• Memberships

Heuristic Method

heuristic method polya toolshero

Heuristic Method: this article explains the concept of the Heuristic Method , developed by George Pólya in a practical way. After reading it, you will understand the basics of this powerful Problem Solving tool.

What is the Heuristic Method?

A heuristic method is an approach to finding a solution to a problem that originates from the ancient Greek word ‘eurisko’, meaning to ‘find’, ‘search’ or ‘discover’. It is about using a practical method that doesn’t necessarily need to be perfect. Heuristic methods speed up the process of reaching a satisfactory solution.

Previous experiences with comparable problems are used that can concern problem situations for people, machines or abstract issues. One of the founders of heuristics is the Hungarian mathematician György (George) Pólya , who published a book about the subject in 1945 called ‘How to Solve It’. He used four principles that form the basis for problem solving.

Free Toolshero ebook

Heuristic method: Four principles

Pólya describes the following four principles in his book:

  • try to understand the problem
  • make a plan
  • carry out this plan
  • evaluate and adapt

Heuristic Method Principles George Ploya - toolshero

If this sequence doesn’t lead to the right solution, Pólya advises to first look for a simpler problem.

A solution may potentially be found by first looking at a similar problem that was possible to solve. With this experience, it’s possible to look at the current problem in another way.

First principle of the heuristic method: understand the problem

It’s more difficult than it seems, because it seems obvious. In truth, people are hindered when it comes to finding an initially suitable approach to the problem.

It can help to draw the problem and to look at it from another angle. What is the problem, what is happening, can the problem be explained in other words, is there enough information available, etc. Such questions can help with the first evaluation of a problem issue.

Second principle of the heuristic method: make a plan

There are many ways to solve problems. This section is about choosing the right strategy that best fits the problem at hand. The reversed ‘working backwards’ can help with this; people assume to have a solution and use this as a starting point to work towards the problem.

It can also be useful to make an overview of the possibilities, delete some of them immediately, work with comparisons, or to apply symmetry. Creativity comes into play here and will improve the ability to judge.

Third principle of the heuristic method: carry out the plan

Once a strategy has been chosen, the plan can quickly be implemented. However, it is important to pay attention to time and be patient, because the solution will not simply appear.

If the plan doesn’t go anywhere, the advice is to throw it overboard and find a new way.

Fourth principle of the heuristic method: evaluate and adapt

Take the time to carefully consider and reflect upon the work that’s already been done. The things that are going well should be maintained, those leading to a lesser solution, should be adjusted. Some things simply work, while others simply don’t.

There are many different heuristic methods, which Pólya also used. The most well-known heuristics are found below:

1. Dividing technique

The original problem is divided into smaller sub-problems that can be solved more easily. These sub-problems can be linked to each other and combined, which will eventually lead to the solving of the original problem.

2. Inductive method

This involves a problem that has already been solved, but is smaller than the original problem. Generalisation can be derived from the previously solved problem, which can help in solving the bigger, original problem.

3. Reduction method

Because problems are often larger than assumed and deal with different causes and factors, this method sets limits for the problem in advance. This reduces the leeway of the original problem, making it easier to solve.

4. Constructive method

This is about working on the problem step by step. The smallest solution is seen as a victory and from that point consecutive steps are taken. This way, the best choices keep being made, which will eventually lead to a successful end result.

5. Local search method

This is about the search for the most attainable solution to the problem. This solution is improved along the way. This method ends when improvement is no longer possible.

Exact solutions versus the heuristic method

The heuristic approach is a mathmatical method with which proof of a good solution to a problem is delivered. There is a large number of different problems that could use good solutions. When the processing speed is equally as important as the obtained solution, we speak of a heuristic method.

The Heuristic Method only tries to find a good, but not necessarily optimal, solution. This is what differentiates heuristics from exact solution methods, which are about finding the optimal solution to a problem. However, that’s very time consuming, which is why a heuristic method may prove preferable. This is much quicker and more flexible than an exact method, but does have to satisfy a number of criteria.

Join the Toolshero community

It’s Your Turn

What do you think? Is the Heuristic Method applicable in your personal or professional environment? Do you recognize the practical explanation or do you have more suggestions? What are your success factors for solving problems

Share your experience and knowledge in the comments box below.

More information

  • Groner, R., Groner, M., & Bischof, W. F. (2014). Methods of heuristics . Routledge .
  • Newell, A. (1983). The heuristic of George Polya and its relation to artificial intelligence . Methods of heuristics, 195-243.
  • Polya, G. (2014, 1945). How to solve it: A new aspect of mathematical method . Princeton university press .

How to cite this article: Mulder, P. (2018). Heuristic Method . Retrieved [insert date] from ToolsHero: https://www.toolshero.com/problem-solving/heuristic-method/

Add a link to this page on your website: <a href=”https://www.toolshero.com/problem-solving/heuristic-method/”>ToolsHero: Heuristic Method</a>

Published on: 29/05/2018 | Last update: 04/03/2022

Did you find this article interesting?

Your rating is more than welcome or share this article via Social media!

Average rating 4.6 / 5. Vote count: 13

No votes so far! Be the first to rate this post.

We are sorry that this post was not useful for you!

Let us improve this post!

Tell us how we can improve this post?

Patty Mulder

Patty Mulder

Patty Mulder is an Dutch expert on Management Skills, Personal Effectiveness and Business Communication. She is also a Content writer, Business Coach and Company Trainer and lives in the Netherlands (Europe). Note: all her articles are written in Dutch and we translated her articles to English!

ALSO INTERESTING

Soft Systems Methodology (SSM) - toolshero

Soft Systems Methodology (SSM) by Peter Checkland

Crowdsourcing - toolshero

Crowdsourcing: the meaning, definition and some examples

Systematic Inventive Thinking (SIT) - Toolshero

Systematic Inventive Thinking (SIT)

Leave a reply cancel reply.

You must be logged in to post a comment.

BOOST YOUR SKILLS

Toolshero supports people worldwide ( 10+ million visitors from 100+ countries ) to empower themselves through an easily accessible and high-quality learning platform for personal and professional development.

By making access to scientific knowledge simple and affordable, self-development becomes attainable for everyone, including you! Join our learning platform and boost your skills with Toolshero.

a heuristic approach to problem solving

POPULAR TOPICS

  • Change Management
  • Marketing Theories
  • Problem Solving Theories
  • Psychology Theories

ABOUT TOOLSHERO

  • Free Toolshero e-book
  • Memberships & Pricing

Heuristics: Definition, Examples, And How They Work

Benjamin Frimodig

Science Expert

B.A., History and Science, Harvard University

Ben Frimodig is a 2021 graduate of Harvard College, where he studied the History of Science.

Learn about our Editorial Process

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

On This Page:

Every day our brains must process and respond to thousands of problems, both large and small, at a moment’s notice. It might even be overwhelming to consider the sheer volume of complex problems we regularly face in need of a quick solution.

While one might wish there was time to methodically and thoughtfully evaluate the fine details of our everyday tasks, the cognitive demands of daily life often make such processing logistically impossible.

Therefore, the brain must develop reliable shortcuts to keep up with the stimulus-rich environments we inhabit. Psychologists refer to these efficient problem-solving techniques as heuristics.

Heuristics decisions and mental thinking shortcut approach outline diagram. Everyday vs complex technique comparison list for judgments and fast, short term problem solving method vector

Heuristics can be thought of as general cognitive frameworks humans rely on regularly to reach a solution quickly.

For example, if a student needs to decide what subject she will study at university, her intuition will likely be drawn toward the path that she envisions as most satisfying, practical, and interesting.

She may also think back on her strengths and weaknesses in secondary school or perhaps even write out a pros and cons list to facilitate her choice.

It’s important to note that these heuristics broadly apply to everyday problems, produce sound solutions, and helps simplify otherwise complicated mental tasks. These are the three defining features of a heuristic.

While the concept of heuristics dates back to Ancient Greece (the term is derived from the Greek word for “to discover”), most of the information known today on the subject comes from prominent twentieth-century social scientists.

Herbert Simon’s study of a notion he called “bounded rationality” focused on decision-making under restrictive cognitive conditions, such as limited time and information.

This concept of optimizing an inherently imperfect analysis frames the contemporary study of heuristics and leads many to credit Simon as a foundational figure in the field.

Kahneman’s Theory of Decision Making

The immense contributions of psychologist Daniel Kahneman to our understanding of cognitive problem-solving deserve special attention.

As context for his theory, Kahneman put forward the estimate that an individual makes around 35,000 decisions each day! To reach these resolutions, the mind relies on either “fast” or “slow” thinking.

Kahneman

The fast thinking pathway (system 1) operates mostly unconsciously and aims to reach reliable decisions with as minimal cognitive strain as possible.

While system 1 relies on broad observations and quick evaluative techniques (heuristics!), system 2 (slow thinking) requires conscious, continuous attention to carefully assess the details of a given problem and logically reach a solution.

Given the sheer volume of daily decisions, it’s no surprise that around 98% of problem-solving uses system 1.

Thus, it is crucial that the human mind develops a toolbox of effective, efficient heuristics to support this fast-thinking pathway.

Heuristics vs. Algorithms

Those who’ve studied the psychology of decision-making might notice similarities between heuristics and algorithms. However, remember that these are two distinct modes of cognition.

Heuristics are methods or strategies which often lead to problem solutions but are not guaranteed to succeed.

They can be distinguished from algorithms, which are methods or procedures that will always produce a solution sooner or later.

An algorithm is a step-by-step procedure that can be reliably used to solve a specific problem. While the concept of an algorithm is most commonly used in reference to technology and mathematics, our brains rely on algorithms every day to resolve issues (Kahneman, 2011).

The important thing to remember is that algorithms are a set of mental instructions unique to specific situations, while heuristics are general rules of thumb that can help the mind process and overcome various obstacles.

For example, if you are thoughtfully reading every line of this article, you are using an algorithm.

On the other hand, if you are quickly skimming each section for important information or perhaps focusing only on sections you don’t already understand, you are using a heuristic!

Why Heuristics Are Used

Heuristics usually occurs when one of five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind at the same moment

When studying heuristics, keep in mind both the benefits and unavoidable drawbacks of their application. The ubiquity of these techniques in human society makes such weaknesses especially worthy of evaluation.

More specifically, in expediting decision-making processes, heuristics also predispose us to a number of cognitive biases .

A cognitive bias is an incorrect but pervasive judgment derived from an illogical pattern of cognition. In simple terms, a cognitive bias occurs when one internalizes a subjective perception as a reliable and objective truth.

Heuristics are reliable but imperfect; In the application of broad decision-making “shortcuts” to guide one’s response to specific situations, occasional errors are both inevitable and have the potential to catalyze persistent mistakes.

For example, consider the risks of faulty applications of the representative heuristic discussed above. While the technique encourages one to assign situations into broad categories based on superficial characteristics and one’s past experiences for the sake of cognitive expediency, such thinking is also the basis of stereotypes and discrimination.

In practice, these errors result in the disproportionate favoring of one group and/or the oppression of other groups within a given society.

Indeed, the most impactful research relating to heuristics often centers on the connection between them and systematic discrimination.

The tradeoff between thoughtful rationality and cognitive efficiency encompasses both the benefits and pitfalls of heuristics and represents a foundational concept in psychological research.

When learning about heuristics, keep in mind their relevance to all areas of human interaction. After all, the study of social psychology is intrinsically interdisciplinary.

Many of the most important studies on heuristics relate to flawed decision-making processes in high-stakes fields like law, medicine, and politics.

Researchers often draw on a distinct set of already established heuristics in their analysis. While dozens of unique heuristics have been observed, brief descriptions of those most central to the field are included below:

Availability Heuristic

The availability heuristic describes the tendency to make choices based on information that comes to mind readily.

For example, children of divorced parents are more likely to have pessimistic views towards marriage as adults.

Of important note, this heuristic can also involve assigning more importance to more recently learned information, largely due to the easier recall of such information.

Representativeness Heuristic

This technique allows one to quickly assign probabilities to and predict the outcome of new scenarios using psychological prototypes derived from past experiences.

For example, juries are less likely to convict individuals who are well-groomed and wearing formal attire (under the assumption that stylish, well-kempt individuals typically do not commit crimes).

This is one of the most studied heuristics by social psychologists for its relevance to the development of stereotypes.

Scarcity Heuristic

This method of decision-making is predicated on the perception of less abundant, rarer items as inherently more valuable than more abundant items.

We rely on the scarcity heuristic when we must make a fast selection with incomplete information. For example, a student deciding between two universities may be drawn toward the option with the lower acceptance rate, assuming that this exclusivity indicates a more desirable experience.

The concept of scarcity is central to behavioral economists’ study of consumer behavior (a field that evaluates economics through the lens of human psychology).

Trial and Error

This is the most basic and perhaps frequently cited heuristic. Trial and error can be used to solve a problem that possesses a discrete number of possible solutions and involves simply attempting each possible option until the correct solution is identified.

For example, if an individual was putting together a jigsaw puzzle, he or she would try multiple pieces until locating a proper fit.

This technique is commonly taught in introductory psychology courses due to its simple representation of the central purpose of heuristics: the use of reliable problem-solving frameworks to reduce cognitive load.

Anchoring and Adjustment Heuristic

Anchoring refers to the tendency to formulate expectations relating to new scenarios relative to an already ingrained piece of information.

 Anchoring Bias Example

Put simply, this anchoring one to form reasonable estimations around uncertainties. For example, if asked to estimate the number of days in a year on Mars, many people would first call to mind the fact the Earth’s year is 365 days (the “anchor”) and adjust accordingly.

This tendency can also help explain the observation that ingrained information often hinders the learning of new information, a concept known as retroactive inhibition.

Familiarity Heuristic

This technique can be used to guide actions in cognitively demanding situations by simply reverting to previous behaviors successfully utilized under similar circumstances.

The familiarity heuristic is most useful in unfamiliar, stressful environments.

For example, a job seeker might recall behavioral standards in other high-stakes situations from her past (perhaps an important presentation at university) to guide her behavior in a job interview.

Many psychologists interpret this technique as a slightly more specific variation of the availability heuristic.

How to Make Better Decisions

Heuristics are ingrained cognitive processes utilized by all humans and can lead to various biases.

Both of these statements are established facts. However, this does not mean that the biases that heuristics produce are unavoidable. As the wide-ranging impacts of such biases on societal institutions have become a popular research topic, psychologists have emphasized techniques for reaching more sound, thoughtful and fair decisions in our daily lives.

Ironically, many of these techniques are themselves heuristics!

To focus on the key details of a given problem, one might create a mental list of explicit goals and values. To clearly identify the impacts of choice, one should imagine its impacts one year in the future and from the perspective of all parties involved.

Most importantly, one must gain a mindful understanding of the problem-solving techniques used by our minds and the common mistakes that result. Mindfulness of these flawed yet persistent pathways allows one to quickly identify and remedy the biases (or otherwise flawed thinking) they tend to create!

Further Information

  • Shah, A. K., & Oppenheimer, D. M. (2008). Heuristics made easy: an effort-reduction framework. Psychological bulletin, 134(2), 207.
  • Marewski, J. N., & Gigerenzer, G. (2012). Heuristic decision making in medicine. Dialogues in clinical neuroscience, 14(1), 77.
  • Del Campo, C., Pauser, S., Steiner, E., & Vetschera, R. (2016). Decision making styles and the use of heuristics in decision making. Journal of Business Economics, 86(4), 389-412.

What is a heuristic in psychology?

A heuristic in psychology is a mental shortcut or rule of thumb that simplifies decision-making and problem-solving. Heuristics often speed up the process of finding a satisfactory solution, but they can also lead to cognitive biases.

Bobadilla-Suarez, S., & Love, B. C. (2017, May 29). Fast or Frugal, but Not Both: Decision Heuristics Under Time Pressure. Journal of Experimental Psychology: Learning, Memory, and Cognition .

Bowes, S. M., Ammirati, R. J., Costello, T. H., Basterfield, C., & Lilienfeld, S. O. (2020). Cognitive biases, heuristics, and logical fallacies in clinical practice: A brief field guide for practicing clinicians and supervisors. Professional Psychology: Research and Practice, 51 (5), 435–445.

Dietrich, C. (2010). “Decision Making: Factors that Influence Decision Making, Heuristics Used, and Decision Outcomes.” Inquiries Journal/Student Pulse, 2(02).

Groenewegen, A. (2021, September 1). Kahneman Fast and slow thinking: System 1 and 2 explained by Sue. SUE Behavioral Design. Retrieved March 26, 2022, from https://suebehaviouraldesign.com/kahneman-fast-slow-thinking/

Kahneman, D., Lovallo, D., & Sibony, O. (2011). Before you make that big decision .

Kahneman, D. (2011). Thinking, fast and slow . Macmillan.

Pratkanis, A. (1989). The cognitive representation of attitudes. In A. R. Pratkanis, S. J. Breckler, & A. G. Greenwald (Eds.), Attitude structure and function (pp. 71–98). Hillsdale, NJ: Erlbaum.

Simon, H.A., 1956. Rational choice and the structure of the environment. Psychological Review .

Tversky, A., & Kahneman, D. (1974). Judgment under Uncertainty: Heuristics and Biases. Science, 185 (4157), 1124–1131.

Print Friendly, PDF & Email

a heuristic approach to problem solving

Heuristic Problem Solving: A comprehensive guide with 5 Examples

What are heuristics, advantages of using heuristic problem solving, disadvantages of using heuristic problem solving, heuristic problem solving examples, frequently asked questions.

  • Speed: Heuristics are designed to find solutions quickly, saving time in problem solving tasks. Rather than spending a lot of time analyzing every possible solution, heuristics help to narrow down the options and focus on the most promising ones.
  • Flexibility: Heuristics are not rigid, step-by-step procedures. They allow for flexibility and creativity in problem solving, leading to innovative solutions. They encourage thinking outside the box and can generate unexpected and valuable ideas.
  • Simplicity: Heuristics are often easy to understand and apply, making them accessible to anyone regardless of their expertise or background. They don’t require specialized knowledge or training, which means they can be used in various contexts and by different people.
  • Cost-effective: Because heuristics are simple and efficient, they can save time, money, and effort in finding solutions. They also don’t require expensive software or equipment, making them a cost-effective approach to problem solving.
  • Real-world applicability: Heuristics are often based on practical experience and knowledge, making them relevant to real-world situations. They can help solve complex, messy, or ill-defined problems where other problem solving methods may not be practical.
  • Potential for errors: Heuristic problem solving relies on generalizations and assumptions, which may lead to errors or incorrect conclusions. This is especially true if the heuristic is not based on a solid understanding of the problem or the underlying principles.
  • Limited scope: Heuristic problem solving may only consider a limited number of potential solutions and may not identify the most optimal or effective solution.
  • Lack of creativity: Heuristic problem solving may rely on pre-existing solutions or approaches, limiting creativity and innovation in problem-solving.
  • Over-reliance: Heuristic problem solving may lead to over-reliance on a specific approach or heuristic, which can be problematic if the heuristic is flawed or ineffective.
  • Lack of transparency: Heuristic problem solving may not be transparent or explainable, as the decision-making process may not be explicitly articulated or understood.
  • Trial and error: This heuristic involves trying different solutions to a problem and learning from mistakes until a successful solution is found. A software developer encountering a bug in their code may try other solutions and test each one until they find the one that solves the issue.
  • Working backward: This heuristic involves starting at the goal and then figuring out what steps are needed to reach that goal. For example, a project manager may begin by setting a project deadline and then work backward to determine the necessary steps and deadlines for each team member to ensure the project is completed on time.
  • Breaking a problem into smaller parts: This heuristic involves breaking down a complex problem into smaller, more manageable pieces that can be tackled individually. For example, an HR manager tasked with implementing a new employee benefits program may break the project into smaller parts, such as researching options, getting quotes from vendors, and communicating the unique benefits to employees.
  • Using analogies: This heuristic involves finding similarities between a current problem and a similar problem that has been solved before and using the solution to the previous issue to help solve the current one. For example, a salesperson struggling to close a deal may use an analogy to a successful sales pitch they made to help guide their approach to the current pitch.
  • Simplifying the problem: This heuristic involves simplifying a complex problem by ignoring details that are not necessary for solving it. This allows the problem solver to focus on the most critical aspects of the problem. For example, a customer service representative dealing with a complex issue may simplify it by breaking it down into smaller components and addressing them individually rather than simultaneously trying to solve the entire problem.

Test your problem-solving skills for free in just a few minutes.

The free problem-solving skills for managers and team leaders helps you understand mistakes that hold you back.

What are the three types of heuristics?

What are the four stages of heuristics in problem solving.

Other Related Blogs

conflict mediation

Top 15 Tips for Effective Conflict Mediation at Work

Top 10 games for negotiation skills to make you a better leader, manager effectiveness: a complete guide for managers in 2024, 5 proven ways managers can build collaboration in a team.

a heuristic approach to problem solving

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

What Are Heuristics?

These mental shortcuts can help people make decisions more efficiently

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

a heuristic approach to problem solving

Steven Gans, MD is board-certified in psychiatry and is an active supervisor, teacher, and mentor at Massachusetts General Hospital.

a heuristic approach to problem solving

Verywell / Cindy Chung 

  • History and Origins
  • Heuristics vs. Algorithms
  • Heuristics and Bias

How to Make Better Decisions

Heuristics are mental shortcuts that allow people to solve problems and make judgments quickly and efficiently. These rule-of-thumb strategies shorten decision-making time and allow people to function without constantly stopping to think about their next course of action.

However, there are both benefits and drawbacks of heuristics. While heuristics are helpful in many situations, they can also lead to  cognitive biases . Becoming aware of this might help you make better and more accurate decisions.

Press Play for Advice On Making Decisions

Hosted by therapist Amy Morin, LCSW, this episode of The Verywell Mind Podcast shares a simple way to make a tough decision. Click below to listen now.

Follow Now : Apple Podcasts / Spotify / Google Podcasts

The History and Origins of Heuristics

Nobel-prize winning economist and cognitive psychologist Herbert Simon originally introduced the concept of heuristics in psychology in the 1950s. He suggested that while people strive to make rational choices, human judgment is subject to cognitive limitations. Purely rational decisions would involve weighing all the potential costs and possible benefits of every alternative.

But people are limited by the amount of time they have to make a choice as well as the amount of information they have at their disposal. Other factors such as overall intelligence and accuracy of perceptions also influence the decision-making process.

During the 1970s, psychologists Amos Tversky and Daniel Kahneman presented their research on cognitive biases. They proposed that these biases influence how people think and the judgments people make.

As a result of these limitations, we are forced to rely on mental shortcuts to help us make sense of the world. Simon's research demonstrated that humans were limited in their ability to make rational decisions, but it was Tversky and Kahneman's work that introduced the study of heuristics and the specific ways of thinking that people rely on to simplify the decision-making process.

How Heuristics Are Used

Heuristics play important roles in both  problem-solving  and  decision-making , as we often turn to these mental shortcuts when we need a quick solution.

Here are a few different theories from psychologists about why we rely on heuristics.

  • Attribute substitution : People substitute simpler but related questions in place of more complex and difficult questions.
  • Effort reduction : People use heuristics as a type of cognitive laziness to reduce the mental effort required to make choices and decisions.
  • Fast and frugal : People use heuristics because they can be fast and correct in certain contexts. Some theories argue that heuristics are actually more accurate than they are biased.

In order to cope with the tremendous amount of information we encounter and to speed up the decision-making process, our brains rely on these mental strategies to simplify things so we don't have to spend endless amounts of time analyzing every detail.

You probably make hundreds or even thousands of decisions every day. What should you have for breakfast? What should you wear today? Should you drive or take the bus? Fortunately, heuristics allow you to make such decisions with relative ease and without a great deal of agonizing.

There are many heuristics examples in everyday life. When trying to decide if you should drive or ride the bus to work, for instance, you might remember that there is road construction along the bus route. You realize that this might slow the bus and cause you to be late for work. So you leave earlier and drive to work on an alternate route.

Heuristics allow you to think through the possible outcomes quickly and arrive at a solution.

Are Heuristics Good or Bad?

Heuristics aren't inherently good or bad, but there are pros and cons to using them to make decisions. While they can help us figure out a solution to a problem faster, they can also lead to inaccurate judgments about other people or situations.

Types of Heuristics

There are many different kinds of heuristics. While each type plays a role in decision-making, they occur during different contexts. Understanding the types can help you better understand which one you are using and when.

Availability

The availability heuristic  involves making decisions based upon how easy it is to bring something to mind. When you are trying to make a decision, you might quickly remember a number of relevant examples. Since these are more readily available in your memory, you will likely judge these outcomes as being more common or frequently occurring.

For example, if you are thinking of flying and suddenly think of a number of recent airline accidents, you might feel like air travel is too dangerous and decide to travel by car instead. Because those examples of air disasters came to mind so easily, the availability heuristic leads you to think that plane crashes are more common than they really are.

Familiarity

The familiarity heuristic refers to how people tend to have more favorable opinions of things, people, or places they've experienced before as opposed to new ones. In fact, given two options, people may choose something they're more familiar with even if the new option provides more benefits.

Representativeness

The representativeness heuristic  involves making a decision by comparing the present situation to the most representative mental prototype. When you are trying to decide if someone is trustworthy, you might compare aspects of the individual to other mental examples you hold.

A soft-spoken older woman might remind you of your grandmother, so you might immediately assume that she is kind, gentle, and trustworthy. However, this is an example of a heuristic bias, as you can't know someone trustworthy based on their age alone.

The affect heuristic involves making choices that are influenced by the emotions that an individual is experiencing at that moment. For example, research has shown that people are more likely to see decisions as having benefits and lower risks when they are in a positive mood. Negative emotions, on the other hand, lead people to focus on the potential downsides of a decision rather than the possible benefits.

The anchoring bias involves the tendency to be overly influenced by the first bit of information we hear or learn. This can make it more difficult to consider other factors and lead to poor choices. For example, anchoring bias can influence how much you are willing to pay for something, causing you to jump at the first offer without shopping around for a better deal.

Scarcity is a principle in heuristics in which we view things that are scarce or less available to us as inherently more valuable. The scarcity heuristic is one often used by marketers to influence people to buy certain products. This is why you'll often see signs that advertise "limited time only" or that tell you to "get yours while supplies last."

Trial and Error

Trial and error is another type of heuristic in which people use a number of different strategies to solve something until they find what works. Examples of this type of heuristic are evident in everyday life. People use trial and error when they're playing video games, finding the fastest driving route to work, and learning to ride a bike (or learning any new skill).

Difference Between Heuristics and Algorithms

Though the terms are often confused, heuristics and algorithms are two distinct terms in psychology.

Algorithms are step-by-step instructions that lead to predictable, reliable outcomes; whereas heuristics are mental shortcuts that are basically best guesses. Algorithms always lead to accurate outcomes, whereas, heuristics do not.

Examples of algorithms include instructions for how to put together a piece of furniture or a recipe for cooking a certain dish. Health professionals also create algorithms or processes to follow in order to determine what type of treatment to use on a patient.

How Heuristics Can Lead to Bias

While heuristics can help us solve problems and speed up our decision-making process, they can introduce errors. As in the examples above, heuristics can lead to inaccurate judgments about how commonly things occur and about how representative certain things may be.

Just because something has worked in the past does not mean that it will work again, and relying on a heuristic can make it difficult to see alternative solutions or come up with new ideas.

Heuristics can also contribute to stereotypes and  prejudice . Because people use mental shortcuts to classify and categorize people, they often overlook more relevant information and create stereotyped categorizations that are not in tune with reality.

While heuristics can be a useful tool, there are ways you can improve your decision-making and avoid cognitive bias at the same time.

We are more likely to make an error in judgment if we are trying to make a decision quickly or are under pressure to do so. Whenever possible, take a few deep breaths . Do something to distract yourself from the decision at hand. When you return to it, you may find you have a fresh perspective, or notice something you didn't before.

Identify the Goal

We tend to focus automatically on what works for us and make decisions that serve our best interest. But take a moment to know what you're trying to achieve. Are there other people who will be affected by this decision? What's best for them? Is there a common goal that can be achieved that will serve all parties?

Process Your Emotions

Fast decision-making is often influenced by emotions from past experiences that bubble to the surface. Is your decision based on facts or emotions? While emotions can be helpful, they may affect decisions in a negative way if they prevent us from seeing the full picture.

Recognize All-or-Nothing Thinking

When making a decision, it's a common tendency to believe you have to pick a single, well-defined path, and there's no going back. In reality, this often isn't the case.

Sometimes there are compromises involving two choices, or a third or fourth option that we didn't even think of at first. Try to recognize the nuances and possibilities of all choices involved, instead of using all-or-nothing thinking .

Rachlin H. Rational thought and rational behavior: A review of bounded rationality: The adaptive toolbox . J Exp Anal Behav . 2003;79(3):409–412. doi:10.1901/jeab.2003.79-409

Shah AK, Oppenheimer DM. Heuristics made easy: An effort-reduction framework . Psychol Bull. 2008;134(2):207-22. doi:10.1037/0033-2909.134.2.207

Marewski JN, Gigerenzer G. Heuristic decision making in medicine .  Dialogues Clin Neurosci . 2012;14(1):77–89. PMID: 22577307

Schwikert SR, Curran T. Familiarity and recollection in heuristic decision making .  J Exp Psychol Gen . 2014;143(6):2341-2365. doi:10.1037/xge0000024

Finucane M, Alhakami A, Slovic P, Johnson S. The affect heuristic in judgments of risks and benefits . J Behav Decis Mak . 2000; 13(1):1-17. doi:10.1002/(SICI)1099-0771(200001/03)13:1<1::AID-BDM333>3.0.CO;2-S

Cheung TT, Kroese FM, Fennis BM, De Ridder DT. Put a limit on it: The protective effects of scarcity heuristics when self-control is low . Health Psychol Open . 2015;2(2):2055102915615046. doi:10.1177/2055102915615046

Mohr H, Zwosta K, Markovic D, Bitzer S, Wolfensteller U, Ruge H. Deterministic response strategies in a trial-and-error learning task . Inman C, ed. PLoS Comput Biol. 2018;14(11):e1006621. doi:10.1371/journal.pcbi.1006621

Lang JM, Ford JD, Fitzgerald MM.  An algorithm for determining use of trauma-focused cognitive-behavioral therapy .  Psychotherapy   (Chic) . 2010;47(4):554-69. doi:10.1037/a0021184

Bigler RS, Clark C. The inherence heuristic: A key theoretical addition to understanding social stereotyping and prejudice. Behav Brain Sci . 2014;37(5):483-4. doi:10.1017/S0140525X1300366X

del Campo C, Pauser S, Steiner E, et al.  Decision making styles and the use of heuristics in decision making .  J Bus Econ.  2016;86:389–412. doi:10.1007/s11573-016-0811-y

Marewski JN, Gigerenzer G. Heuristic decision making in medicine .  Dialogues Clin Neurosci . 2012;14(1):77-89. doi:10.31887/DCNS.2012.14.1/jmarewski

Zheng Y, Yang Z, Jin C, Qi Y, Liu X. The influence of emotion on fairness-related decision making: A critical review of theories and evidence .  Front Psychol . 2017;8:1592. doi:10.3389/fpsyg.2017.01592

Bazerman MH. Judgment and decision making. In: Biswas-Diener R, Diener E, eds.,  Noba Textbook Series: Psychology.  DEF Publishers.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

loading

How it works

For Business

Join Mind Tools

Article • 7 min read

Heuristic Methods

Going back to basics.

By the Mind Tools Content Team

a heuristic approach to problem solving

You've likely had computer problems in the past. We all have. But did you call up the IT department in a panic? Or did you use the tried-and-tested method of "turning it off and on again"?

This simple step is often all it takes to solve the problem. And it's much quicker and cheaper than sending a technician out to look at your computer every time you encounter a problem.

This is a prime example of a heuristic method at work. It's a simple, standard rule that we refer to when we're problem solving .

What Are Heuristic Methods?

Heuristics are most commonly referred to as "rules of thumb," a term thought to have been coined by Scottish preacher James Durham in his book, "Heaven Upon Earth," published in 1685. In it, Durham refers to "foolish builders, who build by guess, and by rule of thumb." [1]

This method of measurement has its origins in carpenters' ages-old habit of using the tip of their thumb to estimate an inch. (In fact, in Dutch (along with several other European languages), the word for thumb – "duim" – also means inch.)

Heuristic methods are reliable and convenient mental shortcuts that you can use to narrow down your options when you're faced with several different choices, to ease your cognitive load , or to solve problems.

Perhaps you're a hiring manager, and you decide to dismiss any résumés that contain spelling mistakes. Or maybe you're an office manager and you have to make an educated guess about the amount of stationery you need to order every month. In both instances, you are using an heuristic method to meet your objective.

However, it's also important to realize the limitations of heuristic methods. They are best used when the consequences of getting what you're doing wrong is relatively low. Certainly, you might use a heuristic method to help you to sift through a big pile of résumés, but when you make your final decision about who to recruit , greater deliberation and judgment will be needed.

Formalizing a Heuristic Method

Heuristic methods need to be formalized to be most useful to your organization as a whole. This raises them above the level of "gut instinct," and means that you can share them with your colleagues.

Whenever you find yourself calling on your experience to make a judgment, try to work out the rule of thumb that you used to find the solution. Find out what heuristics methods your team members employ as part of your use of explorative techniques such as Management By Walking Around and DILO (Day In the Life Of) . Identify whether any of the methods that you discover could be applied elsewhere within your organization, and if they should even be incorporated into its formal procedures and guidelines.

Heuristic methods can also play an important role in your problem-solving processes. The straw man technique, for example, is similar in approach to heuristics, and it is designed to help you to build on or refine a basic idea. Another approach is to adapt the solution to a different problem to fix yours. TRIZ is a powerful methodology for adopting just such an approach, and is a great source of reliable, experience-based problem-solving approaches.

Heuristics Checklists

It can be helpful to incorporate the heuristic methods that you have discovered into a checklist for newer employees. This way, they can learn from the tried-and-tested knowledge that has been accumulated by their more experienced colleagues.

Such checklists can also be used to refine your decision-making process. For example, in the food industry, the following heuristic checklist might help the product development team to decide whether it's worth test marketing a new pie:

  • Does the pie look appetizing in its packaging?
  • Can it be packaged so that it won't be damaged in transit?
  • Can it be cooked in under 20 minutes, so that busy people will buy it?
  • Does it have a shelf life of at least five days from manufacture to expiration date?

This type of list is based on previous product development processes, and on market research. Of course, there's no guarantee that a pie that meets all of these criteria will be successful. But the checklist can help the development team to make a quick "go/no-go" decision , before moving on to the next stage of product development.

The Disadvantages of Using Heuristics

Heuristics are best used when the benefits of making a quick decision outweigh the potential risk of oversimplifying the problem. Remember that heuristics are not about precision, but about having a rough idea of the problem. When you need a more precise answer, you'll need to use a more comprehensive tool. See our problem solving and decision making sections for more than 80 of these, which all focus on different situations.

Heuristic methods are also a great starting point when you or your team are brainstorming but, again, you'll likely need to follow a more detailed and formal procedure when you come to refine your ideas.

The temptation to use mental shortcuts to solve problems and make decisions can be great, particularly if we are under a lot of pressure or have heavy workloads. But cutting corners consistently can lead us to miss important solutions, mishandle problem resolution, and can make us prone to cognitive bias . (The TDODAR decision-making process can help you make good decisions in these situations.)

Instead of rushing to a conclusion that is based on an easy mental shortcut, assess whether the problem is high or low risk. If it is high risk, a more rigorous, knowledge-based approach will likely be needed.

Heuristics, or "rules of thumb," are problem-solving methods that are based on practical experience and knowledge. They allow you to use a "quick fix" to solve a minor problem or to narrow down options. They're also a great starting point for brainstorming or exploring new ideas.

However, remember to be aware of the limitations of heuristic methods. They shouldn't be applied in situations where inaccuracy carries a high degree of risk, or where the consequences of getting things wrong are significant.

[1] Durham, J. (1685). 'Heaven Upon Earth,' Edinburgh: Thomas Lumisden & John Robertson. Sermon ii, p235.

You've accessed 1 of your 2 free resources.

Get unlimited access

Discover more content

How to write a job description.

Advertising for the Ideal Candidate

Book Insights

Work Happy: What Great Bosses Know

Jill Geisler

Add comment

Comments (0)

Be the first to comment!

a heuristic approach to problem solving

Get 30% off your first year of Mind Tools

Great teams begin with empowered leaders. Our tools and resources offer the support to let you flourish into leadership. Join today!

Sign-up to our newsletter

Subscribing to the Mind Tools newsletter will keep you up-to-date with our latest updates and newest resources.

Subscribe now

Business Skills

Personal Development

Leadership and Management

Member Extras

Most Popular

Latest Updates

Article aaimtlg

Tips for Dealing with Customers Effectively

Article aafqx8n

Pain Points Podcast - Procrastination

Mind Tools Store

About Mind Tools Content

Discover something new today

Pain points podcast - starting a new job.

How to Hit the Ground Running!

Ten Dos and Don'ts of Career Conversations

How to talk to team members about their career aspirations.

How Emotionally Intelligent Are You?

Boosting Your People Skills

Self-Assessment

What's Your Leadership Style?

Learn About the Strengths and Weaknesses of the Way You Like to Lead

Recommended for you

Managing interns.

How to Make the Most of Internship Opportunities

Business Operations and Process Management

Strategy Tools

Customer Service

Business Ethics and Values

Handling Information and Data

Project Management

Knowledge Management

Self-Development and Goal Setting

Time Management

Presentation Skills

Learning Skills

Career Skills

Communication Skills

Negotiation, Persuasion and Influence

Working With Others

Difficult Conversations

Creativity Tools

Self-Management

Work-Life Balance

Stress Management and Wellbeing

Coaching and Mentoring

Change Management

Team Management

Managing Conflict

Delegation and Empowerment

Performance Management

Leadership Skills

Developing Your Team

Talent Management

Problem Solving

Decision Making

Member Podcast

Home Blog Business Using Heuristic Problem-Solving Methods for Effective Decision-Making

Using Heuristic Problem-Solving Methods for Effective Decision-Making

Using Heuristic Problem Solving Methods for Effective Decision-Making

Problem-solving capability and effective decision making are two of the most prized capabilities of any leader. However, one cannot expect these traits to be simply present by default in an individual, as both require extensive analysis of the root cause of issues and to know what to look for when anticipating a gain. In a previous article, we brought you  5 Problem-Solving Strategies to Become a Better Problem Solver . This time we have something that can help you dig deep to resolve problems, i.e. using heuristic problem-solving methods for effective decision-making.

What are Heuristics?

Heuristics are essentially problem-solving tools that can be used for solving non-routine and challenging problems. A heuristic method is a practical approach for a short-term goal, such as solving a problem. The approach might not be perfect but can help find a quick solution to help move towards a reasonable way to resolve a problem.

Example: A computer that is to be used for an event to allow presenters to play PowerPoint presentations via a projector malfunctions due to an operating system problem. In such a case a system administrator might quickly refresh the system using a backup to make it functional for the event. Once the event concludes the system administrator can run detailed diagnostic tests to see if there are any further underlying problems that need to be resolved.

In this example, restoring the system using a backup was a short-term solution to solve the immediate problem, i.e. to make the system functional for the event that was to start in a few hours. There are a number of heuristic methods that can lead to such a decision to resolve a problem. These are explained in more detail in the sections below.

Examples of Heuristic Methods Used for Challenging and Non-Routine Problems

Heuristic methods can help ease the cognitive load by making it easy to process decisions. These include various basic methods that aren’t rooted in any theory per se but rather rely on past experiences and common sense. Using heuristics one can, therefore, resolve challenging and non-routine problems. Let’s take a look at some examples.

A Rule of Thumb

This includes using a method based on practical experience. A rule of thumb can be applied to find a short-term solution to a problem to quickly resolve an issue during a situation where one might be pressed for time.

Example: In the case of the operating system failure mentioned earlier, we assume that the PC on which PowerPoint presentations are to be run by presenters during an event is getting stuck on the start screen. Considering that the event is about to start in 2 hours, it is not practical for the system administrator to reinstall the operating system and all associated applications, hotfixes and updates, as it might take several hours. Using a rule of thumb, he might try to use various tried and tested methods, such as trying to use a system restore point to restore the PC without deleting essential files or to use a backup to restore the PC to an earlier environment.

An Educated Guess

An educated guess or guess and check can help resolve a problem by using knowledge and experience. Based on your knowledge of a subject, you can make an educated guess to resolve a problem.

Example: In the example of the malfunctioning PC, the system administrator will have to make an educated guess regarding the best possible way to resolve the problem. The educated guess, in this case, can be to restore the system to a backup instead of using system restore, both of which might take a similar amount of time; however, the former is likely to work better as a quick fix based on past experience and knowledge of the system administrator.

Trial and Error

This is another heuristic method to problem-solving where one might try various things that are expected to work until a solution is achieved.

Example: The system administrator might try various techniques to fix the PC using trial and error. He might start with checking if the system is accessible in safe mode. And if so, does removing a newly installed software or update solve the problem? If he can’t access the system at all, he might proceed with restoring it from a backup. If that too fails, he might need to quickly opt for a wipe and load installation and only install PowerPoint to ensure that at least presenters can run presentations on the PC. In this case he can perform other required software installations after the event.

An Intuitive Judgment

Intuitive judgment does not result from a rational analysis of a situation or based on reasoning. It is more of a feeling one has which may or may not lead to the desired outcome. Sometimes, intuitive judgement can help resolve problems. Perhaps the most rational way to describe an intuition is that it is some type of calculation at the subconscious level, where you can’t put your finger on the reason why you think something might be the way it is.

Example: The system administrator might have a feeling that the PC is not working because the hard drive has failed. This might be an intuitive judgment without hard evidence. He might quickly replace the hard drive to resolve the problem. Later, after he runs diagnostics on the old hard drive, he might realize that it was indeed that hard drive that was faulty and trying to fix it would have been a waste of time. In this case, he might be able to solve a problem using intuitive judgment.

Stereotyping

A stereotype is an opinion which is judgmental rather than rational. Certain types of possessions for example create a stereotype of social status. A person who wears an expensive watch might be deemed rich, although he might simply have received it as a gift from someone, instead of being rich himself.

Example: A certain company might have developed a bad reputation of developing faulty hard drives. If the systems administrator sees the name of that company on the hard drive when opening the faulty PC, he might think that the hard drive is faulty based on stereotyping and decide to replace it.

Profiling is used to systematically analyze data to understand its dynamics. Profiling as a heuristic method for problem-solving might entail analyzing data to understand and resolve a problem or to look for patterns, just like a root cause analysis .

Example: To solve the issue of the faulty PC, a system administrator might look for similar patterns which might have led to the problem. He might search online for solutions via online forums to understand what might have caused the issue. He might also look at the information associated with recently installed software and updates to see if something conflicted with the operating system. During the profiling process, he might realize that software he installed yesterday before shutting down the PC is the cause of the problem, since similar issues have been reported by other users. He might try to remove the software using Safe Mode or by removing its files by running the computer from a bootable disc drive.

Common Sense

Common sense is the use of practical judgment to understand something. The use of common sense is also a heuristic method used for problem-solving.

Example: When dealing with a faulty PC the system administrator sees smoke coming out of the PC. In this case, it is common sense that a hardware component is faulty. He shuts down the PC, removes the power cord and investigates the issue further based on common sense. This is because keeping the system linked to a power socket amidst smoke emitting from the PC can only make things worse. It is common sense to turn off everything and take the necessary precautions to investigate the issue further.

How are Heuristic Methods Used in Decision-Making?

There are a number of formal and informal models of heuristics used for decision making. Let’s take a look at a few of the formal models of heuristics used for decision making.

Formal Models of Heuristics

Fast-and-frugal tree.

A fast-and-frugal tree is a classification or decision tree. It is a graphical form that helps make decisions. For example, a fast-and-frugal tree might help doctors determine if a patient should be sent to a regular ward or for an emergency procedure. fast-and-frugal trees are methods for making decisions based on hierarchical models, where one has to make a decision based on little information.

Fluency Heuristic

In psychology, fluency heuristic implies an object that can be easily processed and deemed to have a higher value, even if it is not logical to assume this. Understanding the application of fluency heuristic can help make better decisions in a variety of fields. Fluency heuristic is more like sunk cost fallacy .

For example, a designer might design a user interface that is easier for users to process, with fewer buttons and easily labeled options. This can help them think fast, work quicker and improve productivity. Similarly, the concept might be used in marketing to sell products using effective marketing techniques. Even if two products are identical, a consumer might pick one over the other based on fluency heuristic. The consumer might deem the product to be better for his needs, even if it is the same as the other one.

Gaze Heuristic

Assume that you aim to catch a ball. Based on your judgment you would leap to catch the ball. If you were to leave yourself to instinct, you will end up at the same spot to catch the ball at a spot you would predict it to fall. This is essentially gaze heuristic. The concept of gaze heuristic is thought to be applied for simple situations and its applications are somewhat limited.

Recognition Heuristic

If there are two objects, one recognizable and the one isn’t, the person is likely to deem the former to be of greater value. A simple example of recognition heuristic is branding. People get used to brand logos, assuming them to be of high quality. This helps brands to sell multiple products using recognition heuristic. So, if you are looking to buy an air conditioner and come across two products, A and B, where A is a brand you know and B is a new company you don’t recognize, you might opt for A. Even if B is of better quality, you might simply trust A because you have been buying electronics from the brand for many years and they have been of good quality.

Satisficing

Satisficing entails looking for alternatives until an acceptable threshold can be ensured. Satisficing in decision making implies selecting an option which meets most needs or the first option which can meet a need, even if it is not the optimal solution. For example, when choosing between early retirement or continuing service for 2 or 3 more years, one might opt for early retirement assuming that it would meet the individual’s needs.

Similarity Heuristic

Similarity heuristic is judgment based on which is deemed similar, if something reminds someone of good or bad days, something similar might be considered the same. Similarity heuristics is often used by brands to remind people of something that they might have sentimental value for.

Someone might buy a limited-edition bottle of perfume that is being sold in a packaging style that was replaced 20 years ago. Assuming that sales were great in those days, the company might sell such limited-edition perfume bottles in the hope of boosting sales. Consumers might buy them simply because they remind them of the ‘good old days’, even though the product inside might not even be of the same but rather similar to what it used to be. Many consumers claim to buy these types of products claiming that it reminds them of a fond memory, such as their youth, marriage or  first job, when they used the product back in the day.

Final Words

Heuristics play a key role in decision making and affect the way we make decisions. Understanding heuristics can not only help resolve problems but also understand biases that affect effective decision making. A business decision or one that affects one’s health, life, or well-being cannot rely merely on a hunch. Understanding heuristics and applying them effectively can therefore help make the best possible decisions. Heuristic methods are not only used in different professions and personal decision making but are also used in artificial intelligence and programming.

Modern anti-virus software for instance uses heuristic methods to dig out the most elusive malware. The same rule can be essentially applied to decision making, by effectively using heuristics to resolve problems and to make decisions based on better judgment.

a heuristic approach to problem solving

Like this article? Please share

Common Sense, Decision Making, Educated Guess, Heuristics, Judgment, Problem Solving, Profiling, Rule of Thumb, Stereotyping, Trial and Error Filed under Business

Related Articles

The OODA Loop Decision-Making Model and How to Use it for Presentations

Filed under Business • January 16th, 2024

The OODA Loop Decision-Making Model and How to Use it for Presentations

OODA Loop is a model that supports people and companies when defining important decisions in teams or individuals. See here how to apply it in presentation slide design.

SCAMPER Technique & Ideation Method (Quick Guide for Interactive Presentations)

Filed under Business • October 5th, 2023

SCAMPER Technique & Ideation Method (Quick Guide for Interactive Presentations)

SCAMPER is a technique that provides a structured approach towards thinking outside the box. In this article, we explore how this technique can be used.

How to Write a Problem Statement: Hands-On Guide With Examples

Filed under Business • October 2nd, 2023

How to Write a Problem Statement: Hands-On Guide With Examples

A well-written problem statement defines the stage for successful solution development and garnering support from stakeholders. Helpful tips here.

Leave a Reply

a heuristic approach to problem solving

Logo for TRU Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

8.2 Problem-Solving: Heuristics and Algorithms

Learning objectives.

  • Describe the differences between heuristics and algorithms in information processing.

When faced with a problem to solve, should you go with intuition or with more measured, logical reasoning? Obviously, we use both of these approaches. Some of the decisions we make are rapid, emotional, and automatic. Daniel Kahneman (2011) calls this “fast” thinking. By definition, fast thinking saves time. For example, you may quickly decide to buy something because it is on sale; your fast brain has perceived a bargain, and you go for it quickly. On the other hand, “slow” thinking requires more effort; applying this in the same scenario might cause us not to buy the item because we have reasoned that we don’t really need it, that it is still too expensive, and so on. Using slow and fast thinking does not guarantee good decision-making if they are employed at the wrong time. Sometimes it is not clear which is called for, because many decisions have a level of uncertainty built into them. In this section, we will explore some of the applications of these tendencies to think fast or slow.

We will look further into our thought processes, more specifically, into some of the problem-solving strategies that we use. Heuristics are information-processing strategies that are useful in many cases but may lead to errors when misapplied. A heuristic is a principle with broad application, essentially an educated guess about something. We use heuristics all the time, for example, when deciding what groceries to buy from the supermarket, when looking for a library book, when choosing the best route to drive through town to avoid traffic congestion, and so on. Heuristics can be thought of as aids to decision making; they allow us to reach a solution without a lot of cognitive effort or time.

The benefit of heuristics in helping us reach decisions fairly easily is also the potential downfall: the solution provided by the use of heuristics is not necessarily the best one. Let’s consider some of the most frequently applied, and misapplied, heuristics in the table below.

In many cases, we base our judgments on information that seems to represent, or match, what we expect will happen, while ignoring other potentially more relevant statistical information. When we do so, we are using the representativeness heuristic . Consider, for instance, the data presented in the table below. Let’s say that you went to a hospital, and you checked the records of the babies that were born on that given day. Which pattern of births do you think you are most likely to find?

Most people think that list B is more likely, probably because list B looks more random, and matches — or is “representative of” — our ideas about randomness, but statisticians know that any pattern of four girls and four boys is mathematically equally likely. Whether a boy or girl is born first has no bearing on what sex will be born second; these are independent events, each with a 50:50 chance of being a boy or a girl. The problem is that we have a schema of what randomness should be like, which does not always match what is mathematically the case. Similarly, people who see a flipped coin come up “heads” five times in a row will frequently predict, and perhaps even wager money, that “tails” will be next. This behaviour is known as the gambler’s fallacy . Mathematically, the gambler’s fallacy is an error: the likelihood of any single coin flip being “tails” is always 50%, regardless of how many times it has come up “heads” in the past.

The representativeness heuristic may explain why we judge people on the basis of appearance. Suppose you meet your new next-door neighbour, who drives a loud motorcycle, has many tattoos, wears leather, and has long hair. Later, you try to guess their occupation. What comes to mind most readily? Are they a teacher? Insurance salesman? IT specialist? Librarian? Drug dealer? The representativeness heuristic will lead you to compare your neighbour to the prototypes you have for these occupations and choose the one that they seem to represent the best. Thus, your judgment is affected by how much your neibour seems to resemble each of these groups. Sometimes these judgments are accurate, but they often fail because they do not account for base rates , which is the actual frequency with which these groups exist. In this case, the group with the lowest base rate is probably drug dealer.

Our judgments can also be influenced by how easy it is to retrieve a memory. The tendency to make judgments of the frequency or likelihood that an event occurs on the basis of the ease with which it can be retrieved from memory is known as the availability heuristic (MacLeod & Campbell, 1992; Tversky & Kahneman, 1973). Imagine, for instance, that I asked you to indicate whether there are more words in the English language that begin with the letter “R” or that have the letter “R” as the third letter. You would probably answer this question by trying to think of words that have each of the characteristics, thinking of all the words you know that begin with “R” and all that have “R” in the third position. Because it is much easier to retrieve words by their first letter than by their third, we may incorrectly guess that there are more words that begin with “R,” even though there are in fact more words that have “R” as the third letter.

The availability heuristic may explain why we tend to overestimate the likelihood of crimes or disasters; those that are reported widely in the news are more readily imaginable, and therefore, we tend to overestimate how often they occur. Things that we find easy to imagine, or to remember from watching the news, are estimated to occur frequently. Anything that gets a lot of news coverage is easy to imagine. Availability bias does not just affect our thinking. It can change behaviour. For example, homicides are usually widely reported in the news, leading people to make inaccurate assumptions about the frequency of murder. In Canada, the murder rate has dropped steadily since the 1970s (Statistics Canada, 2018), but this information tends not to be reported, leading people to overestimate the probability of being affected by violent crime. In another example, doctors who recently treated patients suffering from a particular condition were more likely to diagnose the condition in subsequent patients because they overestimated the prevalence of the condition (Poses & Anthony, 1991).

The anchoring and adjustment heuristic is another example of how fast thinking can lead to a decision that might not be optimal. Anchoring and adjustment is easily seen when we are faced with buying something that does not have a fixed price. For example, if you are interested in a used car, and the asking price is $10,000, what price do you think you might offer? Using $10,000 as an anchor, you are likely to adjust your offer from there, and perhaps offer $9000 or $9500. Never mind that $10,000 may not be a reasonable anchoring price. Anchoring and adjustment does not just happen when we’re buying something. It can also be used in any situation that calls for judgment under uncertainty, such as sentencing decisions in criminal cases (Bennett, 2014), and it applies to groups as well as individuals (Rutledge, 1993).

In contrast to heuristics, which can be thought of as problem-solving strategies based on educated guesses, algorithms are problem-solving strategies that use rules. Algorithms are generally a logical set of steps that, if applied correctly, should be accurate. For example, you could make a cake using heuristics — relying on your previous baking experience and guessing at the number and amount of ingredients, baking time, and so on — or using an algorithm. The latter would require a recipe which would provide step-by-step instructions; the recipe is the algorithm. Unless you are an extremely accomplished baker, the algorithm should provide you with a better cake than using heuristics would. While heuristics offer a solution that might be correct, a correctly applied algorithm is guaranteed to provide a correct solution. Of course, not all problems can be solved by algorithms.

As with heuristics, the use of algorithmic processing interacts with behaviour and emotion. Understanding what strategy might provide the best solution requires knowledge and experience. As we will see in the next section, we are prone to a number of cognitive biases that persist despite knowledge and experience.

Key Takeaways

  • We use a variety of shortcuts in our information processing, such as the representativeness, availability, and anchoring and adjustment heuristics. These help us to make fast judgments but may lead to errors.
  • Algorithms are problem-solving strategies that are based on rules rather than guesses. Algorithms, if applied correctly, are far less likely to result in errors or incorrect solutions than heuristics. Algorithms are based on logic.

Bennett, M. W. (2014). Confronting cognitive ‘anchoring effect’ and ‘blind spot’ biases in federal sentencing: A modest solution for reforming and fundamental flaw. Journal of Criminal Law and Criminology , 104 (3), 489-534.

Kahneman, D. (2011). Thinking, fast and slow. New York, NY: Farrar, Straus and Giroux.

MacLeod, C., & Campbell, L. (1992). Memory accessibility and probability judgments: An experimental evaluation of the availability heuristic.  Journal of Personality and Social Psychology, 63 (6), 890–902.

Poses, R. M., & Anthony, M. (1991). Availability, wishful thinking, and physicians’ diagnostic judgments for patients with suspected bacteremia.  Medical Decision Making,  11 , 159-68.

Rutledge, R. W. (1993). The effects of group decisions and group-shifts on use of the anchoring and adjustment heuristic. Social Behavior and Personality, 21 (3), 215-226.

Statistics Canada. (2018). Ho micide in Canada, 2017 . Retrieved from https://www150.statcan.gc.ca/n1/en/daily-quotidien/181121/dq181121a-eng.pdf

Tversky, A., & Kahneman, D. (1973). Availability: A heuristic for judging frequency and probability.  Cognitive Psychology, 5 , 207–232.

Psychology - 1st Canadian Edition Copyright © 2020 by Sally Walters is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

101 Computing

More results...

  • View all quizzes
  • GCSE Concepts & Quizzes
  • A Level Concepts & Quizzes
  • Little Man Computer (LMC)
  • Computer Networks
  • Database Concepts
  • Cryptography
  • Python Challenges – Beginner
  • Python Challenges – Intermediate
  • Python Challenges – Advanced
  • HTML, CSS & JavaScript
  • BBC micro:bit
  • OCR J277/01 – 1.1 System Architecture
  • OCR J277/01 – 1.2 Memory and Storage
  • OCR J277/01 – 1.3 Computer networks
  • OCR J277/01 – 1.4 Network security
  • OCR J277/01 – 1.5 – Systems software
  • OCR J277/01 – 1.6 – Ethical, legal, cultural and environmental impacts of digital technology
  • OCR J277/02 – 2.1 – Algorithms
  • OCR J277/02 – 2.2 – Programming fundamentals
  • OCR J277/02 – 2.3 – Producing robust programs
  • OCR J277/02 – 2.4 – Boolean logic
  • OCR J277/02 – 2.5 – Programming languages and Integrated Development Environments
  • OCR H446/01 – 1.1 The characteristics of contemporary processors, input, output and storage devices
  • OCR H446/01 – 1.2 Software and software development
  • OCR H446/01 – 1.3 Exchanging data
  • OCR H446/01 – 1.4 Data types, data structures and algorithms
  • OCR H446/01 – 1.5 Legal, moral, cultural and ethical issues
  • OCR H446/02 – 2.1 Elements of computational thinking
  • OCR H446/01 – 2.2 Problem solving and programming
  • OCR H446/02 – 2.3 Algorithms
  • 101 Extra Python Challenges
  • 101 Python Challenges
  • 101 Computing Challenges
  • Become a member!
  • Your Account
  • Solved Challenges
  • Membership FAQ

Heuristic Approaches to Problem Solving

“A heuristic technique, often called simply a heuristic, is any approach to problem solving, learning, or discovery that employs a practical method not guaranteed to be optimal or perfect, but sufficient for the immediate goals. Where finding an optimal solution is impossible or impractical, heuristic methods can be used to speed up the process of finding a satisfactory solution. Heuristics can be mental shortcuts that ease the cognitive load of making a decision. Examples of this method include using a rule of thumb, an educated guess, an intuitive judgement, guesstimate, stereotyping, profiling, or common sense.” (Source: Wikipedia )

“In computer science, a heuristic is a technique designed for solving a problem more quickly when classic methods are too slow, or for finding an approximate solution when classic methods fail to find any exact solution. This is achieved by trading optimality, completeness, accuracy, or precision for speed. In a way, it can be considered a shortcut.” (Source: Wikipedia )

The objective of a heuristic algorithm is to apply a rule of thumb approach to produce a solution in a reasonable time frame that is good enough for solving the problem at hand. There is no guarantee that the solution found will be the most accurate or optimal solution for the given problem. We often refer the solution as “good enough” in most cases.

Heuristic Algorithms? Heuristic Algorithms can be found in:

Let’s investigate a few basic examples where a heuristic algorithm can be used:

heuristic-noughts-and-crosses

Based on this approach, can you think of how a similar approach could be used for an algorithm to play:

  • Othello (a.k.a. Reversi Game)
  • A Battleship game?
  • Rock/Paper/Scissors?

It is hence essential to use a heuristic approach to quickly discard some moves which would most likely lead to a defeat while focusing on moves that would seem to be a good step towards a win!

heuristic-chess-move

Let’s consider the above scenario when investigating all the possible moves for this white pawn. Can the computer make a quick decision as to what would most likely be the best option?

a heuristic approach to problem solving

Alternatively, a machine learning algorithm could play the game and record and update statistics after playing each card to progressively learn which criteria is more likely to win the round for each card in the deck. You can investigate how machine learning can be used in a game of Top Trumps by reading this blog post. Heuristic methods can be used when developing algorithms which try to understand what the user is saying, or asking for. For instance, by looking for words associations, an algorithm can narrow down the meaning of words especially when a word can have two different meanings:

heuristic-raspberry

e.g. When using Google search a user types: “Raspeberry Pi Hardware” We can deduct that in this case Raspberry has nothing to do with the piece of fruit, so there is no need to give results on healthy eating, cooking recipes or grocery stores…

However if the user searches for “Raspeberry Pie ingredients” , we can deduct that the user is searching for a recipe and is less likely to be interested in programming blogs or computer hardware online shops. Short Path Algorithms used by GPS systems and self-driving cars also use a heuristic approach to decide on the best route to go from A to Z. This is for instance the case for the A* Search algorithm which takes into consideration the distance as the crow flies between two nodes to decide which paths to explore first and hence more effectively find the shortest path between two nodes.

signs-distance

You can compare two different algorithms used to find the shortest route from two nodes of a graph:

  • Dijkstra’s Shortest Path Algorithm (Without using a heuristic approach)
  • A* Search Algorithm (Using a heuristic approach)

Did you like this challenge?

Click on a star to rate it!

Average rating 3.9 / 5. Vote count: 17

No votes so far! Be the first to rate this post.

As you found this challenge interesting...

Follow us on social media!

Other challenges you may enjoy...

spaceInvader

Recent Posts

  • Ice Cream Price Calculator
  • Revision Progress Tracker Algorithm
  • Search Engine Indexing… In your own words…
  • Average Lap Time Calculator
  • Return On Investment Calculator
  • Storage Units Conversions – Quiz
  • Flappy Bird Animation using Pygame
  • Adding a Timer using Python
  • The MafiaBoy dDoS attack
  • Snake Game Using Python
  • View more recent posts...
  • View all our challenges...
  • Take a Quiz...

LMC Simulator

Our Latest Book

a heuristic approach to problem solving

  • Computing Concepts
  • Python Challenges
  • Privacy Policy

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Open access
  • Published: 17 February 2023

A brief history of heuristics: how did research on heuristics evolve?

  • Mohamad Hjeij   ORCID: orcid.org/0000-0003-4231-1395 1 &
  • Arnis Vilks 1  

Humanities and Social Sciences Communications volume  10 , Article number:  64 ( 2023 ) Cite this article

12k Accesses

5 Citations

5 Altmetric

Metrics details

Heuristics are often characterized as rules of thumb that can be used to speed up the process of decision-making. They have been examined across a wide range of fields, including economics, psychology, and computer science. However, scholars still struggle to find substantial common ground. This study provides a historical review of heuristics as a research topic before and after the emergence of the subjective expected utility (SEU) theory, emphasising the evolutionary perspective that considers heuristics as resulting from the development of the brain. We find it useful to distinguish between deliberate and automatic uses of heuristics, but point out that they can be used consciously and subconsciously. While we can trace the idea of heuristics through many centuries and fields of application, we focus on the evolution of the modern notion of heuristics through three waves of research, starting with Herbert Simon in the 1950s, who introduced the notion of bounded rationality and suggested the use of heuristics in artificial intelligence, thereby paving the way for all later research on heuristics. A breakthrough came with Daniel Kahneman and Amos Tversky in the 1970s, who analysed the biases arising from using heuristics. The resulting research programme became the subject of criticism by Gerd Gigerenzer in the 1990s, who argues that an ‘adaptive toolbox’ consisting of ‘fast-and-frugal’ heuristics can yield ‘ecologically rational’ decisions.

Similar content being viewed by others

a heuristic approach to problem solving

Maximum diffusion reinforcement learning

a heuristic approach to problem solving

Entropy, irreversibility and inference at the foundations of statistical physics

a heuristic approach to problem solving

The development of human causal learning and reasoning

Introduction.

Over the past 50 years, the notion of ‘heuristics’ has considerably gained attention in fields as diverse as psychology, cognitive science, decision theory, computer science, and management scholarship. While for 1970, the Scopus database finds a meagre 20 published articles with the word ‘heuristic’ in their title, the number has increased to no less than 3783 in 2021 (Scopus, 2022 ).

We take this to be evidence that many researchers in the aforementioned fields find the literature that refers to heuristics stimulating and that it gives rise to questions that deserve further enquiry. While there are some review articles on the topic of heuristics (Gigerenzer and Gaissmaier, 2011 ; Groner et al., 1983 ; Hertwig and Pachur, 2015 ; Semaan et al., 2020 ), a somewhat comprehensive and non-partisan historical review seems to be missing.

While interest in heuristics is growing, the very notion of heuristics remains elusive to the point that, e.g., Shah and Oppenheimer ( 2008 ) begin their paper with the statement: ‘The word “heuristic” has lost its meaning.’ Even if one leaves aside characterizations such as ‘rule of thumb’ or ‘mental shortcut’ and considers what Kahneman ( 2011 ) calls ‘the technical definition of heuristic,’ namely ‘a simple procedure that helps find adequate, though often imperfect, answers to difficult questions,’ one is immediately left wondering how simple it has to be, what an adequate, but the imperfect answer is, and how difficult the questions need to be, in order to classify a procedure as a heuristic. Shah and Oppenheimer conclude that ‘the term heuristic is vague enough to describe anything’.

However, one feature does distinguish heuristics from certain other, typically more elaborate procedures: heuristics are problem-solving methods that do not guarantee an optimal solution. The use of heuristics is, therefore, inevitable where no method to find an optimal solution exists or is known to the problem-solver, in particular where the problem and/or the optimality criterion is ill-defined. However, the use of heuristics may be advantageous even where the problem to be solved is well-defined and methods do exist which would guarantee an optimal solution. This is because definitions of optimality typically ignore constraints on the process of solving the problem and the costs of that process. Compared to infallible but elaborate methods, heuristics may prove to be quicker or more efficient.

Nevertheless, the range of what has been called heuristics is very broad. Application of a heuristic may require intuition, guessing, exploration, or experience; some heuristics are rather elaborate, others are truly shortcuts, some are described in somewhat loose terms, and others are well-defined algorithms.

One procedure of decision-making that is commonly not regarded as a heuristic is the application of the full-blown theory of subjective expected utility (SEU) in the tradition of Ramsey ( 1926 ), von Neumann and Morgenstern ( 1944 ), and Savage ( 1954 ). This theory is arguably spelling out what an ideally rational decision would be, but was already seen by Savage (p. 16) to be applicable only in what he called a ‘small world’. Quite a few approaches that have been called heuristics have been explicitly motivated by SEU imposing demands on the decision-maker, which are utterly impractical (cf., e.g., Klein, 2001 , for a discussion). As a second defining feature of the heuristics we want to consider, therefore, we take them to be procedures of decision-making that differ from the ‘gold standard’ of SEU by being practically applicable in at least a number of interesting cases. Along with SEU, we also leave aside the rules of deductive logic, such as Aristotelian syllogisms, modus ponens, modus tollens, etc. While these can also be seen as rules of decision-making, and the universal validity of some of them is not quite uncontroversial (see, e.g., Priest, 2008 , for an introduction to non-classical logic), they are widely regarded as ‘infallible’. By stark contrast, it seems characteristic for heuristics that their application may fail to yield a ‘best’ or ‘correct’ result.

By taking heuristics to be practically applicable, but fallible, procedures for problem-solving, we will also neglect the literature that focuses on the adjective ‘heuristic’ instead of on the noun. When, e.g., Suppes ( 1983 ) characterizes axiomatic analyses as ‘heuristic’, he is not suggesting any rule, but he is saying that heuristic axioms ‘seem intuitively to organize and facilitate our thinking about the subject’ (p. 82), and proceeds to give examples of both heuristic and nonheuristic axioms. It may of course be said that many fundamental equations in science, such as Newton’s force = mass*acceleration, have some heuristic value in the sense indicated by Suppes, but the research we will review is not about the property of being heuristic.

Given that heuristics can be assessed against the benchmark of SEU, one may distinguish broadly between heuristics suggested pre-SEU, i.e., before the middle of the 20th century, and the later research on heuristics that had to face the challenge of an existing theory of allegedly rational decision-making. We will review the former in the section “Deliberate heuristics—the art of invention” below, and devote sections “Herbert Simon: rationality is bounded”, “Heuristics in computer science” and “Daniel Kahneman and Amos Tversky: heuristics and biases” to the latter.

To cover the paradigmatic cases of what has been termed ‘heuristics’ in the literature, we have to take ‘problem-solving’ in a broad sense that includes decision-making and judgement, but also automatic, instinctive behaviour. We, therefore, feel that an account of research on heuristics should also review the main views on how observable behaviour patterns in humans—or maybe animals in general—can be explained. This we do in the section “Automatic heuristics: learnt or innate?”.

While our brief history cannot aim for completeness, we selected the scholars to be included based on their influence and contributions to different fields of research related to heuristics. Our focus, however, will be on the more recent research that may be said to begin with Herbert Simon.

That problem-solving according to SEU will, in general, be impractical, was clearly recognized by Herbert Simon, whose notion of bounded rationality we look at in the section “Herbert Simon: rationality is bounded”. In the section “Heuristics in computer science”, we also consider heuristics in computer science, where the motivation to use heuristics is closely related to Simon’s reasoning. In the section “Daniel Kahneman and Amos Tversky: heuristics and biases”, we turn to the heuristics identified and analysed by Kahneman and Tversky; while their assessment was primarily that the use of those heuristics often does not conform to rational decision-making, the approach by Gigerenzer and his collaborators, reviewed in the section “Gerd Gigerenzer: fast-and-frugal heuristics” below, takes a much more affirmative view on the use of heuristics. Section “Critiques” explains the limitations and critiques of the corresponding ideas. The final section “Conclusion” contains the conclusion, discussion, and avenues for future research.

The evolutionary perspective

While we focus on the history of research on heuristics, it is clear that animal behaviour patterns evolved and were shaped by evolutionary forces long before the human species emerged. Thus ‘heuristics’ in the mere sense of behaviour patterns have been used long before humans engaged in any kind of conscious reflection on decision-making, let alone systematic research. However, evolution endowed humans with brains that allow them to make decisions in ways that are quite different from animal behaviour patterns. According to Gibbons ( 2007 ), the peculiar evolution of the human brain started thousands of years ago when the ancient human discovered fire and started cooking food, which reduced the amount of energy the body needed for digestion. This paved the way for a smaller intestinal tract and implied that the excess calories led to the development of larger tissues and eventually a larger brain. Through this organ, intelligence increased exponentially, resulting in advanced communication that allowed Homo sapiens to collaborate and form relationships that other primates at the time could not match. According to Dunbar ( 1998 ), it was in the time between 400,000 and 100,000 years ago that abilities to hunt more effectively took humans from the middle of the food chain right to the top.

It does not seem to be known when and how exactly the human brain developed the ability to reflect on decisions made consciously, but it is now widely recognized that in addition to the fast, automatic, and typically nonconscious type of decision-making that is similar to animal behaviour, humans also employ another, rather a different type of decision-making that can be characterized as slow, conscious, controlled, and reflective. The former type is known as ‘System 1’ or ‘the old mind’, and the latter as ‘System 2’ or ‘the new mind’ (Evans, 2010 ; Kahneman, 2011 ), and both systems have clearly evolved side by side throughout the evolution of the human brain. According to Gigerenzer ( 2021 ), humans as well as other organisms evolved to acquire what he calls ‘embodied heuristics’ that can be both innate or learnt rules of thumb, which in turn supply the agility to respond to the lack of information by fast judgement. The ‘embodied heuristics’ use the mental capacity that includes the motor and sensory abilities that start to develop from the moment of birth.

While a detailed discussion of the ‘dual-process theories’ of the mind is beyond the scope of this paper, we find it helpful to point out that one may distinguish between ‘System 1 heuristics’ and ‘System 2 heuristics’ (Kahneman 2011 , p. 98). While some ‘rules of decision-making’ may be hard-wired into the human species by its genes and physiology, others are complicated enough that their application typically requires reflection and conscious mental effort. Upon reflection, however, the two systems are not as separate as they may seem. For example, participants in the Mental Calculation World Cup perform mathematical tasks instantly, whereas ordinary people would need a pen and paper or a calculator. Today, many people cannot multiply large numbers or calculate a square root using only a pen and paper but can easily do this using the calculator app on their smartphone. Thus, what can be done by spontaneous effortless calculation by some, may for others require the application of a more or less complicated theory.

Nevertheless, one can loosely characterize the heuristics that have been explained and recommended for more or less well-specified purposes over the course of history as System 2 or deliberate heuristics.

Deliberate heuristics—the art of invention

Throughout history, scholars have investigated methods to solve complex tasks. In this section, we review those attempts to formulate ‘operant and voluntary’ heuristics to solve demanding problems—in particular, to generate new insights or do research in more or less specified fields. Most of the heuristics in this section have been suggested before the emergence of the SEU theory and the associated modern definition of rationality, and none of them deals with the kind of decision problems that are assumed as ‘given’ in the SEU model. The reader will notice that some historical heuristics were suggested for problems that, today, may seem too general to be solved. However, through the development of such attempts, later scholars were inspired to develop a more concrete understanding of the notion of heuristics.

The Greek origin

The term heuristic originates from the Greek verb heurísko , which means to discover or find out. The Greek word heúrēka , allegedly exclaimed by Archimedes when discovering how to measure the volume of a random object through water, derives from the same verb and can be translated as I found it! (Pinheiro and McNeill, 2014 ). Heuristics can thus be said to be etymologically related to the discipline of discovery, the branch of knowledge based on investigative procedures, and are naturally associated with trial techniques, including what-if scenarios and simple trial and error.

While the term heurísko does not seem to be used in this context by Aristotle, his notion of induction ( epagôgê ) can be seen as a method to find, but not prove, true general statements and thus as a heuristic. At any rate, Aristotle considered inductive reasoning as leading to insights and as distinct from logically valid syllogisms (Smith, 2020 ).

Pappus (4th century)

While a brief, somewhat cryptic, mention of analysis and synthesis appears in Book 13 of some, but not all, editions of Euclid’s Elements, a clearer explanation of the two methods was given in the 4th century by the Greek mathematician and astronomer Pappus of Alexandria (cf. Heath, 1926 ; Polya, 1945 ; Groner et al., 1983 ). While synthesis is what today would be called deduction from known truths, analysis is a method that can be used to try and find proof. Two slightly different explanations are given by Pappus. They boil down to this: in order to find proof for a statement A, one can deduce another statement B from A, continue by deducing yet another statement C from B, and so on, until one comes upon a statement T that is known to be true. If all the inferences are convertible, the converse deductions evidently constitute a proof of A from T. While Pappus did not mention the condition that the inferences must be convertible, his second explanation of analysis makes it clear that one must be looking for deductions from A which are both necessary and sufficient for A. In Polya’s paraphrase of Pappus’ text: ‘We enquire from what antecedent the desired result could be derived; then we enquire again what could be the antecedent of that antecedent, and so on, until passing from antecedent to antecedent, we come eventually upon something already known or admittedly true.’ Analysis thus described is hardly a ‘shortcut’ or ‘rule of thumb’, but quite clearly it is a heuristic: it may help to find a proof of A, but it may also fail to do so…

Al-Khawarizmi (9th century)

In the 9th century, the Persian thinker Mohamad Al-Khawarizmi, who resided in Baghdad’s centre of knowledge or the House of Wisdom , used stepwise methods for problem-solving. Thus, after his name and findings, the algorithm concept was derived (Boyer, 1991 ). Although a heuristic orientation has sometimes been contrasted with an algorithmic one (Groner and Groner, 1991 ), it is worth noting that an algorithm may well serve as a heuristic—certainly in the sense of a shortcut, and also in the sense of a fallible method. After all, an algorithm may fail to produce a satisfactory result. We will return to this issue in the section “Heuristics in computer science” below.

Zairja (10th century)

Heuristic methods were created by medieval polymaths in their attempts to find solutions for the complex problems they faced—science not yet being divorced from what today would appear as theology or astrology. Perhaps the first tangible example of a heuristic based on a mechanical device was using an ancient tool called a zairja , which Arab astrologers employed before the 11th century (Ritchey, 2022 ). It was designed to reconfigure notions into ideas through randomization and resonance and thus to produce answers to questions mechanically (Link, 2010 ). The word zairja may have originated from the Persian combination zaicha-daira , which means horoscope-circle. According to Ibn Khaldoun, ‘zairja is the technique of finding out answers from questions by means of connections existing between the letters of the expressions used in the question; they imagine that these connections can form the basis for knowing the future happenings they want to know’ (Khaldun, 1967 ).

Ramon Llull (1305)

The Majorcan philosopher Ramon Llull (or Raimundus Lullus), who was exposed to the Arabic culture, used the zairja as a starting point for his ars inveniendi veritatem that was meant to complement the ars demonstrandi of medieval Scholastic logic and on which he worked from around 1270–1305 (Link, 2010 ; Llull, 1308 ; Ritchey, 2022 ) when he finished his Ars Generalis Ultima (or Ars Magna ). Llull transformed the astrological and combinatorial components of the zairja into a religious system that took the fundamental ideas of the three Abrahamic faiths of Islam, Christianity, and Judaism and analysed them through symbolic and numeric reasoning. Llull tried to broaden his theory across all fields of knowledge and combine all sciences into a single science that would address all human problems. His thoughts impacted great thinkers, such as Leibniz, and even the modern theory of computation (Fidora and Sierra, 2011 ). Llull’s approach may be considered a clear example of heuristic methods applied to complicated and even theological questions (Hertwig and Pachur, 2015 ).

Joachim Jungius (1622)

Arguably, the German mathematician and philosopher Joachim Jungius was the first to use the terminology heuretica in a call to establish a research society in 1622. Jungius distinguished between three degrees or levels of learning and cognition: empirical, epistemic, and heuristic. Those who have reached the empirical level believe that what they have learned is true because it corresponds to experience. Those who have reached the epistemic level know how to derive their knowledge from principles with rigorous evidence. But those who have reached the highest level, the heuristic level, have a method of solving unsolved problems, finding new theorems, and introducing new methods into science (Ritter et al., 2017 ).

René Descartes (1637)

In 1637, the French philosopher René Descartes published his Discourse on Method (one of the first major works not written in Latin). Descartes argued that humans could utilize mathematical reasoning as a vehicle for progress in knowledge. He proposed four simple steps to follow in problem-solving. First, to accept as true only what is indubitable. Next, divide the problem into as many smaller subproblems as possible and helpful. After that, to conduct one’s thoughts in an orderly fashion, beginning with the simplest and gradually ascending to the most complex. And finally, to make enumerations so complete that one is assured of having omitted nothing (Descartes, 1998 ). In reference to his other methods, Descartes ( 1908 ) started working on the proper heuristic rules to transform every problem, when possible, into algebraic equations, thus creating a mathesis universalis or universal science. In his unfinished ‘Rules for the Direction of the Mind’ or Regulae ad directionem ingenii , Descartes suggested 21 heuristic rules (of planned 36) for scientific research like simplifying the problem, rewriting the problem in geometrical shape, and identifying the knowns and the unknowns. Although Leibniz criticized the rules of Descartes for being too general (Leibniz, 1880 ), this treatise outlined the basis for later work on complex problems in several disciplines.

Gottfried Wilhelm Leibniz (1666)

Influenced by the ideas of Llull, Jungius, and Descartes, the Prussian–German polymath Gottfried Wilhelm Leibniz suggested an original approach to problem-solving in his Dissertatio de Arte Combinatoria , published in Leipzig in 1666. His aim was to create a new universal language into which all problems could be translated and a standard solving procedure that could be applied regardless of the type of the problem. Leibniz also defined an ars inveniendi as a method for finding new truths, distinguishing it from an ars iudicandi , a method to evaluate the validity of alleged truths. Later, in 1673, he invented the calculating machine that could execute all four arithmetic operations and thus find ‘new’ arithmetic truths (Pombo, 2002 ).

Bernard Bolzano ( 1837 )

In 1837, the Czech mathematician and philosopher Bernard Bolzano published his four-volume Wissenschaftslehre (Theory of Science). The fourth part of his theory he called ‘Erfindungskunst’ or the art of invention, mentions in the introductory section 322 that ‘heuristic’ is just the Greek translation. Bolzano explains that the rules he is going to state are not at all entirely new, but instead have always been used ‘by the talented’—although mostly not consciously. He then explains 13 general and 33 special rules one should follow when trying to find new truths. Among the general rules are, e.g., that one should first decide on the question one wants to answer, and the kind of answer one is looking for (section 325), or that one should choose suitable symbols to represent one’s ideas (section 334). Unlike the general rules, the special ones are meant to be helpful for special mental tasks only. E.g., in order to solve the task of finding the reason for any given truth, Bolzano advises first to analyse or dissect the truth into its parts and then use those to form truths which are simpler than the given one (section 378). Another example is Bolzano’s special rule 28, explained in section 386, which is meant to help identify the intention behind a given action. To do so, Bolzano advises exploring the agent’s beliefs about the effects of his action at the time he decided to act, and explains that this will require investigating the agent’s knowledge, his degree of attention and deliberation, any erroneous beliefs the agent may have had, and ‘many other circumstances’. Bolzano continues to point out that any effect the agent may have expected to result from his action will not be an intended one if he considered it neither as an obligation nor as advantageous. While Bolzano’s rules can hardly be considered as ‘shortcuts’, he mentions again and again that they may fail to solve the task at hand adequately (cf. Hertwig and Pachur, 2015 ; Siitonen, 2014 ).

Frank Ramsey ( 1926 )

In Ramsey’s pathbreaking paper on ‘Truth and Probability’ which laid the foundation of subjective probability theory, a final section that has received little attention in the literature is devoted to inductive logic. While he does not use the word ‘heuristic’, he characterizes induction as a ‘habit of the mind,’ explaining that he uses ‘habit in the most general possible sense to mean simply rule or the law of behaviour, including instinct,’ but also including ‘acquired rules.’ Ramsey gives the following pragmatic justification for being convinced by induction: ‘our conviction is reasonable because the world is so constituted that inductive arguments lead on the whole to true opinions,’ and states more generally that ‘we judge mental habits by whether they work, i.e., whether the opinions they lead to are for the most part true, or more often true than those which alternative habits would lead to’ (Ramsey, 1926 ). In modern terminology, Ramsey was pointing out that mental habits—such as inductive inference—may be more or less ‘ecologically rational’.

Karl Duncker ( 1935 )

Karl Duncker was a pioneer in the experimental investigation of human problem-solving. In his 1935 book Zur Psychologie des produktiven Denkens , he discussed both heuristics that help to solve problems, but also hindrances that may block the solution of a problem—and reported on a number of experimental findings. Among the heuristics was a situational analysis with the aim of uncovering the reasons for the gap between the status quo and the problem-solvers goal, analysis of the goal itself, and of sacrifices the problem-solver is willing to make, of prerequisites for the solution, and several others. Among the hindrances to problem-solving was what Duncker called functional fixedness, illustrated by the famous candle problem, in which he asked the participants to fix a candle to the wall and light it without allowing the wax to drip. The available tools were a candle, matches, and a box filled with thumbtacks. The solution was to empty the box of thumbtacks, fix the empty box to the wall using the thumbtacks, put the candle in the box, and finally light the candle. Participants who were given the empty box as a separate item could solve this problem, while those given the box filled with thumbtacks struggled to find a solution. Through this experiment, Duncker illustrated an inability to think outside the box and the difficulty in using a device in a way that is different from the usual one (Glaveanu, 2019 ). Duncker emphasized that success in problem-solving depends on a complementary combination of both the internal mind and the external problem structure (cf. Groner et al., 1983 ).

George Polya ( 1945 )

The Hungarian mathematician George Polya can be aptly called the father of problem-solving in modern mathematics and education. In his 1945 book, How to Solve it , Polya writes that ‘heuristic…or ‘ ars inveniendi ’ was the name of a certain branch of study…often outlined, seldom presented in detail, and as good as forgotten today’ and he attempts to ‘revive heuristic in a modern and modest form’. According to his four principles of mathematical problem-solving, it is first necessary to understand the problem, then plan the execution, carry out the plan, and finally, reflect and search for improvement opportunities. Among the more detailed suggestions for problem-solving explained by Polya are to ask questions such as ‘can you find the solution to a similar problem?’, to use inductive reasoning and analogy, or to choose a suitable notation. Procedures inspired by Polya’s ( 1945 ) book and several later ones (e.g., Induction and Analogy in Mathematics of 1954 ) also informed the field of artificial intelligence (AI) (Hertwig and Pachur, 2015 ).

Johannes Müller (1968)

In 1968, the German scientist Johannes Müller introduced the concept of systematic heuristics while working on his postdoctoral thesis at the Chemnitz University of Technology. Systematic heuristics is a framework for improving the efficiency of intellectual work using problem-solving processes in the fields of science and technology.

The main idea of systematic heuristics is to solve repeated problems with previously validated solutions. These methods are called programmes and are gathered in a library that can be accessed by the main programme, which receives the requirements, prepares the execution plan, determines the required procedures, executes the plan, and finally evaluates the results. Müller’s team was dismissed for ideological reasons, and his programme was terminated after a few years, but his findings went on to be successfully applied in many projects across different industries (Banse and Friedrich, 2000 ).

Imre Lakatos ( 1970 )

In his ‘Methodology of Scientific Research Programmes’ that turned out to be a major contribution to the Popper–Kuhn controversy about the rationality of non-falsifiable paradigms in the natural sciences, Lakatos introduced the interesting distinction between a ‘negative heuristic’ that is given by the ‘hard core’ of a research programme and the ‘positive heuristic’ of the ‘protective belt’. While the latter suggests ways to develop the research programme further and to predict new facts, the ‘hard core’ of the research programme is treated as irrefutable ‘by the methodological decision of its protagonists: anomalies must lead to changes only in the ‘protective’ belt’ of auxiliary hypotheses. The Lakatosian notion of a negative heuristic seems to have received little attention outside of the Philosophy of Science community but may be important elsewhere: when there are too many ways to solve a complicated problem, excluding some of them from consideration may be helpful.

Gerhard Kleining ( 1982 )

The German sociologist Gerhard Kleining suggested a qualitative heuristic as the appropriate research method for qualitative social science. It is based on four principles: (1) open-mindedness of the scientist who should be ready to revise his preconceptions about the topic of study, (2) openness of the topic of study, which is initially defined only provisionally and allowed to be modified in course of the research, (3) maximal variation of the research perspective, and (4) identification of similarities within the data (Kleining, 1982 , 1995 ).

Automatic heuristics: learnt or innate?

Unlike the deliberate, and in some cases quite elaborate, heuristics reviewed above, at least some System 1 heuristics are often applied automatically, without any kind of deliberation or conscious reflection on the task that needs to be performed or the question that needs to be answered. One may view them as mere patterns of behaviour, and as such their scientific examination has been a long cumulative process through different disciplines, even though explicit reference to heuristics was not often made.

Traditionally, examining the behaviour patterns of any living creature, any study concerning thoughts, feelings, or cognitive abilities was regarded as the task of biologists. However, the birth of psychology as a separate discipline paved the way for an alternative outlook. Evolutionary psychology views human behaviour as being shaped through time and experience to promote survival throughout the long history of human struggle with nature. With many factors to consider, scholars have been interested in the evolution of the human brain, patterns of behaviour, and problem-solving (Buss and Kenrick, 1998 ).

Charles Darwin (1873)

Charles Darwin himself maybe qualifies for the title of first evolutionary psychologist, as his perceptions laid the foundations for this field that would continue to grow over a century later (Ghiselin, 1973 ).

In 1873, Darwin claimed that the brain’s articulations regarding expressions and emotions have probably developed similarly to its physical traits (Baumeister and Vohs, 2007 ). He acknowledged that personal demonstrations or expressions have a high capacity for interaction with different peers from the same species. For example, an aggressive look flags an eagerness to battle yet leaves the recipient with the option of retreating without either party being harmed. Additionally, Darwin, as well as his predecessor Lamarck, constantly emphasized the role of environmental factors in ‘the struggle for existence’ that could shape the organism’s traits in response to changes in their corresponding environments (Sen, 2020 ). The famous example of giraffes that grew long necks in response to trees growing taller is an illustration of a major environmental effect. Similarly, cognitive skills, including heuristics, must have also been shaped by the environments to evolve and keep humans surviving and reproducing.

Darwin’s ideas impacted the early advancement of brain science, psychology, and all related disciplines, including the topic of cognitive heuristics (Smulders, 2009 ).

William James (1890)

A few years later, in 1890, the father of American psychology, William James, introduced the notion of evolutionary psychology in his 1200-page text The Principles of Psychology , which later became a reference on the subject and helped establish psychology as a science. In its core content, James reasoned that many actions of the human being demonstrate the activity of instincts, which are the evolutionary embedded inclinations to react to specific incentives in adaptive manners. With this idea, James added an important building block to the foundation of heuristics as a scientific topic.

A simple example of such hard-wired behaviour patterns would be a sneeze, the preprogrammed reaction of convulsive nasal expulsion of air from the lungs through the nose and mouth to remove irritants (Baumeister and Vohs, 2007 ).

Ivan Pavlov (1897)

Triggered by scientific curiosity or the instinct for research, as he called it, the first Russian Nobel laureate, Ivan Pavlov, introduced classical conditioning, which occurs when a stimulus is used that has a predictive relationship with a reinforcer, resulting in a change in response to the stimulus (Schreurs, 1989 ). This learning process was demonstrated through experiments conducted with dogs. In the experiments, a bell (a neutral stimulus) was paired with food (a potent stimulus), resulting ultimately in the dogs salivating at the ringing of the bell—a conditioned response. Pavlov’s experiments remain paradigmatic cases of the emergence of behaviour patterns through association learning.

William McDougall (1909)

At the start of the 20th century, the Anglo-American psychologist William McDougall was one of the first to write about the instinct theory of motivation. McDougall argued that instincts trigger many critical social practices. He viewed instincts as extremely sophisticated faculties in which specific provocations such as social impediments can drive a person’s state of mind in a particular direction, for example, towards a state of hatred, envy, or anger, which in turn may increase the probability of specific practices such as hostility or violence (McDougall, 2015 ).

However, in the early 1920s, McDougall’s perspective about human behaviour being driven by instincts faded remarkably as scientists supporting the concept of behaviourism started to get more attention with original ideas (Buss and Kenrick, 1998 ).

John B. Watson (1913)

The pioneer of the psychological school of behaviourism, John B. Watson, who conducted the controversial ‘Little Albert’ experiment by imposing a phobia on a child to evidence classical conditioning in humans (Harris, 1979 ), argued against the ideas of McDougall, even within public debates (Stephenson, 2003 ). Unlike McDougall, Watson considered the brain an empty page ( tabula rasa as described by Aristotle). According to him. all personality traits and behaviours directly result from the accumulated experience that starts from birth. Thus, the story of the human mind is a continuous writing process featured by surrounding events and factors. This perception was supported in the following years of the 20th century by anthropologists who revealed many very different social standards in different societies, and numerous social researchers argued that the wide variety of cross-cultural differences should lead to the conclusion that there is no mental content built-in from birth, and that all knowledge, therefore, comes from individual experience or perception (Farr, 1996 ). In stark contrast to McDougall, Watson suggested that human intuitions and behaviour patterns are the product of a learning process that starts blank.

B. F. Skinner (1938)

Inspired by the work of Pavlov, the American psychologist B.F. Skinner took the classical conditioning approach to a more advanced level by modifying a key aspect of the process. According to Skinner, human behaviour is dependent on the outcome of past activities. If the outcome is bad, the action will probably not be repeated; however, if the outcome is good, the likelihood of the activity being repeated is relatively high. Skinner called this process reinforcement learning (Schacter et al., 2011 ). Based on reinforcement learning, Skinner also introduced the concept of operant conditioning, a type of associative learning process through which the strength of a behaviour is adjusted by reinforcement or punishment. Considering, for example, a parent’s response to a child’s behaviour, the probability of the child repeating an action will be highly dependent on the parent’s reaction (Zilio, 2013 ). Effectively, Skinner argues that the intuitive System 1 may get edited and that a heuristical cue may become more or less ‘hard-wired’ in the subject’s brain as a stimulus leading to an automatic response.

The DNA and its environment (1953 onwards)

Today, there seems to be wide agreement that behaviour patterns in humans and other species are to some extent ‘in the DNA’, the structure of which was discovered by Francis Crick and James Watson in 1953, but that they also to some extent depend on ‘the environment’—including the social environment in which the agent lives and has problems to solve. Today, it seems safe to say, therefore, that the methods of problem-solving that humans apply are neither completely innate nor completely the result of environmental stimuli—but rather the product of the complex interaction between genes and the environment (Lerner, 1978 ).

Herbert Simon: rationality is bounded

Herbert Simon is well known for his contributions to several fields, including economics, psychology, computer science, and management. Simon proposed a remarkable theory that led him to be awarded the Nobel Prize for Economics in 1978.

Bounded rationality and satisficing

In the mid-1950s, Simon published A Behavioural Model of Rational Choice, which focused on bounded rationality: the idea that people must make decisions with limited time, mental resources, and information (Simon, 1955 ). He clearly states the triangle of limitations in every decision-making process—the availability of information, time, and cognitive ability (Bazerman and Moore, 1994 ). The ideas of Simon are considered an inspiring foundation for many technologies in use today.

Instead of conforming to the idea that economic behaviour can be seen as rational and dependent on all accessible data (i.e., as optimization), Simon suggested that the dynamics of decision-making were essentially ‘satisficing,’ a notion synthesized from ‘satisfy’ and ‘suffice’ (Byron, 1998 ). During the 1940s, scholars noticed the frequent failure of two assumptions required for ‘rational’ decision-making. The first is that data is never enough and may be far from perfect, while people dependably make decisions based on incomplete data. Second, people do not assess every feasible option before settling on a decision. This conduct is highly correlated with the cost of data collection since data turns out to be progressively harder and costlier to accumulate. Rather than trying to find the ideal option, people choose the first acceptable or satisfactory option they find. Simon described this procedure as satisficing and concluded that the human brain in the decision-making process would, at best, exhibit restricted abilities (Barros, 2010 ).

Since people can neither obtain nor process all the data needed to make a completely rational decision, they use the limited data they possess to determine an outcome that is ‘good enough’—a procedure later refined into the take-the-best heuristic. Simon’s view that people are bounded by their cognitive limits is usually known as the theory of bounded rationality (cf. Gigerenzer and Selten, 2001 ).

Herbert Simon and AI

With the cooperation of Allen Newell of the RAND Corporation, Simon attempted to create a computer simulator for human decision-making. In 1956, they created a ‘thinking’ machine called the ‘Logic Theorist’. This early smart device was a computer programme with the ability to prove theorems in symbolic logic. It was perhaps the first man-made programme that simulated some human reasoning abilities to solve actual problems (Gugerty, 2006 ). After a few years, Simon, Newell, and J.C. Shaw proposed the General Problem Solver or GPS, the first AI-based programme ever invented. They actually aimed to create a single programme that could solve all problems with the same unified algorithm. However, while the GPS was efficient with sufficiently well-structured problems like the Towers of Hanoi (a puzzle with 3 rods and different-sized disks to be moved), it could not solve real-life scenarios with all their complexities (A. Newell et al., 1959 ).

By 1965, Simon was confident that ‘machines will be capable of doing any work a man can do’ (Vardi, 2012 ). Therefore, Simon dedicated most of the remainder of his career to the advancement of machine intelligence. The results of his experiments showed that, like humans, certain computer programmes make decisions using trial-and-error and shortcut methods (Frantz, 2003 ). Quite explicitly, Simon and Newell ( 1958 , p. 7) referred to heuristics being used by both humans and intelligent machines: ‘Digital computers can perform certain heuristic problem-solving tasks for which no algorithms are available… In doing so, they use processes that are closely parallel to human problem-solving processes’.

Additionally, the importance of the environment was also clearly observed in Newell and Simon’s ( 1972 ) work:

‘Just as scissors cannot cut paper without two blades, a theory of thinking and problem-solving cannot predict behaviour unless it encompasses both an analysis of the structure of task environments and an analysis of the limits of rational adaptation to task requirements’ (p. 55).

Accordingly, the term ‘task environment’ describes the formal structure of the universe of choices and results for a specific problem. At the same time, Newell and Simon do not treat the agent and the environment as two isolated entities, but rather as highly related. Consequently, they tend to believe that agents with different cognitive abilities and choice repertoires will inhabit different task environments even though their physical surroundings and intentions might be the same (Agre and Horswill, 1997 ).

Heuristics in computer science

Computer science as a discipline may have the biggest share of deliberately applied heuristics. As heuristic problem-solving has often been contrasted with algorithmic problem-solving—even by Simon and Newell ( 1958 )—it is worth recalling that the very notion of ‘algorithm’ was clarified only in the first half of the 20th century, when Alan Turing ( 1937 ) defined what was later named ‘Turing-machine’. Basically, he defined ‘mechanical’ computation as a computation that can be done by a—stylized—machine. ‘Mechanical’ being what is also known today as algorithmic, one can say that any procedure that can be performed by a digital computer is algorithmic. Nevertheless, many of them are also heuristics because an algorithm may fail to produce an optimal solution to the problem it is meant to solve. This may be so either because the problem is ill-defined or because the computations required to produce the optimal solution may not be feasible with the available resources. If the problem is ill-defined—as it often is, e.g., in natural language processing—the algorithm that does the processing has to rely on a well-defined model that does not capture the vagueness and ambiguities of the real-life problem—a problem typically stated in natural language. If the problem is well-defined, but finding the optimal solution is not feasible, algorithms that would find it may exist ‘in principle’, but require too much time or memory to be practically implemented.

In fact, there is today a rich theory of complexity classes that distinguishes between types of (well-defined) problems according to how fast the time or memory space required to find the optimal solution increases with increasing problem size. E.g., for problem types of the complexity class P, any deterministic algorithm that produces the optimal solution has a running time bounded by a polynomial function of the input size, whereas, for problems of complexity class EXPTIME, the running time is bounded by an exponential function of the input size. In the jargon of computer science, problems of the latter class are considered intractable, although the input size has to become sufficiently large before the computation of the optimal solution becomes practically infeasible (cf. Harel, 2000 ; Hopcroft et al., 2007 ). Research indicates that the computational complexity of problems can also reduce the quality of human decision-making (Bossaerts and Murawski, 2017 ).

Shortest path algorithms

A classic optimization problem that may serve to illustrate the issues of optimal solution, complexity, and heuristics goes by the name of the travelling salesman problem (TSP), which was first introduced in 1930. In this problem, several cities with given distances between each two are considered, and the goal is to find the shortest possible path through all cities and return to the starting point. For a small input size, i.e., for a small number of cities, the ‘brute-force’ algorithm is easy to use: write down all the possible paths through all the cities, calculate their lengths, and choose the shortest. However, the number of steps that are required by this procedure quickly increases with the number of cities. The TSP is today known to belong to the complexity class NP which is in between P and EXPTIME Footnote 1 ). To solve the TSP, Jon Bentley ( 1982 ) proposed the greedy (or nearest-neighbour) algorithm that will yield an acceptable result, but not necessarily the optimal one, within a relatively short time. This approach always picks the nearest neighbour as the next city to visit without regard to possible later non-optimal steps. Hence, it is considered a good-enough solution with fast results. Bentley argued that there may be better solutions, but that it approximates the optimal solution. Many other heuristic algorithms have been explored later on. There is no assurance that the solution found by a heuristic algorithm will be an ideal answer for the given problem, but it is acceptable and adequate (Pearl, 1984 ).

Heuristic algorithms of the shortest path are utilized nowadays by GPS frameworks and self-driving vehicles to choose the best route from any point of departure to any destination (for example, A* Search Algorithm). Further developed algorithms can also consider additional elements, including traffic, speed limits, and quality of roads, they may yield the shortest routes in terms of distance and the fastest ones in terms of driving time.

Computer chess

While the TSP consists of a whole set of problems which differ by the number of cities and the distances between them, determining the optimal strategy for chess is just one problem of a given size. The rules of chess make it a finite game, and Ernst Zermelo proved in 1913 that it is ‘determined’: if it were played between perfectly rational players, it would always end with the same outcome: either White always wins, or Black always wins, or it always ends with a draw (Zermelo, 1913 ). Up to the present day, it is not known which of the three is true, which points to the fact that a brute-force algorithm that would go through all possible plays of chess is practically infeasible: it would have to explore too many potential moves, and the required memory would quickly run out of space (Schaeffer et al., 2007 ). Inevitably, a chess-playing machine has to use algorithms that are ‘shortcuts’—which can be more or less intelligent.

While Simon and Newell had predicted in 1958 that within ten years the world chess champion would be a computer, it took until 1997, when a chess-playing machine developed by IBM under the name Deep Blue defeated grandmaster Garry Kasparov. Although able to analyse millions of possibilities due to their computing powers, today’s chess-playing machines apply a heuristic approach to eliminate unlikely moves and focus on those with a high probability of defeating their opponent (Newborn, 1997 ).

Machine learning

One of the main features of machine learning is the ability of the model to predict a future outcome based on past data points. Machine learning algorithms build a knowledge base similar to human experience from previous experiences in the dataset provided. From this knowledge base, the model can derive educated guesses.

A good demonstration of this is the card game Top Trumps in which the model can learn to play and keep improving to dominate the game. It does so by undertaking a learning path through a sequence of steps in which it picks two random cards from the deck and then analyses and compares them with random criteria. According to the winning result, the model iteratively updates its knowledge base in the same manner as a human, following the rule that ‘practice makes perfect.’ Hence the model will play, collect statistics, update, and iterate while becoming more accurate with each increment (Volz et al., 2016 ).

Natural language processing

In the world of language understanding, current technologies are far from perfect. However, models are becoming more reliable by the minute. When analysing and dissecting a search phrase entered into the Google search engine, a background model tries to make sense of the search criteria. Stemming words, context analysis, the affiliation of phrases, previous searches, and autocorrect/autocomplete can be applied in a heuristic algorithm to display the most relevant result in less than a second. Heuristic methods can be utilized when creating certain algorithms to understand what the user is trying to express when searching for a phrase. For example, using word affiliation, an algorithm tries to narrow down the meaning of words as much as possible toward the user’s intention, particularly when a word has more than one meaning but changes with the context. Therefore, a search for apple pie allows the algorithm to deduce that the user is highly interested in recipes and not in the technology company (Sullivan, 2002 ).

Search and big data

Search is a good example to appreciate the value of time, as one of the most important criteria is retrieving acceptable results in an acceptable timeframe. In a full search algorithm, especially in large datasets, retrieving optimal results can take a massive amount of time, making it necessary to apply heuristic search.

Heuristic search is a type of search algorithm that is used to find solutions to problems in a faster way than an exhaustive search. It uses specific criteria to guide the search process and focuses on more favourable areas of the search space. This can greatly reduce the number of nodes required to find a solution, especially for large or complex search trees.

Heuristic search algorithms work by evaluating the possible paths or states in a search tree and selecting the better ones to explore further. They use a heuristic function, which is a measure of how close a given state is to the goal state, to guide the search. This allows the algorithm to prioritize certain paths or states over others and avoid exploring areas of the search space that are unlikely to lead to a solution. The reached solution is not necessarily the best, however, a ‘good enough’ one is found within a ‘fast enough’ time. This technique is an example of a trade-off between optimality and speed (Russell et al., 2010 ).

Today, there is a rich literature on heuristic methods in computer science (Martí et al., 2018 ). As the problem to be solved may be the choice of a suitable heuristic algorithm, there are also meta-heuristics that have been explored (Glover and Kochenberger, 2003 ), and even hyper-heuristics which may serve to find or generate a suitable meta-heuristic (Burke et al., 2003 ). As Sörensen et al. ( 2018 ) point out, the term ‘metaheuristic’ may refer either to an ‘algorithmic framework that provides a set of guidelines or strategies to develop heuristic optimization algorithms’—or to a specific algorithm that is based on such a framework. E.g., a metaheuristic to find a suitable search algorithm may be inspired by the framework of biological evolution and use its ideas of mutation, reproduction and selection to produce a particular search algorithm. While this algorithm will still be a heuristic one, the fact that it has been generated by an evolutionary process indicates its superiority over alternatives that have been eliminated in the course of that process (cf. Vikhar, 2016 ).

Daniel Kahneman and Amos Tversky: heuristics and biases

Inspired by the concepts of Herbert Simon, psychologists Daniel Kahneman and Amos Tversky initiated the heuristics and biases research programme in the early 1970s, which emphasized how individuals make judgements and the conditions under which those judgements may be inaccurate (Kahneman and Klein, 2009 ).

In addition, Kahneman and Tversky emphasized information processing to elaborate on how real people with limitations can decide, choose, or estimate (Kahneman, 2011 ).

The remarkable article Judgement under Uncertainty: Heuristics and Biases , published in 1974, is considered the turning key that opened the door wide to research on this topic, although it was and still is considered controversial (Kahneman, 2011 ). In their research, Kahneman and Tversky identified three types of heuristics by which probabilities are often assessed: availability, representativeness, and anchoring and adjustment. In passing, Kahneman and Tversky mention that other heuristics are used to form non-probabilistic judgements; for example, the distance of an object may be assessed according to the clarity with which it is seen. Other researchers subsequently introduced different types of heuristics. However, availability, representativeness, and anchoring are still considered fundamental heuristics for judgements under uncertainty.

Availability

According to the psychological definition, availability or accessibility is the ease with which a specific thought comes to mind or can be inferred. Many people use this type of heuristic when judging the probability of an event that may have happened or will happen in the future. Hence, people tend to overestimate the likelihood of a rare event if it easily comes to mind because it is frequently mentioned in daily discussions (Kahneman, 2011 ). For instance, individuals overestimate their probability of being victims of a terrorist attack while the real probability is negligible. However, since terrorist attacks are highly available in the media, the feeling of a personal threat from such an attack will also be highly available during our daily life (Kahneman, 2011 ).

This concept is also present in business, as we remember the successful start-ups whose founders quit college for their dreams, such as Steve Jobs and Mark Zuckerberg, and ignore the thousands of ideas, start-ups, and founders that failed. This is because successful companies are considered a hot topic and receive broad coverage in the media, while failures do not. Similarly, broad media coverage is known to create top-of-mind awareness (TOMA) (Farris et al., 2010 ). Moreover, the availability type of heuristics was offered as a clarification for fanciful connections or irrelevant correlations in which individuals wrongly judge two events to be related to each other when they are not. Tversky and Kahneman clarified that individuals judge relationships based on the ease of envisioning the two events together (Tversky and Kahneman, 1973 ).

Representativeness

The representativeness heuristic is applied when individuals assess the probability that an object belongs to a particular class or category based on how much it resembles the typical case or prototype representing this category (Tversky and Kahneman, 1974 ). Conceptually, this heuristic can be decomposed into three parts. The first one is that the ideal case or prototype of the category is considered representative of the group. The second part judges the similarity between the object and the representative prototype. The third part is that a high degree of similarity indicates a high probability that the object belongs to the category, and a low degree of similarity indicates a low probability.

While the heuristic is often applied automatically within an instant and may be compelling in many cases, Tversky and Kahneman point out that the third part of the heuristic will often lead to serious errors or, at any rate, biases.

In particular, the representativeness heuristic can give rise to what is known as the base rate fallacy. As an example, Tversky and Kahneman consider an individual named Steve, who is described as shy, withdrawn, and somewhat pedantic, and report that people who have to assess, based on this description, whether Steve is more likely to be a librarian or a farmer, invariably consider it more likely that he is a librarian—ignoring the fact that there are many more farmers than librarians, the fact that an estimate of the probability that Steve is a librarian or a farmer, respectively, must take into account.

Another example is that a taxicab was engaged in an accident. The data indicates that 85% of the taxicabs are green and 15% blue. An eyewitness claims that the involved cab was blue. The court then evaluates the witness for reliability because he is 80% accurate and 20% inaccurate. So now, what would be the probability of the involved cab being blue, given that the witness identified it as blue as well?

To evaluate this case correctly, people should consider the base rate, 15% of the cabs being blue, and the witness accuracy rate, 80%. Of course, if the number of cabs is equally split between colours, then the only factor in deciding is the reliability of the witness, which is an 80% probability.

However, regardless of the colours’ distribution, most participants would select 80% to respond to this enquiry. Even participants who wanted to take the base rate into account estimated a probability of more than 50%, while the right answer is 41% using the Bayesian inference (Kahneman, 2011 ).

In relation to the representativeness heuristic, Kahnemann ( 2011 ) illustrated the ‘conjunction fallacy’ in the following example: based only on a detailed description of a character named Linda, doctoral students in the decision science programme of the Stanford Graduate School of Business, all of whom had taken several advanced courses in probability, statistics, and decision theory, were asked to rank various other descriptions of Linda according to their probability. Even Kahneman and Tversky were surprised to find that 85% of the students ranked Linda as a bank teller active in the feminist movement as more likely than Linda as a bank teller.

From these and many other examples, one must conclude that even sophisticated humans use the representativeness heuristic to make probability judgements without referring to what they know about probability.

Representativeness is used to make probability judgements and judgements about causality. The similarity of A and B neither indicates that A causes B nor that B causes A. Nevertheless, if A precedes B and is similar to B, it is often judged to be B’s cause.

Adjustment and anchoring

Based on Tversky and Kahneman’s interpretations, the anchor is the first available number introduced in a question forming the centre of a circle whose radius (up or down) is an acceptable range within which lies the best answer (Baron, 2000 ). This is used and tested in several academic and real-world scenarios and in business negotiations where parties anchor their prices to formulate the range of acceptance through which they can close the deal, deriving the ceiling and floor from the anchor. The impact is more dominant when parties lack time to analyse actions thoroughly.

Significantly, even if the anchor is way beyond logical boundaries, it can still bias the estimated numbers by all parties without them even realizing that it does (Englich et al., 2006 ).

In one of their experiments, Tversky and Kahneman ( 1974 ) asked participants to quickly calculate the product of numbers from 1 to 8 and others to do so from 8 to 1. Since the time was limited to 5 min, they needed to make a guess. The group that started from 1 had an average of 512, while the group that started from 8 had an average of 2250. The right answer was 40,320.

Perhaps this is one of the most unclear cognitive heuristics introduced by Kahneman and Tversky that can be interchangeably considered as a bias instead of a heuristic. The problem is that the mind tends to fixate on the anchor and adjust according to it, whether it was introduced implicitly or explicitly. Some scholars even believe that such bias/heuristic is unavoidable. For instance, in one study, participants were asked if they believed that Mahatma Gandhi died before or after nine years old versus before or after 140 years old. Unquestionably, these anchors were considered unrealistic by the audience. However, when the participants were later asked to give their estimate of Gandhi’s age of death, the group which was anchored to 9 years old speculated the average age to be 50, while the group anchored to the highest value estimated the age of death to be as high as 67 (Strack and Mussweiler, 1997 ).

Gerd Gigerenzer: fast-and-frugal heuristics

The German psychologist Gerd Gigerenzer is one of the most influential figures in the field of decision-making, with a particular emphasis on the use of heuristics. He has built much of his research on the theories of Herbert Simon and considers that Simon’s theory of bounded rationality was unfinished (Gigerenzer, 2015 ). As for Kahneman and Tversky’s work, Gigerenzer has a different approach and challenges their ideas with various arguments, facts, and numbers.

Gigerenzer explores how people make sense of their reality with constrained time and data. Since the world around us is highly uncertain, complex, and volatile, he suggests that probability theory cannot stand as the ultimate concept and is incapable of interpreting everything, particularly when probabilities are unknown. Instead, people tend to use the effortless approach of heuristics. Gigerenzer introduced the concept of the adaptive toolbox, which is a collection of mental shortcuts that a person or group of people can choose from to solve a current problem (Gigerenzer, 2000 ). A heuristic is considered ecologically rational if adjusted to the surrounding ecosystem (Gigerenzer, 2015 ).

A daring argument of Gigerenzer, which very much opposes the heuristics and biases approach of Kahneman and Tversky, is that heuristics cannot be considered irrational or inferior to a solution by optimization or probability calculation. He explicitly argues that heuristics are not gambling shortcuts that are faster but riskier (Gigerenzer, 2008 ), but points to several situations where less is more, meaning that results from frugal heuristics, which neglect some data, were nevertheless more accurate than results achieved by seemingly more elaborate multiple regression or Bayesian methods that try to incorporate all relevant data. While researchers consider this counterintuitive since a basic rule in research seems to be that more data is always better than less, Gigerenzer points out that the less-is-more effect (abbreviated as LIME) could be confirmed by computer simulations. Without denying that in some situations, the effect of using heuristics may be biased (Gigerenzer and Todd, 1999 ), Gigerenzer emphasizes that fast-and-frugal heuristics are basic, task-oriented choice systems that are a part of the decision-maker’s toolbox, the available collection of cognitive techniques for decision-making (Goldstein and Gigerenzer, 2002 ).

Heuristics are considered economical because they are easy to execute, seek limited data, and do not include many calculations. Contrary to most traditional decision-making models followed in the social and behavioural sciences, models of fast-and-frugal heuristics portray not just the result of the process but also the process itself. They comprise three simple building blocks: the search rule that specifies how information is searched for, the stopping rule that specifies when the information search will be stopped, and finally, the decision rule that specifies how the processed information is integrated into a decision (Goldstein and Gigerenzer, 2002 ).

Rather than characterizing heuristics as rules of thumb or mental shortcuts that can cause biases and must therefore be regarded as irrational, Gigerenzer and his co-workers emphasize that fast-and-frugal heuristics are often ecologically rational, even if the conjunction of them may not even be logically consistent (Gigerenzer and Todd, 1999 ).

According to Goldstein and Gigerenzer ( 2002 ), a decision maker’s pool of mental techniques may contain logic and probability theory, but it also embraces a set of simple heuristics. It is compared to a toolbox because just as a wood saw is perfect for cutting wood but useless for cutting glass or hammering a nail into a wall, the ingredients of the adaptive toolbox are intended to tackle specific scenarios.

For instance, there are specific heuristics for choice tasks, estimation tasks, and categorization tasks. In what follows, we will discuss two well-known examples of fast-and-frugal heuristics: the recognition heuristic (RH), which utilizes the absence of data, and the take-the-best heuristic (TTB), which purposely disregards the data.

Both examples of heuristics can be connected to decision assignments and to circumstances in which a decision-maker needs to decide which of two options has a higher reward on a quantitative scale.

Ideal scenarios would be deducing which one of two stock shares will have a better income in the next month, which of two cars is more convenient for a family, or who is a better candidate for a particular job (Goldstein and Gigerenzer, 2002 ).

The recognition heuristic

The recognition heuristic has been examined broadly with the famous experiment to determine which of the two cities has a higher population. This experiment was conducted in 2002, and the participants were undergraduate students: one group in the USA and one in Germany. The question was as follows: which has more occupants—San Diego or San Antonio? Given the cultural difference between the student groups and the level of information regarding American cities, it could be expected that American students would have a higher accuracy rate than their German peers. However, most German students did not even know that San Antonio is an American city (Goldstein and Gigerenzer, 2002 ). Surprisingly, the examiners, Goldstein and Gigerenzer, found the opposite of what was expected. 100% of the German students got the correct answer, while the American students achieved an accuracy rate of around 66%. Remarkably, the German students who had never known about San Antonio had more correct answers. Their lack of knowledge empowered them to utilize the recognition heuristic, which states that if one of two objects is recognized and the other is not, then infer that the recognized object has the higher value concerning the relevant criterion. The American students could not use the recognition heuristic because they were familiar with both cities. Ironically, they knew too much.

The recognition heuristic is an incredible asset. In many cases, it is used for swift decisions since recognition is usually systematic and not arbitrary. Useful applications may be cities’ populations, players’ performance in major leagues, or writers’ level of productivity. However, this heuristic will be less efficient in more difficult scenarios than a city’s population, such as the age of the city’s mayor or its sea-level altitude (Gigerenzer and Todd, 1999 ).

Take-the-best heuristic

When the recognition heuristic is not efficient because the decision-maker has enough information about both options, another important heuristic can be used that relies on hints or cues to arrive at a decision. The take-the-best (TTB) heuristic is a heuristic that relies only on specific cues or signals and does not require any complex calculations. In practice, it often boils down to a one-reason decision rule, a type of heuristic where judgements are based on a single good reason only, ignoring other cues (Gigerenzer and Gaissmaier, 2011 ). According to the TTB heuristic, a decision-maker evaluates the case by selecting the attributes which are important to him and sorts these cues by importance to create a hierarchy for the decision to be taken. Then alternatives are compared according to the first, i.e., the most important, cue; if an alternative is the best according to the first cue, the decision is taken. Otherwise, the decision-maker moves to the next layer and checks that level of cues. In other words, the decision is based on the most important attribute that allows one to discriminate between the alternatives (Gigerenzer and Goldstein, 1996 ). Although this lexicographic preference ordering is well known from traditional economic theory, it appears there mainly to provide a counterexample to the existence of a real-valued utility function (Debreu, 1959 ). Surprisingly, however, it seems to be used in many critical situations. For example, in many airports, the customs officials may decide if a traveller is chosen for a further check by looking only at the most important attributes, such as the city of departure, nationality, or luggage weight (Pachur and Marinello, 2013 ). Moreover, in 2012, a study explored voters’ views of how US presidential competitors would deal with the single issue that voters viewed as most significant, for example, the state of the economy or foreign policy. A model dependent on this attribute picked the winner in most cases (Graefe and Armstrong, 2012 ).

However, the TTB heuristic has a stopping rule applied when the search reaches a discriminating cue. So, if the most important signal discriminates, there is no need to continue searching for other cues, and only one signal is considered. Otherwise, the next most important signal will be considered. If no discriminating signal is found, the heuristic will need to make a random guess (Gigerenzer and Gaissmaier, 2011 ).

Empirical evidence on fast-and-frugal heuristics

More studies have been conducted on fast-and-frugal heuristics using analytical methods and simulations to investigate when and why heuristics yield accurate results on the one hand, and on the other hand, using experiments and observational methods to find out whether and when people use fast-and-frugal heuristics (Luan et al., 2019 ). Structured examinations and benchmarking with standard models, for example, regression or Bayesian models, have shown that the accuracy of fast-and-frugal heuristics relies upon the structure of the information environment (e.g., the distribution of signal validities, the interrelation between signals, etc.). In numerous situations, fast-and-frugal heuristics can perform well, particularly in generalized contexts, when making predictions for new cases that have not been previously experienced. Empirical examinations show that people utilize fast-and-frugal heuristics under a time constraint when data is hard to obtain or must be retrieved from memory. Remarkably, some studies have inspected how individuals adjust to various situations by learning. Rieskamp and Otto ( 2006 ) found that individuals seemingly learn to choose the heuristic that has the best performance in a specific domain. Nevertheless, Reimer and Katsikopoulos ( 2004 ) found that individuals apply fast-and-frugal heuristics when making inferences in groups.

While interest in heuristics has been increasing, some of the literature has been mostly critical. In particular, the heuristics and biases programme introduced by Kahneman and Tversky has been the target of more than one critique (Reisberg, 2013 ).

The arguments are mainly in two directions. The first is that the main focus is on the coherence standards such as rationality and that the detection of biases ignores the context-environmental factors where the judgements occur (B.R. Newell, 2013 ). The second is that notions such as availability or representativeness are vague and undefined, and state little regarding the procedures’ hidden judgements (Gigerenzer, 1996 ). For example, it has been argued that the replies in the acclaimed Linda-the-bank-teller experiment could be considered sensible instead of biased if one uses conversational or colloquial standards instead of formal probability theory (Hilton, 1995 ).

The argument of having a vague explanation for certain phenomena can be illustrated when considering the following two scenarios. People tend to believe that an opposite outcome will be achieved after having a stream of the same outcome (e.g., people tend to believe that ‘heads’ should be the next outcome in a coin-flipping game with many consecutive ‘tails’). This is called the gambler fallacy (Barron and Leider, 2010 ). By contrast, the hot-hand fallacy (Gilovich et al., 1985 ) argues that people tend to believe that a stream of the same outcome will continue when there is a lucky day (e.g., a player is taking a shot in a sport such as a basketball after a series of successful attempts). Ayton and Fisher ( 2004 ) argued that, although these two practices are quite opposite, they have both been classified under the heuristic of representativeness. In the two cases, a flawed idea of random events drives observers to anticipate that a certain stream of results is representative of the whole procedure. In the first scenario of coin flipping, people tend to believe that a long stream of tails should not occur; hence the head is predicted. While in the case of the sports player, the stream of the same outcome is expected to continue (Gilovich et al., 1985 ). Therefore, representativeness cannot be diagnosed without considering in advance the expected results. Also, the heuristic does not clarify why people have the urge to believe that a stream of random events should have a representative, while in real life, it does not (Ayton and Fischer, 2004 ).

Nevertheless, the most common critique of Kahneman and Tversky is the idea that ‘we cannot be that dumb’. It states that the heuristics and biases programme is overly pessimistic when assessing the average human decision-making. Also, humans collectively have accumulated many achievements and discoveries throughout human history that would not have been possible if their ability to adequate decision-making had been so limited (Gilovich and Griffin, 2002 ).

Similarly, the probabilistic mental models (PMM) theory of human inference inspired by Simon and pioneered by Gigerenzer has also been exposed to criticism (B.R. Newell et al., 2003 ). Indeed, the enticing character of heuristics that they are both easy to apply and efficient has made them famous within different domains. However, it has also made them vulnerable to replications or variations of the experiments that challenge the original results. For example, Daniel Oppenheimer ( 2003 ) argues that the recognition heuristic (RH) could not yield satisfactory results after replicating the experiment of city populations. He claims that the participants’ judgements failed to obey the RH not just when there were cues other and stronger than mere recognition but also in circumstances where recognition would have been the best cue available. In any case, one could claim that there are numerous methods in the adaptive toolbox and that under certain conditions, people may prefer to use heuristics other than the RH. However, this statement is also questionable since many heuristics that are thought to exist in the adaptive toolbox acknowledge the RH as an initial step (Gigerenzer and Todd, 1999 ). Hence, if individuals are not using the RH, they cannot use many of the other heuristics in the adaptive toolbox (Oppenheimer, 2003 ). Likewise, Newell et al. ( 2003 ) question whether the fast-and-frugal heuristics accurately explain actual human behaviour. In two experiments, they challenged the take-the-best (TTB) heuristic, as it is considered a building block in the PMM framework. The outcomes of these experiments, together with others, such as those of Jones et al. ( 2000 ) and Bröder ( 2000 ), show that the TTB heuristic is not a reliable approach even within circumstances favouring its use. In a somewhat heated debate published in the Psychological Review 1996, Gigerenzer’s criticism of Kahneman and Tversky that many of the so-called biases ‘disappear’ if frequencies rather than probabilities are assumed, was countered by Kahneman and Tversky ( 1996 ) by means of a detailed re-examination of the conjunction fallacy (or Linda Problem). Gigerenzer ( 1996 ) remained unconvinced, and was in turn, blamed by Kahneman and Tversky ( 1996 , p. 591) for just reiterating ‘his objections … without answering our main arguments’.

Our historical review has revealed a number of issues that have received little attention in the literature.

Deliberate vs. automatic heuristics

We have differentiated between deliberate and automatic heuristics, which often seem to be confused in the literature. While it is a widely shared view today that the human brain often relies heavily on the fast and effortless ‘System 1’ in decision-making, but can also use the more demanding tools of ‘System 2’, and it has been acknowledged, e.g. by Kahneman ( 2011 , p. 98), that some heuristics belong to System 1 and others to System 2, the two systems are not as clearly distinct as it may seem. In fact, the very wide range of what one may call ‘heuristics’ shows that there is a whole spectrum of fallible decision-making procedures—ranging from the probably innate problem-solving strategy of the baby that cries whenever it is hungry or has some other problem, to the most elaborate and sophisticated procedures of, e.g., Polya, Bolzano, or contemporary chess-engines. One may be tempted to characterize instinctive procedures as subconscious and sophisticated ones as conscious, but a deliberate heuristic can very well become a subconsciously applied ‘habit of the mind’ or learnt routine with experience and repetition. Vice versa, automatic, subconscious heuristics can well be raised to consciousness and be applied deliberately. E.g., the ‘inductive inference’ from tasty strawberries to the assumption that all red berries are sweet and edible may be quite automatic and subconscious in little children, but the philosophical literature on induction shows that it can be elaborated into something quite conscious. However, while the notion of consciousness may be crucial for an adequate understanding of heuristics in human cognition, for the time being, it seems to remain a philosophical mystery (Harley, 2021 ; Searle, 1997 ), and once programmed, sophisticated heuristic algorithms can be executed by automata.

The deliberate heuristics that we reviewed also illustrate that some of them can hardly be called ‘simple’, ‘shortcuts’, or ‘rules of thumb’. E.g., the heuristics of Descartes, Bolzano, or Polya each consist of a structured set of suggestions, and, e.g., ‘to devise a plan’ for a mathematical proof is certainly not a shortcut. Llull ( 1308 , p. 329), to take another example, wrote of his ‘ars magna’ that ‘the best kind of intellect can learn it in two months: one month for theory and another month for practice’.

Heuristics vs. algorithms

Our review of heuristics also allowed us to clarify the distinction between heuristics and algorithms. As evidenced by our glimpse at computer science, there are procedures that are quite obviously both an algorithm and a heuristic. Within computer science, they are in fact quite common. Algorithms of the heuristic type may be required for certain problems even though an algorithm that finds the optimal solution exists ‘in principle’—as in the case of determining the optimal strategy in chess, where the brute-force-method to enumerate all possible plays of chess is just not practically feasible. In other cases, heuristic algorithms are used because an exhaustive search, while practically feasible, would be too costly or time-consuming. Clearly, for many problems, there are also problem-solving algorithms which always do produce the optimal solution in a reasonable time frame. Given our definition of a heuristic as a fallible method, algorithms of this kind are counterexamples to the complaint that the notion has become so wide that ‘any procedure can be called a heuristic’. However, as we have seen, there are also heuristic procedures that are non-algorithmic. These may be necessary either because the problem to be solved is not sufficiently well-defined to allow for an algorithm, or because an algorithm that would solve the problem at hand, is not known or does not exist. Kleining’s qualitative heuristics is an example of non-algorithmic heuristics necessitated by the ill-defined problems of research in the social sciences, while Polya’s heuristic for solving mathematical problems is an example of the latter: an algorithm that would allow one to decide if a given mathematical conjecture is a theorem or not does not exist (cf. Davis, 1965 ).

Pre-SEU vs. post-SEU heuristics

As we noted in the introduction, the emergence of the SEU theory can be regarded as a kind of watershed for the research on heuristics, as it came to be regarded as the standard definition of rational choice. Post-SEU, fallible methods of decision-making would have to face comparison with this standard. Gigerenzer’s almost belligerent criticism of SEU shows that even today it seems difficult to discuss the pros and cons of heuristics unless one relates them to the backdrop of SEU. However, his criticism of SEU is mostly en passant and seems to assume that the SEU model requires ‘known probabilities’ (e.g., Gigerenzer, 2021 ), ignoring the fact that it is, in general, subjective probabilities, as derived from the agent’s preferences among lotteries, that the model relies on (cf. e.g., Jeffrey, 1967 or Gilboa, 2011 ). In fact, when applied to an ill-defined decision problem in, e.g., management, the SEU theory may well be regarded as a heuristic—it asks you to consider the possible consequences of the relevant set of actions, your preferences among those consequences, and the likelihood of those consequences. To the extent that one may get all of these elements wrong, SEU is a fallible method of decision-making. To be sure, it is not a fast and effortless heuristic, but our historical review of pre-SEU heuristics has illustrated that heuristics may be quite elaborate and require considerable effort and attention.

It is quite true, of course, that the SEU heuristic will hardly be helpful in problem-solving that is not ‘just’ decision-making. If, e.g., the problem to be solved is to find a proof for a mathematical conjecture, the set of possible actions will in general be too vast to be practically contemplated, let alone evaluated according to preferences and probabilities.

Positive vs. negative heuristics

To the extent that the study of heuristics aims at understanding how decisions are actually made, it is not only positive heuristics that need to be considered. It will also be required to investigate the conditions that may prevent the agent from adopting certain courses of action. As we saw, Lakatos used the notion of negative heuristics quite explicitly to characterize research programmes, but we also briefly review Duncker’s notion of ‘functional fixedness’ as an example of a hindrance to adequate problem-solving. A systematic study of such negative heuristics seems to be missing in the literature and we believe that it may be a helpful complement to the study of positive heuristics which has dominated the literature that we reviewed.

To the extent that heuristics are studied with the normative aim of identifying effective heuristics, it may also be useful to consider approaches that should not be taken. ‘Do not try to optimize!’ might be a negative heuristic favoured by the fast-and-frugal school of thought.

Heuristics as the product of evolution

Clearly, heuristics have always existed throughout the development of human knowledge due to the ‘old mind’s’ evolutionary roots and the frequent necessity to apply fast and sufficiently reliable behaviour patterns. However, unlike the behaviour patterns in the other animals, the methods used by humans in problem-solving are sufficiently diverse that the dual-process theory was suggested to provide some structure to the rich ‘toolbox’ humans can and do apply. As all our human DNA is the product of evolution, it is not only the intuitive inclinations to react to certain stimuli in a particular way that must be seen as the product of evolution, but also our ability to abstain from following our gut feelings when there is reason to do so, to reflect and analyse the situation before we embark on a particular course of action. Quite frequently, we experience a tension between our intuitive inclinations and our analytic mind’s judgement, but both of them are somehow the product of evolution, our biography, and the environment. Thus, to point out that gut feelings are an evolved capacity of the brain does in no way provide an argument that would support their superiority over the reflective mind.

Moreover, compared to the speed of problem change in our human lifetimes, biological evolution is very slow. The evolved capacities of the human brain may have been well-adapted to the survival needs of our ancestors some 300,000 years ago, but there is little reason to believe that they are uniformly well-adapted to human problem-solving in the 21st century.

Resource-bounded and ecological rationality

Throughout our review, the reader will have noticed that many heuristics have been suggested for specific problem areas. The methods of the ancient Greeks were mainly centred around solving geometrical problems. Llull was primarily concerned with theological questions, Descartes and Leibniz pursued ‘mechanical’ solutions to philosophical issues, Polya suggested heuristics for Mathematics, Müller for engineering, and Kleining for social science research. This already suggests that heuristics suitable for one type of problem need not be suitable for a different type. Likewise, the automatic heuristics that both the Kahneman-Tversky and the Gigerenzer schools focused on, are triggered by particular tasks. Simon’s observation that the success of a given heuristic will depend on the environment in which it is employed, is undoubtedly an important one that has motivated Gigerenzer’s notion of ecological rationality and is strikingly absent from the SEU model. If ‘environment’ is taken in a broad sense that includes the available resources, the cost of time and effort, the notion seems to cover what has been called resource-rational behaviour (e.g., Bhui et al., 2021 ).

Avenues of further research

A comprehensive study describing the current status of the research on heuristics and their relation to SEU seems to be missing and is beyond the scope of our brief historical review. Insights into their interrelationship can be expected from recent attempts at formal modelling of human cognition that take the issues of limited computational resources and context-dependence of decision-making seriously. E.g., Lieder and Griffiths ( 2020 ) do this from a Bayesian perspective, while Busemeyer et al. ( 2011 ) and Pothos and Busemeyer ( 2022 ) use a generalization of standard Kolmogorov probability theory that is also the basis of quantum mechanics and quantum computation. While it may seem at first glance that such modelling assumes even more computational power than the standard SEU model of decision-making, the computational power is not assumed on the part of the human decision-maker. Rather, the claim is that the decision-maker behaves as if s/he would solve an optimization problem under additional constraints, e.g., on computational resources. The ‘as if’ methodology that is employed here is well-known to economists (Friedman, 1953 ; Mäki, 1998 ) and also to mathematical biologists who have used Bayesian models to explain animal behaviour (McNamara et al., 2006 ; Oaten, 1977 ; Pérez-Escudero and de Polavieja, 2011 ). Evolutionary arguments might be invoked to support this methodology if a survival disadvantage can be shown to result from behaviour patterns that are not Bayesian optimal, but we are not aware of research that would substantiate such arguments. However, attempting to do so by embedding formal models of cognition in models of evolutionary game theory may be a promising avenue for further research.

NP stands for ‘nondeterministic polynomial-time’, which indicates that the optimal solution can be found by a nondeterministic Turing-machine in a running time that is bounded by a polynomial function of the input size. In fact, the TSP is ‘NP-hard’ which means that it is ‘at least as hard as the hardest problems in the category of NP problems’.

Agre P, Horswill I (1997) Lifeworld analysis. J Artif Intell Res 6:111–145

Article   Google Scholar  

Ayton P, Fischer I (2004) The hot hand fallacy and the gambler’s fallacy. Two faces of subjective randomness. Memory Cogn 32:8

Banse G, Friedrich K (2000) Konstruieren zwischen Kunst und Wissenschaft. Edition Sigma, Idee‐Entwurf‐Gestaltung, Berlin

Google Scholar  

Baron J (2000) Thinking and deciding. Cambridge University Press

Barron G, Leider S (2010) The role of experience in the Gambler’s Fallacy. J Behav Decision Mak 23:1

Barros G (2010) Herbert A Simon and the concept of rationality: boundaries and procedures. Brazilian. J Political Econ 30:3

Baumeister RF, Vohs KD (2007) Encyclopedia of social psychology, vol 1. SAGE

Bazerman MH, Moore DA (1994) Judgment in managerial decision making. Wiley, New York

Bentley JL (1982) Writing efficient programs Prentice-Hall software series. Prentice-Hall

Bhui R, Lai L, Gershman S (2021) Resource-rational decision making. Curr Opin Behav Sci 41:15–21. https://doi.org/10.1016/j.cobeha.2021.02.015

Bolzano B (1837) Wissenschaftslehre. Seidelsche Buchhandlung, Sulzbach

Bossaerts P, Murawski C (2017) Computational complexity and human decision-making. Trends Cogn Sci 21(12):917–929

Article   PubMed   Google Scholar  

Boyer CB (1991) The Arabic Hegemony. A History of Mathematics. Wiley, New York

Bröder A (2000) Assessing the empirical validity of the “Take-the-best” heuristic as a model of human probabilistic inference. J Exp Psychol Learn Mem Cogn 26:5

Burke E, Kendall G, Newall J, Hart E, Ross P, Schulenburg S (2003) Hyper-heuristics: an emerging direction in modern search technology. In: Glover F, Kochenberger GA (eds) Handbook of metaheuristics. International series in operations research & management science, vol 57. Springer, Boston, MA

Busemeyer JR, Pothos EM, Franco R, Trueblood JS (2011) A quantum theoretical explanation for probability judgment errors. Psychol Rev 118(2):193

Buss DM, Kenrick DT (1998) Evolutionary social psychology. In: D T Gilbert, S T Fiske, G Lindzey (eds.), The handbook of social psychology. McGraw-Hill, p. 982–1026

Byron M (1998) Satisficing and optimality. Ethics 109:1

Davis M (ed) (1965) The undecidable. Basic papers on undecidable propositions, unsolvable problems and computable functions. Raven Press, New York

MATH   Google Scholar  

Debreu G (1959) Theory of value: an axiomatic analysis of economic equilibrium. Yale University Press

Descartes R (1908) Rules for the Direction of the Mind. In: Oeuvres de Descartes, vol 10. In: Adam C, Tannery P (eds). J Vrin, Paris

Descartes R (1998) Discourse on the method for conducting one’s reason well and for seeking the truth in the sciences (1637) (trans and ed: Cress D). Hackett, Indianapolis

Dunbar RIM (1998) Grooming, gossip, and the evolution of language. Harvard University Press

Duncker K (1935) Zur Psychologie des produktiven Denkens. Springer

Englich B, Mussweiler T, Strack F (2006) Playing dice with criminal sentences: the influence of irrelevant anchors on experts’ judicial decision making. Personal Soc Psychol Bull 32:2

Evans JSB (2010) Thinking twice: two minds in one brain. Oxford University Press

Farr RM (1996) The roots of modern social psychology, 1872–1954. Blackwell Publishing

Farris PW, Bendle N, Pfeifer P, Reibstein D (2010) Marketing metrics: the definitive guide to measuring marketing performance. Pearson Education

Fidora A, Sierra C (2011) Ramon Llull, from the Ars Magna to artificial intelligence. Artificial Intelligence Research Institute, Barcelona

Frantz R (2003) Herbert Simon Artificial intelligence as a framework for understanding intuition. J Econ Psychol 24:2. https://doi.org/10.1016/S0167-4870(02)00207-6

Friedman M (1953) The methodology of positive economics. In: Friedman M (ed) Essays in positive economics. University of Chicago Press

Ghiselin MT (1973) Darwin and evolutionary psychology. Science (New York, NY) 179:4077

Gibbons A (2007) Paleoanthropology. Food for thought. Science (New York, NY) 316:5831

Gigerenzer G (1996) On narrow norms and vague heuristics: a reply to Kahneman and Tversky. 1939–1471

Gigerenzer G (2000) Adaptive thinking: rationality in the real world. Oxford University Press, USA

Gigerenzer G (2008) Why heuristics work. Perspect Psychol Sci 3:1

Gigerenzer G (2015) Simply rational: decision making in the real world. Evol Cogn

Gigerenzer G (2021) Embodied heuristics. Front Psychol https://doi.org/10.3389/fpsyg.2021.711289

Gigerenzer G, Gaissmaier W (2011) Heuristic decision making. Annual Review of Psychology 62, p 451–482

Gigerenzer G, Goldstein DG (1996) Reasoning the fast and frugal way: models of bounded rationality. Psychol Rev 103:4

Gigerenzer G, Selten R (eds) (2001) Bounded rationality: the adaptive toolbox. MIT Press

Gigerenzer G, Todd PM (1999) Simple heuristics that make us smart. Oxford University Press, USA

Gilboa I (2011) Making better decisions. Decision theory in practice. Wiley-Blackwell

Gilovich T, Griffin D (2002) Introduction—heuristics and biases: then and now in heuristics and biases: the psychology of intuitive judgment (8). Cambridge University Press

Gilovich T, Vallone R, Tversky A (1985) The hot hand in basketball: on the misperception of random sequences. Cogn Psychol 17:3

Glaveanu VP (2019) The creativity reader. Oxford University Press

Glover F, Kochenberger GA (eds) (2003) Handbook of metaheuristics. International series in operations research & management science, vol 57. Springer, Boston, MA

Goldstein DG, Gigerenzer G (2002) Models of ecological rationality: the recognition heuristic. Psychol Rev 109:1

Graefe A, Armstrong JS (2012) Predicting elections from the most important issue: a test of the take-the-best heuristic. J Behav Decision Mak 25:1

Groner M, Groner R, Bischof WF (1983) Approaches to heuristics: a historical review. In: Groner R, Groner M, Bischof WF (eds) Methods of heuristics. Erlbaum

Groner R, Groner M (1991) Heuristische versus algorithmische Orientierung als Dimension des individuellen kognitiven Stils. In: Grawe K, Semmer N, Hänni R (Hrsg) Üher die richtige Art, Psychologie zu betreiben. Hogrefe, Göttingen

Gugerty L (2006) Newell and Simon’s logic theorist: historical background and impact on cognitive modelling. In: Proceedings of the human factors and ergonomics society annual meeting. Symposium conducted at the meeting of SAGE Publications. Sage, Los Angeles, CA

Harel D (2000) Computers Ltd: what they really can’t do. Oxford University Press

Harley TA (2021) The science of consciousness: waking, sleeping and dreaming. Cambridge University Press

Harris B (1979) Whatever happened to little Albert? Am Psychol 34:2

Heath TL (1926) The thirteen books of Euclid’s elements. Introduction to vol I, 2nd edn. Cambridge University Press

Hertwig R, Pachur T (2015) Heuristics, history of. In: International encyclopedia of the social behavioural sciences. Elsevier, pp. 829–835

Hilton DJ (1995) The social context of reasoning: conversational inference and rational judgment. Psychol Bull 118:2

Hopcroft JE, Motwani R, Ullman JD (2007) Introduction to Automata Theory, languages, and computation. Addison Wesley, Boston/San Francisco/New York

Jeffrey R (1967) The logic of decision, 2nd edn. McGraw-Hill

Jones S, Juslin P, Olsson H, Winman A (2000) Algorithm, heuristic or exemplar: Process and representation in multiple-cue judgment. In: Proceedings of the 22nd annual conference of the Cognitive Science Society. Symposium conducted at the meeting of Erlbaum, Hillsdale, NJ

Kahneman D (2011) Thinking, fast and slow. Farar, Straus and Giroux

Kahneman D, Klein G (2009) Conditions for intuitive expertise: a failure to disagree. Am Psychol 64:6

Kahneman D, Tversky A (1996) On the reality of cognitive illusions. In: Psychological Review, 103(3), p 582–591

Khaldun I (1967) The Muqaddimah. An introduction to history (trans: Arabic by Rosenthal F). Abridged and edited by Dawood NJ. Princeton University Press

Klein G (2001) The fiction of optimization. In: Gigerenzer G, Selten R (eds) Bounded Rationality: The Adaptive Toolbox. MIT Press Editors

Kleining G (1982) Umriss zu einer Methodologie qualitativer Sozialforschung. Kölner Z Soziol Sozialpsychol 34:2

Kleining G (1995) Von der Hermeneutik zur qualitativen Heuristik. Beltz

Lakatos I (1970) Falsification and the methodology of scientific research programmes. In: Lakatos I, Musgrave A (eds) Criticism and the growth of knowledge. Cambridge University Press

Leibniz GW (1880) Die Philosophischen Schriften von GW Leibniz IV, hrsg von CI Gerhardt

Lerner RM (1978) Nature Nurture and Dynamic Interactionism. Human Development 21(1):1–20. https://doi.org/10.1159/000271572

Lieder F, Griffiths TL (2020) Resource-rational analysis: understanding human cognition as the optimal use of limited computational resources. Behavioral and Brain Sciences. Vol 43, e1. Cambridge University Press

Link D (2010) Scrambling TRUTH: rotating letters as a material form of thought. Variantology 4, p. 215–266

Llull R (1308) Ars Generalis Ultima (trans: Dambergs Y), Yanis Dambergs, https://lullianarts.narpan.net/

Luan S, Reb J, Gigerenzer G (2019) Ecological rationality: fast-and-frugal heuristics for managerial decision-making under uncertainty. Acad Manag J 62:6

Mäki U (1998) As if. In: Davis J, Hands DW, Mäki U (ed) The handbook of economic methodology. Edward Elgar Publishing

Martí R, Pardalos P, Resende M (eds) (2018) Handbook of heuristics. Springer, Cham

McDougall W (2015) An introduction to social psychology. Psychology Press

McNamara JM, Green RF, Olsson O (2006) Bayes’ theorem and its applications in animal behaviour. Oikos 112(2):243–251. http://www.jstor.org/stable/3548663

Newborn M (1997) Kasparov versus Deep Blue: computer chess comes of age. Springer

Newell A, Shaw JC, Simon HA (1959) Report on a general problem-solving program. In: R. Oldenbourg (ed) IFIP congress. UNESCO, Paris

Newell A, Simon HA (1972) Human problem solving. Prentice-Hall, Englewood Cliffs, NJ

Newell BR (2013) Judgment under uncertainty. In: Reisberg D (ed) The Oxford handbook of cognitive psychology. Oxford University Press

Newell BR, Weston NJ, Shanks DR (2003) Empirical tests of a fast-and-frugal heuristic: not everyone “takes the best”. Organ Behav Hum Decision Processes 91:1

Oaten A (1977) Optimal foraging in patches: a case for stochasticity. Theor Popul Biol 12(3):263–285

Article   MathSciNet   CAS   PubMed   MATH   Google Scholar  

Oppenheimer DM (2003) Not so fast! (and not so frugal!): rethinking the recognition heuristic. Cognition 90:1

Pachur T, Marinello G (2013) Expert intuitions: how to model the decision strategies of airport customs officers? Acta Psychol 144:1

Pearl J (1984) Heuristics: intelligent search strategies for computer problem solving. Addison-Wesley Longman Publishing Co, Inc

Pérez-Escudero A, de Polavieja G (2011) Collective animal behaviour from Bayesian estimation and probability matching. Nature Precedings

Pinheiro CAR, McNeill F (2014) Heuristics in analytics: a practical perspective of what influences our analytical world. Wiley Online Library

Polya G (1945) How to solve it. Princeton University Press

Polya G (1954) Induction and analogy in mathematics. Princeton University Press

Pombo O (2002) Leibniz and the encyclopaedic project. In: Actas do Congresso Internacional Ciência, Tecnologia Y Bien Comun: La atualidad de Leibniz

Pothos EM, Busemeyer JR (2022) Quantum cognition. Annu Rev Psychol 73:749–778

Priest G (2008) An introduction to non-classical logic: from if to is. Cambridge University Press

Book   MATH   Google Scholar  

Ramsey FP (1926) Truth and probability. In: Braithwaite RB (ed) The foundations of mathematics and other logical essays. McMaster University Archive for the History of Economic Thought. https://EconPapers.repec.org/RePEc:hay:hetcha:ramsey1926

Reimer T, Katsikopoulos K (2004) The use of recognition in group decision-making. Cogn Sci 28:6

Reisberg D (ed) (2013) The Oxford handbook of cognitive psychology. Oxford University Press

Rieskamp J, Otto PE (2006) SSL: a theory of how people learn to select strategies. J Exp Psychol Gen 135:2

Ritchey T (2022) Ramon Llull and the combinatorial art. https://www.swemorph.com/amg/pdf/ars-morph-1-draft-ch-4.pdf

Ritter J, Gründer K, Gabriel G, Schepers H (2017) Historisches Wörterbuch der Philosophie online. Schwabe Verlag

Russell SJ, Norvig P, Davis E (2010) Artificial intelligence: a modern approach, 3rd edn. Prentice-Hall series in artificial intelligence. Prentice-Hall

Savage LJ (ed) (1954) The foundations of statistics. Courier Corporation

Schacter D, Gilbert D, Wegner D (2011) Psychology, 2nd edn. Worth

Schaeffer J, Burch N, Bjornsson Y, Kishimoto A, Muller M, Lake R, Lu P, Sutphen S (2007) Checkers is solved. Science 317(5844):1518–1522

Article   ADS   MathSciNet   CAS   PubMed   MATH   Google Scholar  

Schreurs BG (1989) Classical conditioning of model systems: a behavioural review. Psychobiology 17:2

Scopus (2022) Search “heuristics”. https://www.scopus.com/standard/marketing.uri (TITLE-ABS-KEY(heuristic) AND (LIMIT-TO (SUBJAREA,"DECI") OR LIMIT-TO (SUBJAREA,"SOCI") OR LIMIT-TO (SUBJAREA,"BUSI"))) Accessed on 16 Apr 2022

Searle JR (1997) The mystery of consciousness. Granta Books

Semaan G, Coelho J, Silva E, Fadel A, Ochi L, Maculan N (2020) A brief history of heuristics: from Bounded Rationality to Intractability. IEEE Latin Am Trans 18(11):1975–1986. https://latamt.ieeer9.org/index.php/transactions/article/view/3970/682

Sen S (2020) The environment in evolution: Darwinism and Lamarckism revisited. Harvest Volume 1(2):84–88. https://doi.org/10.2139/ssrn.3537393

Shah AK, Oppenheimer DM (2008) Heuristics made easy: an effort-reduction framework. Psychol Bull 134:2

Siitonen A (2014) Bolzano on finding out intentions behind actions. In: From the ALWS archives: a selection of papers from the International Wittgenstein Symposia in Kirchberg am Wechsel

Simon HA (1955) A behavioural model of rational choice. Q J Econ 69:1

Simon HA, Newell A (1958) Heuristic problem solving: the next advance in operations research. Oper Res 6(1):1–10. http://www.jstor.org/stable/167397

Article   MATH   Google Scholar  

Smith R (2020) Aristotle’s logic. In: Zalta EN (ed) The Stanford encyclopedia of philosophy, 2020th edn. Metaphysics Research Lab, Stanford University

Smulders TV (2009) Darwin 200: special feature on brain evolution. Biology Letters 5(1), p. 105–107

Sörensen K, Sevaux M, Glover F (2018) A history of metaheuristics. In: Martí R, Pardalos P, Resende M (eds) Handbook of heuristics. Springer, Cham

Stephenson N (2003) Theoretical psychology: critical contributions. Captus Press

Strack F, Mussweiler T (1997) Explaining the enigmatic anchoring effect: mechanisms of selective accessibility. J Person Soc Psychol 73:3

Sullivan D (2002) How search engines work. SEARCH ENGINE WATCH, at http://www.searchenginewatch.com/webmasters/work.Html (Last Updated June 26, 2001) (on File with the New York University Journal of Legislation and Public Policy). http://www.searchenginewatch.com

Suppes P (1983) Heuristics and the axiomatic method. In: Groner R et al (ed) Methods of Heuristics. Routledge

Turing A (1937) On computable numbers, with an application to the entscheidungsproblem. Proc Lond Math Soc s2-42(1):230–265

Article   MathSciNet   MATH   Google Scholar  

Tversky A, Kahneman D (1973) Availability: a heuristic for judging frequency and probability. Cogn Psychol 5:2

Tversky A, Kahneman D (1974) Judgment under uncertainty: heuristics and biases. Science (New York, NY) 185::4157

Vardi MY (2012) Artificial intelligence: past and future. Commun ACM 55:1

Vikhar PA (2016) Evolutionary algorithms: a critical review and its future prospects. Paper presented at the international conference on global trends in signal processing, information computing and communication (ICGTSPICC). IEEE, pp. 261–265

Volz V, Rudolph G, Naujoks B (2016) Demonstrating the feasibility of automatic game balancing. Paper presented at the proceedings of the Genetic and Evolutionary Computation Conference, pp. 269–276

von Neumann J, Morgenstern O (1944) Theory of games and economic behaviour. Princeton University Press, Princeton, p. 1947

Zermelo E (1913) Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels. In: Proceedings of the fifth international congress of mathematicians. Symposium conducted at the meeting of Cambridge University Press, Cambridge. Cambridge University Press, Cambridge

Zilio D (2013) Filling the gaps: skinner on the role of neuroscience in the explanation of behavior. Behavior and Philosophy, 41, p. 33–59

Download references

Acknowledgements

We would like to extend our sincere thanks to the reviewers for their valuable time and effort in reviewing our work. Their insightful comments and suggestions have greatly improved the quality of our manuscript.

Open Access funding enabled and organized by Projekt DEAL.

Author information

Authors and affiliations.

HHL Leipzig Graduate School of Management, Leipzig, Germany

Mohamad Hjeij & Arnis Vilks

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Mohamad Hjeij .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Additional information.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Hjeij, M., Vilks, A. A brief history of heuristics: how did research on heuristics evolve?. Humanit Soc Sci Commun 10 , 64 (2023). https://doi.org/10.1057/s41599-023-01542-z

Download citation

Received : 25 July 2022

Accepted : 30 January 2023

Published : 17 February 2023

DOI : https://doi.org/10.1057/s41599-023-01542-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Socialisation approach to ai value acquisition: enabling flexible ethical navigation with built-in receptiveness to social influence.

  • Joel Janhonen

AI and Ethics (2023)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

a heuristic approach to problem solving

VectorKnight/Shutterstock

Reviewed by Psychology Today Staff

A heuristic is a mental shortcut that allows an individual to make a decision, pass judgment, or solve a problem quickly and with minimal mental effort. While heuristics can reduce the burden of decision-making and free up limited cognitive resources, they can also be costly when they lead individuals to miss critical information or act on unjust biases.

  • Understanding Heuristics
  • Different Heuristics
  • Problems with Heuristics

Cat Box/Shutterstock

As humans move throughout the world, they must process large amounts of information and make many choices with limited amounts of time. When information is missing, or an immediate decision is necessary, heuristics act as “rules of thumb” that guide behavior down the most efficient pathway.

Heuristics are not unique to humans; animals use heuristics that, though less complex, also serve to simplify decision-making and reduce cognitive load.

Generally, yes. Navigating day-to-day life requires everyone to make countless small decisions within a limited timeframe. Heuristics can help individuals save time and mental energy, freeing up cognitive resources for more complex planning and problem-solving endeavors.

The human brain and all its processes—including heuristics— developed over millions of years of evolution . Since mental shortcuts save both cognitive energy and time, they likely provided an advantage to those who relied on them.

Heuristics that were helpful to early humans may not be universally beneficial today . The familiarity heuristic, for example—in which the familiar is preferred over the unknown—could steer early humans toward foods or people that were safe, but may trigger anxiety or unfair biases in modern times.

fizkes/Shutterstock

The study of heuristics was developed by renowned psychologists Daniel Kahneman and Amos Tversky. Starting in the 1970s, Kahneman and Tversky identified several different kinds of heuristics, most notably the availability heuristic and the anchoring heuristic.

Since then, researchers have continued their work and identified many different kinds of heuristics, including:

Familiarity heuristic

Fundamental attribution error

Representativeness heuristic

Satisficing

The anchoring heuristic, or anchoring bias , occurs when someone relies more heavily on the first piece of information learned when making a choice, even if it's not the most relevant. In such cases, anchoring is likely to steer individuals wrong .

The availability heuristic describes the mental shortcut in which someone estimates whether something is likely to occur based on how readily examples come to mind . People tend to overestimate the probability of plane crashes, homicides, and shark attacks, for instance, because examples of such events are easily remembered.

People who make use of the representativeness heuristic categorize objects (or other people) based on how similar they are to known entities —assuming someone described as "quiet" is more likely to be a librarian than a politician, for instance. 

Satisficing is a decision-making strategy in which the first option that satisfies certain criteria is selected , even if other, better options may exist.

KieferPix/Shutterstock

Heuristics, while useful, are imperfect; if relied on too heavily, they can result in incorrect judgments or cognitive biases. Some are more likely to steer people wrong than others.

Assuming, for example, that child abductions are common because they’re frequently reported on the news—an example of the availability heuristic—may trigger unnecessary fear or overprotective parenting practices. Understanding commonly unhelpful heuristics, and identifying situations where they could affect behavior, may help individuals avoid such mental pitfalls.

Sometimes called the attribution effect or correspondence bias, the term describes a tendency to attribute others’ behavior primarily to internal factors—like personality or character— while attributing one’s own behavior more to external or situational factors .

If one person steps on the foot of another in a crowded elevator, the victim may attribute it to carelessness. If, on the other hand, they themselves step on another’s foot, they may be more likely to attribute the mistake to being jostled by someone else .

Listen to your gut, but don’t rely on it . Think through major problems methodically—by making a list of pros and cons, for instance, or consulting with people you trust. Make extra time to think through tasks where snap decisions could cause significant problems, such as catching an important flight.

a heuristic approach to problem solving

Artificial intelligence already plays a role in deciding who’s getting hired. The way to improve AI is very similar to how we fight human biases.

a heuristic approach to problem solving

Think you are avoiding the motherhood penalty by not having children? Think again. Simply being a woman of childbearing age can trigger discrimination.

a heuristic approach to problem solving

Psychological experiments on human judgment under uncertainty showed that people often stray from presumptions about rational economic agents.

a heuristic approach to problem solving

Psychology, like other disciplines, uses the scientific method to acquire knowledge and uncover truths—but we still ask experts for information and rely on intuition. Here's why.

a heuristic approach to problem solving

We all experience these 3 cognitive blind spots at work, frequently unaware of their costs in terms of productivity and misunderstanding. Try these strategies to work around them.

a heuristic approach to problem solving

Have you ever fallen for fake news? This toolkit can help you easily evaluate whether a claim is real or phony.

a heuristic approach to problem solving

An insidious form of prejudice occurs when a more powerful group ignores groups with less power and keeps them out of the minds of society.

a heuristic approach to problem solving

Chatbot designers engage in dishonest anthropomorphism by designing features to exploit our heuristic processing and dupe us into overtrusting and assigning moral responsibility.

a heuristic approach to problem solving

How do social media influencers convert a scroll into a like, follow, and sale? Here are the psychological principles used by digital influencers.

a heuristic approach to problem solving

Sometimes, we submit to the oppressive aspects of life voluntarily, by accepting them as fixed and immutable even when they are not. We fall into a mental trap. Why?

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Online Therapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Therapy Center NEW
  • Diagnosis Dictionary
  • Types of Therapy

May 2024 magazine cover

At any moment, someone’s aggravating behavior or our own bad luck can set us off on an emotional spiral that threatens to derail our entire day. Here’s how we can face our triggers with less reactivity so that we can get on with our lives.

  • Emotional Intelligence
  • Gaslighting
  • Affective Forecasting
  • Neuroscience

OML Search

Heuristic Approach to Problem-solving

Mathway Calculator Widget

We welcome your feedback, comments and questions about this site or page. Please submit your feedback or enquiries via our Feedback page.

XML RSS

Volume 20 Supplement 2

The Physician and Professionalism Today: Challenges to and strategies for ethical professional medical practice

  • Open access
  • Published: 09 December 2020

Medical heuristics and action-research: professionalism versus science

  • Jean-Pierre Unger 1 ,
  • Ingrid Morales 2 &
  • Pierre De Paepe 1  

BMC Health Services Research volume  20 , Article number:  1071 ( 2020 ) Cite this article

2719 Accesses

4 Citations

Metrics details

Professional knowledge aims at improving practice. It reduces uncertainty in decision-making, improves effectiveness in action and relevance in evaluation, stimulates reflexivity, and subjects practice to ethical standards. Heuristics is an approach to problem-solving, learning, and discovery employing a practical methodology that, although not optimal, is sufficient for achieving immediate goals. This article identifies the desirable, heuristic particularities of research in professional, medical practice; and it identifies what distinguishes this research from scientific research.

We examine the limits of biomedical and sociological research to produce professional knowledge. Then, we derive the heuristic characteristics of professional research from a meta-analysis of two action-research projects aimed at securing access to essential generic drugs in Senegal and improving physicians’ self-assessment and healthcare coordination in Belgium.

To study healthcare, biomedical sciences ignore how clinical decisions are implemented. Decisions are built into an articulated knowledge system, such as (clinical) epidemiology, where those studied are standardisable - while taking care of patients is an idiosyncratic, value-based, person-to-person process that largely eludes probabilistic methodologies. Social sciences also reach their limits here because descriptive, interpretative methods cannot help with gesture and speech quality, while the management of the patient’s suffering and risks makes each of them unique. Research into medical professionalism is normative as it is intended to formulate recommendations. Scientific data and descriptions are useful to the practitioner randomly, only from the similarities in the environment of the authors and their readers. Such recommendations can be conceived of as strategies, i.e., multi-resource and multi-stage action models to improve clinical and public health practice. Action learning and action-research are needed to design and implement these strategies, because their complexity implies trial and error. To validate a strategy, repeated experiences are needed. Its reproducibility assumes the description of the context. To participate in medical action-research, the investigator needs professional proficiency - a frequent difficulty in academic settings.

Some criteria to assess the relevance of publicly funded clinical and public health research can be derived from the difference between scientific and professional knowledge, i.e. the knowledge gained with real-life experience in the field.

Cochrane, the founder of Evidence-Based Medicine, considered that when a physician made a clinical decision, he ought to regard the values of the patient and his experience as much as the scientific evidence [ 1 ]. This is why medical professionalism is more than a science. It is made up of values, points of view, justifications and gestures, actions, and skills. It is thus a culture.

Clinical, as well as public health knowledge is complex, because medical practice is an art that combines (manual, behavioural and communication) skills, emotions, science, techniques, self-reflection, and philosophical reflection. A large array of disciplines is available to enrich the medical professional culture, but not all of them belong to the medical field. For instance, ethical standards in clinical decision-making call for moral philosophy; and biopsychosocial aspects of health care delivery benefit from psychological sciences.

Professional knowledge ought to be viewed as knowledge that identifies how the subject of study can and ought to be improved under every day conditions. Research into medical professionalism ought to aim to produce knowledge that reduces physicians’ Footnote 1 and professionals’ uncertainty in their decision-making, that improves the effectiveness of their actions, that increases relevance in evaluation, and that stimulates reflexivity and ethical behaviour.

To produce knowledge relevant to clinical and public health practice requires heuristic methods. If the Oxford English Dictionary defines them as methods “enabling a person to discover or learn something for themselves: a ‘hands-on’ or interactive heuristic approach to learning”, the more current use defines “heuristics” as “any approach to problem solving, learning, or discovery that employs a practical methodology not guaranteed to be optimal or perfect, but sufficient for the immediate goals.” [ 2 ].

Physicians often employ heuristics unknowingly in the interpretation of clinical guidelines, for ethical guidance, or to steer the intangible, symbolic motivation of colleagues and students. In public health, heuristics has been explored with respect to inductive versus deductive reasoning [ 3 ], conditions of its critical use [ 4 ], techniques for stimulating creativity in seeking health solutions [ 5 ], and better representing complex health systems [ 6 , 7 ].

This article discusses the desirable heuristic particularities of the research aimed at developing professional knowledge in clinical medicine, public health, and healthcare management and the differences that distinguish medical from scientific research using the meta-analysis of two research projects conducted in Belgium and Senegal.

K. Lewin described “action-research” as “comparative research on the conditions and effects of various forms of social action and research leading to social action” that uses “a spiral of steps, each of which is composed of a circle of planning, action and fact-finding about the result of the action” [ 8 ]. In health, action-research mobilises both professional and social actors.

We derive the heuristic characteristics of research applied to medical professionalism from the meta-analysis of two action-research projects aimed at securing access to essential, generic drugs in Senegal [ 9 ] and improving physicians’ self-assessment and healthcare coordination in Belgium [ 10 , 11 , 12 , 13 , 14 ], respectively. We examine their commonalities and elaborate on their objectives, methods, results, and the professionals’ motivations to engage in research involving care and organisational changes.

Formulating strategies and theories for clinical and public health practice

How to secure universal access to essential generic drugs a case study in senegal.

In the 1980s, the Senegalese had limited access to care due to under-financing of public services while private services were absent from peri-urban and rural areas. The national policy focus was still on comprehensive care rather than essential packages, as is the case today. The system featured a substantial rural–urban and rich–poor gap in the availability of services and low levels of public expenditure on health per capita. The health system was not yet characterised by an over-riding pattern of donor assistance and the degree of public sector bureaucracy was not marked, because it did not exclusively focus on disease control, as is the case today. Structural Adjustment Programmes encouraged an internal and international exodus of medical staff [ 15 ] and international migration [ 16 ]. Allegedly to reduce public expenditure on health, the World Bank promoted a management/property split (public property, private management) in public services granting financial autonomy to university teaching and regional hospitals and to first-line services. These actions paved the way for their privatisation.

By that time, in order to counter the commercialisation of care, and to pilot the strengthening of health systems throughout Western Africa, WHO funded a national project in Senegal called “Primary Health Care” designed to provide technical assistance to district management teams, health centres, and public hospitals. It aimed to integrate health services; to have them co-managed between representatives of users, professionals and the state; and to promote a bio-psychosocial delivery of care. The WHO-funded 1985–88 project strove to improve the population’s access to professional healthcare and to study health development strategies suitable for non-profit health services (including several faith-based health centres). A research and training centre was created in Thiès to improve the government medical officers’ abilities to manage the country’s forty health districts. Its activities connected the following [ 17 ]: continuing medical education; operations research to reveal key problems in the participating services; coaching to provide on-site technical and psychological support to district medical teams [ 18 ]; action-research to test solutions to prevailing health system deficiencies; health care service planning; disease control; and, later, support to central MOH staff to enhance consistency between central planning and field realities.

At that time, austerity policies forced public services to slash their drugs and medical equipment purchases throughout Sub-Saharan Africa, albeit denying access to essential generic drugs at the same time. This reduced access to health care dramatically. The aim of this nested research led by the Primary Health Care project was to formulate advice and managerial tools to secure universal access to safely-prescribed essential generic drugs in defined territories in Senegal.

In the 1980s and 1990s, WHO and UNICEF sought, via the Bamako Initiative [ 19 ], to secure access to essential generic drugs in publicly-oriented health centres and general hospitals and to democratise their management in thirty-five LMICs (low- and middle-income countries). The Bamako Initiative financed revolving funds to purchase drugs, contingent on the co-management of public services with users’ representatives. This initiative multiplied the utilisation ratio of first-line services in Guinea and Benin three- and fivefold, respectively [ 20 ].

Admittedly, the Bamako Initiative failed in several other countries, because the difficulty of coordinating financial, pharmaceutical and clinical management clashed with nepotism. Indeed, cronyism had the effect of appointing incompetent managers in the health system whilst the management of the Bamako initiative was particularly complex.

The challenge of the research in Senegal was thus to achieve the Bamako Initiative objectives using local resources only. The strategy tested in Kolda (1987 population: 184,000) combined financial, pharmaceutical, and clinical interventions to secure patient access to all essential generic drugs in the first-line public services and referral hospital [ 9 ]. Increased population-based health service utilisation rates and pharmaceutical and financial indicators were to measure the strategy’s achievements. Knowledge was the main external input.

With no financial input – only technical assistance – from cooperation agencies, the research team reorganised government health centres one by one and turned them into community-monitored, co-managed structures. A health committee with users’ representatives was established in each health centre (1 per 10,000 pop.) to choose tariffs and payment modes (here, the fee-for-sickness episode was chosen); to define exemptions on social grounds; and to monitor and oversee civil servants, resources, and activities (e.g., by triangulating production data i.e. by comparing two data sources). The committees also set priorities once the accounting break-even point had been reached. For initial financing, the researchers reached revolving funds by organising socio-cultural events.

The first health centre to be “reset” was nested in the district hospital in order to facilitate the design of the pharmaceutical management system. To avoid running out of medicines, the researchers coordinated rationalisation of clinical care with the purchase of pharmaceuticals. After 2 years, universal access to drugs remained a long-term perspective in Kolda district (the inhabitants were far from having all access to all necessary essential and generic medicines), but a publicly oriented drug distribution system had been established. Access to drugs was improved and prescriptions for drugs from private outlets were significantly reduced – another issue with the Bamako Initiative. Access to health care, measured by population-based health service utilisation rates, was multiplied 4.5 times in less than a year.

While the present paper examines its heuristic lessons, some immediate, managerial messages were learned from the experience:

To monitor access to medicines in countries where they are sorely lacking, governments should, not only monitor their purchase and delivery, but also the use of health services (expressed, for example, by the number of new cases per year and per capita in first-line services and by hospital admissions rates calculated on a population basis).

A multi-function, systemic planning structure coordinating the hospital and health centres over a territory proved useful to transfer the provision of drugs, of knowledge, and of funds between facilities.

Financial and pharmaceutical management and clinical training had to be closely coordinated if patients’ healthcare expenditures were to be lowered.

Professional coaching of district health services by a physician was necessary to coordinate the strategy’s implementation.

The integration of pharmaceutical stocks in dispensaries and hospitals, as opposed to the separate sale of medicines [ 21 ], made it possible to adopt a payment-per-sickness episode system that was conducive to care accessibility and continuity much more than a fee-for-service scheme whilst reducing the unnecessary consumption of both health care and pharmaceuticals.

Reorganising the hospital pharmacy and rationalising its clinical practice before revamping the health centres proved to be a reasonable option.

How to improve professionals’ reflexivity and care coordination in high-income countries: a case study in Belgian health services

From the post-war period on, Belgium’s health services have been characterised by self-employed GPs, private non-profit hospitals, weak mid-level managerial structures, and strongly dominant publicly-oriented health financing (Bismarck-style social insurance) [ 22 ]. The country’s health system was fragmented, but not highly segmented.

From 2000 on, the Belgian government used disease-specific programmes to fix deficiencies in clinical coordination, with limited success and commercial insurances and health services began to expand.

This second case study relates to a programme to strengthen professionals’ abilities to assess themselves and to improve clinical coordination beyond institutional boundaries in order to “defragment” the Belgian health system.

As early as 1994, our academic unit launched an in-service strategy called Local Health System (Sylos/Silog in French and Dutch). During a conference, the researchers shared the experiences of African health districts with eighty GPs and specialists and discussed how the underlying concept could help to defragment the Belgian health system “from within”. Fifteen to twenty GPs and specialists sharing common patients volunteered to join a “shadow” executive team to identify and fix issues in the clinical coordination between first-line services and hospital and to detect and correct medical errors, iatrogenic harm, organisational inefficiency, and disease control issues [ 23 , 24 ]. With coaching by our academic unit and no funding, the volunteers gathered monthly to solve problems and conflicts concerning their shared patients. Case management was reviewed to identify necessary initiatives in a series of areas: teamwork, continuing medical education, health information systems, inter-personal communication, clinical decision-making, professional ethics, medical audits, and the decentralisation of medical techniques from hospitals to GPs. Over the next two decades, several shadow districts joined the initiative in Brussels, Antwerp, Malmedy, and Liège. The project remained unfunded, with one brief exception.

Here follow a few examples of results:

Negotiations between general practitioners and neurologists made it possible to determine the criteria for managing patients with Alzheimer’s disease between health care levels of the Belgian system.

Discussions with specialists facilitated the development and dissemination of an algorithm for GP management of patients addicted to heroin.

GPs have been trained in the use of subcutaneous drips to facilitate home hospitalisation.

General practitioners’ access to the computerised hospitalisation records has been facilitated.

Some hospital radiology laboratories and departments have been reorganised to facilitate communication with general practitioners and the results have been modified to allow them to be oriented towards clinical decision-making.

The average length of hospital stays in surgery has been reduced by delegating preoperative examinations and postoperative follow-up to general practitioners.

Pain management has been standardised across the areas served by the participating hospitals.

Training sessions for participating GPs were organised to improve their manual skills in areas as varied as pneumology (spirometry, peak flow, saturometry) or cardiology (reading ECG, mistakes of automatic diagnosis, demand of opinion for difficult ECG, cardio-respiratory reanimation).

What lessons were learnt?

A small team of motivated professionals working outside the administrative framework can improve quality of care, clinical coordination and medical professionalism over territories.

The project inspired participating physicians, many of whom had collaborated for more than twenty years, by opening up opportunities for improving the organisation of health care, coordinating care between GPs and hospital specialists, and connecting clinical self-analysis with care management.

Internal clinical audits designed to identify managerial priorities proved indispensable to represent the patient’s interests whilst preventing physicians being judged on performance outside their teams [ 23 ].

External professional coaches were needed during the first years to support team activities.

Lessons for research to improve medical professionalism

Characteristics of professional practice and knowledge.

As per Evidence-Based Medicine (EBM), translating scientific laws and theories into clinical and public health practice requires integrating the clinician’s experience, the patient’s values, and the best available scientific information. Our two studies reveal a third dimension whereby professional knowledge outstrips scientific knowledge.

Managers are traditionally defined as persons entrusted with decision-making aimed at achieving their institutions’ predetermined goals most efficiently. However, our studies show that doctors ought to build and lead teamwork, reflect on practice, coach, educate, train, improve the organisation of health services, manage drugs, coordinate and evaluate healthcare, and contribute to disease and health risk control alongside their clinical duties possibly without their institution’s support, in order to optimise their impacts on health. The two Belgian and Senegalese studies show a) that doctors can significantly improve quality of care and accessibility with clinical and non-clinical, medical interventions; and b) research into medical professionalism may enhance the latter alongside clinical decision-making.

Medical practice and healthcare management cannot be inspired by industrial management, because care delivery is “customised”, and because medical ethics, biopsychosocial decision-making, professional communication, relationships, manual skills, and professionals’ reflectivity are not, or not much, amenable to probabilistic research and qualitative research. Bespoke care delivery and management make heuristics important to research into clinical and public health practice because they evade quantitative probabilistic and qualitative interpretative studies.

Contribution of scientific research to professional knowledge

The goal of scientific research is to discover laws and postulate theories that can explain natural or social phenomena, or in other words, build scientific knowledge. Scientific studies ought to be planned systematically before being performed, because scientific methodologies involve making hypotheses and carrying out experiments or empirical observations based on predictions derived from the hypotheses.

Probabilistic quantitative sciences help evaluate drugs and medical equipment, prepare pharmaceutical discovery, and assess disease frequency, symptoms and test results. Qualitative interpretative sciences help describe and explain medical practice. But in general, neither science is able to produce knowledge to improve professional practice.

Although quantification was used to monitor inputs and outputs in the Senegalese experience, scientific methods could not have brought much information relevant to medical practice in the two studied research projects [ 25 ] This, because decisions required ethics, rules of thumb, educated guesses, intuitive judgments, common sense, reflection, and philosophical thinking. Physicians were considered “ethical craftsmen”, not just technicians on parts of a production line, as often envisioned by industrial management theory: The concepts and techniques of quantitative analysis were not compatible with the sufficient freedom needed by these professionals to provide quality care and even drugs, since the list of drugs available in Kolda had to be negotiated with the prescribers.

Scientific research is unsuitable for the discovery of professional knowledge. If it is quantitative in essence, it will not represent values, personal experience, and skills in a way that is simple to allow validation. If it is qualitative and interpretative, it may uncover the hidden agenda of the institution that determines medical practice but risks ignoring the effectiveness of gesture and speech, as well as the intangible motivation of the caregiver.

With exceptions (such as the McMaster University group) [ 26 ], traditional clinical and public health research has usually been normative only if the effects of interventions could be quantified probabilistically, as in the case of disease control and clinical epidemiology. Our two studies show that, as managerial objects, medical professionalism calls for complex interventions that integrate clinical medicine, healthcare management and public health practice, as well as concern for multiple goals, resources, and constraints. By contrast, the vast public health literature on complexity is rarely geared to decision-making, because it raises problems of concept validation and limited reproducibility of experiences.

Research into medical professionalism and its heuristic particularities

In medicine, professionalism and scientific excellence are mutually enriching: the former gives the latter the relevance of concerns and scientific excellence contributes to the reflexivity of professional practice and the integration of knowledge.

To theorise advice for “manager-physicians”, researchers relied on a succession of hypotheses that were discarded for better ones (“progressive discovery”). For example, the researchers imagined being able to extricate themselves from the supervision of the Belgian experiment much earlier than they actually did, but the needs for training in public health and sometimes the intricacy of financial tensions between GPs and specialists prevented them doing so. And in Senegal, researchers thought to start the experience by strengthening pharmaceutical supplies for health centres before that of the hospital. Implementation issues could not all be imagined or foreseen at the planning stage. They assessed, through trial and error, the intended and unintended consequences of managerial decisions. Unlike pharmacological research, it is therefore not possible to plan in advance research into medical professionalism and fully control its environment. This is what gives action-research its importance in the discovery of professional medical knowledge.

Action-research is probably the best-known heuristic, praxis-based research methodology. R. Loewenson and co-workers characterise participatory action-research as follows: “Firstly...Participatory action-research aims to overcome the separation between subject and object. Those affected by the problem are the primary source of information and the primary actors in generating, validating and using the knowledge for action. … Secondly, it involves developing, implementing, and reflecting on actions as part of the research and knowledge generation process. Participatory action-research seeks to understand and improve the world by changing it, but does so in a manner that those affected by problems collectively act and produce change as a means to new knowledge” [ 27 ].

Both studies were structured as action-research, which others have advocated as a strategy to improve healthcare services and systems [ 28 , 29 , 30 ]. As such, their values had to be made explicit, because they are to professional action what standards (effectiveness, efficiency, precision, absence of bias, etc.) are to scientific research. The two studies treated access to professional care as a universal human right. Alongside the Hippocratic Oath’s “self-effacement tenet” (“Into whatsoever houses I enter, I will enter to help the sick”), their design relied on three quality of care features, formulated in 1971 by a Belgian medical activist group [ 31 ], and corresponding today to WONCA Europe’s definitions, i.e., holistic modelling, care coordination, and longitudinal continuity of care [ 32 ].

Inspired by other teams’ previous efforts along such lines [ 30 , 33 , 34 ], these action-research experiences also relied on explicit publicly-oriented standards for the management and planning of services and systems with a social and professional mission and for disease control programmes. These norms stated in particular that healthcare management should promote the negotiation of decisions amongst professionals, users, mutual aid societies, unions, and the State; and help de-segment and de-fragment health systems.

The conditions under which action-research by medical professionals can improve clinical and public health practice and develop medical knowledge distinguish it from participatory action-research:

First, for the sake of relevance, health care strategy design and implementation require researchers to learn professional skills and concepts continuously and to be exposed to professional teaching methods, e.g., coaching, technical and psychological supervision, teamwork, audits, demonstrations, observations, in-service continuing medical education, debates [ 35 ], and audits. This is why every action-research process involves professional learning.

Second, researcher-actors need to practice, reflect, and have sufficient professional experience to develop theories relevant to doctors, respond to their problems, and introduce change in clinical and public health practices. In Senegal, for instance, they had to be physicians in order to adjust the clinical decisions of health centre nurses to the available drugs; and in Belgium, to derive care coordination and continuous medical education initiatives from clinical audits and critical incidents. In both studies, they also had to be experienced advisors, as they had to be credible to discuss the problems and solutions with those participating. Therefore, researchers and members of the external advisory team have to be healthcare professionals themselves - which has consequences for academia: practitioner physicians are needed to research medical professional knowledge.

Professional knowledge validation

Kant’s categorical imperative states, “Act only according to that maxim whereby you can, at the same time, will that it ought to become a universal law.” Action-research is known to provide local solutions to managerial problems. However, as the main limitation of action-research is said to be the local validity of its conclusions [ 27 ], we discuss if and how the knowledge gained with medical action-research can or cannot be transferred to a variety of contexts.

The concept of strategy enables investigator-actors to abide by the categorical imperative when they conceptualise and validate professional knowledge derived from participatory research because it allows the validity of the normative conclusions to be extended beyond the context where the action research was carried out. In the two studies above, participating professionals designed and tested complex interventions on medical practice, service management, and system organisation. They validated the knowledge gained whilst representing interventions with a model. Models enabled them to validate experiments (and to reproduce them in new settings, see below) and to back viewpoints with indicators, observations, and nested studies. Action models can be called strategies and viewed as a way to structure advice guiding doctors’ analyses, decisions, actions, and evaluations based on specific field needs.

Professional experiences reproducibility

Repeated experiments in different settings provided opportunities for further knowledge validation and dissemination. Over the next 20 years, we were able to test strategic variants of the Kolda strategy in Burkina Faso, Ecuador, and Bolivia. Health districts covering populations of 150,000–200,000 for improved access to drugs, but these achievements were generally short-lived (3–5 years) because they weren’t supported by the government policy (except in Ecuador).

Similarly, the managerial techniques explored in Brussels were disseminated in Belgium and the acquired know-how became an input in the participatory research [ 36 , 37 ] of a European Commission-funded project designed to improve the clinical coordination of GPs and specialists in Colombia, Mexico, Brazil, Uruguay, Chile, and Argentina.

Transferring a strategy to other settings entails defining its conditions of success and failure (its “domain of validity”). These health system, cultural, economic, and/or policy facilitators and obstacles can best be studied with repeated tests. Contextualisation ought also to be studied with interdisciplinary methods and be open to political scientists [ 38 ] – yet another sizeable challenge for academia [ 39 ].

Reflective processes are associated with risks of complacency, confirmation, and recall biases due to unreliable memory, out-dated experiences, and the difficulty of triangulating information. We tried to reduce the effect of these biases using studies that had been published and explicit quality standards.

Countries rarely have programmes to improve medical professionalism although their public services cannot achieve their social mission without adopting a professional mission as well. A Canadian professional association is one of the few that includes professional teaching and evaluation in the profile of an ideal doctor. CanMeds is a framework that identifies and describes the abilities that physicians require to meet the healthcare needs of the people they serve effectively [ 40 ]. Another such exception, the NIVEL Institute in Utrecht [ 41 ], makes Dutch GPs a proud example of what professional programmes can achieve nationwide. But in general, professional knowledge is slowly being driven out of academia, because praxis-based methodologies do not appeal to academics as they are not prone to publication and are labour intensive.

Criteria for professionally-geared medical action-research

This paper offers social and professional criteria to guide medical health practice research and shows the heuristic importance of action-research. The normative, prescriptive character of professional knowledge ought to be a yardstick in medical research, be it clinical or public health. The production and dissemination of professional knowledge ought to be a priority in government-financed health services, and medical and public health schools. Governments ought to finance non-clinical medical activities sufficiently. Medical and public health schools ought to spell out how they assess the professional proficiency of their staff. Because action is the keystone of professionalism, action-research is the key methodology of medical investigation that aims to support professionalism and the organization of care.

Improving the doctors’ problem-solving capacities proved essential to explain the sustained participation of physicians in unfunded or poorly funded research, even, as was the case in Senegal, despite opportunity costs and harsh living conditions. Both the Belgian and Senegalese participatory research echoed the physicians’ professional identity. In Belgium, it improved continuity of care, connected clinical analysis to service management, facilitated mutual learning between GPs and specialists, improved interdisciplinary cooperation and linked continuing medical education to clinical errors. Having a personal impact on the services organisation and a sense of piloting it in their country made the participants feel empowered.

In Kolda, the research transmitted a professional culture aimed at improving peoples’ access to quality care and medication and reducing families’ catastrophic health expenditures. In Belgium, the conveyed culture was aimed at stimulating care coordination and reflectivity. The physicians’ values, viewpoints, and their validation were diffused by analyses, evaluations, and/or reflective methods. Acquiring a professional culture ought to be rewarded in health services and early on in medical curricula.

Introducing professional objectives in academic institutions requires a cultural change. This carries a cost that universities and governments ought to agree to pay for the sake of promoting the human right to individual, professionally-delivered health care. In the meantime, researchers need strong motivation to uphold their medical commitment and, to paraphrase Socrates’s injunction to educators, to “be able to show the effects of their principles in their own life” [ 42 ].

Availability of data and materials

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

In many countries medical care is a responsibility of non-physician professionals (nurses, clinical officers, feldschers) or shared with midwives, dentists, physical therapists, and psychologists. This discussion may thus be relevant to other professions.

Abbreviations

Evidence-Based Medicine

General Practitioner

Local Health System Project

Sackett DL, Rosenberg W, Gray J, Haynes RB, Richardson WS. Evidence based medicine: what it is and what it isn’t. BMJ. 1996;312(7023):71–2. https://doi.org/10.1136/bmj.312.7023.71 .

Article   CAS   PubMed   PubMed Central   Google Scholar  

https://en.wikipedia.org/wiki/Heuristic (Accessed 13 Sept 2020).

Cummings L. Public health reasoning: much more than deduction. Arch Public Health. 2013;71:25 Available at: http://www.archpublichealth.com/content/71/1/15 .

Article   PubMed   PubMed Central   Google Scholar  

Ulrich W, Reynolds M. Critical systems heuristics. In: Reynolds M, Holwell S, editors. Systems approaches to managing change: a practical guide. The Open University. London: Published in Association with Springer-Verlag London Limited; 2010.

O’Grady TP, Malloch K. Innovation leadership. Creating the landscape of Healthcare. Sudbury: Jones and Bartlett Publishers; 2010.

Plsek PE, Greenhalgh T. The challenge of complexity in healthcare. BMJ. 2001;323(7313):625–8.

Sicotte C, Champagne F, Contandriopoulos AP, et al. A conceptual framework for the analysis of healthcare Organisations’ performance. Health Serv Manag Res. 1998;11(1):24–41.

Article   CAS   Google Scholar  

Lewin K. Action-research and minority problems. J Soc Issues. 1946;2:34–46. https://doi.org/10.1111/j.1540-4560.1946.tb02295.x .

Article   Google Scholar  

Unger JP, Mbaye AM, Diao M. Finances and drugs at the Core of district health service rehabilitation. A case-study in Senegal: the Kolda District. Health Pol Plan. 1990;5(4):367–77.

Unger JP, et al. Les systèmes locaux de santé, un élément de réponse à la crise du secteur de la santé en Belgique ? Un pré-test à Bruxelles. Santé conjuguée. 2000;13:49–55.

Google Scholar  

Unger JP, et al. The local health systems (LHS) project in Belgium. Presentation at the 11th annual EUPHA meeting. Globalisation and Health in Europe: Harmonising Public Health Practices. 20–22 November 2003, Rome, Italy. Abstract. Eur J Public Health. 2003;13(Suppl):26.

Unger JP, et al. e-Letter. Health districts in Western Europe. The Belgian local health systems project. (Learning from developing countries: what are the lessons?). BMJ. 2004; Available at : http://bmj.com/cgi/eletters/328/7443/DC1#59220 .

Unger J-P. Les systèmes locaux de santé. Santé Conjuguée. 2004;30:29–32.

Belche J-L. Intégration entre ligne de soins, d’un patient à une population. PhD thesis. Liège: Liège University, Department of General Medicine; 2016.

Buckley R. P. & Baker J . ( 2008). IMF policies and health in sub-Saharan Africa. http://austlii.law.uts.edu.au/au/journals/UNSWLRS/2008/14.html .

Voorend K. A Welfare Magnet in the South? Migration and Social Policy in Costa Rica. PhD Thesis. Rotterdam: Erasmus University of Rotterdam; 2016.

Unger J-P, Daveloose P, Bâ A, Toure Sene NN, Mercenier P. Senegal Makes a Move towards the Goals of Alma Ata by Stimulating its Health Districts. World Health Forum. 1989;10(3/4):456–63.

CAS   PubMed   Google Scholar  

Unger JP, Ghilbert P, De Paepe P. e-Letter. Continuous medical education with (out) coaching? BMJ. 2004; ( http://bmj.com/cgi/eletters/328/7446/999#58480 ). Accessed 6 May 2004.

UNICEF, Bamako Initiative Management Unit. The Bamako Initiative: Reaching Health Goals through Strengthened Services Delivery. New York: Unicef. Bamako Initiative Management Unit (B.I.M.U.); 1990.

Levy-Bruhl D, et al. The Bamako initiative in Benin and Guinea: improving the effectiveness of primary healthcare. Int J Health Plan Man. 1997;12(Suppl 1):S49–79.

Unger JP, Yada A. Ought to medication be distributed in Africa by health services and/or pharmacies? A preliminary evaluation of the Boulgou project in Burkina Faso. Health Pol Plan. 1993;8(3):240–6.

Gerkens S, Merkur S. Belgium: Health system review. Health Syst Trans. 2010;12(5):1–266.

Unger J-P, Marchal B, Dugas S, Wuidar MJ, Burdet D, Leemans P, Unger J. Interface flow process audit: using the patient’s career as a tracer of quality of care and of system organisation. Int J Integr Care. 2004;4:1568–4156.

Belche J-L. Intégration entre lignes de soins : d’un patient à une population. PhD thesis, Liège University; 2016.

Unger JP, Morales I, De Paepe P, & Roland M. Integrating medical and public health knowledge - in support of joint medical practice. Forthcoming as part of BMC Health Services Research Volume 20 Supplement 2, 2020: “ The Physician and Professionalism Today: Challenges to and strategies for ethical professional medical practice. " The full contents of the supplement are available online at https://bmchealthservres.biomedcentral.com/articles/supplements/volume-20-supplement-2 .

https://www.mcmasterhealthforum.org Accessed 13 Sept 2020.

Loewenson R, Laurell AC, Hogstedt C, D’Ambruoso L, & Shroff Z (2014). Participatory action-research in health systems: a methods reader, TARSC, AHPSR, WHO, IDRC Canada, EQUINET, Harare. ISBN: 978-0-7974-5976-2.

Lallé B. Production de la connaissance et de l’action en science de gestion. Le statut expérimenté de “chercheur–acteur “. Available at : https://www.cairn.info/revue-francaise-de-gestion-2004-1-page-45.htm Accessed 13 Sept 2020.

Lehmann U, Gilson L. Action learning for health system governance: the reward and challenge of co-production. Health Policy Plan. 2015;30:957–63.

Article   PubMed   Google Scholar  

Grodos D, Mercenier P. Health systems research: a clearer methodology for more effective action. Stud Health Serv Org Policy. 2000;15:104.

Pour une politique de la santé. Groupe d’étude pour une réforme de la médecine. Brussels: Editions sociales; 1971.

Mola E, Eiksson T, Ortiz Bueno MJ, et al. The European definition of general practice/family medicine. Short version. European Academy of Teachers in General Practive, Wonca Europe, 2011 edition.

Smith R, Hiatt H, Berwick D. A shared statement of ethical principles for those who shape and give healthcare. A working draft from the Tavistock group. J Nurs Adm. 1999;29(6):5–8.

Article   CAS   PubMed   Google Scholar  

Giusti D, Criel B, De Bethune X. Viewpoint: public versus private healthcare delivery: beyond the slogans. Health Policy Plan. 1997;12(3):192–8.

Habermas J. The theory of communicative action, volume 1: reason and the rationalisation of society paperback – march 1; 1985.

Vázquez ML, Vargas I, Unger JP, et al. Evaluating the effectiveness of care integration strategies in different healthcare systems in Latin America: the EQUITY-LA II quasi experimental study protocol. BMJ Open. 2015;5:e007037. https://doi.org/10.1136/bmjopen-2014-007037 .

www.equity-la.eu/en/ Accessed 13 Sept 2020.

Hunter D. Role of politics in understanding complex, messy health systems: an essay by David J Hunter. BMJ. 2015;350:h1214. https://doi.org/10.1136/bmj.h1214 (Published 9 March 2015).

Unger JP, et al. The production of critical theories in Health Systems Research and Education. An epistemological approach to emancipating public research and education from private interests. Health Culture Soc. 2011;1(1):1–28. https://doi.org/10.5195/hcs.2011.50 Available at: http://hcs.pitt.edu/ojs/index.php/hcs/article/view/50/74 Accessed 13 Sept 2020.

2019 Royal College of Physicians and Surgeons of Canada. http://www.royalcollege.ca/rcsite/canmeds/canmeds-framework-e Accessed 13 Sept 2020.

https://www.nivel.nl/nl/contactgegevens-van-het-nivel Accessed 27 July 2019.

Gros F. Introduction générale. In: Foucault M, editor. Philosophie. Anthologie. Folio essais, Paris, Gallimard; 2004. p. 24.

Download references

Acknowledgements

We are much indebted to Doctor Charles Boelen (Former WHO Geneva program coordinator in human resources for health) and Professor David Himmelstein (City University of New York, School of Public Health at Hunter College; Albert Einstein College of Medicine, and Harvard Medical School) for their indispensable comments and criticisms. We would like to thank Dr. Pierre Daveloose for his support for the action-research. Gaby Leiden thoroughly edited the manuscript. No error can be attributed to them.

About this supplement

This article has been published as part of BMC Health Services Research Volume 20 Supplement 2, 2020: “The Physician and Professionalism Today: Challenges to and strategies for ethical professional medical practice”. The full contents of the supplement are available online at https://bmchealthservres.biomedcentral.com/articles/supplements/volume-20-supplement-2 .

Publication of this supplement has been funded by the Institute of Tropical Medicine, Antwerp, Belgium.

Author information

Authors and affiliations.

Department of Public Health, Institute of Tropical Medicine, Nationalestraat 155, B-2000, Antwerp, Belgium

Jean-Pierre Unger & Pierre De Paepe

Office de la Naissance et de l’Enfance, French Community of Belgium, Chaussée de Charleroi 95, B-1060, Brussels, Belgium

Ingrid Morales

You can also search for this author in PubMed   Google Scholar

Contributions

The author(s) read and approved the final manuscript.

Corresponding author

Correspondence to Jean-Pierre Unger .

Ethics declarations

Ethics approval and consent to participate.

Not Applicable (this manuscript does not involve human participants, human data or human tissue).

Consent for publication

Not Applicable (this manuscript does not contain any individual person’s data).

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Unger, JP., Morales, I. & De Paepe, P. Medical heuristics and action-research: professionalism versus science. BMC Health Serv Res 20 (Suppl 2), 1071 (2020). https://doi.org/10.1186/s12913-020-05888-x

Download citation

Published : 09 December 2020

DOI : https://doi.org/10.1186/s12913-020-05888-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Medical knowledge
  • Health management science
  • Health systems
  • Operation research
  • Action-research

BMC Health Services Research

ISSN: 1472-6963

a heuristic approach to problem solving

Teachers’ metacognitive and heuristic approaches to word problem solving: analysis and impact on students’ beliefs and performance

  • Original Article
  • Published: 06 November 2009
  • Volume 42 , pages 205–218, ( 2010 )

Cite this article

a heuristic approach to problem solving

  • Fien Depaepe 1 , 2 ,
  • Erik De Corte 1 &
  • Lieven Verschaffel 1  

1444 Accesses

23 Citations

9 Altmetric

Explore all metrics

We conducted a 7-month video-based study in two sixth-grade classrooms focusing on teachers’ metacognitive and heuristic approaches to problem solving. All problem-solving lessons were analysed regarding the extent to which teachers implemented a metacognitive model and addressed a set of eight heuristics. We observed clear differences between both teachers’ instructional approaches. Besides, we examined teachers’ and students’ beliefs about the degree to which metacognitive and heuristic skills were addressed in their classrooms and observed that participants’ beliefs were overall in line with our observations of teachers’ instructional approaches. In addition, we investigated how students’ problem-solving skills developed as a result of teachers’ instructional approaches. A positive relationship between students’ spontaneous application of heuristics to solve non-routine word problems and teachers’ references to these skills in their problem-solving lessons was found. However, this increase in the application of heuristics did not result in students’ better performance on these non-routine word problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

Similar content being viewed by others

a heuristic approach to problem solving

Word problems in mathematics education: a survey

a heuristic approach to problem solving

Mathematics Learning Challenges and Difficulties: A Students’ Perspective

a heuristic approach to problem solving

The Effects of Problem-Based, Project-Based, and Case-Based Learning on Students’ Motivation: a Meta-Analysis

The relevant parts are indicated in bold.

Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects—state, trends, and issues in mathematics education. Educational Studies in Mathematics, 22 (1), 37–68.

Article   Google Scholar  

Boaler, J., & Greeno, J. G. (2000). Identity, agency and knowing in mathematics worlds. In J. Boaler (Ed.), Multiple perspectives on mathematics teaching and learning (pp. 171–200). Wesport, CT: Ablex Publishing.

Google Scholar  

Boone, M., D’haveloose, W., Muylle, H., & Van Maele, K. (n.d.). Eurobasis 6 . Brugge: Die Keure.

Burkhardt, H. (1994). Mathematical applications in school curriculum. In T. Husén & T. N. Postlethwaite (Eds.), The international encyclopedia of education (2nd ed., pp. 3621–3624). Oxford: Pergamon Press.

Cobb, P., & Hodge, L. (July 2002). Learning, identity, and statistical data analysis . Paper presented at the sixth international conference on teaching statistics (ICOTS 6), Cape Town, South Africa.

Cobb, P., Gresalfi, M., & Hodge, L. (2009). An interpretative scheme for analyzing the identities that students develop in mathematics classrooms. Journal for Research in Mathematics Education, 40 (1), 40–68.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences . Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

De Corte, E., Verschaffel, L., & Masui, C. (2004). The CLIA-model: A framework for designing powerful learning environments for thinking and problem solving. European Journal of Psychology of Education, 19 (4), 365–384.

Depaepe, F., De Corte, E., & Verschaffel, L. (2007). Unraveling the culture of the mathematics classroom: A videobased study in sixth grade. International Journal of Educational Research, 46 (5), 266–279.

Depaepe, F., De Corte, E., & Verschaffel, L. (2009a). Analysis of the realistic nature of word problems in current elementary mathematics education. In L. Verschaffel, B. Greer, W. Van Dooren, & S. Mukhopadhyay (Eds.), Words and worlds: Modelling verbal descriptions of situations . Rotterdam, The Netherlands: Sense Publishers.

Depaepe, F., De Corte, E., & Verschaffel, L. (2009b). Teachers’ approaches towards word problem solving: Elaborating or restricting the problem context. Teaching and Teacher Education . doi: 10.1016/j.tate.2009.03.016 .

Depaepe, F., De Corte, E., & Verschaffel, L. (2009c). Coping with authority in mathematics classrooms: Evidence from an in-depth case study in two sixth-grade classrooms. Teaching and Teacher Education (submitted).

Desoete, A. (2007). Evaluating and improving the mathematics teaching–learning process through metacognition. Electronic Journal of Research in Educational Psychology, 5 (3), 705–730.

Dignath, C., Buettner, G., & Langfeldt, H. P. (2008). How can primary school students learn self-regulated learning strategies most effectively? A meta-analysis on self-regulation training programmes. Educational Research Review, 3 (2), 101–129.

Fan, L., & Zhu, Y. (2007). From convergence to divergence: The development of mathematical problem solving in research, curriculum, and classroom practice in Singapore. ZDM. The International Journal on Mathematics Education, 39 (5–6), 491–501.

Flavell, J. H., Miller, P. H., & Miller, S. A. (2002). Cognitive development (4th ed.). Upper Saddle River, NJ: Prentice Hall.

Fullan, M. (2000). The return of large-scale reform. Journal of Educational Change, 1 (1), 5–27.

Hegarty, M., Mayer, R. E., & Monk, C. A. (1995). Comprehension of arithmetic word problems: A comparison of successful and unsuccessful problem solvers. Journal of Educational Psychology, 87 (1), 18–32.

Hohn, R. L., & Frey, B. (2002). Heuristic training and performance in elementary mathematical problem solving. The Journal of Educational Research, 95 (6), 374–380.

Kramarski, B., & Mevarech, Z. R. (2003). Enhancing mathematical reasoning in the classroom: The effects of cooperative learning and metacognitive training. American Educational Research Journal, 40 (1), 281–310.

Lester, F. K., Jr. (1994). Musings about mathematical problem-solving research: 1970–1994. Journal for Research in Mathematics Education, 25 (6), 660–675.

Lester, F. K., Garofalo, J., & Kroll, D. L. (1989). The role of metacognition in mathematical problem solving: A study of two grade seven classes (Final report, NSF project MDR 85-50346). Bloomington: Indiana University, Mathematics Education Development Center.

Mason, J. (2001). Modelling modelling: Where is the centre of gravity of-for-when teaching modelling? In J. F. Matos, W. Blum, S. K. Houston, & S. P. Carreira (Eds.), Modelling and mathematics education. ICTMA 9: Applications in science and technology (pp. 39–61). Chichester, UK: Horwood.

Mevarech, Z., & Amrany, C. (2008). Immediate and delayed effects of meta-cognitive instruction on regulation of cognition and mathematics achievement. Metacognition and Learning, 3 (2), 147–157.

Mevarech, Z., & Fridkin, S. (2006). The effects of IMPROVE on mathematical knowledge, mathematical reasoning and meta-cognition. Metacognition and Learning, 1 (1), 85–97.

Ministerie van de Vlaamse Gemeenschap. (2001). Ontwikkelingsdoelen en eindtermen. Informatiemap voor de onderwijspraktijk, gewoon basisonderwijs [Educational standards for the elementary school. Information folder for the educational practice] . Brussels, Belgium: Departement Onderwijs.

Muis, K. R. (2008). Epistemic profiles and self-regulated learning: Examining relations in the context of mathematics problem solving. Contemporary Educational Psychology, 33 (2), 177–208.

NCTM. (2000). Principles and standards for school mathematics . Reston, VA: National Council of Teachers of Mathematics.

Remillard, J. T. (2005). Examining key concepts in research on teachers’ use of mathematics curricula. Review of Educational Research, 75 (2), 211–246.

Schoenfeld, A. H. (1985). Mathematical problem solving . New York: Academic Press.

Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 334–371). New York: Macmillan.

Spillane, J. P., Reiser, B. J., & Reimer, T. (2002). Policy implementation and cognition: Reframing and refocusing implementation research. Review of Educational Research, 72 (3), 387–431.

Van Dooren, W. (2005). The linear imperative: A search for the roots and an evaluation of the impact of the over-use of linearity [Unpublished doctoral dissertation]. Leuven: University of Leuven.

Veenman, M. V. J., Van Hout-Wolters, B. H. A. M., & Afflerbach, P. (2006). Metacognition and learning: Conceptual and methodological considerations. Metacognition and Learning, 1 (1), 3–14.

Verschaffel, L., De Corte, E., Lasure, S., Van Vaerenbergh, G., Bogaerts, H., & Ratinckx, E. (1999). Learning to solve mathematical application problems: A design experiment with fifth graders. Mathematical Thinking and Learning, 1 (3), 195–229.

Verschaffel, L., Greer, B., & De Corte, E. (2000). Making sense of word problems . Lisse, The Netherlands: Sweits & Zitlinger.

Voigt, J. (1985). Patterns and routines in classroom interaction. Recherches en Didactique des Mathematiques, 6 (1), 69–118.

Wilson, J., & Clarke, D. (2004). Towards the modelling of mathematical metacognition. Mathematics Education Research Journal, 16 (2), 25–48.

Download references

Acknowledgments

The authors are grateful to the reviewers for their constructive comments on earlier versions of this manuscript.

Author information

Authors and affiliations.

Centre for Instructional Psychology and Technology, University of Leuven, Leuven, Belgium

Fien Depaepe, Erik De Corte & Lieven Verschaffel

Research Foundation, Flanders, Vesaliusstraat 2, 3000, Leuven, Belgium

Fien Depaepe

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Fien Depaepe .

Rights and permissions

Reprints and permissions

About this article

Depaepe, F., De Corte, E. & Verschaffel, L. Teachers’ metacognitive and heuristic approaches to word problem solving: analysis and impact on students’ beliefs and performance. ZDM Mathematics Education 42 , 205–218 (2010). https://doi.org/10.1007/s11858-009-0221-5

Download citation

Accepted : 19 October 2009

Published : 06 November 2009

Issue Date : April 2010

DOI : https://doi.org/10.1007/s11858-009-0221-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Metacognition
  • Problem solving
  • Videotape recordings
  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. Problem-Solving Strategies: Definition and 5 Techniques to Try

    a heuristic approach to problem solving

  2. Heuristic Problem Solving: A comprehensive guide with 5 Examples

    a heuristic approach to problem solving

  3. Introduction to Problem Solving Skills

    a heuristic approach to problem solving

  4. The Beginner’s Guide to Heuristics Based Problem Solving

    a heuristic approach to problem solving

  5. 22 Heuristics Examples (The Types of Heuristics)

    a heuristic approach to problem solving

  6. Heuristic Approach to problem-solving Elementary Example 1

    a heuristic approach to problem solving

VIDEO

  1. Solve* Any PHYSICS Numerical In 3 Easy STEPS😎| NEET 2024

  2. Problem Solving Heuristic: Working Backwards

  3. Decision Making & Heuristic

  4. How Mind Errors Impact our Decisions: Cognitive Biases Explained

  5. 26 Heuristics For Effective Software Development

  6. Heuristics VS algorithm approach // Problem solving approach

COMMENTS

  1. Heuristic Method definition, steps and principles

    A heuristic method is an approach to finding a solution to a problem that originates from the ancient Greek word 'eurisko', meaning to 'find', 'search' or 'discover'. It is about using a practical method that doesn't necessarily need to be perfect. Heuristic methods speed up the process of reaching a satisfactory solution.

  2. Heuristics In Psychology: Definition & Examples

    Psychologists refer to these efficient problem-solving techniques as heuristics. A heuristic in psychology is a mental shortcut or rule of thumb that simplifies decision-making and problem-solving. Heuristics often speed up the process of finding a satisfactory solution, but they can also lead to cognitive biases.

  3. Heuristic Problem Solving: A comprehensive guide with 5 Examples

    Lack of creativity: Heuristic problem solving may rely on pre-existing solutions or approaches, limiting creativity and innovation in problem-solving. Over-reliance: Heuristic problem solving may lead to over-reliance on a specific approach or heuristic, which can be problematic if the heuristic is flawed or ineffective. Lack of transparency ...

  4. Heuristics & approximate solutions

    Computer scientists use a different approach for solving those hard problems: instead of trying to find the perfect solution, ... One way to come up with approximate answers to a problem is to use a heuristic, a technique that guides an algorithm to find good choices. When an algorithm uses a heuristic, it no longer needs to exhaustively search ...

  5. Heuristic

    A heuristic (/ h j ʊ ˈ r ɪ s t ɪ k /; from Ancient Greek εὑρίσκω (heurískō) 'to discover, method of discovery, serving to guide, reveal'), or heuristic technique, is any approach to problem solving that employs a pragmatic method that is not fully optimized, perfected, or rationalized, but is nevertheless "good enough" as an approximation or attribute substitution.

  6. Heuristics: Definition, Examples, and How They Work

    Heuristics are mental shortcuts that allow people to solve problems and make judgments quickly and efficiently. These rule-of-thumb strategies shorten decision-making time and allow people to function without constantly stopping to think about their next course of action. However, there are both benefits and drawbacks of heuristics.

  7. Heuristic Methods

    Heuristic methods can also play an important role in your problem-solving processes. The straw man technique, for example, is similar in approach to heuristics, and it is designed to help you to build on or refine a basic idea. Another approach is to adapt the solution to a different problem to fix yours. TRIZ is a powerful methodology for ...

  8. Using Heuristic Problem-Solving Methods for Effective ...

    Heuristics are essentially problem-solving tools that can be used for solving non-routine and challenging problems. A heuristic method is a practical approach for a short-term goal, such as solving a problem. The approach might not be perfect but can help find a quick solution to help move towards a reasonable way to resolve a problem.

  9. 8.2 Problem-Solving: Heuristics and Algorithms

    Algorithms. In contrast to heuristics, which can be thought of as problem-solving strategies based on educated guesses, algorithms are problem-solving strategies that use rules. Algorithms are generally a logical set of steps that, if applied correctly, should be accurate. For example, you could make a cake using heuristics — relying on your ...

  10. Heuristics and biases: The science of decision-making

    A heuristic is a word from the Greek meaning 'to discover'. It is an approach to problem-solving that takes one's personal experience into account. Heuristics provide strategies to scrutinize a limited number of signals and/or alternative choices in decision-making. Heuristics diminish the work of retrieving and storing information in ...

  11. Heuristics and Problem Solving

    Problem solving involves then "cognitive processing directed at transforming the given situation into a goal situation when no obvious method of solution is available" (Mayer and Wittrock 2006, p. 287). An implication is that a task can be a problem for one person, but not for someone else. For instance, the task "divide 120 marbles ...

  12. Heuristic Approaches to Problem Solving

    "A heuristic technique, often called simply a heuristic, is any approach to problem solving, learning, or discovery that employs a practical method not guaranteed to be optimal or perfect, but sufficient for the immediate goals. Where finding an optimal solution is impossible or impractical, heuristic methods can be used to speed up the process of

  13. A brief history of heuristics: how did research on heuristics evolve

    As heuristic problem-solving has often been contrasted with algorithmic problem-solving—even by Simon and Newell —it is worth recalling that the very notion of 'algorithm' was clarified ...

  14. Heuristics

    2. Next. A heuristic is a mental shortcut that allows an individual to make a decision, pass judgment, or solve a problem quickly and with minimal mental effort. While heuristics can reduce the ...

  15. (PDF) Heuristics and Problem Solving

    Heuristics and Problem Solving: Definitions, Benefits, and Limitations. The term heuristic, from the Greek, means, "serving to find out or discover". (Todd and Gigerenzer, 2000, p. 738). In ...

  16. (PDF) Learning Mathematics Using Heuristic Approach

    The use of heuristics as an approach to problem solving is equally significant. From the time Polya (1946) introduced heuristics to the present, there has been a significant change in the way ...

  17. Heuristic Approach to Problem-solving (with videos, worksheets

    Math Worksheets. Videos, worksheets, solutions, and activities to help students learn how to use the heuristic approach to solve word problems in Singapore Math. Heuristic Approach to problem-solving. Elementary Example 1. Draw it out. Example: The staircase with 3 steps is made up of 6 blocks. If Thomas had 21 bolcks just like these to build a ...

  18. A Heuristic Approach to Solving Complex Litigation Problems

    Article refers to a general process of problem solving that has effectively been applied outside of the field of law, including as an essential part of the scientific method. Id. 1 Oxhorn: A Heuristic Approach for Complex Litigation Problems Published by University of Cincinnati College of Law Scholarship and Publications, 2024

  19. Medical heuristics and action-research: professionalism versus science

    Heuristics is an approach to problem-solving, learning, and discovery employing a practical methodology that, although not optimal, is sufficient for achieving immediate goals. This article identifies the desirable, heuristic particularities of research in professional, medical practice; and it identifies what distinguishes this research from ...

  20. Thought

    Algorithms and heuristics. Other means of solving problems incorporate procedures associated with mathematics, such as algorithms and heuristics, for both well- and ill-structured problems.Research in problem solving commonly distinguishes between algorithms and heuristics, because each approach solves problems in different ways and with different assurances of success.

  21. Teachers' metacognitive and heuristic approaches to word problem

    We conducted a 7-month video-based study in two sixth-grade classrooms focusing on teachers' metacognitive and heuristic approaches to problem solving. All problem-solving lessons were analysed regarding the extent to which teachers implemented a metacognitive model and addressed a set of eight heuristics. We observed clear differences between both teachers' instructional approaches ...

  22. The Heuristic Problem-Solving Approach

    The Heuristic Problem-Solving Approach. Some of the issues that arise with the use of a heuristic method which, on the basis of experience of judgement, seems likely to yield good solutions but which cannot guarantee optimality are discussed. Expand.

  23. Problem-Solving Strategies: Definition and 5 Techniques to Try

    In insight problem-solving, the cognitive processes that help you solve a problem happen outside your conscious awareness. 4. Working backward. Working backward is a problem-solving approach often ...