• Graphics and multimedia
  • Language Features
  • Unix/Linux programming
  • Source Code
  • Standard Library
  • Tips and Tricks
  • Tools and Libraries
  • Windows API
  • Copy constructors, assignment operators,

Copy constructors, assignment operators, and exception safe assignment

*

cppreference.com

The rule of three/five/zero, [ edit ] rule of three.

If a class requires a user-defined destructor , a user-defined copy constructor , or a user-defined copy assignment operator , it almost certainly requires all three.

Because C++ copies and copy-assigns objects of user-defined types in various situations (passing/returning by value, manipulating a container, etc), these special member functions will be called, if accessible, and if they are not user-defined, they are implicitly-defined by the compiler.

The implicitly-defined special member functions are typically incorrect if the class manages a resource whose handle is an object of non-class type (raw pointer, POSIX file descriptor, etc), whose destructor does nothing and copy constructor/assignment operator performs a "shallow copy" (copy the value of the handle, without duplicating the underlying resource).

Classes that manage non-copyable resources through copyable handles may have to declare copy assignment and copy constructor private and not provide their definitions or define them as deleted. This is another application of the rule of three: deleting one and leaving the other to be implicitly-defined will most likely result in errors.

[ edit ] Rule of five

Because the presence of a user-defined (or = default or = delete declared) destructor, copy-constructor, or copy-assignment operator prevents implicit definition of the move constructor and the move assignment operator , any class for which move semantics are desirable, has to declare all five special member functions:

Unlike Rule of Three, failing to provide move constructor and move assignment is usually not an error, but a missed optimization opportunity.

[ edit ] Rule of zero

Classes that have custom destructors, copy/move constructors or copy/move assignment operators should deal exclusively with ownership (which follows from the Single Responsibility Principle ). Other classes should not have custom destructors, copy/move constructors or copy/move assignment operators [1] .

This rule also appears in the C++ Core Guidelines as C.20: If you can avoid defining default operations, do .

When a base class is intended for polymorphic use, its destructor may have to be declared public and virtual. This blocks implicit moves (and deprecates implicit copies), and so the special member functions have to be declared as defaulted [2] .

However, this makes the class prone to slicing, which is why polymorphic classes often define copy as deleted (see C.67: A polymorphic class should suppress public copy/move in C++ Core Guidelines), which leads to the following generic wording for the Rule of Five:

[ edit ] External links

  • Recent changes
  • Offline version
  • What links here
  • Related changes
  • Upload file
  • Special pages
  • Printable version
  • Permanent link
  • Page information
  • In other languages
  • This page was last modified on 5 December 2023, at 22:29.
  • This page has been accessed 762,917 times.
  • Privacy policy
  • About cppreference.com
  • Disclaimers

Powered by MediaWiki

Learn C++

14.14 — Introduction to the copy constructor

Consider the following program:

You might be surprised to find that this program compiles just fine, and produces the result:

Let’s take a closer look at how this program works.

The initialization of variable f is just a standard brace initialization that calls the Fraction(int, int) constructor.

But what about the next line? The initialization of variable fCopy is also clearly an initialization, and you know that constructor functions are used to initialize classes. So what constructor is this line calling?

The answer is: the copy constructor.

The copy constructor

A copy constructor is a constructor that is used to initialize an object with an existing object of the same type. After the copy constructor executes, the newly created object should be a copy of the object passed in as the initializer.

An implicit copy constructor

If you do not provide a copy constructor for your classes, C++ will create a public implicit copy constructor for you. In the above example, the statement Fraction fCopy { f }; is invoking the implicit copy constructor to initialize fCopy with f .

By default, the implicit copy constructor will do memberwise initialization. This means each member will be initialized using the corresponding member of the class passed in as the initializer. In the example above, fCopy.m_numerator is initialized using f.m_numerator (which has value 5 ), and fCopy.m_denominator is initialized using f.m_denominator (which has value 3 ).

After the copy constructor has executed, the members of f and fCopy have the same values, so fCopy is a copy of f . Thus calling print() on either has the same result.

Defining your own copy constructor

We can also explicitly define our own copy constructor. In this lesson, we’ll make our copy constructor print a message, so we can show you that it is indeed executing when copies are made.

The copy constructor looks just like you’d expect it to:

When this program is run, you get:

The copy constructor we defined above is functionally equivalent to the one we’d get by default, except we’ve added an output statement to prove the copy constructor is actually being called. This copy constructor is invoked when fCopy is initialized with f .

Access controls work on a per-class basis (not a per-object basis). This means the member functions of a class can access the private members of any class object of the same type (not just the implicit object).

We use that to our advantage in the Fraction copy constructor above in order to directly access the private members of the fraction parameter. Otherwise, we would have no way to access those members directly (without adding access functions, which we might not want to do).

A copy constructor should not do anything other than copy an object. This is because the compiler may optimize the copy constructor out in certain cases. If you are relying on the copy constructor for some behavior other than just copying, that behavior may or may not occur. We discuss this further in lesson 14.15 -- Class initialization and copy elision .

Best practice

Copy constructors should have no side effects beyond copying.

Prefer the implicit copy constructor

Unlike the implicit default constructor, which does nothing (and thus is rarely what we want), the memberwise initialization performed by the implicit copy constructor is usually exactly what we want. Therefore, in most cases, using the implicit copy constructor is perfectly fine.

Prefer the implicit copy constructor, unless you have a specific reason to create your own.

We’ll see cases where the copy constructor needs to be overwritten when we discuss dynamic memory allocation ( 21.13 -- Shallow vs. deep copying ).

The copy constructor’s parameter must be a reference

It is a requirement that the parameter of a copy constructor be an lvalue reference or const lvalue reference. Because the copy constructor should not be modifying the parameter, using a const lvalue reference is preferred.

If you write your own copy constructor, the parameter should be a const lvalue reference.

Pass by value (and return by value) and the copy constructor

When an object is passed by value, the argument is copied into the parameter. When the argument and parameter are the same class type, the copy is made by implicitly invoking the copy constructor. Similarly, when an object is returned back to the caller by value, the copy constructor is implicitly invoked to make the copy.

We see both happen in the following example:

In the above example, the call to printFraction(f) is passing f by value. The copy constructor is invoked to copy f from main into the f parameter of function printFraction .

When generateFraction returns a Fraction back to main , the copy constructor is implicitly called again. And when f2 is passed to printFraction , the copy constructor is called a third time.

On the author’s machine, this example prints:

If you compile and execute the above example, you may find that only two calls to the copy constructor occur. This is a compiler optimization known as copy elision . We discuss copy elision further in lesson 14.15 -- Class initialization and copy elision .

Using = default to generate a default copy constructor

If a class has no copy constructor, the compiler will implicitly generate one for us. If we prefer, we can explicitly request the compiler create a default copy constructor for us using the = default syntax:

Using = delete to prevent copies

Occasionally we run into cases where we do not want objects of a certain class to be copyable. We can prevent this by marking the copy constructor function as deleted, using the = delete syntax:

In the example, when the compiler goes to find a constructor to initialize fCopy with f , it will see that the copy constructor has been deleted. This will cause it to emit a compile error.

As an aside…

You can also prevent the public from making copies of class object by making the copy constructor private (as private functions can’t be called by the public). However, a private copy constructor can still be called from other members of the class, so this solution is not advised unless that is desired.

For advanced readers

The rule of three is a well known C++ principle that states that if a class requires a user-defined copy constructor, destructor, or copy assignment operator, then it probably requires all three. In C++11, this was expanded to the rule of five , which adds the move constructor and move assignment operator to the list.

Not following the rule of three/rule of five is likely to lead to malfunctioning code. We’ll revisit the rule of three and rule of five when we cover dynamic memory allocation.

We discuss destructors in lesson 15.4 -- Introduction to destructors and 19.3 -- Destructors , and copy assignment in lesson 21.12 -- Overloading the assignment operator .

Question #1

In the lesson above, we noted that the parameter for a copy constructor must be a (const) reference. Why aren’t we allowed to use pass by value?

Show Solution

When we pass a class type argument by value, the copy constructor is implicitly invoked to copy the argument into the parameter.

If the copy constructor used pass by value, the copy constructor would need to call itself to copy the initializer argument into the copy constructor parameter. But that call to the copy constructor would also be pass by value, so the copy constructor would be invoked again to copy the argument into the function parameter. This would lead to an infinite chain of calls to the copy constructor.

guest

  • C++ Classes and Objects
  • C++ Polymorphism

C++ Inheritance

  • C++ Abstraction
  • C++ Encapsulation
  • C++ OOPs Interview Questions
  • C++ OOPs MCQ

C++ Interview Questions

C++ function overloading.

  • C++ Programs
  • C++ Preprocessor

C++ Templates

  • C++ Programming Language

C++ Overview

  • Introduction to C++ Programming Language
  • Features of C++
  • History of C++
  • Interesting Facts about C++
  • Setting up C++ Development Environment
  • Difference between C and C++
  • Writing First C++ Program - Hello World Example
  • C++ Basic Syntax
  • C++ Comments
  • Tokens in C
  • C++ Keywords
  • Difference between Keyword and Identifier

C++ Variables and Constants

  • C++ Variables
  • Constants in C
  • Scope of Variables in C++
  • Storage Classes in C++ with Examples
  • Static Keyword in C++

C++ Data Types and Literals

  • C++ Data Types
  • Literals in C
  • Derived Data Types in C++
  • User Defined Data Types in C++
  • Data Type Ranges and their macros in C++
  • C++ Type Modifiers
  • Type Conversion in C++
  • Casting Operators in C++

C++ Operators

  • Operators in C++
  • C++ Arithmetic Operators
  • Unary operators in C
  • Bitwise Operators in C
  • Assignment Operators in C
  • C++ sizeof Operator
  • Scope resolution operator in C++

C++ Input/Output

  • Basic Input / Output in C++
  • cout in C++
  • cerr - Standard Error Stream Object in C++
  • Manipulators in C++ with Examples

C++ Control Statements

  • Decision Making in C (if , if..else, Nested if, if-else-if )
  • C++ if Statement
  • C++ if else Statement
  • C++ if else if Ladder
  • Switch Statement in C++
  • Jump statements in C++
  • for Loop in C++
  • Range-based for loop in C++
  • C++ While Loop
  • C++ Do/While Loop

C++ Functions

  • Functions in C++
  • return statement in C++ with Examples
  • Parameter Passing Techniques in C
  • Difference Between Call by Value and Call by Reference in C
  • Default Arguments in C++
  • Inline Functions in C++
  • Lambda expression in C++

C++ Pointers and References

  • Pointers and References in C++
  • C++ Pointers
  • Dangling, Void , Null and Wild Pointers in C
  • Applications of Pointers in C
  • Understanding nullptr in C++
  • References in C++
  • Can References Refer to Invalid Location in C++?
  • Pointers vs References in C++
  • Passing By Pointer vs Passing By Reference in C++
  • When do we pass arguments by pointer?
  • Variable Length Arrays (VLAs) in C
  • Pointer to an Array | Array Pointer
  • How to print size of array parameter in C++?
  • Pass Array to Functions in C
  • What is Array Decay in C++? How can it be prevented?

C++ Strings

  • Strings in C++
  • std::string class in C++
  • Array of Strings in C++ - 5 Different Ways to Create
  • String Concatenation in C++
  • Tokenizing a string in C++
  • Substring in C++

C++ Structures and Unions

  • Structures, Unions and Enumerations in C++
  • Structures in C++
  • C++ - Pointer to Structure
  • Self Referential Structures
  • Difference Between C Structures and C++ Structures
  • Enumeration in C++
  • typedef in C++
  • Array of Structures vs Array within a Structure in C

C++ Dynamic Memory Management

  • Dynamic Memory Allocation in C using malloc(), calloc(), free() and realloc()
  • new and delete Operators in C++ For Dynamic Memory
  • new vs malloc() and free() vs delete in C++
  • What is Memory Leak? How can we avoid?
  • Difference between Static and Dynamic Memory Allocation in C

C++ Object-Oriented Programming

  • Object Oriented Programming in C++
  • Access Modifiers in C++
  • Friend Class and Function in C++
  • Constructors in C++
  • Default Constructors in C++

Copy Constructor in C++

  • Destructors in C++
  • Private Destructor in C++
  • When is a Copy Constructor Called in C++?
  • Shallow Copy and Deep Copy in C++
  • When Should We Write Our Own Copy Constructor in C++?
  • Does C++ compiler create default constructor when we write our own?
  • C++ Static Data Members
  • Static Member Function in C++
  • 'this' pointer in C++
  • Scope Resolution Operator vs this pointer in C++
  • Local Classes in C++
  • Nested Classes in C++
  • Enum Classes in C++ and Their Advantage over Enum DataType
  • Difference Between Structure and Class in C++
  • Why C++ is partially Object Oriented Language?

C++ Encapsulation and Abstraction

  • Encapsulation in C++
  • Abstraction in C++
  • Difference between Abstraction and Encapsulation in C++
  • Function Overriding in C++
  • Virtual Functions and Runtime Polymorphism in C++
  • Difference between Inheritance and Polymorphism
  • Function Overloading in C++
  • Constructor Overloading in C++
  • Functions that cannot be overloaded in C++
  • Function overloading and const keyword
  • Function Overloading and Return Type in C++
  • Function Overloading and float in C++
  • C++ Function Overloading and Default Arguments
  • Can main() be overloaded in C++?
  • Function Overloading vs Function Overriding in C++
  • Advantages and Disadvantages of Function Overloading in C++

C++ Operator Overloading

  • Operator Overloading in C++
  • Types of Operator Overloading in C++
  • Functors in C++
  • What are the Operators that Can be and Cannot be Overloaded in C++?
  • Inheritance in C++
  • C++ Inheritance Access
  • Multiple Inheritance in C++
  • C++ Hierarchical Inheritance
  • C++ Multilevel Inheritance
  • Constructor in Multiple Inheritance in C++
  • Inheritance and Friendship in C++
  • Does overloading work with Inheritance?

C++ Virtual Functions

  • Virtual Function in C++
  • Virtual Functions in Derived Classes in C++
  • Default Arguments and Virtual Function in C++
  • Can Virtual Functions be Inlined in C++?
  • Virtual Destructor
  • Advanced C++ | Virtual Constructor
  • Advanced C++ | Virtual Copy Constructor
  • Pure Virtual Functions and Abstract Classes in C++
  • Pure Virtual Destructor in C++
  • Can Static Functions Be Virtual in C++?
  • RTTI (Run-Time Type Information) in C++
  • Can Virtual Functions be Private in C++?

C++ Exception Handling

  • Exception Handling in C++
  • Exception Handling using classes in C++
  • Stack Unwinding in C++
  • User-defined Custom Exception with class in C++

C++ Files and Streams

  • File Handling through C++ Classes
  • I/O Redirection in C++
  • Templates in C++ with Examples
  • Template Specialization in C++
  • Using Keyword in C++ STL

C++ Standard Template Library (STL)

  • The C++ Standard Template Library (STL)
  • Containers in C++ STL (Standard Template Library)
  • Introduction to Iterators in C++
  • Algorithm Library | C++ Magicians STL Algorithm

C++ Preprocessors

  • C Preprocessors
  • C Preprocessor Directives
  • #include in C
  • Difference between Preprocessor Directives and Function Templates in C++

C++ Namespace

  • Namespace in C++ | Set 1 (Introduction)
  • namespace in C++ | Set 2 (Extending namespace and Unnamed namespace)
  • Namespace in C++ | Set 3 (Accessing, creating header, nesting and aliasing)
  • C++ Inline Namespaces and Usage of the "using" Directive Inside Namespaces

Advanced C++

  • Multithreading in C++
  • Smart Pointers in C++
  • auto_ptr vs unique_ptr vs shared_ptr vs weak_ptr in C++
  • Type of 'this' Pointer in C++
  • "delete this" in C++
  • Passing a Function as a Parameter in C++
  • Signal Handling in C++
  • Generics in C++
  • Difference between C++ and Objective C
  • Write a C program that won't compile in C++
  • Write a program that produces different results in C and C++
  • How does 'void*' differ in C and C++?
  • Type Difference of Character Literals in C and C++
  • Cin-Cout vs Scanf-Printf

C++ vs Java

  • Similarities and Difference between Java and C++
  • Comparison of Inheritance in C++ and Java
  • How Does Default Virtual Behavior Differ in C++ and Java?
  • Comparison of Exception Handling in C++ and Java
  • Foreach in C++ and Java
  • Templates in C++ vs Generics in Java
  • Floating Point Operations & Associativity in C, C++ and Java

Competitive Programming in C++

  • Competitive Programming - A Complete Guide
  • C++ tricks for competitive programming (for C++ 11)
  • Writing C/C++ code efficiently in Competitive programming
  • Why C++ is best for Competitive Programming?
  • Test Case Generation | Set 1 (Random Numbers, Arrays and Matrices)
  • Fast I/O for Competitive Programming
  • Setting up Sublime Text for C++ Competitive Programming Environment
  • How to setup Competitive Programming in Visual Studio Code for C++
  • Which C++ libraries are useful for competitive programming?
  • Common mistakes to be avoided in Competitive Programming in C++ | Beginners
  • C++ Interview Questions and Answers (2024)
  • Top C++ STL Interview Questions and Answers
  • 30 OOPs Interview Questions and Answers (2024)
  • Top C++ Exception Handling Interview Questions and Answers
  • C++ Programming Examples

Pre-requisite: Constructor in C++ 

A copy constructor is a member function that initializes an object using another object of the same class. In simple terms, a constructor which creates an object by initializing it with an object of the same class, which has been created previously is known as a copy constructor .  

Copy constructor is used to initialize the members of a newly created object by copying the members of an already existing object.

Copy constructor takes a reference to an object of the same class as an argument.

The process of initializing members of an object through a copy constructor is known as copy initialization.

It is also called member-wise initialization because the copy constructor initializes one object with the existing object, both belonging to the same class on a member by member copy basis.

The copy constructor can be defined explicitly by the programmer. If the programmer does not define the copy constructor, the compiler does it for us.  

Syntax of Copy Constructor with Example

Syntax of Copy Constructor

Characteristics of Copy Constructor

1. The copy constructor is used to initialize the members of a newly created object by copying the members of an already existing object.

2. Copy constructor takes a reference to an object of the same class as an argument. If you pass the object by value in the copy constructor, it would result in a recursive call to the copy constructor itself. This happens because passing by value involves making a copy, and making a copy involves calling the copy constructor, leading to an infinite loop. Using a reference avoids this recursion. So we use reference of Objects to avoid infinite calls.

3. The process of initializing members of an object through a copy constructor is known as copy initialization.

4 . It is also called member-wise initialization because the copy constructor initializes one object with the existing object, both belonging to the same class on a member-by-member copy basis.

5. The copy constructor can be defined explicitly by the programmer. If the programmer does not define the copy constructor, the compiler does it for us.

Types of Copy Constructors

1. default copy constructor.

An implicitly defined copy constructor will copy the bases and members of an object in the same order that a constructor would initialize the bases and members of the object.

2. User Defined Copy Constructor 

A user-defined copy constructor is generally needed when an object owns pointers or non-shareable references, such as to a file, in which case a destructor and an assignment operator should also be written

When is the copy constructor called? 

In C++, a Copy Constructor may be called in the following cases: 

  • When an object of the class is returned by value. 
  • When an object of the class is passed (to a function) by value as an argument. 
  • When an object is constructed based on another object of the same class. 
  • When the compiler generates a temporary object.

It is, however, not guaranteed that a copy constructor will be called in all these cases, because the C++ Standard allows the compiler to optimize the copy away in certain cases, one example is the return value optimization (sometimes referred to as RVO).

Copy Elision

In copy elision , the compiler prevents the making of extra copies which results in saving space and better the program complexity(both time and space); Hence making the code more optimized.  

Now it is on the compiler to decide what it wants to print, it could either print the above output or it could print case 1 or case 2 below, and this is what Return Value Optimization is. In simple words, RVO is a technique that gives the compiler some additional power to terminate the temporary object created which results in changing the observable behavior/characteristics of the final program.

When is a user-defined copy constructor needed? 

If we don’t define our own copy constructor, the C++ compiler creates a default copy constructor for each class which does a member-wise copy between objects. The compiler-created copy constructor works fine in general. We need to define our own copy constructor only if an object has pointers or any runtime allocation of the resource like a file handle , a network connection, etc.  

The default constructor does only shallow copy.  

shallow copy in C++

Deep copy is possible only with a user-defined copy constructor. In a user-defined copy constructor, we make sure that pointers (or references) of copied objects point to new memory locations.  

Deep Copy in C++

Copy constructor vs Assignment Operator 

The main difference between Copy Constructor and Assignment Operator is that the Copy constructor makes a new memory storage every time it is called while the assignment operator does not make new memory storage.

Which of the following two statements calls the copy constructor and which one calls the assignment operator? 

A copy constructor is called when a new object is created from an existing object, as a copy of the existing object. The assignment operator is called when an already initialized object is assigned a new value from another existing object. In the above example (1) calls the copy constructor and (2) calls the assignment operator. See this for more details.

Example – Class Where a Copy Constructor is Required 

Following is a complete C++ program to demonstrate the use of the Copy constructor. In the following String class, we must write a copy constructor. 

What would be the problem if we remove the copy constructor from the above code? 

If we remove the copy constructor from the above program, we don’t get the expected output. The changes made to str2 reflect in str1 as well which is never expected.   

Can we make the copy constructor private?  

Yes, a copy constructor can be made private. When we make a copy constructor private in a class, objects of that class become non-copyable. This is particularly useful when our class has pointers or dynamically allocated resources. In such situations, we can either write our own copy constructor like the above String example or make a private copy constructor so that users get compiler errors rather than surprises at runtime.

Why argument to a copy constructor must be passed as a reference?  

A copy constructor is called when an object is passed by value. Copy constructor itself is a function. So if we pass an argument by value in a copy constructor, a call to the copy constructor would be made to call the copy constructor which becomes a non-terminating chain of calls. Therefore compiler doesn’t allow parameters to be passed by value.

Why argument to a copy constructor should be const?

One reason for passing const reference is, that we should use const in C++ wherever possible so that objects are not accidentally modified. This is one good reason for passing reference as const , but there is more to it than ‘ Why argument to a copy constructor should be const?’

Please Login to comment...

Similar reads.

  • cpp-constructor

advertisewithusBannerImg

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

This browser is no longer supported.

Upgrade to Microsoft Edge to take advantage of the latest features, security updates, and technical support.

Copy constructors and copy assignment operators (C++)

  • 8 contributors

Starting in C++11, two kinds of assignment are supported in the language: copy assignment and move assignment . In this article "assignment" means copy assignment unless explicitly stated otherwise. For information about move assignment, see Move Constructors and Move Assignment Operators (C++) .

Both the assignment operation and the initialization operation cause objects to be copied.

Assignment : When one object's value is assigned to another object, the first object is copied to the second object. So, this code copies the value of b into a :

Initialization : Initialization occurs when you declare a new object, when you pass function arguments by value, or when you return by value from a function.

You can define the semantics of "copy" for objects of class type. For example, consider this code:

The preceding code could mean "copy the contents of FILE1.DAT to FILE2.DAT" or it could mean "ignore FILE2.DAT and make b a second handle to FILE1.DAT." You must attach appropriate copying semantics to each class, as follows:

Use an assignment operator operator= that returns a reference to the class type and takes one parameter that's passed by const reference—for example ClassName& operator=(const ClassName& x); .

Use the copy constructor.

If you don't declare a copy constructor, the compiler generates a member-wise copy constructor for you. Similarly, if you don't declare a copy assignment operator, the compiler generates a member-wise copy assignment operator for you. Declaring a copy constructor doesn't suppress the compiler-generated copy assignment operator, and vice-versa. If you implement either one, we recommend that you implement the other one, too. When you implement both, the meaning of the code is clear.

The copy constructor takes an argument of type ClassName& , where ClassName is the name of the class. For example:

Make the type of the copy constructor's argument const ClassName& whenever possible. This prevents the copy constructor from accidentally changing the copied object. It also lets you copy from const objects.

Compiler generated copy constructors

Compiler-generated copy constructors, like user-defined copy constructors, have a single argument of type "reference to class-name ." An exception is when all base classes and member classes have copy constructors declared as taking a single argument of type const class-name & . In such a case, the compiler-generated copy constructor's argument is also const .

When the argument type to the copy constructor isn't const , initialization by copying a const object generates an error. The reverse isn't true: If the argument is const , you can initialize by copying an object that's not const .

Compiler-generated assignment operators follow the same pattern for const . They take a single argument of type ClassName& unless the assignment operators in all base and member classes take arguments of type const ClassName& . In this case, the generated assignment operator for the class takes a const argument.

When virtual base classes are initialized by copy constructors, whether compiler-generated or user-defined, they're initialized only once: at the point when they are constructed.

The implications are similar to the copy constructor. When the argument type isn't const , assignment from a const object generates an error. The reverse isn't true: If a const value is assigned to a value that's not const , the assignment succeeds.

For more information about overloaded assignment operators, see Assignment .

Was this page helpful?

Coming soon: Throughout 2024 we will be phasing out GitHub Issues as the feedback mechanism for content and replacing it with a new feedback system. For more information see: https://aka.ms/ContentUserFeedback .

Submit and view feedback for

Additional resources

c implement copy constructor assignment operator

Snapsolve any problem by taking a picture. Try it in the Numerade app?

IMAGES

  1. C++ : The copy constructor and assignment operator

    c implement copy constructor assignment operator

  2. Copy Constructor in C++

    c implement copy constructor assignment operator

  3. Difference between copy constructor and assignment operator in c++

    c implement copy constructor assignment operator

  4. C++: Constructor, Copy Constructor and Assignment operator

    c implement copy constructor assignment operator

  5. C++ Tutorial: Operator Overloading Part 5

    c implement copy constructor assignment operator

  6. Copy Constructor in C++ ~ TUTORIALTPOINT- Java Tutorial, C Tutorial

    c implement copy constructor assignment operator

VIDEO

  1. C++: การเขียน copy constructor และ assignment operator (ต่อจาก Rule of Three)

  2. Types of Constructors in C++

  3. Assignment Operator in C Programming

  4. 如何用讀寫鎖實作 thread safe copy constructor and copy assignment?

  5. Assignment Operator in C Programming

  6. Copy Constructor in C++ in Hindi (Lec-23)

COMMENTS

  1. c++

    The copy constructor is for creating a new object. It copies an existing object to a newly constructed object.The copy constructor is used to initialize a new instance from an old instance. It is not necessarily called when passing variables by value into functions or as return values out of functions. The assignment operator is to deal with an ...

  2. Implementing the copy constructor in terms of operator=

    Typically, the copy assignment operator will do some cleanup. If your class has a pointer to dynamically allocated memory, the first thing the copy-assignment operator should do is free that memory. This implementation of the copy constructor would give the copy assignment operator a dangling pointer, which you don't want to delete. -

  3. Copy Constructor vs Assignment Operator in C++

    But, there are some basic differences between them: Copy constructor. Assignment operator. It is called when a new object is created from an existing object, as a copy of the existing object. This operator is called when an already initialized object is assigned a new value from another existing object. It creates a separate memory block for ...

  4. Copy assignment operator

    the copy assignment operator selected for every non-static class type (or array of class type) member of T is trivial. A trivial copy assignment operator makes a copy of the object representation as if by std::memmove. All data types compatible with the C language (POD types) are trivially copy-assignable.

  5. Copy constructors and copy assignment operators (C++)

    Use an assignment operator operator= that returns a reference to the class type and takes one parameter that's passed by const reference—for example ClassName& operator=(const ClassName& x);. Use the copy constructor. If you don't declare a copy constructor, the compiler generates a member-wise copy constructor for you.

  6. Copy constructors, assignment operators,

    Copy constructors, assignment operators, and exception safe assignment. Score: 4.3/5 (3169 votes) What is a copy constructor? ... This implementation of operator= is not exception safe: if an exception is thrown during execution of the function, there is no telling what the state

  7. PDF Constructors and Assignment

    Copy Assignment Implementing the copy assignment operator is tricky for a couple of reasons: Catching memory leaks Handling self assignment ... A default constructor, copy constructor, and copy assignment operator will all be defined for you if you don't define them.

  8. Copy constructors

    The implicitly-declared (or defaulted on its first declaration) copy constructor has an exception specification as described in dynamic exception specification (until C++17) noexcept specification (since C++17). [] Implicitly-defined copy constructoIf the implicitly-declared copy constructor is not deleted, it is defined (that is, a function body is generated and compiled) by the compiler if ...

  9. 21.12

    21.12 — Overloading the assignment operator. Alex November 27, 2023. The copy assignment operator (operator=) is used to copy values from one object to another already existing object. As of C++11, C++ also supports "Move assignment". We discuss move assignment in lesson 22.3 -- Move constructors and move assignment .

  10. PDF Copy Constructors and Assignment Operators

    the assignment operator is called only when assigning an existing object a new value. Otherwise, you're using the copy constructor. What C++ Does For You Unless you specify otherwise, C++ will automatically provide objects a basic copy constructor and assignment operator that simply invoke the copy constructors and assignment operators of all ...

  11. C++ at Work: Copy Constructors, Assignment Operators, and More

    In C++, assignment and copy construction are different because the copy constructor initializes uninitialized memory, whereas assignment starts with an existing initialized object. If your class contains instances of other classes as data members, the copy constructor must first construct these data members before it calls operator=.

  12. The rule of three/five/zero

    Rule of three. If a class requires a user-defined destructor, a user-defined copy constructor, or a user-defined copy assignment operator, it almost certainly requires all three. Because C++ copies and copy-assigns objects of user-defined types in various situations (passing/returning by value, manipulating a container, etc), these special ...

  13. 14.14

    The rule of three is a well known C++ principle that states that if a class requires a user-defined copy constructor, destructor, or copy assignment operator, then it probably requires all three. In C++11, this was expanded to the rule of five, which adds the move constructor and move assignment operator to the list.

  14. Everything You Need To Know About The Copy Assignment Operator In C++

    The Copy Assignment Operator in a class is a non-template non-static member function that is declared with the operator=. When you create a class or a type that is copy assignable (that you can copy with the = operator symbol), it must have a public copy assignment operator. Here is a simple syntax for the typical declaration of a copy ...

  15. Copy Constructor in C++

    The copy constructor is used to initialize the members of a newly created object by copying the members of an already existing object. 2. Copy constructor takes a reference to an object of the same class as an argument. If you pass the object by value in the copy constructor, it would result in a recursive call to the copy constructor itself.

  16. c++

    Copy constructor is called when a new object is created from an existing object, as a copy of the existing object. And assignment operator is called when an already initialized object is assigned a new value from another existing object. Example-. t2 = t1; // calls assignment operator, same as "t2.operator=(t1);"

  17. c++

    I'm just pushing (biased) style habits on you. With primitive types, it makes no difference, but with objects as members, assignment via initialization list constructs into the object rather than using the assignment operator. That means initialization list usage saves a wasted default construction and doesn't require a operator=.

  18. Copy constructors and copy assignment operators (C++)

    Starting in C++11, two kinds of assignment are supported in the language: copy assignment and move assignment. In this article "assignment" means copy assignment unless explicitly stated otherwise. For information about move assignment, see

  19. c++

    1) I would make three functions for printing: {pre, in, post}-order. 2) Use std::shared_ptr<T> instead of raw pointers - you will not need to implement your own destructor in that case. An interesting addition would be to try and implement the move assignment operator and move constructor as well. value = other.value;

  20. c++

    Now, a previous answer was given that uses the often-used "shared code" approach to copy assignment. Here is a full example of this method, and an explanation of why it has issues: int *p; void CopyMe(const Obj& source); Obj(int x = 0) : p(new int(x)) {} Obj(const Obj& s);

  21. Text: Need the operator= (const char* other) method definition. C++

    Text: Need the operator=(const char* other) method definition. C++ class NString { private: char* stringArrayPointer = nullptr; // PTR to char, used to dynamically allocate an array of char size_t Capacity; // Keeps track of the # of elements in the string array size_t Size; // Stores current length of the C string stored in the string array public: NString(); // Default constructor NString ...

  22. Implement C++ assignment operator in terms of constructor

    You cannot use the Rule of Zero or Rule of Five Defaults, so you actually need to implement copy and move constructor, copy and move assignment operator, and destructor. In this question, Iʼll use Box as an example, but this can apply to lots of different types. using value_type = T; // Default constructor. Box() : elem{new value_type} {}

  23. c++

    In an old closed-source codebase I came across a comment where the author suggests placing virtual base class copy assignment after those of immediate base classes or that it can result in "incorrect semantics".