Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Mathematics LibreTexts

Module 1: Problem Solving Strategies

  • Last updated
  • Save as PDF
  • Page ID 10352

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

Unlike exercises, there is never a simple recipe for solving a problem. You can get better and better at solving problems, both by building up your background knowledge and by simply practicing. As you solve more problems (and learn how other people solved them), you learn strategies and techniques that can be useful. But no single strategy works every time.

Pólya’s How to Solve It

George Pólya was a great champion in the field of teaching effective problem solving skills. He was born in Hungary in 1887, received his Ph.D. at the University of Budapest, and was a professor at Stanford University (among other universities). He wrote many mathematical papers along with three books, most famously, “How to Solve it.” Pólya died at the age 98 in 1985.1

1. Image of Pólya by Thane Plambeck from Palo Alto, California (Flickr) [CC BY

Screen Shot 2018-08-30 at 4.43.05 PM.png

In 1945, Pólya published the short book How to Solve It , which gave a four-step method for solving mathematical problems:

First, you have to understand the problem.

After understanding, then make a plan.

Carry out the plan.

Look back on your work. How could it be better?

This is all well and good, but how do you actually do these steps?!?! Steps 1. and 2. are particularly mysterious! How do you “make a plan?” That is where you need some tools in your toolbox, and some experience to draw upon.

Much has been written since 1945 to explain these steps in more detail, but the truth is that they are more art than science. This is where math becomes a creative endeavor (and where it becomes so much fun). We will articulate some useful problem solving strategies, but no such list will ever be complete. This is really just a start to help you on your way. The best way to become a skilled problem solver is to learn the background material well, and then to solve a lot of problems!

Problem Solving Strategy 1 (Guess and Test)

Make a guess and test to see if it satisfies the demands of the problem. If it doesn't, alter the guess appropriately and check again. Keep doing this until you find a solution.

Mr. Jones has a total of 25 chickens and cows on his farm. How many of each does he have if all together there are 76 feet?

Step 1: Understanding the problem

We are given in the problem that there are 25 chickens and cows.

All together there are 76 feet.

Chickens have 2 feet and cows have 4 feet.

We are trying to determine how many cows and how many chickens Mr. Jones has on his farm.

Step 2: Devise a plan

Going to use Guess and test along with making a tab

Many times the strategy below is used with guess and test.

Make a table and look for a pattern:

Procedure: Make a table reflecting the data in the problem. If done in an orderly way, such a table will often reveal patterns and relationships that suggest how the problem can be solved.

Step 3: Carry out the plan:

Notice we are going in the wrong direction! The total number of feet is decreasing!

Better! The total number of feet are increasing!

Step 4: Looking back:

Check: 12 + 13 = 25 heads

24 + 52 = 76 feet.

We have found the solution to this problem. I could use this strategy when there are a limited number of possible answers and when two items are the same but they have one characteristic that is different.

Videos to watch:

1. Click on this link to see an example of “Guess and Test”

http://www.mathstories.com/strategies.htm

2. Click on this link to see another example of Guess and Test.

http://www.mathinaction.org/problem-solving-strategies.html

Check in question 1:

clipboard_e6298bbd7c7f66d9eb9affcd33892ef0d.png

Place the digits 8, 10, 11, 12, and 13 in the circles to make the sums across and vertically equal 31. (5 points)

Check in question 2:

Old McDonald has 250 chickens and goats in the barnyard. Altogether there are 760 feet . How many of each animal does he have? Make sure you use Polya’s 4 problem solving steps. (12 points)

Problem Solving Strategy 2 (Draw a Picture). Some problems are obviously about a geometric situation, and it is clear you want to draw a picture and mark down all of the given information before you try to solve it. But even for a problem that is not geometric thinking visually can help!

Videos to watch demonstrating how to use "Draw a Picture".

1. Click on this link to see an example of “Draw a Picture”

2. Click on this link to see another example of Draw a Picture.

Problem Solving Strategy 3 ( Using a variable to find the sum of a sequence.)

Gauss's strategy for sequences.

last term = fixed number ( n -1) + first term

The fix number is the the amount each term is increasing or decreasing by. "n" is the number of terms you have. You can use this formula to find the last term in the sequence or the number of terms you have in a sequence.

Ex: 2, 5, 8, ... Find the 200th term.

Last term = 3(200-1) +2

Last term is 599.

To find the sum of a sequence: sum = [(first term + last term) (number of terms)]/ 2

Sum = (2 + 599) (200) then divide by 2

Sum = 60,100

Check in question 3: (10 points)

Find the 320 th term of 7, 10, 13, 16 …

Then find the sum of the first 320 terms.

Problem Solving Strategy 4 (Working Backwards)

This is considered a strategy in many schools. If you are given an answer, and the steps that were taken to arrive at that answer, you should be able to determine the starting point.

Videos to watch demonstrating of “Working Backwards”

https://www.youtube.com/watch?v=5FFWTsMEeJw

Karen is thinking of a number. If you double it, and subtract 7, you obtain 11. What is Karen’s number?

1. We start with 11 and work backwards.

2. The opposite of subtraction is addition. We will add 7 to 11. We are now at 18.

3. The opposite of doubling something is dividing by 2. 18/2 = 9

4. This should be our answer. Looking back:

9 x 2 = 18 -7 = 11

5. We have the right answer.

Check in question 4:

Christina is thinking of a number.

If you multiply her number by 93, add 6, and divide by 3, you obtain 436. What is her number? Solve this problem by working backwards. (5 points)

Problem Solving Strategy 5 (Looking for a Pattern)

Definition: A sequence is a pattern involving an ordered arrangement of numbers.

We first need to find a pattern.

Ask yourself as you search for a pattern – are the numbers growing steadily larger? Steadily smaller? How is each number related?

Example 1: 1, 4, 7, 10, 13…

Find the next 2 numbers. The pattern is each number is increasing by 3. The next two numbers would be 16 and 19.

Example 2: 1, 4, 9, 16 … find the next 2 numbers. It looks like each successive number is increase by the next odd number. 1 + 3 = 4.

So the next number would be

25 + 11 = 36

Example 3: 10, 7, 4, 1, -2… find the next 2 numbers.

In this sequence, the numbers are decreasing by 3. So the next 2 numbers would be -2 -3 = -5

-5 – 3 = -8

Example 4: 1, 2, 4, 8 … find the next two numbers.

This example is a little bit harder. The numbers are increasing but not by a constant. Maybe a factor?

So each number is being multiplied by 2.

16 x 2 = 32

1. Click on this link to see an example of “Looking for a Pattern”

2. Click on this link to see another example of Looking for a Pattern.

Problem Solving Strategy 6 (Make a List)

Example 1 : Can perfect squares end in a 2 or a 3?

List all the squares of the numbers 1 to 20.

1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400.

Now look at the number in the ones digits. Notice they are 0, 1, 4, 5, 6, or 9. Notice none of the perfect squares end in 2, 3, 7, or 8. This list suggests that perfect squares cannot end in a 2, 3, 7 or 8.

How many different amounts of money can you have in your pocket if you have only three coins including only dimes and quarters?

Quarter’s dimes

0 3 30 cents

1 2 45 cents

2 1 60 cents

3 0 75 cents

Videos demonstrating "Make a List"

Check in question 5:

How many ways can you make change for 23 cents using only pennies, nickels, and dimes? (10 points)

Problem Solving Strategy 7 (Solve a Simpler Problem)

Geometric Sequences:

How would we find the nth term?

Solve a simpler problem:

1, 3, 9, 27.

1. To get from 1 to 3 what did we do?

2. To get from 3 to 9 what did we do?

Let’s set up a table:

Term Number what did we do

lesson 5 skills practice problem solving strategies answer key

Looking back: How would you find the nth term?

lesson 5 skills practice problem solving strategies answer key

Find the 10 th term of the above sequence.

Let L = the tenth term

lesson 5 skills practice problem solving strategies answer key

Problem Solving Strategy 8 (Process of Elimination)

This strategy can be used when there is only one possible solution.

I’m thinking of a number.

The number is odd.

It is more than 1 but less than 100.

It is greater than 20.

It is less than 5 times 7.

The sum of the digits is 7.

It is evenly divisible by 5.

a. We know it is an odd number between 1 and 100.

b. It is greater than 20 but less than 35

21, 23, 25, 27, 29, 31, 33, 35. These are the possibilities.

c. The sum of the digits is 7

21 (2+1=3) No 23 (2+3 = 5) No 25 (2 + 5= 7) Yes Using the same process we see there are no other numbers that meet this criteria. Also we notice 25 is divisible by 5. By using the strategy elimination, we have found our answer.

Check in question 6: (8 points)

Jose is thinking of a number.

The number is not odd.

The sum of the digits is divisible by 2.

The number is a multiple of 11.

It is greater than 5 times 4.

It is a multiple of 6

It is less than 7 times 8 +23

What is the number?

Click on this link for a quick review of the problem solving strategies.

https://garyhall.org.uk/maths-problem-solving-strategies.html

  • Toggle navigation

Mathematics Department Course Hub

  • Project Profile
  • Course Outline
  • Faculty Announcements
  • Course Coordination
  • Training and Support
  • Lesson 5: Problem-Solving Strategies

Hi Everyone!

On this page you will find some material about Lesson 5. Read through the material below, watch the videos, and follow up with your instructor if you have questions.

Table of Contents

In this section you will find some important information about the specific resources related to this lesson:

  • the learning outcomes,
  • the section in the textbook,
  • the homework,
  • supporting video.

Learning Outcomes. (extracted from the textbook)

  • State the four steps in the basic problem-solving procedure.
  • Divide radical expressions.
  • Solve problems using a diagram.
  • Solve problems using trial and error.
  • Solve problems involving money.
  • Solve problems using calculation.

Topic . This lesson covers

Section 1.3: Problem-Solving Strategies

pages 29-35, ex. 1-6.

Practice Homework:

page 36: 19, 21, 25, 35, 38, 41, 43

ALEKS Assignment

Warmup Questions

These are questions on fundamental concepts that you need to know before you can embark on this lesson. Don’t skip them! Take your time to do them, and check your answer by clicking on the “Show Answer” tab.

Warmup Question 1

$$(2\sqrt{5a})(-4\sqrt{5a}).$$

Show Answer 1

$$(2\sqrt{5a})(-4\sqrt{5a})= -8\sqrt{(5a)^2}=-8(5a)=-40a$$

Warmup Question 2

$$(\sqrt 3-6)(\sqrt 3+6).$$

Show Answer 2

$$(\sqrt 3-6)(\sqrt 3+6)= (\sqrt 3)^2-6^2 = 3 – 36 = -33$$

If you are not comfortable with the Warmup Questions, don’t give up! Click on the indicated lesson for a quick catchup. A brief review will help you boost your confidence to start the new lesson, and that’s perfectly fine.

Need a review? Check Lesson 6 .

Quick Intro

This is like a mini-lesson with an overview of the main objects of study. It will often contain a list of key words, definitions and properties – all that is new in this lesson. We will use this opportunity to make connections with other concepts. It can be also used as a review of the lesson.

A Quick Intro to Division of Radicals and Rationalization

Key Words. Radicals, division of radicals, simplified form, rationalization, conjugate.

When dividing radical terms, the following property can be very helpful.

Division Property

$$\dfrac{\sqrt[n]a}{\sqrt[n]b}=\sqrt[n]{\dfrac{a}{b}}$$

If not, it may be necessary to rationalize the denominator. On Lesson 5 we listed three conditions for a radical expression to be in simplified form. The third one is:

There should be no radicals in the denominator of a fraction.

$\bigstar$ We gave $\dfrac{1}{\sqrt 2}$ as an example that fails this condition. To simplify it, we multiply both the numerator and the denominator by $\sqrt 2$.

$$\underbrace{\dfrac{1}{\sqrt 2}}_{\text{radical in the denominator}}=\dfrac{1}{\sqrt 2}\cdot\dfrac{\sqrt 2}{\sqrt 2}=\dfrac{1\cdot\sqrt 2}{\sqrt 2\cdot\sqrt 2}=\underbrace{\dfrac{\sqrt 2}{2}}_{\text{no radical in the denominator}}$$

$\bigstar$ The process of removing a radical from the denominator is called rationalization .

$\bigstar$ The key idea was to multiply the original denominator by another copy of it, since squaring eliminates the radical.

$$(\sqrt a)(\sqrt a) = (\sqrt a)^2=a.$$

$\bigstar$ But what if we have $\dfrac{1}{\sqrt 3 -6}$? Squaring $\sqrt{3}-6$ will not help (try it!). In the Warmup Question #2 we saw that

$$(\sqrt 3 -6)(\sqrt 3 +6)=-33$$

results in a number free of radical. So

$$\underbrace{\dfrac{1}{\sqrt 3 -6}}_{\text{radical in the denominator}}=\dfrac{1}{\sqrt 3 -6}\cdot\dfrac{\sqrt 3 +6}{\sqrt 3 +6}$$

$$=\dfrac{1\cdot(\sqrt 3 +6)}{(\sqrt 3 -6)\cdot(\sqrt 3 +6)}=\underbrace{-\dfrac{\sqrt 3 +6}{33}}_{\text{no radical in the denominator}}$$

$\bigstar$ This happens because the above product is a difference of squares

$$(a-b)(a+b)=a^2-b^2,$$

and squaring a single radical eliminates the radical.

$\bigstar$ We say that $a-b$ and $a+b$ are conjugates . So if the denominator is $\sqrt 3 -6$, we rationalize it by multiplying the numerator and the denominator by its conjugate $\sqrt 3+6$.

Video Lesson

Many times the mini-lesson will not be enough for you to start working on the problems. You need to see someone explaining the material to you. In the video you will find a variety of examples, solved step-by-step – starting from a simple one to a more complex one. Feel free to play them as many times as you need. Pause, rewind, replay, stop… follow your pace!

A description of the video

In the video you will see the following radical expressions.

  • $\dfrac{3\sqrt x+1}{2\sqrt x}$
  • $\dfrac{3\sqrt 5 + 1}{2\sqrt 7 -3}$

Try Questions

Now that you have read the material and watched the video, it is your turn to put in practice what you have learned. We encourage you to try the Try Questions on your own. When you are done, click on the “Show answer” tab to see if you got the correct answer.

Try Question 1

Simplify $$\dfrac{\sqrt{15}}{5\sqrt{20}}.$$

$$\dfrac{\sqrt{15}}{5\sqrt{20}} = \dfrac{\sqrt{15}}{5\sqrt{20}}\cdot \dfrac{\sqrt{20}}{\sqrt{20}}$$

$$= \dfrac{\sqrt{15}\sqrt{20}}{5\cdot 20} = \dfrac{\sqrt{15} \cdot 2\sqrt{5}}{5\cdot 20}$$

$$= \dfrac{\sqrt {5\cdot 15}}{5\cdot 10} = \dfrac{5\sqrt {3}}{50} = \dfrac{\sqrt 3}{10}$$

Try Question 2

Simplify $$\dfrac{3}{4+2\sqrt 5}.$$

$$\dfrac{3}{4+2\sqrt 5}=\dfrac{3}{4+2\sqrt 5}\cdot \dfrac{4-2\sqrt 5}{4-2\sqrt 5}$$

$$= \dfrac{3(4-2\sqrt 5)}{(4+2\sqrt 5)(4-2\sqrt 5)}= \dfrac{12-6\sqrt 5}{16-20}$$

$$=\dfrac{12-6\sqrt 5}{-4} = \dfrac{-6+3\sqrt 5}{2} $$

Try Question 3

Rationalize and simplify

$$\dfrac{1+3\sqrt 2}{1-\sqrt 2}+\sqrt 2.$$

Show Answer 3

$$\dfrac{1+3\sqrt 2}{1-\sqrt 2}+\sqrt 2= \dfrac{1+3\sqrt 2}{1-\sqrt 2}\cdot\dfrac{1+\sqrt 2}{1+\sqrt 2}+\sqrt 2$$

$$=\dfrac{(1+3\sqrt 2)(1+\sqrt 2)}{(1-\sqrt 2)(1+\sqrt 2)} +\sqrt 2 = \dfrac{1+\sqrt 2+3\sqrt 2 +3\cdot 2}{1-2}+\sqrt 2 $$

$$=\dfrac{7+4\sqrt 2}{-1}+\sqrt 2 = -7-4\sqrt 2+\sqrt 2 = -7-3\sqrt 2$$

You should now be ready to start working on the homework problems. Doing the homework is an essential part of learning. It will help you practice the lesson and reinforce your knowledge.

It is time to do the homework on WeBWork:

RationalizeDenominators

When you are done, come back to this page for the Exit Questions.

Exit Questions

After doing the WeBWorK problems, come back to this page. The Exit Questions include vocabulary checking and conceptual questions. Knowing the vocabulary accurately is important for us to communicate. You will also find one last problem. All these questions will give you an idea as to whether or not you have mastered the material. Remember: the “Show Answer” tab is there for you to check your work!

  • What is the goal in rationalizing the denominator? 
  • Why does the ‘conjugate’ play a role in accomplishing this?

$\bigstar$ Simplify

(a) $\dfrac{3-3\sqrt{3a}}{4\sqrt{8a}}$

(b) $\dfrac{\sqrt{5}+3}{4-\sqrt 5}$

Show Answer

(a) $$\dfrac{3-3\sqrt{3a}}{4\sqrt{8a}}=\dfrac{3-3\sqrt{3a}}{4\cdot 2 \sqrt{2a}} $$

$$= \dfrac{3-3\sqrt{3a}}{8\sqrt{2a}}\cdot\dfrac{\sqrt{2a}}{\sqrt{2a}} =\dfrac{(3-3\sqrt{3a}) \sqrt{2a}}{8\cdot 2a} $$

$$= \dfrac{3\sqrt{2a}-3\sqrt{6a^2}}{16a} =\dfrac{3\sqrt{2a}-3a\sqrt 6}{16a}$$

(b) $$\dfrac{\sqrt{5}+3}{4-\sqrt 5}= \dfrac{\sqrt{5}+3}{4-\sqrt 5}\cdot \dfrac{4+\sqrt 5}{4+\sqrt 5} $$

$$= \dfrac{(\sqrt{5}+3)(4+\sqrt 5)}{(4-\sqrt 5)(4-\sqrt 5)}=\dfrac{4\sqrt{5}+5+12+3\sqrt 5}{16-5}$$

$$ =\dfrac{7\sqrt 5+17}{11}$$

Need more help?

Don’t wait too long to do the following.

  • Watch the additional video resources.
  • Talk to your instructor.
  • Form a study group.
  • Visit a tutor. For more information, check the tutoring page .

Lessons Menu

  • Lesson 1: Applications of Linear Equations
  • Lesson 2: Ratio, Proportion, and Variation
  • Lesson 3: The Nature of Mathematical Reasoning
  • Lesson 4: Estimation and Interpreting Graphs
  • Lesson 6: Statement and Quantifiers
  • Lesson 7: Measures of Length: Converting Units and the Metric System
  • Lesson 8: Measures of Area, Volume, and Capacity
  • Lesson 9: Measures of Weight & Temperature
  • Lesson 10: Percents
  • Lesson 11: Simple Interest
  • Lesson 12: Compound Interest
  • Lesson 13: Basic Concepts of Probability
  • Lesson 14: Tree Diagrams, Tables and Sample Spaces
  • Lesson 15: Gathering and Organizing Data/Picturing Data
  • Lesson 16: Measures of Average
  • Lesson 17: Measures of Variation
  • Lesson 18: Measures of Position
  • Lesson 19: The Normal Distribution/Applications of the Normal Distribution
  • Lesson 20: Correlation and Regression Analysis
  • Lesson 21: Points, Lines, Planes & Angles
  • Lesson 22: Triangles
  • Lesson 23: Polygons and Perimeter/Areas of Polygons and Circles

© 2024 MAT 1190 Course Hub

Theme by Anders Noren — Up ↑

The OpenLab at City Tech: A place to learn, work, and share

The OpenLab is an open-source, digital platform designed to support teaching and learning at City Tech (New York City College of Technology), and to promote student and faculty engagement in the intellectual and social life of the college community.

New York City College of Technology

New York City College of Technology | City University of New York

Accessibility

Our goal is to make the OpenLab accessible for all users.

Learn more about accessibility on the OpenLab

Creative Commons

  • - Attribution
  • - NonCommercial
  • - ShareAlike

Creative Commons

© New York City College of Technology | City University of New York

High Impact Tutoring Built By Math Experts

Personalized standards-aligned one-on-one math tutoring for schools and districts

Free ready-to-use math resources

Hundreds of free math resources created by experienced math teachers to save time, build engagement and accelerate growth

Free ready-to-use math resources

20 Effective Math Strategies To Approach Problem-Solving 

Katie Keeton

Math strategies for problem-solving help students use a range of approaches to solve many different types of problems. It involves identifying the problem and carrying out a plan of action to find the answer to mathematical problems.  

Problem-solving skills are essential to math in the general classroom and real-life. They require logical reasoning and critical thinking skills. Students must be equipped with strategies to help them find solutions to problems.

This article explores mathematical problem solving strategies, logical reasoning and critical thinking skills to help learners with solving math word problems independently in real-life situations. 

What are problem-solving strategies?

Problem-solving strategies in math are methods students can use to figure out solutions to math problems. Some problem-solving strategies: 

  • Draw a model
  • Use different approaches
  • Check the inverse to make sure the answer is correct

Students need to have a toolkit of math problem-solving strategies at their disposal to provide different ways to approach math problems. This makes it easier to find solutions and understand math better. 

Strategies can help guide students to the solution when it is difficult ot know when to start.

The ultimate guide to problem solving techniques

The ultimate guide to problem solving techniques

Download these ready-to-go problem solving techniques that every student should know. Includes printable tasks for students including challenges, short explanations for teachers with questioning prompts.

20 Math Strategies For Problem-Solving

Different problem-solving math strategies are required for different parts of the problem. It is unlikely that students will use the same strategy to understand and solve the problem. 

Here are 20 strategies to help students develop their problem-solving skills. 

Strategies to understand the problem

Strategies that help students understand the problem before solving it helps ensure they understand: 

  • The context
  • What the key information is
  • How to form a plan to solve it

Following these steps leads students to the correct solution and makes the math word problem easier .

Here are five strategies to help students understand the content of the problem and identify key information. 

1. Read the problem aloud

Read a word problem aloud to help understand it. Hearing the words engages auditory processing. This can make it easier to process and comprehend the context of the situation.

2. Highlight keywords 

When keywords are highlighted in a word problem, it helps the student focus on the essential information needed to solve it. Some important keywords help determine which operation is needed.  For example, if the word problem asks how many are left, the problem likely requires subtraction.  Ensure students highlight the keywords carefully and do not highlight every number or keyword. There is likely irrelevant information in the word problem.

3. Summarize the information

Read the problem aloud, highlight the key information and then summarize the information. Students can do this in their heads or write down a quick summary.  Summaries should include only the important information and be in simple terms that help contextualize the problem.

4. Determine the unknown

A common problem that students have when solving a word problem is misunderstanding what they are solving. Determine what the unknown information is before finding the answer.  Often, a word problem contains a question where you can find the unknown information you need to solve. For example, in the question ‘How many apples are left?’ students need to find the number of apples left over.

5. Make a plan

Once students understand the context of the word problem, have dentified the important information and determined the unknown, they can make a plan to solve it.  The plan will depend on the type of problem. Some problems involve more than one step to solve them as some require more than one answer.  Encourage students to make a list of each step they need to take to solve the problem before getting started.

Strategies for solving the problem 

1. draw a model or diagram.

Students may find it useful to draw a model, picture, diagram, or other visual aid to help with the problem solving process.  It can help to visualize the problem to understand the relationships between the numbers in the problem. In turn, this helps students see the solution.

math problem that needs a problem solving strategy

Similarly, you could draw a model to represent the objects in the problem:

math problem requiring problem solving

2. Act it out

This particular strategy is applicable at any grade level but is especially helpful in math investigation in elementary school . It involves a physical demonstration or students acting out the problem using movements, concrete resources and math manipulatives .  When students act out a problem, they can visualize and contectualize the word problem in another way and secure an understanding of the math concepts.  The examples below show how 1st-grade students could “act out” an addition and subtraction problem:

3. Work backwards

Working backwards is a popular problem-solving strategy. It involves starting with a possible solution and deciding what steps to take to arrive at that solution.  This strategy can be particularly helpful when students solve math word problems involving multiple steps. They can start at the end and think carefully about each step taken as opposed to jumping to the end of the problem and missing steps in between.

For example,

problem solving math question 1

To solve this problem working backwards, start with the final condition, which is Sam’s grandmother’s age (71) and work backwards to find Sam’s age. Subtract 20 from the grandmother’s age, which is 71.  Then, divide the result by 3 to get Sam’s age. 71 – 20 = 51 51 ÷ 3 = 17 Sam is 17 years old.

4. Write a number sentence

When faced with a word problem, encourage students to write a number sentence based on the information. This helps translate the information in the word problem into a math equation or expression, which is more easily solved.  It is important to fully understand the context of the word problem and what students need to solve before writing an equation to represent it.

5. Use a formula

Specific formulas help solve many math problems. For example, if a problem asks students to find the area of a rug, they would use the area formula (area = length × width) to solve.   Make sure students know the important mathematical formulas they will need in tests and real-life. It can help to display these around the classroom or, for those who need more support, on students’ desks.

Strategies for checking the solution 

Once the problem is solved using an appropriate strategy, it is equally important to check the solution to ensure it is correct and makes sense. 

There are many strategies to check the solution. The strategy for a specific problem is dependent on the problem type and math content involved.

Here are five strategies to help students check their solutions. 

1. Use the Inverse Operation

For simpler problems, a quick and easy problem solving strategy is to use the inverse operation. For example, if the operation to solve a word problem is 56 ÷ 8 = 7 students can check the answer is correct by multiplying 8 × 7. As good practice, encourage students to use the inverse operation routinely to check their work. 

2. Estimate to check for reasonableness

Once students reach an answer, they can use estimation or rounding to see if the answer is reasonable.  Round each number in the equation to a number that’s close and easy to work with, usually a multiple of ten.  For example, if the question was 216 ÷ 18 and the quotient was 12, students might round 216 to 200 and round 18 to 20. Then use mental math to solve 200 ÷ 20, which is 10.  When the estimate is clear the two numbers are close. This means your answer is reasonable. 

3. Plug-In Method

This method is particularly useful for algebraic equations. Specifically when working with variables.  To use the plug-in method, students solve the problem as asked and arrive at an answer. They can then plug the answer into the original equation to see if it works. If it does, the answer is correct.

Problem solving math problem 2

If students use the equation 20m+80=300 to solve this problem and find that m = 11, they can plug that value back into the equation to see if it is correct. 20m + 80 = 300 20 (11) + 80 = 300 220 + 80 = 300 300 = 300 ✓

4. Peer Review

Peer review is a great tool to use at any grade level as it promotes critical thinking and collaboration between students. The reviewers can look at the problem from a different view as they check to see if the problem was solved correctly.   Problem solvers receive immediate feedback and the opportunity to discuss their thinking with their peers. This strategy is effective with mixed-ability partners or similar-ability partners. In mixed-ability groups, the partner with stronger skills provides guidance and support to the partner with weaker skills, while reinforcing their own understanding of the content and communication skills.  If partners have comparable ability levels and problem-solving skills, they may find that they approach problems differently or have unique insights to offer each other about the problem-solving process.

5. Use a Calculator

A calculator can be introduced at any grade level but may be best for older students who already have a foundational understanding of basic math operations. Provide students with a calculator to allow them to check their solutions independently, accurately, and quickly. Since calculators are so readily available on smartphones and tablets, they allow students to develop practical skills that apply to real-world situations.  

Step-by-step problem-solving processes for your classroom

In his book, How to Solve It , published in 1945, mathematician George Polya introduced a 4-step process to solve problems. 

Polya’s 4 steps include:

  • Understand the problem
  • Devise a plan
  • Carry out the plan

Today, in the style of George Polya, many problem-solving strategies use various acronyms and steps to help students recall. 

Many teachers create posters and anchor charts of their chosen process to display in their classrooms. They can be implemented in any elementary, middle school or high school classroom. 

Here are 5 problem-solving strategies to introduce to students and use in the classroom.

CUBES math strategy for problem solving

How Third Space Learning improves problem-solving 

Resources .

Third Space Learning offers a free resource library is filled with hundreds of high-quality resources. A team of experienced math experts carefully created each resource to develop students mental arithmetic, problem solving and critical thinking. 

Explore the range of problem solving resources for 2nd to 8th grade students. 

One-on-one tutoring 

Third Space Learning offers one-on-one math tutoring to help students improve their math skills. Highly qualified tutors deliver high-quality lessons aligned to state standards. 

Former teachers and math experts write all of Third Space Learning’s tutoring lessons. Expertly designed lessons follow a “my turn, follow me, your turn” pedagogy to help students move from guided instruction and problem-solving to independent practice. 

Throughout each lesson, tutors ask higher-level thinking questions to promote critical thinking and ensure students are developing a deep understanding of the content and problem-solving skills.

lesson 5 skills practice problem solving strategies answer key

Problem-solving

Educators can use many different strategies to teach problem-solving and help students develop and carry out a plan when solving math problems. Incorporate these math strategies into any math program and use them with a variety of math concepts, from whole numbers and fractions to algebra. 

Teaching students how to choose and implement problem-solving strategies helps them develop mathematical reasoning skills and critical thinking they can apply to real-life problem-solving.

READ MORE : 8 Common Core math examples

There are many different strategies for problem-solving; Here are 5 problem-solving strategies: • draw a model  • act it out  • work backwards  • write a number sentence • use a formula

Here are 10 strategies of problem-solving: • Read the problem aloud • Highlight keywords • Summarize the information • Determine the unknown • Make a plan • Draw a model  • Act it out  • Work backwards  • Write a number sentence • Use a formula

1. Understand the problem 2. Devise a plan 3. Carry out the plan 4. Look back

Some strategies you can use to solve challenging math problems are: breaking the problem into smaller parts, using diagrams or models, applying logical reasoning, and trying different approaches.

Related articles

Why Student Centered Learning Is Important: A Guide For Educators

Why Student Centered Learning Is Important: A Guide For Educators

13 Effective Learning Strategies: A Guide to Using them in your Math Classroom

13 Effective Learning Strategies: A Guide to Using them in your Math Classroom

Differentiated Instruction: 9 Differentiated Curriculum And Instruction Strategies For Teachers 

Differentiated Instruction: 9 Differentiated Curriculum And Instruction Strategies For Teachers 

5 Math Mastery Strategies To Incorporate Into Your 4th and 5th Grade Classrooms

5 Math Mastery Strategies To Incorporate Into Your 4th and 5th Grade Classrooms

Ultimate Guide to Metacognition [FREE]

Looking for a summary on metacognition in relation to math teaching and learning?

Check out this guide featuring practical examples, tips and strategies to successfully embed metacognition across your school to accelerate math growth.

Privacy Overview

COMMENTS

  1. PDF Lesson 5 Problem-Solving Practice

    Lesson 5 Problem-Solving Practice Compare Properties of Functions 1. Anne kept track of the number of steps she took in a day using a pedometer. The average number of steps she took y per hour x can be represented by the function y = 700 x. The table below shows the number of steps per hour that Elyse walked. Compare the functions for

  2. PDF NAME DATE PERIOD Lesson 5 Skills Practice

    Lesson 5 Skills Practice Surface Area of Cones Find the lateral and total surface areas of each cone. Round to the nearest tenth if necessary. 1. 15 cm 17.5 cm 2. 2.1 mm 9.2 mm 3. 52 cm 28 cm 4. 4.5 in. 7.5 in. 5. 36 m 30 m 6. 12 in. 32 in. 7. 5.5 m 9 m 8. 8 cm 11.3 cm 824.3 cm2; 1,531.5 cm2 60.7 mm2; 74.5 mm2 4,574.2 cm2; 7,037.2 cm2 106 in2 ...

  3. PDF NAME DATE PERIOD Lesson 5 Skills Practice

    Lesson 5 Skills Practice The Pythagorean Theorem Write an equation you could use to find the length of the missing side of each right triangle. Then find the missing length. Round to the nearest tenth if necessary. 1. c in. 7 in. 8 in. 2. a m 10 m 5 m 3. b cm 11 cm 3 cm 4. c ft 18 ft 15 ft 5. a yd 24 yd 30 yd 6. b ft 20 ft 13 ft 7. a = 1 m, b ...

  4. Module 1: Problem Solving Strategies

    Step 1: Understanding the problem. We are given in the problem that there are 25 chickens and cows. All together there are 76 feet. Chickens have 2 feet and cows have 4 feet. We are trying to determine how many cows and how many chickens Mr. Jones has on his farm. Step 2: Devise a plan.

  5. FPTU

    (b). Problem solving tasks are given so that students can become familiar with certain problem types. [Problem solving tasks are given at university so that you develop knowledge of how to solve certain kinds of problems more easily] (c). Problem solving tasks are given so that students can demonstrate their knowledge of an area and their ability to synthesize information, make arguments and ...

  6. Lesson 5: Problem-Solving Strategies

    Lesson 5: Problem-Solving Strategies. Table of Contents. Resources; Warmup Questions. Warmup Question 1; Show Answer 1 ... It will often contain a list of key words, definitions and properties - all that is new in this lesson. ... Doing the homework is an essential part of learning. It will help you practice the lesson and reinforce your ...

  7. PDF NAME DATE PERIOD 5-1 Skills Practice

    Skills Practice Solving Inequalities by Addition and Subtraction ... Define a variable, write an inequality, and solve each problem. Check your solution. 11. The sum of a number and 17 is no less than 26. 12. Twice a number minus 4 is less than three times the number. ... Practice Solving Inequalities by Addition and Subtraction

  8. PDF Lesson 5 Practice Problems

    Lesson 5: Solving Equations Practice Problems Applications For each of the following, underline the Givens and circle the Goal of the problem. Form a Strategy, Solve, and Check. Show all work, and write your answer in a complete sentence. 6. John is a door to door vacuum salesman. His weekly salary, S, is $200 plus $50 for each vacuum he sells.

  9. PDF Lesson 5: Problem Solving Strategies

    Introductory Algebra Lesson 5 - Problem Solving Strategies YOU TRY 2. Solve the proportion 1.2 t = 3.6 5.8 3. John earned $115 last week working 12 hours. If he works 15 hours this week, and is paid at the same rate, how much will he earn this week? Write your answer in a complete sentence.

  10. PDF Lesson 5 Skills Practice

    34Course 3 • Chapter 2 Equations in One Variable. Lesson 5 Skills Practice. Solve Multi-Step Equations. Solve each equation. Check your solution. 1. 4(2 + 3c) = 56 2. 63 = -3(1 - 2n) 3.

  11. PDF Skills Practice Workbook

    everyday world.The materials are organized by chapter and lesson, with one Skills Practice worksheet for every lesson in Glencoe Math Connects, Course 2. ... 1-5 Problem-Solving Investigation: Guess and Check .....5 1-6 Algebra:Variables and ... Determine Reasonable Answers .....55 7-6 Percent of Change.....56 7-7 Sales Tax and Discount ...

  12. PDF 5-2 Skills Practice

    Created Date: 1/8/2016 3:13:49 PM

  13. 20 Effective Math Strategies For Problem Solving

    Here are five strategies to help students check their solutions. 1. Use the Inverse Operation. For simpler problems, a quick and easy problem solving strategy is to use the inverse operation. For example, if the operation to solve a word problem is 56 ÷ 8 = 7 students can check the answer is correct by multiplying 8 × 7.

  14. PDF Chapter 10 Extra Practice Answers

    Chapter 10 Extra Practice Answers Lesson 10-1 1. 504 in3 2. 149,568 ft3 3. 115 5 16 m 3 4. 160 cm3 5. 80 in3 6. 607.5 ft3 ... Lesson 2 Skills Practice Volume of Triangular Prisms Find the volume of each prism. Round to the nearest tenth if necessary. ... Lesson 2 Problem-Solving Practice 1. 1 .

  15. PDF NAME DATE PERIOD

    Lesson 5 Skills Practice Problem-Solving Strategies Use a strategy to solve each problem. 1. When four is added to a number, and then their sum is divided by 3, the result is 2. What is the number? 2. The length of each side of the squares below is 2 ft. Find the perimeters of the next two figures in the pattern. 3.

  16. PDF LESSON SSS Triangle Congruence 5-4 Practice and Problem Solving: A/B

    Yes. Separating the triangles would not alter the lengths of the given congruent sides or change any of the angle measures. LESSON 5-4 Practice and Problem Solving: A/B. 1. BD =FH = 6, so BD FH ≅ by definition of ≅ segments. BC =FG = 8, soBC FG≅ by definition of ≅ segments.

  17. PDF Lesson 5 The Root of the Problem

    y 5 x2 1 d, y 5 (x 2 c)2, y 5 a(x 2 c)2, or y 5 a(x 2 c)2 1 d. Activity 5.1: Solving Quadratic Equations by Factoring Asynchronous Facilitation Notes In this activity, a Worked Example shows how to use factoring and the Zero Product Property to determine the roots of a given quadratic equation. They will then answer a free response

  18. PDF NAME DATE PERIOD Lesson 2 Problem-Solving Practice

    Lesson 2 Problem-Solving Practice Theoretical and Experimental Probability HOBBIES For Exercises 1-4, use the 0 2 4 6 8 10 12 14 Singing Hanging with friends Building things Bike riding T.V. Computer Roller skating Sports ... 5 50 −− 7 52 101 1137_152_CC_A_HWPSC2_C09_662334.indd Page 140 28/07/11 7:37 AM s-60user37_152_CC_A_HWPSC2_C09 ...

  19. Glencoe Math Accelerated, Student Edition Answers

    FREE Answers for Glencoe Math Accelerated, Student Edition. ... The Language Of Algebra Chapter 1.1 - A Plan For Problem Solving Chapter 1.2 - Words And Expressions Chapter 1.3 - Variables And Expressions Chapter 1.4 - Properties Of Numbers Chapter 1.5 - Problem-solving Strategies Chapter 1.6 - Ordered Pairs And Relations Chapter 1.7 - Words, ...

  20. Lesson 5 skills practice more two step equations answer key

    Here is the answer key for the practice problems on two-step equations: Problem 1: x = 4. Problem 2: x = -1. Problem 3: x = 6. Problem 4: x = 9. Problem 5: x = -5. Remember, when solving two-step equations, it's important to follow the order of operations and isolate the variable by performing inverse operations.

  21. IXL skill plan

    Weekly plans. Skill plans. Kindergarten Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Grade 6 Grade 7 Accelerated Grade 7 Grade 8 Algebra 1 Geometry Algebra 2 Integrated I Integrated II Integrated III. Skill plan for enVision Mathematics - Grade 5. IXL provides skill alignments with recommended IXL skills for each topic.

  22. PDF Practice Solving Problems Involving a Single Percent

    435 LESSON 20 Solve Problems Involving Percents ©Curriculum Associates, LLC Copying is not permitted. DIFFERENTIATION | ENGLISH L ANGUAGE LEARNERS Problem Notes Assign Practice Solving Problems Involving a Single Percent as extra practice in class or as homework. Then solve problems 1-5.Students may also solve the problem by finding 118% of the additional $20 and adding the

  23. PDF SESSION 3 Practice Solving Problems Involving Surface Area

    GRADE 7 LESSON 25 FLUENCY AND SKILLS PRACTICE Name: LESSON 25 Solving Problems Involving Surface Area Determine the value of x for each figure. 1 surface area 5 152 cm2 2 surface area 5 166 m2 2 cm 6 cm x 5 m 4 m x 3 Open-topped box with surface area of 4 292 m2 31.25 in.2 4 m 5 m x 2.5 in. 2.5 in. x 5 surface area = 96 cm2 26 surface area = 63 ...