• Privacy Policy

Research Method

Home » Variables in Research – Definition, Types and Examples

Variables in Research – Definition, Types and Examples

Table of Contents

Variables in Research

Variables in Research

Definition:

In Research, Variables refer to characteristics or attributes that can be measured, manipulated, or controlled. They are the factors that researchers observe or manipulate to understand the relationship between them and the outcomes of interest.

Types of Variables in Research

Types of Variables in Research are as follows:

Independent Variable

This is the variable that is manipulated by the researcher. It is also known as the predictor variable, as it is used to predict changes in the dependent variable. Examples of independent variables include age, gender, dosage, and treatment type.

Dependent Variable

This is the variable that is measured or observed to determine the effects of the independent variable. It is also known as the outcome variable, as it is the variable that is affected by the independent variable. Examples of dependent variables include blood pressure, test scores, and reaction time.

Confounding Variable

This is a variable that can affect the relationship between the independent variable and the dependent variable. It is a variable that is not being studied but could impact the results of the study. For example, in a study on the effects of a new drug on a disease, a confounding variable could be the patient’s age, as older patients may have more severe symptoms.

Mediating Variable

This is a variable that explains the relationship between the independent variable and the dependent variable. It is a variable that comes in between the independent and dependent variables and is affected by the independent variable, which then affects the dependent variable. For example, in a study on the relationship between exercise and weight loss, the mediating variable could be metabolism, as exercise can increase metabolism, which can then lead to weight loss.

Moderator Variable

This is a variable that affects the strength or direction of the relationship between the independent variable and the dependent variable. It is a variable that influences the effect of the independent variable on the dependent variable. For example, in a study on the effects of caffeine on cognitive performance, the moderator variable could be age, as older adults may be more sensitive to the effects of caffeine than younger adults.

Control Variable

This is a variable that is held constant or controlled by the researcher to ensure that it does not affect the relationship between the independent variable and the dependent variable. Control variables are important to ensure that any observed effects are due to the independent variable and not to other factors. For example, in a study on the effects of a new teaching method on student performance, the control variables could include class size, teacher experience, and student demographics.

Continuous Variable

This is a variable that can take on any value within a certain range. Continuous variables can be measured on a scale and are often used in statistical analyses. Examples of continuous variables include height, weight, and temperature.

Categorical Variable

This is a variable that can take on a limited number of values or categories. Categorical variables can be nominal or ordinal. Nominal variables have no inherent order, while ordinal variables have a natural order. Examples of categorical variables include gender, race, and educational level.

Discrete Variable

This is a variable that can only take on specific values. Discrete variables are often used in counting or frequency analyses. Examples of discrete variables include the number of siblings a person has, the number of times a person exercises in a week, and the number of students in a classroom.

Dummy Variable

This is a variable that takes on only two values, typically 0 and 1, and is used to represent categorical variables in statistical analyses. Dummy variables are often used when a categorical variable cannot be used directly in an analysis. For example, in a study on the effects of gender on income, a dummy variable could be created, with 0 representing female and 1 representing male.

Extraneous Variable

This is a variable that has no relationship with the independent or dependent variable but can affect the outcome of the study. Extraneous variables can lead to erroneous conclusions and can be controlled through random assignment or statistical techniques.

Latent Variable

This is a variable that cannot be directly observed or measured, but is inferred from other variables. Latent variables are often used in psychological or social research to represent constructs such as personality traits, attitudes, or beliefs.

Moderator-mediator Variable

This is a variable that acts both as a moderator and a mediator. It can moderate the relationship between the independent and dependent variables and also mediate the relationship between the independent and dependent variables. Moderator-mediator variables are often used in complex statistical analyses.

Variables Analysis Methods

There are different methods to analyze variables in research, including:

  • Descriptive statistics: This involves analyzing and summarizing data using measures such as mean, median, mode, range, standard deviation, and frequency distribution. Descriptive statistics are useful for understanding the basic characteristics of a data set.
  • Inferential statistics : This involves making inferences about a population based on sample data. Inferential statistics use techniques such as hypothesis testing, confidence intervals, and regression analysis to draw conclusions from data.
  • Correlation analysis: This involves examining the relationship between two or more variables. Correlation analysis can determine the strength and direction of the relationship between variables, and can be used to make predictions about future outcomes.
  • Regression analysis: This involves examining the relationship between an independent variable and a dependent variable. Regression analysis can be used to predict the value of the dependent variable based on the value of the independent variable, and can also determine the significance of the relationship between the two variables.
  • Factor analysis: This involves identifying patterns and relationships among a large number of variables. Factor analysis can be used to reduce the complexity of a data set and identify underlying factors or dimensions.
  • Cluster analysis: This involves grouping data into clusters based on similarities between variables. Cluster analysis can be used to identify patterns or segments within a data set, and can be useful for market segmentation or customer profiling.
  • Multivariate analysis : This involves analyzing multiple variables simultaneously. Multivariate analysis can be used to understand complex relationships between variables, and can be useful in fields such as social science, finance, and marketing.

Examples of Variables

  • Age : This is a continuous variable that represents the age of an individual in years.
  • Gender : This is a categorical variable that represents the biological sex of an individual and can take on values such as male and female.
  • Education level: This is a categorical variable that represents the level of education completed by an individual and can take on values such as high school, college, and graduate school.
  • Income : This is a continuous variable that represents the amount of money earned by an individual in a year.
  • Weight : This is a continuous variable that represents the weight of an individual in kilograms or pounds.
  • Ethnicity : This is a categorical variable that represents the ethnic background of an individual and can take on values such as Hispanic, African American, and Asian.
  • Time spent on social media : This is a continuous variable that represents the amount of time an individual spends on social media in minutes or hours per day.
  • Marital status: This is a categorical variable that represents the marital status of an individual and can take on values such as married, divorced, and single.
  • Blood pressure : This is a continuous variable that represents the force of blood against the walls of arteries in millimeters of mercury.
  • Job satisfaction : This is a continuous variable that represents an individual’s level of satisfaction with their job and can be measured using a Likert scale.

Applications of Variables

Variables are used in many different applications across various fields. Here are some examples:

  • Scientific research: Variables are used in scientific research to understand the relationships between different factors and to make predictions about future outcomes. For example, scientists may study the effects of different variables on plant growth or the impact of environmental factors on animal behavior.
  • Business and marketing: Variables are used in business and marketing to understand customer behavior and to make decisions about product development and marketing strategies. For example, businesses may study variables such as consumer preferences, spending habits, and market trends to identify opportunities for growth.
  • Healthcare : Variables are used in healthcare to monitor patient health and to make treatment decisions. For example, doctors may use variables such as blood pressure, heart rate, and cholesterol levels to diagnose and treat cardiovascular disease.
  • Education : Variables are used in education to measure student performance and to evaluate the effectiveness of teaching strategies. For example, teachers may use variables such as test scores, attendance, and class participation to assess student learning.
  • Social sciences : Variables are used in social sciences to study human behavior and to understand the factors that influence social interactions. For example, sociologists may study variables such as income, education level, and family structure to examine patterns of social inequality.

Purpose of Variables

Variables serve several purposes in research, including:

  • To provide a way of measuring and quantifying concepts: Variables help researchers measure and quantify abstract concepts such as attitudes, behaviors, and perceptions. By assigning numerical values to these concepts, researchers can analyze and compare data to draw meaningful conclusions.
  • To help explain relationships between different factors: Variables help researchers identify and explain relationships between different factors. By analyzing how changes in one variable affect another variable, researchers can gain insight into the complex interplay between different factors.
  • To make predictions about future outcomes : Variables help researchers make predictions about future outcomes based on past observations. By analyzing patterns and relationships between different variables, researchers can make informed predictions about how different factors may affect future outcomes.
  • To test hypotheses: Variables help researchers test hypotheses and theories. By collecting and analyzing data on different variables, researchers can test whether their predictions are accurate and whether their hypotheses are supported by the evidence.

Characteristics of Variables

Characteristics of Variables are as follows:

  • Measurement : Variables can be measured using different scales, such as nominal, ordinal, interval, or ratio scales. The scale used to measure a variable can affect the type of statistical analysis that can be applied.
  • Range : Variables have a range of values that they can take on. The range can be finite, such as the number of students in a class, or infinite, such as the range of possible values for a continuous variable like temperature.
  • Variability : Variables can have different levels of variability, which refers to the degree to which the values of the variable differ from each other. Highly variable variables have a wide range of values, while low variability variables have values that are more similar to each other.
  • Validity and reliability : Variables should be both valid and reliable to ensure accurate and consistent measurement. Validity refers to the extent to which a variable measures what it is intended to measure, while reliability refers to the consistency of the measurement over time.
  • Directionality: Some variables have directionality, meaning that the relationship between the variables is not symmetrical. For example, in a study of the relationship between smoking and lung cancer, smoking is the independent variable and lung cancer is the dependent variable.

Advantages of Variables

Here are some of the advantages of using variables in research:

  • Control : Variables allow researchers to control the effects of external factors that could influence the outcome of the study. By manipulating and controlling variables, researchers can isolate the effects of specific factors and measure their impact on the outcome.
  • Replicability : Variables make it possible for other researchers to replicate the study and test its findings. By defining and measuring variables consistently, other researchers can conduct similar studies to validate the original findings.
  • Accuracy : Variables make it possible to measure phenomena accurately and objectively. By defining and measuring variables precisely, researchers can reduce bias and increase the accuracy of their findings.
  • Generalizability : Variables allow researchers to generalize their findings to larger populations. By selecting variables that are representative of the population, researchers can draw conclusions that are applicable to a broader range of individuals.
  • Clarity : Variables help researchers to communicate their findings more clearly and effectively. By defining and categorizing variables, researchers can organize and present their findings in a way that is easily understandable to others.

Disadvantages of Variables

Here are some of the main disadvantages of using variables in research:

  • Simplification : Variables may oversimplify the complexity of real-world phenomena. By breaking down a phenomenon into variables, researchers may lose important information and context, which can affect the accuracy and generalizability of their findings.
  • Measurement error : Variables rely on accurate and precise measurement, and measurement error can affect the reliability and validity of research findings. The use of subjective or poorly defined variables can also introduce measurement error into the study.
  • Confounding variables : Confounding variables are factors that are not measured but that affect the relationship between the variables of interest. If confounding variables are not accounted for, they can distort or obscure the relationship between the variables of interest.
  • Limited scope: Variables are defined by the researcher, and the scope of the study is therefore limited by the researcher’s choice of variables. This can lead to a narrow focus that overlooks important aspects of the phenomenon being studied.
  • Ethical concerns: The selection and measurement of variables may raise ethical concerns, especially in studies involving human subjects. For example, using variables that are related to sensitive topics, such as race or sexuality, may raise concerns about privacy and discrimination.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Categorical Variable

Categorical Variable – Definition, Types and...

Qualitative Variable

Qualitative Variable – Types and Examples

Dependent Variable

Dependent Variable – Definition, Types and...

Ratio Variable

Ratio Variable – Definition, Purpose and Examples

Discrete Variable

Discrete Variable – Definition, Types and...

Dichotomous Variable

Dichotomous Variable – Definition Types and...

what is a major study variables in research

Variables in Research | Types, Definiton & Examples

what is a major study variables in research

Introduction

What is a variable, what are the 5 types of variables in research, other variables in research.

Variables are fundamental components of research that allow for the measurement and analysis of data. They can be defined as characteristics or properties that can take on different values. In research design , understanding the types of variables and their roles is crucial for developing hypotheses , designing methods , and interpreting results .

This article outlines the the types of variables in research, including their definitions and examples, to provide a clear understanding of their use and significance in research studies. By categorizing variables into distinct groups based on their roles in research, their types of data, and their relationships with other variables, researchers can more effectively structure their studies and achieve more accurate conclusions.

what is a major study variables in research

A variable represents any characteristic, number, or quantity that can be measured or quantified. The term encompasses anything that can vary or change, ranging from simple concepts like age and height to more complex ones like satisfaction levels or economic status. Variables are essential in research as they are the foundational elements that researchers manipulate, measure, or control to gain insights into relationships, causes, and effects within their studies. They enable the framing of research questions, the formulation of hypotheses, and the interpretation of results.

Variables can be categorized based on their role in the study (such as independent and dependent variables ), the type of data they represent (quantitative or categorical), and their relationship to other variables (like confounding or control variables). Understanding what constitutes a variable and the various variable types available is a critical step in designing robust and meaningful research.

what is a major study variables in research

ATLAS.ti makes complex data easy to understand

Turn to our powerful data analysis tools to make the most of your research. Get started with a free trial.

Variables are crucial components in research, serving as the foundation for data collection , analysis , and interpretation . They are attributes or characteristics that can vary among subjects or over time, and understanding their types is essential for any study. Variables can be broadly classified into five main types, each with its distinct characteristics and roles within research.

This classification helps researchers in designing their studies, choosing appropriate measurement techniques, and analyzing their results accurately. The five types of variables include independent variables, dependent variables, categorical variables, continuous variables, and confounding variables. These categories not only facilitate a clearer understanding of the data but also guide the formulation of hypotheses and research methodologies.

Independent variables

Independent variables are foundational to the structure of research, serving as the factors or conditions that researchers manipulate or vary to observe their effects on dependent variables. These variables are considered "independent" because their variation does not depend on other variables within the study. Instead, they are the cause or stimulus that directly influences the outcomes being measured. For example, in an experiment to assess the effectiveness of a new teaching method on student performance, the teaching method applied (traditional vs. innovative) would be the independent variable.

The selection of an independent variable is a critical step in research design, as it directly correlates with the study's objective to determine causality or association. Researchers must clearly define and control these variables to ensure that observed changes in the dependent variable can be attributed to variations in the independent variable, thereby affirming the reliability of the results. In experimental research, the independent variable is what differentiates the control group from the experimental group, thereby setting the stage for meaningful comparison and analysis.

Dependent variables

Dependent variables are the outcomes or effects that researchers aim to explore and understand in their studies. These variables are called "dependent" because their values depend on the changes or variations of the independent variables.

Essentially, they are the responses or results that are measured to assess the impact of the independent variable's manipulation. For instance, in a study investigating the effect of exercise on weight loss, the amount of weight lost would be considered the dependent variable, as it depends on the exercise regimen (the independent variable).

The identification and measurement of the dependent variable are crucial for testing the hypothesis and drawing conclusions from the research. It allows researchers to quantify the effect of the independent variable , providing evidence for causal relationships or associations. In experimental settings, the dependent variable is what is being tested and measured across different groups or conditions, enabling researchers to assess the efficacy or impact of the independent variable's variation.

To ensure accuracy and reliability, the dependent variable must be defined clearly and measured consistently across all participants or observations. This consistency helps in reducing measurement errors and increases the validity of the research findings. By carefully analyzing the dependent variables, researchers can derive meaningful insights from their studies, contributing to the broader knowledge in their field.

Categorical variables

Categorical variables, also known as qualitative variables, represent types or categories that are used to group observations. These variables divide data into distinct groups or categories that lack a numerical value but hold significant meaning in research. Examples of categorical variables include gender (male, female, other), type of vehicle (car, truck, motorcycle), or marital status (single, married, divorced). These categories help researchers organize data into groups for comparison and analysis.

Categorical variables can be further classified into two subtypes: nominal and ordinal. Nominal variables are categories without any inherent order or ranking among them, such as blood type or ethnicity. Ordinal variables, on the other hand, imply a sort of ranking or order among the categories, like levels of satisfaction (high, medium, low) or education level (high school, bachelor's, master's, doctorate).

Understanding and identifying categorical variables is crucial in research as it influences the choice of statistical analysis methods. Since these variables represent categories without numerical significance, researchers employ specific statistical tests designed for a nominal or ordinal variable to draw meaningful conclusions. Properly classifying and analyzing categorical variables allow for the exploration of relationships between different groups within the study, shedding light on patterns and trends that might not be evident with numerical data alone.

Continuous variables

Continuous variables are quantitative variables that can take an infinite number of values within a given range. These variables are measured along a continuum and can represent very precise measurements. Examples of continuous variables include height, weight, temperature, and time. Because they can assume any value within a range, continuous variables allow for detailed analysis and a high degree of accuracy in research findings.

The ability to measure continuous variables at very fine scales makes them invaluable for many types of research, particularly in the natural and social sciences. For instance, in a study examining the effect of temperature on plant growth, temperature would be considered a continuous variable since it can vary across a wide spectrum and be measured to several decimal places.

When dealing with continuous variables, researchers often use methods incorporating a particular statistical test to accommodate a wide range of data points and the potential for infinite divisibility. This includes various forms of regression analysis, correlation, and other techniques suited for modeling and analyzing nuanced relationships between variables. The precision of continuous variables enhances the researcher's ability to detect patterns, trends, and causal relationships within the data, contributing to more robust and detailed conclusions.

Confounding variables

Confounding variables are those that can cause a false association between the independent and dependent variables, potentially leading to incorrect conclusions about the relationship being studied. These are extraneous variables that were not considered in the study design but can influence both the supposed cause and effect, creating a misleading correlation.

Identifying and controlling for a confounding variable is crucial in research to ensure the validity of the findings. This can be achieved through various methods, including randomization, stratification, and statistical control. Randomization helps to evenly distribute confounding variables across study groups, reducing their potential impact. Stratification involves analyzing the data within strata or layers that share common characteristics of the confounder. Statistical control allows researchers to adjust for the effects of confounders in the analysis phase.

Properly addressing confounding variables strengthens the credibility of research outcomes by clarifying the direct relationship between the dependent and independent variables, thus providing more accurate and reliable results.

what is a major study variables in research

Beyond the primary categories of variables commonly discussed in research methodology , there exists a diverse range of other variables that play significant roles in the design and analysis of studies. Below is an overview of some of these variables, highlighting their definitions and roles within research studies:

  • Discrete variables : A discrete variable is a quantitative variable that represents quantitative data , such as the number of children in a family or the number of cars in a parking lot. Discrete variables can only take on specific values.
  • Categorical variables : A categorical variable categorizes subjects or items into groups that do not have a natural numerical order. Categorical data includes nominal variables, like country of origin, and ordinal variables, such as education level.
  • Predictor variables : Often used in statistical models, a predictor variable is used to forecast or predict the outcomes of other variables, not necessarily with a causal implication.
  • Outcome variables : These variables represent the results or outcomes that researchers aim to explain or predict through their studies. An outcome variable is central to understanding the effects of predictor variables.
  • Latent variables : Not directly observable, latent variables are inferred from other, directly measured variables. Examples include psychological constructs like intelligence or socioeconomic status.
  • Composite variables : Created by combining multiple variables, composite variables can measure a concept more reliably or simplify the analysis. An example would be a composite happiness index derived from several survey questions .
  • Preceding variables : These variables come before other variables in time or sequence, potentially influencing subsequent outcomes. A preceding variable is crucial in longitudinal studies to determine causality or sequences of events.

what is a major study variables in research

Master qualitative research with ATLAS.ti

Turn data into critical insights with our data analysis platform. Try out a free trial today.

what is a major study variables in research

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Types of Variables in Research | Definitions & Examples

Types of Variables in Research | Definitions & Examples

Published on 19 September 2022 by Rebecca Bevans . Revised on 28 November 2022.

In statistical research, a variable is defined as an attribute of an object of study. Choosing which variables to measure is central to good experimental design .

You need to know which types of variables you are working with in order to choose appropriate statistical tests and interpret the results of your study.

You can usually identify the type of variable by asking two questions:

  • What type of data does the variable contain?
  • What part of the experiment does the variable represent?

Table of contents

Types of data: quantitative vs categorical variables, parts of the experiment: independent vs dependent variables, other common types of variables, frequently asked questions about variables.

Data is a specific measurement of a variable – it is the value you record in your data sheet. Data is generally divided into two categories:

  • Quantitative data represents amounts.
  • Categorical data represents groupings.

A variable that contains quantitative data is a quantitative variable ; a variable that contains categorical data is a categorical variable . Each of these types of variable can be broken down into further types.

Quantitative variables

When you collect quantitative data, the numbers you record represent real amounts that can be added, subtracted, divided, etc. There are two types of quantitative variables: discrete and continuous .

Categorical variables

Categorical variables represent groupings of some kind. They are sometimes recorded as numbers, but the numbers represent categories rather than actual amounts of things.

There are three types of categorical variables: binary , nominal , and ordinal variables.

*Note that sometimes a variable can work as more than one type! An ordinal variable can also be used as a quantitative variable if the scale is numeric and doesn’t need to be kept as discrete integers. For example, star ratings on product reviews are ordinal (1 to 5 stars), but the average star rating is quantitative.

Example data sheet

To keep track of your salt-tolerance experiment, you make a data sheet where you record information about the variables in the experiment, like salt addition and plant health.

To gather information about plant responses over time, you can fill out the same data sheet every few days until the end of the experiment. This example sheet is colour-coded according to the type of variable: nominal , continuous , ordinal , and binary .

Example data sheet showing types of variables in a plant salt tolerance experiment

Prevent plagiarism, run a free check.

Experiments are usually designed to find out what effect one variable has on another – in our example, the effect of salt addition on plant growth.

You manipulate the independent variable (the one you think might be the cause ) and then measure the dependent variable (the one you think might be the effect ) to find out what this effect might be.

You will probably also have variables that you hold constant ( control variables ) in order to focus on your experimental treatment.

In this experiment, we have one independent and three dependent variables.

The other variables in the sheet can’t be classified as independent or dependent, but they do contain data that you will need in order to interpret your dependent and independent variables.

Example of a data sheet showing dependent and independent variables for a plant salt tolerance experiment.

What about correlational research?

When you do correlational research , the terms ‘dependent’ and ‘independent’ don’t apply, because you are not trying to establish a cause-and-effect relationship.

However, there might be cases where one variable clearly precedes the other (for example, rainfall leads to mud, rather than the other way around). In these cases, you may call the preceding variable (i.e., the rainfall) the predictor variable and the following variable (i.e., the mud) the outcome variable .

Once you have defined your independent and dependent variables and determined whether they are categorical or quantitative, you will be able to choose the correct statistical test .

But there are many other ways of describing variables that help with interpreting your results. Some useful types of variable are listed below.

A confounding variable is closely related to both the independent and dependent variables in a study. An independent variable represents the supposed cause , while the dependent variable is the supposed effect . A confounding variable is a third variable that influences both the independent and dependent variables.

Failing to account for confounding variables can cause you to wrongly estimate the relationship between your independent and dependent variables.

Discrete and continuous variables are two types of quantitative variables :

  • Discrete variables represent counts (e.g., the number of objects in a collection).
  • Continuous variables represent measurable amounts (e.g., water volume or weight).

You can think of independent and dependent variables in terms of cause and effect: an independent variable is the variable you think is the cause , while a dependent variable is the effect .

In an experiment, you manipulate the independent variable and measure the outcome in the dependent variable. For example, in an experiment about the effect of nutrients on crop growth:

  • The  independent variable  is the amount of nutrients added to the crop field.
  • The  dependent variable is the biomass of the crops at harvest time.

Defining your variables, and deciding how you will manipulate and measure them, is an important part of experimental design .

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bevans, R. (2022, November 28). Types of Variables in Research | Definitions & Examples. Scribbr. Retrieved 31 May 2024, from https://www.scribbr.co.uk/research-methods/variables-types/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, a quick guide to experimental design | 5 steps & examples, quasi-experimental design | definition, types & examples, construct validity | definition, types, & examples.

  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Independent and Dependent Variables
  • Purpose of Guide
  • Design Flaws to Avoid
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Definitions

Dependent Variable The variable that depends on other factors that are measured. These variables are expected to change as a result of an experimental manipulation of the independent variable or variables. It is the presumed effect.

Independent Variable The variable that is stable and unaffected by the other variables you are trying to measure. It refers to the condition of an experiment that is systematically manipulated by the investigator. It is the presumed cause.

Cramer, Duncan and Dennis Howitt. The SAGE Dictionary of Statistics . London: SAGE, 2004; Penslar, Robin Levin and Joan P. Porter. Institutional Review Board Guidebook: Introduction . Washington, DC: United States Department of Health and Human Services, 2010; "What are Dependent and Independent Variables?" Graphic Tutorial.

Identifying Dependent and Independent Variables

Don't feel bad if you are confused about what is the dependent variable and what is the independent variable in social and behavioral sciences research . However, it's important that you learn the difference because framing a study using these variables is a common approach to organizing the elements of a social sciences research study in order to discover relevant and meaningful results. Specifically, it is important for these two reasons:

  • You need to understand and be able to evaluate their application in other people's research.
  • You need to apply them correctly in your own research.

A variable in research simply refers to a person, place, thing, or phenomenon that you are trying to measure in some way. The best way to understand the difference between a dependent and independent variable is that the meaning of each is implied by what the words tell us about the variable you are using. You can do this with a simple exercise from the website, Graphic Tutorial. Take the sentence, "The [independent variable] causes a change in [dependent variable] and it is not possible that [dependent variable] could cause a change in [independent variable]." Insert the names of variables you are using in the sentence in the way that makes the most sense. This will help you identify each type of variable. If you're still not sure, consult with your professor before you begin to write.

Fan, Shihe. "Independent Variable." In Encyclopedia of Research Design. Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 592-594; "What are Dependent and Independent Variables?" Graphic Tutorial; Salkind, Neil J. "Dependent Variable." In Encyclopedia of Research Design , Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 348-349;

Structure and Writing Style

The process of examining a research problem in the social and behavioral sciences is often framed around methods of analysis that compare, contrast, correlate, average, or integrate relationships between or among variables . Techniques include associations, sampling, random selection, and blind selection. Designation of the dependent and independent variable involves unpacking the research problem in a way that identifies a general cause and effect and classifying these variables as either independent or dependent.

The variables should be outlined in the introduction of your paper and explained in more detail in the methods section . There are no rules about the structure and style for writing about independent or dependent variables but, as with any academic writing, clarity and being succinct is most important.

After you have described the research problem and its significance in relation to prior research, explain why you have chosen to examine the problem using a method of analysis that investigates the relationships between or among independent and dependent variables . State what it is about the research problem that lends itself to this type of analysis. For example, if you are investigating the relationship between corporate environmental sustainability efforts [the independent variable] and dependent variables associated with measuring employee satisfaction at work using a survey instrument, you would first identify each variable and then provide background information about the variables. What is meant by "environmental sustainability"? Are you looking at a particular company [e.g., General Motors] or are you investigating an industry [e.g., the meat packing industry]? Why is employee satisfaction in the workplace important? How does a company make their employees aware of sustainability efforts and why would a company even care that its employees know about these efforts?

Identify each variable for the reader and define each . In the introduction, this information can be presented in a paragraph or two when you describe how you are going to study the research problem. In the methods section, you build on the literature review of prior studies about the research problem to describe in detail background about each variable, breaking each down for measurement and analysis. For example, what activities do you examine that reflect a company's commitment to environmental sustainability? Levels of employee satisfaction can be measured by a survey that asks about things like volunteerism or a desire to stay at the company for a long time.

The structure and writing style of describing the variables and their application to analyzing the research problem should be stated and unpacked in such a way that the reader obtains a clear understanding of the relationships between the variables and why they are important. This is also important so that the study can be replicated in the future using the same variables but applied in a different way.

Fan, Shihe. "Independent Variable." In Encyclopedia of Research Design. Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 592-594; "What are Dependent and Independent Variables?" Graphic Tutorial; “Case Example for Independent and Dependent Variables.” ORI Curriculum Examples. U.S. Department of Health and Human Services, Office of Research Integrity; Salkind, Neil J. "Dependent Variable." In Encyclopedia of Research Design , Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 348-349; “Independent Variables and Dependent Variables.” Karl L. Wuensch, Department of Psychology, East Carolina University [posted email exchange]; “Variables.” Elements of Research. Dr. Camille Nebeker, San Diego State University.

  • << Previous: Design Flaws to Avoid
  • Next: Glossary of Research Terms >>
  • Last Updated: May 30, 2024 9:38 AM
  • URL: https://libguides.usc.edu/writingguide

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Social Sci LibreTexts

2.2: Concepts, Constructs, and Variables

  • Last updated
  • Save as PDF
  • Page ID 26212

  • Anol Bhattacherjee
  • University of South Florida via Global Text Project

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

We discussed in Chapter 1 that although research can be exploratory, descriptive, or explanatory, most scientific research tend to be of the explanatory type in that they search for potential explanations of observed natural or social phenomena. Explanations require development of concepts or generalizable properties or characteristics associated with objects, events, or people. While objects such as a person, a firm, or a car are not concepts, their specific characteristics or behavior such as a person’s attitude toward immigrants, a firm’s capacity for innovation, and a car’s weight can be viewed as concepts.

Knowingly or unknowingly, we use different kinds of concepts in our everyday conversations. Some of these concepts have been developed over time through our shared language. Sometimes, we borrow concepts from other disciplines or languages to explain a phenomenon of interest. For instance, the idea of gravitation borrowed from physics can be used in business to describe why people tend to “gravitate” to their preferred shopping destinations. Likewise, the concept of distance can be used to explain the degree of social separation between two otherwise collocated individuals. Sometimes, we create our own concepts to describe a unique characteristic not described in prior research. For instance, technostress is a new concept referring to the mental stress one may face when asked to learn a new technology.

Concepts may also have progressive levels of abstraction. Some concepts such as a person’s weight are precise and objective, while other concepts such as a person’s personality may be more abstract and difficult to visualize. A construct is an abstract concept that is specifically chosen (or “created”) to explain a given phenomenon. A construct may be a simple concept, such as a person’s weight , or a combination of a set of related concepts such as a person’s communication skill , which may consist of several underlying concepts such as the person’s vocabulary , syntax , and spelling . The former instance (weight) is a unidimensional construct , while the latter (communication skill) is a multi-dimensional construct (i.e., it consists of multiple underlying concepts). The distinction between constructs and concepts are clearer in multi-dimensional constructs, where the higher order abstraction is called a construct and the lower order abstractions are called concepts. However, this distinction tends to blur in the case of unidimensional constructs.

Constructs used for scientific research must have precise and clear definitions that others can use to understand exactly what it means and what it does not mean. For instance, a seemingly simple construct such as income may refer to monthly or annual income, before-tax or after-tax income, and personal or family income, and is therefore neither precise nor clear. There are two types of definitions: dictionary definitions and operational definitions. In the more familiar dictionary definition, a construct is often defined in terms of a synonym. For instance, attitude may be defined as a disposition, a feeling, or an affect, and affect in turn is defined as an attitude. Such definitions of a circular nature are not particularly useful in scientific research for elaborating the meaning and content of that construct. Scientific research requires operational definitions that define constructs in terms of how they will be empirically measured. For instance, the operational definition of a construct such as temperature must specify whether we plan to measure temperature in Celsius, Fahrenheit, or Kelvin scale. A construct such as income should be defined in terms of whether we are interested in monthly or annual income, before-tax or after-tax income, and personal or family income. One can imagine that constructs such as learning , personality , and intelligence can be quite hard to define operationally.

clipboard_e3c11ed02287e51de02928c4dd14dea17.png

A term frequently associated with, and sometimes used interchangeably with, a construct is a variable. Etymologically speaking, a variable is a quantity that can vary (e.g., from low to high, negative to positive, etc.), in contrast to constants that do not vary (i.e., remain constant). However, in scientific research, a variable is a measurable representation of an abstract construct. As abstract entities, constructs are not directly measurable, and hence, we look for proxy measures called variables. For instance, a person’s intelligence is often measured as his or her IQ ( intelligence quotient ) score , which is an index generated from an analytical and pattern-matching test administered to people. In this case, intelligence is a construct, and IQ score is a variable that measures the intelligence construct. Whether IQ scores truly measures one’s intelligence is anyone’s guess (though many believe that they do), and depending on whether how well it measures intelligence, the IQ score may be a good or a poor measure of the intelligence construct. As shown in Figure 2.1, scientific research proceeds along two planes: a theoretical plane and an empirical plane. Constructs are conceptualized at the theoretical (abstract) plane, while variables are operationalized and measured at the empirical (observational) plane. Thinking like a researcher implies the ability to move back and forth between these two planes.

Depending on their intended use, variables may be classified as independent, dependent, moderating, mediating, or control variables. Variables that explain other variables are called independent variables , those that are explained by other variables are dependent variables , those that are explained by independent variables while also explaining dependent variables are mediating variables (or intermediate variables), and those that influence the relationship between independent and dependent variables are called moderating variables . As an example, if we state that higher intelligence causes improved learning among students, then intelligence is an independent variable and learning is a dependent variable. There may be other extraneous variables that are not pertinent to explaining a given dependent variable, but may have some impact on the dependent variable. These variables must be controlled for in a scientific study, and are therefore called control variables .

clipboard_ec4455df573382437125e02822d3e7aa4.png

To understand the differences between these different variable types, consider the example shown in Figure 2.2. If we believe that intelligence influences (or explains) students’ academic achievement, then a measure of intelligence such as an IQ score is an independent variable, while a measure of academic success such as grade point average is a dependent variable. If we believe that the effect of intelligence on academic achievement also depends on the effort invested by the student in the learning process (i.e., between two equally intelligent students, the student who puts is more effort achieves higher academic achievement than one who puts in less effort), then effort becomes a moderating variable. Incidentally, one may also view effort as an independent variable and intelligence as a moderating variable. If academic achievement is viewed as an intermediate step to higher earning potential, then earning potential becomes the dependent variable for the independent variable academic achievement , and academic achievement becomes the mediating variable in the relationship between intelligence and earning potential. Hence, variable are defined as an independent, dependent, moderating, or mediating variable based on their nature of association with each other. The overall network of relationships between a set of related constructs is called a nomological network (see Figure 2.2). Thinking like a researcher requires not only being able to abstract constructs from observations, but also being able to mentally visualize a nomological network linking these abstract constructs.

Our websites may use cookies to personalize and enhance your experience. By continuing without changing your cookie settings, you agree to this collection. For more information, please see our University Websites Privacy Notice .

Neag School of Education

Educational Research Basics by Del Siegle

Each person/thing we collect data on is called an OBSERVATION (in our work these are usually people/subjects. Currently, the term participant rather than subject is used when describing the people from whom we collect data).

OBSERVATIONS (participants) possess a variety of CHARACTERISTICS .

If a CHARACTERISTIC of an OBSERVATION (participant) is the same for every member of the group (doesn’t vary) it is called a CONSTANT .

If a CHARACTERISTIC of an OBSERVATION (participant) differs for group members it is called a VARIABLE . In research we don’t get excited about CONSTANTS (since everyone is the same on that characteristic); we’re more interested in VARIABLES. Variables can be classified as QUANTITATIVE or QUALITATIVE (also known as CATEGORICAL).

QUANTITATIVE variables are ones that exist along a continuum that runs from low to high. Ordinal, interval, and ratio variables are quantitative.  QUANTITATIVE variables are sometimes called CONTINUOUS VARIABLES because they have a variety (continuum) of characteristics. Height in inches and scores on a test would be examples of quantitative variables.

QUALITATIVE variables do not express differences in amount, only differences. They are sometimes referred to as CATEGORICAL variables because they classify by categories. Nominal variables such as gender, religion, or eye color are CATEGORICAL variables. Generally speaking, categorical variables

A special case of a CATEGORICAL variable is a DICHOTOMOUS VARIABLE. DICHOTOMOUS variables have only two CHARACTERISTICS (male or female). When naming QUALITATIVE variables, it is important to name the category rather than the levels (i.e., gender is the variable name, not male and female).

Variables have different purposes or roles…

Independent (Experimental, Manipulated, Treatment, Grouping) Variable- That factor which is measured, manipulated, or selected by the experimenter to determine its relationship to an observed phenomenon. “In a research study, independent variables are antecedent conditions that are presumed to affect a dependent variable. They are either manipulated by the researcher or are observed by the researcher so that their values can be related to that of the dependent variable. For example, in a research study on the relationship between mosquitoes and mosquito bites, the number of mosquitoes per acre of ground would be an independent variable” (Jaeger, 1990, p. 373)

While the independent variable is often manipulated by the researcher, it can also be a classification where subjects are assigned to groups. In a study where one variable causes the other, the independent variable is the cause. In a study where groups are being compared, the independent variable is the group classification.

Dependent (Outcome) Variable- That factor which is observed and measured to determine the effect of the independent variable, i.e., that factor that appears, disappears, or varies as the experimenter introduces, removes, or varies the independent variable. “In a research study, the independent variable defines a principal focus of research interest. It is the consequent variable that is presumably affected by one or more independent variables that are either manipulated by the researcher or observed by the researcher and regarded as antecedent conditions that determine the value of the dependent variable. For example, in a study of the relationship between mosquitoes and mosquito bites, the number of mosquito bites per hour would be the dependent variable” (Jaeger, 1990, p. 370). The dependent variable is the participant’s response.

The dependent variable is the outcome. In an experiment, it may be what was caused or what changed as a result of the study. In a comparison of groups, it is what they differ on.

Moderator Variable- That factor which is measured, manipulated, or selected by the experimenter to discover whether it modifies the relationship of the independent variable to an observed phenomenon. It is a special type of independent variable.

The independent variable’s relationship with the dependent variable may change under different conditions. That condition is the moderator variable. In a study of two methods of teaching reading, one of the methods of teaching reading may work better with boys than girls. Method of teaching reading is the independent variable and reading achievement is the dependent variable. Gender is the moderator variable because it moderates or changes the relationship between the independent variable (teaching method) and the dependent variable (reading achievement).

Suppose we do a study of reading achievement where we compare whole language with phonics, and we also include students’ social economic status (SES) as a variable. The students are randomly assigned to either whole language instruction or phonics instruction. There are students of high and low SES in each group.

Let’s assume that we found that whole language instruction worked better than phonics instruction with the high SES students, but phonics instruction worked better than whole language instruction with the low SES students. Later you will learn in statistics that this is an interaction effect. In this study, language instruction was the independent variable (with two levels: phonics and whole language). SES was the moderator variable (with two levels: high and low). Reading achievement was the dependent variable (measured on a continuous scale so there aren’t levels).

With a moderator variable, we find the type of instruction did make a difference, but it worked differently for the two groups on the moderator variable. We select this moderator variable because we think it is a variable that will moderate the effect of the independent on the dependent. We make this decision before we start the study.

If the moderator had not been in the study above, we would have said that there was no difference in reading achievement between the two types of reading instruction. This would have happened because the average of the high and low scores of each SES group within a reading instruction group would cancel each other an produce what appears to be average reading achievement in each instruction group (i.e., Phonics: Low—6 and High—2; Whole Language:   Low—2 and High—6; Phonics has an average of 4 and Whole Language has an average of 4. If we just look at the averages (without regard to the moderator), it appears that the instruction types produced similar results).

Extraneous Variable- Those factors which cannot be controlled. Extraneous variables are independent variables that have not been controlled. They may or may not influence the results. One way to control an extraneous variable which might influence the results is to make it a constant (keep everyone in the study alike on that characteristic). If SES were thought to influence achievement, then restricting the study to one SES level would eliminate SES as an extraneous variable.

Here are some examples similar to your homework:

Null Hypothesis: Students who receive pizza coupons as a reward do not read more books than students who do not receive pizza coupon rewards. Independent Variable: Reward Status Dependent Variable: Number of Books Read

High achieving students do not perform better than low achieving student when writing stories regardless of whether they use paper and pencil or a word processor. Independent Variable: Instrument Used for Writing Moderator Variable: Ability Level of the Students Dependent Variable:  Quality of Stories Written When we are comparing two groups, the groups are the independent variable. When we are testing whether something influences something else, the influence (cause) is the independent variable. The independent variable is also the one we manipulate. For example, consider the hypothesis “Teachers given higher pay will have more positive attitudes toward children than teachers given lower pay.” One approach is to ask ourselves “Are there two or more groups being compared?” The answer is “Yes.” “What are the groups?” Teachers who are given higher pay and teachers who are given lower pay. Therefore, the independent variable is teacher pay (it has two levels– high pay and low pay). The dependent variable (what the groups differ on) is attitude towards school.

We could also approach this another way. “Is something causing something else?” The answer is “Yes.” “What is causing what?” Teacher pay is causing attitude towards school. Therefore, teacher pay is the independent variable (cause) and attitude towards school is the dependent variable (outcome).

Research Questions and Hypotheses

The research question drives the study. It should specifically state what is being investigated. Statisticians often convert their research questions to null and alternative hypotheses. The null hypothesis states that no relationship (correlation study) or difference (experimental study) exists. Converting research questions to hypotheses is a simple task. Take the questions and make it a positive statement that says a relationship exists (correlation studies) or a difference exists (experiment study) between the groups and we have the alternative hypothesis. Write a statement  that a relationship does not exist or a difference does not exist and we have the null hypothesis.

Format for sample research questions and accompanying hypotheses:

Research Question for Relationships: Is there a relationship between height and weight? Null Hypothesis:  There is no relationship between height and weight. Alternative Hypothesis:   There is a relationship between height and weight.

When a researcher states a nondirectional hypothesis in a study that compares the performance of two groups, she doesn’t state which group she believes will perform better. If the word “more” or “less” appears in the hypothesis, there is a good chance that we are reading a directional hypothesis. A directional hypothesis is one where the researcher states which group she believes will perform better.  Most researchers use nondirectional hypotheses.

We usually write the alternative hypothesis (what we believe might happen) before we write the null hypothesis (saying it won’t happen).

Directional Research Question for Differences: Do boys like reading more than girls? Null Hypothesis:   Boys do not like reading more than girls. Alternative Hypothesis:   Boys do like reading more than girls.

Nondirectional Research Question for Differences: Is there a difference between boys’ and girls’ attitude towards reading? –or– Do boys’ and girls’ attitude towards reading differ? Null Hypothesis:   There is no difference between boys’ and girls’ attitude towards reading.  –or–  Boys’ and girls’ attitude towards reading do not differ. Alternative Hypothesis:   There is a difference between boys’ and girls’ attitude towards reading.  –or–  Boys’ and girls’ attitude towards reading differ.

Del Siegle, Ph.D. Neag School of Education – University of Connecticut [email protected] www.delsiegle.com

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.37(16); 2022 Apr 25

Logo of jkms

A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

Edward barroga.

1 Department of General Education, Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated. Initially, research questions may be written as descriptive questions which could be developed into inferential questions. These questions must be specific and concise to provide a clear foundation for developing hypotheses. Hypotheses are more formal predictions about the research outcomes. These specify the possible results that may or may not be expected regarding the relationship between groups. Thus, research questions and hypotheses clarify the main purpose and specific objectives of the study, which in turn dictate the design of the study, its direction, and outcome. Studies developed from good research questions and hypotheses will have trustworthy outcomes with wide-ranging social and health implications.

INTRODUCTION

Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses. 1 , 2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results. 3 , 4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the inception of novel studies and the ethical testing of ideas. 5 , 6

It is crucial to have knowledge of both quantitative and qualitative research 2 as both types of research involve writing research questions and hypotheses. 7 However, these crucial elements of research are sometimes overlooked; if not overlooked, then framed without the forethought and meticulous attention it needs. Planning and careful consideration are needed when developing quantitative or qualitative research, particularly when conceptualizing research questions and hypotheses. 4

There is a continuing need to support researchers in the creation of innovative research questions and hypotheses, as well as for journal articles that carefully review these elements. 1 When research questions and hypotheses are not carefully thought of, unethical studies and poor outcomes usually ensue. Carefully formulated research questions and hypotheses define well-founded objectives, which in turn determine the appropriate design, course, and outcome of the study. This article then aims to discuss in detail the various aspects of crafting research questions and hypotheses, with the goal of guiding researchers as they develop their own. Examples from the authors and peer-reviewed scientific articles in the healthcare field are provided to illustrate key points.

DEFINITIONS AND RELATIONSHIP OF RESEARCH QUESTIONS AND HYPOTHESES

A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question. 1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study. 5

On the other hand, a research hypothesis is an educated statement of an expected outcome. This statement is based on background research and current knowledge. 8 , 9 The research hypothesis makes a specific prediction about a new phenomenon 10 or a formal statement on the expected relationship between an independent variable and a dependent variable. 3 , 11 It provides a tentative answer to the research question to be tested or explored. 4

Hypotheses employ reasoning to predict a theory-based outcome. 10 These can also be developed from theories by focusing on components of theories that have not yet been observed. 10 The validity of hypotheses is often based on the testability of the prediction made in a reproducible experiment. 8

Conversely, hypotheses can also be rephrased as research questions. Several hypotheses based on existing theories and knowledge may be needed to answer a research question. Developing ethical research questions and hypotheses creates a research design that has logical relationships among variables. These relationships serve as a solid foundation for the conduct of the study. 4 , 11 Haphazardly constructed research questions can result in poorly formulated hypotheses and improper study designs, leading to unreliable results. Thus, the formulations of relevant research questions and verifiable hypotheses are crucial when beginning research. 12

CHARACTERISTICS OF GOOD RESEARCH QUESTIONS AND HYPOTHESES

Excellent research questions are specific and focused. These integrate collective data and observations to confirm or refute the subsequent hypotheses. Well-constructed hypotheses are based on previous reports and verify the research context. These are realistic, in-depth, sufficiently complex, and reproducible. More importantly, these hypotheses can be addressed and tested. 13

There are several characteristics of well-developed hypotheses. Good hypotheses are 1) empirically testable 7 , 10 , 11 , 13 ; 2) backed by preliminary evidence 9 ; 3) testable by ethical research 7 , 9 ; 4) based on original ideas 9 ; 5) have evidenced-based logical reasoning 10 ; and 6) can be predicted. 11 Good hypotheses can infer ethical and positive implications, indicating the presence of a relationship or effect relevant to the research theme. 7 , 11 These are initially developed from a general theory and branch into specific hypotheses by deductive reasoning. In the absence of a theory to base the hypotheses, inductive reasoning based on specific observations or findings form more general hypotheses. 10

TYPES OF RESEARCH QUESTIONS AND HYPOTHESES

Research questions and hypotheses are developed according to the type of research, which can be broadly classified into quantitative and qualitative research. We provide a summary of the types of research questions and hypotheses under quantitative and qualitative research categories in Table 1 .

Research questions in quantitative research

In quantitative research, research questions inquire about the relationships among variables being investigated and are usually framed at the start of the study. These are precise and typically linked to the subject population, dependent and independent variables, and research design. 1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured ( descriptive research questions ). 1 , 5 , 14 These questions may also aim to discover differences between groups within the context of an outcome variable ( comparative research questions ), 1 , 5 , 14 or elucidate trends and interactions among variables ( relationship research questions ). 1 , 5 We provide examples of descriptive, comparative, and relationship research questions in quantitative research in Table 2 .

Hypotheses in quantitative research

In quantitative research, hypotheses predict the expected relationships among variables. 15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable ( simple hypothesis ) or 2) between two or more independent and dependent variables ( complex hypothesis ). 4 , 11 Hypotheses may also specify the expected direction to be followed and imply an intellectual commitment to a particular outcome ( directional hypothesis ) 4 . On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies ( non-directional hypothesis ). 4 In addition, hypotheses can 1) define interdependency between variables ( associative hypothesis ), 4 2) propose an effect on the dependent variable from manipulation of the independent variable ( causal hypothesis ), 4 3) state a negative relationship between two variables ( null hypothesis ), 4 , 11 , 15 4) replace the working hypothesis if rejected ( alternative hypothesis ), 15 explain the relationship of phenomena to possibly generate a theory ( working hypothesis ), 11 5) involve quantifiable variables that can be tested statistically ( statistical hypothesis ), 11 6) or express a relationship whose interlinks can be verified logically ( logical hypothesis ). 11 We provide examples of simple, complex, directional, non-directional, associative, causal, null, alternative, working, statistical, and logical hypotheses in quantitative research, as well as the definition of quantitative hypothesis-testing research in Table 3 .

Research questions in qualitative research

Unlike research questions in quantitative research, research questions in qualitative research are usually continuously reviewed and reformulated. The central question and associated subquestions are stated more than the hypotheses. 15 The central question broadly explores a complex set of factors surrounding the central phenomenon, aiming to present the varied perspectives of participants. 15

There are varied goals for which qualitative research questions are developed. These questions can function in several ways, such as to 1) identify and describe existing conditions ( contextual research question s); 2) describe a phenomenon ( descriptive research questions ); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ( evaluation research questions ); 4) examine a phenomenon or analyze the reasons or relationships between subjects or phenomena ( explanatory research questions ); or 5) focus on unknown aspects of a particular topic ( exploratory research questions ). 5 In addition, some qualitative research questions provide new ideas for the development of theories and actions ( generative research questions ) or advance specific ideologies of a position ( ideological research questions ). 1 Other qualitative research questions may build on a body of existing literature and become working guidelines ( ethnographic research questions ). Research questions may also be broadly stated without specific reference to the existing literature or a typology of questions ( phenomenological research questions ), may be directed towards generating a theory of some process ( grounded theory questions ), or may address a description of the case and the emerging themes ( qualitative case study questions ). 15 We provide examples of contextual, descriptive, evaluation, explanatory, exploratory, generative, ideological, ethnographic, phenomenological, grounded theory, and qualitative case study research questions in qualitative research in Table 4 , and the definition of qualitative hypothesis-generating research in Table 5 .

Qualitative studies usually pose at least one central research question and several subquestions starting with How or What . These research questions use exploratory verbs such as explore or describe . These also focus on one central phenomenon of interest, and may mention the participants and research site. 15

Hypotheses in qualitative research

Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed-methods research question can be developed. 1

FRAMEWORKS FOR DEVELOPING RESEARCH QUESTIONS AND HYPOTHESES

Research questions followed by hypotheses should be developed before the start of the study. 1 , 12 , 14 It is crucial to develop feasible research questions on a topic that is interesting to both the researcher and the scientific community. This can be achieved by a meticulous review of previous and current studies to establish a novel topic. Specific areas are subsequently focused on to generate ethical research questions. The relevance of the research questions is evaluated in terms of clarity of the resulting data, specificity of the methodology, objectivity of the outcome, depth of the research, and impact of the study. 1 , 5 These aspects constitute the FINER criteria (i.e., Feasible, Interesting, Novel, Ethical, and Relevant). 1 Clarity and effectiveness are achieved if research questions meet the FINER criteria. In addition to the FINER criteria, Ratan et al. described focus, complexity, novelty, feasibility, and measurability for evaluating the effectiveness of research questions. 14

The PICOT and PEO frameworks are also used when developing research questions. 1 The following elements are addressed in these frameworks, PICOT: P-population/patients/problem, I-intervention or indicator being studied, C-comparison group, O-outcome of interest, and T-timeframe of the study; PEO: P-population being studied, E-exposure to preexisting conditions, and O-outcome of interest. 1 Research questions are also considered good if these meet the “FINERMAPS” framework: Feasible, Interesting, Novel, Ethical, Relevant, Manageable, Appropriate, Potential value/publishable, and Systematic. 14

As we indicated earlier, research questions and hypotheses that are not carefully formulated result in unethical studies or poor outcomes. To illustrate this, we provide some examples of ambiguous research question and hypotheses that result in unclear and weak research objectives in quantitative research ( Table 6 ) 16 and qualitative research ( Table 7 ) 17 , and how to transform these ambiguous research question(s) and hypothesis(es) into clear and good statements.

a These statements were composed for comparison and illustrative purposes only.

b These statements are direct quotes from Higashihara and Horiuchi. 16

a This statement is a direct quote from Shimoda et al. 17

The other statements were composed for comparison and illustrative purposes only.

CONSTRUCTING RESEARCH QUESTIONS AND HYPOTHESES

To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe. 9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying theories and previous studies. 18 Afterwards, 4) construct research questions to investigate the research problem. Identify variables to be accessed from the research questions 4 and make operational definitions of constructs from the research problem and questions. Thereafter, 5) construct specific deductive or inductive predictions in the form of hypotheses. 4 Finally, 6) state the study aims . This general flow for constructing effective research questions and hypotheses prior to conducting research is shown in Fig. 1 .

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g001.jpg

Research questions are used more frequently in qualitative research than objectives or hypotheses. 3 These questions seek to discover, understand, explore or describe experiences by asking “What” or “How.” The questions are open-ended to elicit a description rather than to relate variables or compare groups. The questions are continually reviewed, reformulated, and changed during the qualitative study. 3 Research questions are also used more frequently in survey projects than hypotheses in experiments in quantitative research to compare variables and their relationships.

Hypotheses are constructed based on the variables identified and as an if-then statement, following the template, ‘If a specific action is taken, then a certain outcome is expected.’ At this stage, some ideas regarding expectations from the research to be conducted must be drawn. 18 Then, the variables to be manipulated (independent) and influenced (dependent) are defined. 4 Thereafter, the hypothesis is stated and refined, and reproducible data tailored to the hypothesis are identified, collected, and analyzed. 4 The hypotheses must be testable and specific, 18 and should describe the variables and their relationships, the specific group being studied, and the predicted research outcome. 18 Hypotheses construction involves a testable proposition to be deduced from theory, and independent and dependent variables to be separated and measured separately. 3 Therefore, good hypotheses must be based on good research questions constructed at the start of a study or trial. 12

In summary, research questions are constructed after establishing the background of the study. Hypotheses are then developed based on the research questions. Thus, it is crucial to have excellent research questions to generate superior hypotheses. In turn, these would determine the research objectives and the design of the study, and ultimately, the outcome of the research. 12 Algorithms for building research questions and hypotheses are shown in Fig. 2 for quantitative research and in Fig. 3 for qualitative research.

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g002.jpg

EXAMPLES OF RESEARCH QUESTIONS FROM PUBLISHED ARTICLES

  • EXAMPLE 1. Descriptive research question (quantitative research)
  • - Presents research variables to be assessed (distinct phenotypes and subphenotypes)
  • “BACKGROUND: Since COVID-19 was identified, its clinical and biological heterogeneity has been recognized. Identifying COVID-19 phenotypes might help guide basic, clinical, and translational research efforts.
  • RESEARCH QUESTION: Does the clinical spectrum of patients with COVID-19 contain distinct phenotypes and subphenotypes? ” 19
  • EXAMPLE 2. Relationship research question (quantitative research)
  • - Shows interactions between dependent variable (static postural control) and independent variable (peripheral visual field loss)
  • “Background: Integration of visual, vestibular, and proprioceptive sensations contributes to postural control. People with peripheral visual field loss have serious postural instability. However, the directional specificity of postural stability and sensory reweighting caused by gradual peripheral visual field loss remain unclear.
  • Research question: What are the effects of peripheral visual field loss on static postural control ?” 20
  • EXAMPLE 3. Comparative research question (quantitative research)
  • - Clarifies the difference among groups with an outcome variable (patients enrolled in COMPERA with moderate PH or severe PH in COPD) and another group without the outcome variable (patients with idiopathic pulmonary arterial hypertension (IPAH))
  • “BACKGROUND: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition.
  • RESEARCH QUESTION: Which factors determine the outcome of PH in COPD?
  • STUDY DESIGN AND METHODS: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH) .” 21
  • EXAMPLE 4. Exploratory research question (qualitative research)
  • - Explores areas that have not been fully investigated (perspectives of families and children who receive care in clinic-based child obesity treatment) to have a deeper understanding of the research problem
  • “Problem: Interventions for children with obesity lead to only modest improvements in BMI and long-term outcomes, and data are limited on the perspectives of families of children with obesity in clinic-based treatment. This scoping review seeks to answer the question: What is known about the perspectives of families and children who receive care in clinic-based child obesity treatment? This review aims to explore the scope of perspectives reported by families of children with obesity who have received individualized outpatient clinic-based obesity treatment.” 22
  • EXAMPLE 5. Relationship research question (quantitative research)
  • - Defines interactions between dependent variable (use of ankle strategies) and independent variable (changes in muscle tone)
  • “Background: To maintain an upright standing posture against external disturbances, the human body mainly employs two types of postural control strategies: “ankle strategy” and “hip strategy.” While it has been reported that the magnitude of the disturbance alters the use of postural control strategies, it has not been elucidated how the level of muscle tone, one of the crucial parameters of bodily function, determines the use of each strategy. We have previously confirmed using forward dynamics simulations of human musculoskeletal models that an increased muscle tone promotes the use of ankle strategies. The objective of the present study was to experimentally evaluate a hypothesis: an increased muscle tone promotes the use of ankle strategies. Research question: Do changes in the muscle tone affect the use of ankle strategies ?” 23

EXAMPLES OF HYPOTHESES IN PUBLISHED ARTICLES

  • EXAMPLE 1. Working hypothesis (quantitative research)
  • - A hypothesis that is initially accepted for further research to produce a feasible theory
  • “As fever may have benefit in shortening the duration of viral illness, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response when taken during the early stages of COVID-19 illness .” 24
  • “In conclusion, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response . The difference in perceived safety of these agents in COVID-19 illness could be related to the more potent efficacy to reduce fever with ibuprofen compared to acetaminophen. Compelling data on the benefit of fever warrant further research and review to determine when to treat or withhold ibuprofen for early stage fever for COVID-19 and other related viral illnesses .” 24
  • EXAMPLE 2. Exploratory hypothesis (qualitative research)
  • - Explores particular areas deeper to clarify subjective experience and develop a formal hypothesis potentially testable in a future quantitative approach
  • “We hypothesized that when thinking about a past experience of help-seeking, a self distancing prompt would cause increased help-seeking intentions and more favorable help-seeking outcome expectations .” 25
  • “Conclusion
  • Although a priori hypotheses were not supported, further research is warranted as results indicate the potential for using self-distancing approaches to increasing help-seeking among some people with depressive symptomatology.” 25
  • EXAMPLE 3. Hypothesis-generating research to establish a framework for hypothesis testing (qualitative research)
  • “We hypothesize that compassionate care is beneficial for patients (better outcomes), healthcare systems and payers (lower costs), and healthcare providers (lower burnout). ” 26
  • Compassionomics is the branch of knowledge and scientific study of the effects of compassionate healthcare. Our main hypotheses are that compassionate healthcare is beneficial for (1) patients, by improving clinical outcomes, (2) healthcare systems and payers, by supporting financial sustainability, and (3) HCPs, by lowering burnout and promoting resilience and well-being. The purpose of this paper is to establish a scientific framework for testing the hypotheses above . If these hypotheses are confirmed through rigorous research, compassionomics will belong in the science of evidence-based medicine, with major implications for all healthcare domains.” 26
  • EXAMPLE 4. Statistical hypothesis (quantitative research)
  • - An assumption is made about the relationship among several population characteristics ( gender differences in sociodemographic and clinical characteristics of adults with ADHD ). Validity is tested by statistical experiment or analysis ( chi-square test, Students t-test, and logistic regression analysis)
  • “Our research investigated gender differences in sociodemographic and clinical characteristics of adults with ADHD in a Japanese clinical sample. Due to unique Japanese cultural ideals and expectations of women's behavior that are in opposition to ADHD symptoms, we hypothesized that women with ADHD experience more difficulties and present more dysfunctions than men . We tested the following hypotheses: first, women with ADHD have more comorbidities than men with ADHD; second, women with ADHD experience more social hardships than men, such as having less full-time employment and being more likely to be divorced.” 27
  • “Statistical Analysis
  • ( text omitted ) Between-gender comparisons were made using the chi-squared test for categorical variables and Students t-test for continuous variables…( text omitted ). A logistic regression analysis was performed for employment status, marital status, and comorbidity to evaluate the independent effects of gender on these dependent variables.” 27

EXAMPLES OF HYPOTHESIS AS WRITTEN IN PUBLISHED ARTICLES IN RELATION TO OTHER PARTS

  • EXAMPLE 1. Background, hypotheses, and aims are provided
  • “Pregnant women need skilled care during pregnancy and childbirth, but that skilled care is often delayed in some countries …( text omitted ). The focused antenatal care (FANC) model of WHO recommends that nurses provide information or counseling to all pregnant women …( text omitted ). Job aids are visual support materials that provide the right kind of information using graphics and words in a simple and yet effective manner. When nurses are not highly trained or have many work details to attend to, these job aids can serve as a content reminder for the nurses and can be used for educating their patients (Jennings, Yebadokpo, Affo, & Agbogbe, 2010) ( text omitted ). Importantly, additional evidence is needed to confirm how job aids can further improve the quality of ANC counseling by health workers in maternal care …( text omitted )” 28
  • “ This has led us to hypothesize that the quality of ANC counseling would be better if supported by job aids. Consequently, a better quality of ANC counseling is expected to produce higher levels of awareness concerning the danger signs of pregnancy and a more favorable impression of the caring behavior of nurses .” 28
  • “This study aimed to examine the differences in the responses of pregnant women to a job aid-supported intervention during ANC visit in terms of 1) their understanding of the danger signs of pregnancy and 2) their impression of the caring behaviors of nurses to pregnant women in rural Tanzania.” 28
  • EXAMPLE 2. Background, hypotheses, and aims are provided
  • “We conducted a two-arm randomized controlled trial (RCT) to evaluate and compare changes in salivary cortisol and oxytocin levels of first-time pregnant women between experimental and control groups. The women in the experimental group touched and held an infant for 30 min (experimental intervention protocol), whereas those in the control group watched a DVD movie of an infant (control intervention protocol). The primary outcome was salivary cortisol level and the secondary outcome was salivary oxytocin level.” 29
  • “ We hypothesize that at 30 min after touching and holding an infant, the salivary cortisol level will significantly decrease and the salivary oxytocin level will increase in the experimental group compared with the control group .” 29
  • EXAMPLE 3. Background, aim, and hypothesis are provided
  • “In countries where the maternal mortality ratio remains high, antenatal education to increase Birth Preparedness and Complication Readiness (BPCR) is considered one of the top priorities [1]. BPCR includes birth plans during the antenatal period, such as the birthplace, birth attendant, transportation, health facility for complications, expenses, and birth materials, as well as family coordination to achieve such birth plans. In Tanzania, although increasing, only about half of all pregnant women attend an antenatal clinic more than four times [4]. Moreover, the information provided during antenatal care (ANC) is insufficient. In the resource-poor settings, antenatal group education is a potential approach because of the limited time for individual counseling at antenatal clinics.” 30
  • “This study aimed to evaluate an antenatal group education program among pregnant women and their families with respect to birth-preparedness and maternal and infant outcomes in rural villages of Tanzania.” 30
  • “ The study hypothesis was if Tanzanian pregnant women and their families received a family-oriented antenatal group education, they would (1) have a higher level of BPCR, (2) attend antenatal clinic four or more times, (3) give birth in a health facility, (4) have less complications of women at birth, and (5) have less complications and deaths of infants than those who did not receive the education .” 30

Research questions and hypotheses are crucial components to any type of research, whether quantitative or qualitative. These questions should be developed at the very beginning of the study. Excellent research questions lead to superior hypotheses, which, like a compass, set the direction of research, and can often determine the successful conduct of the study. Many research studies have floundered because the development of research questions and subsequent hypotheses was not given the thought and meticulous attention needed. The development of research questions and hypotheses is an iterative process based on extensive knowledge of the literature and insightful grasp of the knowledge gap. Focused, concise, and specific research questions provide a strong foundation for constructing hypotheses which serve as formal predictions about the research outcomes. Research questions and hypotheses are crucial elements of research that should not be overlooked. They should be carefully thought of and constructed when planning research. This avoids unethical studies and poor outcomes by defining well-founded objectives that determine the design, course, and outcome of the study.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Methodology: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ.
  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Types of Variables in Psychology Research

Examples of Independent and Dependent Variables

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

what is a major study variables in research

 James Lacy, MLS, is a fact-checker and researcher.

what is a major study variables in research

Dependent and Independent Variables

  • Intervening Variables
  • Extraneous Variables
  • Controlled Variables
  • Confounding Variables
  • Operationalizing Variables

Frequently Asked Questions

Variables in psychology are things that can be changed or altered, such as a characteristic or value. Variables are generally used in psychology experiments to determine if changes to one thing result in changes to another.

Variables in psychology play a critical role in the research process. By systematically changing some variables in an experiment and measuring what happens as a result, researchers are able to learn more about cause-and-effect relationships.

The two main types of variables in psychology are the independent variable and the dependent variable. Both variables are important in the process of collecting data about psychological phenomena.

This article discusses different types of variables that are used in psychology research. It also covers how to operationalize these variables when conducting experiments.

Students often report problems with identifying the independent and dependent variables in an experiment. While this task can become more difficult as the complexity of an experiment increases, in a psychology experiment:

  • The independent variable is the variable that is manipulated by the experimenter. An example of an independent variable in psychology: In an experiment on the impact of sleep deprivation on test performance, sleep deprivation would be the independent variable. The experimenters would have some of the study participants be sleep-deprived while others would be fully rested.
  • The dependent variable is the variable that is measured by the experimenter. In the previous example, the scores on the test performance measure would be the dependent variable.

So how do you differentiate between the independent and dependent variables? Start by asking yourself what the experimenter is manipulating. The things that change, either naturally or through direct manipulation from the experimenter, are generally the independent variables. What is being measured? The dependent variable is the one that the experimenter is measuring.

Intervening Variables in Psychology

Intervening variables, also sometimes called intermediate or mediator variables, are factors that play a role in the relationship between two other variables. In the previous example, sleep problems in university students are often influenced by factors such as stress. As a result, stress might be an intervening variable that plays a role in how much sleep people get, which may then influence how well they perform on exams.

Extraneous Variables in Psychology

Independent and dependent variables are not the only variables present in many experiments. In some cases, extraneous variables may also play a role. This type of variable is one that may have an impact on the relationship between the independent and dependent variables.

For example, in our previous example of an experiment on the effects of sleep deprivation on test performance, other factors such as age, gender, and academic background may have an impact on the results. In such cases, the experimenter will note the values of these extraneous variables so any impact can be controlled for.

There are two basic types of extraneous variables:

  • Participant variables : These extraneous variables are related to the individual characteristics of each study participant that may impact how they respond. These factors can include background differences, mood, anxiety, intelligence, awareness, and other characteristics that are unique to each person.
  • Situational variables : These extraneous variables are related to things in the environment that may impact how each participant responds. For example, if a participant is taking a test in a chilly room, the temperature would be considered an extraneous variable. Some participants may not be affected by the cold, but others might be distracted or annoyed by the temperature of the room.

Other extraneous variables include the following:

  • Demand characteristics : Clues in the environment that suggest how a participant should behave
  • Experimenter effects : When a researcher unintentionally suggests clues for how a participant should behave

Controlled Variables in Psychology

In many cases, extraneous variables are controlled for by the experimenter. A controlled variable is one that is held constant throughout an experiment.

In the case of participant variables, the experiment might select participants that are the same in background and temperament to ensure that these factors don't interfere with the results. Holding these variables constant is important for an experiment because it allows researchers to be sure that all other variables remain the same across all conditions.  

Using controlled variables means that when changes occur, the researchers can be sure that these changes are due to the manipulation of the independent variable and not caused by changes in other variables.

It is important to also note that a controlled variable is not the same thing as a control group . The control group in a study is the group of participants who do not receive the treatment or change in the independent variable.

All other variables between the control group and experimental group are held constant (i.e., they are controlled). The dependent variable being measured is then compared between the control group and experimental group to see what changes occurred because of the treatment.

Confounding Variables in Psychology

If a variable cannot be controlled for, it becomes what is known as a confounding variabl e. This type of variable can have an impact on the dependent variable, which can make it difficult to determine if the results are due to the influence of the independent variable, the confounding variable, or an interaction of the two.

Operationalizing Variables in Psychology

An operational definition describes how the variables are measured and defined in the study. Before conducting a psychology experiment , it is essential to create firm operational definitions for both the independent variable and dependent variables.

For example, in our imaginary experiment on the effects of sleep deprivation on test performance, we would need to create very specific operational definitions for our two variables. If our hypothesis is "Students who are sleep deprived will score significantly lower on a test," then we would have a few different concepts to define:

  • Students : First, what do we mean by "students?" In our example, let’s define students as participants enrolled in an introductory university-level psychology course.
  • Sleep deprivation : Next, we need to operationally define the "sleep deprivation" variable. In our example, let’s say that sleep deprivation refers to those participants who have had less than five hours of sleep the night before the test.
  • Test variable : Finally, we need to create an operational definition for the test variable. For this example, the test variable will be defined as a student’s score on a chapter exam in the introductory psychology course.

Once all the variables are operationalized, we're ready to conduct the experiment.

Variables play an important part in psychology research. Manipulating an independent variable and measuring the dependent variable allows researchers to determine if there is a cause-and-effect relationship between them.

A Word From Verywell

Understanding the different types of variables used in psychology research is important if you want to conduct your own psychology experiments. It is also helpful for people who want to better understand what the results of psychology research really mean and become more informed consumers of psychology information .

Independent and dependent variables are used in experimental research. Unlike some other types of research (such as correlational studies ), experiments allow researchers to evaluate cause-and-effect relationships between two variables.

Researchers can use statistical analyses to determine the strength of a relationship between two variables in an experiment. Two of the most common ways to do this are to calculate a p-value or a correlation. The p-value indicates if the results are statistically significant while the correlation can indicate the strength of the relationship.

In an experiment on how sugar affects short-term memory, sugar intake would be the independent variable and scores on a short-term memory task would be the independent variable.

In an experiment looking at how caffeine intake affects test anxiety, the amount of caffeine consumed before a test would be the independent variable and scores on a test anxiety assessment would be the dependent variable.

Just as with other types of research, the independent variable in a cognitive psychology study would be the variable that the researchers manipulate. The specific independent variable would vary depending on the specific study, but it might be focused on some aspect of thinking, memory, attention, language, or decision-making.

American Psychological Association. Operational definition . APA Dictionary of Psychology.

American Psychological Association. Mediator . APA Dictionary of Psychology.

Altun I, Cınar N, Dede C. The contributing factors to poor sleep experiences in according to the university students: A cross-sectional study .  J Res Med Sci . 2012;17(6):557-561. PMID:23626634

Skelly AC, Dettori JR, Brodt ED. Assessing bias: The importance of considering confounding .  Evid Based Spine Care J . 2012;3(1):9-12. doi:10.1055/s-0031-1298595

  • Evans, AN & Rooney, BJ. Methods in Psychological Research. Thousand Oaks, CA: SAGE Publications; 2014.
  • Kantowitz, BH, Roediger, HL, & Elmes, DG. Experimental Psychology. Stamfort, CT: Cengage Learning; 2015.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Grad Coach

Research Constructs 101

Constructs, Validity & Reliability – Explained Simply

By: Derek Jansen (MBA) | Expert Reviewed By: Eunice Rautenbach (DTech) | March 2023

Navigating the world of academic research can be overwhelming, especially if you’re new to the field. One of the many pieces of terminology that often trips students up is that of the “ research construct ”. In this post, we’ll explain research constructs, construct validity and reliability in simple terms along with clear examples .

Overview: Research Constructs 101

What is a research construct, examples of research constructs.

  • Constructs vs variables

Construct validity and reliability

  • Key takeaways

Simply put, a research construct is an abstraction that researchers use to represent a phenomenon that’s not directly measurable – for example, intelligence, motivation or agreeableness. Since constructs are not directly measurable, they have to be inferred from other measurable variables , which are gathered through observation. For example, the construct of intelligence can be inferred based on a combination of measurable indicators such as problem-solving skills and language proficiency.

As a researcher, it’s important for you to define your constructs very clearly and to ensure that they can be feasibly operationalised . In other words, you need need to develop ways to measure these abstract concepts with relevant indicators or proxies that accurately reflect the underlying phenomenon you’re studying. In technical terms, this is called construct validity – we’ll unpack this in more detail a little later.

Free Webinar: Research Methodology 101

The best way to get a feel for research constructs is to look at some examples . Some common examples of constructs that you might encounter include:

  • Self-esteem : a psychological construct measuring an individual’s overall sense of self-worth and confidence.
  • Job satisfaction : a social construct reflecting the degree to which employees feel content with their work environment and overall experience in their workplace.
  • Personality traits : extraversion, agreeableness, conscientiousness, neuroticism, and openness are commonly studied constructs used to explain individual differences in behaviour, cognition, and emotion.
  • Quality of life : a complex multi-dimensional construct encompassing various aspects of an individual’s well-being such as physical health, emotional stability, social relationships, and economic status.
  • Stress levels : an often-used psychological construct assessing the mental or emotional strain experienced by individuals in response to various life events or situations.
  • Social support : A construct reflecting the perception of having assistance available from family members, friends, colleagues or other networks.

As you can see, all of the above examples reflect phenomena that cannot be directly measured . This is the defining characteristic of a research construct and is what distinguishes a construct from a variable (we’ll look at that next).

Need a helping hand?

what is a major study variables in research

Research construct vs variable

In research, the terms “construct” and “variable” are often used interchangeably, but they’re not the same thing .

A variable refers to a phenomenon that is directly measurable and can take on different values or levels . Examples of variables include age, height, weight, and blood pressure. Notably, these are all directly measurable (using basic equipment or just good old-fashioned logic).

In contrast, a construct refers to an abstract concept , that researchers seek to measure using one or more variables – since it is not directly measurable . Self-esteem, for example, is an abstract concept that cannot be directly measured. Instead, researchers must use self-reported indicators such as feelings of self-worth or pride in oneself to create operational definitions (variables) to measure it.

Another difference between research constructs and variables is their level of abstraction . Constructs tend to be more abstract than variables since they represent broad ideas and concepts , while variables are specific measures within those concepts. If you’d like to learn more about variables, be sure to read this article .

While the terms “construct” and “variable” are often used interchangeably, they're not the same thing - don't make this mistake!

When it comes to creating and/or using research constructs, there are two important concepts you need to understand – construct validity and reliability .

Construct validity refers to the extent to which a research construct accurately measures what it is intended to measure . In other words, are you actually measuring the thing that you want to measure, as opposed to some other thing that just happens to correlate ? For example, if you wanted to measure intelligence using some sort of performance test, you’d need to ask questions that truly reflect the participant’s cognitive abilities and not just their memory recall.

Construct reliability , on the other hand, relates to how consistent the measurement of a construct is over time or across different situations. This focus on consistency serves to ensure that your results are not simply due to random error or inconsistency in data collection. To improve construct reliability, researchers use standardized procedures for collecting data, as well as measures such as test-retest reliability, which involves comparing results from multiple measurements taken at different times. You may have also heard of Cronbach’s alpha , which is a popular statistical test used to assess internal consistency, and in turn, construct reliability.

Both construct validity and reliability play crucial roles in ensuring accurate and meaningful research findings. If the constructs you use in your research are not valid and reliable, your data will be largely meaningless. So, be sure to pay close attention to these when designing your study.

Key Takeaways

We’ve covered a lot of ground in this post. Let’s do a quick recap of the key takeaways:

  • A research construct is an abstraction that researchers use to represent a phenomenon that’s not directly observable .
  • Examples of research constructs include self-esteem, motivation, and job satisfaction.
  • A research construct differs from a research variable in that it is not directly measurable .
  • When working with constructs, you must pay close attention to both construct validity and reliability .

Keep these point front of mind while undertaking your research to ensure your data is sound and meaningful. If you need help with your research, consider our 1:1 coaching service , where we hold your hand through the research journey, step by step . 

what is a major study variables in research

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

What is a research question?

Thanks for simplifying the definition of construct for me

Alhassan hussaini

Bravo the explanation is clear and simple.Thank you sir.but I will like you to guide me through my research project.

Mawusr Drah

Great content but would like you to help me with my research work please.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

The Importance of Understanding Confounding Variables

Understand and address confounding variables to ensure accurate and reliable research. Gain clear insights and conduct stronger studies.

' src=

Confounding variables are factors that can distort the interpretation of research findings by influencing both the independent and dependent variables in a study. These extraneous variables, if not properly identified and controlled, can lead to inaccurate or misleading conclusions.

Understanding and addressing confounding variables is crucial in research studies as they have the potential to introduce bias, compromise the internal validity of the study, and confound the relationship between variables of interest. Researchers must actively recognize, measure, and control for confounding variables to ensure the accuracy and reliability of their study results, ultimately enhancing the robustness and validity of scientific investigations.

Definition Of Confounding Variables

Confounding variables, within the context of scientific research, refer to extraneous factors that possess the potential to distort or confound the observed association between an independent variable and a dependent variable. These variables, if not adequately controlled or adjusted for, can introduce a form of systematic error, complicating the accurate interpretation of study outcomes. The presence of confounding variables poses a threat to the internal validity of research findings, as it hinders the researcher’s ability to establish a causal relationship between the variables of interest.

Basic Explanation

Confounding variables are subtle influences in scientific studies that have the potential to bias results. These deceptive elements, if overlooked by researchers, may create a misleading impression that one factor causes another, even when this may not be the case. Essentially, confounding variables are intricate aspects that, when ignored, can obscure the true cause-and-effect relationship and give a simplified but inaccurate understanding of the situation.

Detailed Explanation

Confounding variables hold an immense impact on the outcomes of scientific studies by introducing an additional layer of complexity to the relationship between the independent and dependent variables. Their influence stems from their tendency to hide or distort the true cause-and-effect dynamics being investigated. When confounding variables are not properly addressed, they can lead to incorrect conclusions, making it difficult to determine whether observed effects are truly attributable to the variable of interest or are confounded by these external factors.

Also read: Connecting The Dots: The Power Of Cause-And-Effect Essay

Examples Of Confounding Variables

  • Third-Variable Problem: Imagine studying the link between ice cream sales and drowning incidents. On the surface, these two may appear related (both increase in the summer), but the confounding variable here is temperature. Hotter weather increases both ice cream sales and swimming activities, contributing to a misleading association between ice cream consumption and drownings.
  • Exercise and Weight Loss: Suppose a study is designed to explore the effect of a new diet on weight loss. However, if exercise habits are not taken into account, people who naturally move more may lose more weight, confusing the true effect of the diet.
  • Education and Income: When investigating the correlation between education level and income, employment status serves as a confounding variable. A person’s employment situation can influence both their educational attainment and income level, resulting in a distorted relationship between education and income that fails to account for the influence of employment.
  • Smoking and Lung Cancer: Investigating the link between smoking and lung cancer requires considering confounding variables such as genetics or occupational exposures. Without examining these factors, attributing all cases of lung cancer to smoking may oversimplify the complex chain of causation.

Impact Of Confounding Variables In Research

The influence of confounding variables in research is profound, extending across multiple dimensions of the scientific process and critically shaping the validity and reliability of study outcomes. Recognizing the nuanced impact of these variables is pivotal, demanding meticulous consideration to fortify the foundations of scientific inquiry and ensure the fidelity of research contributions across diverse fields. Here are key aspects of their impact:

Negative Impacts

  • Misinterpretation of Results: Confounding variables pose a substantial risk of leading to misinterpretations of study outcomes. The presence of these hidden factors can create a misleading narrative, attributing effects to the main variable when, in reality, they are influenced by extraneous elements.
  • Biased Findings: The influence of confounding variables introduces bias into research findings. This bias can tilt the results in a particular direction, obscuring the true relationship between variables and compromising the objectivity of the study.
  • Compromised Validity: The validity of a study, particularly its internal validity, is compromised in the presence of confounding variables. This undermines the accuracy of causal inferences, making it challenging to establish a clear cause-and-effect relationship between the variables of interest.
  • Reduced Reliability: Confounding variables diminish the reliability of study outcomes. The unpredictable impact of these hidden factors introduces variability into the results, reducing the consistency and dependability of the study findings.
  • Difficulty in Replication: Replicating research becomes challenging when confounding variables are not adequately addressed. Other researchers attempting to reproduce the study may encounter difficulties in achieving consistent results, hindering the reliability and robustness of scientific knowledge.
  • Threat to Generalizability: The generalizability of study findings is at risk due to confounding variables. The influence of these factors may vary across different groups or populations, limiting the applicability of research results to broader contexts.
  • Undermined External Validity: The external validity of a study, which pertains to its applicability to real-world scenarios, is undermined by confounding variables. This jeopardizes the relevance of research findings in practical settings.
  • Impaired Decision-Making: In situations where research findings inform decision-making, the impact of confounding variables can lead to suboptimal or misguided decisions. This is particularly relevant in fields such as public health or policy development.
  • Increased Risk of False Associations: Confounding variables elevate the risk of identifying false associations between variables. Researchers may inadvertently attribute effects to the main variable when, in fact, they are a result of the influence of these hidden elements.
  • Challenges in Establishing Cause: The presence of confounding variables introduces complexity in establishing causation. Distinguishing whether observed effects are genuinely caused by the main variable or influenced by confounding factors becomes a challenging task.

Positive Impacts

  • Enhanced Precision: By addressing confounding variables, researchers can achieve a more precise and accurate understanding of the relationship between variables of interest. This precision contributes to clearer and more reliable research outcomes.
  • Increased Validity: Addressing confounding variables enhances the internal validity of a study. This ensures that the observed effects are more likely attributable to the main variable, bolstering the overall validity of causal inferences.
  • Improved Reliability: Proper handling of confounding variables leads to more reliable study outcomes. Researchers can reduce variability in results, promoting consistency and dependability in the findings.
  • Facilitates Replication: The meticulous consideration of confounding variables facilitates the replication of research. Other scholars attempting to reproduce the study are more likely to achieve consistent results, contributing to the robustness of scientific knowledge.
  • Generalizable Findings: Addressing confounding variables enhances the generalizability of study findings. The increased applicability of results across diverse populations or settings strengthens the relevance of research contributions.
  • Informed Decision-Making: Research that effectively addresses confounding variables provides a more accurate basis for decision-making. In fields where research informs policies or interventions, this ensures that decisions are well-informed and aligned with the true impact of the main variable.
  • Prevents False Associations: A conscientious approach to confounding variables reduces the risk of identifying false associations between variables. Researchers are better equipped to discern genuine relationships, avoiding the attribution of effects to the main variable when influenced by extraneous factors.
  • Enhances Understanding: Properly managing confounding variables contributes to a clearer understanding of causation. Researchers can more confidently establish whether observed effects are genuinely caused by the main variable, strengthening the study’s explanatory power.
  • Encourages Further Research: Addressing confounding variables provides a solid foundation for future research endeavors. Researchers can build upon more reliable findings, exploring additional facets of the relationship between variables and expanding the depth of scientific knowledge.
  • Strengthens Scientific Inquiry: The positive impact of addressing confounding variables extends to the broader realm of scientific inquiry. This meticulous approach strengthens the integrity of research methodologies and contributes to the advancement of knowledge in various disciplines.

How To Control Confounding Variables

Effectively managing and controlling confounding variables is of paramount importance to safeguard the accuracy and reliability of research findings. Employing meticulous strategies is essential in navigating the complex landscape of potential influences that could distort the true relationship between variables of interest. Here, we delve into comprehensive strategies aimed at not only recognizing but also mitigating the impact of confounding variables to fortify the robustness and validity of research outcomes.

Research Design Methods

Research design methods encompass a range of strategic approaches to structure studies, ensuring precision and reliability in outcomes. Here are three pivotal methods employed in research design:

  • Randomization: Randomization is a powerful research design method involving the random assignment of participants to different groups. This method helps distribute potential confounding variables evenly across groups, enhancing the internal validity of the study. Randomized Controlled Trials (RCTs) exemplify the application of randomization, particularly in clinical trials and experiments, fostering unbiased comparisons between treatment and control groups.
  • Matching: Matching is a method where participants or samples are paired based on specific characteristics to create comparable groups. This approach aims to control for confounding variables by ensuring that relevant traits are balanced across the groups. Whether through individual matching or group matching, this method is particularly useful in observational studies where random assignment is not feasible.
  • Stratification: Stratification involves dividing participants into subgroups based on identified confounding variables. By analyzing and reporting results separately within these subgroups, researchers can control for the influence of specific variables. This method enhances the precision of findings, providing a nuanced understanding of how certain factors may impact study outcomes.

Statistical Adjustment Methods

Statistical adjustment methods play a pivotal role in refining research analyses, allowing researchers to control for confounding variables and uncover more accurate associations between variables. Here are two significant statistical adjustment methods:

  • Regression Analysis: Regression analysis is a widely-used statistical method that examines the relationship between one or more independent variables and a dependent variable. In the context of controlling confounding variables, multiple regression analysis becomes particularly valuable. This method allows researchers to assess the impact of the main variable of interest while statistically adjusting for the influence of potential confounding factors. By including these factors as covariates, researchers can isolate the unique contribution of the primary variable.
  • Multivariate Analysis: Multivariate analysis encompasses a suite of statistical techniques that simultaneously analyze multiple variables. Techniques such as multivariate analysis of variance (MANOVA), multivariate regression analysis, or structural equation modeling (SEM) enable researchers to account for the interplay of various variables and control for potential confounding factors. These methods provide a more comprehensive understanding of the relationships within complex datasets, offering a nuanced perspective on the factors influencing study outcomes.

Case Studies Of Confounding Variables

Case studies of confounding variables provide real-world examples of how these hidden factors can impact research outcomes. Here are a few illustrative scenarios:

Drug Efficacy Study

In a clinical trial evaluating the efficacy of a new drug, researchers notice variations in outcomes among different age groups. Initially attributing the differences to the drug’s effectiveness, they later discover that age-related metabolic differences were a confounding variable. After statistically adjusting for age, the true impact of the drug on patient outcomes becomes clearer.

Workplace Wellness Program

An organization implements a workplace wellness program to improve employee health. After analyzing the results, researchers identify a confounding variable – employees who were already health-conscious actively participated in the program. By controlling for pre-existing health behaviors, researchers gain a clearer understanding of the program’s actual impact.

Social Media And Mental Health Study

A study explores the relationship between social media use and mental health. Initially, researchers find a negative correlation. Upon closer inspection, they identify self-esteem as a confounding variable. After accounting for self-esteem levels, the relationship between social media use and mental health is nuanced, revealing that the impact varies based on individual self-esteem.

In the field of research, a thorough understanding of confounding variables is critical. These subtle influencers carry considerable power, capable of altering research results and causing biases. While they provide issues ranging from misinterpretation to compromised validity, addressing confounding variables has significant advantages. From improved precision to informed decision-making, a rigorous approach strengthens the integrity of scientific investigation. 

The offered case studies vividly demonstrate the variables’ real-world impact in a variety of disciplines. Navigating research difficulties necessitates identifying and appropriately controlling confounding variables, as well as guaranteeing the quality and usefulness of scientific findings. Researchers equipped with this expertise play an important role in maintaining research integrity and increasing knowledge.

Unleash The Power Of Infographics With Mind the Graph

Unleash the power of infographics with Mind the Graph , revolutionizing the way you communicate and connect with your audience. Elevate your content, amplify engagement, and leave an indelible mark with visually stunning infographics. With Mind the Graph, your content isn’t just seen; it’s experienced.

illustrations-banner

Subscribe to our newsletter

Exclusive high quality content about effective visual communication in science.

Unlock Your Creativity

Create infographics, presentations and other scientifically-accurate designs without hassle — absolutely free for 7 days!

About Jessica Abbadia

Jessica Abbadia is a lawyer that has been working in Digital Marketing since 2020, improving organic performance for apps and websites in various regions through ASO and SEO. Currently developing scientific and intellectual knowledge for the community's benefit. Jessica is an animal rights activist who enjoys reading and drinking strong coffee.

Content tags

en_US

Log in using your username and password

  • Search More Search for this keyword Advanced search
  • Latest content
  • Publish with us
  • About the journal
  • Meet the editors
  • Specialist reviews
  • BMJ Journals More You are viewing from: Google Indexer

You are here

  • Volume 3, Issue 1
  • Regular use of fish oil supplements and course of cardiovascular diseases: prospective cohort study
  • Article Text
  • Article info
  • Citation Tools
  • Rapid Responses
  • Article metrics

Download PDF

  • Ge Chen 1 ,
  • Zhengmin (Min) Qian 2 ,
  • Junguo Zhang 1 ,
  • Shiyu Zhang 1 ,
  • http://orcid.org/0000-0002-7003-6565 Zilong Zhang 1 ,
  • Michael G Vaughn 3 ,
  • Hannah E Aaron 2 ,
  • Chuangshi Wang 4 ,
  • Gregory YH Lip 5 , 6 and
  • http://orcid.org/0000-0002-3643-9408 Hualiang Lin 1
  • 1 Department of Epidemiology , Sun Yat-Sen University , Guangzhou , China
  • 2 Department of Epidemiology and Biostatistics, College for Public Health and Social Justice , Saint Louis University , Saint Louis , Missouri , USA
  • 3 School of Social Work, College for Public Health and Social Justice , Saint Louis University , Saint Louis , Missouri , USA
  • 4 Medical Research and Biometrics Centre , Fuwai Hospital, National Centre for Cardiovascular Diseases, Peking Union Medical College , Beijing , China
  • 5 Liverpool Centre for Cardiovascular Science , University of Liverpool and Liverpool Heart and Chest Hospital , Liverpool , UK
  • 6 Department of Clinical Medicine , Aalborg University , Aalborg , Denmark
  • Correspondence to Dr Hualiang Lin, Department of Epidemiology, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; linhualiang{at}mail.sysu.edu.cn

Objective To examine the effects of fish oil supplements on the clinical course of cardiovascular disease, from a healthy state to atrial fibrillation, major adverse cardiovascular events, and subsequently death.

Design Prospective cohort study.

Setting UK Biobank study, 1 January 2006 to 31 December 2010, with follow-up to 31 March 2021 (median follow-up 11.9 years).

Participants 415 737 participants, aged 40-69 years, enrolled in the UK Biobank study.

Main outcome measures Incident cases of atrial fibrillation, major adverse cardiovascular events, and death, identified by linkage to hospital inpatient records and death registries. Role of fish oil supplements in different progressive stages of cardiovascular diseases, from healthy status (primary stage), to atrial fibrillation (secondary stage), major adverse cardiovascular events (tertiary stage), and death (end stage).

Results Among 415 737 participants free of cardiovascular diseases, 18 367 patients with incident atrial fibrillation, 22 636 with major adverse cardiovascular events, and 22 140 deaths during follow-up were identified. Regular use of fish oil supplements had different roles in the transitions from healthy status to atrial fibrillation, to major adverse cardiovascular events, and then to death. For people without cardiovascular disease, hazard ratios were 1.13 (95% confidence interval 1.10 to 1.17) for the transition from healthy status to atrial fibrillation and 1.05 (1.00 to 1.11) from healthy status to stroke. For participants with a diagnosis of a known cardiovascular disease, regular use of fish oil supplements was beneficial for transitions from atrial fibrillation to major adverse cardiovascular events (hazard ratio 0.92, 0.87 to 0.98), atrial fibrillation to myocardial infarction (0.85, 0.76 to 0.96), and heart failure to death (0.91, 0.84 to 0.99).

Conclusions Regular use of fish oil supplements might be a risk factor for atrial fibrillation and stroke among the general population but could be beneficial for progression of cardiovascular disease from atrial fibrillation to major adverse cardiovascular events, and from atrial fibrillation to death. Further studies are needed to determine the precise mechanisms for the development and prognosis of cardiovascular disease events with regular use of fish oil supplements.

  • Health policy
  • Nutritional sciences
  • Public health

Data availability statement

Data are available upon reasonable request. UK Biobank is an open access resource. Bona fide researchers can apply to use the UK Biobank dataset by registering and applying at http://ukbiobank.ac.uk/register-apply/ .

This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See:  https://creativecommons.org/licenses/by/4.0/ .

https://doi.org/10.1136/bmjmed-2022-000451

Statistics from Altmetric.com

Request permissions.

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

WHAT IS ALREADY KNOWN ON THIS TOPIC

Findings of the effects of omega 3 fatty acids or fish oil on the risk of cardiovascular disease are controversial

Most previous studies focused on one health outcome and did not characterise specific cardiovascular disease outcomes (eg, atrial fibrillation, myocardial infarction, stroke, heart failure, and major adverse cardiovascular events)

Whether fish oil could differentially affect the dynamic course of cardiovascular diseases, from atrial fibrillation to major adverse cardiovascular events, to other specific cardiovascular disease outcomes, or even to death, is unclear

WHAT THIS STUDY ADDS

In people with no known cardiovascular disease, regular use of fish oil supplements was associated with an increased relative risk of atrial fibrillation and stroke

In people with known cardiovascular disease, the beneficial effects of fish oil supplements were seen on transitions from atrial fibrillation to major adverse cardiovascular events, atrial fibrillation to myocardial infarction, and heart failure to death

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE, OR POLICY

Regular use of fish oil supplements might have different roles in the progression of cardiovascular disease

Further studies are needed to determine the precise mechanisms for the development and prognosis of cardiovascular disease events with regular use of fish oil supplements

Introduction

Cardiovascular disease is the leading cause of death worldwide, accounting for about one sixth of overall mortality in the UK. 1 2 Fish oil, a rich source of omega 3 fatty acids, containing eicosapentaenoic acid and docosahexaenoic acid, has been recommended as a dietary measure to prevent cardiovascular disease. 3 The UK National Institute for Health and Care Excellence recommends that people with or at high risk of cardiovascular disease consume at least one portion of oily fish a week, and the use of fish oil supplements has become popular in the UK and other western countries in recent years. 4 5

Although some epidemiological and clinical studies have assessed the effect of omega 3 fatty acids or fish oil on cardiovascular disease and its risk factors, the findings are controversial. The Agency for Healthcare Research and Quality systematically reviewed 37 observational studies and 61 randomised controlled trials, and found evidence indicating the beneficial effects of higher consumption of fish oil supplements on ischaemic stroke, whereas no beneficial effect was found for atrial fibrillation, major adverse cardiovascular events, myocardial infarction, total stroke, or all cause death. 6 In contrast, the Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial (REDUCE-IT) reported a decreased risk of major adverse cardiovascular events with icosapent ethyl in patients with raised levels of triglycerides, regardless of the use of statins. 7 Most of these findings, however, tended to assess the role of fish oil at a certain stage of cardiovascular disease. For example, some studies restricted the study population to people with a specific cardiovascular disease or at a high risk of cardiovascular disease, 8 9 whereas others evaluated databases of generally healthy populations. 10 All of these factors might preclude direct comparison of the effects of omega 3 fatty acids on atrial fibrillation events or on further deterioration of cardiovascular disease. Few studies have fully characterised specific cardiovascular disease outcomes or accounted for differential effects based on the complex disease characteristics of participants. Hence, in this study, we hypothesised that fish oil supplements might have harmful, beneficial, or no effect on different cardiovascular disease events in patients with varying health conditions.

Most previous studies on the association between fish oil and cardiovascular diseases generally focused on one health outcome. Also, no study highlighted the dynamic progressive course of cardiovascular diseases, from healthy status (primary stage), to atrial fibrillation (secondary stage), major adverse cardiovascular events (tertiary stage), and death (end stage). Clarifying this complex pathway in relation to the detailed progression of cardiovascular diseases would provide substantial insights into the prevention or treatment of future disease at critical stages. Whether fish oil could differentially affect the dynamic course of cardiovascular disease (ie, from atrial fibrillation to major adverse cardiovascular events, to other specific cardiovascular disease outcomes, or even to death) is unclear.

To deal with this evidence gap, we conducted a longitudinal cohort study to estimate the associations between fish oil supplements and specific clinical cardiovascular disease outcomes, including atrial fibrillation, major adverse cardiovascular events, and all cause death in people with no known cardiovascular disease or at high risk of cardiovascular disease for the purpose of primary prevention. We also assessed the modifying effects of fish oil supplements on the disease process, from atrial fibrillation to other outcomes, in people with known cardiovascular disease for the purpose of secondary prevention.

The UK Biobank is a community based cohort study with more than half a million UK inhabitants aged 40-69 years at recruitment. 11–13 Participants were invited to participate in this study if they were registered with the NHS and lived within 35 km of one of 22 Biobank assessment centres. Between 1 March 2006 and 31 July 2010, a baseline survey was conducted, based on a touch screen questionnaire and face-to-face interviews, to collect detailed personal, socioeconomic, and lifestyle characteristics, and information on diseases. 11–13

We excluded patients who had a diagnosis of atrial fibrillation (n=8326), heart failure (n=2748), myocardial infarction (n=11 949), stroke (n=7943), or cancer (n=48 624) at baseline; who withdrew from the study during follow-up (n=1299); or who had incomplete or outlier data for the main information (n=11 748). Because we focused only on a specific sequence of progression of cardiovascular disease (ie, from healthy status to atrial fibrillation, to major adverse cardiovascular events, and then to death), we excluded 1983 participants with other transition patterns. The remaining 415 737 participants were included in this analysis ( figure 1 ).

  • Download figure
  • Open in new tab
  • Download powerpoint

Flowchart of selection of participants in study. The count of diagnosed diseases does not equate to the total number of individuals, because each person could have multiple diagnoses

Determining use of fish oil supplements

Information on regular use of fish oil supplements was collected from a self-reported touchscreen questionnaire during the baseline survey. 14 15 Each participant was asked whether they regularly used any fish oil supplement. Trained staff conducted a verbal interview with participants, asking if they were currently receiving treatments or taking any medicines, including omega 3 or fish oil supplements. Based on this information, we classified participants as regular users of fish oil supplements and non-users.

Follow-up and outcomes

Participants were followed up from the time of recruitment to death, loss to follow-up, or the end date of follow-up (31 March 2021), whichever came first. Incident cases of interest, including atrial fibrillation, heart failure, stroke, and myocardial infarction, were identified by linkage to death registries, primary care records, and hospital inpatient records. 11 Information on deaths was obtained from death registries of the NHS Information Centre, for participants in England and Wales, and from the NHS Central Register Scotland, for participants in Scotland. 11 Outcomes were defined by a three character ICD-10 (international classification of diseases, 10th revision) code. In this study, atrial fibrillation was defined by ICD-10 code I48, and major adverse cardiovascular events was determined by a combination of heart failure (I50, I11.0, I13.0, and I13.2), stroke (I60-I64), and myocardial infarction (I21, I22, I23, I24.1, and I25.2) codes.

We collected baseline data on age (<65 years and ≥65 years), sex (men and women), ethnic group (white and non-white), Townsend deprivation index (with a higher score indicating higher levels of deprivation), smoking status (never, previous, and current smokers), and alcohol consumption (never, previous, and current drinkers). Data for sex were taken from information in UK Biobank rather than from patient reported gender. Baseline dietary data were obtained from a dietary questionnaire completed by the patient or by an interviewer. The questionnaire was established for each nation (ie, England, Scotland, and Wales) to assess an individual's usual food intake (oily fish, non-oily fish, vegetables, fruit, and red meat). Diabetes mellitus was defined by ICD-10 codes E10-E14, self-reported physician's diagnosis, self-reported use of antidiabetic drugs, or haemoglobin A1c level ≥6.5% at baseline. Hypertension was defined by ICD-10 code I10 or I15, self-reported physician's diagnosis, self-reported use of antihypertensive drugs, or measured systolic and diastolic blood pressure ≥130/85 mm Hg at baseline. Information on other comorbidities (obesity (ICD-10 code E66), chronic obstructive pulmonary disease (J44), and chronic renal failure (N18)) was extracted from the first occurrence (UKB category ID 1712). Information on the use of drugs, including antihypertensive drugs, antidiabetic drug, and statins, was extracted from treatment and drug use records. Biochemistry markers were measured immediately at the central laboratory from serum samples collected at baseline. Binge drinking was defined as consumption of ≥6 standard drinks/day for women or ≥8 standard drinks/day for men. Detailed information on alcohol consumption and binge drinking in the UK Biobank was reported previously. 16

Statistical analysis

Characteristics of participants are summarised as number (percentages) for categorical variables and mean (standard deviation (SD)) for continuous variables. Comparisons between regular users of fish oil supplements and non-users were made with the χ 2 test or Student's t test.

We used a multi-state regression model to assess the role of regular use of fish oil supplements in the temporal disease progression from healthy status to atrial fibrillation, to major adverse cardiovascular events, and subsequently to death. The multi-state model is an extension of competing risks survival analysis. 17–19 The model allows simultaneous estimation of the role of risk factors in transitions from a healthy state to atrial fibrillation (transition A), healthy state to major adverse cardiovascular events (transition B), healthy state to death (transition C), atrial fibrillation to major adverse cardiovascular events (transition D), atrial fibrillation to death (transition E), and major adverse cardiovascular events to death (transition F) (transition pattern I, figure 2 ). The focus on these six transitions rather than on all possible health state transitions was preplanned and evidence based. If participants entered different states on the same date, we used the date of the theoretically previous state as the entry date of the latter state minus 0.5 days.

Numbers of participants in transition pattern I, from baseline to atrial fibrillation, major adverse cardiovascular events, and death

We further examined the effects of regular use of fish oil supplements on other pathways. For example, we divided major adverse cardiovascular events into three individual diseases (heart failure, stroke, and myocardial infarction), resulting in three independent pathways (transition patterns II, III, and IV, online supplemental figures S1–S3 ). All models were adjusted for age, sex, ethnic group, Townsend deprivation index, consumption of oily fish, consumption of non-oily fish, smoking status, alcohol consumption, obesity, hypertension, diabetes mellitus, chronic obstructive pulmonary disease, chronic renal failure, and use of statins, antidiabetic drugs, and antihypertensive drugs.

Supplemental material

We conducted several sensitivity analyses for the multi-state analyses of transition pattern A: additionally adjusting for setting (urban and rural), body mass index (underweight, normal, overweight, and obese), and physical activity (low, moderate, and high) in the model; adjusting for binge drinking rather than alcohol consumption; additionally adjusting for other variables of dietary intake (consumption of vegetables, fruit, and red meat); calculating participants' entry date into the previous state with different time intervals (0.5 years, one year, and two years); excluding participants who entered different states on the same date; excluding events occurring in the first two years of follow-up; restricting the follow-up date to 31 March 2020 to evaluate the influence of the covid-19 pandemic; and the use of the inverse probability weighted method to deal with biases between the regular users and non-users of fish oil supplements. Also, we conducted grouped analyses for sex, age group, ethnic group, smoking status, consumption of oily fish, consumption of non-oily fish, hypertension, and drug use, to examine effect modification. The interactions were tested with the likelihood ratio test. All analyses were carried out with R software (version 4.0.3), and the multi-model analysis was performed with the mstate package. A two tailed P value <0.05 was considered significant.

Patient and public involvement

Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research. Participants were involved in developing the ethics and governance framework for UK Biobank and have been engaged in the progress of UK Biobank through follow-up questionnaires and additional assessment visits. UK Biobank keeps participants informed of all research output through the study website ( https://www.ukbiobank.ac.uk/explore-your-participation ), participant events, and newsletters.

A total of 415 737 participants (mean age 55.9 (SD 8.1) years; 55% women), aged 40-69 years, were analysed, and 31.4% (n=1 30 365) of participants reported regular use of fish oil supplements at baseline ( figure 1 ). Table 1 shows the characteristics of regular users (n=130 365) and non-users (n=285 372) of fish oil supplements. In the group of regular users of fish oil supplements, we found higher proportions of elderly people (22.6% v 13.9%), white people (95.1% v 94.2%), and women (57.6% v 53.9%), and higher consumption of alcohol (93.1% v 92.0%), oily fish (22.1% v 15.4%), and non-oily fish (18.0% v 15.4%) than non-users. The Townsend deprivation index (mean −1.5 (SD 3.0) v −1.3 (3.0)) and the proportion of current smokers (8.1% v 11.4%) were lower in regular users of fish oil supplements. Online supplemental table S1 provides more details on patient characteristics and online supplemental table S2 compares the basic characteristics of included and excluded people.

  • View inline

Baseline characteristics of study participants grouped by use of fish oil supplements

Over a median follow-up time of of 11.9 years, 18 367 participants had atrial fibrillation (transition A) and 17 826 participants had major adverse cardiovascular events (transition B); 14 902 participants died without having atrial fibrillation or major adverse cardiovascular events (transition C). Among patients with incident atrial fibrillation, 4810 developed major adverse cardiovascular events (transition D) and 1653 died (transition E). Among patients with incident major adverse cardiovascular events, 5585 died during follow-up (transition F, figure 2 ). In separate analyses for individual diseases (transition patterns II, III, and IV, online supplemental figures S1–S3 ), in patients with atrial fibrillation, 3085 developed heart failure, 1180 had a stroke, and 1415 had a myocardial infarction. During follow-up, 2436, 2088, and 2098 deaths occurred in patients with heart failure, stroke, and myocardial infarction, respectively.

Multi-state regression results

Table 2 shows the different roles of regular use of fish oil supplements in transitions from healthy status to atrial fibrillation, to major adverse cardiovascular events, and then to death. For individuals in the primary stage (healthy status), we found that the use of fish oil supplements had a harmful effect on the transition from health to atrial fibrillation, with an adjusted hazard ratio of 1.13 (95% CI 1.10 to 1.17, transition A). The hazard ratio for transition B (from health to major adverse cardiovascular events) was 1.00 (95% CI 0.97 to 1.04) and for transition C (from health to death) was 0.98 (0.95 to 1.02).

Hazard ratios (95% confidence intervals) for each transition, for different transition patterns for progressive cardiovascular disease by regular use of fish oil supplements

For individuals in the secondary stage (atrial fibrillation) at the beginning of the study, regular use of fish oil supplements decreased the risk of major adverse cardiovascular events (transition D, hazard ratio 0.92, 95% CI 0.87 to 0.98), and had a borderline protective effect on the transition from atrial fibrillation to death (transition E, 0.91, 0.82 to 1.01). For transition F, from major adverse cardiovascular events to death, after adjusting for covariates, the hazard ratio was 0.99 (0.94 to 1.06, transition pattern I, table 2 ).

We divided major adverse cardiovascular events into three individual diseases (ie, heart failure, stroke, and myocardial infarction) and found that regular use of fish oil supplements was marginally associated with an increased risk of stroke in people with a healthy cardiovascular state (hazard ratio 1.05, 95% CI 1.00 to 1.11), whereas a protective effect was found in transitions from healthy cardiovascular states to heart failure (0.92, 0.86 to 0.98). For patients with atrial fibrillation, we found that the beneficial effects of regular use of fish oil supplements were for transitions from atrial fibrillation to myocardial infarction (0.85, 0.76 to 0.96), and from atrial fibrillation to death (0.88, 0.81 to 0.95) for transition pattern IV. For patients with heart failure, we found a protective effect of regular use of fish oil supplements on the risk of mortality (0.91, 0.84 to 0.99) (transition patterns II, III, and IV, table 2 ).

Stratified and sensitivity analyses

We found that age, sex, smoking, consumption of non-oily fish, prevalent hypertension, and use of statins and antihypertensive drugs modified the associations between regular use of fish oil supplements and the transition from healthy states to atrial fibrillation ( online supplemental figure S4 ). We found that the association between regular use of fish oil supplements and risk of transition from healthy states to major adverse cardiovascular events was greater in women (hazard ratio 1.06, 95% CI 1.00 to 1.11, P value for interaction=0.005) and non-smoking participants (1.06, 1.06 to 1.11, P value for interaction=0.001) ( online supplemental figure S4 ). The protective effect of regular use of fish oil supplements on the transition from healthy states to death was greater in men (hazard ratio 0.93, 95% CI 0.89 to 0.98, P value for interaction=0.003) and older participants (0.91, 0.86 to o 0.96, P value for interaction=0.002) ( online supplemental figures S5 and S6 ). The results were not substantially changed in the sensitivity analyses ( online supplemental table S3 ).

Principal findings

Our study characterised the regular use of fish oil supplements on the progressive course of cardiovascular disease, from a healthy state (primary stage), to atrial fibrillation (secondary stage), major adverse cardiovascular events (tertiary stage), and death (end stage). In this prospective analysis of more than 400 000 UK adults, we found that regular use of fish oil supplements could have a differential role in the progression of cardiovascular disease. For people with a healthy cardiovascular profile, regular use of fish oil supplements, a choice of primary prevention, was associated with an increased risk of atrial fibrillation. For participants with a diagnosis of atrial fibrillation, however, regular use of fish oil supplements, as secondary prevention, had a protective effect or no effect on transitions from atrial fibrillation to major adverse cardiovascular events, atrial fibrillation to death, and major adverse cardiovascular events to death. When we divided major adverse cardiovascular events into three individual diseases (ie, heart failure, stroke, and myocardial infarction), we found associations that could suggest a mildly harmful effect between regular use of fish oil supplements and transitions from a healthy cardiovascular state to stroke, whereas potential beneficial associations were found between regular use of fish oil supplements and transitions from atrial fibrillation to myocardial infarction, atrial fibrillation to death, and heart failure to death.

Comparison with other studies

Primary prevention.

The cardiovascular benefits of regular use of fish oil supplements have been examined in numerous studies but the results are controversial. Extending previous reports, our study estimated the associations between regular use of fish oil supplements and specific clinical cardiovascular disease outcomes in people with no known cardiovascular disease. Our findings are in agreement with the results of several previous randomised controlled trials and meta-analyses. The Long-Term Outcomes Study to Assess Statin Residual Risk with Epanova in High Cardiovascular Risk Patients with Hypertriglyceridaemia (STRENGTH) reported that consumption of 4 g/day of marine omega 3 fatty acids was associated with a 69% higher risk of new onset atrial fibrillation in people at high risk of cardiovascular disease. 20 A meta-analysis of seven randomised controlled trials showed that users of marine omega 3 fatty acids supplements had a higher risk of atrial fibrillation events, with a hazard ratio of 1.25 (95% CI 1.07 to 1.46, P=0.013). 21 The Vitamin D and Omega-3 Trial (VITAL Rhythm study), a large trial of omega 3 fatty acids for the primary prevention of cardiovascular disease in adults aged ≥50 years, however, found no effects on incident atrial fibrillation, major adverse cardiovascular events, or cardiovascular disease mortality among those treated with 840 mg/day of marine omega 3 fatty acids compared with placebo. 10 22

One possible explanation for the inconsistent results in these studies is that adverse effects might be related to dose and composition. Higher doses of omega 3 fatty acids used in previous studies might have had an important role in causing an adverse effect on atrial fibrillation. 21 One study found that high concentrations of fish oil altered cell membrane properties and inhibited Na-K-ATPase pump activity, whereas a low concentration of fish oil minimised peroxidation potential and optimised activity. 23 In another study, individuals with atrial fibrillation or flutter had higher percentages of total polyunsaturated fatty acids, and n-3 and n-6 polyunsaturated fatty acids, on red blood cell membranes than healthy controls. 24

In terms of composition of omega 3 fatty acids, a recent meta-analysis showed that eicosapentaenoic acid alone can be more effective at reducing the risk of cardiovascular disease than the combined effect of eicosapentaenoic acid and docosahexaenoic acid. 25 Similar outcomes were reported in the INSPIRE study, which showed that higher levels of docosahexaenoic acid reduced the cardiovascular benefits of eicosapentaenoic acid when given as a combination. 26 Another possible explanation is that age, sex, ethnic group, smoking status, dietary patterns, and use of statins and antidiabetic drugs by participants might modify the effects of regular use of fish oil supplements on cardiovascular disease events. Despite these differences in risk estimates, our findings do not support the use of fish oil or omega 3 fatty acid supplements for the primary prevention of incident atrial fibrillation or other specific clinical cardiovascular disease events in generally healthy individuals. Caution might be warranted when fish oil supplements are used for primary prevention because of the uncertain cardiovascular benefits.

Secondary prevention

Our large scale cohort study assessed the role of regular use of fish oil supplements on the disease process, from atrial fibrillation to more serious cardiovascular disease stages, to death, in people with known cardiovascular disease. Contrary to the observations for primary prevention, we found associations that could suggest beneficial effects between regular use of fish oil supplements and most cardiovascular disease transitions. No associations were found between regular use of fish oil supplements and transitions from atrial fibrillation to death, or from major adverse cardiovascular events to death.

Consistent with our hypothesis, the Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico (GISSI) Prevenzione study reported an association between administration of low dose prescriptions of n-3 polyunsaturated fatty acids and reduced cardiovascular events in patients with recent myocardial infarction. 27 A meta-analysis of 16 randomised controlled trials also reported a tendency towards a greater beneficial effect for secondary prevention in patients with cardiovascular disease. 28 Why patients with previous atrial fibrillation benefit is unclear. These findings indicate that triglyceride independent effects of omega 3 fatty acids might in part be responsible for the benefits in cardiovascular disease seen in previous trials. 29–31 No proven biological mechanism for this explanation exists, however, and the dose and formulation of omega 3 fatty acids used in clinical practice are not known.

For the disease process, from cardiovascular disease to death, our findings are consistent with the results of secondary prevention trials of omega 3 fatty acids, which have mostly shown a weak or neutral preventive effect in all cause mortality with oil fish supplements. The GISSI heart failure trial (GISSI-HF), conducted in 6975 patients with chronic heart failure, reported that supplemental omega 3 fatty acids reduced the risk of all cause mortality by 9% (hazard ratio 0.91, 95% CI 0.833 to 0.998, P=0.041). 32 Zelniker et al showed that omega 3 fatty acids were inversely associated with a lower incidence of sudden cardiac death in patients with non-ST segment elevation acute coronary syndrome. 33 A meta-analysis found that use of omega 3 supplements of ≤1 capsule/day was not associated with all cause mortality, but among participants with a risk of cardiovascular disease, taking a higher dose was associated with a reduction in cardiac death and sudden death. 28 Individuals who might benefit the most from fish oil or omega 3 fatty acid supplements are possibly more vulnerable individuals, such as those with previous cardiovascular diseases and those who can no longer live in the community. How fish oil supplements stop further deterioration of cardiovascular disease is unclear, but the theory that supplemental omega 3 fatty acids might protect the coronary artery is biologically plausible, suggesting that omega 3 fatty acids have anti-inflammatory and anti-hypertriglyceridaemia effects, contributing to a reduction in thrombosis and improvement in endothelial function. 34–41 Nevertheless, the effects of omega 3 fatty acids vary according to an individual's previous use of statins, which might partly explain the different effects of fish oil supplements in people with and without cardiovascular disease.

Many studies of omega 3 fatty acids, including large scale clinical trials and meta-analyses, have not produced entirely consistent results. 21 25 42 Our study mainly explored the varied potential effects of regular use of fish oil supplements on progression of cardiovascular disease, offering an initial overview of this ongoing discussion. Our findings suggest caution in the use of fish oil supplements for primary prevention because of the uncertain cardiovascular benefits and adverse effects. Further studies are needed to determine whether potential confounders modify the effects of oil fish supplements and the precise mechanisms related to the development and prognosis of cardiovascular disease events.

Strengths and limitations of this study

The strengths of our study were the large sample size, long follow-up period, which allowed us to analyse clinically diagnosed incident diseases, and complete data on health outcomes. Another strength was our analytical strategy. The multi-state model gives less biased estimates than the conventional Cox model, and distinguished the effect of regular use of fish oil supplements on each transition in the course of cardiovascular disease.

Our study had some limitations. Firstly, as an observational study, no causal relations can be drawn from our findings. Secondly, although we adjusted for multiple covariates, residual confounding could still exist. Thirdly, information on dose and formulation of the fish oil supplements was not available in this study, so we could not evaluate potential dose dependent effects or differentiate between the effects of different fish oil formulations. Fourthly, the use of hospital inpatient data for determining atrial fibrillation events could have excluded some events triggered by acute episodes, such as surgery, trauma, and similar conditions, resulting in underestimation of the true risk because undiagnosed atrial fibrillation is a common occurrence. 43 Fifthly, most of the participants in this study were from the white ethnic group and whether the findings can be generalised to other ethnic groups is not known. Finally, our study did not consider behavioural changes in populations with different cardiovascular profiles because of limited information, and variations in outcomes for different cardiovascular states merits further exploration.

Conclusions

This large scale prospective study of a UK cohort suggested that regular use of fish oil supplements might have differential roles in the course of cardiovascular diseases. Regular use of fish oil supplements might be a risk factor for atrial fibrillation and stroke among the general population but could be beneficial for disease progression, from atrial fibrillation to major adverse cardiovascular events, and from atrial fibrillation to death. Further studies are needed to determine whether potential confounders modify the effects of oil fish supplements and the precise mechanisms for the development and prognosis of cardiovascular disease events.

Ethics statements

Patient consent for publication.

Consent obtained directly from patients.

Ethics approval

The UK Biobank study obtained ethical approval from the North West Multicentre Research ethics committee, Information Advisory Group, and the Community Health Index Advisory Group (REC reference for UK Biobank 11/NW/0382). Participants gave informed consent to participate in the study before taking part.

Acknowledgments

This study was conducted with UK Biobank Resource (application No: 69550). We appreciate all participants and professionals contributing to UK Biobank.

  • Mensah GA ,
  • Johnson CO , et al
  • Gao MM , et al
  • Saravanan P ,
  • Davidson NC ,
  • Schmidt EB , et al
  • National Institute for Health and Care Excellence
  • Lichtenstein AH ,
  • Vadiveloo M , et al
  • Djuricic I ,
  • Miller M , et al
  • Kesse-Guyot E ,
  • Czernichow S , et al
  • Klemsdal TO ,
  • Sandvik L , et al
  • Manson JE ,
  • Lee I-M , et al
  • Gallacher J ,
  • Allen N , et al
  • Littlejohns TJ ,
  • Sudlow C , et al
  • Allen NE , et al
  • Zhong W-F ,
  • Liu S , et al
  • Wu Z , et al
  • Gallagher C ,
  • Elliott AD , et al
  • Qian SE , et al
  • Nicholls SJ ,
  • Lincoff AM ,
  • Garcia M , et al
  • Djousse L ,
  • Al-Ramady OT , et al
  • Bassuk SS ,
  • Cook NR , et al
  • Cazzola R ,
  • Della Porta M ,
  • Castiglioni S , et al
  • Viviani Anselmi C ,
  • Ferreri C ,
  • Novelli V , et al
  • Khan MS , et al
  • Knowlton K , et al
  • Marchioli R ,
  • Bomba E , et al
  • Olmastroni E ,
  • Gazzotti M , et al
  • Al Rifai M , et al
  • Tavazzi L ,
  • Maggioni AP ,
  • Marchioli R , et al
  • Zelniker TA ,
  • Morrow DA ,
  • Scirica BM , et al
  • Limonte CP ,
  • Zelnick LR ,
  • Ruzinski J , et al
  • Nelson JR ,
  • Miller PE ,
  • Van Elswyk M ,
  • Alexander DD
  • Mozaffarian D ,
  • Bornfeldt KE
  • Harris WS ,
  • Ginsberg HN ,
  • Arunakul N , et al
  • Markozannes G ,
  • Tsapas A , et al
  • Svennberg E ,
  • Engdahl J ,
  • Al-Khalili F , et al

Supplementary materials

Supplementary data.

This web only file has been produced by the BMJ Publishing Group from an electronic file supplied by the author(s) and has not been edited for content.

  • Data supplement 1
  • Data supplement 2

GYL and HL are joint senior authors.

Contributors HL supervised the whole project and designed the work. GC and HL directly accessed and verified the underlying data reported in the manuscript. GC contributed to data interpretation and writing of the report. ZQ, SZ, JZ, ZZ, MGV, HEA, CW, and GYHL contributed to the discussion and data interpretation, and revised the manuscript. All authors had full access to all of the data in the study and had final responsibility for the decision to submit for publication. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted. HL is the guarantor. Transparency: The lead author (guarantor) affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

Funding This work was supported by the Bill and Melinda Gates Foundation (grant No INV-016826). Under the grant conditions of the foundation, a creative commons attribution 4.0 generic license has already been assigned to the author accepted manuscript version that might arise from this submission. The funder had no role in considering the study design or in the collection, analysis, interpretation of data, writing of the report, or decision to submit the article for publication.

Competing interests All authors have completed the ICMJE uniform disclosure form at www.icmje.org/disclosure-of-interest/ and declare: support from Bill and Melinda Gates Foundation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work.

Provenance and peer review Not commissioned; externally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Read the full text or download the PDF:

Advertisement

Supported by

Ozempic Cuts Risk of Chronic Kidney Disease Complications, Study Finds

A major clinical trial showed such promising results that the drug’s maker halted it early.

  • Share full article

A topless person injecting a blue medication pen into the abdomen.

By Dani Blum

Dani Blum has reported on Ozempic and similar drugs since 2022.

Semaglutide, the compound in the blockbuster drugs Ozempic and Wegovy , dramatically reduced the risk of kidney complications, heart issues and death in people with Type 2 diabetes and chronic kidney disease in a major clinical trial, the results of which were published on Friday. The findings could transform how doctors treat some of the sickest patients with chronic kidney disease, which affects more than one in seven adults in the United States but has no cure.

“Those of us who really care about kidney patients spent our whole careers wanting something better,” said Dr. Katherine Tuttle, a professor of medicine at the University of Washington School of Medicine and an author of the study. “And this is as good as it gets.” The research was presented at a European Renal Association meeting in Stockholm on Friday and simultaneously published in The New England Journal of Medicine .

The trial, funded by Ozempic maker Novo Nordisk, was so successful that the company stopped it early . Dr. Martin Holst Lange, Novo Nordisk’s executive vice president of development, said that the company would ask the Food and Drug Administration to update Ozempic’s label to say it can also be used to reduce the progression of chronic kidney disease or complications in people with Type 2 diabetes.

Diabetes is a leading cause of chronic kidney disease, which occurs when the kidneys don’t function as well as they should. In advanced stages, the kidneys are so damaged that they cannot properly filter blood. This can cause fluid and waste to build up in the blood, which can exacerbate high blood pressure and raise the risk of heart disease and stroke, said Dr. Subramaniam Pennathur, the chief of the nephrology division at Michigan Medicine.

The study included 3,533 people with kidney disease and Type 2 diabetes, about half of whom took a weekly injection of semaglutide, and half of whom took a weekly placebo shot.

Researchers followed up with participants after a median period of around three and a half years and found that those who took semaglutide had a 24 percent lower likelihood of having a major kidney disease event, like losing at least half of their kidney function, or needing dialysis or a kidney transplant. There were 331 such events among the semaglutide group, compared with 410 in the placebo group.

People who received semaglutide were much less likely to die from cardiovascular issues, or from any cause at all, and had slower rates of kidney decline.

Kidney damage often occurs gradually, and people typically do not show symptoms until the disease is in advanced stages. Doctors try to slow the decline of kidney function with existing medications and lifestyle modifications, said Dr. Melanie Hoenig, a nephrologist at Beth Israel Deaconess Medical Center who was not involved with the study. But even with treatment, the disease can progress to the point that patients need dialysis, a treatment that removes waste and excess fluids from the blood, or kidney transplants.

The participants in the study were extremely sick — the severe complications seen in some study participants are more likely to occur in people the later stages of chronic kidney disease, said Dr. George Bakris, a professor of medicine at the University of Chicago Medicine and an author of the study. Most participants in the trial were already taking medication for chronic kidney disease.

For people with advanced kidney disease, in particular, the findings are promising. “We can help people live longer,” said Dr. Vlado Perkovic, a nephrologist and renal researcher at the University of New South Wales, Sydney, and another author of the study.

While the data shows clear benefits, even the researchers studying drugs like Ozempic aren’t sure how, exactly, they help the kidneys. One leading theory is that semaglutide may reduce inflammation, which exacerbates kidney disease.

And the results come with several caveats: Roughly two-thirds of the participants were men and around two-thirds were white — a limitation of the study, the authors noted, because chronic kidney disease disproportionately affects Black and Indigenous patients. The trial participants taking semaglutide were more likely to stop the drug because of gastrointestinal issues, which are common side effects of Ozempic.

Doctors said they wanted to know whether the drug might benefit patients who have kidney disease but not diabetes, and some also had questions about the potential long-term risks of taking semaglutide.

Still, the results are the latest data to show that semaglutide can do more than treat diabetes or drive weight loss. In March, the F.D.A. authorized Wegovy for reducing the risk of cardiovascular issues in some patients. And scientists are examining semaglutide and tirzepatide, the compound in the rival drugs Mounjaro and Zepbound, for a range of other conditions , including sleep apnea and liver disease.

If the F.D.A. approves the new use, it could drive even more demand for Ozempic, which has faced recurrent shortages .

“I think it’s a game changer,” Dr. Hoenig said, “if I can get it for my patients.”

Dani Blum is a health reporter for The Times. More about Dani Blum

A Close Look at Weight-Loss Drugs

Reduced Disease Complications: Semaglutide, the compound in Ozempic and Wegovy, dramatically reduced the risk of kidney complications , heart issues and death in people with Type 2 diabetes and chronic kidney disease in a major clinical trial.

Supplement Stores: GNC and the Vitamin Shoppe are redesigning displays and taking other steps  to appeal to people who are taking or are interested in drugs like Ozempic and Wegovy.

Senate Investigation: A Senate committee is investigating the prices that Novo Nordisk charges  for Ozempic and Wegovy, which are highly effective at treating diabetes and obesity but carry steep price tags.

A Company Remakes Itself: Novo Nordisk’s factories work nonstop turning out Ozempic and Wegovy , but the Danish company has far bigger ambitions.

Transforming a Small Danish Town: In Kalundborg, population under 17,000, Novo Nordisk is making huge investments to increase production  of Ozempic and Wegovy.

IMAGES

  1. Types of variables in scientific research

    what is a major study variables in research

  2. LIST OF THE RESEARCH VARIABLES

    what is a major study variables in research

  3. Variables in Research

    what is a major study variables in research

  4. Sample characteristics and study variables.

    what is a major study variables in research

  5. How To Find Variables In A Research Study

    what is a major study variables in research

  6. PPT

    what is a major study variables in research

VIDEO

  1. محاضرة Study Variables ❙ طرق البحث العلمي ❙ الفرقة الرابعة ❙ 2024

  2. The major variables of negotiation

  3. Practical Research 2 Quarter 1 Module 3: Kinds of Variables and Their Uses

  4. Variables in Psychological Research

  5. Research Assistant|Research Designs|Types of research design|Educationsimplified by OCDC|

  6. Types of variables in research|Controlled & extragenous variables|Intervening & moderating variables

COMMENTS

  1. Types of Variables in Research & Statistics

    Types of Variables in Research & Statistics | Examples. Published on September 19, 2022 by Rebecca Bevans. Revised on June 21, 2023. In statistical research, a variable is defined as an attribute of an object of study. Choosing which variables to measure is central to good experimental design.

  2. Variables in Research

    Categorical Variable. This is a variable that can take on a limited number of values or categories. Categorical variables can be nominal or ordinal. Nominal variables have no inherent order, while ordinal variables have a natural order. Examples of categorical variables include gender, race, and educational level.

  3. Variables in Research: Breaking Down the Essentials of Experimental

    The Role of Variables in Research. In scientific research, variables serve several key functions: Define Relationships: Variables allow researchers to investigate the relationships between different factors and characteristics, providing insights into the underlying mechanisms that drive phenomena and outcomes. Establish Comparisons: By manipulating and comparing variables, scientists can ...

  4. Independent & Dependent Variables (With Examples)

    What is a control variable? In an experimental design, a control variable (or controlled variable) is a variable that is intentionally held constant to ensure it doesn't have an influence on any other variables. As a result, this variable remains unchanged throughout the course of the study. In other words, it's a variable that's not allowed to vary - tough life 🙂

  5. Variables in Research

    Variables can be categorized based on their role in the study (such as independent and dependent variables), the type of data they represent (quantitative or categorical), and their relationship to other variables (like confounding or control variables). Understanding what constitutes a variable and the various variable types available is a ...

  6. Types of Variables and Commonly Used Statistical Designs

    Suitable statistical design represents a critical factor in permitting inferences from any research or scientific study.[1] Numerous statistical designs are implementable due to the advancement of software available for extensive data analysis.[1] Healthcare providers must possess some statistical knowledge to interpret new studies and provide up-to-date patient care. We present an overview of ...

  7. Types of Variables in Research

    Types of Variables in Research | Definitions & Examples. Published on 19 September 2022 by Rebecca Bevans. Revised on 28 November 2022. In statistical research, a variable is defined as an attribute of an object of study. Choosing which variables to measure is central to good experimental design.

  8. Organizing Your Social Sciences Research Paper

    Don't feel bad if you are confused about what is the dependent variable and what is the independent variable in social and behavioral sciences research. However, it's important that you learn the difference because framing a study using these variables is a common approach to organizing the elements of a social sciences research study in order ...

  9. Variables in Research

    The independent variable in a research study or experiment is what the researcher is changing in the study or experiment. It is the variable that is being manipulated. ... The Major Sections of a ...

  10. 2.2: Concepts, Constructs, and Variables

    As shown in Figure 2.1, scientific research proceeds along two planes: a theoretical plane and an empirical plane. Constructs are conceptualized at the theoretical (abstract) plane, while variables are operationalized and measured at the empirical (observational) plane. Thinking like a researcher implies the ability to move back and forth ...

  11. Variables

    Categorical variables are groups…such as gender or type of degree sought. Quantitative variables are numbers that have a range…like weight in pounds or baskets made during a ball game. When we analyze data we do turn the categorical variables into numbers but only for identification purposes…e.g. 1 = male and 2 = female.

  12. Elements of Research : Variables

    Variables are names that are given to the variance we wish to explain. A variable is either a result of some force or is itself the force that causes a change in another variable. In experiments, these are called dependent and independent variables respectively. When a researcher gives an active drug to one group of people and a placebo , or ...

  13. Study designs: Part 1

    Research study design is a framework, or the set of methods and procedures used to collect and analyze data on variables specified in a particular research problem. Research study designs are of many types, each with its advantages and limitations. The type of study design used to answer a particular research question is determined by the ...

  14. Variables in Research

    The changes to the dependent variable are what the researcher is trying to measure with all their fancy techniques. In our example, your dependent variable is the person's ability to throw a ball ...

  15. Types of variables in research and statistics

    All experiments have at least two variables, an independent and a dependent variable. The independent variable is the one being tested or changed and the dependent variable is the result observed and possibly measured. All other variables in an experiment affect or build on the independent and dependent variables.

  16. What Is a Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

  17. Research Variables: Types, Uses and Definition of Terms

    The study revealed that as assessed by the sports officiating officials when they are grouped according to the study's variables, the results show a "high level" in all areas.Furthermore, the ...

  18. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  19. Types of Variables in Psychology Research

    By systematically changing some variables in an experiment and measuring what happens as a result, researchers are able to learn more about cause-and-effect relationships. The two main types of variables in psychology are the independent variable and the dependent variable. Both variables are important in the process of collecting data about ...

  20. 10 Types of Variables in Research and Statistics

    Types. Discrete and continuous. Binary, nominal and ordinal. Researchers can further categorize quantitative variables into discrete or continuous types of variables: Discrete: Any numerical variables you can realistically count, such as the coins in your wallet or the money in your savings account.

  21. Research Constructs 101 (With Clear Examples)

    A research construct is an abstraction that researchers use to represent a phenomenon that's not directly observable. Examples of research constructs include self-esteem, motivation, and job satisfaction. A research construct differs from a research variable in that it is not directly measurable. When working with constructs, you must pay ...

  22. The Importance of Understanding Confounding Variables

    Case Studies Of Confounding Variables. Case studies of confounding variables provide real-world examples of how these hidden factors can impact research outcomes. Here are a few illustrative scenarios: Drug Efficacy Study. In a clinical trial evaluating the efficacy of a new drug, researchers notice variations in outcomes among different age ...

  23. Retraction note: Predictors of depression among school adolescents in

    It also has a major impact on a person's ability to manage his or her daily tasks. In the end, the condition may result in self-destruction. Research is scarce among high schools in the study setting. ... six high schools. Patient Health Questionnaires were used to assess depression in high school students. The independent variables, like ...

  24. A New Model for Building Energy Modeling and Management Using

    These studies highlight the need for models that can effectively navigate the complex interplay between various indoor and outdoor variables affecting energy consumption. In response to this identified research gap, our study introduces the Partitioned Hierarchical Multitask Regression (PHMR) model.

  25. Emotion dysregulation and problematic social media use: The role of

    The growing prevalence of internet usage has sparked a growing interest in understanding the factors that contribute to problematic social media use (PSMU). Prior research has found that emotion dysregulation, need fulfillment, and fear of missing out (FoMO) may play a role in the maintenance of PSMU. This study aims to explore the potential mediating roles of need fulfillment and FoMO in the ...

  26. Regular use of fish oil supplements and course of cardiovascular

    Objective To examine the effects of fish oil supplements on the clinical course of cardiovascular disease, from a healthy state to atrial fibrillation, major adverse cardiovascular events, and subsequently death. Design Prospective cohort study. Setting UK Biobank study, 1 January 2006 to 31 December 2010, with follow-up to 31 March 2021 (median follow-up 11.9 years). Participants 415 737 ...

  27. Module 3 (docx)

    The significance I would like to find from my hypothetical research would be the subgroup data that could be extrapolated to create comparisons based on various factors like demographics. 3. James Grassi- Based upon the information regarding controlling variables in Chapter 11, Experimental Research, answer the following discussion question: Physical Activity Intervention / Research Study ...

  28. Ozempic May Help Treat Kidney Disease, Study Finds

    A major clinical trial showed such promising results that the drug's maker halted it early. ... a professor of medicine at the University of Washington School of Medicine and an author of the ...

  29. What Is Quantitative Research?

    Quantitative research methods. You can use quantitative research methods for descriptive, correlational or experimental research. In descriptive research, you simply seek an overall summary of your study variables.; In correlational research, you investigate relationships between your study variables.; In experimental research, you systematically examine whether there is a cause-and-effect ...