Statistical Thinking: A Simulation Approach to Modeling Uncertainty (UM STAT 216 edition)

3.6 causation and random assignment.

Medical researchers may be interested in showing that a drug helps improve people’s health (the cause of improvement is the drug), while educational researchers may be interested in showing a curricular innovation improves students’ learning (the curricular innovation causes improved learning).

To attribute a causal relationship, there are three criteria a researcher needs to establish:

  • Association of the Cause and Effect: There needs to be a association between the cause and effect.
  • Timing: The cause needs to happen BEFORE the effect.
  • No Plausible Alternative Explanations: ALL other possible explanations for the effect need to be ruled out.

Please read more about each of these criteria at the Web Center for Social Research Methods .

The third criterion can be quite difficult to meet. To rule out ALL other possible explanations for the effect, we want to compare the world with the cause applied to the world without the cause. In practice, we do this by comparing two different groups: a “treatment” group that gets the cause applied to them, and a “control” group that does not. To rule out alternative explanations, the groups need to be “identical” with respect to every possible characteristic (aside from the treatment) that could explain differences. This way the only characteristic that will be different is that the treatment group gets the treatment and the control group doesn’t. If there are differences in the outcome, then it must be attributable to the treatment, because the other possible explanations are ruled out.

So, the key is to make the control and treatment groups “identical” when you are forming them. One thing that makes this task (slightly) easier is that they don’t have to be exactly identical, only probabilistically equivalent . This means, for example, that if you were matching groups on age that you don’t need the two groups to have identical age distributions; they would only need to have roughly the same AVERAGE age. Here roughly means “the average ages should be the same within what we expect because of sampling error.”

Now we just need to create the groups so that they have, on average, the same characteristics … for EVERY POSSIBLE CHARCTERISTIC that could explain differences in the outcome.

It turns out that creating probabilistically equivalent groups is a really difficult problem. One method that works pretty well for doing this is to randomly assign participants to the groups. This works best when you have large sample sizes, but even with small sample sizes random assignment has the advantage of at least removing the systematic bias between the two groups (any differences are due to chance and will probably even out between the groups). As Wikipedia’s page on random assignment points out,

Random assignment of participants helps to ensure that any differences between and within the groups are not systematic at the outset of the experiment. Thus, any differences between groups recorded at the end of the experiment can be more confidently attributed to the experimental procedures or treatment. … Random assignment does not guarantee that the groups are matched or equivalent. The groups may still differ on some preexisting attribute due to chance. The use of random assignment cannot eliminate this possibility, but it greatly reduces it.

We use the term internal validity to describe the degree to which cause-and-effect inferences are accurate and meaningful. Causal attribution is the goal for many researchers. Thus, by using random assignment we have a pretty high degree of evidence for internal validity; we have a much higher belief in causal inferences. Much like evidence used in a court of law, it is useful to think about validity evidence on a continuum. For example, a visualization of the internal validity evidence for a study that employed random assignment in the design might be:

random assignment in cause and effect

The degree of internal validity evidence is high (in the upper-third). How high depends on other factors such as sample size.

To learn more about random assignment, you can read the following:

  • The research report, Random Assignment Evaluation Studies: A Guide for Out-of-School Time Program Practitioners

3.6.1 Example: Does sleep deprivation cause an decrease in performance?

Let’s consider the criteria with respect to the sleep deprivation study we explored in class.

3.6.1.1 Association of cause and effect

First, we ask, Is there an association between the cause and the effect? In the sleep deprivation study, we would ask, “Is sleep deprivation associated with an decrease in performance?”

This is what a hypothesis test helps us answer! If the result is statistically significant , then we have an association between the cause and the effect. If the result is not statistically significant, then there is not sufficient evidence for an association between cause and effect.

In the case of the sleep deprivation experiment, the result was statistically significant, so we can say that sleep deprivation is associated with a decrease in performance.

3.6.1.2 Timing

Second, we ask, Did the cause come before the effect? In the sleep deprivation study, the answer is yes. The participants were sleep deprived before their performance was tested. It may seem like this is a silly question to ask, but as the link above describes, it is not always so clear to establish the timing. Thus, it is important to consider this question any time we are interested in establishing causality.

3.6.1.3 No plausible alternative explanations

Finally, we ask Are there any plausible alternative explanations for the observed effect? In the sleep deprivation study, we would ask, “Are there plausible alternative explanations for the observed difference between the groups, other than sleep deprivation?” Because this is a question about plausibility, human judgment comes into play. Researchers must make an argument about why there are no plausible alternatives. As described above, a strong study design can help to strengthen the argument.

At first, it may seem like there are a lot of plausible alternative explanations for the difference in performance. There are a lot of things that might affect someone’s performance on a visual task! Sleep deprivation is just one of them! For example, artists may be more adept at visual discrimination than other people. This is an example of a potential confounding variable. A confounding variable is a variable that might affect the results, other than the causal variable that we are interested in.

Here’s the thing though. We are not interested in figuring out why any particular person got the score that they did. Instead, we are interested in determining why one group was different from another group. In the sleep deprivation study, the participants were randomly assigned. This means that the there is no systematic difference between the groups, with respect to any confounding variables. Yes—artistic experience is a possible confounding variable, and it may be the reason why two people score differently. BUT: There is no systematic difference between the groups with respect to artistic experience, and so artistic experience is not a plausible explanation as to why the groups would be different. The same can be said for any possible confounding variable. Because the groups were randomly assigned, it is not plausible to say that the groups are different with respect to any confounding variable. Random assignment helps us rule out plausible alternatives.

3.6.1.4 Making a causal claim

Now, let’s see about make a causal claim for the sleep deprivation study:

  • Association: There is a statistically significant result, so the cause is associated with the effect
  • Timing: The participants were sleep deprived before their performance was measured, so the cause came before the effect
  • Plausible alternative explanations: The participants were randomly assigned, so the groups are not systematically different on any confounding variable. The only systematic difference between the groups was sleep deprivation. Thus, there are no plausible alternative explanations for the difference between the groups, other than sleep deprivation

Thus, the internal validity evidence for this study is high, and we can make a causal claim. For the participants in this study, we can say that sleep deprivation caused a decrease in performance.

Key points: Causation and internal validity

To make a cause-and-effect inference, you need to consider three criteria:

  • Association of the Cause and Effect: There needs to be a association between the cause and effect. This can be established by a hypothesis test.

Random assignment removes any systematic differences between the groups (other than the treatment), and thus helps to rule out plausible alternative explanations.

Internal validity describes the degree to which cause-and-effect inferences are accurate and meaningful.

Confounding variables are variables that might affect the results, other than the causal variable that we are interested in.

Probabilistic equivalence means that there is not a systematic difference between groups. The groups are the same on average.

How can we make "equivalent" experimental groups?

Random Assignment in Psychology: Definition & Examples

Julia Simkus

Editor at Simply Psychology

BA (Hons) Psychology, Princeton University

Julia Simkus is a graduate of Princeton University with a Bachelor of Arts in Psychology. She is currently studying for a Master's Degree in Counseling for Mental Health and Wellness in September 2023. Julia's research has been published in peer reviewed journals.

Learn about our Editorial Process

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

In psychology, random assignment refers to the practice of allocating participants to different experimental groups in a study in a completely unbiased way, ensuring each participant has an equal chance of being assigned to any group.

In experimental research, random assignment, or random placement, organizes participants from your sample into different groups using randomization. 

Random assignment uses chance procedures to ensure that each participant has an equal opportunity of being assigned to either a control or experimental group.

The control group does not receive the treatment in question, whereas the experimental group does receive the treatment.

When using random assignment, neither the researcher nor the participant can choose the group to which the participant is assigned. This ensures that any differences between and within the groups are not systematic at the onset of the study. 

In a study to test the success of a weight-loss program, investigators randomly assigned a pool of participants to one of two groups.

Group A participants participated in the weight-loss program for 10 weeks and took a class where they learned about the benefits of healthy eating and exercise.

Group B participants read a 200-page book that explains the benefits of weight loss. The investigator randomly assigned participants to one of the two groups.

The researchers found that those who participated in the program and took the class were more likely to lose weight than those in the other group that received only the book.

Importance 

Random assignment ensures that each group in the experiment is identical before applying the independent variable.

In experiments , researchers will manipulate an independent variable to assess its effect on a dependent variable, while controlling for other variables. Random assignment increases the likelihood that the treatment groups are the same at the onset of a study.

Thus, any changes that result from the independent variable can be assumed to be a result of the treatment of interest. This is particularly important for eliminating sources of bias and strengthening the internal validity of an experiment.

Random assignment is the best method for inferring a causal relationship between a treatment and an outcome.

Random Selection vs. Random Assignment 

Random selection (also called probability sampling or random sampling) is a way of randomly selecting members of a population to be included in your study.

On the other hand, random assignment is a way of sorting the sample participants into control and treatment groups. 

Random selection ensures that everyone in the population has an equal chance of being selected for the study. Once the pool of participants has been chosen, experimenters use random assignment to assign participants into groups. 

Random assignment is only used in between-subjects experimental designs, while random selection can be used in a variety of study designs.

Random Assignment vs Random Sampling

Random sampling refers to selecting participants from a population so that each individual has an equal chance of being chosen. This method enhances the representativeness of the sample.

Random assignment, on the other hand, is used in experimental designs once participants are selected. It involves allocating these participants to different experimental groups or conditions randomly.

This helps ensure that any differences in results across groups are due to manipulating the independent variable, not preexisting differences among participants.

When to Use Random Assignment

Random assignment is used in experiments with a between-groups or independent measures design.

In these research designs, researchers will manipulate an independent variable to assess its effect on a dependent variable, while controlling for other variables.

There is usually a control group and one or more experimental groups. Random assignment helps ensure that the groups are comparable at the onset of the study.

How to Use Random Assignment

There are a variety of ways to assign participants into study groups randomly. Here are a handful of popular methods: 

  • Random Number Generator : Give each member of the sample a unique number; use a computer program to randomly generate a number from the list for each group.
  • Lottery : Give each member of the sample a unique number. Place all numbers in a hat or bucket and draw numbers at random for each group.
  • Flipping a Coin : Flip a coin for each participant to decide if they will be in the control group or experimental group (this method can only be used when you have just two groups) 
  • Roll a Die : For each number on the list, roll a dice to decide which of the groups they will be in. For example, assume that rolling 1, 2, or 3 places them in a control group and rolling 3, 4, 5 lands them in an experimental group.

When is Random Assignment not used?

  • When it is not ethically permissible: Randomization is only ethical if the researcher has no evidence that one treatment is superior to the other or that one treatment might have harmful side effects. 
  • When answering non-causal questions : If the researcher is just interested in predicting the probability of an event, the causal relationship between the variables is not important and observational designs would be more suitable than random assignment. 
  • When studying the effect of variables that cannot be manipulated: Some risk factors cannot be manipulated and so it would not make any sense to study them in a randomized trial. For example, we cannot randomly assign participants into categories based on age, gender, or genetic factors.

Drawbacks of Random Assignment

While randomization assures an unbiased assignment of participants to groups, it does not guarantee the equality of these groups. There could still be extraneous variables that differ between groups or group differences that arise from chance. Additionally, there is still an element of luck with random assignments.

Thus, researchers can not produce perfectly equal groups for each specific study. Differences between the treatment group and control group might still exist, and the results of a randomized trial may sometimes be wrong, but this is absolutely okay.

Scientific evidence is a long and continuous process, and the groups will tend to be equal in the long run when data is aggregated in a meta-analysis.

Additionally, external validity (i.e., the extent to which the researcher can use the results of the study to generalize to the larger population) is compromised with random assignment.

Random assignment is challenging to implement outside of controlled laboratory conditions and might not represent what would happen in the real world at the population level. 

Random assignment can also be more costly than simple observational studies, where an investigator is just observing events without intervening with the population.

Randomization also can be time-consuming and challenging, especially when participants refuse to receive the assigned treatment or do not adhere to recommendations. 

What is the difference between random sampling and random assignment?

Random sampling refers to randomly selecting a sample of participants from a population. Random assignment refers to randomly assigning participants to treatment groups from the selected sample.

Does random assignment increase internal validity?

Yes, random assignment ensures that there are no systematic differences between the participants in each group, enhancing the study’s internal validity .

Does random assignment reduce sampling error?

Yes, with random assignment, participants have an equal chance of being assigned to either a control group or an experimental group, resulting in a sample that is, in theory, representative of the population.

Random assignment does not completely eliminate sampling error because a sample only approximates the population from which it is drawn. However, random sampling is a way to minimize sampling errors. 

When is random assignment not possible?

Random assignment is not possible when the experimenters cannot control the treatment or independent variable.

For example, if you want to compare how men and women perform on a test, you cannot randomly assign subjects to these groups.

Participants are not randomly assigned to different groups in this study, but instead assigned based on their characteristics.

Does random assignment eliminate confounding variables?

Yes, random assignment eliminates the influence of any confounding variables on the treatment because it distributes them at random among the study groups. Randomization invalidates any relationship between a confounding variable and the treatment.

Why is random assignment of participants to treatment conditions in an experiment used?

Random assignment is used to ensure that all groups are comparable at the start of a study. This allows researchers to conclude that the outcomes of the study can be attributed to the intervention at hand and to rule out alternative explanations for study results.

Further Reading

  • Bogomolnaia, A., & Moulin, H. (2001). A new solution to the random assignment problem .  Journal of Economic theory ,  100 (2), 295-328.
  • Krause, M. S., & Howard, K. I. (2003). What random assignment does and does not do .  Journal of Clinical Psychology ,  59 (7), 751-766.

Print Friendly, PDF & Email

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Social Sci LibreTexts

5.15: Drawing Conclusions from Statistics

  • Last updated
  • Save as PDF
  • Page ID 59855

Learning Objectives

  • Describe the role of random sampling and random assignment in drawing cause-and-effect conclusions

Generalizability

Photo of a diverse group of college-aged students.

One limitation to the study mentioned previously about the babies choosing the “helper” toy is that the conclusion only applies to the 16 infants in the study. We don’t know much about how those 16 infants were selected. Suppose we want to select a subset of individuals (a sample ) from a much larger group of individuals (the population ) in such a way that conclusions from the sample can be generalized to the larger population. This is the question faced by pollsters every day.

Example 1 : The General Social Survey (GSS) is a survey on societal trends conducted every other year in the United States. Based on a sample of about 2,000 adult Americans, researchers make claims about what percentage of the U.S. population consider themselves to be “liberal,” what percentage consider themselves “happy,” what percentage feel “rushed” in their daily lives, and many other issues. The key to making these claims about the larger population of all American adults lies in how the sample is selected. The goal is to select a sample that is representative of the population, and a common way to achieve this goal is to select a random sample that gives every member of the population an equal chance of being selected for the sample. In its simplest form, random sampling involves numbering every member of the population and then using a computer to randomly select the subset to be surveyed. Most polls don’t operate exactly like this, but they do use probability-based sampling methods to select individuals from nationally representative panels.

In 2004, the GSS reported that 817 of 977 respondents (or 83.6%) indicated that they always or sometimes feel rushed. This is a clear majority, but we again need to consider variation due to random sampling . Fortunately, we can use the same probability model we did in the previous example to investigate the probable size of this error. (Note, we can use the coin-tossing model when the actual population size is much, much larger than the sample size, as then we can still consider the probability to be the same for every individual in the sample.) This probability model predicts that the sample result will be within 3 percentage points of the population value (roughly 1 over the square root of the sample size, the margin of error ). A statistician would conclude, with 95% confidence, that between 80.6% and 86.6% of all adult Americans in 2004 would have responded that they sometimes or always feel rushed.

The key to the margin of error is that when we use a probability sampling method, we can make claims about how often (in the long run, with repeated random sampling) the sample result would fall within a certain distance from the unknown population value by chance (meaning by random sampling variation) alone. Conversely, non-random samples are often suspect to bias, meaning the sampling method systematically over-represents some segments of the population and under-represents others. We also still need to consider other sources of bias, such as individuals not responding honestly. These sources of error are not measured by the margin of error.

Query \(\PageIndex{1}\)

Query \(\PageIndex{2}\)

Cause and Effect

In many research studies, the primary question of interest concerns differences between groups. Then the question becomes how were the groups formed (e.g., selecting people who already drink coffee vs. those who don’t). In some studies, the researchers actively form the groups themselves. But then we have a similar question—could any differences we observe in the groups be an artifact of that group-formation process? Or maybe the difference we observe in the groups is so large that we can discount a “fluke” in the group-formation process as a reasonable explanation for what we find?

Example 2 : A psychology study investigated whether people tend to display more creativity when they are thinking about intrinsic (internal) or extrinsic (external) motivations (Ramsey & Schafer, 2002, based on a study by Amabile, 1985). The subjects were 47 people with extensive experience with creative writing. Subjects began by answering survey questions about either intrinsic motivations for writing (such as the pleasure of self-expression) or extrinsic motivations (such as public recognition). Then all subjects were instructed to write a haiku, and those poems were evaluated for creativity by a panel of judges. The researchers conjectured beforehand that subjects who were thinking about intrinsic motivations would display more creativity than subjects who were thinking about extrinsic motivations. The creativity scores from the 47 subjects in this study are displayed in Figure 2, where higher scores indicate more creativity.

Image showing a dot for creativity scores, which vary between 5 and 27, and the types of motivation each person was given as a motivator, either extrinsic or intrinsic.

In this example, the key question is whether the type of motivation affects creativity scores. In particular, do subjects who were asked about intrinsic motivations tend to have higher creativity scores than subjects who were asked about extrinsic motivations?

Figure 2 reveals that both motivation groups saw considerable variability in creativity scores, and these scores have considerable overlap between the groups. In other words, it’s certainly not always the case that those with extrinsic motivations have higher creativity than those with intrinsic motivations, but there may still be a statistical tendency in this direction. (Psychologist Keith Stanovich (2013) refers to people’s difficulties with thinking about such probabilistic tendencies as “the Achilles heel of human cognition.”)

The mean creativity score is 19.88 for the intrinsic group, compared to 15.74 for the extrinsic group, which supports the researchers’ conjecture. Yet comparing only the means of the two groups fails to consider the variability of creativity scores in the groups. We can measure variability with statistics using, for instance, the standard deviation: 5.25 for the extrinsic group and 4.40 for the intrinsic group. The standard deviations tell us that most of the creativity scores are within about 5 points of the mean score in each group. We see that the mean score for the intrinsic group lies within one standard deviation of the mean score for extrinsic group. So, although there is a tendency for the creativity scores to be higher in the intrinsic group, on average, the difference is not extremely large.

We again want to consider possible explanations for this difference. The study only involved individuals with extensive creative writing experience. Although this limits the population to which we can generalize, it does not explain why the mean creativity score was a bit larger for the intrinsic group than for the extrinsic group. Maybe women tend to receive higher creativity scores? Here is where we need to focus on how the individuals were assigned to the motivation groups. If only women were in the intrinsic motivation group and only men in the extrinsic group, then this would present a problem because we wouldn’t know if the intrinsic group did better because of the different type of motivation or because they were women. However, the researchers guarded against such a problem by randomly assigning the individuals to the motivation groups. Like flipping a coin, each individual was just as likely to be assigned to either type of motivation. Why is this helpful? Because this random assignment tends to balance out all the variables related to creativity we can think of, and even those we don’t think of in advance, between the two groups. So we should have a similar male/female split between the two groups; we should have a similar age distribution between the two groups; we should have a similar distribution of educational background between the two groups; and so on. Random assignment should produce groups that are as similar as possible except for the type of motivation, which presumably eliminates all those other variables as possible explanations for the observed tendency for higher scores in the intrinsic group.

But does this always work? No, so by “luck of the draw” the groups may be a little different prior to answering the motivation survey. So then the question is, is it possible that an unlucky random assignment is responsible for the observed difference in creativity scores between the groups? In other words, suppose each individual’s poem was going to get the same creativity score no matter which group they were assigned to, that the type of motivation in no way impacted their score. Then how often would the random-assignment process alone lead to a difference in mean creativity scores as large (or larger) than 19.88 – 15.74 = 4.14 points?

We again want to apply to a probability model to approximate a p-value , but this time the model will be a bit different. Think of writing everyone’s creativity scores on an index card, shuffling up the index cards, and then dealing out 23 to the extrinsic motivation group and 24 to the intrinsic motivation group, and finding the difference in the group means. We (better yet, the computer) can repeat this process over and over to see how often, when the scores don’t change, random assignment leads to a difference in means at least as large as 4.41. Figure 3 shows the results from 1,000 such hypothetical random assignments for these scores.

Standard distribution in a typical bell curve.

Only 2 of the 1,000 simulated random assignments produced a difference in group means of 4.41 or larger. In other words, the approximate p-value is 2/1000 = 0.002. This small p-value indicates that it would be very surprising for the random assignment process alone to produce such a large difference in group means. Therefore, as with Example 2, we have strong evidence that focusing on intrinsic motivations tends to increase creativity scores, as compared to thinking about extrinsic motivations.

Notice that the previous statement implies a cause-and-effect relationship between motivation and creativity score; is such a strong conclusion justified? Yes, because of the random assignment used in the study. That should have balanced out any other variables between the two groups, so now that the small p-value convinces us that the higher mean in the intrinsic group wasn’t just a coincidence, the only reasonable explanation left is the difference in the type of motivation. Can we generalize this conclusion to everyone? Not necessarily—we could cautiously generalize this conclusion to individuals with extensive experience in creative writing similar the individuals in this study, but we would still want to know more about how these individuals were selected to participate.

Close-up photo of mathematical equations.

Statistical thinking involves the careful design of a study to collect meaningful data to answer a focused research question, detailed analysis of patterns in the data, and drawing conclusions that go beyond the observed data. Random sampling is paramount to generalizing results from our sample to a larger population, and random assignment is key to drawing cause-and-effect conclusions. With both kinds of randomness, probability models help us assess how much random variation we can expect in our results, in order to determine whether our results could happen by chance alone and to estimate a margin of error.

So where does this leave us with regard to the coffee study mentioned previously (the Freedman, Park, Abnet, Hollenbeck, & Sinha, 2012 found that men who drank at least six cups of coffee a day had a 10% lower chance of dying (women 15% lower) than those who drank none)? We can answer many of the questions:

  • This was a 14-year study conducted by researchers at the National Cancer Institute.
  • The results were published in the June issue of the New England Journal of Medicine , a respected, peer-reviewed journal.
  • The study reviewed coffee habits of more than 402,000 people ages 50 to 71 from six states and two metropolitan areas. Those with cancer, heart disease, and stroke were excluded at the start of the study. Coffee consumption was assessed once at the start of the study.
  • About 52,000 people died during the course of the study.
  • People who drank between two and five cups of coffee daily showed a lower risk as well, but the amount of reduction increased for those drinking six or more cups.
  • The sample sizes were fairly large and so the p-values are quite small, even though percent reduction in risk was not extremely large (dropping from a 12% chance to about 10%–11%).
  • Whether coffee was caffeinated or decaffeinated did not appear to affect the results.
  • This was an observational study, so no cause-and-effect conclusions can be drawn between coffee drinking and increased longevity, contrary to the impression conveyed by many news headlines about this study. In particular, it’s possible that those with chronic diseases don’t tend to drink coffee.

This study needs to be reviewed in the larger context of similar studies and consistency of results across studies, with the constant caution that this was not a randomized experiment. Whereas a statistical analysis can still “adjust” for other potential confounding variables, we are not yet convinced that researchers have identified them all or completely isolated why this decrease in death risk is evident. Researchers can now take the findings of this study and develop more focused studies that address new questions.

Explore these outside resources to learn more about applied statistics:

  • Video about p-values:  P-Value Extravaganza
  • Interactive web applets for teaching and learning statistics
  • Inter-university Consortium for Political and Social Research  where you can find and analyze data.
  • The Consortium for the Advancement of Undergraduate Statistics

Think It Over

  • Find a recent research article in your field and answer the following: What was the primary research question? How were individuals selected to participate in the study? Were summary results provided? How strong is the evidence presented in favor or against the research question? Was random assignment used? Summarize the main conclusions from the study, addressing the issues of statistical significance, statistical confidence, generalizability, and cause and effect. Do you agree with the conclusions drawn from this study, based on the study design and the results presented?
  • Is it reasonable to use a random sample of 1,000 individuals to draw conclusions about all U.S. adults? Explain why or why not.

cause-and-effect: related to whether we say one variable is causing changes in the other variable, versus other variables that may be related to these two variables.

generalizability : related to whether the results from the sample can be generalized to a larger population.

margin of error : the expected amount of random variation in a statistic; often defined for 95% confidence level.

population : a larger collection of individuals that we would like to generalize our results to.

p-value : the probability of observing a particular outcome in a sample, or more extreme, under a conjecture about the larger population or process.

random assignment : using a probability-based method to divide a sample into treatment groups.

random sampling : using a probability-based method to select a subset of individuals for the sample from the population.

sample : the collection of individuals on which we collect data.

Licenses and Attributions

CC licensed content, Original

  • Modification, adaptation, and original content. Authored by : Pat Carroll and Lumen Learning. Provided by : Lumen Learning. License : CC BY: Attribution
  • Statistical Thinking. Authored by : Beth Chance and Allan Rossman, California Polytechnic State University, San Luis Obispo. Provided by : Noba. Located at : http://nobaproject.com/modules/statistical-thinking . License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike
  • The Replication Crisis. Authored by : Colin Thomas William. Provided by : Ivy Tech Community College. License : CC BY: Attribution

Logo for University of Central Florida Pressbooks

Psychological Research

Drawing Conclusions from Statistics

Learning objectives.

  • Describe the role of random sampling and random assignment in drawing cause-and-effect conclusions

Generalizability

Photo of a diverse group of college-aged students.

One limitation to the study mentioned previously about the babies choosing the “helper” toy is that the conclusion only applies to the 16 infants in the study. We don’t know much about how those 16 infants were selected. Suppose we want to select a subset of individuals (a sample ) from a much larger group of individuals (the population ) in such a way that conclusions from the sample can be generalized to the larger population. This is the question faced by pollsters every day.

Example 1 : The General Social Survey (GSS) is a survey on societal trends conducted every other year in the United States. Based on a sample of about 2,000 adult Americans, researchers make claims about what percentage of the U.S. population consider themselves to be “liberal,” what percentage consider themselves “happy,” what percentage feel “rushed” in their daily lives, and many other issues. The key to making these claims about the larger population of all American adults lies in how the sample is selected. The goal is to select a sample that is representative of the population, and a common way to achieve this goal is to select a random sample that gives every member of the population an equal chance of being selected for the sample. In its simplest form, random sampling involves numbering every member of the population and then using a computer to randomly select the subset to be surveyed. Most polls don’t operate exactly like this, but they do use probability-based sampling methods to select individuals from nationally representative panels.

In 2004, the GSS reported that 817 of 977 respondents (or 83.6%) indicated that they always or sometimes feel rushed. This is a clear majority, but we again need to consider variation due to random sampling . Fortunately, we can use the same probability model we did in the previous example to investigate the probable size of this error. (Note, we can use the coin-tossing model when the actual population size is much, much larger than the sample size, as then we can still consider the probability to be the same for every individual in the sample.) This probability model predicts that the sample result will be within 3 percentage points of the population value (roughly 1 over the square root of the sample size, the margin of error ). A statistician would conclude, with 95% confidence, that between 80.6% and 86.6% of all adult Americans in 2004 would have responded that they sometimes or always feel rushed.

The key to the margin of error is that when we use a probability sampling method, we can make claims about how often (in the long run, with repeated random sampling) the sample result would fall within a certain distance from the unknown population value by chance (meaning by random sampling variation) alone. Conversely, non-random samples are often suspect to bias, meaning the sampling method systematically over-represents some segments of the population and under-represents others. We also still need to consider other sources of bias, such as individuals not responding honestly. These sources of error are not measured by the margin of error.

Cause and Effect

In many research studies, the primary question of interest concerns differences between groups. Then the question becomes how were the groups formed (e.g., selecting people who already drink coffee vs. those who don’t). In some studies, the researchers actively form the groups themselves. But then we have a similar question—could any differences we observe in the groups be an artifact of that group-formation process? Or maybe the difference we observe in the groups is so large that we can discount a “fluke” in the group-formation process as a reasonable explanation for what we find?

Example 2 : A psychology study investigated whether people tend to display more creativity when they are thinking about intrinsic (internal) or extrinsic (external) motivations (Ramsey & Schafer, 2002, based on a study by Amabile, 1985). The subjects were 47 people with extensive experience with creative writing. Subjects began by answering survey questions about either intrinsic motivations for writing (such as the pleasure of self-expression) or extrinsic motivations (such as public recognition). Then all subjects were instructed to write a haiku, and those poems were evaluated for creativity by a panel of judges. The researchers conjectured beforehand that subjects who were thinking about intrinsic motivations would display more creativity than subjects who were thinking about extrinsic motivations. The creativity scores from the 47 subjects in this study are displayed in Figure 2, where higher scores indicate more creativity.

Image showing a dot for creativity scores, which vary between 5 and 27, and the types of motivation each person was given as a motivator, either extrinsic or intrinsic.

In this example, the key question is whether the type of motivation affects creativity scores. In particular, do subjects who were asked about intrinsic motivations tend to have higher creativity scores than subjects who were asked about extrinsic motivations?

Figure 2 reveals that both motivation groups saw considerable variability in creativity scores, and these scores have considerable overlap between the groups. In other words, it’s certainly not always the case that those with extrinsic motivations have higher creativity than those with intrinsic motivations, but there may still be a statistical tendency in this direction. (Psychologist Keith Stanovich (2013) refers to people’s difficulties with thinking about such probabilistic tendencies as “the Achilles heel of human cognition.”)

The mean creativity score is 19.88 for the intrinsic group, compared to 15.74 for the extrinsic group, which supports the researchers’ conjecture. Yet comparing only the means of the two groups fails to consider the variability of creativity scores in the groups. We can measure variability with statistics using, for instance, the standard deviation: 5.25 for the extrinsic group and 4.40 for the intrinsic group. The standard deviations tell us that most of the creativity scores are within about 5 points of the mean score in each group. We see that the mean score for the intrinsic group lies within one standard deviation of the mean score for extrinsic group. So, although there is a tendency for the creativity scores to be higher in the intrinsic group, on average, the difference is not extremely large.

We again want to consider possible explanations for this difference. The study only involved individuals with extensive creative writing experience. Although this limits the population to which we can generalize, it does not explain why the mean creativity score was a bit larger for the intrinsic group than for the extrinsic group. Maybe women tend to receive higher creativity scores? Here is where we need to focus on how the individuals were assigned to the motivation groups. If only women were in the intrinsic motivation group and only men in the extrinsic group, then this would present a problem because we wouldn’t know if the intrinsic group did better because of the different type of motivation or because they were women. However, the researchers guarded against such a problem by randomly assigning the individuals to the motivation groups. Like flipping a coin, each individual was just as likely to be assigned to either type of motivation. Why is this helpful? Because this random assignment tends to balance out all the variables related to creativity we can think of, and even those we don’t think of in advance, between the two groups. So we should have a similar male/female split between the two groups; we should have a similar age distribution between the two groups; we should have a similar distribution of educational background between the two groups; and so on. Random assignment should produce groups that are as similar as possible except for the type of motivation, which presumably eliminates all those other variables as possible explanations for the observed tendency for higher scores in the intrinsic group.

But does this always work? No, so by “luck of the draw” the groups may be a little different prior to answering the motivation survey. So then the question is, is it possible that an unlucky random assignment is responsible for the observed difference in creativity scores between the groups? In other words, suppose each individual’s poem was going to get the same creativity score no matter which group they were assigned to, that the type of motivation in no way impacted their score. Then how often would the random-assignment process alone lead to a difference in mean creativity scores as large (or larger) than 19.88 – 15.74 = 4.14 points?

We again want to apply to a probability model to approximate a p-value , but this time the model will be a bit different. Think of writing everyone’s creativity scores on an index card, shuffling up the index cards, and then dealing out 23 to the extrinsic motivation group and 24 to the intrinsic motivation group, and finding the difference in the group means. We (better yet, the computer) can repeat this process over and over to see how often, when the scores don’t change, random assignment leads to a difference in means at least as large as 4.41. Figure 3 shows the results from 1,000 such hypothetical random assignments for these scores.

Standard distribution in a typical bell curve.

Only 2 of the 1,000 simulated random assignments produced a difference in group means of 4.41 or larger. In other words, the approximate p-value is 2/1000 = 0.002. This small p-value indicates that it would be very surprising for the random assignment process alone to produce such a large difference in group means. Therefore, as with Example 2, we have strong evidence that focusing on intrinsic motivations tends to increase creativity scores, as compared to thinking about extrinsic motivations.

Notice that the previous statement implies a cause-and-effect relationship between motivation and creativity score; is such a strong conclusion justified? Yes, because of the random assignment used in the study. That should have balanced out any other variables between the two groups, so now that the small p-value convinces us that the higher mean in the intrinsic group wasn’t just a coincidence, the only reasonable explanation left is the difference in the type of motivation. Can we generalize this conclusion to everyone? Not necessarily—we could cautiously generalize this conclusion to individuals with extensive experience in creative writing similar the individuals in this study, but we would still want to know more about how these individuals were selected to participate.

Close-up photo of mathematical equations.

Statistical thinking involves the careful design of a study to collect meaningful data to answer a focused research question, detailed analysis of patterns in the data, and drawing conclusions that go beyond the observed data. Random sampling is paramount to generalizing results from our sample to a larger population, and random assignment is key to drawing cause-and-effect conclusions. With both kinds of randomness, probability models help us assess how much random variation we can expect in our results, in order to determine whether our results could happen by chance alone and to estimate a margin of error.

So where does this leave us with regard to the coffee study mentioned previously (the Freedman, Park, Abnet, Hollenbeck, & Sinha, 2012 found that men who drank at least six cups of coffee a day had a 10% lower chance of dying (women 15% lower) than those who drank none)? We can answer many of the questions:

  • This was a 14-year study conducted by researchers at the National Cancer Institute.
  • The results were published in the June issue of the New England Journal of Medicine , a respected, peer-reviewed journal.
  • The study reviewed coffee habits of more than 402,000 people ages 50 to 71 from six states and two metropolitan areas. Those with cancer, heart disease, and stroke were excluded at the start of the study. Coffee consumption was assessed once at the start of the study.
  • About 52,000 people died during the course of the study.
  • People who drank between two and five cups of coffee daily showed a lower risk as well, but the amount of reduction increased for those drinking six or more cups.
  • The sample sizes were fairly large and so the p-values are quite small, even though percent reduction in risk was not extremely large (dropping from a 12% chance to about 10%–11%).
  • Whether coffee was caffeinated or decaffeinated did not appear to affect the results.
  • This was an observational study, so no cause-and-effect conclusions can be drawn between coffee drinking and increased longevity, contrary to the impression conveyed by many news headlines about this study. In particular, it’s possible that those with chronic diseases don’t tend to drink coffee.

This study needs to be reviewed in the larger context of similar studies and consistency of results across studies, with the constant caution that this was not a randomized experiment. Whereas a statistical analysis can still “adjust” for other potential confounding variables, we are not yet convinced that researchers have identified them all or completely isolated why this decrease in death risk is evident. Researchers can now take the findings of this study and develop more focused studies that address new questions.

Explore these outside resources to learn more about applied statistics:

  • Video about p-values:  P-Value Extravaganza
  • Interactive web applets for teaching and learning statistics
  • Inter-university Consortium for Political and Social Research  where you can find and analyze data.
  • The Consortium for the Advancement of Undergraduate Statistics

Think It Over

  • Find a recent research article in your field and answer the following: What was the primary research question? How were individuals selected to participate in the study? Were summary results provided? How strong is the evidence presented in favor or against the research question? Was random assignment used? Summarize the main conclusions from the study, addressing the issues of statistical significance, statistical confidence, generalizability, and cause and effect. Do you agree with the conclusions drawn from this study, based on the study design and the results presented?
  • Is it reasonable to use a random sample of 1,000 individuals to draw conclusions about all U.S. adults? Explain why or why not.

CC licensed content, Original

  • Modification, adaptation, and original content. Authored by : Pat Carroll and Lumen Learning. Provided by : Lumen Learning. License : CC BY: Attribution

CC licensed content, Shared previously

  • Statistical Thinking. Authored by : Beth Chance and Allan Rossman, California Polytechnic State University, San Luis Obispo. Provided by : Noba. Located at : http://nobaproject.com/modules/statistical-thinking . License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike
  • The Replication Crisis. Authored by : Colin Thomas William. Provided by : Ivy Tech Community College. License : CC BY: Attribution

related to whether the results from the sample can be generalized to a larger population.

the collection of individuals on which we collect data.

a larger collection of individuals that we would like to generalize our results to.

using a probability-based method to select a subset of individuals for the sample from the population.

the expected amount of random variation in a statistic; often defined for 95% confidence level.

using a probability-based method to divide a sample into treatment groups.

the probability of observing a particular outcome in a sample, or more extreme, under a conjecture about the larger population or process.

related to whether we say one variable is causing changes in the other variable, versus other variables that may be related to these two variables.

General Psychology Copyright © by OpenStax and Lumen Learning is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

pep

Find what you need to study

1.3 Defining Psychological Science: The Experimental Method

5 min read • january 6, 2023

Sadiyya Holsey

Sadiyya Holsey

Attend a live cram event

Review all units live with expert teachers & students

Types of Research  

Basic Research is performed to learn about something. It is curiosity-driven and used to expand upon knowledge. It doesn't have an immediate objective. An example of basic research would be a study assessing the impacts of caffeine ☕️ consumption on the brain. As you can see from the example, the goal is not to solve a problem it is only to increase knowledge about a particular topic. 

Applied Research answers specific questions and is used to solve a problem or do something of practical use. An example of applied research would be trying to find a cure for obsessive-compulsive disorder.

The Scientific Method

Even though you have probably learned this a million times, here is a quick overview:

First, the researcher would make a theory to try and explain the behavior that we are observing.

This theory would then produce a hypothesis , or an educated guess/testable prediction.

However, theories could bias our observations. Think about it: if you want to prove your theory correct, you would try and make it so the results prove it.

To avoid this bias, psychologists use something called an operational definition.

How do you test something if every researcher describes it in a different way, possibly, even, in a biased way?🤔

Operational Definitions are statements of the exact procedures used in the study, which would eventually allow other researchers to replicate the research.

Here's an example: how would you describe human intelligence?

You may have said how smart someone is, measured by their grades, but this is a biased definition. The operational definition would be what an intelligence test (such as an IQ test) measures.

Types of Variables

There are several types of variables in an experiment. There is the independent variable , dependent variable , confounding variables , and control variables .

The independent variable is the variable that changes in an experiment. For example, a researcher wanted to see how sleep affects performance on a certain exam. The researcher would change the amounts of sleep given to the subjects in order to see any changes. 

The dependent variable is the effect of the change in the experiment. This is what gets measured. For example, in the earlier example with sleep 😴 and performance on exams, sleep is the independent variable and the performance on the exam is the dependent variable , because performance on the exam “depends” on the independent variable , sleep.

The confounding variable is an outside influence that changes the effect of the dependent and independent variables. For example, say there is a correlation between crime and the sale of ice cream🍨. As the crime rate increases, ice cream sales also increase. So, one might suggest that criminals cause people to buy ice cream or that purchasing ice cream causes people to commit crimes. However, both are extremely unlikely. 

The confounding variable includes a new outside variable not present in the original experiment. In our ice cream example, let's look at the weather, which could be the reason for the correlation. Ice cream is more often sold when it is hot outside, and people are more likely to commit crimes when it is hot outside because there is more social interaction. In the winter, people are less likely to buy ice cream, and there is also less social interaction. ☀️

To recall from key topic 1.2 , the Hawthorne Effect exists as well. If a researcher is observing people, those people would behave differently when they realize they are being watched, impacting the results of the naturalistic observation.

https://firebasestorage.googleapis.com/v0/b/fiveable-92889.appspot.com/o/images%2F-zNEVuhDfF5EX.png?alt=media&token=e8c81766-af65-4791-95e9-f0775f566518

Image Courtesy of Kiana Matthews .

The control variable is the variable that's kept the same throughout an experiment. For example, if a researcher wants to see how sleep affects performance on a test, the control variables could be the test, sleeping atmosphere, and the type of bed. These would all be kept the same throughout the research. 

Why do we need a control variable?

Well, then you can prove why something happened without an alternate explanation. You can’t say the type of bed or the difficulty of the test impacted those results if the researcher kept those the same throughout the experiment. 

Cause and Effect

Also, a researcher must use random assignment to demonstrate cause and effect . Random assignment is when participants are assigned to each experimental group with an equal chance ⚖️ of being chosen.  Don't confuse this with a random sample : each individual in the population has an equal chance of participating in an experiment.

Random assignment is randomly selecting people to be in an experimental group while random sample is randomly selecting people from the population to be in the experiment as a whole. Both random sampling and random assignment ultimately lead to the most accurate results.

Types of Bias

Sampling bias is a result of a flawed sampling process that produces an unrepresentative sample.

Experimenter bias is when researchers influence the results of an experiment to portray a certain outcome. A double-blind procedure is when neither the researcher or the participants know what groups the participants have been assigned to. This helps prevent bias when the researcher is looking over the results.

Common Sense?

Researchers and scientists cannot rely on common sense because of three main concepts:

Hindsight Bias : the tendency to believe that you knew what was going to happen, as if you foresaw the event: "I knew it all along."

Overconfidence : we are often overconfident in what we find/believe, which misleads others about the truth.

We perceive order in events that are completely random. You can see this with coin flips. If you were to ask a group of students to flip a coin 50 times and record data, you'd be able to easily tell who actually did the assignment and who thought they could just make up the results. Those that actually did the assignment would have had long chains of heads or long chains of tails (HHHHHHH/TTTTTTT) while those that didn't would just alternate between the two (HTHTHTHHTTHTHT). We are generally unable to understand randomness since we always try to make sense of it.

Key Terms to Review ( 19 )

Applied Research

Basic Research

Confounding Variables

Control Variables

Dependent Variable

Double-Blind Procedure

Experimenter Bias

Hawthorne Effect

Hindsight Bias

Independent Variable

Operational Definitions

Overconfidence

Random Assignment

Random Sample

Sampling Bias

Scientific Method

Fiveable

Stay Connected

© 2024 Fiveable Inc. All rights reserved.

AP® and SAT® are trademarks registered by the College Board, which is not affiliated with, and does not endorse this website.

  • Yale Directories

Institution for Social and Policy Studies

Advancing research • shaping policy • developing leaders, why randomize.

About Randomized Field Experiments Randomized field experiments allow researchers to scientifically measure the impact of an intervention on a particular outcome of interest.

What is a randomized field experiment? In a randomized experiment, a study sample is divided into one group that will receive the intervention being studied (the treatment group) and another group that will not receive the intervention (the control group). For instance, a study sample might consist of all registered voters in a particular city. This sample will then be randomly divided into treatment and control groups. Perhaps 40% of the sample will be on a campaign’s Get-Out-the-Vote (GOTV) mailing list and the other 60% of the sample will not receive the GOTV mailings. The outcome measured –voter turnout– can then be compared in the two groups. The difference in turnout will reflect the effectiveness of the intervention.

What does random assignment mean? The key to randomized experimental research design is in the random assignment of study subjects – for example, individual voters, precincts, media markets or some other group – into treatment or control groups. Randomization has a very specific meaning in this context. It does not refer to haphazard or casual choosing of some and not others. Randomization in this context means that care is taken to ensure that no pattern exists between the assignment of subjects into groups and any characteristics of those subjects. Every subject is as likely as any other to be assigned to the treatment (or control) group. Randomization is generally achieved by employing a computer program containing a random number generator. Randomization procedures differ based upon the research design of the experiment. Individuals or groups may be randomly assigned to treatment or control groups. Some research designs stratify subjects by geographic, demographic or other factors prior to random assignment in order to maximize the statistical power of the estimated effect of the treatment (e.g., GOTV intervention). Information about the randomization procedure is included in each experiment summary on the site.

What are the advantages of randomized experimental designs? Randomized experimental design yields the most accurate analysis of the effect of an intervention (e.g., a voter mobilization phone drive or a visit from a GOTV canvasser, on voter behavior). By randomly assigning subjects to be in the group that receives the treatment or to be in the control group, researchers can measure the effect of the mobilization method regardless of other factors that may make some people or groups more likely to participate in the political process. To provide a simple example, say we are testing the effectiveness of a voter education program on high school seniors. If we allow students from the class to volunteer to participate in the program, and we then compare the volunteers’ voting behavior against those who did not participate, our results will reflect something other than the effects of the voter education intervention. This is because there are, no doubt, qualities about those volunteers that make them different from students who do not volunteer. And, most important for our work, those differences may very well correlate with propensity to vote. Instead of letting students self-select, or even letting teachers select students (as teachers may have biases in who they choose), we could randomly assign all students in a given class to be in either a treatment or control group. This would ensure that those in the treatment and control groups differ solely due to chance. The value of randomization may also be seen in the use of walk lists for door-to-door canvassers. If canvassers choose which houses they will go to and which they will skip, they may choose houses that seem more inviting or they may choose houses that are placed closely together rather than those that are more spread out. These differences could conceivably correlate with voter turnout. Or if house numbers are chosen by selecting those on the first half of a ten page list, they may be clustered in neighborhoods that differ in important ways from neighborhoods in the second half of the list. Random assignment controls for both known and unknown variables that can creep in with other selection processes to confound analyses. Randomized experimental design is a powerful tool for drawing valid inferences about cause and effect. The use of randomized experimental design should allow a degree of certainty that the research findings cited in studies that employ this methodology reflect the effects of the interventions being measured and not some other underlying variable or variables.

Explore Psychology

What Is Random Assignment in Psychology?

Categories Research Methods

Random assignment means that every participant has the same chance of being chosen for the experimental or control group. It involves using procedures that rely on chance to assign participants to groups. Doing this means that every participant in a study has an equal opportunity to be assigned to any group.

For example, in a psychology experiment, participants might be assigned to either a control or experimental group. Some experiments might only have one experimental group, while others may have several treatment variations.

Using random assignment means that each participant has the same chance of being assigned to any of these groups.

Table of Contents

How to Use Random Assignment

So what type of procedures might psychologists utilize for random assignment? Strategies can include:

  • Flipping a coin
  • Assigning random numbers
  • Rolling dice
  • Drawing names out of a hat

How Does Random Assignment Work?

A psychology experiment aims to determine if changes in one variable lead to changes in another variable. Researchers will first begin by coming up with a hypothesis. Once researchers have an idea of what they think they might find in a population, they will come up with an experimental design and then recruit participants for their study.

Once they have a pool of participants representative of the population they are interested in looking at, they will randomly assign the participants to their groups.

  • Control group : Some participants will end up in the control group, which serves as a baseline and does not receive the independent variables.
  • Experimental group : Other participants will end up in the experimental groups that receive some form of the independent variables.

By using random assignment, the researchers make it more likely that the groups are equal at the start of the experiment. Since the groups are the same on other variables, it can be assumed that any changes that occur are the result of varying the independent variables.

After a treatment has been administered, the researchers will then collect data in order to determine if the independent variable had any impact on the dependent variable.

Random Assignment vs. Random Selection

It is important to remember that random assignment is not the same thing as random selection , also known as random sampling.

Random selection instead involves how people are chosen to be in a study. Using random selection, every member of a population stands an equal chance of being chosen for a study or experiment.

So random sampling affects how participants are chosen for a study, while random assignment affects how participants are then assigned to groups.

Examples of Random Assignment

Imagine that a psychology researcher is conducting an experiment to determine if getting adequate sleep the night before an exam results in better test scores.

Forming a Hypothesis

They hypothesize that participants who get 8 hours of sleep will do better on a math exam than participants who only get 4 hours of sleep.

Obtaining Participants

The researcher starts by obtaining a pool of participants. They find 100 participants from a local university. Half of the participants are female, and half are male.

Randomly Assign Participants to Groups

The researcher then assigns random numbers to each participant and uses a random number generator to randomly assign each number to either the 4-hour or 8-hour sleep groups.

Conduct the Experiment

Those in the 8-hour sleep group agree to sleep for 8 hours that night, while those in the 4-hour group agree to wake up after only 4 hours. The following day, all of the participants meet in a classroom.

Collect and Analyze Data

Everyone takes the same math test. The test scores are then compared to see if the amount of sleep the night before had any impact on test scores.

Why Is Random Assignment Important in Psychology Research?

Random assignment is important in psychology research because it helps improve a study’s internal validity. This means that the researchers are sure that the study demonstrates a cause-and-effect relationship between an independent and dependent variable.

Random assignment improves the internal validity by minimizing the risk that there are systematic differences in the participants who are in each group.

Key Points to Remember About Random Assignment

  • Random assignment in psychology involves each participant having an equal chance of being chosen for any of the groups, including the control and experimental groups.
  • It helps control for potential confounding variables, reducing the likelihood of pre-existing differences between groups.
  • This method enhances the internal validity of experiments, allowing researchers to draw more reliable conclusions about cause-and-effect relationships.
  • Random assignment is crucial for creating comparable groups and increasing the scientific rigor of psychological studies.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Random Assignment in Experiments | Introduction & Examples

Random Assignment in Experiments | Introduction & Examples

Published on 6 May 2022 by Pritha Bhandari . Revised on 13 February 2023.

In experimental research, random assignment is a way of placing participants from your sample into different treatment groups using randomisation.

With simple random assignment, every member of the sample has a known or equal chance of being placed in a control group or an experimental group. Studies that use simple random assignment are also called completely randomised designs .

Random assignment is a key part of experimental design . It helps you ensure that all groups are comparable at the start of a study: any differences between them are due to random factors.

Table of contents

Why does random assignment matter, random sampling vs random assignment, how do you use random assignment, when is random assignment not used, frequently asked questions about random assignment.

Random assignment is an important part of control in experimental research, because it helps strengthen the internal validity of an experiment.

In experiments, researchers manipulate an independent variable to assess its effect on a dependent variable, while controlling for other variables. To do so, they often use different levels of an independent variable for different groups of participants.

This is called a between-groups or independent measures design.

You use three groups of participants that are each given a different level of the independent variable:

  • A control group that’s given a placebo (no dosage)
  • An experimental group that’s given a low dosage
  • A second experimental group that’s given a high dosage

Random assignment to helps you make sure that the treatment groups don’t differ in systematic or biased ways at the start of the experiment.

If you don’t use random assignment, you may not be able to rule out alternative explanations for your results.

  • Participants recruited from pubs are placed in the control group
  • Participants recruited from local community centres are placed in the low-dosage experimental group
  • Participants recruited from gyms are placed in the high-dosage group

With this type of assignment, it’s hard to tell whether the participant characteristics are the same across all groups at the start of the study. Gym users may tend to engage in more healthy behaviours than people who frequent pubs or community centres, and this would introduce a healthy user bias in your study.

Although random assignment helps even out baseline differences between groups, it doesn’t always make them completely equivalent. There may still be extraneous variables that differ between groups, and there will always be some group differences that arise from chance.

Most of the time, the random variation between groups is low, and, therefore, it’s acceptable for further analysis. This is especially true when you have a large sample. In general, you should always use random assignment in experiments when it is ethically possible and makes sense for your study topic.

Prevent plagiarism, run a free check.

Random sampling and random assignment are both important concepts in research, but it’s important to understand the difference between them.

Random sampling (also called probability sampling or random selection) is a way of selecting members of a population to be included in your study. In contrast, random assignment is a way of sorting the sample participants into control and experimental groups.

While random sampling is used in many types of studies, random assignment is only used in between-subjects experimental designs.

Some studies use both random sampling and random assignment, while others use only one or the other.

Random sample vs random assignment

Random sampling enhances the external validity or generalisability of your results, because it helps to ensure that your sample is unbiased and representative of the whole population. This allows you to make stronger statistical inferences .

You use a simple random sample to collect data. Because you have access to the whole population (all employees), you can assign all 8,000 employees a number and use a random number generator to select 300 employees. These 300 employees are your full sample.

Random assignment enhances the internal validity of the study, because it ensures that there are no systematic differences between the participants in each group. This helps you conclude that the outcomes can be attributed to the independent variable .

  • A control group that receives no intervention
  • An experimental group that has a remote team-building intervention every week for a month

You use random assignment to place participants into the control or experimental group. To do so, you take your list of participants and assign each participant a number. Again, you use a random number generator to place each participant in one of the two groups.

To use simple random assignment, you start by giving every member of the sample a unique number. Then, you can use computer programs or manual methods to randomly assign each participant to a group.

  • Random number generator: Use a computer program to generate random numbers from the list for each group.
  • Lottery method: Place all numbers individually into a hat or a bucket, and draw numbers at random for each group.
  • Flip a coin: When you only have two groups, for each number on the list, flip a coin to decide if they’ll be in the control or the experimental group.
  • Use a dice: When you have three groups, for each number on the list, roll a die to decide which of the groups they will be in. For example, assume that rolling 1 or 2 lands them in a control group; 3 or 4 in an experimental group; and 5 or 6 in a second control or experimental group.

This type of random assignment is the most powerful method of placing participants in conditions, because each individual has an equal chance of being placed in any one of your treatment groups.

Random assignment in block designs

In more complicated experimental designs, random assignment is only used after participants are grouped into blocks based on some characteristic (e.g., test score or demographic variable). These groupings mean that you need a larger sample to achieve high statistical power .

For example, a randomised block design involves placing participants into blocks based on a shared characteristic (e.g., college students vs graduates), and then using random assignment within each block to assign participants to every treatment condition. This helps you assess whether the characteristic affects the outcomes of your treatment.

In an experimental matched design , you use blocking and then match up individual participants from each block based on specific characteristics. Within each matched pair or group, you randomly assign each participant to one of the conditions in the experiment and compare their outcomes.

Sometimes, it’s not relevant or ethical to use simple random assignment, so groups are assigned in a different way.

When comparing different groups

Sometimes, differences between participants are the main focus of a study, for example, when comparing children and adults or people with and without health conditions. Participants are not randomly assigned to different groups, but instead assigned based on their characteristics.

In this type of study, the characteristic of interest (e.g., gender) is an independent variable, and the groups differ based on the different levels (e.g., men, women). All participants are tested the same way, and then their group-level outcomes are compared.

When it’s not ethically permissible

When studying unhealthy or dangerous behaviours, it’s not possible to use random assignment. For example, if you’re studying heavy drinkers and social drinkers, it’s unethical to randomly assign participants to one of the two groups and ask them to drink large amounts of alcohol for your experiment.

When you can’t assign participants to groups, you can also conduct a quasi-experimental study . In a quasi-experiment, you study the outcomes of pre-existing groups who receive treatments that you may not have any control over (e.g., heavy drinkers and social drinkers).

These groups aren’t randomly assigned, but may be considered comparable when some other variables (e.g., age or socioeconomic status) are controlled for.

In experimental research, random assignment is a way of placing participants from your sample into different groups using randomisation. With this method, every member of the sample has a known or equal chance of being placed in a control group or an experimental group.

Random selection, or random sampling , is a way of selecting members of a population for your study’s sample.

In contrast, random assignment is a way of sorting the sample into control and experimental groups.

Random sampling enhances the external validity or generalisability of your results, while random assignment improves the internal validity of your study.

Random assignment is used in experiments with a between-groups or independent measures design. In this research design, there’s usually a control group and one or more experimental groups. Random assignment helps ensure that the groups are comparable.

In general, you should always use random assignment in this type of experimental design when it is ethically possible and makes sense for your study topic.

To implement random assignment , assign a unique number to every member of your study’s sample .

Then, you can use a random number generator or a lottery method to randomly assign each number to a control or experimental group. You can also do so manually, by flipping a coin or rolling a die to randomly assign participants to groups.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bhandari, P. (2023, February 13). Random Assignment in Experiments | Introduction & Examples. Scribbr. Retrieved 29 April 2024, from https://www.scribbr.co.uk/research-methods/random-assignment-experiments/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, a quick guide to experimental design | 5 steps & examples, controlled experiments | methods & examples of control, control groups and treatment groups | uses & examples.

Psychological Research

Drawing conclusions from statistics, learning objectives.

  • Describe the role of random sampling and random assignment in drawing cause-and-effect conclusions

Generalizability

Photo of a diverse group of college-aged students.

Figure 1 . Generalizability is an important research consideration: The results of studies with widely representative samples are more likely to generalize to the population. [Image: Barnacles Budget Accommodation]

One limitation to the study mentioned previously about the babies choosing the “helper” toy is that the conclusion only applies to the 16 infants in the study. We don’t know much about how those 16 infants were selected. Suppose we want to select a subset of individuals (a sample ) from a much larger group of individuals (the population ) in such a way that conclusions from the sample can be generalized to the larger population. This is the question faced by pollsters every day.

Example 1 : The General Social Survey (GSS) is a survey on societal trends conducted every other year in the United States. Based on a sample of about 2,000 adult Americans, researchers make claims about what percentage of the U.S. population consider themselves to be “liberal,” what percentage consider themselves “happy,” what percentage feel “rushed” in their daily lives, and many other issues. The key to making these claims about the larger population of all American adults lies in how the sample is selected. The goal is to select a sample that is representative of the population, and a common way to achieve this goal is to select a random sample that gives every member of the population an equal chance of being selected for the sample. In its simplest form, random sampling involves numbering every member of the population and then using a computer to randomly select the subset to be surveyed. Most polls don’t operate exactly like this, but they do use probability-based sampling methods to select individuals from nationally representative panels.

In 2004, the GSS reported that 817 of 977 respondents (or 83.6%) indicated that they always or sometimes feel rushed. This is a clear majority, but we again need to consider variation due to random sampling . Fortunately, we can use the same probability model we did in the previous example to investigate the probable size of this error. (Note, we can use the coin-tossing model when the actual population size is much, much larger than the sample size, as then we can still consider the probability to be the same for every individual in the sample.) This probability model predicts that the sample result will be within 3 percentage points of the population value (roughly 1 over the square root of the sample size, the margin of error ). A statistician would conclude, with 95% confidence, that between 80.6% and 86.6% of all adult Americans in 2004 would have responded that they sometimes or always feel rushed.

The key to the margin of error is that when we use a probability sampling method, we can make claims about how often (in the long run, with repeated random sampling) the sample result would fall within a certain distance from the unknown population value by chance (meaning by random sampling variation) alone. Conversely, non-random samples are often suspect to bias, meaning the sampling method systematically over-represents some segments of the population and under-represents others. We also still need to consider other sources of bias, such as individuals not responding honestly. These sources of error are not measured by the margin of error.

Cause and Effect

In many research studies, the primary question of interest concerns differences between groups. Then the question becomes how were the groups formed (e.g., selecting people who already drink coffee vs. those who don’t). In some studies, the researchers actively form the groups themselves. But then we have a similar question—could any differences we observe in the groups be an artifact of that group-formation process? Or maybe the difference we observe in the groups is so large that we can discount a “fluke” in the group-formation process as a reasonable explanation for what we find?

Example 2 : A psychology study investigated whether people tend to display more creativity when they are thinking about intrinsic (internal) or extrinsic (external) motivations (Ramsey & Schafer, 2002, based on a study by Amabile, 1985). The subjects were 47 people with extensive experience with creative writing. Subjects began by answering survey questions about either intrinsic motivations for writing (such as the pleasure of self-expression) or extrinsic motivations (such as public recognition). Then all subjects were instructed to write a haiku, and those poems were evaluated for creativity by a panel of judges. The researchers conjectured beforehand that subjects who were thinking about intrinsic motivations would display more creativity than subjects who were thinking about extrinsic motivations. The creativity scores from the 47 subjects in this study are displayed in Figure 2, where higher scores indicate more creativity.

Image showing a dot for creativity scores, which vary between 5 and 27, and the types of motivation each person was given as a motivator, either extrinsic or intrinsic.

Figure 2 . Creativity scores separated by type of motivation.

In this example, the key question is whether the type of motivation affects creativity scores. In particular, do subjects who were asked about intrinsic motivations tend to have higher creativity scores than subjects who were asked about extrinsic motivations?

Figure 2 reveals that both motivation groups saw considerable variability in creativity scores, and these scores have considerable overlap between the groups. In other words, it’s certainly not always the case that those with extrinsic motivations have higher creativity than those with intrinsic motivations, but there may still be a statistical tendency in this direction. (Psychologist Keith Stanovich (2013) refers to people’s difficulties with thinking about such probabilistic tendencies as “the Achilles heel of human cognition.”)

The mean creativity score is 19.88 for the intrinsic group, compared to 15.74 for the extrinsic group, which supports the researchers’ conjecture. Yet comparing only the means of the two groups fails to consider the variability of creativity scores in the groups. We can measure variability with statistics using, for instance, the standard deviation: 5.25 for the extrinsic group and 4.40 for the intrinsic group. The standard deviations tell us that most of the creativity scores are within about 5 points of the mean score in each group. We see that the mean score for the intrinsic group lies within one standard deviation of the mean score for extrinsic group. So, although there is a tendency for the creativity scores to be higher in the intrinsic group, on average, the difference is not extremely large.

We again want to consider possible explanations for this difference. The study only involved individuals with extensive creative writing experience. Although this limits the population to which we can generalize, it does not explain why the mean creativity score was a bit larger for the intrinsic group than for the extrinsic group. Maybe women tend to receive higher creativity scores? Here is where we need to focus on how the individuals were assigned to the motivation groups. If only women were in the intrinsic motivation group and only men in the extrinsic group, then this would present a problem because we wouldn’t know if the intrinsic group did better because of the different type of motivation or because they were women. However, the researchers guarded against such a problem by randomly assigning the individuals to the motivation groups. Like flipping a coin, each individual was just as likely to be assigned to either type of motivation. Why is this helpful? Because this random assignment tends to balance out all the variables related to creativity we can think of, and even those we don’t think of in advance, between the two groups. So we should have a similar male/female split between the two groups; we should have a similar age distribution between the two groups; we should have a similar distribution of educational background between the two groups; and so on. Random assignment should produce groups that are as similar as possible except for the type of motivation, which presumably eliminates all those other variables as possible explanations for the observed tendency for higher scores in the intrinsic group.

But does this always work? No, so by “luck of the draw” the groups may be a little different prior to answering the motivation survey. So then the question is, is it possible that an unlucky random assignment is responsible for the observed difference in creativity scores between the groups? In other words, suppose each individual’s poem was going to get the same creativity score no matter which group they were assigned to, that the type of motivation in no way impacted their score. Then how often would the random-assignment process alone lead to a difference in mean creativity scores as large (or larger) than 19.88 – 15.74 = 4.14 points?

We again want to apply to a probability model to approximate a p-value , but this time the model will be a bit different. Think of writing everyone’s creativity scores on an index card, shuffling up the index cards, and then dealing out 23 to the extrinsic motivation group and 24 to the intrinsic motivation group, and finding the difference in the group means. We (better yet, the computer) can repeat this process over and over to see how often, when the scores don’t change, random assignment leads to a difference in means at least as large as 4.41. Figure 3 shows the results from 1,000 such hypothetical random assignments for these scores.

Standard distribution in a typical bell curve.

Figure 3 . Differences in group means under random assignment alone.

Only 2 of the 1,000 simulated random assignments produced a difference in group means of 4.41 or larger. In other words, the approximate p-value is 2/1000 = 0.002. This small p-value indicates that it would be very surprising for the random assignment process alone to produce such a large difference in group means. Therefore, as with Example 2, we have strong evidence that focusing on intrinsic motivations tends to increase creativity scores, as compared to thinking about extrinsic motivations.

Notice that the previous statement implies a cause-and-effect relationship between motivation and creativity score; is such a strong conclusion justified? Yes, because of the random assignment used in the study. That should have balanced out any other variables between the two groups, so now that the small p-value convinces us that the higher mean in the intrinsic group wasn’t just a coincidence, the only reasonable explanation left is the difference in the type of motivation. Can we generalize this conclusion to everyone? Not necessarily—we could cautiously generalize this conclusion to individuals with extensive experience in creative writing similar the individuals in this study, but we would still want to know more about how these individuals were selected to participate.

Close-up photo of mathematical equations.

Figure 4 . Researchers employ the scientific method that involves a great deal of statistical thinking: generate a hypothesis –> design a study to test that hypothesis –> conduct the study –> analyze the data –> report the results. [Image: widdowquinn]

Statistical thinking involves the careful design of a study to collect meaningful data to answer a focused research question, detailed analysis of patterns in the data, and drawing conclusions that go beyond the observed data. Random sampling is paramount to generalizing results from our sample to a larger population, and random assignment is key to drawing cause-and-effect conclusions. With both kinds of randomness, probability models help us assess how much random variation we can expect in our results, in order to determine whether our results could happen by chance alone and to estimate a margin of error.

So where does this leave us with regard to the coffee study mentioned previously (the Freedman, Park, Abnet, Hollenbeck, & Sinha, 2012 found that men who drank at least six cups of coffee a day had a 10% lower chance of dying (women 15% lower) than those who drank none)? We can answer many of the questions:

  • This was a 14-year study conducted by researchers at the National Cancer Institute.
  • The results were published in the June issue of the New England Journal of Medicine , a respected, peer-reviewed journal.
  • The study reviewed coffee habits of more than 402,000 people ages 50 to 71 from six states and two metropolitan areas. Those with cancer, heart disease, and stroke were excluded at the start of the study. Coffee consumption was assessed once at the start of the study.
  • About 52,000 people died during the course of the study.
  • People who drank between two and five cups of coffee daily showed a lower risk as well, but the amount of reduction increased for those drinking six or more cups.
  • The sample sizes were fairly large and so the p-values are quite small, even though percent reduction in risk was not extremely large (dropping from a 12% chance to about 10%–11%).
  • Whether coffee was caffeinated or decaffeinated did not appear to affect the results.
  • This was an observational study, so no cause-and-effect conclusions can be drawn between coffee drinking and increased longevity, contrary to the impression conveyed by many news headlines about this study. In particular, it’s possible that those with chronic diseases don’t tend to drink coffee.

This study needs to be reviewed in the larger context of similar studies and consistency of results across studies, with the constant caution that this was not a randomized experiment. Whereas a statistical analysis can still “adjust” for other potential confounding variables, we are not yet convinced that researchers have identified them all or completely isolated why this decrease in death risk is evident. Researchers can now take the findings of this study and develop more focused studies that address new questions.

Explore these outside resources to learn more about applied statistics:

  • Video about p-values:  P-Value Extravaganza
  • Interactive web applets for teaching and learning statistics
  • Inter-university Consortium for Political and Social Research  where you can find and analyze data.
  • The Consortium for the Advancement of Undergraduate Statistics

Think It Over

  • Find a recent research article in your field and answer the following: What was the primary research question? How were individuals selected to participate in the study? Were summary results provided? How strong is the evidence presented in favor or against the research question? Was random assignment used? Summarize the main conclusions from the study, addressing the issues of statistical significance, statistical confidence, generalizability, and cause and effect. Do you agree with the conclusions drawn from this study, based on the study design and the results presented?
  • Is it reasonable to use a random sample of 1,000 individuals to draw conclusions about all U.S. adults? Explain why or why not.

cause-and-effect: related to whether we say one variable is causing changes in the other variable, versus other variables that may be related to these two variables. generalizability : related to whether the results from the sample can be generalized to a larger population. margin of error : the expected amount of random variation in a statistic; often defined for 95% confidence level. population : a larger collection of individuals that we would like to generalize our results to. p-value : the probability of observing a particular outcome in a sample, or more extreme, under a conjecture about the larger population or process. random assignment : using a probability-based method to divide a sample into treatment groups. random sampling : using a probability-based method to select a subset of individuals for the sample from the population. sample : the collection of individuals on which we collect data.

Contribute!

Improve this page Learn More

  • Modification, adaptation, and original content. Authored by : Pat Carroll and Lumen Learning. Provided by : Lumen Learning. License : CC BY: Attribution
  • Statistical Thinking. Authored by : Beth Chance and Allan Rossman, California Polytechnic State University, San Luis Obispo. Provided by : Noba. Located at : http://nobaproject.com/modules/statistical-thinking . License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike
  • The Replication Crisis. Authored by : Colin Thomas William. Provided by : Ivy Tech Community College. License : CC BY: Attribution

Footer Logo Lumen Waymaker

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

3.4 - experimental and observational studies.

Now that Jaylen can weigh the different sampling strategies, he might want to consider the type of study he is conduction. As a note, for students interested in research designs, please consult STAT 503 for a much more in-depth discussion. However, for this example, we will simply distinguish between experimental and observational studies.

Now that we know how to collect data, the next step is to determine the type of study. The type of study will determine what type of relationship we can conclude.

There are predominantly two different types of studies: 

Let's say that there is an option to take quizzes throughout this class. In an  observational study , we may find that better students tend to take the quizzes and do better on exams. Consequently, we might conclude that there may be a relationship between quizzes and exam scores.

In an experimental study , we would randomly assign quizzes to specific students to look for improvements. In other words, we would look to see whether taking quizzes causes higher exam scores.

Causation Section  

It is very important to distinguish between observational and experimental studies since one has to be very skeptical about drawing cause and effect conclusions using observational studies. The use of random assignment of treatments (i.e. what distinguishes an experimental study from an observational study) allows one to employ cause and effect conclusions.

Ethics is an important aspect of experimental design to keep in mind. For example, the original relationship between smoking and lung cancer was based on an observational study and not an assignment of smoking behavior.

Random Assignment in Psychology (Definition + 40 Examples)

practical psychology logo

Have you ever wondered how researchers discover new ways to help people learn, make decisions, or overcome challenges? A hidden hero in this adventure of discovery is a method called random assignment, a cornerstone in psychological research that helps scientists uncover the truths about the human mind and behavior.

Random Assignment is a process used in research where each participant has an equal chance of being placed in any group within the study. This technique is essential in experiments as it helps to eliminate biases, ensuring that the different groups being compared are similar in all important aspects.

By doing so, researchers can be confident that any differences observed are likely due to the variable being tested, rather than other factors.

In this article, we’ll explore the intriguing world of random assignment, diving into its history, principles, real-world examples, and the impact it has had on the field of psychology.

History of Random Assignment

two women in different conditions

Stepping back in time, we delve into the origins of random assignment, which finds its roots in the early 20th century.

The pioneering mind behind this innovative technique was Sir Ronald A. Fisher , a British statistician and biologist. Fisher introduced the concept of random assignment in the 1920s, aiming to improve the quality and reliability of experimental research .

His contributions laid the groundwork for the method's evolution and its widespread adoption in various fields, particularly in psychology.

Fisher’s groundbreaking work on random assignment was motivated by his desire to control for confounding variables – those pesky factors that could muddy the waters of research findings.

By assigning participants to different groups purely by chance, he realized that the influence of these confounding variables could be minimized, paving the way for more accurate and trustworthy results.

Early Studies Utilizing Random Assignment

Following Fisher's initial development, random assignment started to gain traction in the research community. Early studies adopting this methodology focused on a variety of topics, from agriculture (which was Fisher’s primary field of interest) to medicine and psychology.

The approach allowed researchers to draw stronger conclusions from their experiments, bolstering the development of new theories and practices.

One notable early study utilizing random assignment was conducted in the field of educational psychology. Researchers were keen to understand the impact of different teaching methods on student outcomes.

By randomly assigning students to various instructional approaches, they were able to isolate the effects of the teaching methods, leading to valuable insights and recommendations for educators.

Evolution of the Methodology

As the decades rolled on, random assignment continued to evolve and adapt to the changing landscape of research.

Advances in technology introduced new tools and techniques for implementing randomization, such as computerized random number generators, which offered greater precision and ease of use.

The application of random assignment expanded beyond the confines of the laboratory, finding its way into field studies and large-scale surveys.

Researchers across diverse disciplines embraced the methodology, recognizing its potential to enhance the validity of their findings and contribute to the advancement of knowledge.

From its humble beginnings in the early 20th century to its widespread use today, random assignment has proven to be a cornerstone of scientific inquiry.

Its development and evolution have played a pivotal role in shaping the landscape of psychological research, driving discoveries that have improved lives and deepened our understanding of the human experience.

Principles of Random Assignment

Delving into the heart of random assignment, we uncover the theories and principles that form its foundation.

The method is steeped in the basics of probability theory and statistical inference, ensuring that each participant has an equal chance of being placed in any group, thus fostering fair and unbiased results.

Basic Principles of Random Assignment

Understanding the core principles of random assignment is key to grasping its significance in research. There are three principles: equal probability of selection, reduction of bias, and ensuring representativeness.

The first principle, equal probability of selection , ensures that every participant has an identical chance of being assigned to any group in the study. This randomness is crucial as it mitigates the risk of bias and establishes a level playing field.

The second principle focuses on the reduction of bias . Random assignment acts as a safeguard, ensuring that the groups being compared are alike in all essential aspects before the experiment begins.

This similarity between groups allows researchers to attribute any differences observed in the outcomes directly to the independent variable being studied.

Lastly, ensuring representativeness is a vital principle. When participants are assigned randomly, the resulting groups are more likely to be representative of the larger population.

This characteristic is crucial for the generalizability of the study’s findings, allowing researchers to apply their insights broadly.

Theoretical Foundation

The theoretical foundation of random assignment lies in probability theory and statistical inference .

Probability theory deals with the likelihood of different outcomes, providing a mathematical framework for analyzing random phenomena. In the context of random assignment, it helps in ensuring that each participant has an equal chance of being placed in any group.

Statistical inference, on the other hand, allows researchers to draw conclusions about a population based on a sample of data drawn from that population. It is the mechanism through which the results of a study can be generalized to a broader context.

Random assignment enhances the reliability of statistical inferences by reducing biases and ensuring that the sample is representative.

Differentiating Random Assignment from Random Selection

It’s essential to distinguish between random assignment and random selection, as the two terms, while related, have distinct meanings in the realm of research.

Random assignment refers to how participants are placed into different groups in an experiment, aiming to control for confounding variables and help determine causes.

In contrast, random selection pertains to how individuals are chosen to participate in a study. This method is used to ensure that the sample of participants is representative of the larger population, which is vital for the external validity of the research.

While both methods are rooted in randomness and probability, they serve different purposes in the research process.

Understanding the theories, principles, and distinctions of random assignment illuminates its pivotal role in psychological research.

This method, anchored in probability theory and statistical inference, serves as a beacon of reliability, guiding researchers in their quest for knowledge and ensuring that their findings stand the test of validity and applicability.

Methodology of Random Assignment

woman sleeping with a brain monitor

Implementing random assignment in a study is a meticulous process that involves several crucial steps.

The initial step is participant selection, where individuals are chosen to partake in the study. This stage is critical to ensure that the pool of participants is diverse and representative of the population the study aims to generalize to.

Once the pool of participants has been established, the actual assignment process begins. In this step, each participant is allocated randomly to one of the groups in the study.

Researchers use various tools, such as random number generators or computerized methods, to ensure that this assignment is genuinely random and free from biases.

Monitoring and adjusting form the final step in the implementation of random assignment. Researchers need to continuously observe the groups to ensure that they remain comparable in all essential aspects throughout the study.

If any significant discrepancies arise, adjustments might be necessary to maintain the study’s integrity and validity.

Tools and Techniques Used

The evolution of technology has introduced a variety of tools and techniques to facilitate random assignment.

Random number generators, both manual and computerized, are commonly used to assign participants to different groups. These generators ensure that each individual has an equal chance of being placed in any group, upholding the principle of equal probability of selection.

In addition to random number generators, researchers often use specialized computer software designed for statistical analysis and experimental design.

These software programs offer advanced features that allow for precise and efficient random assignment, minimizing the risk of human error and enhancing the study’s reliability.

Ethical Considerations

The implementation of random assignment is not devoid of ethical considerations. Informed consent is a fundamental ethical principle that researchers must uphold.

Informed consent means that every participant should be fully informed about the nature of the study, the procedures involved, and any potential risks or benefits, ensuring that they voluntarily agree to participate.

Beyond informed consent, researchers must conduct a thorough risk and benefit analysis. The potential benefits of the study should outweigh any risks or harms to the participants.

Safeguarding the well-being of participants is paramount, and any study employing random assignment must adhere to established ethical guidelines and standards.

Conclusion of Methodology

The methodology of random assignment, while seemingly straightforward, is a multifaceted process that demands precision, fairness, and ethical integrity. From participant selection to assignment and monitoring, each step is crucial to ensure the validity of the study’s findings.

The tools and techniques employed, coupled with a steadfast commitment to ethical principles, underscore the significance of random assignment as a cornerstone of robust psychological research.

Benefits of Random Assignment in Psychological Research

The impact and importance of random assignment in psychological research cannot be overstated. It is fundamental for ensuring the study is accurate, allowing the researchers to determine if their study actually caused the results they saw, and making sure the findings can be applied to the real world.

Facilitating Causal Inferences

When participants are randomly assigned to different groups, researchers can be more confident that the observed effects are due to the independent variable being changed, and not other factors.

This ability to determine the cause is called causal inference .

This confidence allows for the drawing of causal relationships, which are foundational for theory development and application in psychology.

Ensuring Internal Validity

One of the foremost impacts of random assignment is its ability to enhance the internal validity of an experiment.

Internal validity refers to the extent to which a researcher can assert that changes in the dependent variable are solely due to manipulations of the independent variable , and not due to confounding variables.

By ensuring that each participant has an equal chance of being in any condition of the experiment, random assignment helps control for participant characteristics that could otherwise complicate the results.

Enhancing Generalizability

Beyond internal validity, random assignment also plays a crucial role in enhancing the generalizability of research findings.

When done correctly, it ensures that the sample groups are representative of the larger population, so can allow researchers to apply their findings more broadly.

This representative nature is essential for the practical application of research, impacting policy, interventions, and psychological therapies.

Limitations of Random Assignment

Potential for implementation issues.

While the principles of random assignment are robust, the method can face implementation issues.

One of the most common problems is logistical constraints. Some studies, due to their nature or the specific population being studied, find it challenging to implement random assignment effectively.

For instance, in educational settings, logistical issues such as class schedules and school policies might stop the random allocation of students to different teaching methods .

Ethical Dilemmas

Random assignment, while methodologically sound, can also present ethical dilemmas.

In some cases, withholding a potentially beneficial treatment from one of the groups of participants can raise serious ethical questions, especially in medical or clinical research where participants' well-being might be directly affected.

Researchers must navigate these ethical waters carefully, balancing the pursuit of knowledge with the well-being of participants.

Generalizability Concerns

Even when implemented correctly, random assignment does not always guarantee generalizable results.

The types of people in the participant pool, the specific context of the study, and the nature of the variables being studied can all influence the extent to which the findings can be applied to the broader population.

Researchers must be cautious in making broad generalizations from studies, even those employing strict random assignment.

Practical and Real-World Limitations

In the real world, many variables cannot be manipulated for ethical or practical reasons, limiting the applicability of random assignment.

For instance, researchers cannot randomly assign individuals to different levels of intelligence, socioeconomic status, or cultural backgrounds.

This limitation necessitates the use of other research designs, such as correlational or observational studies , when exploring relationships involving such variables.

Response to Critiques

In response to these critiques, people in favor of random assignment argue that the method, despite its limitations, remains one of the most reliable ways to establish cause and effect in experimental research.

They acknowledge the challenges and ethical considerations but emphasize the rigorous frameworks in place to address them.

The ongoing discussion around the limitations and critiques of random assignment contributes to the evolution of the method, making sure it is continuously relevant and applicable in psychological research.

While random assignment is a powerful tool in experimental research, it is not without its critiques and limitations. Implementation issues, ethical dilemmas, generalizability concerns, and real-world limitations can pose significant challenges.

However, the continued discourse and refinement around these issues underline the method's enduring significance in the pursuit of knowledge in psychology.

By being careful with how we do things and doing what's right, random assignment stays a really important part of studying how people act and think.

Real-World Applications and Examples

man on a treadmill

Random assignment has been employed in many studies across various fields of psychology, leading to significant discoveries and advancements.

Here are some real-world applications and examples illustrating the diversity and impact of this method:

  • Medicine and Health Psychology: Randomized Controlled Trials (RCTs) are the gold standard in medical research. In these studies, participants are randomly assigned to either the treatment or control group to test the efficacy of new medications or interventions.
  • Educational Psychology: Studies in this field have used random assignment to explore the effects of different teaching methods, classroom environments, and educational technologies on student learning and outcomes.
  • Cognitive Psychology: Researchers have employed random assignment to investigate various aspects of human cognition, including memory, attention, and problem-solving, leading to a deeper understanding of how the mind works.
  • Social Psychology: Random assignment has been instrumental in studying social phenomena, such as conformity, aggression, and prosocial behavior, shedding light on the intricate dynamics of human interaction.

Let's get into some specific examples. You'll need to know one term though, and that is "control group." A control group is a set of participants in a study who do not receive the treatment or intervention being tested , serving as a baseline to compare with the group that does, in order to assess the effectiveness of the treatment.

  • Smoking Cessation Study: Researchers used random assignment to put participants into two groups. One group received a new anti-smoking program, while the other did not. This helped determine if the program was effective in helping people quit smoking.
  • Math Tutoring Program: A study on students used random assignment to place them into two groups. One group received additional math tutoring, while the other continued with regular classes, to see if the extra help improved their grades.
  • Exercise and Mental Health: Adults were randomly assigned to either an exercise group or a control group to study the impact of physical activity on mental health and mood.
  • Diet and Weight Loss: A study randomly assigned participants to different diet plans to compare their effectiveness in promoting weight loss and improving health markers.
  • Sleep and Learning: Researchers randomly assigned students to either a sleep extension group or a regular sleep group to study the impact of sleep on learning and memory.
  • Classroom Seating Arrangement: Teachers used random assignment to place students in different seating arrangements to examine the effect on focus and academic performance.
  • Music and Productivity: Employees were randomly assigned to listen to music or work in silence to investigate the effect of music on workplace productivity.
  • Medication for ADHD: Children with ADHD were randomly assigned to receive either medication, behavioral therapy, or a placebo to compare treatment effectiveness.
  • Mindfulness Meditation for Stress: Adults were randomly assigned to a mindfulness meditation group or a waitlist control group to study the impact on stress levels.
  • Video Games and Aggression: A study randomly assigned participants to play either violent or non-violent video games and then measured their aggression levels.
  • Online Learning Platforms: Students were randomly assigned to use different online learning platforms to evaluate their effectiveness in enhancing learning outcomes.
  • Hand Sanitizers in Schools: Schools were randomly assigned to use hand sanitizers or not to study the impact on student illness and absenteeism.
  • Caffeine and Alertness: Participants were randomly assigned to consume caffeinated or decaffeinated beverages to measure the effects on alertness and cognitive performance.
  • Green Spaces and Well-being: Neighborhoods were randomly assigned to receive green space interventions to study the impact on residents’ well-being and community connections.
  • Pet Therapy for Hospital Patients: Patients were randomly assigned to receive pet therapy or standard care to assess the impact on recovery and mood.
  • Yoga for Chronic Pain: Individuals with chronic pain were randomly assigned to a yoga intervention group or a control group to study the effect on pain levels and quality of life.
  • Flu Vaccines Effectiveness: Different groups of people were randomly assigned to receive either the flu vaccine or a placebo to determine the vaccine’s effectiveness.
  • Reading Strategies for Dyslexia: Children with dyslexia were randomly assigned to different reading intervention strategies to compare their effectiveness.
  • Physical Environment and Creativity: Participants were randomly assigned to different room setups to study the impact of physical environment on creative thinking.
  • Laughter Therapy for Depression: Individuals with depression were randomly assigned to laughter therapy sessions or control groups to assess the impact on mood.
  • Financial Incentives for Exercise: Participants were randomly assigned to receive financial incentives for exercising to study the impact on physical activity levels.
  • Art Therapy for Anxiety: Individuals with anxiety were randomly assigned to art therapy sessions or a waitlist control group to measure the effect on anxiety levels.
  • Natural Light in Offices: Employees were randomly assigned to workspaces with natural or artificial light to study the impact on productivity and job satisfaction.
  • School Start Times and Academic Performance: Schools were randomly assigned different start times to study the effect on student academic performance and well-being.
  • Horticulture Therapy for Seniors: Older adults were randomly assigned to participate in horticulture therapy or traditional activities to study the impact on cognitive function and life satisfaction.
  • Hydration and Cognitive Function: Participants were randomly assigned to different hydration levels to measure the impact on cognitive function and alertness.
  • Intergenerational Programs: Seniors and young people were randomly assigned to intergenerational programs to study the effects on well-being and cross-generational understanding.
  • Therapeutic Horseback Riding for Autism: Children with autism were randomly assigned to therapeutic horseback riding or traditional therapy to study the impact on social communication skills.
  • Active Commuting and Health: Employees were randomly assigned to active commuting (cycling, walking) or passive commuting to study the effect on physical health.
  • Mindful Eating for Weight Management: Individuals were randomly assigned to mindful eating workshops or control groups to study the impact on weight management and eating habits.
  • Noise Levels and Learning: Students were randomly assigned to classrooms with different noise levels to study the effect on learning and concentration.
  • Bilingual Education Methods: Schools were randomly assigned different bilingual education methods to compare their effectiveness in language acquisition.
  • Outdoor Play and Child Development: Children were randomly assigned to different amounts of outdoor playtime to study the impact on physical and cognitive development.
  • Social Media Detox: Participants were randomly assigned to a social media detox or regular usage to study the impact on mental health and well-being.
  • Therapeutic Writing for Trauma Survivors: Individuals who experienced trauma were randomly assigned to therapeutic writing sessions or control groups to study the impact on psychological well-being.
  • Mentoring Programs for At-risk Youth: At-risk youth were randomly assigned to mentoring programs or control groups to assess the impact on academic achievement and behavior.
  • Dance Therapy for Parkinson’s Disease: Individuals with Parkinson’s disease were randomly assigned to dance therapy or traditional exercise to study the effect on motor function and quality of life.
  • Aquaponics in Schools: Schools were randomly assigned to implement aquaponics programs to study the impact on student engagement and environmental awareness.
  • Virtual Reality for Phobia Treatment: Individuals with phobias were randomly assigned to virtual reality exposure therapy or traditional therapy to compare effectiveness.
  • Gardening and Mental Health: Participants were randomly assigned to engage in gardening or other leisure activities to study the impact on mental health and stress reduction.

Each of these studies exemplifies how random assignment is utilized in various fields and settings, shedding light on the multitude of ways it can be applied to glean valuable insights and knowledge.

Real-world Impact of Random Assignment

old lady gardening

Random assignment is like a key tool in the world of learning about people's minds and behaviors. It’s super important and helps in many different areas of our everyday lives. It helps make better rules, creates new ways to help people, and is used in lots of different fields.

Health and Medicine

In health and medicine, random assignment has helped doctors and scientists make lots of discoveries. It’s a big part of tests that help create new medicines and treatments.

By putting people into different groups by chance, scientists can really see if a medicine works.

This has led to new ways to help people with all sorts of health problems, like diabetes, heart disease, and mental health issues like depression and anxiety.

Schools and education have also learned a lot from random assignment. Researchers have used it to look at different ways of teaching, what kind of classrooms are best, and how technology can help learning.

This knowledge has helped make better school rules, develop what we learn in school, and find the best ways to teach students of all ages and backgrounds.

Workplace and Organizational Behavior

Random assignment helps us understand how people act at work and what makes a workplace good or bad.

Studies have looked at different kinds of workplaces, how bosses should act, and how teams should be put together. This has helped companies make better rules and create places to work that are helpful and make people happy.

Environmental and Social Changes

Random assignment is also used to see how changes in the community and environment affect people. Studies have looked at community projects, changes to the environment, and social programs to see how they help or hurt people’s well-being.

This has led to better community projects, efforts to protect the environment, and programs to help people in society.

Technology and Human Interaction

In our world where technology is always changing, studies with random assignment help us see how tech like social media, virtual reality, and online stuff affect how we act and feel.

This has helped make better and safer technology and rules about using it so that everyone can benefit.

The effects of random assignment go far and wide, way beyond just a science lab. It helps us understand lots of different things, leads to new and improved ways to do things, and really makes a difference in the world around us.

From making healthcare and schools better to creating positive changes in communities and the environment, the real-world impact of random assignment shows just how important it is in helping us learn and make the world a better place.

So, what have we learned? Random assignment is like a super tool in learning about how people think and act. It's like a detective helping us find clues and solve mysteries in many parts of our lives.

From creating new medicines to helping kids learn better in school, and from making workplaces happier to protecting the environment, it’s got a big job!

This method isn’t just something scientists use in labs; it reaches out and touches our everyday lives. It helps make positive changes and teaches us valuable lessons.

Whether we are talking about technology, health, education, or the environment, random assignment is there, working behind the scenes, making things better and safer for all of us.

In the end, the simple act of putting people into groups by chance helps us make big discoveries and improvements. It’s like throwing a small stone into a pond and watching the ripples spread out far and wide.

Thanks to random assignment, we are always learning, growing, and finding new ways to make our world a happier and healthier place for everyone!

Related posts:

  • 19+ Experimental Design Examples (Methods + Types)
  • Cluster Sampling vs Stratified Sampling
  • 41+ White Collar Job Examples (Salary + Path)
  • 47+ Blue Collar Job Examples (Salary + Path)
  • McDonaldization of Society (Definition + Examples)

Reference this article:

About The Author

Photo of author

Free Personality Test

Free Personality Quiz

Free Memory Test

Free Memory Test

Free IQ Test

Free IQ Test

PracticalPie.com is a participant in the Amazon Associates Program. As an Amazon Associate we earn from qualifying purchases.

Follow Us On:

Youtube Facebook Instagram X/Twitter

Psychology Resources

Developmental

Personality

Relationships

Psychologists

Serial Killers

Psychology Tests

Personality Quiz

Memory Test

Depression test

Type A/B Personality Test

© PracticalPsychology. All rights reserved

Privacy Policy | Terms of Use

Log in using your username and password

  • Search More Search for this keyword Advanced search
  • Latest content
  • Current issue
  • For authors
  • New editors
  • BMJ Journals More You are viewing from: Google Indexer

You are here

  • Online First
  • Causal overstatements in modern physical activity research
  • Article Text
  • Article info
  • Citation Tools
  • Rapid Responses
  • Article metrics

Download PDF

  • http://orcid.org/0000-0002-4135-0408 Eivind Schjelderup Skarpsno 1 , 2
  • 1 Department of Public Health and Nursing , Norwegian University of Science and Technology , Trondheim , Norway
  • 2 Department of Neurology and Clinical Neurophysiology , St. Olav's University Hospital , Trondheim , Norway
  • Correspondence to Dr Eivind Schjelderup Skarpsno, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway; eivind.s.skarpsno{at}ntnu.no

https://doi.org/10.1136/bjsports-2023-108031

Statistics from Altmetric.com

Request permissions.

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

  • Epidemiology
  • Physical activity
  • Prospective Studies

The challenge of causation in physical activity research

Although advancements such as access to large datasets with device-measured physical behaviour, and advances in statistics, have improved our understanding of the associations between physical activity (PA) and health outcomes, PA research often contains causal overstatements. The line between correlational and causal PA research is narrow, and confounding and reverse causation may lead to false conclusions. We contend that data must be able to answer a causal question before implications for ’24-hour’ PA guidelines and interventions are considered.

Observational studies published in high-ranking medical journals have demonstrated how advancements in PA measurement technologies have advanced our understanding of the potential effects of PA on differential health outcomes. 3–6 However, these technological advancements have also come with challenges concerning how we should handle the richness of ’24-hour’ data (eg, different physical behaviours, dimensions and domains) when attempting to answer causal questions. 7 As a response, compositional data analysis (CoDa) has been suggested as an approach which integrates associations between different physical behaviours and health outcomes. 8 CoDa highlights the importance of accounting for the codependency of time spent in different behaviours and has led to a growing interest in using observational data to understand how reallocating time between different behaviours affect health. 9

A recent review 10 included 103 studies that assessed how reallocating time between behaviours influenced different health outcomes. In this review, which included 77 cross-sectional studies, the overall conclusion was that moderate-to-vigorous PA, at the expense of light PA, sedentary behaviour or sleep, was associated with better health outcomes (eg, adiposity, biomarkers, mental health and chronic disease). However, since most of the included studies were cross-sectional, the authors expressed the obvious need for prospective and experimental study designs. Interestingly, the findings from the above-mentioned review coincide with a recent cross-sectional study published in a leading cardiology journal. 11 This latter paper, which is undeniably well written and with comprehensive analyses based on data from five countries, concludes that there exist a clear hierarchy of behaviours and that moderate-to-vigorous PA demonstrated the strongest, most time-efficient protective associations with cardiometabolic outcomes. 11 The study also implies an unfavourable association when sleep replaced any time spent active, for instance, standing. While the causal interpretation and consequently the causal language in the above-mentioned cross-sectional studies seems appealing, it is problematic because the impact of reverse causation is inevitable. The fact that the outcomes of interest are responsible for the variation in PA rather than the other way around is likely to lead to misinterpretation of the observed associations. It is impossible to estimate the causal effects of reallocating time between physical behaviours from studies of this nature.

Optimising PA research to determine causation

Suppose for simplicity that we want to conduct the first observational study ever on whether objectively measured PA is a causal risk factor for cardiovascular disease over a 10-year period. Say that our data show that inactive participants have 80% increased risk of cardiovascular disease compared with the most active participants. It is likely that the active ones would have lower risk of cardiovascular disease even if they did not exercise because they live healthier lives (eg, less likely to smoke, can afford healthy food, seek healthcare services). Suppose that we adjusted for all important confounders selected based on pre-existing knowledge of causal relations and that these confounders were accurately measured. Although no empirical finding can provide absolute certainty, we can talk about a potential causal relation because PA was validly measured before the participants developed cardiovascular disease and because we attempted to remove imbalances between the groups of inactive and active participants.

In times where detailed PA data become more available and the statistical approaches to deal with these more comprehensive, it is more important than ever to remember the fundamentals of epidemiology. Larger data and more precise measurement of PA reduce measurement error but does not remove problems of confounding and reverse causation. Indeed, the causal structure of the data may become more complex when we have a myriad of opportunities to define PA behaviour. Dealing with ’24-hour’ observational data is challenging from a causal inference perspective and necessitates careful consideration of the joint effects of physical behaviours on health outcomes. 12 We should, therefore, establish a robust causal framework on how we can estimate causal effects in the context of compositional 24-hour PA data. We should also triangulate results across other causal approaches (eg, instrumental variables analysis (with and without genetic instruments), within sibling comparisons, negative control) and conduct randomised experiments when feasible (eg, short-term effects of actually replacing time in different behaviours). Like any other method, the above-mentioned approaches have biases and limitations (eg, invalid instruments, lack of power, selection issues, cross-sibling interactions, untestable assumptions) that must be carefully considered before starting a new study.

It is time to stress the need to take the causal question seriously in order to create better empirical evidence that truly can support ‘24-hours’ PA guidelines. To achieve this, authors should call descriptive studies by their names, and journal editors should discourage the use of misleading causal language. This will lead to better scientific reporting and to a more successful encounter for the reader. Cross-sectional studies can provide useful descriptions of the distributions of physical behaviour in the population but should not provide basis for 24- hour recommendations. Because of methodological limitations, it is not possible for all research questions to be causally motivated, irrespective of study design, sample size, objective measures or biological plausibility of the association of interest.

Ethics statements

Patient consent for publication.

Not applicable.

  • Newman AB ,
  • Dodson JA ,
  • Church TS , et al
  • Stensvold D ,
  • Steinshamn SL , et al
  • Ekelund U ,
  • Steene-Johannessen J , et al
  • Ahmadi MN ,
  • Gill JMR , et al
  • Stamatakis E ,
  • Khurshid S ,
  • Al-Alusi MA ,
  • Churchill TW , et al
  • Migueles JH ,
  • Aadland E ,
  • Andersen LB , et al
  • Stanford TE ,
  • Martin-Fernández J-A , et al
  • Pedišić Ž ,
  • Stanford TE , et al
  • Maher C , et al
  • Blodgett JM ,
  • Atkin AJ , et al
  • Arnold KF ,
  • Tennant PWG , et al

X @E_Skarpsno

Contributors ESS is the sole author of this editorial.

Funding ESS is supported by a grant from the Liaison Committee between the Central Norway Regional Health Authority (RHA) and the Norwegian University of Science and Technology (NTNU).

Competing interests None declared.

Provenance and peer review Not commissioned; externally peer reviewed.

Read the full text or download the PDF:

IMAGES

  1. Introduction to Random Assignment -Voxco

    random assignment in cause and effect

  2. ⭐ Cause and effect assignment. Cause and Effect Assignment free sample

    random assignment in cause and effect

  3. Random Assignment in Experiments

    random assignment in cause and effect

  4. How to Write Cause and Effect Essay: Step by Step Guide : r

    random assignment in cause and effect

  5. 20 Cause and Effect Activities Students Will Love

    random assignment in cause and effect

  6. Cause and Effect Chart

    random assignment in cause and effect

VIDEO

  1. English Video Assignment (Cause & Effect)

  2. English assignment about cause effect

  3. Cause and Effect Essay Assignment (11/7/2023)

  4. RANDOM ASSIGNMENT

  5. RANDOM ASSIGNMENT

  6. random sampling & assignment

COMMENTS

  1. Random Assignment in Experiments

    In contrast, random assignment is a way of sorting the sample participants into control and experimental groups. While random sampling is used in many types of studies, random assignment is only used in between-subjects experimental designs. ... In a cause-and-effect study, a confounding variable is an unmeasured variable that influences both ...

  2. Random sampling vs. random assignment (scope of inference)

    Random sampling vs. random assignment (scope of inference) Google Classroom. Hilary wants to determine if any relationship exists between Vitamin D and blood pressure. She is considering using one of a few different designs for her study. Determine what type of conclusions can be drawn from each study design.

  3. Random Assignment in Experiments

    Random assignment helps you separation causation from correlation and rule out confounding variables. As a critical component of the scientific method, experiments typically set up contrasts between a control group and one or more treatment groups. The idea is to determine whether the effect, which is the difference between a treatment group ...

  4. 3.6 Causation and Random Assignment

    Timing: The cause needs to happen BEFORE the effect. No Plausible Alternative Explanations: ALL other possible explanations for the effect need to be ruled out. Random assignment removes any systematic differences between the groups (other than the treatment), and thus helps to rule out plausible alternative explanations.

  5. Random Assignment in Psychology: Definition & Examples

    Random selection (also called probability sampling or random sampling) is a way of randomly selecting members of a population to be included in your study. On the other hand, random assignment is a way of sorting the sample participants into control and treatment groups. Random selection ensures that everyone in the population has an equal ...

  6. The Definition of Random Assignment In Psychology

    Get the definition of random assignment, which involves using chance to see that participants have an equal likelihood of being assigned to a group. Menu. Conditions A-Z ... an experiment is the best way to get a clear idea if there is a cause-and-effect relationship between two or more variables. Once researchers have formulated a hypothesis ...

  7. 5.15: Drawing Conclusions from Statistics

    Random sampling is paramount to generalizing results from our sample to a larger population, and random assignment is key to drawing cause-and-effect conclusions. With both kinds of randomness, probability models help us assess how much random variation we can expect in our results, in order to determine whether our results could happen by ...

  8. Drawing Conclusions from Statistics

    Random sampling is paramount to generalizing results from our sample to a larger population, and random assignment is key to drawing cause-and-effect conclusions. With both kinds of randomness, probability models help us assess how much random variation we can expect in our results, in order to determine whether our results could happen by ...

  9. Methods for Evaluating Causality in Observational Studies

    Plausibility: a plausible mechanism linking the cause to the effect is helpful, but not absolutely required. What is biologically plausible depends upon the state-of-the-art knowledge of the time. ... Random assignment leads to the even distribution of known and unknown confounders among the intervention groups that are being compared in the study.

  10. Random Assignment in Psychology

    Random assignment allows cause-and-effect relationships to be identified but it is only one part of the process. Random assignment produces groups that are, in theory, equal at the start of the ...

  11. The Experimental Method

    Also, a researcher must use random assignment to demonstrate cause and effect. Random assignment is when participants are assigned to each experimental group with an equal chance ⚖️ of being chosen. Don't confuse this with a random sample: each individual in the population has an equal chance of participating in an experiment.. Random assignment is randomly selecting people to be in an ...

  12. Why randomize?

    Random assignment controls for both known and unknown variables that can creep in with other selection processes to confound analyses. Randomized experimental design is a powerful tool for drawing valid inferences about cause and effect. The use of randomized experimental design should allow a degree of certainty that the research findings ...

  13. What Is Random Assignment in Psychology?

    Why Is Random Assignment Important in Psychology Research? Random assignment is important in psychology research because it helps improve a study's internal validity. This means that the researchers are sure that the study demonstrates a cause-and-effect relationship between an independent and dependent variable.

  14. PDF AP Psychology Scoring Guidelines from the 2019 Exam Administration

    Point 2: Random assignment. Responses must refer to minimizing the impact of subject variables (e.g., age, gender, weight) between groups. Score: "Random assignment allows for the creation of groups that are more similar to each other.". Score: "Random assignment reduces the chance that subject variables will confound the experiment.".

  15. PDF Random assignment: It's all in the cards

    Random assignment can eliminate these potential confounds and using a deck of playing cards, the teacher will illustrate how variables like sleep deprivation, athleticism, ... (the cause-effect relationship established in an experiment). Instructions PART I THE EXPERIMENT: Begin with a simple demonstration experiment in class. While ...

  16. Random Assignment in Experiments

    Random sampling (also called probability sampling or random selection) is a way of selecting members of a population to be included in your study. In contrast, random assignment is a way of sorting the sample participants into control and experimental groups. While random sampling is used in many types of studies, random assignment is only used ...

  17. A demonstration of random assignment that is guaranteed to work (95% of

    Instructors can use the activity introduced in this chapter to demonstrate how random assignment controls for extraneous variables, which strengthens cause-and-effect interpretations of the results. The instructor shuffles and distributes playing cards to students in class to simulate random assignment to an experimental group (e.g., "red card") and control group (e.g., "black card ...

  18. Drawing Conclusions from Statistics

    Random sampling is paramount to generalizing results from our sample to a larger population, and random assignment is key to drawing cause-and-effect conclusions. With both kinds of randomness, probability models help us assess how much random variation we can expect in our results, in order to determine whether our results could happen by ...

  19. 3.4

    A study where a researcher records or observes the observations or measurements without manipulating any variables. These studies show that there may be a relationship but not necessarily a cause and effect relationship. Experimental. A study that involves some random assignment* of a treatment; researchers can draw cause and effect (or causal ...

  20. How often does random assignment fail? Estimates and recommendations

    A fundamental goal of the scientific process is to make causal inferences. Random assignment to experimental conditions has been taken to be a gold-standard technique for establishing causality. Despite this, it is unclear how often random assignment fails to eliminate non-trivial differences between experimental conditions.

  21. Random assignment

    Random assignment or random placement is an experimental technique for assigning human participants or animal subjects to different groups in an experiment (e.g., a treatment group versus a control group) using randomization, such as by a chance procedure (e.g., flipping a coin) or a random number generator. This ensures that each participant or subject has an equal chance of being placed in ...

  22. Random Assignment in Psychology (Definition + 40 Examples)

    Stepping back in time, we delve into the origins of random assignment, which finds its roots in the early 20th century. The pioneering mind behind this innovative technique was Sir Ronald A. Fisher, a British statistician and biologist.Fisher introduced the concept of random assignment in the 1920s, aiming to improve the quality and reliability of experimental research.

  23. PDF AP® Psychology Sample Student Responses and Scoring ...

    Point 2: Random assignment. Responses must refer to minimizing the impact of subject variables (e.g., age, gender, weight) between groups. Score: "Random assignment allows for the creation of groups that are more similar to each other.". Score: "Random assignment reduces the chance that subject variables will confound the experiment.".

  24. Causal overstatements in modern physical activity research

    Thus, with studies over several years or decades, the benefits of random assignment will fade with time. As shown in a few high-quality randomised trials on the effect of PA on hard endpoints (eg, cardiovascular disease, mortality), 1 2 it is difficult to conduct randomised experiments on the long-term effect of PA. Thus, we often …