can result in sleep disruptions, thus, leading to poor sleep quality.

11. Sugar Consumption and Dental Health

In the field of dental health, an example might be stating as one’s sugar consumption (independent variable) increases, dental health (dependent variable) decreases (Sheiham, & James, 2014). This stems from the fact that sugar is a major factor in tooth decay, and increased consumption of sugary foods or drinks leads to a decline in dental health due to the high likelihood of cavities.

See 15 More Examples of Hypotheses Here

A directional hypothesis plays a critical role in research, paving the way for specific predicted outcomes based on the relationship between two variables. These hypotheses clearly illuminate the expected direction—the increase or decrease—of an effect. From predicting the impacts of healthy eating on body weight to forecasting the influence of screen time on sleep quality, directional hypotheses allow for targeted and strategic examination of phenomena. In essence, directional hypotheses provide the crucial path for inquiry, shaping the trajectory of research studies and ultimately aiding in the generation of insightful, relevant findings.

Ali, S., & Bhaskar, S. (2016). Basic statistical tools in research and data analysis. Indian Journal of Anaesthesia, 60 (9), 662-669. doi: https://doi.org/10.4103%2F0019-5049.190623  

Chang, A. M., Aeschbach, D., Duffy, J. F., & Czeisler, C. A. (2015). Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proceeding of the National Academy of Sciences, 112 (4), 1232-1237. doi: https://doi.org/10.1073/pnas.1418490112  

Cheng, G. H. L., Jiang, D., & Riley, J. H. (2017). Organizational commitment and intrinsic motivation of regular and contractual primary school teachers in China. New Psychology, 19 (3), 316-326. Doi: https://doi.org/10.4103%2F2249-4863.184631  

Curhan, G. C., Willett, W. C., Knight, E. L., & Stampfer, M. J. (2004). Dietary factors and the risk of incident kidney stones in younger women: Nurses’ Health Study II. Archives of Internal Medicine, 164 (8), 885–891.

Florides, G. A., & Christodoulides, P. (2009). Global warming and carbon dioxide through sciences. Environment international , 35 (2), 390-401. doi: https://doi.org/10.1016/j.envint.2008.07.007

Framson, C., Kristal, A. R., Schenk, J. M., Littman, A. J., Zeliadt, S., & Benitez, D. (2009). Development and validation of the mindful eating questionnaire. Journal of the American Dietetic Association, 109 (8), 1439-1444. doi: https://doi.org/10.1016/j.jada.2009.05.006  

Jakicic, J. M., Davis, K. K., Rogers, R. J., King, W. C., Marcus, M. D., Helsel, D., … & Belle, S. H. (2016). Effect of wearable technology combined with a lifestyle intervention on long-term weight loss: The IDEA randomized clinical trial. JAMA, 316 (11), 1161-1171.

Khan, S., & Iqbal, N. (2013). Study of the relationship between study habits and academic achievement of students: A case of SPSS model. Higher Education Studies, 3 (1), 14-26.

Killgore, W. D. (2010). Effects of sleep deprivation on cognition. Progress in brain research , 185 , 105-129. doi: https://doi.org/10.1016/B978-0-444-53702-7.00007-5  

Marczinski, C. A., & Fillmore, M. T. (2014). Dissociative antagonistic effects of caffeine on alcohol-induced impairment of behavioral control. Experimental and Clinical Psychopharmacology, 22 (4), 298–311. doi: https://psycnet.apa.org/doi/10.1037/1064-1297.11.3.228  

Muzet, A. (2007). Environmental Noise, Sleep and Health. Sleep Medicine Reviews, 11 (2), 135-142. doi: https://doi.org/10.1016/j.smrv.2006.09.001  

Nonis, S. A., Hudson, G. I., Logan, L. B., & Ford, C. W. (2013). Influence of perceived control over time on college students’ stress and stress-related outcomes. Research in Higher Education, 54 (5), 536-552. doi: https://doi.org/10.1023/A:1018753706925  

Sheiham, A., & James, W. P. (2014). A new understanding of the relationship between sugars, dental caries and fluoride use: implications for limits on sugars consumption. Public health nutrition, 17 (10), 2176-2184. Doi: https://doi.org/10.1017/S136898001400113X  

Sheppard, A. L., & Wolffsohn, J. S. (2018). Digital eye strain: prevalence, measurement and amelioration. BMJ open ophthalmology , 3 (1), e000146. doi: http://dx.doi.org/10.1136/bmjophth-2018-000146

Stonerock, G. L., Hoffman, B. M., Smith, P. J., & Blumenthal, J. A. (2015). Exercise as Treatment for Anxiety: Systematic Review and Analysis. Annals of Behavioral Medicine, 49 (4), 542–556. doi: https://doi.org/10.1007/s12160-014-9685-9  

Thompson, L. G. (2010). Climate change: The evidence and our options. The Behavior Analyst , 33 , 153-170. Doi: https://doi.org/10.1007/BF03392211  

Whiteman, D. C., Whiteman, C. A., & Green, A. C. (2001). Childhood sun exposure as a risk factor for melanoma: a systematic review of epidemiologic studies. Cancer Causes & Control, 12 (1), 69-82. doi: https://doi.org/10.1023/A:1008980919928

Yan, X., & Su, X. (2009). Linear regression analysis: theory and computing . New Jersey: World Scientific.

Chris

Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 15 Top Stakeholders in Education
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ The Six Principles of Andragogy (Malcolm Knowles)
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ What are Pedagogical Skills? - 15 Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 44 Maslow’s Hierarchy of Needs Examples

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

psychology

Directional Hypothesis

Definition:

A directional hypothesis is a specific type of hypothesis statement in which the researcher predicts the direction or effect of the relationship between two variables.

Key Features

1. Predicts direction:

Unlike a non-directional hypothesis, which simply states that there is a relationship between two variables, a directional hypothesis specifies the expected direction of the relationship.

2. Involves one-tailed test:

Directional hypotheses typically require a one-tailed statistical test, as they are concerned with whether the relationship is positive or negative, rather than simply whether a relationship exists.

3. Example:

An example of a directional hypothesis would be: “Increasing levels of exercise will result in greater weight loss.”

4. Researcher’s prior belief:

A directional hypothesis is often formed based on the researcher’s prior knowledge, theoretical understanding, or previous empirical evidence relating to the variables under investigation.

5. Confirmatory nature:

Directional hypotheses are considered confirmatory, as they provide a specific prediction that can be tested statistically, allowing researchers to either support or reject the hypothesis.

6. Advantages and disadvantages:

Directional hypotheses help focus the research by explicitly stating the expected relationship, but they can also limit exploration of alternative explanations or unexpected findings.

Providing a study guide and revision resources for students and psychology teaching resources for teachers.

Aims And Hypotheses, Directional And Non-Directional

March 7, 2021 - paper 2 psychology in context | research methods.

  • Back to Paper 2 - Research Methods

In Psychology, hypotheses are predictions made by the researcher about the outcome of a study. The research can chose to make a specific prediction about what they feel will happen in their research (a directional hypothesis) or they can make a ‘general,’ ‘less specific’ prediction about the outcome of their research (a non-directional hypothesis). The type of prediction that a researcher makes is usually dependent on whether or not any previous research has also investigated their research aim.

Variables Recap:

The  independent variable  (IV)  is the variable that psychologists  manipulate/change  to see if changing this variable has an effect on the  depen dent variable  (DV).

The  dependent variable (DV)  is the variable that the psychologists  measures  (to see if the IV has had an effect).

It is important that the only variable that is changed in research is the  independent variable (IV),   all other variables have to be kept constant across the control condition and the experimental conditions. Only then will researchers be able to observe the true effects of  just  the independent variable (IV) on the dependent variable (DV).

Research/Experimental Aim(S):

Aim

An aim is a clear and precise statement of the purpose of the study. It is a statement of why a research study is taking place. This should include what is being studied and what the study is trying to achieve. (e.g. “This study aims to investigate the effects of alcohol on reaction times”.

It is important that aims created in research are realistic and ethical.

Hypotheses:

This is a testable statement that predicts what the researcher expects to happen in their research. The research study itself is therefore a means of testing whether or not the hypothesis is supported by the findings. If the findings do support the hypothesis then the hypothesis can be retained (i.e., accepted), but if not, then it must be rejected.

Three Different Hypotheses:

Bitcoin-Price-Prediction-300x201

We're not around right now. But you can send us an email and we'll get back to you, asap.

Start typing and press Enter to search

Cookie Policy - Terms and Conditions - Privacy Policy

directional hypothesis in psychological experiments

Statology

Statistics Made Easy

What is a Directional Hypothesis? (Definition & Examples)

A statistical hypothesis is an assumption about a population parameter . For example, we may assume that the mean height of a male in the U.S. is 70 inches.

The assumption about the height is the statistical hypothesis and the true mean height of a male in the U.S. is the population parameter .

To test whether a statistical hypothesis about a population parameter is true, we obtain a random sample from the population and perform a hypothesis test on the sample data.

Whenever we perform a hypothesis test, we always write down a null and alternative hypothesis:

  • Null Hypothesis (H 0 ): The sample data occurs purely from chance.
  • Alternative Hypothesis (H A ): The sample data is influenced by some non-random cause.

A hypothesis test can either contain a directional hypothesis or a non-directional hypothesis:

  • Directional hypothesis: The alternative hypothesis contains the less than (“<“) or greater than (“>”) sign. This indicates that we’re testing whether or not there is a positive or negative effect.
  • Non-directional hypothesis: The alternative hypothesis contains the not equal (“≠”) sign. This indicates that we’re testing whether or not there is some effect, without specifying the direction of the effect.

Note that directional hypothesis tests are also called “one-tailed” tests and non-directional hypothesis tests are also called “two-tailed” tests.

Check out the following examples to gain a better understanding of directional vs. non-directional hypothesis tests.

Example 1: Baseball Programs

A baseball coach believes a certain 4-week program will increase the mean hitting percentage of his players, which is currently 0.285.

To test this, he measures the hitting percentage of each of his players before and after participating in the program.

He then performs a hypothesis test using the following hypotheses:

  • H 0 : μ = .285 (the program will have no effect on the mean hitting percentage)
  • H A : μ > .285 (the program will cause mean hitting percentage to increase)

This is an example of a directional hypothesis because the alternative hypothesis contains the greater than “>” sign. The coach believes that the program will influence the mean hitting percentage of his players in a positive direction.

Example 2: Plant Growth

A biologist believes that a certain pesticide will cause plants to grow less during a one-month period than they normally do, which is currently 10 inches.

To test this, she applies the pesticide to each of the plants in her laboratory for one month.

She then performs a hypothesis test using the following hypotheses:

  • H 0 : μ = 10 inches (the pesticide will have no effect on the mean plant growth)
  • H A : μ < 10 inches (the pesticide will cause mean plant growth to decrease)

This is also an example of a directional hypothesis because the alternative hypothesis contains the less than “<” sign. The biologist believes that the pesticide will influence the mean plant growth in a negative direction.

Example 3: Studying Technique

A professor believes that a certain studying technique will influence the mean score that her students receive on a certain exam, but she’s unsure if it will increase or decrease the mean score, which is currently 82.

To test this, she lets each student use the studying technique for one month leading up to the exam and then administers the same exam to each of the students.

  • H 0 : μ = 82 (the studying technique will have no effect on the mean exam score)
  • H A : μ ≠ 82 (the studying technique will cause the mean exam score to be different than 82)

This is an example of a non-directional hypothesis because the alternative hypothesis contains the not equal “≠” sign. The professor believes that the studying technique will influence the mean exam score, but doesn’t specify whether it will cause the mean score to increase or decrease.

Additional Resources

Introduction to Hypothesis Testing Introduction to the One Sample t-test Introduction to the Two Sample t-test Introduction to the Paired Samples t-test

Featured Posts

5 Tips for Choosing the Right Statistical Test

Hey there. My name is Zach Bobbitt. I have a Masters of Science degree in Applied Statistics and I’ve worked on machine learning algorithms for professional businesses in both healthcare and retail. I’m passionate about statistics, machine learning, and data visualization and I created Statology to be a resource for both students and teachers alike.  My goal with this site is to help you learn statistics through using simple terms, plenty of real-world examples, and helpful illustrations.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Join the Statology Community

Sign up to receive Statology's exclusive study resource: 100 practice problems with step-by-step solutions. Plus, get our latest insights, tutorials, and data analysis tips straight to your inbox!

By subscribing you accept Statology's Privacy Policy.

psychologyrocks

Hypotheses; directional and non-directional, what is the difference between an experimental and an alternative hypothesis.

Nothing much! If the study is a laboratory experiment then we can call the hypothesis “an experimental hypothesis”, where we make a prediction about how the IV causes an effect on the DV. If we have a non-experimental design, i.e. we are not able to manipulate the IV as in a natural or quasi-experiment , or if some other research method has been used, then we call it an “alternativehypothesis”, alternative to the null.

Directional hypothesis: A directional (or one tailed hypothesis) states which way you think the results are going to go, for example in an experimental study we might say…”Participants who have been deprived of sleep for 24 hours will have more cold symptoms in the following week after exposure to a virus than participants who have not been sleep deprived”; the hypothesis compares the two groups/conditions and states which one will ….have more/less, be quicker/slower, etc.

If we had a correlational study, the directional hypothesis would state whether we expect a positive or a negative correlation, we are stating how the two variables will be related to each other, e.g. there will be a positive correlation between the number of stressful life events experienced in the last year and the number of coughs and colds suffered, whereby the more life events you have suffered the more coughs and cold you will have had”. The directional hypothesis can also state a negative correlation, e.g. the higher the number of face-book friends, the lower the life satisfaction score “

Non-directional hypothesis: A non-directional (or two tailed hypothesis) simply states that there will be a difference between the two groups/conditions but does not say which will be greater/smaller, quicker/slower etc. Using our example above we would say “There will be a difference between the number of cold symptoms experienced in the following week after exposure to a virus for those participants who have been sleep deprived for 24 hours compared with those who have not been sleep deprived for 24 hours.”

When the study is correlational, we simply state that variables will be correlated but do not state whether the relationship will be positive or negative, e.g. there will be a significant correlation between variable A and variable B.

Null hypothesis The null hypothesis states that the alternative or experimental hypothesis is NOT the case, if your experimental hypothesis was directional you would say…

Participants who have been deprived of sleep for 24 hours will NOT have more cold symptoms in the following week after exposure to a virus than participants who have not been sleep deprived and any difference that does arise will be due to chance alone.

or with a directional correlational hypothesis….

There will NOT be a positive correlation between the number of stress life events experienced in the last year and the number of coughs and colds suffered, whereby the more life events you have suffered the more coughs and cold you will have had”

With a non-directional or  two tailed hypothesis…

There will be NO difference between the number of cold symptoms experienced in the following week after exposure to a virus for those participants who have been sleep deprived for 24 hours compared with those who have not been sleep deprived for 24 hours.

or for a correlational …

there will be NO correlation between variable A and variable B.

When it comes to conducting an inferential stats test, if you have a directional hypothesis , you must do a one tailed test to find out whether your observed value is significant. If you have a non-directional hypothesis , you must do a two tailed test .

Exam Techniques/Advice

  • Remember, a decent hypothesis will contain two variables, in the case of an experimental hypothesis there will be an IV and a DV; in a correlational hypothesis there will be two co-variables
  • both variables need to be fully operationalised to score the marks, that is you need to be very clear and specific about what you mean by your IV and your DV; if someone wanted to repeat your study, they should be able to look at your hypothesis and know exactly what to change between the two groups/conditions and exactly what to measure (including any units/explanation of rating scales etc, e.g. “where 1 is low and 7 is high”)
  • double check the question, did it ask for a directional or non-directional hypothesis?
  • if you were asked for a null hypothesis, make sure you always include the phrase “and any difference/correlation (is your study experimental or correlational?) that does arise will be due to chance alone”

Practice Questions:

  • Mr Faraz wants to compare the levels of attendance between his psychology group and those of Mr Simon, who teaches a different psychology group. Which of the following is a suitable directional (one tailed) hypothesis for Mr Faraz’s investigation?

A There will be a difference in the levels of attendance between the two psychology groups.

B Students’ level of attendance will be higher in Mr Faraz’s group than Mr Simon’s group.

C Any difference in the levels of attendance between the two psychology groups is due to chance.

D The level of attendance of the students will depend upon who is teaching the groups.

2. Tracy works for the local council. The council is thinking about reducing the number of people it employs to pick up litter from the street. Tracy has been asked to carry out a study to see if having the streets cleaned at less regular intervals will affect the amount of litter the public will drop. She studies a street to compare how much litter is dropped at two different times, once when it has just been cleaned and once after it has not been cleaned for a month.

Write a fully operationalised non-directional (two-tailed) hypothesis for Tracy’s study. (2)

3. Jamila is conducting a practical investigation to look at gender differences in carrying out visuo-spatial tasks. She decides to give males and females a jigsaw puzzle and will time them to see who completes it the fastest. She uses a random sample of pupils from a local school to get her participants.

(a) Write a fully operationalised directional (one tailed) hypothesis for Jamila’s study. (2) (b) Outline one strength and one weakness of the random sampling method. You may refer to Jamila’s use of this type of sampling in your answer. (4)

4. Which of the following is a non-directional (two tailed) hypothesis?

A There is a difference in driving ability with men being better drivers than women

B Women are better at concentrating on more than one thing at a time than men

C Women spend more time doing the cooking and cleaning than men

D There is a difference in the number of men and women who participate in sports

Revision Activity

writing-hypotheses-revision-sheet

Quizizz link for teachers: https://quizizz.com/admin/quiz/5bf03f51add785001bc5a09e

Share this:

' src=

  • Already have a WordPress.com account? Log in now.
  • Subscribe Subscribed
  • Copy shortlink
  • Report this content
  • View post in Reader
  • Manage subscriptions
  • Collapse this bar

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.37(16); 2022 Apr 25

Logo of jkms

A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

Edward barroga.

1 Department of General Education, Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated. Initially, research questions may be written as descriptive questions which could be developed into inferential questions. These questions must be specific and concise to provide a clear foundation for developing hypotheses. Hypotheses are more formal predictions about the research outcomes. These specify the possible results that may or may not be expected regarding the relationship between groups. Thus, research questions and hypotheses clarify the main purpose and specific objectives of the study, which in turn dictate the design of the study, its direction, and outcome. Studies developed from good research questions and hypotheses will have trustworthy outcomes with wide-ranging social and health implications.

INTRODUCTION

Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses. 1 , 2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results. 3 , 4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the inception of novel studies and the ethical testing of ideas. 5 , 6

It is crucial to have knowledge of both quantitative and qualitative research 2 as both types of research involve writing research questions and hypotheses. 7 However, these crucial elements of research are sometimes overlooked; if not overlooked, then framed without the forethought and meticulous attention it needs. Planning and careful consideration are needed when developing quantitative or qualitative research, particularly when conceptualizing research questions and hypotheses. 4

There is a continuing need to support researchers in the creation of innovative research questions and hypotheses, as well as for journal articles that carefully review these elements. 1 When research questions and hypotheses are not carefully thought of, unethical studies and poor outcomes usually ensue. Carefully formulated research questions and hypotheses define well-founded objectives, which in turn determine the appropriate design, course, and outcome of the study. This article then aims to discuss in detail the various aspects of crafting research questions and hypotheses, with the goal of guiding researchers as they develop their own. Examples from the authors and peer-reviewed scientific articles in the healthcare field are provided to illustrate key points.

DEFINITIONS AND RELATIONSHIP OF RESEARCH QUESTIONS AND HYPOTHESES

A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question. 1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study. 5

On the other hand, a research hypothesis is an educated statement of an expected outcome. This statement is based on background research and current knowledge. 8 , 9 The research hypothesis makes a specific prediction about a new phenomenon 10 or a formal statement on the expected relationship between an independent variable and a dependent variable. 3 , 11 It provides a tentative answer to the research question to be tested or explored. 4

Hypotheses employ reasoning to predict a theory-based outcome. 10 These can also be developed from theories by focusing on components of theories that have not yet been observed. 10 The validity of hypotheses is often based on the testability of the prediction made in a reproducible experiment. 8

Conversely, hypotheses can also be rephrased as research questions. Several hypotheses based on existing theories and knowledge may be needed to answer a research question. Developing ethical research questions and hypotheses creates a research design that has logical relationships among variables. These relationships serve as a solid foundation for the conduct of the study. 4 , 11 Haphazardly constructed research questions can result in poorly formulated hypotheses and improper study designs, leading to unreliable results. Thus, the formulations of relevant research questions and verifiable hypotheses are crucial when beginning research. 12

CHARACTERISTICS OF GOOD RESEARCH QUESTIONS AND HYPOTHESES

Excellent research questions are specific and focused. These integrate collective data and observations to confirm or refute the subsequent hypotheses. Well-constructed hypotheses are based on previous reports and verify the research context. These are realistic, in-depth, sufficiently complex, and reproducible. More importantly, these hypotheses can be addressed and tested. 13

There are several characteristics of well-developed hypotheses. Good hypotheses are 1) empirically testable 7 , 10 , 11 , 13 ; 2) backed by preliminary evidence 9 ; 3) testable by ethical research 7 , 9 ; 4) based on original ideas 9 ; 5) have evidenced-based logical reasoning 10 ; and 6) can be predicted. 11 Good hypotheses can infer ethical and positive implications, indicating the presence of a relationship or effect relevant to the research theme. 7 , 11 These are initially developed from a general theory and branch into specific hypotheses by deductive reasoning. In the absence of a theory to base the hypotheses, inductive reasoning based on specific observations or findings form more general hypotheses. 10

TYPES OF RESEARCH QUESTIONS AND HYPOTHESES

Research questions and hypotheses are developed according to the type of research, which can be broadly classified into quantitative and qualitative research. We provide a summary of the types of research questions and hypotheses under quantitative and qualitative research categories in Table 1 .

Research questions in quantitative research

In quantitative research, research questions inquire about the relationships among variables being investigated and are usually framed at the start of the study. These are precise and typically linked to the subject population, dependent and independent variables, and research design. 1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured ( descriptive research questions ). 1 , 5 , 14 These questions may also aim to discover differences between groups within the context of an outcome variable ( comparative research questions ), 1 , 5 , 14 or elucidate trends and interactions among variables ( relationship research questions ). 1 , 5 We provide examples of descriptive, comparative, and relationship research questions in quantitative research in Table 2 .

Hypotheses in quantitative research

In quantitative research, hypotheses predict the expected relationships among variables. 15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable ( simple hypothesis ) or 2) between two or more independent and dependent variables ( complex hypothesis ). 4 , 11 Hypotheses may also specify the expected direction to be followed and imply an intellectual commitment to a particular outcome ( directional hypothesis ) 4 . On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies ( non-directional hypothesis ). 4 In addition, hypotheses can 1) define interdependency between variables ( associative hypothesis ), 4 2) propose an effect on the dependent variable from manipulation of the independent variable ( causal hypothesis ), 4 3) state a negative relationship between two variables ( null hypothesis ), 4 , 11 , 15 4) replace the working hypothesis if rejected ( alternative hypothesis ), 15 explain the relationship of phenomena to possibly generate a theory ( working hypothesis ), 11 5) involve quantifiable variables that can be tested statistically ( statistical hypothesis ), 11 6) or express a relationship whose interlinks can be verified logically ( logical hypothesis ). 11 We provide examples of simple, complex, directional, non-directional, associative, causal, null, alternative, working, statistical, and logical hypotheses in quantitative research, as well as the definition of quantitative hypothesis-testing research in Table 3 .

Research questions in qualitative research

Unlike research questions in quantitative research, research questions in qualitative research are usually continuously reviewed and reformulated. The central question and associated subquestions are stated more than the hypotheses. 15 The central question broadly explores a complex set of factors surrounding the central phenomenon, aiming to present the varied perspectives of participants. 15

There are varied goals for which qualitative research questions are developed. These questions can function in several ways, such as to 1) identify and describe existing conditions ( contextual research question s); 2) describe a phenomenon ( descriptive research questions ); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ( evaluation research questions ); 4) examine a phenomenon or analyze the reasons or relationships between subjects or phenomena ( explanatory research questions ); or 5) focus on unknown aspects of a particular topic ( exploratory research questions ). 5 In addition, some qualitative research questions provide new ideas for the development of theories and actions ( generative research questions ) or advance specific ideologies of a position ( ideological research questions ). 1 Other qualitative research questions may build on a body of existing literature and become working guidelines ( ethnographic research questions ). Research questions may also be broadly stated without specific reference to the existing literature or a typology of questions ( phenomenological research questions ), may be directed towards generating a theory of some process ( grounded theory questions ), or may address a description of the case and the emerging themes ( qualitative case study questions ). 15 We provide examples of contextual, descriptive, evaluation, explanatory, exploratory, generative, ideological, ethnographic, phenomenological, grounded theory, and qualitative case study research questions in qualitative research in Table 4 , and the definition of qualitative hypothesis-generating research in Table 5 .

Qualitative studies usually pose at least one central research question and several subquestions starting with How or What . These research questions use exploratory verbs such as explore or describe . These also focus on one central phenomenon of interest, and may mention the participants and research site. 15

Hypotheses in qualitative research

Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed-methods research question can be developed. 1

FRAMEWORKS FOR DEVELOPING RESEARCH QUESTIONS AND HYPOTHESES

Research questions followed by hypotheses should be developed before the start of the study. 1 , 12 , 14 It is crucial to develop feasible research questions on a topic that is interesting to both the researcher and the scientific community. This can be achieved by a meticulous review of previous and current studies to establish a novel topic. Specific areas are subsequently focused on to generate ethical research questions. The relevance of the research questions is evaluated in terms of clarity of the resulting data, specificity of the methodology, objectivity of the outcome, depth of the research, and impact of the study. 1 , 5 These aspects constitute the FINER criteria (i.e., Feasible, Interesting, Novel, Ethical, and Relevant). 1 Clarity and effectiveness are achieved if research questions meet the FINER criteria. In addition to the FINER criteria, Ratan et al. described focus, complexity, novelty, feasibility, and measurability for evaluating the effectiveness of research questions. 14

The PICOT and PEO frameworks are also used when developing research questions. 1 The following elements are addressed in these frameworks, PICOT: P-population/patients/problem, I-intervention or indicator being studied, C-comparison group, O-outcome of interest, and T-timeframe of the study; PEO: P-population being studied, E-exposure to preexisting conditions, and O-outcome of interest. 1 Research questions are also considered good if these meet the “FINERMAPS” framework: Feasible, Interesting, Novel, Ethical, Relevant, Manageable, Appropriate, Potential value/publishable, and Systematic. 14

As we indicated earlier, research questions and hypotheses that are not carefully formulated result in unethical studies or poor outcomes. To illustrate this, we provide some examples of ambiguous research question and hypotheses that result in unclear and weak research objectives in quantitative research ( Table 6 ) 16 and qualitative research ( Table 7 ) 17 , and how to transform these ambiguous research question(s) and hypothesis(es) into clear and good statements.

a These statements were composed for comparison and illustrative purposes only.

b These statements are direct quotes from Higashihara and Horiuchi. 16

a This statement is a direct quote from Shimoda et al. 17

The other statements were composed for comparison and illustrative purposes only.

CONSTRUCTING RESEARCH QUESTIONS AND HYPOTHESES

To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe. 9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying theories and previous studies. 18 Afterwards, 4) construct research questions to investigate the research problem. Identify variables to be accessed from the research questions 4 and make operational definitions of constructs from the research problem and questions. Thereafter, 5) construct specific deductive or inductive predictions in the form of hypotheses. 4 Finally, 6) state the study aims . This general flow for constructing effective research questions and hypotheses prior to conducting research is shown in Fig. 1 .

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g001.jpg

Research questions are used more frequently in qualitative research than objectives or hypotheses. 3 These questions seek to discover, understand, explore or describe experiences by asking “What” or “How.” The questions are open-ended to elicit a description rather than to relate variables or compare groups. The questions are continually reviewed, reformulated, and changed during the qualitative study. 3 Research questions are also used more frequently in survey projects than hypotheses in experiments in quantitative research to compare variables and their relationships.

Hypotheses are constructed based on the variables identified and as an if-then statement, following the template, ‘If a specific action is taken, then a certain outcome is expected.’ At this stage, some ideas regarding expectations from the research to be conducted must be drawn. 18 Then, the variables to be manipulated (independent) and influenced (dependent) are defined. 4 Thereafter, the hypothesis is stated and refined, and reproducible data tailored to the hypothesis are identified, collected, and analyzed. 4 The hypotheses must be testable and specific, 18 and should describe the variables and their relationships, the specific group being studied, and the predicted research outcome. 18 Hypotheses construction involves a testable proposition to be deduced from theory, and independent and dependent variables to be separated and measured separately. 3 Therefore, good hypotheses must be based on good research questions constructed at the start of a study or trial. 12

In summary, research questions are constructed after establishing the background of the study. Hypotheses are then developed based on the research questions. Thus, it is crucial to have excellent research questions to generate superior hypotheses. In turn, these would determine the research objectives and the design of the study, and ultimately, the outcome of the research. 12 Algorithms for building research questions and hypotheses are shown in Fig. 2 for quantitative research and in Fig. 3 for qualitative research.

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g002.jpg

EXAMPLES OF RESEARCH QUESTIONS FROM PUBLISHED ARTICLES

  • EXAMPLE 1. Descriptive research question (quantitative research)
  • - Presents research variables to be assessed (distinct phenotypes and subphenotypes)
  • “BACKGROUND: Since COVID-19 was identified, its clinical and biological heterogeneity has been recognized. Identifying COVID-19 phenotypes might help guide basic, clinical, and translational research efforts.
  • RESEARCH QUESTION: Does the clinical spectrum of patients with COVID-19 contain distinct phenotypes and subphenotypes? ” 19
  • EXAMPLE 2. Relationship research question (quantitative research)
  • - Shows interactions between dependent variable (static postural control) and independent variable (peripheral visual field loss)
  • “Background: Integration of visual, vestibular, and proprioceptive sensations contributes to postural control. People with peripheral visual field loss have serious postural instability. However, the directional specificity of postural stability and sensory reweighting caused by gradual peripheral visual field loss remain unclear.
  • Research question: What are the effects of peripheral visual field loss on static postural control ?” 20
  • EXAMPLE 3. Comparative research question (quantitative research)
  • - Clarifies the difference among groups with an outcome variable (patients enrolled in COMPERA with moderate PH or severe PH in COPD) and another group without the outcome variable (patients with idiopathic pulmonary arterial hypertension (IPAH))
  • “BACKGROUND: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition.
  • RESEARCH QUESTION: Which factors determine the outcome of PH in COPD?
  • STUDY DESIGN AND METHODS: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH) .” 21
  • EXAMPLE 4. Exploratory research question (qualitative research)
  • - Explores areas that have not been fully investigated (perspectives of families and children who receive care in clinic-based child obesity treatment) to have a deeper understanding of the research problem
  • “Problem: Interventions for children with obesity lead to only modest improvements in BMI and long-term outcomes, and data are limited on the perspectives of families of children with obesity in clinic-based treatment. This scoping review seeks to answer the question: What is known about the perspectives of families and children who receive care in clinic-based child obesity treatment? This review aims to explore the scope of perspectives reported by families of children with obesity who have received individualized outpatient clinic-based obesity treatment.” 22
  • EXAMPLE 5. Relationship research question (quantitative research)
  • - Defines interactions between dependent variable (use of ankle strategies) and independent variable (changes in muscle tone)
  • “Background: To maintain an upright standing posture against external disturbances, the human body mainly employs two types of postural control strategies: “ankle strategy” and “hip strategy.” While it has been reported that the magnitude of the disturbance alters the use of postural control strategies, it has not been elucidated how the level of muscle tone, one of the crucial parameters of bodily function, determines the use of each strategy. We have previously confirmed using forward dynamics simulations of human musculoskeletal models that an increased muscle tone promotes the use of ankle strategies. The objective of the present study was to experimentally evaluate a hypothesis: an increased muscle tone promotes the use of ankle strategies. Research question: Do changes in the muscle tone affect the use of ankle strategies ?” 23

EXAMPLES OF HYPOTHESES IN PUBLISHED ARTICLES

  • EXAMPLE 1. Working hypothesis (quantitative research)
  • - A hypothesis that is initially accepted for further research to produce a feasible theory
  • “As fever may have benefit in shortening the duration of viral illness, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response when taken during the early stages of COVID-19 illness .” 24
  • “In conclusion, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response . The difference in perceived safety of these agents in COVID-19 illness could be related to the more potent efficacy to reduce fever with ibuprofen compared to acetaminophen. Compelling data on the benefit of fever warrant further research and review to determine when to treat or withhold ibuprofen for early stage fever for COVID-19 and other related viral illnesses .” 24
  • EXAMPLE 2. Exploratory hypothesis (qualitative research)
  • - Explores particular areas deeper to clarify subjective experience and develop a formal hypothesis potentially testable in a future quantitative approach
  • “We hypothesized that when thinking about a past experience of help-seeking, a self distancing prompt would cause increased help-seeking intentions and more favorable help-seeking outcome expectations .” 25
  • “Conclusion
  • Although a priori hypotheses were not supported, further research is warranted as results indicate the potential for using self-distancing approaches to increasing help-seeking among some people with depressive symptomatology.” 25
  • EXAMPLE 3. Hypothesis-generating research to establish a framework for hypothesis testing (qualitative research)
  • “We hypothesize that compassionate care is beneficial for patients (better outcomes), healthcare systems and payers (lower costs), and healthcare providers (lower burnout). ” 26
  • Compassionomics is the branch of knowledge and scientific study of the effects of compassionate healthcare. Our main hypotheses are that compassionate healthcare is beneficial for (1) patients, by improving clinical outcomes, (2) healthcare systems and payers, by supporting financial sustainability, and (3) HCPs, by lowering burnout and promoting resilience and well-being. The purpose of this paper is to establish a scientific framework for testing the hypotheses above . If these hypotheses are confirmed through rigorous research, compassionomics will belong in the science of evidence-based medicine, with major implications for all healthcare domains.” 26
  • EXAMPLE 4. Statistical hypothesis (quantitative research)
  • - An assumption is made about the relationship among several population characteristics ( gender differences in sociodemographic and clinical characteristics of adults with ADHD ). Validity is tested by statistical experiment or analysis ( chi-square test, Students t-test, and logistic regression analysis)
  • “Our research investigated gender differences in sociodemographic and clinical characteristics of adults with ADHD in a Japanese clinical sample. Due to unique Japanese cultural ideals and expectations of women's behavior that are in opposition to ADHD symptoms, we hypothesized that women with ADHD experience more difficulties and present more dysfunctions than men . We tested the following hypotheses: first, women with ADHD have more comorbidities than men with ADHD; second, women with ADHD experience more social hardships than men, such as having less full-time employment and being more likely to be divorced.” 27
  • “Statistical Analysis
  • ( text omitted ) Between-gender comparisons were made using the chi-squared test for categorical variables and Students t-test for continuous variables…( text omitted ). A logistic regression analysis was performed for employment status, marital status, and comorbidity to evaluate the independent effects of gender on these dependent variables.” 27

EXAMPLES OF HYPOTHESIS AS WRITTEN IN PUBLISHED ARTICLES IN RELATION TO OTHER PARTS

  • EXAMPLE 1. Background, hypotheses, and aims are provided
  • “Pregnant women need skilled care during pregnancy and childbirth, but that skilled care is often delayed in some countries …( text omitted ). The focused antenatal care (FANC) model of WHO recommends that nurses provide information or counseling to all pregnant women …( text omitted ). Job aids are visual support materials that provide the right kind of information using graphics and words in a simple and yet effective manner. When nurses are not highly trained or have many work details to attend to, these job aids can serve as a content reminder for the nurses and can be used for educating their patients (Jennings, Yebadokpo, Affo, & Agbogbe, 2010) ( text omitted ). Importantly, additional evidence is needed to confirm how job aids can further improve the quality of ANC counseling by health workers in maternal care …( text omitted )” 28
  • “ This has led us to hypothesize that the quality of ANC counseling would be better if supported by job aids. Consequently, a better quality of ANC counseling is expected to produce higher levels of awareness concerning the danger signs of pregnancy and a more favorable impression of the caring behavior of nurses .” 28
  • “This study aimed to examine the differences in the responses of pregnant women to a job aid-supported intervention during ANC visit in terms of 1) their understanding of the danger signs of pregnancy and 2) their impression of the caring behaviors of nurses to pregnant women in rural Tanzania.” 28
  • EXAMPLE 2. Background, hypotheses, and aims are provided
  • “We conducted a two-arm randomized controlled trial (RCT) to evaluate and compare changes in salivary cortisol and oxytocin levels of first-time pregnant women between experimental and control groups. The women in the experimental group touched and held an infant for 30 min (experimental intervention protocol), whereas those in the control group watched a DVD movie of an infant (control intervention protocol). The primary outcome was salivary cortisol level and the secondary outcome was salivary oxytocin level.” 29
  • “ We hypothesize that at 30 min after touching and holding an infant, the salivary cortisol level will significantly decrease and the salivary oxytocin level will increase in the experimental group compared with the control group .” 29
  • EXAMPLE 3. Background, aim, and hypothesis are provided
  • “In countries where the maternal mortality ratio remains high, antenatal education to increase Birth Preparedness and Complication Readiness (BPCR) is considered one of the top priorities [1]. BPCR includes birth plans during the antenatal period, such as the birthplace, birth attendant, transportation, health facility for complications, expenses, and birth materials, as well as family coordination to achieve such birth plans. In Tanzania, although increasing, only about half of all pregnant women attend an antenatal clinic more than four times [4]. Moreover, the information provided during antenatal care (ANC) is insufficient. In the resource-poor settings, antenatal group education is a potential approach because of the limited time for individual counseling at antenatal clinics.” 30
  • “This study aimed to evaluate an antenatal group education program among pregnant women and their families with respect to birth-preparedness and maternal and infant outcomes in rural villages of Tanzania.” 30
  • “ The study hypothesis was if Tanzanian pregnant women and their families received a family-oriented antenatal group education, they would (1) have a higher level of BPCR, (2) attend antenatal clinic four or more times, (3) give birth in a health facility, (4) have less complications of women at birth, and (5) have less complications and deaths of infants than those who did not receive the education .” 30

Research questions and hypotheses are crucial components to any type of research, whether quantitative or qualitative. These questions should be developed at the very beginning of the study. Excellent research questions lead to superior hypotheses, which, like a compass, set the direction of research, and can often determine the successful conduct of the study. Many research studies have floundered because the development of research questions and subsequent hypotheses was not given the thought and meticulous attention needed. The development of research questions and hypotheses is an iterative process based on extensive knowledge of the literature and insightful grasp of the knowledge gap. Focused, concise, and specific research questions provide a strong foundation for constructing hypotheses which serve as formal predictions about the research outcomes. Research questions and hypotheses are crucial elements of research that should not be overlooked. They should be carefully thought of and constructed when planning research. This avoids unethical studies and poor outcomes by defining well-founded objectives that determine the design, course, and outcome of the study.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Methodology: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ.

Directional and non-directional hypothesis: A Comprehensive Guide

Karolina Konopka

Customer support manager

Karolina Konopka

Want to talk with us?

In the world of research and statistical analysis, hypotheses play a crucial role in formulating and testing scientific claims. Understanding the differences between directional and non-directional hypothesis is essential for designing sound experiments and drawing accurate conclusions. Whether you’re a student, researcher, or simply curious about the foundations of hypothesis testing, this guide will equip you with the knowledge and tools to navigate this fundamental aspect of scientific inquiry.

Understanding Directional Hypothesis

Understanding directional hypotheses is crucial for conducting hypothesis-driven research, as they guide the selection of appropriate statistical tests and aid in the interpretation of results. By incorporating directional hypotheses, researchers can make more precise predictions, contribute to scientific knowledge, and advance their fields of study.

Definition of directional hypothesis

Directional hypotheses, also known as one-tailed hypotheses, are statements in research that make specific predictions about the direction of a relationship or difference between variables. Unlike non-directional hypotheses, which simply state that there is a relationship or difference without specifying its direction, directional hypotheses provide a focused and precise expectation.

A directional hypothesis predicts either a positive or negative relationship between variables or predicts that one group will perform better than another. It asserts a specific direction of effect or outcome. For example, a directional hypothesis could state that “increased exposure to sunlight will lead to an improvement in mood” or “participants who receive the experimental treatment will exhibit higher levels of cognitive performance compared to the control group.”

Directional hypotheses are formulated based on existing theory, prior research, or logical reasoning, and they guide the researcher’s expectations and analysis. They allow for more targeted predictions and enable researchers to test specific hypotheses using appropriate statistical tests.

The role of directional hypothesis in research

Directional hypotheses also play a significant role in research surveys. Let’s explore their role specifically in the context of survey research:

  • Objective-driven surveys : Directional hypotheses help align survey research with specific objectives. By formulating directional hypotheses, researchers can focus on gathering data that directly addresses the predicted relationship or difference between variables of interest.
  • Question design and measurement : Directional hypotheses guide the design of survey question types and the selection of appropriate measurement scales. They ensure that the questions are tailored to capture the specific aspects related to the predicted direction, enabling researchers to obtain more targeted and relevant data from survey respondents.
  • Data analysis and interpretation : Directional hypotheses assist in data analysis by directing researchers towards appropriate statistical tests and methods. Researchers can analyze the survey data to specifically test the predicted relationship or difference, enhancing the accuracy and reliability of their findings. The results can then be interpreted within the context of the directional hypothesis, providing more meaningful insights.
  • Practical implications and decision-making : Directional hypotheses in surveys often have practical implications. When the predicted relationship or difference is confirmed, it informs decision-making processes, program development, or interventions. The survey findings based on directional hypotheses can guide organizations, policymakers, or practitioners in making informed choices to achieve desired outcomes.
  • Replication and further research : Directional hypotheses in survey research contribute to the replication and extension of studies. Researchers can replicate the survey with different populations or contexts to assess the generalizability of the predicted relationships. Furthermore, if the directional hypothesis is supported, it encourages further research to explore underlying mechanisms or boundary conditions.

By incorporating directional hypotheses in survey research, researchers can align their objectives, design effective surveys, conduct focused data analysis, and derive practical insights. They provide a framework for organizing survey research and contribute to the accumulation of knowledge in the field.

Examples of research questions for directional hypothesis

Here are some examples of research questions that lend themselves to directional hypotheses:

  • Does increased daily exercise lead to a decrease in body weight among sedentary adults?
  • Is there a positive relationship between study hours and academic performance among college students?
  • Does exposure to violent video games result in an increase in aggressive behavior among adolescents?
  • Does the implementation of a mindfulness-based intervention lead to a reduction in stress levels among working professionals?
  • Is there a difference in customer satisfaction between Product A and Product B, with Product A expected to have higher satisfaction ratings?
  • Does the use of social media influence self-esteem levels, with higher social media usage associated with lower self-esteem?
  • Is there a negative relationship between job satisfaction and employee turnover, indicating that lower job satisfaction leads to higher turnover rates?
  • Does the administration of a specific medication result in a decrease in symptoms among individuals with a particular medical condition?
  • Does increased access to early childhood education lead to improved cognitive development in preschool-aged children?
  • Is there a difference in purchase intention between advertisements with celebrity endorsements and advertisements without, with celebrity endorsements expected to have a higher impact?

These research questions generate specific predictions about the direction of the relationship or difference between variables and can be tested using appropriate research methods and statistical analyses.

Definition of non-directional hypothesis

Non-directional hypotheses, also known as two-tailed hypotheses, are statements in research that indicate the presence of a relationship or difference between variables without specifying the direction of the effect. Instead of making predictions about the specific direction of the relationship or difference, non-directional hypotheses simply state that there is an association or distinction between the variables of interest.

Non-directional hypotheses are often used when there is no prior theoretical basis or clear expectation about the direction of the relationship. They leave the possibility open for either a positive or negative relationship, or for both groups to differ in some way without specifying which group will perform better or worse.

Advantages and utility of non-directional hypothesis

Non-directional hypotheses in survey s offer several advantages and utilities, providing flexibility and comprehensive analysis of survey data. Here are some of the key advantages and utilities of using non-directional hypotheses in surveys:

  • Exploration of Relationships : Non-directional hypotheses allow researchers to explore and examine relationships between variables without assuming a specific direction. This is particularly useful in surveys where the relationship between variables may not be well-known or there may be conflicting evidence regarding the direction of the effect.
  • Flexibility in Question Design : With non-directional hypotheses, survey questions can be designed to measure the relationship between variables without being biased towards a particular outcome. This flexibility allows researchers to collect data and analyze the results more objectively.
  • Open to Unexpected Findings : Non-directional hypotheses enable researchers to be open to unexpected or surprising findings in survey data. By not committing to a specific direction of the effect, researchers can identify and explore relationships that may not have been initially anticipated, leading to new insights and discoveries.
  • Comprehensive Analysis : Non-directional hypotheses promote comprehensive analysis of survey data by considering the possibility of an effect in either direction. Researchers can assess the magnitude and significance of relationships without limiting their analysis to only one possible outcome.
  • S tatistical Validity : Non-directional hypotheses in surveys allow for the use of two-tailed statistical tests, which provide a more conservative and robust assessment of significance. Two-tailed tests consider both positive and negative deviations from the null hypothesis, ensuring accurate and reliable statistical analysis of survey data.
  • Exploratory Research : Non-directional hypotheses are particularly useful in exploratory research, where the goal is to gather initial insights and generate hypotheses. Surveys with non-directional hypotheses can help researchers explore various relationships and identify patterns that can guide further research or hypothesis development.

It is worth noting that the choice between directional and non-directional hypotheses in surveys depends on the research objectives, existing knowledge, and the specific variables being investigated. Researchers should carefully consider the advantages and limitations of each approach and select the one that aligns best with their research goals and survey design.

  • Share with others
  • Twitter Twitter Icon
  • LinkedIn LinkedIn Icon

Related posts

How to implement nps surveys: a step-by-step guide, 15 best website survey questions to ask your visitors, how to write a good survey introduction, 7 best ai survey generators, multiple choice questions: types, examples & samples, how to make a gdpr compliant survey, get answers today.

  • No credit card required
  • No time limit on Free plan

You can modify this template in every possible way.

All templates work great on every device.

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

directional hypothesis in psychological experiments

Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk,  "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.

directional hypothesis in psychological experiments

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Logo for Portland State University Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Developing a Hypothesis

Rajiv S. Jhangiani; I-Chant A. Chiang; Carrie Cuttler; and Dana C. Leighton

Learning Objectives

  • Distinguish between a theory and a hypothesis.
  • Discover how theories are used to generate hypotheses and how the results of studies can be used to further inform theories.
  • Understand the characteristics of a good hypothesis.

Theories and Hypotheses

Before describing how to develop a hypothesis, it is important to distinguish between a theory and a hypothesis. A  theory  is a coherent explanation or interpretation of one or more phenomena. Although theories can take a variety of forms, one thing they have in common is that they go beyond the phenomena they explain by including variables, structures, processes, functions, or organizing principles that have not been observed directly. Consider, for example, Zajonc’s theory of social facilitation and social inhibition (1965) [1] . He proposed that being watched by others while performing a task creates a general state of physiological arousal, which increases the likelihood of the dominant (most likely) response. So for highly practiced tasks, being watched increases the tendency to make correct responses, but for relatively unpracticed tasks, being watched increases the tendency to make incorrect responses. Notice that this theory—which has come to be called drive theory—provides an explanation of both social facilitation and social inhibition that goes beyond the phenomena themselves by including concepts such as “arousal” and “dominant response,” along with processes such as the effect of arousal on the dominant response.

Outside of science, referring to an idea as a theory often implies that it is untested—perhaps no more than a wild guess. In science, however, the term theory has no such implication. A theory is simply an explanation or interpretation of a set of phenomena. It can be untested, but it can also be extensively tested, well supported, and accepted as an accurate description of the world by the scientific community. The theory of evolution by natural selection, for example, is a theory because it is an explanation of the diversity of life on earth—not because it is untested or unsupported by scientific research. On the contrary, the evidence for this theory is overwhelmingly positive and nearly all scientists accept its basic assumptions as accurate. Similarly, the “germ theory” of disease is a theory because it is an explanation of the origin of various diseases, not because there is any doubt that many diseases are caused by microorganisms that infect the body.

A  hypothesis , on the other hand, is a specific prediction about a new phenomenon that should be observed if a particular theory is accurate. It is an explanation that relies on just a few key concepts. Hypotheses are often specific predictions about what will happen in a particular study. They are developed by considering existing evidence and using reasoning to infer what will happen in the specific context of interest. Hypotheses are often but not always derived from theories. So a hypothesis is often a prediction based on a theory but some hypotheses are a-theoretical and only after a set of observations have been made, is a theory developed. This is because theories are broad in nature and they explain larger bodies of data. So if our research question is really original then we may need to collect some data and make some observations before we can develop a broader theory.

Theories and hypotheses always have this  if-then  relationship. “ If   drive theory is correct,  then  cockroaches should run through a straight runway faster, and a branching runway more slowly, when other cockroaches are present.” Although hypotheses are usually expressed as statements, they can always be rephrased as questions. “Do cockroaches run through a straight runway faster when other cockroaches are present?” Thus deriving hypotheses from theories is an excellent way of generating interesting research questions.

But how do researchers derive hypotheses from theories? One way is to generate a research question using the techniques discussed in this chapter  and then ask whether any theory implies an answer to that question. For example, you might wonder whether expressive writing about positive experiences improves health as much as expressive writing about traumatic experiences. Although this  question  is an interesting one  on its own, you might then ask whether the habituation theory—the idea that expressive writing causes people to habituate to negative thoughts and feelings—implies an answer. In this case, it seems clear that if the habituation theory is correct, then expressive writing about positive experiences should not be effective because it would not cause people to habituate to negative thoughts and feelings. A second way to derive hypotheses from theories is to focus on some component of the theory that has not yet been directly observed. For example, a researcher could focus on the process of habituation—perhaps hypothesizing that people should show fewer signs of emotional distress with each new writing session.

Among the very best hypotheses are those that distinguish between competing theories. For example, Norbert Schwarz and his colleagues considered two theories of how people make judgments about themselves, such as how assertive they are (Schwarz et al., 1991) [2] . Both theories held that such judgments are based on relevant examples that people bring to mind. However, one theory was that people base their judgments on the  number  of examples they bring to mind and the other was that people base their judgments on how  easily  they bring those examples to mind. To test these theories, the researchers asked people to recall either six times when they were assertive (which is easy for most people) or 12 times (which is difficult for most people). Then they asked them to judge their own assertiveness. Note that the number-of-examples theory implies that people who recalled 12 examples should judge themselves to be more assertive because they recalled more examples, but the ease-of-examples theory implies that participants who recalled six examples should judge themselves as more assertive because recalling the examples was easier. Thus the two theories made opposite predictions so that only one of the predictions could be confirmed. The surprising result was that participants who recalled fewer examples judged themselves to be more assertive—providing particularly convincing evidence in favor of the ease-of-retrieval theory over the number-of-examples theory.

Theory Testing

The primary way that scientific researchers use theories is sometimes called the hypothetico-deductive method  (although this term is much more likely to be used by philosophers of science than by scientists themselves). Researchers begin with a set of phenomena and either construct a theory to explain or interpret them or choose an existing theory to work with. They then make a prediction about some new phenomenon that should be observed if the theory is correct. Again, this prediction is called a hypothesis. The researchers then conduct an empirical study to test the hypothesis. Finally, they reevaluate the theory in light of the new results and revise it if necessary. This process is usually conceptualized as a cycle because the researchers can then derive a new hypothesis from the revised theory, conduct a new empirical study to test the hypothesis, and so on. As  Figure 2.3  shows, this approach meshes nicely with the model of scientific research in psychology presented earlier in the textbook—creating a more detailed model of “theoretically motivated” or “theory-driven” research.

directional hypothesis in psychological experiments

As an example, let us consider Zajonc’s research on social facilitation and inhibition. He started with a somewhat contradictory pattern of results from the research literature. He then constructed his drive theory, according to which being watched by others while performing a task causes physiological arousal, which increases an organism’s tendency to make the dominant response. This theory predicts social facilitation for well-learned tasks and social inhibition for poorly learned tasks. He now had a theory that organized previous results in a meaningful way—but he still needed to test it. He hypothesized that if his theory was correct, he should observe that the presence of others improves performance in a simple laboratory task but inhibits performance in a difficult version of the very same laboratory task. To test this hypothesis, one of the studies he conducted used cockroaches as subjects (Zajonc, Heingartner, & Herman, 1969) [3] . The cockroaches ran either down a straight runway (an easy task for a cockroach) or through a cross-shaped maze (a difficult task for a cockroach) to escape into a dark chamber when a light was shined on them. They did this either while alone or in the presence of other cockroaches in clear plastic “audience boxes.” Zajonc found that cockroaches in the straight runway reached their goal more quickly in the presence of other cockroaches, but cockroaches in the cross-shaped maze reached their goal more slowly when they were in the presence of other cockroaches. Thus he confirmed his hypothesis and provided support for his drive theory. (Zajonc also showed that drive theory existed in humans [Zajonc & Sales, 1966] [4] in many other studies afterward).

Incorporating Theory into Your Research

When you write your research report or plan your presentation, be aware that there are two basic ways that researchers usually include theory. The first is to raise a research question, answer that question by conducting a new study, and then offer one or more theories (usually more) to explain or interpret the results. This format works well for applied research questions and for research questions that existing theories do not address. The second way is to describe one or more existing theories, derive a hypothesis from one of those theories, test the hypothesis in a new study, and finally reevaluate the theory. This format works well when there is an existing theory that addresses the research question—especially if the resulting hypothesis is surprising or conflicts with a hypothesis derived from a different theory.

To use theories in your research will not only give you guidance in coming up with experiment ideas and possible projects, but it lends legitimacy to your work. Psychologists have been interested in a variety of human behaviors and have developed many theories along the way. Using established theories will help you break new ground as a researcher, not limit you from developing your own ideas.

Characteristics of a Good Hypothesis

There are three general characteristics of a good hypothesis. First, a good hypothesis must be testable and falsifiable . We must be able to test the hypothesis using the methods of science and if you’ll recall Popper’s falsifiability criterion, it must be possible to gather evidence that will disconfirm the hypothesis if it is indeed false. Second, a good hypothesis must be logical. As described above, hypotheses are more than just a random guess. Hypotheses should be informed by previous theories or observations and logical reasoning. Typically, we begin with a broad and general theory and use  deductive reasoning to generate a more specific hypothesis to test based on that theory. Occasionally, however, when there is no theory to inform our hypothesis, we use  inductive reasoning  which involves using specific observations or research findings to form a more general hypothesis. Finally, the hypothesis should be positive. That is, the hypothesis should make a positive statement about the existence of a relationship or effect, rather than a statement that a relationship or effect does not exist. As scientists, we don’t set out to show that relationships do not exist or that effects do not occur so our hypotheses should not be worded in a way to suggest that an effect or relationship does not exist. The nature of science is to assume that something does not exist and then seek to find evidence to prove this wrong, to show that it really does exist. That may seem backward to you but that is the nature of the scientific method. The underlying reason for this is beyond the scope of this chapter but it has to do with statistical theory.

  • Zajonc, R. B. (1965). Social facilitation.  Science, 149 , 269–274 ↵
  • Schwarz, N., Bless, H., Strack, F., Klumpp, G., Rittenauer-Schatka, H., & Simons, A. (1991). Ease of retrieval as information: Another look at the availability heuristic.  Journal of Personality and Social Psychology, 61 , 195–202. ↵
  • Zajonc, R. B., Heingartner, A., & Herman, E. M. (1969). Social enhancement and impairment of performance in the cockroach.  Journal of Personality and Social Psychology, 13 , 83–92. ↵
  • Zajonc, R.B. & Sales, S.M. (1966). Social facilitation of dominant and subordinate responses. Journal of Experimental Social Psychology, 2 , 160-168. ↵

A coherent explanation or interpretation of one or more phenomena.

A specific prediction about a new phenomenon that should be observed if a particular theory is accurate.

A cyclical process of theory development, starting with an observed phenomenon, then developing or using a theory to make a specific prediction of what should happen if that theory is correct, testing that prediction, refining the theory in light of the findings, and using that refined theory to develop new hypotheses, and so on.

The ability to test the hypothesis using the methods of science and the possibility to gather evidence that will disconfirm the hypothesis if it is indeed false.

Developing a Hypothesis Copyright © by Rajiv S. Jhangiani; I-Chant A. Chiang; Carrie Cuttler; and Dana C. Leighton is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Research Methods In Psychology

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

Research methods in psychology are systematic procedures used to observe, describe, predict, and explain behavior and mental processes. They include experiments, surveys, case studies, and naturalistic observations, ensuring data collection is objective and reliable to understand and explain psychological phenomena.

research methods3

Hypotheses are statements about the prediction of the results, that can be verified or disproved by some investigation.

There are four types of hypotheses :
  • Null Hypotheses (H0 ) – these predict that no difference will be found in the results between the conditions. Typically these are written ‘There will be no difference…’
  • Alternative Hypotheses (Ha or H1) – these predict that there will be a significant difference in the results between the two conditions. This is also known as the experimental hypothesis.
  • One-tailed (directional) hypotheses – these state the specific direction the researcher expects the results to move in, e.g. higher, lower, more, less. In a correlation study, the predicted direction of the correlation can be either positive or negative.
  • Two-tailed (non-directional) hypotheses – these state that a difference will be found between the conditions of the independent variable but does not state the direction of a difference or relationship. Typically these are always written ‘There will be a difference ….’

All research has an alternative hypothesis (either a one-tailed or two-tailed) and a corresponding null hypothesis.

Once the research is conducted and results are found, psychologists must accept one hypothesis and reject the other. 

So, if a difference is found, the Psychologist would accept the alternative hypothesis and reject the null.  The opposite applies if no difference is found.

Sampling techniques

Sampling is the process of selecting a representative group from the population under study.

Sample Target Population

A sample is the participants you select from a target population (the group you are interested in) to make generalizations about.

Representative means the extent to which a sample mirrors a researcher’s target population and reflects its characteristics.

Generalisability means the extent to which their findings can be applied to the larger population of which their sample was a part.

  • Volunteer sample : where participants pick themselves through newspaper adverts, noticeboards or online.
  • Opportunity sampling : also known as convenience sampling , uses people who are available at the time the study is carried out and willing to take part. It is based on convenience.
  • Random sampling : when every person in the target population has an equal chance of being selected. An example of random sampling would be picking names out of a hat.
  • Systematic sampling : when a system is used to select participants. Picking every Nth person from all possible participants. N = the number of people in the research population / the number of people needed for the sample.
  • Stratified sampling : when you identify the subgroups and select participants in proportion to their occurrences.
  • Snowball sampling : when researchers find a few participants, and then ask them to find participants themselves and so on.
  • Quota sampling : when researchers will be told to ensure the sample fits certain quotas, for example they might be told to find 90 participants, with 30 of them being unemployed.

Experiments always have an independent and dependent variable .

  • The independent variable is the one the experimenter manipulates (the thing that changes between the conditions the participants are placed into). It is assumed to have a direct effect on the dependent variable.
  • The dependent variable is the thing being measured, or the results of the experiment.

variables

Operationalization of variables means making them measurable/quantifiable. We must use operationalization to ensure that variables are in a form that can be easily tested.

For instance, we can’t really measure ‘happiness’, but we can measure how many times a person smiles within a two-hour period. 

By operationalizing variables, we make it easy for someone else to replicate our research. Remember, this is important because we can check if our findings are reliable.

Extraneous variables are all variables which are not independent variable but could affect the results of the experiment.

It can be a natural characteristic of the participant, such as intelligence levels, gender, or age for example, or it could be a situational feature of the environment such as lighting or noise.

Demand characteristics are a type of extraneous variable that occurs if the participants work out the aims of the research study, they may begin to behave in a certain way.

For example, in Milgram’s research , critics argued that participants worked out that the shocks were not real and they administered them as they thought this was what was required of them. 

Extraneous variables must be controlled so that they do not affect (confound) the results.

Randomly allocating participants to their conditions or using a matched pairs experimental design can help to reduce participant variables. 

Situational variables are controlled by using standardized procedures, ensuring every participant in a given condition is treated in the same way

Experimental Design

Experimental design refers to how participants are allocated to each condition of the independent variable, such as a control or experimental group.
  • Independent design ( between-groups design ): each participant is selected for only one group. With the independent design, the most common way of deciding which participants go into which group is by means of randomization. 
  • Matched participants design : each participant is selected for only one group, but the participants in the two groups are matched for some relevant factor or factors (e.g. ability; sex; age).
  • Repeated measures design ( within groups) : each participant appears in both groups, so that there are exactly the same participants in each group.
  • The main problem with the repeated measures design is that there may well be order effects. Their experiences during the experiment may change the participants in various ways.
  • They may perform better when they appear in the second group because they have gained useful information about the experiment or about the task. On the other hand, they may perform less well on the second occasion because of tiredness or boredom.
  • Counterbalancing is the best way of preventing order effects from disrupting the findings of an experiment, and involves ensuring that each condition is equally likely to be used first and second by the participants.

If we wish to compare two groups with respect to a given independent variable, it is essential to make sure that the two groups do not differ in any other important way. 

Experimental Methods

All experimental methods involve an iv (independent variable) and dv (dependent variable)..

  • Field experiments are conducted in the everyday (natural) environment of the participants. The experimenter still manipulates the IV, but in a real-life setting. It may be possible to control extraneous variables, though such control is more difficult than in a lab experiment.
  • Natural experiments are when a naturally occurring IV is investigated that isn’t deliberately manipulated, it exists anyway. Participants are not randomly allocated, and the natural event may only occur rarely.

Case studies are in-depth investigations of a person, group, event, or community. It uses information from a range of sources, such as from the person concerned and also from their family and friends.

Many techniques may be used such as interviews, psychological tests, observations and experiments. Case studies are generally longitudinal: in other words, they follow the individual or group over an extended period of time. 

Case studies are widely used in psychology and among the best-known ones carried out were by Sigmund Freud . He conducted very detailed investigations into the private lives of his patients in an attempt to both understand and help them overcome their illnesses.

Case studies provide rich qualitative data and have high levels of ecological validity. However, it is difficult to generalize from individual cases as each one has unique characteristics.

Correlational Studies

Correlation means association; it is a measure of the extent to which two variables are related. One of the variables can be regarded as the predictor variable with the other one as the outcome variable.

Correlational studies typically involve obtaining two different measures from a group of participants, and then assessing the degree of association between the measures. 

The predictor variable can be seen as occurring before the outcome variable in some sense. It is called the predictor variable, because it forms the basis for predicting the value of the outcome variable.

Relationships between variables can be displayed on a graph or as a numerical score called a correlation coefficient.

types of correlation. Scatter plot. Positive negative and no correlation

  • If an increase in one variable tends to be associated with an increase in the other, then this is known as a positive correlation .
  • If an increase in one variable tends to be associated with a decrease in the other, then this is known as a negative correlation .
  • A zero correlation occurs when there is no relationship between variables.

After looking at the scattergraph, if we want to be sure that a significant relationship does exist between the two variables, a statistical test of correlation can be conducted, such as Spearman’s rho.

The test will give us a score, called a correlation coefficient . This is a value between 0 and 1, and the closer to 1 the score is, the stronger the relationship between the variables. This value can be both positive e.g. 0.63, or negative -0.63.

Types of correlation. Strong, weak, and perfect positive correlation, strong, weak, and perfect negative correlation, no correlation. Graphs or charts ...

A correlation between variables, however, does not automatically mean that the change in one variable is the cause of the change in the values of the other variable. A correlation only shows if there is a relationship between variables.

Correlation does not always prove causation, as a third variable may be involved. 

causation correlation

Interview Methods

Interviews are commonly divided into two types: structured and unstructured.

A fixed, predetermined set of questions is put to every participant in the same order and in the same way. 

Responses are recorded on a questionnaire, and the researcher presets the order and wording of questions, and sometimes the range of alternative answers.

The interviewer stays within their role and maintains social distance from the interviewee.

There are no set questions, and the participant can raise whatever topics he/she feels are relevant and ask them in their own way. Questions are posed about participants’ answers to the subject

Unstructured interviews are most useful in qualitative research to analyze attitudes and values.

Though they rarely provide a valid basis for generalization, their main advantage is that they enable the researcher to probe social actors’ subjective point of view. 

Questionnaire Method

Questionnaires can be thought of as a kind of written interview. They can be carried out face to face, by telephone, or post.

The choice of questions is important because of the need to avoid bias or ambiguity in the questions, ‘leading’ the respondent or causing offense.

  • Open questions are designed to encourage a full, meaningful answer using the subject’s own knowledge and feelings. They provide insights into feelings, opinions, and understanding. Example: “How do you feel about that situation?”
  • Closed questions can be answered with a simple “yes” or “no” or specific information, limiting the depth of response. They are useful for gathering specific facts or confirming details. Example: “Do you feel anxious in crowds?”

Its other practical advantages are that it is cheaper than face-to-face interviews and can be used to contact many respondents scattered over a wide area relatively quickly.

Observations

There are different types of observation methods :
  • Covert observation is where the researcher doesn’t tell the participants they are being observed until after the study is complete. There could be ethical problems or deception and consent with this particular observation method.
  • Overt observation is where a researcher tells the participants they are being observed and what they are being observed for.
  • Controlled : behavior is observed under controlled laboratory conditions (e.g., Bandura’s Bobo doll study).
  • Natural : Here, spontaneous behavior is recorded in a natural setting.
  • Participant : Here, the observer has direct contact with the group of people they are observing. The researcher becomes a member of the group they are researching.  
  • Non-participant (aka “fly on the wall): The researcher does not have direct contact with the people being observed. The observation of participants’ behavior is from a distance

Pilot Study

A pilot  study is a small scale preliminary study conducted in order to evaluate the feasibility of the key s teps in a future, full-scale project.

A pilot study is an initial run-through of the procedures to be used in an investigation; it involves selecting a few people and trying out the study on them. It is possible to save time, and in some cases, money, by identifying any flaws in the procedures designed by the researcher.

A pilot study can help the researcher spot any ambiguities (i.e. unusual things) or confusion in the information given to participants or problems with the task devised.

Sometimes the task is too hard, and the researcher may get a floor effect, because none of the participants can score at all or can complete the task – all performances are low.

The opposite effect is a ceiling effect, when the task is so easy that all achieve virtually full marks or top performances and are “hitting the ceiling”.

Research Design

In cross-sectional research , a researcher compares multiple segments of the population at the same time

Sometimes, we want to see how people change over time, as in studies of human development and lifespan. Longitudinal research is a research design in which data-gathering is administered repeatedly over an extended period of time.

In cohort studies , the participants must share a common factor or characteristic such as age, demographic, or occupation. A cohort study is a type of longitudinal study in which researchers monitor and observe a chosen population over an extended period.

Triangulation means using more than one research method to improve the study’s validity.

Reliability

Reliability is a measure of consistency, if a particular measurement is repeated and the same result is obtained then it is described as being reliable.

  • Test-retest reliability :  assessing the same person on two different occasions which shows the extent to which the test produces the same answers.
  • Inter-observer reliability : the extent to which there is an agreement between two or more observers.

Meta-Analysis

A meta-analysis is a systematic review that involves identifying an aim and then searching for research studies that have addressed similar aims/hypotheses.

This is done by looking through various databases, and then decisions are made about what studies are to be included/excluded.

Strengths: Increases the conclusions’ validity as they’re based on a wider range.

Weaknesses: Research designs in studies can vary, so they are not truly comparable.

Peer Review

A researcher submits an article to a journal. The choice of the journal may be determined by the journal’s audience or prestige.

The journal selects two or more appropriate experts (psychologists working in a similar field) to peer review the article without payment. The peer reviewers assess: the methods and designs used, originality of the findings, the validity of the original research findings and its content, structure and language.

Feedback from the reviewer determines whether the article is accepted. The article may be: Accepted as it is, accepted with revisions, sent back to the author to revise and re-submit or rejected without the possibility of submission.

The editor makes the final decision whether to accept or reject the research report based on the reviewers comments/ recommendations.

Peer review is important because it prevent faulty data from entering the public domain, it provides a way of checking the validity of findings and the quality of the methodology and is used to assess the research rating of university departments.

Peer reviews may be an ideal, whereas in practice there are lots of problems. For example, it slows publication down and may prevent unusual, new work being published. Some reviewers might use it as an opportunity to prevent competing researchers from publishing work.

Some people doubt whether peer review can really prevent the publication of fraudulent research.

The advent of the internet means that a lot of research and academic comment is being published without official peer reviews than before, though systems are evolving on the internet where everyone really has a chance to offer their opinions and police the quality of research.

Types of Data

  • Quantitative data is numerical data e.g. reaction time or number of mistakes. It represents how much or how long, how many there are of something. A tally of behavioral categories and closed questions in a questionnaire collect quantitative data.
  • Qualitative data is virtually any type of information that can be observed and recorded that is not numerical in nature and can be in the form of written or verbal communication. Open questions in questionnaires and accounts from observational studies collect qualitative data.
  • Primary data is first-hand data collected for the purpose of the investigation.
  • Secondary data is information that has been collected by someone other than the person who is conducting the research e.g. taken from journals, books or articles.

Validity means how well a piece of research actually measures what it sets out to, or how well it reflects the reality it claims to represent.

Validity is whether the observed effect is genuine and represents what is actually out there in the world.

  • Concurrent validity is the extent to which a psychological measure relates to an existing similar measure and obtains close results. For example, a new intelligence test compared to an established test.
  • Face validity : does the test measure what it’s supposed to measure ‘on the face of it’. This is done by ‘eyeballing’ the measuring or by passing it to an expert to check.
  • Ecological validit y is the extent to which findings from a research study can be generalized to other settings / real life.
  • Temporal validity is the extent to which findings from a research study can be generalized to other historical times.

Features of Science

  • Paradigm – A set of shared assumptions and agreed methods within a scientific discipline.
  • Paradigm shift – The result of the scientific revolution: a significant change in the dominant unifying theory within a scientific discipline.
  • Objectivity – When all sources of personal bias are minimised so not to distort or influence the research process.
  • Empirical method – Scientific approaches that are based on the gathering of evidence through direct observation and experience.
  • Replicability – The extent to which scientific procedures and findings can be repeated by other researchers.
  • Falsifiability – The principle that a theory cannot be considered scientific unless it admits the possibility of being proved untrue.

Statistical Testing

A significant result is one where there is a low probability that chance factors were responsible for any observed difference, correlation, or association in the variables tested.

If our test is significant, we can reject our null hypothesis and accept our alternative hypothesis.

If our test is not significant, we can accept our null hypothesis and reject our alternative hypothesis. A null hypothesis is a statement of no effect.

In Psychology, we use p < 0.05 (as it strikes a balance between making a type I and II error) but p < 0.01 is used in tests that could cause harm like introducing a new drug.

A type I error is when the null hypothesis is rejected when it should have been accepted (happens when a lenient significance level is used, an error of optimism).

A type II error is when the null hypothesis is accepted when it should have been rejected (happens when a stringent significance level is used, an error of pessimism).

Ethical Issues

  • Informed consent is when participants are able to make an informed judgment about whether to take part. It causes them to guess the aims of the study and change their behavior.
  • To deal with it, we can gain presumptive consent or ask them to formally indicate their agreement to participate but it may invalidate the purpose of the study and it is not guaranteed that the participants would understand.
  • Deception should only be used when it is approved by an ethics committee, as it involves deliberately misleading or withholding information. Participants should be fully debriefed after the study but debriefing can’t turn the clock back.
  • All participants should be informed at the beginning that they have the right to withdraw if they ever feel distressed or uncomfortable.
  • It causes bias as the ones that stayed are obedient and some may not withdraw as they may have been given incentives or feel like they’re spoiling the study. Researchers can offer the right to withdraw data after participation.
  • Participants should all have protection from harm . The researcher should avoid risks greater than those experienced in everyday life and they should stop the study if any harm is suspected. However, the harm may not be apparent at the time of the study.
  • Confidentiality concerns the communication of personal information. The researchers should not record any names but use numbers or false names though it may not be possible as it is sometimes possible to work out who the researchers were.

Print Friendly, PDF & Email

Related Articles

Qualitative Data Coding

Research Methodology

Qualitative Data Coding

What Is a Focus Group?

What Is a Focus Group?

Cross-Cultural Research Methodology In Psychology

Cross-Cultural Research Methodology In Psychology

A-level Psychology AQA Revision Notes

A-Level Psychology

A-level Psychology AQA Revision Notes

What Is Internal Validity In Research?

What Is Internal Validity In Research?

What Is Face Validity In Research? Importance & How To Measure

Research Methodology , Statistics

What Is Face Validity In Research? Importance & How To Measure

Introduction to Psychology/Research Methods in Psychology

RESEARCH METHOD IN PSYCHOLOGY.

Research psychology encompasses the study of behavior for use in academic settings, and contains numerous areas. It contains the areas of abnormal psychology, biological psychology, cognitive psychology, comparative psychology, developmental psychology, personality psychology, social psychology and others. All branches of psychology can have a research component to them. Research psychology is contrasted with applied psychology.

Research in psychology is conducted in broad accord with the standards of the scientific method, encompassing both qualitative ethological and quantitative statistical modalities to generate and evaluate explanatory hypotheses with regard to psychological phenomena. Where research ethics and the state of development in a given research domain permits, investigation may be pursued by experimental protocols. Psychology tends to be eclectic, drawing on scientific knowledge from other fields to help explain and understand psychological phenomena. Qualitative psychological research utilizes a broad spectrum of observational methods, including action research, ethography, exploratory statistics, structured interviews, and participant observation, to enable the gathering of rich information unattainable by classical experimentation. Research in humanistic psychology is more typically pursued by ethnographic, historical, and historiographic methods.

The testing of different aspects of psychological function is a significant area of contemporary psychology. Psychometric and statistical methods predominate, including various well-known standardized tests as well as those created ad hoc as the situation or experiment requires.

Academic psychologists may focus purely on research and psychological theory, aiming to further psychological understanding in a particular area, while other psychologists may work in applied psychology to deploy such knowledge for immediate and practical benefit. However, these approaches are not mutually exclusive and most psychologists will be involved in both researching and applying psychology at some point during their career. Clinical psychology, among many of the various disciplines of psychology, aims at developing in practicing psychologists knowledge of and experience with research and experimental methods which they will continue to build up as well as employ as they treat individuals with psychological issues or use psychology to help others.

When an area of interest requires specific training and specialist knowledge, especially in applied areas, psychological associations normally establish a governing body to manage training requirements. Similarly, requirements may be laid down for university degrees in psychology, so that students acquire an adequate knowledge in a number of areas. Additionally, areas of practical psychology, where psychologists offer treatment to others, may require that psychologists be licensed by government regulatory bodies as well.

Quantitative psychology involves the application of statistical analysis to psychological research, and the development of novel statistical approaches for measuring and explaining human behavior. It is a young field (only recently have Ph.D. programs in quantitative psychology been formed), and it is loosely comprised of the subfields psychometrics and mathematical psychology.

Psychometrics is the field of psychology concerned with the theory and technique of psychological measurement, which includes the measurement of knowledge, abilities, attitudes, interests, achievement in particular degree or course, and personality traits (Carl Dellomos, 2009). Measurement of these unobservable phenomena is difficult, and much of the research and accumulated knowledge in this discipline has been developed in an attempt to properly define and quantify such phenomena. Psychometric research typically involves two major research tasks, namely: (i) the construction of instruments and procedures for measurement; and (ii) the development and refinement of theoretical approaches to measurement.

Psychology is a science, to be approached as such. Experiments should be designed using the scientific method.

There are several research methods that psychologists employ:

  • 1.1 Nomothetic (Quantitative Approach)
  • 1.2 Idiographic (Qualitative Approach)
  • 2.1 Descriptive Studies
  • 2.2 Factorial Design
  • 2.3 Correlational Study
  • 2.4 Experiments
  • 2.5 Naturalistic Observation
  • 2.6 Self Report
  • 3.1.1 Statistical Symbols
  • 3.1.2 Frequency Distribution
  • 3.1.3 Measures of Central Tendency
  • 3.1.4 Measures of Variability
  • 3.2 Case Studies
  • 4 Basic Concepts

Approaches in Psychology Research [ edit | edit source ]

Nomothetic (quantitative approach) [ edit | edit source ].

This approach is basically used in inferential and descriptive statistics as both mediums of scientific method of investigation in analyzing, presenting, and interpretation of data gathered by the researcher through standardized or objective instruments (e.g. psychological Tests). Nomothetic can also be defined as data that is collected from a specifically defined number of individuals (sample) to measure certain tendencies while making hypothetical predictions about human behaviors (population). The term “nomothetic” comes from the Greek word “nomos” meaning “law”. Psychologists who adopt this approach are mainly concerned with studying what we share with others. That is to say in establishing laws or generalizations. (Carl Dellomos, 2009)

Idiographic (Qualitative Approach) [ edit | edit source ]

This approach tends not to use inferential or descriptive statistics, but rather uses qualitative methods of data gathering such as interviews, diaries, and other written materials, obtained from or provided by the expected or anticipated respondents of a particular research. The term “idiographic” comes from the Greek word “idios” meaning “own” or “private”. Psychologists interested in this aspect of experience seek to discover what makes each of us unique. Despite the importance of our genetic individuality, proceeding from biology, the distinction between the nomothetic and the idiographic is often equated with two types of science — the natural sciences concerned with discovering laws of nature, and the social sciences concerned with individual meanings. We can examine these differences further by seeing how they relate to personality theory.(Carl Dellomos, 2009)

Both approaches were introduced by Gordon Allport. (Carl Dellomos, 2009)

Research Designs [ edit | edit source ]

Research design is the way in which the overall study is ran, this goes for the way the data is collected, measured, and interpreted. Considered as the backbone of an experiment as it sets the overall presence for how things will flow throughout duration of the study. There are four main types of research designs that are used within the psychology field: descriptive or qualitative, correlational, casual comparative/ quasi-experimental, and experimental. The method of data collection also varies, with self-report on one end of the spectrum, and naturalistic observation on the other.

Descriptive Studies [ edit | edit source ]

The Studies that do not test specific relationships between variables are called descriptive studies. In this research method, general or specific behaviors or attributes are observed and measured, without respect to each other. These studies are generally the design of choice for breaking into new areas, as the vast but often inconclusive amount of information collected can be drawn upon for future hypotheses.

An example of such a study would be a researcher inquiring into the quality of mental health institutions. This would be done by observation or measurements of various criteria, as opposed to relationships between variables. Alternatively, the study could be conducted without any specific criteria in mind.

Factorial Design [ edit | edit source ]

Every level of one independent variable is joined with every level of the others in a factorial design to create every possible combination. Because this particular design contains two variables, each of which has two levels, it is known as a 2 × 2 (or "two-by-two") factorial design. There would be six different conditions in a 3 × 2 factorial design if one of the independent variables had a third level. Observe that the product of the levels' numbers is the total number of possible circumstances. There are four conditions in a 2 × 2 factorial design, six in a 3 × 2 factorial design, twenty in a 4 × 5 factorial design, and so on. It's also important to note that every number in the notation indicates a single independent variable or component. Because this particular design contains two variables, each of which has two levels, it is known as a 2 × 2 (or "two-by-two") factorial design. There would be six different conditions in a 3 × 2 factorial design if one of the independent variables had a third level. Observe that the product of the levels' numbers is the total number of possible circumstances. There are four conditions in a 2 × 2 factorial design, six in a 3 × 2 factorial design, twenty in a 4 × 5 factorial design, and so on. It's also important to note that every number in the notation indicates a single independent variable or component.

Correlational Study [ edit | edit source ]

This method of statistical analysis shows the relationship between two variables. For example, research has shown that alcohol dependence correlates with depression. That is to say, the more alcohol people consume, the more depressed they become. On the other hand, it could be the other way around as well: the more depressed people become, the more likely they are to consume alcohol.

The attributes of correlations include strength and direction. The direction may be positive (both variables both increase or decrease together), negative (one variable increases while the other decreases) or unrelated (a random relationship between variables). The strength of a correlation ranges from -1 to +1 with a 0 reflecting no relationship between variables. A correlational study serves only to describe/predict behavior and not to explain it. This is so because a third variable could be shown to cause the occurrence of one of the variables. Furthermore, only experiments can prove causation.

Experiments [ edit | edit source ]

Experiments are generally the studies that are the most precise and have the most weight to them due to their conclusive power. They are particularly effective in proving hypotheses about cause and effect relationships between variables. A hypothesis is a prediction of how one variable relates to another. There are two types of hypotheses, null and directional . The null is a prediction that there will not be any change in the dependent variable when the researcher changes the independent variable. The directional hypothesis states that the change in the independent variable will induce a change in the dependent variable. In a true experiment, all variables are held constant except for the independent variable, which is manipulated. Thus, any changes in the experimental groups can be solely attributed to the action of the independent variable. This is called being objective .

For instance, in an experiment to test whether music improves people's memories, we would have a sheet of paper with ten unrelated words on it for people to memorize. The control group would have no music playing in the background while the experimental group would have some music in the background. Because as researchers we have adhered to the scientific method and held all variables as constant as possible, if the experimental group does report better recollection of words, then we could assume that the music had an effect on memory. However, we must be certain to do our best to ensure that any controllable differences between the two groups are eliminated in order to ensure that no confounding variable interferes with the experiment.

There are two main ways to pick, or sample the subjects in an experiment, random and stratified . In a random sampling each person has an equal chance at being picked. This means that if 80% of the population being sampled from are Christian, then 80% of the sample will be Christian. If the researcher wanted all religions represented equally, he would employ stratified sampling. For instance, the experiment could be performed only on women, or on mixed groups with equal numbers of each sex in them, to eliminate the possibility of biased results from one gender having better average memory than the other.

Steps must be taken to make sure that there is no experimenter bias . Two common forms of bias are demand characteristics and expectancy effects. If a researcher expects certain results from an experiment and influences the subjects response this is called demand characteristics. If the experimenter inadvertently interprets the information to be as expected in their hypothesis it is called expectancy effect. To counteract experimenter bias the subjects can be kept uninformed on the intentions of the experiment, which is called single blind. If the people collecting the information and the subjects giving it are kept uninformed then it is called a double blind experiment.

The experiment should also be reported so that other researchers can repeat it. If an experiment isn't repeatable it will not hold much weight in the scientific community. To help an experiment be repeatable the researcher should have the variables be measureable, this is called being empirical .

Whether researching humans or animals the experiment should be ethical. When humans are the subjects they should be informed of what the study is, consent to being in it, be debriefed afterwards, and their information should also be kept confidential .

Naturalistic Observation [ edit | edit source ]

Researchers study organisms in their natural environments or habitats without trying to manipulate or control anything. In this method, the researcher observes the behavior under study in its natural setting while attempting to avoid influencing or controlling it. The observations are done in a naturalistic setting without any preparation or participation of the researcher. Therefore, the behavior is observed in public places, streets, homes, and schools. Observing people from other cultures response in the same setting is a way to provide information for cross-cultural research .

Self Report [ edit | edit source ]

This method includes tests , questionnaires , and interviews . All of which do the same thing, give the subject a stimuli, i.e. the question, and get a response. The advantage of using these is the ability to inexpensively and rapidly collect vast amounts of data. This allows a psychologist to compare one person, or a group of peoples results to thousands of others. The disadvantage is that they are not always telling what the subject's response is but what the subject says is the response.

Information Display [ edit | edit source ]

Statistics [ edit | edit source ].

Once the information is gathered it has to be put into some kind of form, usually numerical. Statistics deals with the collection, analysis, interpretation, and presentation of numerical data. The goal of statistics is to summarize the data and let descriptions or inferences be made . Inferences are used when making predictions of the relationships of variables. Descriptions are concise displays, using statistical symbols ,of the information in frequency distributions, measures of central tendency , or measures of variability .

Statistical Symbols [ edit | edit source ]

There are agreed upon standard symbols used in statistical displays. These symbols can be used by themselves or in equations.

N = number of scores

X = score (or scores)

d = difference of a score from the mean

D = difference in rank

r or ρ = correlation

SD = standard deviation

Frequency Distribution [ edit | edit source ]

A frequency distribution is obtained by taking the score and splitting them into subgroups. The subgroups are then put on either a histogram (bar graph) or a frequency polygram (line graph). When a frequency distribution has most of the scores on one side of the graph it is considered skewed. If it has most of the scores in the middle with equal amounts on both sides it is considered symmetrical.

Measures of Central Tendency [ edit | edit source ]

In measures of central tendency there is one number that is used to represent a group of numbers. This number is either the mean , median , or the mode .

Measures of Variability [ edit | edit source ]

Variability is concerned with the dispersal of the scores, called variability i.e. are the scores clustered together or spread out. Range and standard deviation are the measures most commonly used. To find the range just subtract the number of the lowest score from the number of the highest score. This can be deceiving if most of the scores are bunched together and one of the scores is very far away from it. In this case standard deviation must be used. A formula commonly used for standard deviation is SD = the square root of Σd²/N.

Case Studies [ edit | edit source ]

In the course of treating a patient a psychologist will take records of problems, insights, and techniques that were important in the patients treatment. A clinical case history may be drawn upon by researchers to expose a factor that is important for understanding a behavior. Case studies repeat and are used as guides for psychologists.

Basic Concepts [ edit | edit source ]

  • a. independent variable = variable that one manipulates in order to see if it has any effect on the dependent variable (eg. in the example above, the independent variable would be music and its effect on memory)
  • b. dependent variable = variable that depends on the effect of the independent variable (e.g. in the example above, the dependent variable would be memory and better recollection of words)
  • c. double-blind procedure = procedure in which neither the researcher nor the subjects know which group (experimental or control) the subjects are in in order to minimize experimenter cues.
  • d. single-blind procedure = procedure in which only the researcher knows which group which kind of subject is in.
  • e. experimenter cues - subtle and often unintentional cues that the experimenter makes which implies which group which kind of subject is in. for example, if an experimenter believes that music does indeed improve memory, some cues would be the experimenter's smiling/winking at the experimental group. This smile/wink would imply to the subjects in the experimental group that the researcher is secretly implying that they're in the experimental group.
  • f. placebo effect - a treatment works because of the patient's belief that it works and not because it actually does.
  • g. experimenter - the person who is researching through the participant.

directional hypothesis in psychological experiments

  • Book:Introduction to Psychology

Navigation menu

directional hypothesis in psychological experiments

Live revision! Join us for our free exam revision livestreams Watch now →

Reference Library

Collections

  • See what's new
  • All Resources
  • Student Resources
  • Assessment Resources
  • Teaching Resources
  • CPD Courses
  • Livestreams

Study notes, videos, interactive activities and more!

Psychology news, insights and enrichment

Currated collections of free resources

Browse resources by topic

  • All Psychology Resources

Resource Selections

Currated lists of resources

Non-Directional Hypothesis

A non-directional hypothesis is a two-tailed hypothesis that does not predict the direction of the difference or relationship (e.g. girls and boys are different in terms of helpfulness).

  • Share on Facebook
  • Share on Twitter
  • Share by Email

Research Methods: MCQ Revision Test 1 for AQA A Level Psychology

Topic Videos

Example Answers for Research Methods: A Level Psychology, Paper 2, June 2018 (AQA)

Exam Support

Example Answer for Question 14 Paper 2: AS Psychology, June 2017 (AQA)

Model answer for question 11 paper 2: as psychology, june 2016 (aqa), a level psychology topic quiz - research methods.

Quizzes & Activities

Our subjects

  • › Criminology
  • › Economics
  • › Geography
  • › Health & Social Care
  • › Psychology
  • › Sociology
  • › Teaching & learning resources
  • › Student revision workshops
  • › Online student courses
  • › CPD for teachers
  • › Livestreams
  • › Teaching jobs

Boston House, 214 High Street, Boston Spa, West Yorkshire, LS23 6AD Tel: 01937 848885

  • › Contact us
  • › Terms of use
  • › Privacy & cookies

© 2002-2024 Tutor2u Limited. Company Reg no: 04489574. VAT reg no 816865400.

IMAGES

  1. PPT

    directional hypothesis in psychological experiments

  2. Directional Hypothesis: Definition and 10 Examples (2024)

    directional hypothesis in psychological experiments

  3. Ch 2: Psychological Research Methods

    directional hypothesis in psychological experiments

  4. 11 Examples of Directional Hypothesis

    directional hypothesis in psychological experiments

  5. PPT

    directional hypothesis in psychological experiments

  6. glossary initiativeblog.com

    directional hypothesis in psychological experiments

VIDEO

  1. Hypothesis Testing in Psychological Research

  2. Azimuthal Geoelectric Measurements Determination of Multiple Directions of Multiple Subsurface

  3. Psychology Experiments, அறிவியலும் உளவியலும் (Ep2) Basic Psychology in Tamil

  4. Human Resources: 7/9 'Social Engineering in the 20th Century'

  5. Research Hypothesis and its Types with examples /urdu/hindi

  6. Chapter 09: Hypothesis testing: non-directional worked example

COMMENTS

  1. Research Hypothesis In Psychology: Types, & Examples

    Examples. A research hypothesis, in its plural form "hypotheses," is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.

  2. Directional Hypothesis: Definition and 10 Examples

    Directional Hypothesis Examples. 1. Exercise and Heart Health. Research suggests that as regular physical exercise (independent variable) increases, the risk of heart disease (dependent variable) decreases (Jakicic, Davis, Rogers, King, Marcus, Helsel, Rickman, Wahed, Belle, 2016). In this example, a directional hypothesis anticipates that the ...

  3. Directional Hypothesis

    Definition: A directional hypothesis is a specific type of hypothesis statement in which the researcher predicts the direction or effect of the relationship between two variables. Key Features. 1. Predicts direction: Unlike a non-directional hypothesis, which simply states that there is a relationship between two variables, a directional ...

  4. Aims And Hypotheses, Directional And Non-Directional

    If the findings do support the hypothesis then the hypothesis can be retained (i.e., accepted), but if not, then it must be rejected. Three Different Hypotheses: (1) Directional Hypothesis: states that the IV will have an effect on the DV and what that effect will be (the direction of results). For example, eating smarties will significantly ...

  5. What is a Directional Hypothesis? (Definition & Examples)

    A statistical hypothesis is an assumption about a population parameter.For example, we may assume that the mean height of a male in the U.S. is 70 inches. The assumption about the height is the statistical hypothesis and the true mean height of a male in the U.S. is the population parameter.. To test whether a statistical hypothesis about a population parameter is true, we obtain a random ...

  6. Hypotheses; directional and non-directional

    The directional hypothesis can also state a negative correlation, e.g. the higher the number of face-book friends, the lower the life satisfaction score ". Non-directional hypothesis: A non-directional (or two tailed hypothesis) simply states that there will be a difference between the two groups/conditions but does not say which will be ...

  7. Understanding Statistical Testing

    Steps in the Application of the Logic of Statistical Testing. Step 1. Determine the hypothesis-specific partition of the parameter space associated with the data generating process. How this is achieved depends on the substance and logic of the research being pursued and is not merely a question of statistics. Step 2.

  8. A Practical Guide to Writing Quantitative and Qualitative Research

    On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies (non-directional hypothesis).4 In addition, hypotheses can 1) define interdependency between variables (associative hypothesis),4 2) propose an effect on the dependent variable from manipulation ...

  9. Directional and non-directional hypothesis: A Comprehensive Guide

    Examples of research questions for directional hypothesis. In the world of research and statistical analysis, hypotheses play a crucial role in formulating and testing scientific claims. Understanding the differences between directional and non-directional hypothesis is essential for designing sound experiments and drawing accurate conclusions.

  10. Hypothesis: Definition, Examples, and Types

    A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process. Consider a study designed to examine the relationship between sleep deprivation and test ...

  11. Aims and Hypotheses

    Hypotheses. A hypothesis (plural hypotheses) is a precise, testable statement of what the researchers predict will be the outcome of the study. This usually involves proposing a possible relationship between two variables: the independent variable (what the researcher changes) and the dependant variable (what the research measures).

  12. Directional Hypothesis

    A directional hypothesis is a one-tailed hypothesis that states the direction of the difference or relationship (e.g. boys are more helpful than girls). ... Example Answers for Research Methods: A Level Psychology, Paper 2, June 2018 (AQA) Exam Support. Example Answer for Question 14 Paper 2: AS Psychology, June 2017 (AQA) ...

  13. Aims, Hypotheses and How to Write Them

    Experimental hypothesis - directional (1 tailed) for "true experiments", e.g., laboratory and field. Experimental hypothesis - non-directional (2-tailed) for "true experiments", e.g., laboratory and field. Quasi-experimental hypothesis - directional (1 tailed) for experiments where the participant's differences are the IV.

  14. 7.2.2 Hypothesis

    The Experimental Hypothesis: Directional A directional experimental hypothesis (also known as one-tailed) predicts the direction of the change/difference (it anticipates more specifically what might happen); A directional hypothesis is usually used when there is previous research which support a particular theory or outcome i.e. what a researcher might expect to happen

  15. Aims and Hypotheses

    The theory attempting to explain an observation will help to inform hypotheses - predictions of an investigation's outcome that make specific reference to the independent variables (IVs) manipulated and dependent variables (DVs) measured by the researchers. There are two types of hypothesis: H1 - The Research Hypothesis.

  16. Developing a Hypothesis

    Theories and Hypotheses. Before describing how to develop a hypothesis, it is important to distinguish between a theory and a hypothesis. A theory is a coherent explanation or interpretation of one or more phenomena. Although theories can take a variety of forms, one thing they have in common is that they go beyond the phenomena they explain by including variables, structures, processes ...

  17. Research Methods In Psychology

    Olivia Guy-Evans, MSc. Research methods in psychology are systematic procedures used to observe, describe, predict, and explain behavior and mental processes. They include experiments, surveys, case studies, and naturalistic observations, ensuring data collection is objective and reliable to understand and explain psychological phenomena.

  18. Introduction to Psychology/Research Methods in Psychology

    Psychology tends to be eclectic, drawing on scientific knowledge from other fields to help explain and understand psychological phenomena. ... including various well-known standardized tests as well as those created ad hoc as the situation or experiment requires. ... The directional hypothesis states that the change in the independent variable ...

  19. Causal vs. Directional Hypothesis

    A directional hypothesis is when a prediction is made about the specific effects of an experimental variable or treatment. ... Quasi-Experiment in Psychology | Definition & Examples

  20. Hypotheses AO1 AO2

    EXEMPLAR ESSAYHow to write a 8-mark answer. Assess how hypotheses are used in the Cognitive Approach. (8 marks) A 8-mark "apply" question awards 4 marks for describing the use of hypotheses (AO1) and 4 marks for applying the Cognitive Approach to this (AO2). You need a conclusion to get a mark in the top band (7-8 marks).

  21. PDF Task 4

    I can write a non-directional hypothesis I can write a directional hypothesis Don [t worry if you have ticked any of the not yet boxes. Press on with the following tasks and you might find it begins to make more sense Task 4: write a hypothesis for each of these two scenarios, decide whether you need to write a directional or non-directional ...

  22. PDF Aice 9990 Psychology Research Methods: Experimental & Non-experimental

    A field experiment is: conducted in more everyday/natural environment. such as classroom, mall, street, etc. an experiment where subjects may not know they are being observed. the only field study from the 12 core study is Piliavin because the study takes place on the NY subway. Advantages of field experiments:

  23. Non-Directional Hypothesis

    A Level Psychology Topic Quiz - Research Methods. Quizzes & Activities. A non-directional hypothesis is a two-tailed hypothesis that does not predict the direction of the difference or relationship (e.g. girls and boys are different in terms of helpfulness).