Advancements and Challenges in Networking Technologies: A Comprehensive Survey

Ieee account.

  • Change Username/Password
  • Update Address

Purchase Details

  • Payment Options
  • Order History
  • View Purchased Documents

Profile Information

  • Communications Preferences
  • Profession and Education
  • Technical Interests
  • US & Canada: +1 800 678 4333
  • Worldwide: +1 732 981 0060
  • Contact & Support
  • About IEEE Xplore
  • Accessibility
  • Terms of Use
  • Nondiscrimination Policy
  • Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2024 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Sensors (Basel)

Logo of sensors

Study and Investigation on 5G Technology: A Systematic Review

Ramraj dangi.

1 School of Computing Science and Engineering, VIT University Bhopal, Bhopal 466114, India; [email protected] (R.D.); [email protected] (P.L.)

Praveen Lalwani

Gaurav choudhary.

2 Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Lyngby, Denmark; moc.liamg@7777yrahduohcvaruag

3 Department of Information Security Engineering, Soonchunhyang University, Asan-si 31538, Korea

Giovanni Pau

4 Faculty of Engineering and Architecture, Kore University of Enna, 94100 Enna, Italy; [email protected]

Associated Data

Not applicable.

In wireless communication, Fifth Generation (5G) Technology is a recent generation of mobile networks. In this paper, evaluations in the field of mobile communication technology are presented. In each evolution, multiple challenges were faced that were captured with the help of next-generation mobile networks. Among all the previously existing mobile networks, 5G provides a high-speed internet facility, anytime, anywhere, for everyone. 5G is slightly different due to its novel features such as interconnecting people, controlling devices, objects, and machines. 5G mobile system will bring diverse levels of performance and capability, which will serve as new user experiences and connect new enterprises. Therefore, it is essential to know where the enterprise can utilize the benefits of 5G. In this research article, it was observed that extensive research and analysis unfolds different aspects, namely, millimeter wave (mmWave), massive multiple-input and multiple-output (Massive-MIMO), small cell, mobile edge computing (MEC), beamforming, different antenna technology, etc. This article’s main aim is to highlight some of the most recent enhancements made towards the 5G mobile system and discuss its future research objectives.

1. Introduction

Most recently, in three decades, rapid growth was marked in the field of wireless communication concerning the transition of 1G to 4G [ 1 , 2 ]. The main motto behind this research was the requirements of high bandwidth and very low latency. 5G provides a high data rate, improved quality of service (QoS), low-latency, high coverage, high reliability, and economically affordable services. 5G delivers services categorized into three categories: (1) Extreme mobile broadband (eMBB). It is a nonstandalone architecture that offers high-speed internet connectivity, greater bandwidth, moderate latency, UltraHD streaming videos, virtual reality and augmented reality (AR/VR) media, and many more. (2) Massive machine type communication (eMTC), 3GPP releases it in its 13th specification. It provides long-range and broadband machine-type communication at a very cost-effective price with less power consumption. eMTC brings a high data rate service, low power, extended coverage via less device complexity through mobile carriers for IoT applications. (3) ultra-reliable low latency communication (URLLC) offers low-latency and ultra-high reliability, rich quality of service (QoS), which is not possible with traditional mobile network architecture. URLLC is designed for on-demand real-time interaction such as remote surgery, vehicle to vehicle (V2V) communication, industry 4.0, smart grids, intelligent transport system, etc. [ 3 ].

1.1. Evolution from 1G to 5G

First generation (1G): 1G cell phone was launched between the 1970s and 80s, based on analog technology, which works just like a landline phone. It suffers in various ways, such as poor battery life, voice quality, and dropped calls. In 1G, the maximum achievable speed was 2.4 Kbps.

Second Generation (2G): In 2G, the first digital system was offered in 1991, providing improved mobile voice communication over 1G. In addition, Code-Division Multiple Access (CDMA) and Global System for Mobile (GSM) concepts were also discussed. In 2G, the maximum achievable speed was 1 Mpbs.

Third Generation (3G): When technology ventured from 2G GSM frameworks into 3G universal mobile telecommunication system (UMTS) framework, users encountered higher system speed and quicker download speed making constant video calls. 3G was the first mobile broadband system that was formed to provide the voice with some multimedia. The technology behind 3G was high-speed packet access (HSPA/HSPA+). 3G used MIMO for multiplying the power of the wireless network, and it also used packet switching for fast data transmission.

Fourth Generation (4G): It is purely mobile broadband standard. In digital mobile communication, it was observed information rate that upgraded from 20 to 60 Mbps in 4G [ 4 ]. It works on LTE and WiMAX technologies, as well as provides wider bandwidth up to 100 Mhz. It was launched in 2010.

Fourth Generation LTE-A (4.5G): It is an advanced version of standard 4G LTE. LTE-A uses MIMO technology to combine multiple antennas for both transmitters as well as a receiver. Using MIMO, multiple signals and multiple antennas can work simultaneously, making LTE-A three times faster than standard 4G. LTE-A offered an improved system limit, decreased deferral in the application server, access triple traffic (Data, Voice, and Video) wirelessly at any time anywhere in the world.LTE-A delivers speeds of over 42 Mbps and up to 90 Mbps.

Fifth Generation (5G): 5G is a pillar of digital transformation; it is a real improvement on all the previous mobile generation networks. 5G brings three different services for end user like Extreme mobile broadband (eMBB). It offers high-speed internet connectivity, greater bandwidth, moderate latency, UltraHD streaming videos, virtual reality and augmented reality (AR/VR) media, and many more. Massive machine type communication (eMTC), it provides long-range and broadband machine-type communication at a very cost-effective price with less power consumption. eMTC brings a high data rate service, low power, extended coverage via less device complexity through mobile carriers for IoT applications. Ultra-reliable low latency communication (URLLC) offers low-latency and ultra-high reliability, rich quality of service (QoS), which is not possible with traditional mobile network architecture. URLLC is designed for on-demand real-time interaction such as remote surgery, vehicle to vehicle (V2V) communication, industry 4.0, smart grids, intelligent transport system, etc. 5G faster than 4G and offers remote-controlled operation over a reliable network with zero delays. It provides down-link maximum throughput of up to 20 Gbps. In addition, 5G also supports 4G WWWW (4th Generation World Wide Wireless Web) [ 5 ] and is based on Internet protocol version 6 (IPv6) protocol. 5G provides unlimited internet connection at your convenience, anytime, anywhere with extremely high speed, high throughput, low-latency, higher reliability and scalability, and energy-efficient mobile communication technology [ 6 ]. 5G mainly divided in two parts 6 GHz 5G and Millimeter wave(mmWave) 5G.

6 GHz is a mid frequency band which works as a mid point between capacity and coverage to offer perfect environment for 5G connectivity. 6 GHz spectrum will provide high bandwidth with improved network performance. It offers continuous channels that will reduce the need for network densification when mid-band spectrum is not available and it makes 5G connectivity affordable at anytime, anywhere for everyone.

mmWave is an essential technology of 5G network which build high performance network. 5G mmWave offer diverse services that is why all network providers should add on this technology in their 5G deployment planning. There are lots of service providers who deployed 5G mmWave, and their simulation result shows that 5G mmwave is a far less used spectrum. It provides very high speed wireless communication and it also offers ultra-wide bandwidth for next generation mobile network.

The evolution of wireless mobile technologies are presented in Table 1 . The abbreviations used in this paper are mentioned in Table 2 .

Summary of Mobile Technology.

Table of Notations and Abbreviations.

1.2. Key Contributions

The objective of this survey is to provide a detailed guide of 5G key technologies, methods to researchers, and to help with understanding how the recent works addressed 5G problems and developed solutions to tackle the 5G challenges; i.e., what are new methods that must be applied and how can they solve problems? Highlights of the research article are as follows.

  • This survey focused on the recent trends and development in the era of 5G and novel contributions by the researcher community and discussed technical details on essential aspects of the 5G advancement.
  • In this paper, the evolution of the mobile network from 1G to 5G is presented. In addition, the growth of mobile communication under different attributes is also discussed.
  • This paper covers the emerging applications and research groups working on 5G & different research areas in 5G wireless communication network with a descriptive taxonomy.
  • This survey discusses the current vision of the 5G networks, advantages, applications, key technologies, and key features. Furthermore, machine learning prospects are also explored with the emerging requirements in the 5G era. The article also focused on technical aspects of 5G IoT Based approaches and optimization techniques for 5G.
  • we provide an extensive overview and recent advancement of emerging technologies of 5G mobile network, namely, MIMO, Non-Orthogonal Multiple Access (NOMA), mmWave, Internet of Things (IoT), Machine Learning (ML), and optimization. Also, a technical summary is discussed by highlighting the context of current approaches and corresponding challenges.
  • Security challenges and considerations while developing 5G technology are discussed.
  • Finally, the paper concludes with the future directives.

The existing survey focused on architecture, key concepts, and implementation challenges and issues. In contrast, this survey covers the state-of-the-art techniques as well as corresponding recent novel developments by researchers. Various recent significant papers are discussed with the key technologies accelerating the development and production of 5G products.

2. Existing Surveys and Their Applicability

In this paper, a detailed survey on various technologies of 5G networks is presented. Various researchers have worked on different technologies of 5G networks. In this section, Table 3 gives a tabular representation of existing surveys of 5G networks. Massive MIMO, NOMA, small cell, mmWave, beamforming, and MEC are the six main pillars that helped to implement 5G networks in real life.

A comparative overview of existing surveys on different technologies of 5G networks.

2.1. Limitations of Existing Surveys

The existing survey focused on architecture, key concepts, and implementation challenges and issues. The numerous current surveys focused on various 5G technologies with different parameters, and the authors did not cover all the technologies of the 5G network in detail with challenges and recent advancements. Few authors worked on MIMO (Non-Orthogonal Multiple Access) NOMA, MEC, small cell technologies. In contrast, some others worked on beamforming, Millimeter-wave (mmWave). But the existing survey did not cover all the technologies of the 5G network from a research and advancement perspective. No detailed survey is available in the market covering all the 5G network technologies and currently published research trade-offs. So, our main aim is to give a detailed study of all the technologies working on the 5G network. In contrast, this survey covers the state-of-the-art techniques as well as corresponding recent novel developments by researchers. Various recent significant papers are discussed with the key technologies accelerating the development and production of 5G products. This survey article collected key information about 5G technology and recent advancements, and it can be a kind of a guide for the reader. This survey provides an umbrella approach to bring multiple solutions and recent improvements in a single place to accelerate the 5G research with the latest key enabling solutions and reviews. A systematic layout representation of the survey in Figure 1 . We provide a state-of-the-art comparative overview of the existing surveys on different technologies of 5G networks in Table 3 .

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g001.jpg

Systematic layout representation of survey.

2.2. Article Organization

This article is organized under the following sections. Section 2 presents existing surveys and their applicability. In Section 3 , the preliminaries of 5G technology are presented. In Section 4 , recent advances of 5G technology based on Massive MIMO, NOMA, Millimeter Wave, 5G with IoT, machine learning for 5G, and Optimization in 5G are provided. In Section 5 , a description of novel 5G features over 4G is provided. Section 6 covered all the security concerns of the 5G network. Section 7 , 5G technology based on above-stated challenges summarize in tabular form. Finally, Section 8 and Section 9 conclude the study, which paves the path for future research.

3. Preliminary Section

3.1. emerging 5g paradigms and its features.

5G provides very high speed, low latency, and highly salable connectivity between multiple devices and IoT worldwide. 5G will provide a very flexible model to develop a modern generation of applications and industry goals [ 26 , 27 ]. There are many services offered by 5G network architecture are stated below:

Massive machine to machine communications: 5G offers novel, massive machine-to-machine communications [ 28 ], also known as the IoT [ 29 ], that provide connectivity between lots of machines without any involvement of humans. This service enhances the applications of 5G and provides connectivity between agriculture, construction, and industries [ 30 ].

Ultra-reliable low latency communications (URLLC): This service offers real-time management of machines, high-speed vehicle-to-vehicle connectivity, industrial connectivity and security principles, and highly secure transport system, and multiple autonomous actions. Low latency communications also clear up a different area where remote medical care, procedures, and operation are all achievable [ 31 ].

Enhanced mobile broadband: Enhance mobile broadband is an important use case of 5G system, which uses massive MIMO antenna, mmWave, beamforming techniques to offer very high-speed connectivity across a wide range of areas [ 32 ].

For communities: 5G provides a very flexible internet connection between lots of machines to make smart homes, smart schools, smart laboratories, safer and smart automobiles, and good health care centers [ 33 ].

For businesses and industry: As 5G works on higher spectrum ranges from 24 to 100 GHz. This higher frequency range provides secure low latency communication and high-speed wireless connectivity between IoT devices and industry 4.0, which opens a market for end-users to enhance their business models [ 34 ].

New and Emerging technologies: As 5G came up with many new technologies like beamforming, massive MIMO, mmWave, small cell, NOMA, MEC, and network slicing, it introduced many new features to the market. Like virtual reality (VR), users can experience the physical presence of people who are millions of kilometers away from them. Many new technologies like smart homes, smart workplaces, smart schools, smart sports academy also came into the market with this 5G Mobile network model [ 35 ].

3.2. Commercial Service Providers of 5G

5G provides high-speed internet browsing, streaming, and downloading with very high reliability and low latency. 5G network will change your working style, and it will increase new business opportunities and provide innovations that we cannot imagine. This section covers top service providers of 5G network [ 36 , 37 ].

Ericsson: Ericsson is a Swedish multinational networking and telecommunications company, investing around 25.62 billion USD in 5G network, which makes it the biggest telecommunication company. It claims that it is the only company working on all the continents to make the 5G network a global standard for the next generation wireless communication. Ericsson developed the first 5G radio prototype that enables the operators to set up the live field trials in their network, which helps operators understand how 5G reacts. It plays a vital role in the development of 5G hardware. It currently provides 5G services in over 27 countries with content providers like China Mobile, GCI, LGU+, AT&T, Rogers, and many more. It has 100 commercial agreements with different operators as of 2020.

Verizon: It is American multinational telecommunication which was founded in 1983. Verizon started offering 5G services in April 2020, and by December 2020, it has actively provided 5G services in 30 cities of the USA. They planned that by the end of 2021, they would deploy 5G in 30 more new cities. Verizon deployed a 5G network on mmWave, a very high band spectrum between 30 to 300 GHz. As it is a significantly less used spectrum, it provides very high-speed wireless communication. MmWave offers ultra-wide bandwidth for next-generation mobile networks. MmWave is a faster and high-band spectrum that has a limited range. Verizon planned to increase its number of 5G cells by 500% by 2020. Verizon also has an ultra wide-band flagship 5G service which is the best 5G service that increases the market price of Verizon.

Nokia: Nokia is a Finnish multinational telecommunications company which was founded in 1865. Nokia is one of the companies which adopted 5G technology very early. It is developing, researching, and building partnerships with various 5G renders to offer 5G communication as soon as possible. Nokia collaborated with Deutsche Telekom and Hamburg Port Authority and provided them 8000-hectare site for their 5G MoNArch project. Nokia is the only company that supplies 5G technology to all the operators of different countries like AT&T, Sprint, T-Mobile US and Verizon in the USA, Korea Telecom, LG U+ and SK Telecom in South Korea and NTT DOCOMO, KDDI, and SoftBank in Japan. Presently, Nokia has around 150+ agreements and 29 live networks all over the world. Nokia is continuously working hard on 5G technology to expand 5G networks all over the globe.

AT&T: AT&T is an American multinational company that was the first to deploy a 5G network in reality in 2018. They built a gigabit 5G network connection in Waco, TX, Kalamazoo, MI, and South Bend to achieve this. It is the first company that archives 1–2 gigabit per second speed in 2019. AT&T claims that it provides a 5G network connection among 225 million people worldwide by using a 6 GHz spectrum band.

T-Mobile: T-Mobile US (TMUS) is an American wireless network operator which was the first service provider that offers a real 5G nationwide network. The company knew that high-band 5G was not feasible nationwide, so they used a 600 MHz spectrum to build a significant portion of its 5G network. TMUS is planning that by 2024 they will double the total capacity and triple the full 5G capacity of T-Mobile and Sprint combined. The sprint buyout is helping T-Mobile move forward the company’s current market price to 129.98 USD.

Samsung: Samsung started their research in 5G technology in 2011. In 2013, Samsung successfully developed the world’s first adaptive array transceiver technology operating in the millimeter-wave Ka bands for cellular communications. Samsung provides several hundred times faster data transmission than standard 4G for core 5G mobile communication systems. The company achieved a lot of success in the next generation of technology, and it is considered one of the leading companies in the 5G domain.

Qualcomm: Qualcomm is an American multinational corporation in San Diego, California. It is also one of the leading company which is working on 5G chip. Qualcomm’s first 5G modem chip was announced in October 2016, and a prototype was demonstrated in October 2017. Qualcomm mainly focuses on building products while other companies talk about 5G; Qualcomm is building the technologies. According to one magazine, Qualcomm was working on three main areas of 5G networks. Firstly, radios that would use bandwidth from any network it has access to; secondly, creating more extensive ranges of spectrum by combining smaller pieces; and thirdly, a set of services for internet applications.

ZTE Corporation: ZTE Corporation was founded in 1985. It is a partially Chinese state-owned technology company that works in telecommunication. It was a leading company that worked on 4G LTE, and it is still maintaining its value and doing research and tests on 5G. It is the first company that proposed Pre5G technology with some series of solutions.

NEC Corporation: NEC Corporation is a Japanese multinational information technology and electronics corporation headquartered in Minato, Tokyo. ZTE also started their research on 5G, and they introduced a new business concept. NEC’s main aim is to develop 5G NR for the global mobile system and create secure and intelligent technologies to realize 5G services.

Cisco: Cisco is a USA networking hardware company that also sleeves up for 5G network. Cisco’s primary focus is to support 5G in three ways: Service—enable 5G services faster so all service providers can increase their business. Infrastructure—build 5G-oriented infrastructure to implement 5G more quickly. Automation—make a more scalable, flexible, and reliable 5G network. The companies know the importance of 5G, and they want to connect more than 30 billion devices in the next couple of years. Cisco intends to work on network hardening as it is a vital part of 5G network. Cisco used AI with deep learning to develop a 5G Security Architecture, enabling Secure Network Transformation.

3.3. 5G Research Groups

Many research groups from all over the world are working on a 5G wireless mobile network [ 38 ]. These groups are continuously working on various aspects of 5G. The list of those research groups are presented as follows: 5GNOW (5th Generation Non-Orthogonal Waveform for Asynchronous Signaling), NEWCOM (Network of Excellence in Wireless Communication), 5GIC (5G Innovation Center), NYU (New York University) Wireless, 5GPPP (5G Infrastructure Public-Private Partnership), EMPHATIC (Enhanced Multi-carrier Technology for Professional Adhoc and Cell-Based Communication), ETRI(Electronics and Telecommunication Research Institute), METIS (Mobile and wireless communication Enablers for the Twenty-twenty Information Society) [ 39 ]. The various research groups along with the research area are presented in Table 4 .

Research groups working on 5G mobile networks.

3.4. 5G Applications

5G is faster than 4G and offers remote-controlled operation over a reliable network with zero delays. It provides down-link maximum throughput of up to 20 Gbps. In addition, 5G also supports 4G WWWW (4th Generation World Wide Wireless Web) [ 5 ] and is based on Internet protocol version 6 (IPv6) protocol. 5G provides unlimited internet connection at your convenience, anytime, anywhere with extremely high speed, high throughput, low-latency, higher reliability, greater scalablility, and energy-efficient mobile communication technology [ 6 ].

There are lots of applications of 5G mobile network are as follows:

  • High-speed mobile network: 5G is an advancement on all the previous mobile network technologies, which offers very high speed downloading speeds 0 of up to 10 to 20 Gbps. The 5G wireless network works as a fiber optic internet connection. 5G is different from all the conventional mobile transmission technologies, and it offers both voice and high-speed data connectivity efficiently. 5G offers very low latency communication of less than a millisecond, useful for autonomous driving and mission-critical applications. 5G will use millimeter waves for data transmission, providing higher bandwidth and a massive data rate than lower LTE bands. As 5 Gis a fast mobile network technology, it will enable virtual access to high processing power and secure and safe access to cloud services and enterprise applications. Small cell is one of the best features of 5G, which brings lots of advantages like high coverage, high-speed data transfer, power saving, easy and fast cloud access, etc. [ 40 ].
  • Entertainment and multimedia: In one analysis in 2015, it was found that more than 50 percent of mobile internet traffic was used for video downloading. This trend will surely increase in the future, which will make video streaming more common. 5G will offer High-speed streaming of 4K videos with crystal clear audio, and it will make a high definition virtual world on your mobile. 5G will benefit the entertainment industry as it offers 120 frames per second with high resolution and higher dynamic range video streaming, and HD TV channels can also be accessed on mobile devices without any interruptions. 5G provides low latency high definition communication so augmented reality (AR), and virtual reality (VR) will be very easily implemented in the future. Virtual reality games are trendy these days, and many companies are investing in HD virtual reality games. The 5G network will offer high-speed internet connectivity with a better gaming experience [ 41 ].
  • Smart homes : smart home appliances and products are in demand these days. The 5G network makes smart homes more real as it offers high-speed connectivity and monitoring of smart appliances. Smart home appliances are easily accessed and configured from remote locations using the 5G network as it offers very high-speed low latency communication.
  • Smart cities: 5G wireless network also helps develop smart cities applications such as automatic traffic management, weather update, local area broadcasting, energy-saving, efficient power supply, smart lighting system, water resource management, crowd management, emergency control, etc.
  • Industrial IoT: 5G wireless technology will provide lots of features for future industries such as safety, process tracking, smart packing, shipping, energy efficiency, automation of equipment, predictive maintenance, and logistics. 5G smart sensor technology also offers smarter, safer, cost-effective, and energy-saving industrial IoT operations.
  • Smart Farming: 5G technology will play a crucial role in agriculture and smart farming. 5G sensors and GPS technology will help farmers track live attacks on crops and manage them quickly. These smart sensors can also be used for irrigation, pest, insect, and electricity control.
  • Autonomous Driving: The 5G wireless network offers very low latency high-speed communication, significant for autonomous driving. It means self-driving cars will come to real life soon with 5G wireless networks. Using 5G autonomous cars can easily communicate with smart traffic signs, objects, and other vehicles running on the road. 5G’s low latency feature makes self-driving more real as every millisecond is essential for autonomous vehicles, decision-making is done in microseconds to avoid accidents.
  • Healthcare and mission-critical applications: 5G technology will bring modernization in medicine where doctors and practitioners can perform advanced medical procedures. The 5G network will provide connectivity between all classrooms, so attending seminars and lectures will be easier. Through 5G technology, patients can connect with doctors and take their advice. Scientists are building smart medical devices which can help people with chronic medical conditions. The 5G network will boost the healthcare industry with smart devices, the internet of medical things, smart sensors, HD medical imaging technologies, and smart analytics systems. 5G will help access cloud storage, so accessing healthcare data will be very easy from any location worldwide. Doctors and medical practitioners can easily store and share large files like MRI reports within seconds using the 5G network.
  • Satellite Internet: In many remote areas, ground base stations are not available, so 5G will play a crucial role in providing connectivity in such areas. The 5G network will provide connectivity using satellite systems, and the satellite system uses a constellation of multiple small satellites to provide connectivity in urban and rural areas across the world.

4. 5G Technologies

This section describes recent advances of 5G Massive MIMO, 5G NOMA, 5G millimeter wave, 5G IOT, 5G with machine learning, and 5G optimization-based approaches. In addition, the summary is also presented in each subsection that paves the researchers for the future research direction.

4.1. 5G Massive MIMO

Multiple-input-multiple-out (MIMO) is a very important technology for wireless systems. It is used for sending and receiving multiple signals simultaneously over the same radio channel. MIMO plays a very big role in WI-FI, 3G, 4G, and 4G LTE-A networks. MIMO is mainly used to achieve high spectral efficiency and energy efficiency but it was not up to the mark MIMO provides low throughput and very low reliable connectivity. To resolve this, lots of MIMO technology like single user MIMO (SU-MIMO), multiuser MIMO (MU-MIMO) and network MIMO were used. However, these new MIMO also did not still fulfill the demand of end users. Massive MIMO is an advancement of MIMO technology used in the 5G network in which hundreds and thousands of antennas are attached with base stations to increase throughput and spectral efficiency. Multiple transmit and receive antennas are used in massive MIMO to increase the transmission rate and spectral efficiency. When multiple UEs generate downlink traffic simultaneously, massive MIMO gains higher capacity. Massive MIMO uses extra antennas to move energy into smaller regions of space to increase spectral efficiency and throughput [ 43 ]. In traditional systems data collection from smart sensors is a complex task as it increases latency, reduced data rate and reduced reliability. While massive MIMO with beamforming and huge multiplexing techniques can sense data from different sensors with low latency, high data rate and higher reliability. Massive MIMO will help in transmitting the data in real-time collected from different sensors to central monitoring locations for smart sensor applications like self-driving cars, healthcare centers, smart grids, smart cities, smart highways, smart homes, and smart enterprises [ 44 ].

Highlights of 5G Massive MIMO technology are as follows:

  • Data rate: Massive MIMO is advised as the one of the dominant technologies to provide wireless high speed and high data rate in the gigabits per seconds.
  • The relationship between wave frequency and antenna size: Both are inversely proportional to each other. It means lower frequency signals need a bigger antenna and vise versa.

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g002.jpg

Pictorial representation of multi-input and multi-output (MIMO).

  • MIMO role in 5G: Massive MIMO will play a crucial role in the deployment of future 5G mobile communication as greater spectral and energy efficiency could be enabled.

State-of-the-Art Approaches

Plenty of approaches were proposed to resolve the issues of conventional MIMO [ 7 ].

The MIMO multirate, feed-forward controller is suggested by Mae et al. [ 46 ]. In the simulation, the proposed model generates the smooth control input, unlike the conventional MIMO, which generates oscillated control inputs. It also outperformed concerning the error rate. However, a combination of multirate and single rate can be used for better results.

The performance of stand-alone MIMO, distributed MIMO with and without corporation MIMO, was investigated by Panzner et al. [ 47 ]. In addition, an idea about the integration of large scale in the 5G technology was also presented. In the experimental analysis, different MIMO configurations are considered. The variation in the ratio of overall transmit antennas to spatial is deemed step-wise from equality to ten.

The simulation of massive MIMO noncooperative and cooperative systems for down-link behavior was performed by He et al. [ 48 ]. It depends on present LTE systems, which deal with various antennas in the base station set-up. It was observed that collaboration in different BS improves the system behaviors, whereas throughput is reduced slightly in this approach. However, a new method can be developed which can enhance both system behavior and throughput.

In [ 8 ], different approaches that increased the energy efficiency benefits provided by massive MIMO were presented. They analyzed the massive MIMO technology and described the detailed design of the energy consumption model for massive MIMO systems. This article has explored several techniques to enhance massive MIMO systems’ energy efficiency (EE) gains. This paper reviews standard EE-maximization approaches for the conventional massive MIMO systems, namely, scaling number of antennas, real-time implementing low-complexity operations at the base station (BS), power amplifier losses minimization, and radio frequency (RF) chain minimization requirements. In addition, open research direction is also identified.

In [ 49 ], various existing approaches based on different antenna selection and scheduling, user selection and scheduling, and joint antenna and user scheduling methods adopted in massive MIMO systems are presented in this paper. The objective of this survey article was to make awareness about the current research and future research direction in MIMO for systems. They analyzed that complete utilization of resources and bandwidth was the most crucial factor which enhances the sum rate.

In [ 50 ], authors discussed the development of various techniques for pilot contamination. To calculate the impact of pilot contamination in time division duplex (TDD) massive MIMO system, TDD and frequency division duplexing FDD patterns in massive MIMO techniques are used. They discussed different issues in pilot contamination in TDD massive MIMO systems with all the possible future directions of research. They also classified various techniques to generate the channel information for both pilot-based and subspace-based approaches.

In [ 19 ], the authors defined the uplink and downlink services for a massive MIMO system. In addition, it maintains a performance matrix that measures the impact of pilot contamination on different performances. They also examined the various application of massive MIMO such as small cells, orthogonal frequency-division multiplexing (OFDM) schemes, massive MIMO IEEE 802, 3rd generation partnership project (3GPP) specifications, and higher frequency bands. They considered their research work crucial for cutting edge massive MIMO and covered many issues like system throughput performance and channel state acquisition at higher frequencies.

In [ 13 ], various approaches were suggested for MIMO future generation wireless communication. They made a comparative study based on performance indicators such as peak data rate, energy efficiency, latency, throughput, etc. The key findings of this survey are as follows: (1) spatial multiplexing improves the energy efficiency; (2) design of MIMO play a vital role in the enhancement of throughput; (3) enhancement of mMIMO focusing on energy & spectral performance; (4) discussed the future challenges to improve the system design.

In [ 51 ], the study of large-scale MIMO systems for an energy-efficient system sharing method was presented. For the resource allocation, circuit energy and transmit energy expenditures were taken into consideration. In addition, the optimization techniques were applied for an energy-efficient resource sharing system to enlarge the energy efficiency for individual QoS and energy constraints. The author also examined the BS configuration, which includes homogeneous and heterogeneous UEs. While simulating, they discussed that the total number of transmit antennas plays a vital role in boosting energy efficiency. They highlighted that the highest energy efficiency was obtained when the BS was set up with 100 antennas that serve 20 UEs.

This section includes various works done on 5G MIMO technology by different author’s. Table 5 shows how different author’s worked on improvement of various parameters such as throughput, latency, energy efficiency, and spectral efficiency with 5G MIMO technology.

Summary of massive MIMO-based approaches in 5G technology.

4.2. 5G Non-Orthogonal Multiple Access (NOMA)

NOMA is a very important radio access technology used in next generation wireless communication. Compared to previous orthogonal multiple access techniques, NOMA offers lots of benefits like high spectrum efficiency, low latency with high reliability and high speed massive connectivity. NOMA mainly works on a baseline to serve multiple users with the same resources in terms of time, space and frequency. NOMA is mainly divided into two main categories one is code domain NOMA and another is power domain NOMA. Code-domain NOMA can improve the spectral efficiency of mMIMO, which improves the connectivity in 5G wireless communication. Code-domain NOMA was divided into some more multiple access techniques like sparse code multiple access, lattice-partition multiple access, multi-user shared access and pattern-division multiple access [ 52 ]. Power-domain NOMA is widely used in 5G wireless networks as it performs well with various wireless communication techniques such as MIMO, beamforming, space-time coding, network coding, full-duplex and cooperative communication etc. [ 53 ]. The conventional orthogonal frequency-division multiple access (OFDMA) used by 3GPP in 4G LTE network provides very low spectral efficiency when bandwidth resources are allocated to users with low channel state information (CSI). NOMA resolved this issue as it enables users to access all the subcarrier channels so bandwidth resources allocated to the users with low CSI can still be accessed by the users with strong CSI which increases the spectral efficiency. The 5G network will support heterogeneous architecture in which small cell and macro base stations work for spectrum sharing. NOMA is a key technology of the 5G wireless system which is very helpful for heterogeneous networks as multiple users can share their data in a small cell using the NOMA principle.The NOMA is helpful in various applications like ultra-dense networks (UDN), machine to machine (M2M) communication and massive machine type communication (mMTC). As NOMA provides lots of features it has some challenges too such as NOMA needs huge computational power for a large number of users at high data rates to run the SIC algorithms. Second, when users are moving from the networks, to manage power allocation optimization is a challenging task for NOMA [ 54 ]. Hybrid NOMA (HNOMA) is a combination of power-domain and code-domain NOMA. HNOMA uses both power differences and orthogonal resources for transmission among multiple users. As HNOMA is using both power-domain NOMA and code-domain NOMA it can achieve higher spectral efficiency than Power-domain NOMA and code-domain NOMA. In HNOMA multiple groups can simultaneously transmit signals at the same time. It uses a message passing algorithm (MPA) and successive interference cancellation (SIC)-based detection at the base station for these groups [ 55 ].

Highlights of 5G NOMA technology as follows:

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g003.jpg

Pictorial representation of orthogonal and Non-Orthogonal Multiple Access (NOMA).

  • NOMA provides higher data rates and resolves all the loop holes of OMA that makes 5G mobile network more scalable and reliable.
  • As multiple users use same frequency band simultaneously it increases the performance of whole network.
  • To setup intracell and intercell interference NOMA provides nonorthogonal transmission on the transmitter end.
  • The primary fundamental of NOMA is to improve the spectrum efficiency by strengthening the ramification of receiver.

State-of-the-Art of Approaches

A plenty of approaches were developed to address the various issues in NOMA.

A novel approach to address the multiple receiving signals at the same frequency is proposed in [ 22 ]. In NOMA, multiple users use the same sub-carrier, which improves the fairness and throughput of the system. As a nonorthogonal method is used among multiple users, at the time of retrieving the user’s signal at the receiver’s end, joint processing is required. They proposed solutions to optimize the receiver and the radio resource allocation of uplink NOMA. Firstly, the authors proposed an iterative MUDD which utilizes the information produced by the channel decoder to improve the performance of the multiuser detector. After that, the author suggested a power allocation and novel subcarrier that enhances the users’ weighted sum rate for the NOMA scheme. Their proposed model showed that NOMA performed well as compared to OFDM in terms of fairness and efficiency.

In [ 53 ], the author’s reviewed a power-domain NOMA that uses superposition coding (SC) and successive interference cancellation (SIC) at the transmitter and the receiver end. Lots of analyses were held that described that NOMA effectively satisfies user data rate demands and network-level of 5G technologies. The paper presented a complete review of recent advances in the 5G NOMA system. It showed the comparative analysis regarding allocation procedures, user fairness, state-of-the-art efficiency evaluation, user pairing pattern, etc. The study also analyzes NOMA’s behavior when working with other wireless communication techniques, namely, beamforming, MIMO, cooperative connections, network, space-time coding, etc.

In [ 9 ], the authors proposed NOMA with MEC, which improves the QoS as well as reduces the latency of the 5G wireless network. This model increases the uplink NOMA by decreasing the user’s uplink energy consumption. They formulated an optimized NOMA framework that reduces the energy consumption of MEC by using computing and communication resource allocation, user clustering, and transmit powers.

In [ 10 ], the authors proposed a model which investigates outage probability under average channel state information CSI and data rate in full CSI to resolve the problem of optimal power allocation, which increase the NOMA downlink system among users. They developed simple low-complexity algorithms to provide the optimal solution. The obtained simulation results showed NOMA’s efficiency, achieving higher performance fairness compared to the TDMA configurations. It was observed from the results that NOMA, through the appropriate power amplifiers (PA), ensures the high-performance fairness requirement for the future 5G wireless communication networks.

In [ 56 ], researchers discussed that the NOMA technology and waveform modulation techniques had been used in the 5G mobile network. Therefore, this research gave a detailed survey of non-orthogonal waveform modulation techniques and NOMA schemes for next-generation mobile networks. By analyzing and comparing multiple access technologies, they considered the future evolution of these technologies for 5G mobile communication.

In [ 57 ], the authors surveyed non-orthogonal multiple access (NOMA) from the development phase to the recent developments. They have also compared NOMA techniques with traditional OMA techniques concerning information theory. The author discussed the NOMA schemes categorically as power and code domain, including the design principles, operating principles, and features. Comparison is based upon the system’s performance, spectral efficiency, and the receiver’s complexity. Also discussed are the future challenges, open issues, and their expectations of NOMA and how it will support the key requirements of 5G mobile communication systems with massive connectivity and low latency.

In [ 17 ], authors present the first review of an elementary NOMA model with two users, which clarify its central precepts. After that, a general design with multicarrier supports with a random number of users on each sub-carrier is analyzed. In performance evaluation with the existing approaches, resource sharing and multiple-input multiple-output NOMA are examined. Furthermore, they took the key elements of NOMA and its potential research demands. Finally, they reviewed the two-user SC-NOMA design and a multi-user MC-NOMA design to highlight NOMA’s basic approaches and conventions. They also present the research study about the performance examination, resource assignment, and MIMO in NOMA.

In this section, various works by different authors done on 5G NOMA technology is covered. Table 6 shows how other authors worked on the improvement of various parameters such as spectral efficiency, fairness, and computing capacity with 5G NOMA technology.

Summary of NOMA-based approaches in 5G technology.

4.3. 5G Millimeter Wave (mmWave)

Millimeter wave is an extremely high frequency band, which is very useful for 5G wireless networks. MmWave uses 30 GHz to 300 GHz spectrum band for transmission. The frequency band between 30 GHz to 300 GHz is known as mmWave because these waves have wavelengths between 1 to 10 mm. Till now radar systems and satellites are only using mmWave as these are very fast frequency bands which provide very high speed wireless communication. Many mobile network providers also started mmWave for transmitting data between base stations. Using two ways the speed of data transmission can be improved one is by increasing spectrum utilization and second is by increasing spectrum bandwidth. Out of these two approaches increasing bandwidth is quite easy and better. The frequency band below 5 GHz is very crowded as many technologies are using it so to boost up the data transmission rate 5G wireless network uses mmWave technology which instead of increasing spectrum utilization, increases the spectrum bandwidth [ 58 ]. To maximize the signal bandwidth in wireless communication the carrier frequency should also be increased by 5% because the signal bandwidth is directly proportional to carrier frequencies. The frequency band between 28 GHz to 60 GHz is very useful for 5G wireless communication as 28 GHz frequency band offers up to 1 GHz spectrum bandwidth and 60 GHz frequency band offers 2 GHz spectrum bandwidth. 4G LTE provides 2 GHz carrier frequency which offers only 100 MHz spectrum bandwidth. However, the use of mmWave increases the spectrum bandwidth 10 times, which leads to better transmission speeds [ 59 , 60 ].

Highlights of 5G mmWave are as follows:

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g004.jpg

Pictorial representation of millimeter wave.

  • The 5G mmWave offer three advantages: (1) MmWave is very less used new Band, (2) MmWave signals carry more data than lower frequency wave, and (3) MmWave can be incorporated with MIMO antenna with the potential to offer a higher magnitude capacity compared to current communication systems.

In [ 11 ], the authors presented the survey of mmWave communications for 5G. The advantage of mmWave communications is adaptability, i.e., it supports the architectures and protocols up-gradation, which consists of integrated circuits, systems, etc. The authors over-viewed the present solutions and examined them concerning effectiveness, performance, and complexity. They also discussed the open research issues of mmWave communications in 5G concerning the software-defined network (SDN) architecture, network state information, efficient regulation techniques, and the heterogeneous system.

In [ 61 ], the authors present the recent work done by investigators in 5G; they discussed the design issues and demands of mmWave 5G antennas for cellular handsets. After that, they designed a small size and low-profile 60 GHz array of antenna units that contain 3D planer mesh-grid antenna elements. For the future prospect, a framework is designed in which antenna components are used to operate cellular handsets on mmWave 5G smartphones. In addition, they cross-checked the mesh-grid array of antennas with the polarized beam for upcoming hardware challenges.

In [ 12 ], the authors considered the suitability of the mmWave band for 5G cellular systems. They suggested a resource allocation system for concurrent D2D communications in mmWave 5G cellular systems, and it improves network efficiency and maintains network connectivity. This research article can serve as guidance for simulating D2D communications in mmWave 5G cellular systems. Massive mmWave BS may be set up to obtain a high delivery rate and aggregate efficiency. Therefore, many wireless users can hand off frequently between the mmWave base terminals, and it emerges the demand to search the neighbor having better network connectivity.

In [ 62 ], the authors provided a brief description of the cellular spectrum which ranges from 1 GHz to 3 GHz and is very crowed. In addition, they presented various noteworthy factors to set up mmWave communications in 5G, namely, channel characteristics regarding mmWave signal attenuation due to free space propagation, atmospheric gaseous, and rain. In addition, hybrid beamforming architecture in the mmWave technique is analyzed. They also suggested methods for the blockage effect in mmWave communications due to penetration damage. Finally, the authors have studied designing the mmWave transmission with small beams in nonorthogonal device-to-device communication.

This section covered various works done on 5G mmWave technology. The Table 7 shows how different author’s worked on the improvement of various parameters i.e., transmission rate, coverage, and cost, with 5G mmWave technology.

Summary of existing mmWave-based approaches in 5G technology.

4.4. 5G IoT Based Approaches

The 5G mobile network plays a big role in developing the Internet of Things (IoT). IoT will connect lots of things with the internet like appliances, sensors, devices, objects, and applications. These applications will collect lots of data from different devices and sensors. 5G will provide very high speed internet connectivity for data collection, transmission, control, and processing. 5G is a flexible network with unused spectrum availability and it offers very low cost deployment that is why it is the most efficient technology for IoT [ 63 ]. In many areas, 5G provides benefits to IoT, and below are some examples:

Smart homes: smart home appliances and products are in demand these days. The 5G network makes smart homes more real as it offers high speed connectivity and monitoring of smart appliances. Smart home appliances are easily accessed and configured from remote locations using the 5G network, as it offers very high speed low latency communication.

Smart cities: 5G wireless network also helps in developing smart cities applications such as automatic traffic management, weather update, local area broadcasting, energy saving, efficient power supply, smart lighting system, water resource management, crowd management, emergency control, etc.

Industrial IoT: 5G wireless technology will provide lots of features for future industries such as safety, process tracking, smart packing, shipping, energy efficiency, automation of equipment, predictive maintenance and logistics. 5G smart sensor technology also offers smarter, safer, cost effective, and energy-saving industrial operation for industrial IoT.

Smart Farming: 5G technology will play a crucial role for agriculture and smart farming. 5G sensors and GPS technology will help farmers to track live attacks on crops and manage them quickly. These smart sensors can also be used for irrigation control, pest control, insect control, and electricity control.

Autonomous Driving: 5G wireless network offers very low latency high speed communication which is very significant for autonomous driving. It means self-driving cars will come to real life soon with 5G wireless networks. Using 5G autonomous cars can easily communicate with smart traffic signs, objects and other vehicles running on the road. 5G’s low latency feature makes self-driving more real as every millisecond is important for autonomous vehicles, decision taking is performed in microseconds to avoid accidents [ 64 ].

Highlights of 5G IoT are as follows:

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g005.jpg

Pictorial representation of IoT with 5G.

  • 5G with IoT is a new feature of next-generation mobile communication, which provides a high-speed internet connection between moderated devices. 5G IoT also offers smart homes, smart devices, sensors, smart transportation systems, smart industries, etc., for end-users to make them smarter.
  • IoT deals with moderate devices which connect through the internet. The approach of the IoT has made the consideration of the research associated with the outcome of providing wearable, smart-phones, sensors, smart transportation systems, smart devices, washing machines, tablets, etc., and these diverse systems are associated to a common interface with the intelligence to connect.
  • Significant IoT applications include private healthcare systems, traffic management, industrial management, and tactile internet, etc.

Plenty of approaches is devised to address the issues of IoT [ 14 , 65 , 66 ].

In [ 65 ], the paper focuses on 5G mobile systems due to the emerging trends and developing technologies, which results in the exponential traffic growth in IoT. The author surveyed the challenges and demands during deployment of the massive IoT applications with the main focus on mobile networking. The author reviewed the features of standard IoT infrastructure, along with the cellular-based, low-power wide-area technologies (LPWA) such as eMTC, extended coverage (EC)-GSM-IoT, as well as noncellular, low-power wide-area (LPWA) technologies such as SigFox, LoRa etc.

In [ 14 ], the authors presented how 5G technology copes with the various issues of IoT today. It provides a brief review of existing and forming 5G architectures. The survey indicates the role of 5G in the foundation of the IoT ecosystem. IoT and 5G can easily combine with improved wireless technologies to set up the same ecosystem that can fulfill the current requirement for IoT devices. 5G can alter nature and will help to expand the development of IoT devices. As the process of 5G unfolds, global associations will find essentials for setting up a cross-industry engagement in determining and enlarging the 5G system.

In [ 66 ], the author introduced an IoT authentication scheme in a 5G network, with more excellent reliability and dynamic. The scheme proposed a privacy-protected procedure for selecting slices; it provided an additional fog node for proper data transmission and service types of the subscribers, along with service-oriented authentication and key understanding to maintain the secrecy, precision of users, and confidentiality of service factors. Users anonymously identify the IoT servers and develop a vital channel for service accessibility and data cached on local fog nodes and remote IoT servers. The author performed a simulation to manifest the security and privacy preservation of the user over the network.

This section covered various works done on 5G IoT by multiple authors. Table 8 shows how different author’s worked on the improvement of numerous parameters, i.e., data rate, security requirement, and performance with 5G IoT.

Summary of IoT-based approaches in 5G technology.

4.5. Machine Learning Techniques for 5G

Various machine learning (ML) techniques were applied in 5G networks and mobile communication. It provides a solution to multiple complex problems, which requires a lot of hand-tuning. ML techniques can be broadly classified as supervised, unsupervised, and reinforcement learning. Let’s discuss each learning technique separately and where it impacts the 5G network.

Supervised Learning, where user works with labeled data; some 5G network problems can be further categorized as classification and regression problems. Some regression problems such as scheduling nodes in 5G and energy availability can be predicted using Linear Regression (LR) algorithm. To accurately predict the bandwidth and frequency allocation Statistical Logistic Regression (SLR) is applied. Some supervised classifiers are applied to predict the network demand and allocate network resources based on the connectivity performance; it signifies the topology setup and bit rates. Support Vector Machine (SVM) and NN-based approximation algorithms are used for channel learning based on observable channel state information. Deep Neural Network (DNN) is also employed to extract solutions for predicting beamforming vectors at the BS’s by taking mapping functions and uplink pilot signals into considerations.

In unsupervised Learning, where the user works with unlabeled data, various clustering techniques are applied to enhance network performance and connectivity without interruptions. K-means clustering reduces the data travel by storing data centers content into clusters. It optimizes the handover estimation based on mobility pattern and selection of relay nodes in the V2V network. Hierarchical clustering reduces network failure by detecting the intrusion in the mobile wireless network; unsupervised soft clustering helps in reducing latency by clustering fog nodes. The nonparametric Bayesian unsupervised learning technique reduces traffic in the network by actively serving the user’s requests and demands. Other unsupervised learning techniques such as Adversarial Auto Encoders (AAE) and Affinity Propagation Clustering techniques detect irregular behavior in the wireless spectrum and manage resources for ultradense small cells, respectively.

In case of an uncertain environment in the 5G wireless network, reinforcement learning (RL) techniques are employed to solve some problems. Actor-critic reinforcement learning is used for user scheduling and resource allocation in the network. Markov decision process (MDP) and Partially Observable MDP (POMDP) is used for Quality of Experience (QoE)-based handover decision-making for Hetnets. Controls packet call admission in HetNets and channel access process for secondary users in a Cognitive Radio Network (CRN). Deep RL is applied to decide the communication channel and mobility and speeds up the secondary user’s learning rate using an antijamming strategy. Deep RL is employed in various 5G network application parameters such as resource allocation and security [ 67 ]. Table 9 shows the state-of-the-art ML-based solution for 5G network.

The state-of-the-art ML-based solution for 5G network.

Highlights of machine learning techniques for 5G are as follows:

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g006.jpg

Pictorial representation of machine learning (ML) in 5G.

  • In ML, a model will be defined which fulfills the desired requirements through which desired results are obtained. In the later stage, it examines accuracy from obtained results.
  • ML plays a vital role in 5G network analysis for threat detection, network load prediction, final arrangement, and network formation. Searching for a better balance between power, length of antennas, area, and network thickness crossed with the spontaneous use of services in the universe of individual users and types of devices.

In [ 79 ], author’s firstly describes the demands for the traditional authentication procedures and benefits of intelligent authentication. The intelligent authentication method was established to improve security practice in 5G-and-beyond wireless communication systems. Thereafter, the machine learning paradigms for intelligent authentication were organized into parametric and non-parametric research methods, as well as supervised, unsupervised, and reinforcement learning approaches. As a outcome, machine learning techniques provide a new paradigm into authentication under diverse network conditions and unstable dynamics. In addition, prompt intelligence to the security management to obtain cost-effective, better reliable, model-free, continuous, and situation-aware authentication.

In [ 68 ], the authors proposed a machine learning-based model to predict the traffic load at a particular location. They used a mobile network traffic dataset to train a model that can calculate the total number of user requests at a time. To launch access and mobility management function (AMF) instances according to the requirement as there were no predictions of user request the performance automatically degrade as AMF does not handle these requests at a time. Earlier threshold-based techniques were used to predict the traffic load, but that approach took too much time; therefore, the authors proposed RNN algorithm-based ML to predict the traffic load, which gives efficient results.

In [ 15 ], authors discussed the issue of network slice admission, resource allocation among subscribers, and how to maximize the profit of infrastructure providers. The author proposed a network slice admission control algorithm based on SMDP (decision-making process) that guarantees the subscribers’ best acceptance policies and satisfiability (tenants). They also suggested novel N3AC, a neural network-based algorithm that optimizes performance under various configurations, significantly outperforms practical and straightforward approaches.

This section includes various works done on 5G ML by different authors. Table 10 shows the state-of-the-art work on the improvement of various parameters such as energy efficiency, Quality of Services (QoS), and latency with 5G ML.

The state-of-the-art ML-based approaches in 5G technology.

4.6. Optimization Techniques for 5G

Optimization techniques may be applied to capture NP-Complete or NP-Hard problems in 5G technology. This section briefly describes various research works suggested for 5G technology based on optimization techniques.

In [ 80 ], Massive MIMO technology is used in 5G mobile network to make it more flexible and scalable. The MIMO implementation in 5G needs a significant number of radio frequencies is required in the RF circuit that increases the cost and energy consumption of the 5G network. This paper provides a solution that increases the cost efficiency and energy efficiency with many radio frequency chains for a 5G wireless communication network. They give an optimized energy efficient technique for MIMO antenna and mmWave technologies based 5G mobile communication network. The proposed Energy Efficient Hybrid Precoding (EEHP) algorithm to increase the energy efficiency for the 5G wireless network. This algorithm minimizes the cost of an RF circuit with a large number of RF chains.

In [ 16 ], authors have discussed the growing demand for energy efficiency in the next-generation networks. In the last decade, they have figured out the things in wireless transmissions, which proved a change towards pursuing green communication for the next generation system. The importance of adopting the correct EE metric was also reviewed. Further, they worked through the different approaches that can be applied in the future for increasing the network’s energy and posed a summary of the work that was completed previously to enhance the energy productivity of the network using these capabilities. A system design for EE development using relay selection was also characterized, along with an observation of distinct algorithms applied for EE in relay-based ecosystems.

In [ 81 ], authors presented how AI-based approach is used to the setup of Self Organizing Network (SON) functionalities for radio access network (RAN) design and optimization. They used a machine learning approach to predict the results for 5G SON functionalities. Firstly, the input was taken from various sources; then, prediction and clustering-based machine learning models were applied to produce the results. Multiple AI-based devices were used to extract the knowledge analysis to execute SON functionalities smoothly. Based on results, they tested how self-optimization, self-testing, and self-designing are done for SON. The author also describes how the proposed mechanism classifies in different orders.

In [ 82 ], investigators examined the working of OFDM in various channel environments. They also figured out the changes in frame duration of the 5G TDD frame design. Subcarrier spacing is beneficial to obtain a small frame length with control overhead. They provided various techniques to reduce the growing guard period (GP) and cyclic prefix (CP) like complete utilization of multiple subcarrier spacing, management and data parts of frame at receiver end, various uses of timing advance (TA) or total control of flexible CP size.

This section includes various works that were done on 5G optimization by different authors. Table 11 shows how other authors worked on the improvement of multiple parameters such as energy efficiency, power optimization, and latency with 5G optimization.

Summary of Optimization Based Approaches in 5G Technology.

5. Description of Novel 5G Features over 4G

This section presents descriptions of various novel features of 5G, namely, the concept of small cell, beamforming, and MEC.

5.1. Small Cell

Small cells are low-powered cellular radio access nodes which work in the range of 10 meters to a few kilometers. Small cells play a very important role in implementation of the 5G wireless network. Small cells are low power base stations which cover small areas. Small cells are quite similar with all the previous cells used in various wireless networks. However, these cells have some advantages like they can work with low power and they are also capable of working with high data rates. Small cells help in rollout of 5G network with ultra high speed and low latency communication. Small cells in the 5G network use some new technologies like MIMO, beamforming, and mmWave for high speed data transmission. The design of small cells hardware is very simple so its implementation is quite easier and faster. There are three types of small cell tower available in the market. Femtocells, picocells, and microcells [ 83 ]. As shown in the Table 12 .

Types of Small cells.

MmWave is a very high band spectrum between 30 to 300 GHz. As it is a significantly less used spectrum, it provides very high-speed wireless communication. MmWave offers ultra-wide bandwidth for next-generation mobile networks. MmWave has lots of advantages, but it has some disadvantages, too, such as mmWave signals are very high-frequency signals, so they have more collision with obstacles in the air which cause the signals loses energy quickly. Buildings and trees also block MmWave signals, so these signals cover a shorter distance. To resolve these issues, multiple small cell stations are installed to cover the gap between end-user and base station [ 18 ]. Small cell covers a very shorter range, so the installation of a small cell depends on the population of a particular area. Generally, in a populated place, the distance between each small cell varies from 10 to 90 meters. In the survey [ 20 ], various authors implemented small cells with massive MIMO simultaneously. They also reviewed multiple technologies used in 5G like beamforming, small cell, massive MIMO, NOMA, device to device (D2D) communication. Various problems like interference management, spectral efficiency, resource management, energy efficiency, and backhauling are discussed. The author also gave a detailed presentation of all the issues occurring while implementing small cells with various 5G technologies. As shown in the Figure 7 , mmWave has a higher range, so it can be easily blocked by the obstacles as shown in Figure 7 a. This is one of the key concerns of millimeter-wave signal transmission. To solve this issue, the small cell can be placed at a short distance to transmit the signals easily, as shown in Figure 7 b.

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g007.jpg

Pictorial representation of communication with and without small cells.

5.2. Beamforming

Beamforming is a key technology of wireless networks which transmits the signals in a directional manner. 5G beamforming making a strong wireless connection toward a receiving end. In conventional systems when small cells are not using beamforming, moving signals to particular areas is quite difficult. Beamforming counter this issue using beamforming small cells are able to transmit the signals in particular direction towards a device like mobile phone, laptops, autonomous vehicle and IoT devices. Beamforming is improving the efficiency and saves the energy of the 5G network. Beamforming is broadly divided into three categories: Digital beamforming, analog beamforming and hybrid beamforming. Digital beamforming: multiuser MIMO is equal to digital beamforming which is mainly used in LTE Advanced Pro and in 5G NR. In digital beamforming the same frequency or time resources can be used to transmit the data to multiple users at the same time which improves the cell capacity of wireless networks. Analog Beamforming: In mmWave frequency range 5G NR analog beamforming is a very important approach which improves the coverage. In digital beamforming there are chances of high pathloss in mmWave as only one beam per set of antenna is formed. While the analog beamforming saves high pathloss in mmWave. Hybrid beamforming: hybrid beamforming is a combination of both analog beamforming and digital beamforming. In the implementation of MmWave in 5G network hybrid beamforming will be used [ 84 ].

Wireless signals in the 4G network are spreading in large areas, and nature is not Omnidirectional. Thus, energy depletes rapidly, and users who are accessing these signals also face interference problems. The beamforming technique is used in the 5G network to resolve this issue. In beamforming signals are directional. They move like a laser beam from the base station to the user, so signals seem to be traveling in an invisible cable. Beamforming helps achieve a faster data rate; as the signals are directional, it leads to less energy consumption and less interference. In [ 21 ], investigators evolve some techniques which reduce interference and increase system efficiency of the 5G mobile network. In this survey article, the authors covered various challenges faced while designing an optimized beamforming algorithm. Mainly focused on different design parameters such as performance evaluation and power consumption. In addition, they also described various issues related to beamforming like CSI, computation complexity, and antenna correlation. They also covered various research to cover how beamforming helps implement MIMO in next-generation mobile networks [ 85 ]. Figure 8 shows the pictorial representation of communication with and without using beamforming.

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g008.jpg

Pictorial Representation of communication with and without using beamforming.

5.3. Mobile Edge Computing

Mobile Edge Computing (MEC) [ 24 ]: MEC is an extended version of cloud computing that brings cloud resources closer to the end-user. When we talk about computing, the very first thing that comes to our mind is cloud computing. Cloud computing is a very famous technology that offers many services to end-user. Still, cloud computing has many drawbacks. The services available in the cloud are too far from end-users that create latency, and cloud user needs to download the complete application before use, which also increases the burden to the device [ 86 ]. MEC creates an edge between the end-user and cloud server, bringing cloud computing closer to the end-user. Now, all the services, namely, video conferencing, virtual software, etc., are offered by this edge that improves cloud computing performance. Another essential feature of MEC is that the application is split into two parts, which, first one is available at cloud server, and the second is at the user’s device. Therefore, the user need not download the complete application on his device that increases the performance of the end user’s device. Furthermore, MEC provides cloud services at very low latency and less bandwidth. In [ 23 , 87 ], the author’s investigation proved that successful deployment of MEC in 5G network increases the overall performance of 5G architecture. Graphical differentiation between cloud computing and mobile edge computing is presented in Figure 9 .

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g009.jpg

Pictorial representation of cloud computing vs. mobile edge computing.

6. 5G Security

Security is the key feature in the telecommunication network industry, which is necessary at various layers, to handle 5G network security in applications such as IoT, Digital forensics, IDS and many more [ 88 , 89 ]. The authors [ 90 ], discussed the background of 5G and its security concerns, challenges and future directions. The author also introduced the blockchain technology that can be incorporated with the IoT to overcome the challenges in IoT. The paper aims to create a security framework which can be incorporated with the LTE advanced network, and effective in terms of cost, deployment and QoS. In [ 91 ], author surveyed various form of attacks, the security challenges, security solutions with respect to the affected technology such as SDN, Network function virtualization (NFV), Mobile Clouds and MEC, and security standardizations of 5G, i.e., 3GPP, 5GPPP, Internet Engineering Task Force (IETF), Next Generation Mobile Networks (NGMN), European Telecommunications Standards Institute (ETSI). In [ 92 ], author elaborated various technological aspects, security issues and their existing solutions and also mentioned the new emerging technological paradigms for 5G security such as blockchain, quantum cryptography, AI, SDN, CPS, MEC, D2D. The author aims to create new security frameworks for 5G for further use of this technology in development of smart cities, transportation and healthcare. In [ 93 ], author analyzed the threats and dark threat, security aspects concerned with SDN and NFV, also their Commercial & Industrial Security Corporation (CISCO) 5G vision and new security innovations with respect to the new evolving architectures of 5G [ 94 ].

AuthenticationThe identification of the user in any network is made with the help of authentication. The different mobile network generations from 1G to 5G have used multiple techniques for user authentication. 5G utilizes the 5G Authentication and Key Agreement (AKA) authentication method, which shares a cryptographic key between user equipment (UE) and its home network and establishes a mutual authentication process between the both [ 95 ].

Access Control To restrict the accessibility in the network, 5G supports access control mechanisms to provide a secure and safe environment to the users and is controlled by network providers. 5G uses simple public key infrastructure (PKI) certificates for authenticating access in the 5G network. PKI put forward a secure and dynamic environment for the 5G network. The simple PKI technique provides flexibility to the 5G network; it can scale up and scale down as per the user traffic in the network [ 96 , 97 ].

Communication Security 5G deals to provide high data bandwidth, low latency, and better signal coverage. Therefore secure communication is the key concern in the 5G network. UE, mobile operators, core network, and access networks are the main focal point for the attackers in 5G communication. Some of the common attacks in communication at various segments are Botnet, message insertion, micro-cell, distributed denial of service (DDoS), and transport layer security (TLS)/secure sockets layer (SSL) attacks [ 98 , 99 ].

Encryption The confidentiality of the user and the network is done using encryption techniques. As 5G offers multiple services, end-to-end (E2E) encryption is the most suitable technique applied over various segments in the 5G network. Encryption forbids unauthorized access to the network and maintains the data privacy of the user. To encrypt the radio traffic at Packet Data Convergence Protocol (PDCP) layer, three 128-bits keys are applied at the user plane, nonaccess stratum (NAS), and access stratum (AS) [ 100 ].

7. Summary of 5G Technology Based on Above-Stated Challenges

In this section, various issues addressed by investigators in 5G technologies are presented in Table 13 . In addition, different parameters are considered, such as throughput, latency, energy efficiency, data rate, spectral efficiency, fairness & computing capacity, transmission rate, coverage, cost, security requirement, performance, QoS, power optimization, etc., indexed from R1 to R14.

Summary of 5G Technology above stated challenges (R1:Throughput, R2:Latency, R3:Energy Efficiency, R4:Data Rate, R5:Spectral efficiency, R6:Fairness & Computing Capacity, R7:Transmission Rate, R8:Coverage, R9:Cost, R10:Security requirement, R11:Performance, R12:Quality of Services (QoS), R13:Power Optimization).

8. Conclusions

This survey article illustrates the emergence of 5G, its evolution from 1G to 5G mobile network, applications, different research groups, their work, and the key features of 5G. It is not just a mobile broadband network, different from all the previous mobile network generations; it offers services like IoT, V2X, and Industry 4.0. This paper covers a detailed survey from multiple authors on different technologies in 5G, such as massive MIMO, Non-Orthogonal Multiple Access (NOMA), millimeter wave, small cell, MEC (Mobile Edge Computing), beamforming, optimization, and machine learning in 5G. After each section, a tabular comparison covers all the state-of-the-research held in these technologies. This survey also shows the importance of these newly added technologies and building a flexible, scalable, and reliable 5G network.

9. Future Findings

This article covers a detailed survey on the 5G mobile network and its features. These features make 5G more reliable, scalable, efficient at affordable rates. As discussed in the above sections, numerous technical challenges originate while implementing those features or providing services over a 5G mobile network. So, for future research directions, the research community can overcome these challenges while implementing these technologies (MIMO, NOMA, small cell, mmWave, beam-forming, MEC) over a 5G network. 5G communication will bring new improvements over the existing systems. Still, the current solutions cannot fulfill the autonomous system and future intelligence engineering requirements after a decade. There is no matter of discussion that 5G will provide better QoS and new features than 4G. But there is always room for improvement as the considerable growth of centralized data and autonomous industry 5G wireless networks will not be capable of fulfilling their demands in the future. So, we need to move on new wireless network technology that is named 6G. 6G wireless network will bring new heights in mobile generations, as it includes (i) massive human-to-machine communication, (ii) ubiquitous connectivity between the local device and cloud server, (iii) creation of data fusion technology for various mixed reality experiences and multiverps maps. (iv) Focus on sensing and actuation to control the network of the entire world. The 6G mobile network will offer new services with some other technologies; these services are 3D mapping, reality devices, smart homes, smart wearable, autonomous vehicles, artificial intelligence, and sense. It is expected that 6G will provide ultra-long-range communication with a very low latency of 1 ms. The per-user bit rate in a 6G wireless network will be approximately 1 Tbps, and it will also provide wireless communication, which is 1000 times faster than 5G networks.

Acknowledgments

Author contributions.

Conceptualization: R.D., I.Y., G.C., P.L. data gathering: R.D., G.C., P.L, I.Y. funding acquisition: I.Y. investigation: I.Y., G.C., G.P. methodology: R.D., I.Y., G.C., P.L., G.P., survey: I.Y., G.C., P.L, G.P., R.D. supervision: G.C., I.Y., G.P. validation: I.Y., G.P. visualization: R.D., I.Y., G.C., P.L. writing, original draft: R.D., I.Y., G.C., P.L., G.P. writing, review, and editing: I.Y., G.C., G.P. All authors have read and agreed to the published version of the manuscript.

This paper was supported by Soonchunhyang University.

Institutional Review Board Statement

Informed consent statement, data availability statement, conflicts of interest.

The authors declare no conflict of interest.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

essays on network technology

45,000+ students realised their study abroad dream with us. Take the first step today

Meet top uk universities from the comfort of your home, here’s your new year gift, one app for all your, study abroad needs, start your journey, track your progress, grow with the community and so much more.

essays on network technology

Verification Code

An OTP has been sent to your registered mobile no. Please verify

essays on network technology

Thanks for your comment !

Our team will review it before it's shown to our readers.

Leverage Edu

  • School Education /

Essay On 5g Technology: Free Samples Available for Students

essays on network technology

  • Updated on  
  • Dec 29, 2023

Essay on 5g Technology

Congratulations to the world on the evolution of technology; from the first general-public computer named INIAC in 1945 to 5g technology in 2022, technology has greatly improved and has eased our lives. 5g technology is the advanced version of the 4g LTE (Long Term Evolution) mobile broadband service. We have all grown up from traditional mobile top-ups to digital recharges. According to sources, 5g is 10 times faster than 4g; a 4g connection has a download speed of 1 GBPS (Gigabyte Per Sec) and 5g has 10 GBPS. Below we have highlighted some sample essay on 5g technology.

Table of Contents

  • 1 Essay on 5G Technology in 250 words
  • 2.0.1 Conclusion
  • 3 Benefits of 5G
  • 4 10 Lines to Add to Your Essay on Technology

Also Read: Short Speech on Technology for School Students Short Essay on 5g Technology

The fifth generation or 5g technology for mobile networks was deployed all over the world in 2019, with South Korea becoming the first country to adopt it on a large scale. In mobile or cellular networks, the service or operating areas are divided into geographical units termed cells. The radio waves connect all the 5g mobile devices in a cell with the telephone network and the Internet. 

5g is 10 times faster than its predecessor, 4g, and can connect more devices in a particular area. Not only this, it also introduces new technologies such as Massive MIMO (Multiple Input, Multiple Output), beamforming, and network slicing. Before switching to 5g, make sure to remember that 5g is not compatible with 4g devices.

Also Read: Essay on Health and Fitness for Students

Essay on 5G Technology in 250 words

The fifth generation of networks is the 5G network and this network promises to bring faster internet speed, lower latency, and improved reliability to mobile devices. In India, it is expected to have a significant impact on several industries such as healthcare, education, agriculture, entertainment, etc.

5G carries a lot of features such as:-

  • Higher speeds: – The 5G network will have wider bandwidth which will allow for more data to flow. Hence, it will result in higher download and upload speeds.
  • More capacity :- 5G network, in comparison to 4G, will have greater capacity to hold more network devices. This is very essential as the number of network devices increases each day.
  • Lower latency: – 5G network will have much lower latency. This is essential for many tasks such as video conferencing or even online gaming which is a known profession these days. 

Due to all these, a lot of things will have a positive impact. Connectivity will improve and enable even the most rural areas to become connected to the rest of the world. 5G technology will help revolutionise the healthcare industry in India in ways such as telemedicine, remote surgeries, real-time patient monitoring, etc. 

However, like any other innovation, 5G does come with some concerns. There are certain concerns regarding the security of the 5G network, hence Indian Government needs to ensure that this network is safe from all the cyber threats. Also, although not proven, there are some concerns regarding the effects of 5G radiation on health. 

There is no doubt that 5G technology holds immense potential for India. And although there are many challenges to its deployment, the Indian Government and other industry experts should work together to over come these challenges and make the most of this technology.

350 Word Essay on 5g Technology

How significantly technology has improved. 50 years back nobody would have imagined that a mobile connection would allow us to connect anywhere in the world. With 5g technology, we can connect virtually anywhere with anyone in real-time. This advanced broadband connection offers us a higher internet speed, which can reach up to two-digit gigabits per second (Gbps). This increase in internet speed is achieved through the use of higher-frequency radio waves and advanced technologies.

The world of telecommunication is evolving at a very fast pace. 3g connectivity was adopted in 2003, 4g in 2009, and 5g in 2019. the advent of 5G technology represents an enormous leap forward, promising to reshape the way we connect, communicate, and interact with the digital world. 

The 5th Generation of mobile networks stands out from its predecessors in speed, latency, and the capacity to support a larger array of devices and applications. 5g speed is one of the most remarkable features, which allows us to download large amounts of files from the internet in mere seconds. Not only this, it also allows us smoother streaming of HD content and opens the door to transformative technologies.  Augmented reality (AR) and virtual reality (VR) experiences, which demand substantial data transfer rates, will become more immersive and accessible with 5G.

What is the difference between 5g and 4g?

The difference between 5g and 4g technologies clearly highlighted in their speed, latency, frequency bands, capacity and multiple other uses.

  • The average downloading speed of 4g connectivity was 5 to 1000 Mbps (megabytes per sec). But with 5g, this speed increases 10 times.
  • 4G networks had a latency of around 30-50 milliseconds and 5g reduces latency to as low as 1 millisecond or even less.
  • 4G networks mainly use lower frequency bands below 6 GHz, but,  5g utilizes a broader range of frequencies, including lower bands (sub-6 GHz) and higher bands (millimeter waves or mmWave).
  • 4g was well-suited for broadband applications like web browsing, video streaming, and voice calls. 5g is capable of supporting a large number of applications from smart cities, critical communication services, and applications that demand ultra-reliable low-latency communication.

Benefits of 5G

  • Lower Latency: 5G Network will have extremely lower latency compared to that of 4G LTE. This will result in a much more smoother experience in terms of real time communication such as video conferencing or online gaming.
  • Faster Speeds : 5G Network is expected to peak at high speeds of around 10 Gbps which is extremely high as compared to that of 4G LTE. This will result in high download as well as upload speeds and much smoother video streaming, etc.
  • New Applications: Some applications that were not possible with 4G LTE will now be possible because of 5G such as remote surgery, augmented reality, etc.
  • More Capacity: 5G bands can support Much more devices as compared to 4G LTE networks. This is extremely important as the number of connected grows everyday.

Also Read: Essay on Farmer for School Students

10 Lines to Add to Your Essay on Technology

Here are 10 simple and easy quotes on 5g technology. You can add them to your essay on 5g technology or any related writing topic to impress your readers.

  • 5g technology is the fifth generation of mobile or cellular networks.
  • 5g offers significantly higher download speeds, reaching several gigabits per second.
  • 5g technology’s ultra-low latency is one of the most striking features, which can reduce delays to as little as 1 millisecond.
  • 5G utilizes a diverse spectrum, including both lower bands (sub-6 GHz) and higher bands (mmWave).
  • The increased speed and low latency of 5G support emerging technologies like augmented reality (AR) and virtual reality (VR).
  • It enables a massive Internet of Things (IoT) ecosystem, connecting a vast number of devices simultaneously.
  • 5G is essential for applications requiring real-time responsiveness, such as autonomous vehicles and remote surgery.
  • The deployment of 5G networks is underway globally, transforming how we connect and communicate.
  • Smart cities leverage 5G to enhance efficiency through interconnected systems and sensors.
  • As the backbone of the digital era, 5G technology is driving innovation and shaping the future of connectivity.

Related Articles

Ans: 5g technology is the advanced generation of the 4g technology. It’s a mobile broadband service, which allows users to have faster access to the internet. Our everyday tasks on the internet will be greatly improved using 5g technology. 5g is 10 times faster than its predecessor, 4g and can connect more devices in a particular area. Not only this, it also introduces new technologies such as Massive MIMO (Multiple Input, Multiple Output), beamforming, and network slicing. Before switching to 5g, make sure to remember that 5g is not compatible with 4g devices.

Ans: 4g technology has a download speed of 5 to 10 Gbps. This broadband service is 10 times faster than its predecessor, 4g.

Ans: 5g is an advanced version of the 4g connectivity in terms of speed, latency, frequency bands, capability, and uses. 4G networks had a latency of around 30-50 milliseconds and 5g reduces latency to as low as 1 millisecond or even less.

For more information on such interesting topics to help you with your school, visit our essay writing page and follow Leverage Edu .

' src=

Shiva Tyagi

With an experience of over a year, I've developed a passion for writing blogs on wide range of topics. I am mostly inspired from topics related to social and environmental fields, where you come up with a positive outcome.

Leave a Reply Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Contact no. *

essays on network technology

Connect With Us

essays on network technology

45,000+ students realised their study abroad dream with us. Take the first step today.

essays on network technology

Resend OTP in

essays on network technology

Need help with?

Study abroad.

UK, Canada, US & More

IELTS, GRE, GMAT & More

Scholarship, Loans & Forex

Country Preference

New Zealand

Which English test are you planning to take?

Which academic test are you planning to take.

Not Sure yet

When are you planning to take the exam?

Already booked my exam slot

Within 2 Months

Want to learn about the test

Which Degree do you wish to pursue?

When do you want to start studying abroad.

January 2024

September 2024

What is your budget to study abroad?

essays on network technology

How would you describe this article ?

Please rate this article

We would like to hear more.

Have something on your mind?

essays on network technology

Make your study abroad dream a reality in January 2022 with

essays on network technology

India's Biggest Virtual University Fair

essays on network technology

Essex Direct Admission Day

Why attend .

essays on network technology

Don't Miss Out

ciscoeducationhub

Empowering Minds, Connecting Networks – Cisco Education Hub

Connecting the World: The Global Impact of Network Technology

The Impact of the Internet on Society: A Global Perspective | MIT Technology  Review

In today’s interconnected world, network technology has revolutionized how people communicate, collaborate, and access information. From the rise of social media to the globalization of businesses, network technology has had a profound impact, connecting individuals and cultures across the globe. This article explores the global impact of network technology and its transformative effects on various aspects of our lives.

Bridging Geographical Divides: Network technology has bridged the geographical gaps that once hindered communication. People can now connect with ease, regardless of their physical location. Communication tools like email, instant messaging, and video calls enable real-time conversations and virtual face-to-face interactions. This seamless connectivity has fostered cultural exchange, global friendships, and collaborations that transcend borders.

Enabling Instant Information Access: The internet, powered by network technology, has revolutionized information access. With a few clicks, people can now access an immense wealth of knowledge, research, and data from different parts of the world. Search engines have become gateways to a universe of information, empowering individuals with the ability to learn, explore, and form informed opinions on any topic. Network technology has democratized information and expanded intellectual horizons.

Facilitating Global Trade and Commerce: Network technology has transformed the way businesses operate on a global scale. E-commerce platforms have opened doors to international markets, enabling businesses to reach customers globally. Companies can collaborate with suppliers, partners, and clients seamlessly, regardless of their physical distances. The ability to conduct transactions, exchange data, and share resources with ease has revolutionized global trade and commerce.

Empowering Social Change and Activism: Network technology has become a catalyst for social change and activism worldwide. Online platforms and social media have given individuals a powerful voice to advocate for causes, mobilize communities, and raise awareness about pressing social issues. Movements for human rights, environmental conservation, and equality have gained momentum through global networks, galvanizing support across borders and effecting real-world change.

Fostering Cross-Cultural Connections: Network technology has fostered cross-cultural connections and understanding. Social media platforms enable individuals to share their unique perspectives, traditions, and experiences with a global audience. Online communities and forums bring together people from diverse backgrounds, fostering dialogue, empathy, and appreciation for different cultures. Network technology has dismantled barriers, promoting respect and celebrating the richness of our global society.

Enhancing Education and Research Collaboration: Network technology has revolutionized education and research collaboration. Online learning platforms offer access to courses, lectures, and resources from renowned universities worldwide. Students and researchers can collaborate remotely, share findings and innovations instantly, and contribute to global knowledge advancement. This virtual connectivity accelerates the progress of science, drives innovation, and equips individuals with skills for the future.

Network technology’s global impact cannot be understated. It has connected the world, enriching lives, empowering communities, and facilitating progress in unprecedented ways. By bridging geographic distances, enabling instant information access, fostering global trade, empowering social change, and enhancing education and research collaboration, network technology has become an essential driver of globalization and inclusivity. However, as we celebrate the positive impact of network technology, it is crucial to address challenges like the digital divide, privacy concerns, and misinformation. By harnessing the power of network technology responsibly and collectively, we can continue to create a connected world that enriches lives and promotes understanding across borders.

Related Posts

5G and IoT: Current and Future Applications

From 5G to IoT: Exploring the Next Generation of Network Technology

As technology advances at an unprecedented pace, the next generation of network technology is poised to revolutionize the way we…

Cybersecurity in the Digital Age: Protecting Data from Evolving Threats

Securing the Network: Ensuring Privacy and Cybersecurity in the Digital Era

In the digital era, network security has become a paramount concern as businesses and individuals rely heavily on interconnected systems…

5G Beyond Borders: Events | Wilson Center

Beyond Borders: The Role of Network Technology in Global Communication

Network technology has transcended geographical boundaries and revolutionized global communication. In an increasingly interconnected world, the role of network technology…

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

We use cookies to enhance our website for you. Proceed if you agree to this policy or learn more about it.

  • Essay Database >
  • Essay Examples >
  • Essays Topics >
  • Essay on Management

Free Essay About Network Technology

Type of paper: Essay

Topic: Management , Internet , Computers , Software , Memory , Information , Services papers , Literature

Published: 03/20/2020

ORDER PAPER LIKE THIS

{Author Name [first-name middle-name-initials last-name]} {Institution Affiliation [name of Author’s institute]}

Peer-to-Peer Networks

A peer-to-peer (P2P) network is formed when multiple computers are connected with each other and share common resources without involving any separate server. A P2P network can be of different forms; it can be computers connected via a Universal Serial Bus to transfer files on a temporary basis or a permanent network. A P2P network can be a permanent and large infrastructure linking more than a dozen computers in the office. P2P network can be on a grand scale as well consisting of special protocols, applications and direct relationships amongst internet users. A peer-to-peer network is very open and independent. Each computer on the p2p network has equivalent capabilities to other computers and can each one communicate directly with one another. There is no centralized controlling and monitoring of the communication on such networks. Some applications of P2P networks include Distributed Computing and Collaboration Systems consisting of a community of clients sharing resources and working together (Fox, 2001). Over a client/server network, every computer system has a different role. A server is aims at network resource sharing among the client computers. Servers are mostly located in areas that are secured like data centers, locked closets or server rooms. Servers hold an organization’s most valuable and critical data. They are not accessed by operators on a regular basis. All other computers on the network act as clients. A dedicated server system mostly consists of high scale processors, more storage space, and more memory than a client computer. The enhanced features of the server are because the server has to service hundreds of users simultaneously. Servers used typically two to eight processors including multi-core CPUs with gigabytes of memory and optimized network interface cards (NICs). Servers mostly run a customized network operating system like Linux, UNIX or Windows Server, designed specifically to enable resource sharing (Wolf, 2014).

Directory Services Network

A directory service is a system that classifies, stores, and manages a computer operating system's directory. A directory can be said to be a map across names and values. A directory service is associated with many forms information. It allows for access through the use of and passwords. It is easy to setup and manages the network from one point of source (Carter, 2003). Comparison of Networks

Fox, G. (2001). Peer‐to‐Peer Networks. Computing in Science & Engineering, 3(3), 75-77. Wolf, M. (2014). Network Control: Peer-to-Peer Networks Versus Client/Server | Home Networking: What Type Is Best? | InformIT. Informit.com. Retrieved 9 December 2014, from http://www.informit.com/articles/article.aspx?p=26437&seqNum=3 Carter, G. (2003). LDAP system administration. " O'Reilly Media, Inc.".

double-banner

Cite this page

Share with friends using:

Removal Request

Removal Request

Finished papers: 2789

This paper is created by writer with

If you want your paper to be:

Well-researched, fact-checked, and accurate

Original, fresh, based on current data

Eloquently written and immaculately formatted

275 words = 1 page double-spaced

submit your paper

Get your papers done by pros!

Other Pages

A beautiful mind research papers, divergent research papers, siddhartha research papers, extracurricular activities research papers, defendant case studies, plaintiff case studies, panel case studies, opinion case studies, employer case studies, intention case studies, asset case studies, expose case studies, healing argumentative essays, american constitution essays, battle of algiers essays, baroque music essays, pride and prejudice essays, continental drift essays, pilgrimage essays, bioethics essays, thomas malory essays, onomatopoeia essays, critical thinking on breast cancer and obesity, data security and information assurance exists course work, course work on presence of sex and violence in video games, cyber bullying research paper, apocalypto 2006 essay, racial prejudice essay, research paper on andrea yates schizophrenia and society, change management course work, human resource development for emergency management research paper 2, what america feels about our first black president essay, critical thinking on transition from treatment to survivorship, stabilization of the economy course work, birthstone summary research paper, research paper on the nonwestern influence in the invention of gunpowder was more important than the western influence, example of essay on the most unequal society in the western world poverty racism and limited intergenerational, business ethics and social responsibilities critical thinking examples, environment essay examples, free essay on we should return to forty hours workweek, example of essay on a reaction paper on the arab human development report.

Password recovery email has been sent to [email protected]

Use your new password to log in

You are not register!

By clicking Register, you agree to our Terms of Service and that you have read our Privacy Policy .

Now you can download documents directly to your device!

Check your email! An email with your password has already been sent to you! Now you can download documents directly to your device.

or Use the QR code to Save this Paper to Your Phone

The sample is NOT original!

Short on a deadline?

Don't waste time. Get help with 11% off using code - GETWOWED

No, thanks! I'm fine with missing my deadline

Logo

Essay on 5G Technology

Students are often asked to write an essay on 5G Technology in their schools and colleges. And if you’re also looking for the same, we have created 100-word, 250-word, and 500-word essays on the topic.

Let’s take a look…

100 Words Essay on 5G Technology

Introduction to 5g technology.

5G stands for fifth-generation wireless technology. It’s the latest innovation in mobile internet, promising faster speeds and more reliable connections than previous generations like 4G and 3G.

Benefits of 5G

5G can download and upload data much faster. This means quicker access to websites, smoother streaming of videos, and less lag in games. It also supports more devices, which is crucial as more gadgets become internet-enabled.

Applications of 5G

5G can revolutionize many sectors. In healthcare, it can support remote patient monitoring. In transport, it can enable self-driving cars. It can even make smart cities more efficient.

Challenges of 5G

Despite its benefits, 5G faces challenges. It requires new infrastructure, which can be expensive. There are also concerns about cybersecurity, as more devices will be connected to the internet.

Also check:

  • 10 Lines on 5G Technology

250 Words Essay on 5G Technology

5G, or fifth generation technology, is the latest iteration in the evolution of wireless technologies. It promises to revolutionize the way we interact with technology, offering unprecedented speeds, low latency, and the ability to connect a multitude of devices simultaneously.

Unleashing Unprecedented Speeds

5G’s most touted feature is its speed. It is projected to offer peak data rates up to 20 Gbps, which is about 100 times faster than 4G. This speed will enable seamless streaming of high-definition content, and make downloading and uploading large files a breeze.

Reducing Latency

Beyond speed, 5G also aims to reduce latency, or the delay before a transfer of data begins following an instruction for its transfer. Lower latency will enhance the user experience in real-time applications such as online gaming, video conferencing, and autonomous driving.

Enabling the Internet of Things (IoT)

Perhaps one of the most significant impacts of 5G will be its role in enabling the Internet of Things. By allowing a vast number of devices to connect and communicate simultaneously, 5G will facilitate the growth of smart homes, smart cities, and industrial IoT.

While 5G technology is filled with promise, it also presents challenges, such as infrastructure costs and privacy concerns. However, if these can be overcome, the potential benefits of 5G could usher in a new era of technological advancement. In the end, 5G represents not just an upgrade in speed, but a transformation in the way we live and interact with technology.

500 Words Essay on 5G Technology

5G, the fifth generation of wireless communication, represents a significant leap forward in the realm of mobile technology. Unlike its predecessors, 5G offers far more than just faster download and upload speeds. It promises a new digital ecosystem teeming with unprecedented connectivity, ultra-low latency, and massive network capacity.

Key Features of 5G

One of the defining features of 5G is its ability to support a massive number of connected devices. IoT (Internet of Things) devices, from smart home appliances to autonomous vehicles, will be able to communicate seamlessly, fostering a more integrated digital society.

5G also boasts ultra-low latency, the delay between the sending and receiving of information. This is critical for applications requiring real-time responses, such as remote surgeries, autonomous driving, and real-time gaming.

Furthermore, 5G networks have a high-frequency millimeter-wave spectrum, allowing for faster data transmission and accommodating more users without network congestion.

Implications of 5G Technology

The implications of 5G extend far beyond individual consumer benefits. It’s set to revolutionize industries by enabling new applications and business models.

In healthcare, 5G could make remote patient monitoring and telemedicine more effective, reducing the need for physical hospital visits. In the automotive industry, the ultra-low latency of 5G could make autonomous vehicles safer and more efficient.

Moreover, 5G is expected to spur innovation in areas like virtual and augmented reality, AI, and machine learning, opening up new avenues for technological advancement.

Challenges and Concerns

Despite its potential, the deployment of 5G also presents significant challenges. The high-frequency spectrum of 5G, while enabling faster speeds, has a shorter range and is more susceptible to physical obstructions, necessitating the installation of numerous small cells.

Privacy and security are other major concerns. With more devices connected, the risk of cyber-attacks increases, demanding robust security measures.

Lastly, there are concerns about the potential health impacts of 5G radiation, although current research indicates that exposure levels are within international guidelines.

5G technology, with its promise of high-speed connectivity, low latency, and capacity to connect a massive number of devices, is set to transform our digital landscape. It holds the potential to revolutionize industries and spur technological innovation. However, its successful implementation hinges on overcoming significant challenges, including infrastructure requirements, privacy, and security concerns. As we stand on the brink of this new era, it is crucial to navigate these challenges wisely to harness the full potential of 5G.

That’s it! I hope the essay helped you.

If you’re looking for more, here are essays on other interesting topics:

  • Essay on Effects of Terrorism
  • Essay on Causes of Terrorism
  • Essay on My Imaginary Friend

Apart from these, you can look at all the essays by clicking here .

Happy studying!

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

essays on network technology

Home — Essay Samples — Information Science and Technology — 5G Technology — The Future of 5g Networking

test_template

The Future of 5g Networking

  • Categories: 5G Technology

About this sample

close

Words: 847 |

Published: Nov 15, 2018

Words: 847 | Pages: 2 | 5 min read

Image of Alex Wood

Cite this Essay

Let us write you an essay from scratch

  • 450+ experts on 30 subjects ready to help
  • Custom essay delivered in as few as 3 hours

Get high-quality help

author

Dr. Heisenberg

Verified writer

  • Expert in: Information Science and Technology

writer

+ 120 experts online

By clicking “Check Writers’ Offers”, you agree to our terms of service and privacy policy . We’ll occasionally send you promo and account related email

No need to pay just yet!

Related Essays

2 pages / 892 words

4 pages / 2190 words

2 pages / 910 words

5 pages / 2618 words

Remember! This is just a sample.

You can get your custom paper by one of our expert writers.

121 writers online

The Future of 5g Networking Essay

Still can’t find what you need?

Browse our vast selection of original essay samples, each expertly formatted and styled

Related Essays on 5G Technology

In conclusion, the arrival of 5G technology heralds a new era of connectivity that will reshape the global economy. With its potential to revolutionize industries, enable innovative applications, and enhance communication, 5G is [...]

The expansion of 5G wireless is 5th generation wireless technology. This will complete wireless communication with almost no limitations. It can be called REAL wireless world. It has incrediable transmission speed. A 5G network [...]

The world has seen a number of advancements in wireless technology field. Starting from the first generation of wireless technology which was all about analog cellular, where cell phones of heavy weights and antennas were seen. [...]

Introduction: It is a form of digital currency, which needs to be encrypted in order to be generated in units of currency and to be operated independently. The Crypto-currencies are a revolutionary new form of money that are [...]

In an effort to understand the human mind, philosophers and scientists alike have looked towards complex technology to help explain psychological phenomena. In medieval times, philosophers compared the brain to a hydraulic [...]

One of the technologies that will potentially bring the greatest impact in the next few upcoming years has arrived. It’s not the social media, it’s not robotics, nor is it A.I, but rather the underlying technology of [...]

Related Topics

By clicking “Send”, you agree to our Terms of service and Privacy statement . We will occasionally send you account related emails.

Where do you want us to send this sample?

By clicking “Continue”, you agree to our terms of service and privacy policy.

Be careful. This essay is not unique

This essay was donated by a student and is likely to have been used and submitted before

Download this Sample

Free samples may contain mistakes and not unique parts

Sorry, we could not paraphrase this essay. Our professional writers can rewrite it and get you a unique paper.

Please check your inbox.

We can write you a custom essay that will follow your exact instructions and meet the deadlines. Let's fix your grades together!

Get Your Personalized Essay in 3 Hours or Less!

We use cookies to personalyze your web-site experience. By continuing we’ll assume you board with our cookie policy .

  • Instructions Followed To The Letter
  • Deadlines Met At Every Stage
  • Unique And Plagiarism Free

essays on network technology

help for assessment

  • Customer Reviews
  • Extended Essays
  • IB Internal Assessment
  • Theory of Knowledge
  • Literature Review
  • Dissertations
  • Essay Writing
  • Research Writing
  • Assignment Help
  • Capstone Projects
  • College Application
  • Online Class

Technology Argumentative Essay Topics: 25+ Ideas for Inspiration

Author Image

by  Antony W

April 20, 2023

technology argumentative essay topics

The evolution of technology is no longer a theory because there are far too many developments that would have been otherwise impossible if technology wasn’t really a thing.

In fact, advancements in technology has brought forth changes in the way we learn, how we do business, the way we access information, and the way we communicate and interact.

When it comes to writing an argumentative essay on technology, there are so many topics that you can explore depending on your area of interest.

In this article, we outline 20+ technology argumentative essay topics that you can explore in your next essay assignment.

Technology Argumentative Essay Topics

The following are some of the best topics to consider if your instructor has asked you to work on a technology argumentative essay.

Argumentative Essay Topics on the Development of Technology

  • The development of Artificial Intelligence (AI) will harm people
  • Should the government impose legal control over the development of technology?
  • Should we allow cloning in technology?
  • Will the development in technology give birth to a Technological Brave New World?
  • Should we support the move by states to invest in the development of war and weapons technologies?
  • We should not allow genetic engineering
  • Will the internet become obsolete one day?
  • Should the government invest in space studies?

Get Instant Help Today

If you’ve found a technology topic on which you’d like to write an argumentative essay, but you don’t have the time to handle the paper right now, you can buy an argumentative essay online from us.

At Help for Assessment, we believe that a combination of extensive research and custom writing demonstrates engagement to the topic, which is why our team writes from scratch.

Whether you’ve picked a technology topic already or you need help you to determine what’s a suitable one to argue on, click here to order an essay and we’ll help you write.

Technology Argumentative Essay Topics on Medicine

  • Should we encourage scientists to experiment with genetic engineering solely for medical purposes?
  • Does technology play a significant role in modern medicine?
  • Are health and fitness equipment companies worth it?
  • Will computers kick doctors out of their jobs some day?
  • Should the medical industry invest in cognitive computing?
  • Should the government invest in practical research projects to provide medical assistance to individuals?
  • Should medical tests be limited to animals?
  • Should we exempt human from critical clinical trials?
  • Can parents control undesirable genetics of their unborn children?
  • Do smartphones cause brain cancer?
  • Does the use of wearable technology boot healthy living?

Also Read: Medical Argumentative Essay Topics

Technology Argumentative Essay Topics on Social Media

  • Should an individual take legal action for hate speech on social media?
  • Has social media technology impoverished people’s social lives?
  • The government should limit the use of social media during political rallies and elections
  • Should companies care about potential employees’ social media profiles in the recruiting and hiring process?
  • Do social media cause moral decay among college students?
  • Should the free speech rule apply when creating posts and commenting on social media posts?
  • Can teenagers in college and kids in high school have their own social media account?
  • Should cops and intelligence have access to social media profiles during their investigation?
  • Do social media companies uphold the privacy of their users?
  • Has social media has a negative effect on interpersonal relationships and real-life social interactions?
  • Should we discourage children and adolescent from using social media platforms such as Facebook and WhatsApp?
  • Should social media companies develop new policies to enhance data privacy of their registered user?
  • Has Instagram contributed to low self-esteem among teenagers?
  • Should parents discourage children from making new friends on social media?
  • It’s inappropriate for teachers and students to befriend each other on social media

Technology Argumentative Essay Topics on Social Life

  • Will emails, online chats, and smartphones replace face-to-face communication?
  • Is it legal to use a smartphone while driving a car?
  • Are humans too dependent on technology?
  • Kids who play video games are smarter in class than those who don’t
  • Do smartphones make people depend on each other?
  • Does modern technology make human beings helpless in the event of a crisis?
  • Has social media affected the way young people find and build relationships in real life?
  • Do parents have the obligation to determine how long their children use the internet on a day-to-day basis?
  • Can technology improve the quality of an individual’s life?
  • Do violent video games teach children and adult to behave more violently?
  • Can technological innovation help humans to live longer?
  • Is the use of microchips the best way to protect human identity?

Also Read: 35+ Argumentative Essay Topics on Multiple Subjects

Technology Argumentative Essay Topics on Education

  • Will traditional books disappear?
  • Should teachers allow students to bring laptops and tablets to classes?
  • Students should not be allowed to use social in school
  • Should teachers encourage the use of video games in school?
  • Does online education make students lazy?
  • Is listening to audio books better than reading a textbook?
  • Will online education replace traditional learning as online technology continues to develop?
  • Are online education platforms more effective than traditional libraries?
  • Is 3D printing more reliable than Computer Aided Design software at producing models?
  • Are online classes better that traditional brick and motor learning?
  • Can we blame smartphone technology for the high rate of spelling mistakes among young people in schools?
  • Should learning institutions invest in online proctoring to monitor students during online examination?
  • Can a reliance on technology help to solve the education problems faced by institutions of higher learning?
  • Does the integration of technology in classroom sessions help to improve the learning process?
  • Should education institutions take part in the regulation of cyberbullying?
  • Is online education compatible with traditional education?

Also Read: Social Media Argumentative Essay Topics

Technology Argumentative Essay Topics on Human Interactions

  • The increased use in technology makes people dumber
  • Does overreliance on technology make people lazy or too dependent on it?
  • Using technology to solve one human problem only creates another problem
  • Should we campaign for worldwide accessibility to technology to boost human interaction?
  • Has social media really made the world a small global village?
  • Should parents have control over what content children can access on the internet?
  • Should the government ban the use of social networking sites in college and universities?

About the author 

Antony W is a professional writer and coach at Help for Assessment. He spends countless hours every day researching and writing great content filled with expert advice on how to write engaging essays, research papers, and assignments.

Feb 13, 2023

200-500 Word Example Essays about Technology

Got an essay assignment about technology check out these examples to inspire you.

Technology is a rapidly evolving field that has completely changed the way we live, work, and interact with one another. Technology has profoundly impacted our daily lives, from how we communicate with friends and family to how we access information and complete tasks. As a result, it's no surprise that technology is a popular topic for students writing essays.

But writing a technology essay can be challenging, especially for those needing more time or help with writer's block. This is where Jenni.ai comes in. Jenni.ai is an innovative AI tool explicitly designed for students who need help writing essays. With Jenni.ai, students can quickly and easily generate essays on various topics, including technology.

This blog post aims to provide readers with various example essays on technology, all generated by Jenni.ai. These essays will be a valuable resource for students looking for inspiration or guidance as they work on their essays. By reading through these example essays, students can better understand how technology can be approached and discussed in an essay.

Moreover, by signing up for a free trial with Jenni.ai, students can take advantage of this innovative tool and receive even more support as they work on their essays. Jenni.ai is designed to help students write essays faster and more efficiently, so they can focus on what truly matters – learning and growing as a student. Whether you're a student who is struggling with writer's block or simply looking for a convenient way to generate essays on a wide range of topics, Jenni.ai is the perfect solution.

The Impact of Technology on Society and Culture

Introduction:.

Technology has become an integral part of our daily lives and has dramatically impacted how we interact, communicate, and carry out various activities. Technological advancements have brought positive and negative changes to society and culture. In this article, we will explore the impact of technology on society and culture and how it has influenced different aspects of our lives.

Positive impact on communication:

Technology has dramatically improved communication and made it easier for people to connect from anywhere in the world. Social media platforms, instant messaging, and video conferencing have brought people closer, bridging geographical distances and cultural differences. This has made it easier for people to share information, exchange ideas, and collaborate on projects.

Positive impact on education:

Students and instructors now have access to a multitude of knowledge and resources because of the effect of technology on education . Students may now study at their speed and from any location thanks to online learning platforms, educational applications, and digital textbooks.

Negative impact on critical thinking and creativity:

Technological advancements have resulted in a reduction in critical thinking and creativity. With so much information at our fingertips, individuals have become more passive in their learning, relying on the internet for solutions rather than logic and inventiveness. As a result, independent thinking and problem-solving abilities have declined.

Positive impact on entertainment:

Technology has transformed how we access and consume entertainment. People may now access a wide range of entertainment alternatives from the comfort of their own homes thanks to streaming services, gaming platforms, and online content makers. The entertainment business has entered a new age of creativity and invention as a result of this.

Negative impact on attention span:

However, the continual bombardment of information and technological stimulation has also reduced attention span and the capacity to focus. People are easily distracted and need help focusing on a single activity for a long time. This has hampered productivity and the ability to accomplish duties.

The Ethics of Artificial Intelligence And Machine Learning

The development of artificial intelligence (AI) and machine learning (ML) technologies has been one of the most significant technological developments of the past several decades. These cutting-edge technologies have the potential to alter several sectors of society, including commerce, industry, healthcare, and entertainment. 

As with any new and quickly advancing technology, AI and ML ethics must be carefully studied. The usage of these technologies presents significant concerns around privacy, accountability, and command. As the use of AI and ML grows more ubiquitous, we must assess their possible influence on society and investigate the ethical issues that must be taken into account as these technologies continue to develop.

What are Artificial Intelligence and Machine Learning?

Artificial Intelligence is the simulation of human intelligence in machines designed to think and act like humans. Machine learning is a subfield of AI that enables computers to learn from data and improve their performance over time without being explicitly programmed.

The impact of AI and ML on Society

The use of AI and ML in various industries, such as healthcare, finance, and retail, has brought many benefits. For example, AI-powered medical diagnosis systems can identify diseases faster and more accurately than human doctors. However, there are also concerns about job displacement and the potential for AI to perpetuate societal biases.

The Ethical Considerations of AI and ML

A. Bias in AI algorithms

One of the critical ethical concerns about AI and ML is the potential for algorithms to perpetuate existing biases. This can occur if the data used to train these algorithms reflects the preferences of the people who created it. As a result, AI systems can perpetuate these biases and discriminate against certain groups of people.

B. Responsibility for AI-generated decisions

Another ethical concern is the responsibility for decisions made by AI systems. For example, who is responsible for the damage if a self-driving car causes an accident? The manufacturer of the vehicle, the software developer, or the AI algorithm itself?

C. The potential for misuse of AI and ML

AI and ML can also be used for malicious purposes, such as cyberattacks and misinformation. The need for more regulation and oversight in developing and using these technologies makes it difficult to prevent misuse.

The developments in AI and ML have given numerous benefits to humanity, but they also present significant ethical concerns that must be addressed. We must assess the repercussions of new technologies on society, implement methods to limit the associated dangers, and guarantee that they are utilized for the greater good. As AI and ML continue to play an ever-increasing role in our daily lives, we must engage in an open and frank discussion regarding their ethics.

The Future of Work And Automation

Rapid technological breakthroughs in recent years have brought about considerable changes in our way of life and work. Concerns regarding the influence of artificial intelligence and machine learning on the future of work and employment have increased alongside the development of these technologies. This article will examine the possible advantages and disadvantages of automation and its influence on the labor market, employees, and the economy.

The Advantages of Automation

Automation in the workplace offers various benefits, including higher efficiency and production, fewer mistakes, and enhanced precision. Automated processes may accomplish repetitive jobs quickly and precisely, allowing employees to concentrate on more complex and creative activities. Additionally, automation may save organizations money since it removes the need to pay for labor and minimizes the danger of workplace accidents.

The Potential Disadvantages of Automation

However, automation has significant disadvantages, including job loss and income stagnation. As robots and computers replace human labor in particular industries, there is a danger that many workers may lose their jobs, resulting in higher unemployment and more significant economic disparity. Moreover, if automation is not adequately regulated and managed, it might lead to stagnant wages and a deterioration in employees' standard of life.

The Future of Work and Automation

Despite these difficulties, automation will likely influence how labor is done. As a result, firms, employees, and governments must take early measures to solve possible issues and reap the rewards of automation. This might entail funding worker retraining programs, enhancing education and skill development, and implementing regulations that support equality and justice at work.

IV. The Need for Ethical Considerations

We must consider the ethical ramifications of automation and its effects on society as technology develops. The impact on employees and their rights, possible hazards to privacy and security, and the duty of corporations and governments to ensure that automation is utilized responsibly and ethically are all factors to be taken into account.

Conclusion:

To summarise, the future of employment and automation will most certainly be defined by a complex interaction of technological advances, economic trends, and cultural ideals. All stakeholders must work together to handle the problems and possibilities presented by automation and ensure that technology is employed to benefit society as a whole.

The Role of Technology in Education

Introduction.

Nearly every part of our lives has been transformed by technology, and education is no different. Today's students have greater access to knowledge, opportunities, and resources than ever before, and technology is becoming a more significant part of their educational experience. Technology is transforming how we think about education and creating new opportunities for learners of all ages, from online courses and virtual classrooms to instructional applications and augmented reality.

Technology's Benefits for Education

The capacity to tailor learning is one of technology's most significant benefits in education. Students may customize their education to meet their unique needs and interests since they can access online information and tools. 

For instance, people can enroll in online classes on topics they are interested in, get tailored feedback on their work, and engage in virtual discussions with peers and subject matter experts worldwide. As a result, pupils are better able to acquire and develop the abilities and information necessary for success.

Challenges and Concerns

Despite the numerous advantages of technology in education, there are also obstacles and considerations to consider. One issue is the growing reliance on technology and the possibility that pupils would become overly dependent on it. This might result in a lack of critical thinking and problem-solving abilities, as students may become passive learners who only follow instructions and rely on technology to complete their assignments.

Another obstacle is the digital divide between those who have access to technology and those who do not. This division can exacerbate the achievement gap between pupils and produce uneven educational and professional growth chances. To reduce these consequences, all students must have access to the technology and resources necessary for success.

In conclusion, technology is rapidly becoming an integral part of the classroom experience and has the potential to alter the way we learn radically. 

Technology can help students flourish and realize their full potential by giving them access to individualized instruction, tools, and opportunities. While the benefits of technology in the classroom are undeniable, it's crucial to be mindful of the risks and take precautions to guarantee that all kids have access to the tools they need to thrive.

The Influence of Technology On Personal Relationships And Communication 

Technological advancements have profoundly altered how individuals connect and exchange information. It has changed the world in many ways in only a few decades. Because of the rise of the internet and various social media sites, maintaining relationships with people from all walks of life is now simpler than ever. 

However, concerns about how these developments may affect interpersonal connections and dialogue are inevitable in an era of rapid technological growth. In this piece, we'll discuss how the prevalence of digital media has altered our interpersonal connections and the language we use to express ourselves.

Direct Effect on Direct Interaction:

The disruption of face-to-face communication is a particularly stark example of how technology has impacted human connections. The quality of interpersonal connections has suffered due to people's growing preference for digital over human communication. Technology has been demonstrated to reduce the usage of nonverbal signs such as facial expressions, tone of voice, and other indicators of emotional investment in the connection.

Positive Impact on Long-Distance Relationships:

Yet there are positives to be found as well. Long-distance relationships have also benefited from technological advancements. The development of technologies such as video conferencing, instant messaging, and social media has made it possible for individuals to keep in touch with distant loved ones. It has become simpler for individuals to stay in touch and feel connected despite geographical distance.

The Effects of Social Media on Personal Connections:

The widespread use of social media has had far-reaching consequences, especially on the quality of interpersonal interactions. Social media has positive and harmful effects on relationships since it allows people to keep in touch and share life's milestones.

Unfortunately, social media has made it all too easy to compare oneself to others, which may lead to emotions of jealousy and a general decline in confidence. Furthermore, social media might cause people to have inflated expectations of themselves and their relationships.

A Personal Perspective on the Intersection of Technology and Romance

Technological advancements have also altered physical touch and closeness. Virtual reality and other technologies have allowed people to feel physical contact and familiarity in a digital setting. This might be a promising breakthrough, but it has some potential downsides. 

Experts are concerned that people's growing dependence on technology for intimacy may lead to less time spent communicating face-to-face and less emphasis on physical contact, both of which are important for maintaining good relationships.

In conclusion, technological advancements have significantly affected the quality of interpersonal connections and the exchange of information. Even though technology has made it simpler to maintain personal relationships, it has chilled interpersonal interactions between people. 

Keeping tabs on how technology is changing our lives and making adjustments as necessary is essential as we move forward. Boundaries and prioritizing in-person conversation and physical touch in close relationships may help reduce the harm it causes.

The Security and Privacy Implications of Increased Technology Use and Data Collection

The fast development of technology over the past few decades has made its way into every aspect of our life. Technology has improved many facets of our life, from communication to commerce. However, significant privacy and security problems have emerged due to the broad adoption of technology. In this essay, we'll look at how the widespread use of technological solutions and the subsequent explosion in collected data affects our right to privacy and security.

Data Mining and Privacy Concerns

Risk of Cyber Attacks and Data Loss

The Widespread Use of Encryption and Other Safety Mechanisms

The Privacy and Security of the Future in a Globalized Information Age

Obtaining and Using Individual Information

The acquisition and use of private information is a significant cause for privacy alarm in the digital age. Data about their customers' online habits, interests, and personal information is a valuable commodity for many internet firms. Besides tailored advertising, this information may be used for other, less desirable things like identity theft or cyber assaults.

Moreover, many individuals need to be made aware of what data is being gathered from them or how it is being utilized because of the lack of transparency around gathering personal information. Privacy and data security have become increasingly contentious as a result.

Data breaches and other forms of cyber-attack pose a severe risk.

The risk of cyber assaults and data breaches is another big issue of worry. More people are using more devices, which means more opportunities for cybercriminals to steal private information like credit card numbers and other identifying data. This may cause monetary damages and harm one's reputation or identity.

Many high-profile data breaches have occurred in recent years, exposing the personal information of millions of individuals and raising serious concerns about the safety of this information. Companies and governments have responded to this problem by adopting new security methods like encryption and multi-factor authentication.

Many businesses now use encryption and other security measures to protect themselves from cybercriminals and data thieves. Encryption keeps sensitive information hidden by encoding it so that only those possessing the corresponding key can decipher it. This prevents private information like bank account numbers or social security numbers from falling into the wrong hands.

Firewalls, virus scanners, and two-factor authentication are all additional security precautions that may be used with encryption. While these safeguards do much to stave against cyber assaults, they are not entirely impregnable, and data breaches are still possible.

The Future of Privacy and Security in a Technologically Advanced World

There's little doubt that concerns about privacy and security will persist even as technology improves. There must be strict safeguards to secure people's private information as more and more of it is transferred and kept digitally. To achieve this goal, it may be necessary to implement novel technologies and heightened levels of protection and to revise the rules and regulations regulating the collection and storage of private information.

Individuals and businesses are understandably concerned about the security and privacy consequences of widespread technological use and data collecting. There are numerous obstacles to overcome in a society where technology plays an increasingly important role, from acquiring and using personal data to the risk of cyber-attacks and data breaches. Companies and governments must keep spending money on security measures and working to educate people about the significance of privacy and security if personal data is to remain safe.

In conclusion, technology has profoundly impacted virtually every aspect of our lives, including society and culture, ethics, work, education, personal relationships, and security and privacy. The rise of artificial intelligence and machine learning has presented new ethical considerations, while automation is transforming the future of work. 

In education, technology has revolutionized the way we learn and access information. At the same time, our dependence on technology has brought new challenges in terms of personal relationships, communication, security, and privacy.

Jenni.ai is an AI tool that can help students write essays easily and quickly. Whether you're looking, for example, for essays on any of these topics or are seeking assistance in writing your essay, Jenni.ai offers a convenient solution. Sign up for a free trial today and experience the benefits of AI-powered writing assistance for yourself.

Try Jenni for free today

Create your first piece of content with Jenni today and never look back

  • DSpace@MIT Home
  • MIT Libraries
  • Doctoral Theses

Essays in network economics

Thumbnail

Other Contributors

Terms of use, description, date issued, collections.

Pitchgrade

Presentations made painless

  • Get Premium

127 Technology Essay Topic Ideas & Examples

Inside This Article

Technology has become an integral part of our daily lives, shaping the way we communicate, work, and interact with the world around us. As such, it is no surprise that technology has become a popular topic for essays and research papers. If you're struggling to come up with a topic for your next technology essay, fear not! We've compiled a list of 127 technology essay topic ideas and examples to help get your creative juices flowing.

  • The impact of social media on society
  • The role of artificial intelligence in healthcare
  • The future of virtual reality technology
  • The ethical implications of gene editing technology
  • The rise of remote work and its impact on the workforce
  • The benefits and drawbacks of self-driving cars
  • The role of technology in education
  • The impact of smartphones on mental health
  • The potential dangers of deepfake technology
  • The benefits of renewable energy technology
  • The impact of automation on the job market
  • The role of technology in disaster preparedness and response
  • The future of space exploration technology
  • The impact of 5G technology on communication networks
  • The ethics of data mining and surveillance technology
  • The impact of biometric technology on security
  • The potential of blockchain technology in various industries
  • The impact of e-commerce on traditional retail businesses
  • The future of wearable technology
  • The role of technology in combating climate change
  • The implications of quantum computing technology
  • The impact of big data on business decision-making
  • The benefits and drawbacks of drone technology
  • The role of technology in shaping political movements
  • The potential of augmented reality technology in education
  • The impact of online dating apps on relationships
  • The ethics of artificial intelligence in decision-making
  • The impact of cybersecurity threats on businesses
  • The future of 3D printing technology
  • The benefits of telemedicine technology
  • The implications of autonomous weapons technology
  • The impact of technology on mental health treatment
  • The role of technology in disaster recovery efforts
  • The future of smart home technology
  • The benefits and drawbacks of online learning platforms
  • The impact of technology on social relationships
  • The ethics of gene editing technology in agriculture
  • The potential of virtual reality technology in therapy
  • The impact of technology on the music industry
  • The role of technology in promoting environmental sustainability
  • The implications of artificial intelligence in job automation
  • The benefits and drawbacks of cryptocurrency technology
  • The future of quantum encryption technology
  • The impact of technology on personal privacy
  • The role of technology in healthcare data management
  • The potential of nanotechnology in medical research
  • The ethics of facial recognition technology
  • The impact of technology on the entertainment industry
  • The benefits and drawbacks of cloud computing technology
  • The future of biometric identification technology
  • The role of technology in promoting social justice
  • The implications of autonomous vehicles in transportation
  • The impact of technology on food production and distribution
  • The ethics of artificial intelligence in criminal justice
  • The potential of blockchain technology in supply chain management
  • The benefits and drawbacks of smart city technology
  • The future of voice recognition technology
  • The impact of technology on the travel industry
  • The role of technology in disaster prevention efforts
  • The implications of artificial intelligence in creative industries
  • The ethics of genetic engineering technology
  • The benefits and drawbacks of cloud storage technology
  • The future of quantum communication technology
  • The impact of technology on online privacy
  • The role of technology in improving access to healthcare
  • The potential of biometric authentication technology
  • The benefits and drawbacks of social media platforms
  • The future of artificial intelligence in customer service
  • The impact of technology on urban planning and development
  • The role of technology in promoting diversity and inclusion
  • The implications of autonomous drones in warfare
  • The ethics of artificial intelligence in journalism
  • The potential of blockchain technology in voting systems
  • The benefits and drawbacks of smart grid technology
  • The future of virtual assistant technology
  • The impact of technology on the gig economy
  • The role of technology in promoting financial inclusion
  • The implications of artificial intelligence in creative writing
  • The ethics of facial recognition technology in law enforcement
  • The potential of blockchain technology in healthcare records
  • The benefits and drawbacks of smart wearables
  • The future of quantum computing in cybersecurity
  • The impact of technology on social activism
  • The role of technology in improving disaster response times
  • The implications of artificial intelligence in art and design
  • The ethics of genetic modification technology in agriculture
  • The potential of blockchain technology in digital identity
  • The benefits and drawbacks of smart transportation systems
  • The future of quantum sensors technology
  • The impact of technology on online security
  • The role of technology in promoting mental wellness
  • The implications of artificial intelligence in financial markets
  • The ethics of facial recognition technology in public spaces
  • The potential of blockchain technology in real estate transactions
  • The benefits and drawbacks of smart farming technology
  • The future of quantum encryption in data protection
  • The impact of technology on workplace productivity
  • The role of technology in promoting environmental conservation
  • The implications of artificial intelligence in healthcare diagnostics
  • The ethics of genetic editing technology in human reproduction
  • The potential of blockchain technology in intellectual property rights
  • The benefits and drawbacks of smart energy management systems
  • The future of quantum computing in scientific research
  • The impact of technology on online censorship
  • The role of technology in promoting healthy lifestyles
  • The implications of artificial intelligence in legal services
  • The ethics of facial recognition technology in public safety
  • The potential of blockchain technology in cross-border payments
  • The benefits and drawbacks of smart manufacturing technology
  • The future of quantum communication in secure messaging
  • The impact of technology on social inequality
  • The role of technology in promoting gender equality
  • The implications of artificial intelligence in military operations
  • The ethics of genetic engineering technology in human enhancement
  • The potential of blockchain technology in digital voting systems
  • The benefits and drawbacks of smart water management systems
  • The future of quantum sensors in medical diagnostics
  • The impact of technology on online addiction
  • The role of technology in promoting cultural diversity
  • The implications of artificial intelligence in autonomous decision-making
  • The ethics of facial recognition technology in immigration control
  • The potential of blockchain technology in cryptocurrency regulation
  • The benefits and drawbacks of smart waste management systems
  • The future of quantum encryption in secure communication
  • The impact of technology on social isolation
  • The role of technology in promoting global cooperation
  • The implications of artificial intelligence in ethical decision-making

In conclusion, technology offers a vast array of essay topics that can be explored from various perspectives. Whether you're interested in the ethical implications of artificial intelligence or the potential of blockchain technology, there is no shortage of ideas to choose from. So, pick a topic that interests you and start writing your next technology essay today!

Want to create a presentation now?

Instantly Create A Deck

Let PitchGrade do this for me

Hassle Free

We will create your text and designs for you. Sit back and relax while we do the work.

Explore More Content

  • Privacy Policy
  • Terms of Service

© 2023 Pitchgrade

First-year applicants: Essays, activities & academics

Rather than asking you to write one long essay, the MIT application consists of several short response questions and essays designed to help us get to know you. Remember that this is not a writing test. Be honest, be open, be authentic—this is your opportunity to connect with us.

You should certainly be thoughtful about your essays, but if you’re thinking too much—spending a lot of time stressing or strategizing about what makes you “look best,” as opposed to the answers that are honest and easy—you’re doing it wrong.

Our questions

For the 2023–2024 application, we’re asking these short answer essay questions:

  • What field of study appeals to you the most right now? (Note: Applicants select from a drop-down list.) Tell us more about why this field of study at MIT appeals to you.
  • We know you lead a busy life, full of activities, many of which are required of you. Tell us about something you do simply for the pleasure of it.
  • How has the world you come from—including your opportunities, experiences, and challenges—shaped your dreams and aspirations?
  • MIT brings people with diverse backgrounds together to collaborate, from tackling the world’s biggest challenges to lending a helping hand. Describe one way you have collaborated with others to learn from them, with them, or contribute to your community together.
  • How did you manage a situation or challenge that you didn’t expect? What did you learn from it?

Depending on the question, we’re looking for responses of approximately 100–200 words each. There is also one final, open-ended, additional-information text box where you can tell us anything else you think we really ought to know.

Please use our form, not a resume, to list your activities. There is only enough space to list four things—please choose the four that mean the most to you and tell us a bit about them.

Self-reported Coursework Form

How you fill out this form will not make or break your application, so don’t stress about it. Use your best judgment—we’re simply trying to get a clear picture of your academic preparation by subject area. We see thousands of different transcripts, so it really helps us to view your coursework and grades in a consistent format.

Here are a few quick tips to help you complete this section:

  • The self-reported coursework should be completed by students in U.S. school systems only. If you attend an international school, we’ll just use your transcript.
  • The information you provide does not replace your official high school transcript, which must be sent to us from your school to verify your self-reported information (in order to avoid accidental misrepresentation, it might help to have a copy of your high school transcript in front of you while completing this form).
  • Avoid abbreviations, if at all possible, and enter the names of your school courses by subject area. Please include all classes you have taken and are currently taking. If your courses were taken outside of your high school (at a local junior college or university, for example), tell us where they were taken in the “Class Name” field.
  • In the “Grade Received” field, list term and/or final grades for each class, as found on your school transcript (semester, trimester, quarter, final, etc.). Use one entry only per class. For example, it’s not necessary to use a separate entry for each semester of the same class. Place all grades for a class in the same field, separating grades with commas.

Talk to our experts

1800-120-456-456

  • Technology Essay

ffImage

Essay on Technology

The word "technology" and its uses have immensely changed since the 20th century, and with time, it has continued to evolve ever since. We are living in a world driven by technology. The advancement of technology has played an important role in the development of human civilization, along with cultural changes. Technology provides innovative ways of doing work through various smart and innovative means. 

Electronic appliances, gadgets, faster modes of communication, and transport have added to the comfort factor in our lives. It has helped in improving the productivity of individuals and different business enterprises. Technology has brought a revolution in many operational fields. It has undoubtedly made a very important contribution to the progress that mankind has made over the years.

The Advancement of Technology:

Technology has reduced the effort and time and increased the efficiency of the production requirements in every field. It has made our lives easy, comfortable, healthy, and enjoyable. It has brought a revolution in transport and communication. The advancement of technology, along with science, has helped us to become self-reliant in all spheres of life. With the innovation of a particular technology, it becomes part of society and integral to human lives after a point in time.

Technology is Our Part of Life:

Technology has changed our day-to-day lives. Technology has brought the world closer and better connected. Those days have passed when only the rich could afford such luxuries. Because of the rise of globalisation and liberalisation, all luxuries are now within the reach of the average person. Today, an average middle-class family can afford a mobile phone, a television, a washing machine, a refrigerator, a computer, the Internet, etc. At the touch of a switch, a man can witness any event that is happening in far-off places.  

Benefits of Technology in All Fields: 

We cannot escape technology; it has improved the quality of life and brought about revolutions in various fields of modern-day society, be it communication, transportation, education, healthcare, and many more. Let us learn about it.

Technology in Communication:

With the advent of technology in communication, which includes telephones, fax machines, cellular phones, the Internet, multimedia, and email, communication has become much faster and easier. It has transformed and influenced relationships in many ways. We no longer need to rely on sending physical letters and waiting for several days for a response. Technology has made communication so simple that you can connect with anyone from anywhere by calling them via mobile phone or messaging them using different messaging apps that are easy to download.

Innovation in communication technology has had an immense influence on social life. Human socialising has become easier by using social networking sites, dating, and even matrimonial services available on mobile applications and websites.

Today, the Internet is used for shopping, paying utility bills, credit card bills, admission fees, e-commerce, and online banking. In the world of marketing, many companies are marketing and selling their products and creating brands over the internet. 

In the field of travel, cities, towns, states, and countries are using the web to post detailed tourist and event information. Travellers across the globe can easily find information on tourism, sightseeing, places to stay, weather, maps, timings for events, transportation schedules, and buy tickets to various tourist spots and destinations.

Technology in the Office or Workplace:

Technology has increased efficiency and flexibility in the workspace. Technology has made it easy to work remotely, which has increased the productivity of the employees. External and internal communication has become faster through emails and apps. Automation has saved time, and there is also a reduction in redundancy in tasks. Robots are now being used to manufacture products that consistently deliver the same product without defect until the robot itself fails. Artificial Intelligence and Machine Learning technology are innovations that are being deployed across industries to reap benefits.

Technology has wiped out the manual way of storing files. Now files are stored in the cloud, which can be accessed at any time and from anywhere. With technology, companies can make quick decisions, act faster towards solutions, and remain adaptable. Technology has optimised the usage of resources and connected businesses worldwide. For example, if the customer is based in America, he can have the services delivered from India. They can communicate with each other in an instant. Every company uses business technology like virtual meeting tools, corporate social networks, tablets, and smart customer relationship management applications that accelerate the fast movement of data and information.

Technology in Education:

Technology is making the education industry improve over time. With technology, students and parents have a variety of learning tools at their fingertips. Teachers can coordinate with classrooms across the world and share their ideas and resources online. Students can get immediate access to an abundance of good information on the Internet. Teachers and students can access plenty of resources available on the web and utilise them for their project work, research, etc. Online learning has changed our perception of education. 

The COVID-19 pandemic brought a paradigm shift using technology where school-going kids continued their studies from home and schools facilitated imparting education by their teachers online from home. Students have learned and used 21st-century skills and tools, like virtual classrooms, AR (Augmented Reality), robots, etc. All these have increased communication and collaboration significantly. 

Technology in Banking:

Technology and banking are now inseparable. Technology has boosted digital transformation in how the banking industry works and has vastly improved banking services for their customers across the globe.

Technology has made banking operations very sophisticated and has reduced errors to almost nil, which were somewhat prevalent with manual human activities. Banks are adopting Artificial Intelligence (AI) to increase their efficiency and profits. With the emergence of Internet banking, self-service tools have replaced the traditional methods of banking. 

You can now access your money, handle transactions like paying bills, money transfers, and online purchases from merchants, and monitor your bank statements anytime and from anywhere in the world. Technology has made banking more secure and safe. You do not need to carry cash in your pocket or wallet; the payments can be made digitally using e-wallets. Mobile banking, banking apps, and cybersecurity are changing the face of the banking industry.

Manufacturing and Production Industry Automation:

At present, manufacturing industries are using all the latest technologies, ranging from big data analytics to artificial intelligence. Big data, ARVR (Augmented Reality and Virtual Reality), and IoT (Internet of Things) are the biggest manufacturing industry players. Automation has increased the level of productivity in various fields. It has reduced labour costs, increased efficiency, and reduced the cost of production.

For example, 3D printing is used to design and develop prototypes in the automobile industry. Repetitive work is being done easily with the help of robots without any waste of time. This has also reduced the cost of the products. 

Technology in the Healthcare Industry:

Technological advancements in the healthcare industry have not only improved our personal quality of life and longevity; they have also improved the lives of many medical professionals and students who are training to become medical experts. It has allowed much faster access to the medical records of each patient. 

The Internet has drastically transformed patients' and doctors’ relationships. Everyone can stay up to date on the latest medical discoveries, share treatment information, and offer one another support when dealing with medical issues. Modern technology has allowed us to contact doctors from the comfort of our homes. There are many sites and apps through which we can contact doctors and get medical help. 

Breakthrough innovations in surgery, artificial organs, brain implants, and networked sensors are examples of transformative developments in the healthcare industry. Hospitals use different tools and applications to perform their administrative tasks, using digital marketing to promote their services.

Technology in Agriculture:

Today, farmers work very differently than they would have decades ago. Data analytics and robotics have built a productive food system. Digital innovations are being used for plant breeding and harvesting equipment. Software and mobile devices are helping farmers harvest better. With various data and information available to farmers, they can make better-informed decisions, for example, tracking the amount of carbon stored in soil and helping with climate change.

Disadvantages of Technology:

People have become dependent on various gadgets and machines, resulting in a lack of physical activity and tempting people to lead an increasingly sedentary lifestyle. Even though technology has increased the productivity of individuals, organisations, and the nation, it has not increased the efficiency of machines. Machines cannot plan and think beyond the instructions that are fed into their system. Technology alone is not enough for progress and prosperity. Management is required, and management is a human act. Technology is largely dependent on human intervention. 

Computers and smartphones have led to an increase in social isolation. Young children are spending more time surfing the internet, playing games, and ignoring their real lives. Usage of technology is also resulting in job losses and distracting students from learning. Technology has been a reason for the production of weapons of destruction.

Dependency on technology is also increasing privacy concerns and cyber crimes, giving way to hackers.

arrow-right

FAQs on Technology Essay

1. What is technology?

Technology refers to innovative ways of doing work through various smart means. The advancement of technology has played an important role in the development of human civilization. It has helped in improving the productivity of individuals and businesses.

2. How has technology changed the face of banking?

Technology has made banking operations very sophisticated. With the emergence of Internet banking, self-service tools have replaced the traditional methods of banking. You can now access your money, handle transactions, and monitor your bank statements anytime and from anywhere in the world. Technology has made banking more secure and safe.

3. How has technology brought a revolution in the medical field?

Patients and doctors keep each other up to date on the most recent medical discoveries, share treatment information, and offer each other support when dealing with medical issues. It has allowed much faster access to the medical records of each patient. Modern technology has allowed us to contact doctors from the comfort of our homes. There are many websites and mobile apps through which we can contact doctors and get medical help.

4. Are we dependent on technology?

Yes, today, we are becoming increasingly dependent on technology. Computers, smartphones, and modern technology have helped humanity achieve success and progress. However, in hindsight, people need to continuously build a healthy lifestyle, sorting out personal problems that arise due to technological advancements in different aspects of human life.

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

Publications

  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

Internet & Technology

6 facts about americans and tiktok.

62% of U.S. adults under 30 say they use TikTok, compared with 39% of those ages 30 to 49, 24% of those 50 to 64, and 10% of those 65 and older.

Many Americans think generative AI programs should credit the sources they rely on

Americans’ use of chatgpt is ticking up, but few trust its election information, whatsapp and facebook dominate the social media landscape in middle-income nations, sign up for our internet, science, and tech newsletter.

New findings, delivered monthly

Electric Vehicle Charging Infrastructure in the U.S.

64% of Americans live within 2 miles of a public electric vehicle charging station, and those who live closest to chargers view EVs more positively.

When Online Content Disappears

A quarter of all webpages that existed at one point between 2013 and 2023 are no longer accessible.

A quarter of U.S. teachers say AI tools do more harm than good in K-12 education

High school teachers are more likely than elementary and middle school teachers to hold negative views about AI tools in education.

Teens and Video Games Today

85% of U.S. teens say they play video games. They see both positive and negative sides, from making friends to harassment and sleep loss.

Americans’ Views of Technology Companies

Most Americans are wary of social media’s role in politics and its overall impact on the country, and these concerns are ticking up among Democrats. Still, Republicans stand out on several measures, with a majority believing major technology companies are biased toward liberals.

22% of Americans say they interact with artificial intelligence almost constantly or several times a day. 27% say they do this about once a day or several times a week.

About one-in-five U.S. adults have used ChatGPT to learn something new (17%) or for entertainment (17%).

Across eight countries surveyed in Latin America, Africa and South Asia, a median of 73% of adults say they use WhatsApp and 62% say they use Facebook.

5 facts about Americans and sports

About half of Americans (48%) say they took part in organized, competitive sports in high school or college.

REFINE YOUR SELECTION

Research teams, signature reports.

essays on network technology

The State of Online Harassment

Roughly four-in-ten Americans have experienced online harassment, with half of this group citing politics as the reason they think they were targeted. Growing shares face more severe online abuse such as sexual harassment or stalking

Parenting Children in the Age of Screens

Two-thirds of parents in the U.S. say parenting is harder today than it was 20 years ago, with many citing technologies – like social media or smartphones – as a reason.

Dating and Relationships in the Digital Age

From distractions to jealousy, how Americans navigate cellphones and social media in their romantic relationships.

Americans and Privacy: Concerned, Confused and Feeling Lack of Control Over Their Personal Information

Majorities of U.S. adults believe their personal data is less secure now, that data collection poses more risks than benefits, and that it is not possible to go through daily life without being tracked.

Americans and ‘Cancel Culture’: Where Some See Calls for Accountability, Others See Censorship, Punishment

Social media fact sheet, digital knowledge quiz, video: how do americans define online harassment.

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

© 2024 Pew Research Center

Suggestions or feedback?

MIT News | Massachusetts Institute of Technology

  • Machine learning
  • Social justice
  • Black holes
  • Classes and programs

Departments

  • Aeronautics and Astronautics
  • Brain and Cognitive Sciences
  • Architecture
  • Political Science
  • Mechanical Engineering

Centers, Labs, & Programs

  • Abdul Latif Jameel Poverty Action Lab (J-PAL)
  • Picower Institute for Learning and Memory
  • Lincoln Laboratory
  • School of Architecture + Planning
  • School of Engineering
  • School of Humanities, Arts, and Social Sciences
  • Sloan School of Management
  • School of Science
  • MIT Schwarzman College of Computing

Study models how ketamine’s molecular action leads to its effects on the brain

Press contact :.

A clear drug vial with a syringe on a white background, seen from above

Previous image Next image

Ketamine, a World Health Organization Essential Medicine, is widely used at varying doses for sedation, pain control, general anesthesia, and as a therapy for treatment-resistant depression. While scientists know its target in brain cells and have observed how it affects brain-wide activity, they haven’t known entirely how the two are connected. A new study by a research team spanning four Boston-area institutions uses computational modeling of previously unappreciated physiological details to fill that gap and offer new insights into how ketamine works.

“This modeling work has helped decipher likely mechanisms through which ketamine produces altered arousal states as well as its therapeutic benefits for treating depression,” says co-senior author Emery N. Brown , the Edward Hood Taplin Professor of Computational Neuroscience and Medical Engineering at The Picower Institute for Learning and Memory at MIT, as well as an anesthesiologist at Massachusetts General Hospital and a professor at Harvard Medical School.

The researchers from MIT, Boston University (BU), MGH, and Harvard University say the predictions of their model, published May 20 in Proceedings of the National Academy of Sciences , could help physicians make better use of the drug.

“When physicians understand what's mechanistically happening when they administer a drug, they can possibly leverage that mechanism and manipulate it,” says study lead author Elie Adam , a research scientist at MIT who will soon join the Harvard Medical School faculty and launch a lab at MGH. “They gain a sense of how to enhance the good effects of the drug and how to mitigate the bad ones.”

Blocking the door

The core advance of the study involved biophysically modeling what happens when ketamine blocks the “NMDA” receptors in the brain’s cortex — the outer layer where key functions such as sensory processing and cognition take place. Blocking the NMDA receptors modulates the release of excitatory neurotransmitter glutamate.

When the neuronal channels (or doorways) regulated by the NMDA receptors open, they typically close slowly (like a doorway with a hydraulic closer that keeps it from slamming), allowing ions to go in and out of neurons, thereby regulating their electrical properties, Adam says. But, the channels of the receptor can be blocked by a molecule. Blocking by magnesium helps to naturally regulate ion flow. Ketamine, however, is an especially effective blocker.

Blocking slows the voltage build-up across the neuron’s membrane that eventually leads a neuron to “spike,” or send an electrochemical message to other neurons. The NMDA doorway becomes unblocked when the voltage gets high. This interdependence between voltage, spiking, and blocking can equip NMDA receptors with faster activity than its slow closing speed might suggest. The team’s model goes further than ones before by representing how ketamine’s blocking and unblocking affect neural activity.

“Physiological details that are usually ignored can sometimes be central to understanding cognitive phenomena,” says co-corresponding author Nancy Kopell , a professor of mathematics at BU. “The dynamics of NMDA receptors have more impact on network dynamics than has previously been appreciated.”

With their model, the scientists simulated how different doses of ketamine affecting NMDA receptors would alter the activity of a model brain network. The simulated network included key neuron types found in the cortex: one excitatory type and two inhibitory types. It distinguishes between “tonic” interneurons that tamp down network activity and “phasic” interneurons that react more to excitatory neurons.

The team’s simulations successfully recapitulated the real brain waves that have been measured via EEG electrodes on the scalp of a human volunteer who received various ketamine doses and the neural spiking that has been measured in similarly treated animals that had implanted electrode arrays. At low doses, ketamine increased brain wave power in the fast gamma frequency range (30-40 Hz). At the higher doses that cause unconsciousness, those gamma waves became periodically interrupted by “down” states where only very slow frequency delta waves occur. This repeated disruption of the higher frequency waves is what can disrupt communication across the cortex enough to disrupt consciousness.

A very horizontal chart plots brain rhythm frequency over time with colors indicating power. Bars along the top indicate the dose of ketamine. After the dose starts more gamma frequency power appears. After the dose gets even higher, the gamma waves periodically stop and then resume.

Previous item Next item

But how? Key findings

Importantly, through simulations, they explained several key mechanisms in the network that would produce exactly these dynamics.

The first prediction is that ketamine can disinhibit network activity by shutting down certain inhibitory interneurons. The modeling shows that natural blocking and unblocking kinetics of NMDA-receptors can let in a small current when neurons are not spiking. Many neurons in the network that are at the right level of excitation would rely on this current to spontaneously spike. But when ketamine impairs the kinetics of the NMDA receptors, it quenches that current, leaving these neurons suppressed. In the model, while ketamine equally impairs all neurons, it is the tonic inhibitory neurons that get shut down because they happen to be at that level of excitation. This releases other neurons, excitatory or inhibitory, from their inhibition allowing them to spike vigorously and leading to ketamine’s excited brain state. The network’s increased excitation can then enable quick unblocking (and reblocking) of the neurons’ NMDA receptors, causing bursts of spiking.

Another prediction is that these bursts become synchronized into the gamma frequency waves seen with ketamine. How? The team found that the phasic inhibitory interneurons become stimulated by lots of input of the neurotransmitter glutamate from the excitatory neurons and vigorously spike, or fire. When they do, they send an inhibitory signal of the neurotransmitter GABA to the excitatory neurons that squelches the excitatory firing, almost like a kindergarten teacher calming down a whole classroom of excited children. That stop signal, which reaches all the excitatory neurons simultaneously, only lasts so long, ends up synchronizing their activity, producing a coordinated gamma brain wave.

A network schematic shows the model arrangement of three different types of neurons in a cortical circuit.

“The finding that an individual synaptic receptor (NMDA) can produce gamma oscillations and that these gamma oscillations can influence network-level gamma was unexpected,” says co-corresponding author Michelle McCarthy , a research assistant professor of math at BU. “This was found only by using a detailed physiological model of the NMDA receptor. This level of physiological detail revealed a gamma time scale not usually associated with an NMDA receptor.”

So what about the periodic down states that emerge at higher, unconsciousness-inducing ketamine doses? In the simulation, the gamma-frequency activity of the excitatory neurons can’t be sustained for too long by the impaired NMDA-receptor kinetics. The excitatory neurons essentially become exhausted under GABA inhibition from the phasic interneurons. That produces the down state. But then, after they have stopped sending glutamate to the phasic interneurons, those cells stop producing their inhibitory GABA signals. That enables the excitatory neurons to recover, starting a cycle anew.

Antidepressant connection?

The model makes another prediction that might help explain how ketamine exerts its antidepressant effects. It suggests that the increased gamma activity of ketamine could entrain gamma activity among neurons expressing a peptide called VIP. This peptide has been found to have health-promoting effects, such as reducing inflammation, that last much longer than ketamine’s effects on NMDA receptors. The research team proposes that the entrainment of these neurons under ketamine could increase the release of the beneficial peptide, as observed when these cells are stimulated in experiments. This also hints at therapeutic features of ketamine that may go beyond antidepressant effects. The research team acknowledges, however, that this connection is speculative and awaits specific experimental validation.

“The understanding that the subcellular details of the NMDA receptor can lead to increased gamma oscillations was the basis for a new theory about how ketamine may work for treating depression,” Kopell says.

Additional co-authors of the study are Marek Kowalski, Oluwaseun Akeju, and Earl K. Miller.

The work was supported by the JPB Foundation; The Picower Institute for Learning and Memory; The Simons Center for The Social Brain; the National Institutes of Health; George J. Elbaum ’59, SM ’63, PhD ’67; Mimi Jensen; Diane B. Greene SM ’78; Mendel Rosenblum; Bill Swanson; and annual donors to the Anesthesia Initiative Fund.

Share this news article on:

Related links.

  • Institute for Medical Engineering and Science
  • The Picower Institute for Learning and Memory
  • Department of Brain and Cognitive Sciences

Related Topics

  • Pharmaceuticals
  • Neuroscience
  • Brain and cognitive sciences
  • Health sciences and technology
  • Health care
  • Picower Institute
  • Institute for Medical Engineering and Science (IMES)

Related Articles

A hospital operating room is seen from behind a blue-gowned anesthesiologist as she applies a mask to a patient. Another doctor is at the far end of the gurney.

Anesthesia technology precisely controls unconsciousness in animal tests

Colorful collage shows 3 brain icons floating amongst wavey lines.

Study finds tracking brain waves could reduce post-op complications

Portrait photo of Emery Brown standing in front of a white stone-covered wall

3 Questions: Emery Brown on improving anesthesia with neuroscience

Photo of a team of surgeons and an anesthesiologist gathered around a patient on an operating table

Statistical model defines ketamine anesthesia’s effects on the brain

More mit news.

An MIT Sailboat bearing the number 1 on its sail on the Charles River

QS ranks MIT the world’s No. 1 university for 2024-25

Read full story →

Illustrated blue and purple motion-blurred spheres travel a path resembling a highway

Physicists create five-lane superhighway for electrons

16 people pose between rows of large columns

SPURS Fellowships offer time out to reflect, learn, and connect

Sukrit Puri, wearing a turban and a white button-down shirt, stands in front of a curved railing against a yellow wall.

All in the family

Closeup view of a microscopic device focusing on 3 golden prongs emanating from a purple circular shape against a green backdrop

Ultrasound offers a new way to perform deep brain stimulation

20 identical images in a four by five grid show a robotic arm attempting to grasp a cube. Eighteen squares are green, while two are red. At left is an illustration of a black robotic arm attempting to grab a black cube with a question mark on it.

Helping robots grasp the unpredictable

  • More news on MIT News homepage →

Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA, USA

  • Map (opens in new window)
  • Events (opens in new window)
  • People (opens in new window)
  • Careers (opens in new window)
  • Accessibility
  • Social Media Hub
  • MIT on Facebook
  • MIT on YouTube
  • MIT on Instagram

Networking Technology Project Management Report

  • To find inspiration for your paper and overcome writer’s block
  • As a source of information (ensure proper referencing)
  • As a template for you assignment

Introduction

Project summary, network design and implementation, conclusion: resource planning, reference list.

In the effort to open a new division in Scottsdale, Arizona, J. Smith & Associates must arrange to move furniture and equipment in the new location, including networking of technology and setting up of communication services. This paper presents a project summary on the area of networking technology as one of the costs and time-constrained activities that my company must fulfill to ensure that about 500 people who work at the multi-story complex meet the needs of its clients in different satellite divisions. Since the building is equipped with modern telecommunications infrastructure, the main task of the project entails creating interactivity and interconnectedness of various remote networks of different floors and with satellite offices.

The primary objective of the project entails facilitating the 500 employees at the office to attend the needs of customers within different divisions, including the satellite divisions. For this goal to be realized, the network systems of my organization should meet the capacity need thresholds while having optimal systems reliability and availability. Therefore, part of the project should involve system evaluation and monitoring to enhance its availability to meet the planned capacity needs. Equally important is the networking project is resource planning. Planning for network architectural design and implementation constitutes a critical activity in any networking technology.

The implementation of the project initiates with the analysis of project requirements. The organization will first distribute all information together with proposals to the relevant authenticating authorities. Wysoki (2013) asserts that it is important to analyze the technical and functional needs of all projects consistent with the established codes within different jurisdictions.

Project design and implementation requires the input of human resources, including technical staff and project administrators. These resources can be recruited in-house. Alternatively, my company may consider contracting second-party agents to execute the task of setting up the organization’s network systems, including ensuring that they adequately learn to operate within the acceptable availability and reliability thresholds.

The second alternative has been adopted. This decision is based on the knowledge that any recruited second parties are well acquitted with codes and acceptable practices within the new division in Scottsdale compared to the company’s employees. Therefore, the risk of noncompliance, review, and subsequent auditing of the network design to ensure compliance is eliminated. This situation has a cost reduction effect. However, my company has the obligation of supplying the second party agents with necessary system performance design constraints to ensure that the design meets its capacity needs.

The next phase of the implementation process encompasses exporting the clients’ information from the existing systems and network infrastructure. Depending on the hierarchical structures, the appropriate assignment of electronic signatures is executed. Since electronic data is prone to exposure to a variety of risks that may lead to its loss, particularly when the network systems are availed to the employees, it becomes crucial to implement systems for tracking data and maintaining data backups. When this goal is accomplished, the next approach involves completing the functionality of the system tests and the appropriateness of the user interfaces.

While planning for the implementation, the best outcomes are achieved with full knowledge of the network load. This goal may be achieved through benchmarking of bandwidth utilization within the network infrastructure. The evaluation may also be based on the development of test environments in which simulations are conducted on the capacity requirements of all network users in the entire new divisions’ complex.

Before deployment, the designed new network requires inventory analysis. The process includes access types such as DSL and VPN, domain names, and any deployable bandwidths for the internet. Jigeesh (2012) addresses the importance of “Assessing WAN bandwidth between Internet egress location and network locations, which use that egress point” (p.43). Determination of peak and average usage for proxy servers firewall appliances, DNS servers, and bandwidths constitutes a crucial activity in the evaluation process before the new network system becomes fully deployed within the new division. All system users and clients should always have the ability to reach hostnames. This process should be facilitated by testing ICMP connectivity.

Continuous monitoring is critical in ensuring network system reliability. However, some reliability tests are highly intrusive. They influence the performance of networks (Jigeesh, 2012). For example, TCP or UDP commands should be executed over off-hours to ensure minimal negative effects on the network when under full load. Monitoring also aims at providing clear guidelines for conducting network maintenance work together with troubleshooting in case problems are registered on full deployment.

It is impossible to plan or execute a project without the commitment of resources. Money and time resources are limited in their supply. Therefore, the two resources act as the most crucial constraining factors to any project, including technology-networking projects. Money is required in the design of the networking systems, hiring of the implementing agents, project implementation and administration costs, training personnel on the successful implementation of the project, and/or sourcing the project analysis experts (Kostelac, Matrjan, & Dobovicek, 2011). Financing these resources is the responsibility of my company. The contractor will assume the costs of hiring the employees who will be charged with the responsibility of executing various work structures, which while combined constitute the completed project.

Jigeesh, N. (2012). Selection of Project as Important Beginning for Information Technology Project Management. IUP Journal of Operations Management, 1 (1), 41-49.

Kostelac, D., Matrjan, D., & Dobovicek, S. (2011). Relationship between Processes and Project Management. International DAAAM, 22 (1), 1119-1120.

Wysoki, R. (2013). Effective Project Management: Traditional, Agile, Extreme . Hoboken, NJ: Wiley & Sons.

  • Sirus XM Company: History of Satellite Radio
  • MP3 vs Satellite Radio in the United States
  • Communication Satellite Payloads and UAS Applications
  • Universal Wi-Fi Connectivity for Apartment Complex
  • Midfield Terminal Baggage System: Project Management
  • Charity Fashion Show: Project Management
  • Haircuts Information Technology Scheduling Project
  • Earned Value Management: Reform in the Department of Defense
  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2020, June 13). Networking Technology Project Management. https://ivypanda.com/essays/networking-technology-project-management/

"Networking Technology Project Management." IvyPanda , 13 June 2020, ivypanda.com/essays/networking-technology-project-management/.

IvyPanda . (2020) 'Networking Technology Project Management'. 13 June.

IvyPanda . 2020. "Networking Technology Project Management." June 13, 2020. https://ivypanda.com/essays/networking-technology-project-management/.

1. IvyPanda . "Networking Technology Project Management." June 13, 2020. https://ivypanda.com/essays/networking-technology-project-management/.

Bibliography

IvyPanda . "Networking Technology Project Management." June 13, 2020. https://ivypanda.com/essays/networking-technology-project-management/.

IMAGES

  1. Click here to view my essay on computer networks

    essays on network technology

  2. Write a short essay on Technology

    essays on network technology

  3. Information Technology Essay

    essays on network technology

  4. 10 Lines Essay on Technology in English for Student

    essays on network technology

  5. Exploring Networking Principles Components Computer Science Essay

    essays on network technology

  6. Principles of Computer Networks Essay Example

    essays on network technology

VIDEO

  1. Information Technology Essay writing in English..Short Essay on Technology Information in 150 words

  2. Information Technology IT Essay Quotation|| Short And Easy

  3. College Planning Seminar: Essays and Supplements

  4. Identify AI-Generated Essays Using Prompt Injection

  5. Contribution of Technology in Education/english essay/School essay

  6. 5 AI Tools for Proofreading Papers and Essays

COMMENTS

  1. Advancements and Challenges in Networking Technologies: A Comprehensive

    Abstract: This survey paper provides a comprehensive overview of emerging technologies in networking, focusing on caching in Information-Centric Networking (ICN), context-aware radio access technology (RAT) selection in 5G ultra-dense networks, cryptocurrency adoption, and mobility support for routing in Low Power and Lossy Networks (LLNs). Adaptive RAT selection mechanisms are stressed in 5G ...

  2. Study and Investigation on 5G Technology: A Systematic Review

    As 5 Gis a fast mobile network technology, it will enable virtual access to high processing power and secure and safe access to cloud services and enterprise applications. Small cell is one of the best features of 5G, which brings lots of advantages like high coverage, high-speed data transfer, power saving, easy and fast cloud access, etc. .

  3. History of the Networking Technology

    History of the Networking Technology Essay. The telegraph was perfected in the 1850s. Decades later, the telephone became a household fixture in the early 20 th century. But even with the radio and the telephone becoming household fixtures in most modern homes, the whole world and particularly the United Kingdom was not exactly moving at a ...

  4. How Is Technology Changing the World, and How Should the World Change

    Technologies are becoming increasingly complicated and increasingly interconnected. Cars, airplanes, medical devices, financial transactions, and electricity systems all rely on more computer software than they ever have before, making them seem both harder to understand and, in some cases, harder to control. Government and corporate surveillance of individuals and information processing ...

  5. Computer Networking: What's Changed, What's Changing and What It Means

    And while innovations like 5G promise enhanced wireless experiences, further demands for reliability and speed as cloud tools become more sophisticated and complex may push office end users back to the future with next-gen, high-speed cables. Innovations in infrastructure march ever-forward in increasing speed and broadness of accessibility.

  6. Essay On 5g Technology: Free Samples Available for Students

    Essay on 5G Technology in 250 words. The fifth generation of networks is the 5G network and this network promises to bring faster internet speed, lower latency, and improved reliability to mobile devices. In India, it is expected to have a significant impact on several industries such as healthcare, education, agriculture, entertainment, etc.

  7. Connecting the World: The Global Impact of Network Technology

    Network technology has bridged the geographical gaps that once hindered communication. People can now connect with ease, regardless of their physical location. Communication tools like email, instant messaging, and video calls enable real-time conversations and virtual face-to-face interactions. This seamless connectivity has fostered cultural ...

  8. Essays on 5g Technology

    Essays on 5g Technology. Essay examples. Essay topics. 8 essay samples found. Sort & filter. 1 A Review of 5g Wireless Technology . 2 pages / 795 words . The expansion of 5G wireless is 5th generation wireless technology. This will complete wireless communication with almost no limitations. ... Currently, in Network Technology one of the most ...

  9. Essays On Network Technology

    Read Network Technology Essay and other exceptional papers on every subject and topic college can throw at you. We can custom-write anything as well! ... Blog Free Essay Writing Tools Quizzes and Tests Essay Topics Types of Essays Free Essay Examples Best Essay Writing Services. How It Works;

  10. Essay on 5G Technology

    5G, the fifth generation of wireless communication, represents a significant leap forward in the realm of mobile technology. Unlike its predecessors, 5G offers far more than just faster download and upload speeds. It promises a new digital ecosystem teeming with unprecedented connectivity, ultra-low latency, and massive network capacity.

  11. Concept and Types of the Computer Networks Definition Essay

    We will write a custom essay on your topic. According to Tamara (4), computer networks can either be private or public, depending on the type of configuration in the network. Public networks are configured with Public Internet Protocol, making them 'visible' to other connections outside the network. On the other hand, private networks are ...

  12. The Future of 5g Networking: [Essay Example], 847 words

    Published: Nov 15, 2018. The next generation of wireless is in process and is causing a lot of excitement; 5G networking, also known as fifth generation of cellular networking, is expected to provide higher bandwidth and data rates, with fewer transmission delays. Currently the technology is in the planning stages but is expected to debut in 2020.

  13. Network Technology NA 4

    This essay, "Network Technology NA 4" is published exclusively on IvyPanda's free essay examples database. You can use it for research and reference purposes to write your own paper. However, you must cite it accordingly. Donate a paper. Removal Request.

  14. Wi-Fi Technology and Applications

    Wi-Fi is a short form for 'Wireless Fidelity'. This is a set standard within the wireless domain and is based on IEEE802.11 specifications. In other words, the Wi-Fi technology provides an allowance for a user to be connected to the local area network using Wi-Fi enabled devices, and also have an access to the Internet without necessarily ...

  15. 5G technology essay

    Home > Technical Articles > 5G technology essay. 5G technology essay Title: The Evolution of Connectivity: Exploring the Revolutionary Potential of 5G Technology Introduction: In an increasingly interconnected world, the demand for faster, more reliable, and transformative connectivity has propelled the development of fifth-generation (5G) technology. 5G is not merely an upgrade from previous ...

  16. Networking Technology

    1183 Words. 5 Pages. Open Document. Program: Higher National Diploma in Computing. Unit Name: Networking Technology Unit No.: 12 Number of Assignments for this unit 1. Full Name. Student ID Intake Turnitin Score %. Title Prime Bank Reference 12.2 Assessor. Date Issued Date Due Date Submitted.

  17. Networking Technology

    Networking Technology TABLE OF CONTENTS ... Network471 Emerging Technology Essay. The major advantage of Wi-Fi is the fact that users do not need to be physically connected to the network in order to access the Web and network resources. Wi-Fi provides increased mobility. Among employees, those who use a laptop will worry no more about ...

  18. Technology Argumentative Essay Topics: 25+ Ideas for Inspiration

    In this article, we outline 20+ technology argumentative essay topics that you can explore in your next essay assignment. Technology Argumentative Essay Topics . The following are some of the best topics to consider if your instructor has asked you to work on a technology argumentative essay. Argumentative Essay Topics on the Development of ...

  19. Benefits Of Network Technology Essay

    The network is the crystallization of human wisdom. It enables people to do something more efficiently and improve their life quality in many ways. Without the network technology, many things in our life will become troublesome. Thus, if people take good use of the network technology, I firmly believe that it is valuable and beneficial for ...

  20. 200-500 Word Example Essays about Technology

    But writing a technology essay can be challenging, especially for those needing more time or help with writer's block. This is where Jenni.ai comes in. Jenni.ai is an innovative AI tool explicitly designed for students who need help writing essays. With Jenni.ai, students can quickly and easily generate essays on various topics, including ...

  21. Essays in network economics

    Abstract. This thesis is a collection of three chapters, each representing an individual paper. The first chapter studies how the formation of supply chains affects economic growth. It provides a new tractable model for supply chain formation. The main innovation in this model is that, firms can choose suppliers to maximize profits.

  22. 127 Technology Essay Topic Ideas & Examples

    We've compiled a list of 127 technology essay topic ideas and examples to help get your creative juices flowing. The impact of social media on society. The role of artificial intelligence in healthcare. The future of virtual reality technology. The ethical implications of gene editing technology.

  23. Network Technology Essays

    Network Technology Essays. Social Media Network Technology 1325 Words | 3 Pages. Media Network Technology Paper The web is no longer a read only product, it now has the ability to be interactive and particpatory. Users are able to interact over the internet with each other with instant messaging and emails and use social networks to share news ...

  24. Essays, activities & academics

    Rather than asking you to write one long essay, the MIT application consists of several short response questions and essays designed to help us get to know you. Remember that this is not a writing test. Be honest, be open, be authentic—this is your opportunity to connect with us. You should certainly be thoughtful about your essays, but if ...

  25. Technology Essay for Students in English

    Essay on Technology. The word "technology" and its uses have immensely changed since the 20th century, and with time, it has continued to evolve ever since. We are living in a world driven by technology. The advancement of technology has played an important role in the development of human civilization, along with cultural changes.

  26. Internet & Technology

    Americans' Views of Technology Companies. Most Americans are wary of social media's role in politics and its overall impact on the country, and these concerns are ticking up among Democrats. Still, Republicans stand out on several measures, with a majority believing major technology companies are biased toward liberals. short readsApr 3, 2024.

  27. What Is Networking? How to Grow Your Network

    In career development, networking is building relationships with others in and around your field or industry. Unlike mentorship and sponsorship, these connections are typically mutually beneficial, with each person sharing resources, expertise, and information with the other. They also tend to be more informal.

  28. Cisco Live 2024: Cisco Announces New AI-powered Innovations and

    Cisco customers are in the spotlight, showcasing the pivotal role Cisco plays as a crucial strategic ally in business and technology. Customers featured at Cisco Live include Steve Madden, Room & Board, Marriott, AT&T, Equinix, WWE, SoFi Stadium and Hollywood Park and McLaren F1 Racing. Making AI easier with AI & Networking

  29. Study models how ketamine's molecular action leads to its effects on

    "The finding that an individual synaptic receptor (NMDA) can produce gamma oscillations and that these gamma oscillations can influence network-level gamma was unexpected," says co-corresponding author Michelle McCarthy, a research assistant professor of math at BU."This was found only by using a detailed physiological model of the NMDA receptor.

  30. Networking Technology Project Management Report

    The process includes access types such as DSL and VPN, domain names, and any deployable bandwidths for the internet. Jigeesh (2012) addresses the importance of "Assessing WAN bandwidth between Internet egress location and network locations, which use that egress point" (p.43). Determination of peak and average usage for proxy servers ...