• Our Mission

3 Simple Strategies to Improve Students’ Problem-Solving Skills

These strategies are designed to make sure students have a good understanding of problems before attempting to solve them.

Two students in math class

Research provides a striking revelation about problem solvers. The best problem solvers approach problems much differently than novices. For instance, one meta-study showed that when experts evaluate graphs , they tend to spend less time on tasks and answer choices and more time on evaluating the axes’ labels and the relationships of variables within the graphs. In other words, they spend more time up front making sense of the data before moving to addressing the task.

While slower in solving problems, experts use this additional up-front time to more efficiently and effectively solve the problem. In one study, researchers found that experts were much better at “information extraction” or pulling the information they needed to solve the problem later in the problem than novices. This was due to the fact that they started a problem-solving process by evaluating specific assumptions within problems, asking predictive questions, and then comparing and contrasting their predictions with results. For example, expert problem solvers look at the problem context and ask a number of questions:

  • What do we know about the context of the problem?
  • What assumptions are underlying the problem? What’s the story here?
  • What qualitative and quantitative information is pertinent?
  • What might the problem context be telling us? What questions arise from the information we are reading or reviewing?
  • What are important trends and patterns?

As such, expert problem solvers don’t jump to the presented problem or rush to solutions. They invest the time necessary to make sense of the problem.

Now, think about your own students: Do they immediately jump to the question, or do they take time to understand the problem context? Do they identify the relevant variables, look for patterns, and then focus on the specific tasks?

If your students are struggling to develop the habit of sense-making in a problem- solving context, this is a perfect time to incorporate a few short and sharp strategies to support them.

3 Ways to Improve Student Problem-Solving

1. Slow reveal graphs: The brilliant strategy crafted by K–8 math specialist Jenna Laib and her colleagues provides teachers with an opportunity to gradually display complex graphical information and build students’ questioning, sense-making, and evaluating predictions.

For instance, in one third-grade class, students are given a bar graph without any labels or identifying information except for bars emerging from a horizontal line on the bottom of the slide. Over time, students learn about the categories on the x -axis (types of animals) and the quantities specified on the y -axis (number of baby teeth).

The graphs and the topics range in complexity from studying the standard deviation of temperatures in Antarctica to the use of scatterplots to compare working hours across OECD (Organization for Economic Cooperation and Development) countries. The website offers a number of graphs on Google Slides and suggests questions that teachers may ask students. Furthermore, this site allows teachers to search by type of graph (e.g., scatterplot) or topic (e.g., social justice).

2. Three reads: The three-reads strategy tasks students with evaluating a word problem in three different ways . First, students encounter a problem without having access to the question—for instance, “There are 20 kangaroos on the grassland. Three hop away.” Students are expected to discuss the context of the problem without emphasizing the quantities. For instance, a student may say, “We know that there are a total amount of kangaroos, and the total shrinks because some kangaroos hop away.”

Next, students discuss the important quantities and what questions may be generated. Finally, students receive and address the actual problem. Here they can both evaluate how close their predicted questions were from the actual questions and solve the actual problem.

To get started, consider using the numberless word problems on educator Brian Bushart’s site . For those teaching high school, consider using your own textbook word problems for this activity. Simply create three slides to present to students that include context (e.g., on the first slide state, “A salesman sold twice as much pears in the afternoon as in the morning”). The second slide would include quantities (e.g., “He sold 360 kilograms of pears”), and the third slide would include the actual question (e.g., “How many kilograms did he sell in the morning and how many in the afternoon?”). One additional suggestion for teams to consider is to have students solve the questions they generated before revealing the actual question.

3. Three-Act Tasks: Originally created by Dan Meyer, three-act tasks follow the three acts of a story . The first act is typically called the “setup,” followed by the “confrontation” and then the “resolution.”

This storyline process can be used in mathematics in which students encounter a contextual problem (e.g., a pool is being filled with soda). Here students work to identify the important aspects of the problem. During the second act, students build knowledge and skill to solve the problem (e.g., they learn how to calculate the volume of particular spaces). Finally, students solve the problem and evaluate their answers (e.g., how close were their calculations to the actual specifications of the pool and the amount of liquid that filled it).

Often, teachers add a fourth act (i.e., “the sequel”), in which students encounter a similar problem but in a different context (e.g., they have to estimate the volume of a lava lamp). There are also a number of elementary examples that have been developed by math teachers including GFletchy , which offers pre-kindergarten to middle school activities including counting squares , peas in a pod , and shark bait .

Students need to learn how to slow down and think through a problem context. The aforementioned strategies are quick ways teachers can begin to support students in developing the habits needed to effectively and efficiently tackle complex problem-solving.

Why Every Educator Needs to Teach Problem-Solving Skills

Strong problem-solving skills will help students be more resilient and will increase their academic and career success .

Want to learn more about how to measure and teach students’ higher-order skills, including problem solving, critical thinking, and written communication?

Problem-solving skills are essential in school, careers, and life.

Problem-solving skills are important for every student to master. They help individuals navigate everyday life and find solutions to complex issues and challenges. These skills are especially valuable in the workplace, where employees are often required to solve problems and make decisions quickly and effectively.

Problem-solving skills are also needed for students’ personal growth and development because they help individuals overcome obstacles and achieve their goals. By developing strong problem-solving skills, students can improve their overall quality of life and become more successful in their personal and professional endeavors.

students problem solving skills

Problem-Solving Skills Help Students…

   develop resilience.

Problem-solving skills are an integral part of resilience and the ability to persevere through challenges and adversity. To effectively work through and solve a problem, students must be able to think critically and creatively. Critical and creative thinking help students approach a problem objectively, analyze its components, and determine different ways to go about finding a solution.  

This process in turn helps students build self-efficacy . When students are able to analyze and solve a problem, this increases their confidence, and they begin to realize the power they have to advocate for themselves and make meaningful change.

When students gain confidence in their ability to work through problems and attain their goals, they also begin to build a growth mindset . According to leading resilience researcher, Carol Dweck, “in a growth mindset, people believe that their most basic abilities can be developed through dedication and hard work—brains and talent are just the starting point. This view creates a love of learning and a resilience that is essential for great accomplishment.”

icon-resilience

    Set and Achieve Goals

Students who possess strong problem-solving skills are better equipped to set and achieve their goals. By learning how to identify problems, think critically, and develop solutions, students can become more self-sufficient and confident in their ability to achieve their goals. Additionally, problem-solving skills are used in virtually all fields, disciplines, and career paths, which makes them important for everyone. Building strong problem-solving skills will help students enhance their academic and career performance and become more competitive as they begin to seek full-time employment after graduation or pursue additional education and training.

CAE Portal Icon 280

  Resolve Conflicts

In addition to increased social and emotional skills like self-efficacy and goal-setting, problem-solving skills teach students how to cooperate with others and work through disagreements and conflicts. Problem-solving promotes “thinking outside the box” and approaching a conflict by searching for different solutions. This is a very different (and more effective!) method than a more stagnant approach that focuses on placing blame or getting stuck on elements of a situation that can’t be changed.

While it’s natural to get frustrated or feel stuck when working through a conflict, students with strong problem-solving skills will be able to work through these obstacles, think more rationally, and address the situation with a more solution-oriented approach. These skills will be valuable for students in school, their careers, and throughout their lives.

Perspectives

    Achieve Success

We are all faced with problems every day. Problems arise in our personal lives, in school and in our jobs, and in our interactions with others. Employers especially are looking for candidates with strong problem-solving skills. In today’s job market, most jobs require the ability to analyze and effectively resolve complex issues. Students with strong problem-solving skills will stand out from other applicants and will have a more desirable skill set.

In a recent opinion piece published by The Hechinger Report , Virgel Hammonds, Chief Learning Officer at KnowledgeWorks, stated “Our world presents increasingly complex challenges. Education must adapt so that it nurtures problem solvers and critical thinkers.” Yet, the “traditional K–12 education system leaves little room for students to engage in real-world problem-solving scenarios.” This is the reason that a growing number of K–12 school districts and higher education institutions are transforming their instructional approach to personalized and competency-based learning, which encourage students to make decisions, problem solve and think critically as they take ownership of and direct their educational journey.

graduate-icon

Problem-Solving Skills Can Be Measured and Taught

Research shows that problem-solving skills can be measured and taught. One effective method is through performance-based assessments which require students to demonstrate or apply their knowledge and higher-order skills to create a response or product or do a task.

What Are Performance-Based Assessments?

students problem solving skills

With the No Child Left Behind Act (2002), the use of standardized testing became the primary way to measure student learning in the U.S. The legislative requirements of this act shifted the emphasis to standardized testing, and this led to a  decline in nontraditional testing methods .

But   many educators, policy makers, and parents have concerns with standardized tests. Some of the top issues include that they don’t provide feedback on how students can perform better, they don’t value creativity, they are not representative of diverse populations, and they can be disadvantageous to lower-income students.

While standardized tests are still the norm, U.S. Secretary of Education Miguel Cardona is encouraging states and districts to move away from traditional multiple choice and short response tests and instead use performance-based assessment, competency-based assessments, and other more authentic methods of measuring students abilities and skills rather than rote learning. 

Performance-based assessments  measure whether students can apply the skills and knowledge learned from a unit of study. Typically, a performance task challenges students to use their higher-order skills to complete a project or process. Tasks can range from an essay to a complex proposal or design.

Preview a Performance-Based Assessment

Want a closer look at how performance-based assessments work?  Preview CAE’s K–12 and Higher Education assessments and see how CAE’s tools help students develop critical thinking, problem-solving, and written communication skills.

Performance-Based Assessments Help Students Build and Practice Problem-Solving Skills

In addition to effectively measuring students’ higher-order skills, including their problem-solving skills, performance-based assessments can help students practice and build these skills. Through the assessment process, students are given opportunities to practically apply their knowledge in real-world situations. By demonstrating their understanding of a topic, students are required to put what they’ve learned into practice through activities such as presentations, experiments, and simulations. 

This type of problem-solving assessment tool requires students to analyze information and choose how to approach the presented problems. This process enhances their critical thinking skills and creativity, as well as their problem-solving skills. Unlike traditional assessments based on memorization or reciting facts, performance-based assessments focus on the students’ decisions and solutions, and through these tasks students learn to bridge the gap between theory and practice.

Performance-based assessments like CAE’s College and Career Readiness Assessment (CRA+) and Collegiate Learning Assessment (CLA+) provide students with in-depth reports that show them which higher-order skills they are strongest in and which they should continue to develop. This feedback helps students and their teachers plan instruction and supports to deepen their learning and improve their mastery of critical skills.

students problem solving skills

Explore CAE’s Problem-Solving Assessments

CAE offers performance-based assessments that measure student proficiency in higher-order skills including problem solving, critical thinking, and written communication.

  • College and Career Readiness Assessment (CCRA+) for secondary education and
  • Collegiate Learning Assessment (CLA+) for higher education.

Our solution also includes instructional materials, practice models, and professional development.

We can help you create a program to build students’ problem-solving skills that includes:

  • Measuring students’ problem-solving skills through a performance-based assessment    
  • Using the problem-solving assessment data to inform instruction and tailor interventions
  • Teaching students problem-solving skills and providing practice opportunities in real-life scenarios
  • Supporting educators with quality professional development

Get started with our problem-solving assessment tools to measure and build students’ problem-solving skills today! These skills will be invaluable to students now and in the future.

students problem solving skills

Ready to Get Started?

Learn more about cae’s suite of products and let’s get started measuring and teaching students important higher-order skills like problem solving..

Center for Teaching

Teaching problem solving.

Print Version

Tips and Techniques

Expert vs. novice problem solvers, communicate.

  • Have students  identify specific problems, difficulties, or confusions . Don’t waste time working through problems that students already understand.
  • If students are unable to articulate their concerns, determine where they are having trouble by  asking them to identify the specific concepts or principles associated with the problem.
  • In a one-on-one tutoring session, ask the student to  work his/her problem out loud . This slows down the thinking process, making it more accurate and allowing you to access understanding.
  • When working with larger groups you can ask students to provide a written “two-column solution.” Have students write up their solution to a problem by putting all their calculations in one column and all of their reasoning (in complete sentences) in the other column. This helps them to think critically about their own problem solving and helps you to more easily identify where they may be having problems. Two-Column Solution (Math) Two-Column Solution (Physics)

Encourage Independence

  • Model the problem solving process rather than just giving students the answer. As you work through the problem, consider how a novice might struggle with the concepts and make your thinking clear
  • Have students work through problems on their own. Ask directing questions or give helpful suggestions, but  provide only minimal assistance and only when needed to overcome obstacles.
  • Don’t fear  group work ! Students can frequently help each other, and talking about a problem helps them think more critically about the steps needed to solve the problem. Additionally, group work helps students realize that problems often have multiple solution strategies, some that might be more effective than others

Be sensitive

  • Frequently, when working problems, students are unsure of themselves. This lack of confidence may hamper their learning. It is important to recognize this when students come to us for help, and to give each student some feeling of mastery. Do this by providing  positive reinforcement to let students know when they have mastered a new concept or skill.

Encourage Thoroughness and Patience

  • Try to communicate that  the process is more important than the answer so that the student learns that it is OK to not have an instant solution. This is learned through your acceptance of his/her pace of doing things, through your refusal to let anxiety pressure you into giving the right answer, and through your example of problem solving through a step-by step process.

Experts (teachers) in a particular field are often so fluent in solving problems from that field that they can find it difficult to articulate the problem solving principles and strategies they use to novices (students) in their field because these principles and strategies are second nature to the expert. To teach students problem solving skills,  a teacher should be aware of principles and strategies of good problem solving in his or her discipline .

The mathematician George Polya captured the problem solving principles and strategies he used in his discipline in the book  How to Solve It: A New Aspect of Mathematical Method (Princeton University Press, 1957). The book includes  a summary of Polya’s problem solving heuristic as well as advice on the teaching of problem solving.

students problem solving skills

Teaching Guides

  • Online Course Development Resources
  • Principles & Frameworks
  • Pedagogies & Strategies
  • Reflecting & Assessing
  • Challenges & Opportunities
  • Populations & Contexts

Quick Links

  • Services for Departments and Schools
  • Examples of Online Instructional Modules
  • Utility Menu

University Logo

GA4 Tracking Code

Home

fa51e2b1dc8cca8f7467da564e77b5ea

  • Make a Gift
  • Join Our Email List
  • Problem Solving in STEM

Solving problems is a key component of many science, math, and engineering classes.  If a goal of a class is for students to emerge with the ability to solve new kinds of problems or to use new problem-solving techniques, then students need numerous opportunities to develop the skills necessary to approach and answer different types of problems.  Problem solving during section or class allows students to develop their confidence in these skills under your guidance, better preparing them to succeed on their homework and exams. This page offers advice about strategies for facilitating problem solving during class.

How do I decide which problems to cover in section or class?

In-class problem solving should reinforce the major concepts from the class and provide the opportunity for theoretical concepts to become more concrete. If students have a problem set for homework, then in-class problem solving should prepare students for the types of problems that they will see on their homework. You may wish to include some simpler problems both in the interest of time and to help students gain confidence, but it is ideal if the complexity of at least some of the in-class problems mirrors the level of difficulty of the homework. You may also want to ask your students ahead of time which skills or concepts they find confusing, and include some problems that are directly targeted to their concerns.

You have given your students a problem to solve in class. What are some strategies to work through it?

  • Try to give your students a chance to grapple with the problems as much as possible.  Offering them the chance to do the problem themselves allows them to learn from their mistakes in the presence of your expertise as their teacher. (If time is limited, they may not be able to get all the way through multi-step problems, in which case it can help to prioritize giving them a chance to tackle the most challenging steps.)
  • When you do want to teach by solving the problem yourself at the board, talk through the logic of how you choose to apply certain approaches to solve certain problems.  This way you can externalize the type of thinking you hope your students internalize when they solve similar problems themselves.
  • Start by setting up the problem on the board (e.g you might write down key variables and equations; draw a figure illustrating the question).  Ask students to start solving the problem, either independently or in small groups.  As they are working on the problem, walk around to hear what they are saying and see what they are writing down. If several students seem stuck, it might be a good to collect the whole class again to clarify any confusion.  After students have made progress, bring the everyone back together and have students guide you as to what to write on the board.
  • It can help to first ask students to work on the problem by themselves for a minute, and then get into small groups to work on the problem collaboratively.
  • If you have ample board space, have students work in small groups at the board while solving the problem.  That way you can monitor their progress by standing back and watching what they put up on the board.
  • If you have several problems you would like to have the students practice, but not enough time for everyone to do all of them, you can assign different groups of students to work on different – but related - problems.

When do you want students to work in groups to solve problems?

  • Don’t ask students to work in groups for straightforward problems that most students could solve independently in a short amount of time.
  • Do have students work in groups for thought-provoking problems, where students will benefit from meaningful collaboration.
  • Even in cases where you plan to have students work in groups, it can be useful to give students some time to work on their own before collaborating with others.  This ensures that every student engages with the problem and is ready to contribute to a discussion.

What are some benefits of having students work in groups?

  • Students bring different strengths, different knowledge, and different ideas for how to solve a problem; collaboration can help students work through problems that are more challenging than they might be able to tackle on their own.
  • In working in a group, students might consider multiple ways to approach a problem, thus enriching their repertoire of strategies.
  • Students who think they understand the material will gain a deeper understanding by explaining concepts to their peers.

What are some strategies for helping students to form groups?  

  • Instruct students to work with the person (or people) sitting next to them.
  • Count off.  (e.g. 1, 2, 3, 4; all the 1’s find each other and form a group, etc)
  • Hand out playing cards; students need to find the person with the same number card. (There are many variants to this.  For example, you can print pictures of images that go together [rain and umbrella]; each person gets a card and needs to find their partner[s].)
  • Based on what you know about the students, assign groups in advance. List the groups on the board.
  • Note: Always have students take the time to introduce themselves to each other in a new group.

What should you do while your students are working on problems?

  • Walk around and talk to students. Observing their work gives you a sense of what people understand and what they are struggling with. Answer students’ questions, and ask them questions that lead in a productive direction if they are stuck.
  • If you discover that many people have the same question—or that someone has a misunderstanding that others might have—you might stop everyone and discuss a key idea with the entire class.

After students work on a problem during class, what are strategies to have them share their answers and their thinking?

  • Ask for volunteers to share answers. Depending on the nature of the problem, student might provide answers verbally or by writing on the board. As a variant, for questions where a variety of answers are relevant, ask for at least three volunteers before anyone shares their ideas.
  • Use online polling software for students to respond to a multiple-choice question anonymously.
  • If students are working in groups, assign reporters ahead of time. For example, the person with the next birthday could be responsible for sharing their group’s work with the class.
  • Cold call. To reduce student anxiety about cold calling, it can help to identify students who seem to have the correct answer as you were walking around the class and checking in on their progress solving the assigned problem. You may even want to warn the student ahead of time: "This is a great answer! Do you mind if I call on you when we come back together as a class?"
  • Have students write an answer on a notecard that they turn in to you.  If your goal is to understand whether students in general solved a problem correctly, the notecards could be submitted anonymously; if you wish to assess individual students’ work, you would want to ask students to put their names on their notecard.  
  • Use a jigsaw strategy, where you rearrange groups such that each new group is comprised of people who came from different initial groups and had solved different problems.  Students now are responsible for teaching the other students in their new group how to solve their problem.
  • Have a representative from each group explain their problem to the class.
  • Have a representative from each group draw or write the answer on the board.

What happens if a student gives a wrong answer?

  • Ask for their reasoning so that you can understand where they went wrong.
  • Ask if anyone else has other ideas. You can also ask this sometimes when an answer is right.
  • Cultivate an environment where it’s okay to be wrong. Emphasize that you are all learning together, and that you learn through making mistakes.
  • Do make sure that you clarify what the correct answer is before moving on.
  • Once the correct answer is given, go through some answer-checking techniques that can distinguish between correct and incorrect answers. This can help prepare students to verify their future work.

How can you make your classroom inclusive?

  • The goal is that everyone is thinking, talking, and sharing their ideas, and that everyone feels valued and respected. Use a variety of teaching strategies (independent work and group work; allow students to talk to each other before they talk to the class). Create an environment where it is normal to struggle and make mistakes.
  • See Kimberly Tanner’s article on strategies to promoste student engagement and cultivate classroom equity. 

A few final notes…

  • Make sure that you have worked all of the problems and also thought about alternative approaches to solving them.
  • Board work matters. You should have a plan beforehand of what you will write on the board, where, when, what needs to be added, and what can be erased when. If students are going to write their answers on the board, you need to also have a plan for making sure that everyone gets to the correct answer. Students will copy what is on the board and use it as their notes for later study, so correct and logical information must be written there.

For more information...

Tipsheet: Problem Solving in STEM Sections

Tanner, K. D. (2013). Structure matters: twenty-one teaching strategies to promote student engagement and cultivate classroom equity . CBE-Life Sciences Education, 12(3), 322-331.

  • Designing Your Course
  • A Teaching Timeline: From Pre-Term Planning to the Final Exam
  • The First Day of Class
  • Group Agreements
  • Classroom Debate
  • Flipped Classrooms
  • Leading Discussions
  • Polling & Clickers
  • Teaching with Cases
  • Engaged Scholarship
  • Devices in the Classroom
  • Beyond the Classroom
  • On Professionalism
  • Getting Feedback
  • Equitable & Inclusive Teaching
  • Advising and Mentoring
  • Teaching and Your Career
  • Teaching Remotely
  • Tools and Platforms
  • The Science of Learning
  • Bok Publications
  • Other Resources Around Campus

Developing Problem-Solving Skills for Kids | Strategies & Tips

students problem solving skills

We've made teaching problem-solving skills for kids a whole lot easier! Keep reading and comment below with any other tips you have for your classroom!

Problem-Solving Skills for Kids: The Real Deal

Picture this: You've carefully created an assignment for your class. The step-by-step instructions are crystal clear. During class time, you walk through all the directions, and the response is awesome. Your students are ready! It's finally time for them to start working individually and then... 8 hands shoot up with questions. You hear one student mumble in the distance, "Wait, I don't get this" followed by the dreaded, "What are we supposed to be doing again?"

When I was a new computer science teacher, I would have this exact situation happen. As a result, I would end up scrambling to help each individual student with their problems until half the class period was eaten up. I assumed that in order for my students to learn best, I needed to be there to help answer questions immediately so they could move forward and complete the assignment.

Here's what I wish I had known when I started teaching coding to elementary students - the process of grappling with an assignment's content can be more important than completing the assignment's product. That said, not every student knows how to grapple, or struggle, in order to get to the "aha!" moment and solve a problem independently. The good news is, the ability to creatively solve problems is not a fixed skill. It can be learned by students, nurtured by teachers, and practiced by everyone!

Your students are absolutely capable of navigating and solving problems on their own. Here are some strategies, tips, and resources that can help:

Problem-Solving Skills for Kids: Student Strategies

These are strategies your students can use during independent work time to become creative problem solvers.

1. Go Step-By-Step Through The Problem-Solving Sequence 

Post problem-solving anchor charts and references on your classroom wall or pin them to your Google Classroom - anything to make them accessible to students. When they ask for help, invite them to reference the charts first.

Problem-solving skills for kids made easy using the problem solving sequence.

2. Revisit Past Problems

If a student gets stuck, they should ask themself, "Have I ever seen a problem like this before? If so, how did I solve it?" Chances are, your students have tackled something similar already and can recycle the same strategies they used before to solve the problem this time around.

3. Document What Doesn’t Work

Sometimes finding the answer to a problem requires the process of elimination. Have your students attempt to solve a problem at least two different ways before reaching out to you for help. Even better, encourage them write down their "Not-The-Answers" so you can see their thought process when you do step in to support. Cool thing is, you likely won't need to! By attempting to solve a problem in multiple different ways, students will often come across the answer on their own.

4. "3 Before Me"

Let's say your students have gone through the Problem Solving Process, revisited past problems, and documented what doesn't work. Now, they know it's time to ask someone for help. Great! But before you jump into save the day, practice "3 Before Me". This means students need to ask 3 other classmates their question before asking the teacher. By doing this, students practice helpful 21st century skills like collaboration and communication, and can usually find the info they're looking for on the way.

Problem-Solving Skills for Kids: Teacher Tips

These are tips that you, the teacher, can use to support students in developing creative problem-solving skills for kids.

1. Ask Open Ended Questions

When a student asks for help, it can be tempting to give them the answer they're looking for so you can both move on. But what this actually does is prevent the student from developing the skills needed to solve the problem on their own. Instead of giving answers, try using open-ended questions and prompts. Here are some examples:

students problem solving skills

2. Encourage Grappling

Grappling  is everything a student might do when faced with a problem that does not have a clear solution. As explained in this article from Edutopia , this doesn't just mean perseverance! Grappling is more than that - it includes critical thinking, asking questions, observing evidence, asking more questions, forming hypotheses, and constructing a deep understanding of an issue.

students problem solving skills

There are lots of ways to provide opportunities for grappling. Anything that includes the Engineering Design Process is a good one! Examples include:

  • Engineering or Art Projects
  • Design-thinking challenges
  • Computer science projects
  • Science experiments

3. Emphasize Process Over Product

For elementary students, reflecting on the process of solving a problem helps them develop a growth mindset . Getting an answer "wrong" doesn't need to be a bad thing! What matters most are the steps they took to get there and how they might change their approach next time. As a teacher, you can support students in learning this reflection process.

students problem solving skills

4. Model The Strategies Yourself! 

As creative problem-solving skills for kids are being learned, there will likely be moments where they are frustrated or unsure. Here are some easy ways you can model what creative problem-solving looks and sounds like.

  • Ask clarifying questions if you don't understand something
  • Admit when don't know the correct answer
  • Talk through multiple possible outcomes for different situations 
  • Verbalize how you’re feeling when you find a problem

Practicing these strategies with your students will help create a learning environment where grappling, failing, and growing is celebrated!

Problem-Solving Skill for Kids

Did we miss any of your favorites? Comment and share them below!

Looking to add creative problem solving to your class?

Learn more about Kodable's free educator plan or create your free account today to get your students coding!

Kodable has everything you need to teach kids to code!

In just a few minutes a day, kids can learn all about the fundamentals of Computer Science - and so much more! With lessons ranging from zero to JavaScript, Kodable equips children for a digital future.

SELECT COUNTRY

  • Overview of OWIS Singapore
  • Mission, Vision and Values
  • Creating Global Citizens
  • Parent Partnerships
  • Global Schools Foundation (GSF)
  • Academic & Examination Board (AEB)
  • Awards & Accreditations
  • Admissions Overview
  • Apply Online
  • Book a Tour
  • Application Process
  • School Fees
  • Scholarship
  • Admissions Events and Webinars
  • Entry Requirements
  • Student Contract & CPE-related Information
  • Agent Connect Programme
  • Learning & Curricula at OWIS
  • IB Primary Years Programme (Ages 3 to 11)
  • Modified Cambridge (Ages 12 to 14)
  • Cambridge IGCSE (Ages 15 to 16)
  • IB Diploma Programme (Ages 17 to 18)
  • Chinese-English Bilingual Programme (Ages 7 to 11)
  • Co-scholastic Learning Programmes
  • English as an Additional Language (EAL) Programme
  • After-School Programme (CCAs)
  • Overview of OWIS Nanyang
  • Welcome Message
  • Early Childhood
  • Primary School
  • Secondary School
  • Learning Environment
  • Academic Results & University Offers
  • Pastoral Care & Student Well-Being
  • School Calendar
  • Join Our Open House
  • Overview of OWIS Suntec
  • Overview of OWIS Digital Campus
  • Blogs & Insights
  • School Stories
  • In the Media
  • E-books & Downloads
  • Public vs Private School
  • Relocating to Singapore

OWIS SINGAPORE

Strategies to develop problem-solving skills in students.

David Swanson

  • November 14, 2023

OWIS Nanyang | Secondary Students in Maths Lesson | Problem-Solving Skills | International School in Singapore

Students need the freedom to brainstorm, develop solutions and make mistakes — this is truly the only way to prepare them for life outside the classroom. When students are immersed in a learning environment that only offers them step-by-step guides and encourages them to focus solely on memorisation, they are not gaining the skills necessary to help them navigate in the complex, interconnected environment of the real world.

Choosing a school that emphasises the importance of future-focussed skills will ensure your child has the abilities they need to survive and thrive anywhere in the world. What are future-focussed skills? Students who are prepared for the future need to possess highly developed communication skills, self-management skills, research skills, thinking skills, social skills and problem-solving skills. In this blog, I would like to focus on problem-solving skills.

What Are Problem-Solving Skills?

The Forage defines problem-solving skills as those that allow an individual to identify a problem, come up with solutions, analyse the options and collaborate to find the best solution for the issue.

Importance of Problem-Solving in the Classroom Setting

Learning how to solve problems effectively and positively is a crucial part of child development. When children are allowed to solve problems in a classroom setting, they can test those skills in a safe and nurturing environment. Generally, when they face age-appropriate issues, they can begin building those skills in a healthy and positive manner.

Without exposure to challenging situations and scenarios, children will not be equipped with the foundational problem-solving skills needed to tackle complex issues in the real world. Experts predict that problem-solving skills will eventually be more sought after in job applicants than hard skills related to that specific profession. Students must be given opportunities in school to resolve conflicts, address complex problems and come up with their own solutions in order to develop these skills.

Benefits of Problem-Solving Skills for Students

students problem solving skills

Learning how to solve problems offers students many advantages, such as:

Improving Academic Results

When students have a well-developed set of problem-solving skills, they are often better critical and analytical thinkers as well. They are able to effectively use these 21st-century skills when completing their coursework, allowing them to become more successful in all academic areas. By prioritising problem-solving strategies in the classroom, teachers often find that academic performance improves.

Developing Confidence

Giving students the freedom to solve problems and create their own solutions is essentially permitting them to make their own choices. This sense of independence — and the natural resilience that comes with it — allows students to become confident learners who aren’t intimidated by new or challenging situations. Ultimately, this prepares them to take on more complex challenges in the future, both on a professional and social level.

Preparing Students for Real-World Challenges

The challenges we are facing today are only growing more complex, and by the time students have graduated, they are going to be facing issues that we may not even have imagined. By arming them with real-world problem-solving experience, they will not feel intimidated or stifled by those challenges; they will be excited and ready to address them. They will know how to discuss their ideas with others, respect various perspectives and collaborate to develop a solution that best benefits everyone involved.

The Best Problem-Solving Strategies for Students

students problem solving skills

No single approach or strategy will instil a set of problem-solving skills in students.  Every child is different, so educators should rely on a variety of strategies to develop this core competency in their students.  It is best if these skills are developed naturally.

These are some of the best strategies to support students problem-solving skills:

Project-Based Learning

By providing students with project-based learning experiences and allowing plenty of time for discussion, educators can watch students put their problem-solving skills into action inside their classrooms. This strategy is one of the most effective ways to fine-tune problem-solving skills in students.  During project-based learning, teachers may take notes on how the students approach a problem and then offer feedback to students for future development. Teachers can address their observations of interactions during project-based learning at the group level or they can work with students on an individual basis to help them become more effective problem-solvers.

Encourage Discussion and Collaboration in the Classroom Setting

Another strategy to encourage the development of problem-solving skills in students is to allow for plenty of discussion and collaboration in the classroom setting.  When students interact with one another, they are naturally developing problem solving skills.  Rather than the teacher delivering information and requiring the students to passively receive information, students can share thoughts and ideas with one another.  Getting students to generate their own discussion and communication requires thinking skills. 

Utilising an Inquiry-Based approach to Learning

Students should be presented with situations in which their curiosity is sparked and they are motivated to inquire further. Teachers should ask open-ended questions and encourage students to develop responses which require problem-solving. By providing students with complex questions for which a variety of answers may be correct, teachers get students to consider different perspectives and deal with potential disagreement, which requires problem-solving skills to resolve.

Model Appropriate Problem-Solving Skills

One of the simplest ways to instil effective problem-solving skills in students is to model appropriate and respectful strategies and behaviour when resolving a conflict or addressing an issue. Teachers can showcase their problem-solving skills by:

  • Identifying a problem when they come across one for the class to see
  • Brainstorming possible solutions with students
  • Collaborating with students to decide on the best solution
  • Testing that solution and examining the results with the students
  • Adapting as necessary to improve results or achieve the desired goal

Prioritise Student Agency in Learning

Recent research shows that self-directed learning is one of the most effective ways to nurture 21st-century competency development in young learners. Learning experiences that encourage student agency often require problem-solving skills.  When creativity and innovation are needed, students often encounter unexpected problems along the way that must be solved. Through self-directed learning, students experience challenges in a natural situation and can fine-tune their problem-solving skills along the way.  Self-directed learning provides them with a foundation in problem-solving that they can build upon in the future, allowing them to eventually develop more advanced and impactful problem-solving skills for real life.

21st-Century Skill Development at OWIS Singapore

Problem-solving has been identified as one of the core competencies that young learners must develop to be prepared to meet the dynamic needs of a global environment.  At OWIS Singapore, we have implemented an inquiry-driven, skills-based curriculum that allows students to organically develop critical future-ready skills — including problem-solving.  Our hands-on approach to education enables students to collaborate, explore, innovate, face-challenges, make mistakes and adapt as necessary.  As such, they learn problem-solving skills in an authentic manner.

For more information about 21st-century skill development, schedule a campus tour today.

About Author

David swanson, latest blogs.

OWIS Nanyang Drum Circle CCA Lesson - Music class - holistic development - international school in Singapore

  • May 9, 2024

Nurturing Young Learners Through Co-Curricular Activities at OWIS Nanyang

students problem solving skills

  • April 8, 2024

Transforming Experiential Learning Through Skill Studios at OWIS Digital Campus

students problem solving skills

  • March 26, 2024

Beyond the Classroom: Exploring IBDP’s Impact on College and Career Readiness

Image illustrating OWIS Nanyang Primary students deeply engaged in IBPYP, specifically centered around the theme of space exploration

  • March 12, 2024

Unpacking the IB PYP: A Comprehensive Guide for Parents

students problem solving skills

  • March 11, 2024

Embarking on a Journey Through the Art Spaces at OWIS Digital Campus*

students problem solving skills

  • March 4, 2024

Recommended Storybooks for Preschoolers

Related blog posts.

students problem solving skills

  • Culture & Values
  • Holistic development
  • Testimonial

Fostering Confidence in Education: The Dynamic Blend of Diversity and Academic Excellence at OWIS Digital Campus*

  • December 18, 2023

students problem solving skills

Integrating Language Skills in Early Childhood

  • February 23, 2022

nanyang Campus

Digital Campus

  • #01-02, Global Campus Village, 27 Punggol Field Walk, Singapore 828649

Suntec Campus

  • 1 Raffles Blvd, Singapore 039593

OWIS Nanyang is accredited for the IB PYP, Cambridge IGCSE and IB DP. OWIS Suntec is accredited for the IB PYP. CPE Registration Number: 200800495N | Validity Period: 24 February 2023 to 23 February 2027.

students problem solving skills

Quick Links:

Virtual and in-person Campus Tours Available

The Edvocate

  • Lynch Educational Consulting
  • Dr. Lynch’s Personal Website
  • Write For Us
  • The Tech Edvocate Product Guide
  • The Edvocate Podcast
  • Terms and Conditions
  • Privacy Policy
  • Assistive Technology
  • Best PreK-12 Schools in America
  • Child Development
  • Classroom Management
  • Early Childhood
  • EdTech & Innovation
  • Education Leadership
  • First Year Teachers
  • Gifted and Talented Education
  • Special Education
  • Parental Involvement
  • Policy & Reform
  • Best Colleges and Universities
  • Best College and University Programs
  • HBCU’s
  • Higher Education EdTech
  • Higher Education
  • International Education
  • The Awards Process
  • Finalists and Winners of The 2023 Tech Edvocate Awards
  • Award Seals
  • GPA Calculator for College
  • GPA Calculator for High School
  • Cumulative GPA Calculator
  • Grade Calculator
  • Weighted Grade Calculator
  • Final Grade Calculator
  • The Tech Edvocate
  • AI Powered Personal Tutor

Teaching Students About the Summer Olympics

Teaching students about princess margaret’s death: an educational approach, teaching students about michael cole: an insightful approach to understanding a renowned journalist, college minor: everything you need to know, 14 fascinating teacher interview questions for principals, tips for success if you have a master’s degree and can’t find a job, 14 ways young teachers can get that professional look, which teacher supplies are worth the splurge, 8 business books every teacher should read, conditional admission: everything you need to know, strategies and methods to teach students problem solving and critical thinking skills.

students problem solving skills

The ability to problem solve and think critically are two of the most important skills that PreK-12 students can learn. Why? Because students need these skills to succeed in their academics and in life in general. It allows them to find a solution to issues and complex situations that are thrown there way, even if this is the first time they are faced with the predicament.

Okay, we know that these are essential skills that are also difficult to master. So how can we teach our students problem solve and think critically? I am glad you asked. In this piece will list and discuss strategies and methods that you can use to teach your students to do just that.

  • Direct Analogy Method

A method of problem-solving in which a problem is compared to similar problems in nature or other settings, providing solutions that could potentially be applied.

  • Attribute Listing

A technique used to encourage creative thinking in which the parts of a subject, problem, or task are listed, and then ways to change those component parts are examined.

  • Attribute Modifying

A technique used to encourage creative thinking in which the parts of a subject, problem, or task are listed, and then options for changing or improving each part are considered.

  • Attribute Transferring

A technique used to encourage creative thinking in which the parts of a subject, problem or task listed and then the problem solver uses analogies to other contexts to generate and consider potential solutions.

  • Morphological Synthesis

A technique used to encourage creative problem solving which extends on attribute transferring. A matrix is created, listing concrete attributes along the x-axis, and the ideas from a second attribute along with the y-axis, yielding a long list of idea combinations.

SCAMPER stands for Substitute, Combine, Adapt, Modify-Magnify-Minify, Put to other uses, and Reverse or Rearrange. It is an idea checklist for solving design problems.

  • Direct Analogy

A problem-solving technique in which an individual is asked to consider the ways problems of this type are solved in nature.

  • Personal Analogy

A problem-solving technique in which an individual is challenged to become part of the problem to view it from a new perspective and identify possible solutions.

  • Fantasy Analogy

A problem-solving process in which participants are asked to consider outlandish, fantastic or bizarre solutions which may lead to original and ground-breaking ideas.

  • Symbolic Analogy

A problem-solving technique in which participants are challenged to generate a two-word phrase related to the design problem being considered and that appears self-contradictory. The process of brainstorming this phrase can stimulate design ideas.

  • Implementation Charting

An activity in which problem solvers are asked to identify the next steps to implement their creative ideas. This step follows the idea generation stage and the narrowing of ideas to one or more feasible solutions. The process helps participants to view implementation as a viable next step.

  • Thinking Skills

Skills aimed at aiding students to be critical, logical, and evaluative thinkers. They include analysis, comparison, classification, synthesis, generalization, discrimination, inference, planning, predicting, and identifying cause-effect relationships.

Can you think of any additional problems solving techniques that teachers use to improve their student’s problem-solving skills?

The 4 Types of Brainstorming

Feeling lethargic it may all that screen ....

' src=

Matthew Lynch

Related articles more from author.

students problem solving skills

20 Strategies to Help Students Who Express Concerns About School, Home, or Personal Relationships

students problem solving skills

Educators: Why You Need To Know About The 1990s And School Restructuring

students problem solving skills

How Teachers Should Build Their Resumes

students problem solving skills

Navigating the Two Types of Teacher Preparation Field Experiences

students problem solving skills

10 Engaging Digital Education Sites For Any Social Studies Classroom

students problem solving skills

Becoming an Effective Classroom Manager

Don’t Just Tell Students to Solve Problems. Teach Them How.

The positive impact of an innovative uc san diego problem-solving educational curriculum continues to grow.

Published Date

Share this:, article content.

Problem solving is a critical skill for technical education and technical careers of all types. But what are best practices for teaching problem solving to high school and college students? 

The University of California San Diego Jacobs School of Engineering is on the forefront of efforts to improve how problem solving is taught. This UC San Diego approach puts hands-on problem-identification and problem-solving techniques front and center. Over 1,500 students across the San Diego region have already benefited over the last three years from this program. In the 2023-2024 academic year, approximately 1,000 upper-level high school students will be taking the problem solving course in four different school districts in the San Diego region. Based on the positive results with college students, as well as high school juniors and seniors in the San Diego region, the project is getting attention from educators across the state of California, and around the nation and the world.

{/exp:typographee}

In Summer 2023, th e 27 community college students who took the unique problem-solving course developed at the UC San Diego Jacobs School of Engineering thrived, according to Alex Phan PhD, the Executive Director of Student Success at the UC San Diego Jacobs School of Engineering. Phan oversees the project. 

Over the course of three weeks, these students from Southwestern College and San Diego City College poured their enthusiasm into problem solving through hands-on team engineering challenges. The students brimmed with positive energy as they worked together. 

What was noticeably absent from this laboratory classroom: frustration.

“In school, we often tell students to brainstorm, but they don’t often know where to start. This curriculum gives students direct strategies for brainstorming, for identifying problems, for solving problems,” sai d Jennifer Ogo, a teacher from Kearny High School who taught the problem-solving course in summer 2023 at UC San Diego. Ogo was part of group of educators who took the course themselves last summer.

The curriculum has been created, refined and administered over the last three years through a collaboration between the UC San Diego Jacobs School of Engineering and the UC San Diego Division of Extended Studies. The project kicked off in 2020 with a generous gift from a local philanthropist.

Not getting stuck

One of the overarching goals of this project is to teach both problem-identification and problem-solving skills that help students avoid getting stuck during the learning process. Stuck feelings lead to frustration – and when it’s a Science, Technology, Engineering and Math (STEM) project, that frustration can lead students to feel they don’t belong in a STEM major or a STEM career. Instead, the UC San Diego curriculum is designed to give students the tools that lead to reactions like “this class is hard, but I know I can do this!” –  as Ogo, a celebrated high school biomedical sciences and technology teacher, put it. 

Three years into the curriculum development effort, the light-hearted energy of the students combined with their intense focus points to success. On the last day of the class, Mourad Mjahed PhD, Director of the MESA Program at Southwestern College’s School of Mathematics, Science and Engineering came to UC San Diego to see the final project presentations made by his 22 MESA students.

“Industry is looking for students who have learned from their failures and who have worked outside of their comfort zones,” said Mjahed. The UC San Diego problem-solving curriculum, Mjahed noted, is an opportunity for students to build the skills and the confidence to learn from their failures and to work outside their comfort zone. “And from there, they see pathways to real careers,” he said. 

What does it mean to explicitly teach problem solving? 

This approach to teaching problem solving includes a significant focus on learning to identify the problem that actually needs to be solved, in order to avoid solving the wrong problem. The curriculum is organized so that each day is a complete experience. It begins with the teacher introducing the problem-identification or problem-solving strategy of the day. The teacher then presents case studies of that particular strategy in action. Next, the students get introduced to the day’s challenge project. Working in teams, the students compete to win the challenge while integrating the day’s technique. Finally, the class reconvenes to reflect. They discuss what worked and didn't work with their designs as well as how they could have used the day’s problem-identification or problem-solving technique more effectively. 

The challenges are designed to be engaging – and over three years, they have been refined to be even more engaging. But the student engagement is about much more than being entertained. Many of the students recognize early on that the problem-identification and problem-solving skills they are learning can be applied not just in the classroom, but in other classes and in life in general. 

Gabriel from Southwestern College is one of the students who saw benefits outside the classroom almost immediately. In addition to taking the UC San Diego problem-solving course, Gabriel was concurrently enrolled in an online computer science programming class. He said he immediately started applying the UC San Diego problem-identification and troubleshooting strategies to his coding assignments. 

Gabriel noted that he was given a coding-specific troubleshooting strategy in the computer science course, but the more general problem-identification strategies from the UC San Diego class had been extremely helpful. It’s critical to “find the right problem so you can get the right solution. The strategies here,” he said, “they work everywhere.”

Phan echoed this sentiment. “We believe this curriculum can prepare students for the technical workforce. It can prepare students to be impactful for any career path.”

The goal is to be able to offer the course in community colleges for course credit that transfers to the UC, and to possibly offer a version of the course to incoming students at UC San Diego. 

As the team continues to work towards integrating the curriculum in both standardized high school courses such as physics, and incorporating the content as a part of the general education curriculum at UC San Diego, the project is expected to impact thousands more students across San Diego annually. 

Portrait of the Problem-Solving Curriculum

On a sunny Wednesday in July 2023, an experiential-learning classroom was full of San Diego community college students. They were about half-way through the three-week problem-solving course at UC San Diego, held in the campus’ EnVision Arts and Engineering Maker Studio. On this day, the students were challenged to build a contraption that would propel at least six ping pong balls along a kite string spanning the laboratory. The only propulsive force they could rely on was the air shooting out of a party balloon.

A team of three students from Southwestern College – Valeria, Melissa and Alondra – took an early lead in the classroom competition. They were the first to use a plastic bag instead of disposable cups to hold the ping pong balls. Using a bag, their design got more than half-way to the finish line – better than any other team at the time – but there was more work to do. 

As the trio considered what design changes to make next, they returned to the problem-solving theme of the day: unintended consequences. Earlier in the day, all the students had been challenged to consider unintended consequences and ask questions like: When you design to reduce friction, what happens? Do new problems emerge? Did other things improve that you hadn’t anticipated? 

Other groups soon followed Valeria, Melissa and Alondra’s lead and began iterating on their own plastic-bag solutions to the day’s challenge. New unintended consequences popped up everywhere. Switching from cups to a bag, for example, reduced friction but sometimes increased wind drag. 

Over the course of several iterations, Valeria, Melissa and Alondra made their bag smaller, blew their balloon up bigger, and switched to a different kind of tape to get a better connection with the plastic straw that slid along the kite string, carrying the ping pong balls. 

One of the groups on the other side of the room watched the emergence of the plastic-bag solution with great interest. 

“We tried everything, then we saw a team using a bag,” said Alexander, a student from City College. His team adopted the plastic-bag strategy as well, and iterated on it like everyone else. They also chose to blow up their balloon with a hand pump after the balloon was already attached to the bag filled with ping pong balls – which was unique. 

“I don’t want to be trying to put the balloon in place when it's about to explode,” Alexander explained. 

Asked about whether the structured problem solving approaches were useful, Alexander’s teammate Brianna, who is a Southwestern College student, talked about how the problem-solving tools have helped her get over mental blocks. “Sometimes we make the most ridiculous things work,” she said. “It’s a pretty fun class for sure.” 

Yoshadara, a City College student who is the third member of this team, described some of the problem solving techniques this way: “It’s about letting yourself be a little absurd.”

Alexander jumped back into the conversation. “The value is in the abstraction. As students, we learn to look at the problem solving that worked and then abstract out the problem solving strategy that can then be applied to other challenges. That’s what mathematicians do all the time,” he said, adding that he is already thinking about how he can apply the process of looking at unintended consequences to improve both how he plays chess and how he goes about solving math problems.

Looking ahead, the goal is to empower as many students as possible in the San Diego area and  beyond to learn to problem solve more enjoyably. It’s a concrete way to give students tools that could encourage them to thrive in the growing number of technical careers that require sharp problem-solving skills, whether or not they require a four-year degree. 

You May Also Like

Empowering voices: sally ride science hosts the sixth annual women in leadership event, uc san diego health recognized as high performer for lgbtq+ healthcare equality, study pinpoints cellular response to pressure in sea star embryos, a new update from chancellor pradeep k. khosla, stay in the know.

Keep up with all the latest from UC San Diego. Subscribe to the newsletter today.

You have been successfully subscribed to the UC San Diego Today Newsletter.

Campus & Community

Arts & culture, visual storytelling.

  • Media Resources & Contacts

Signup to get the latest UC San Diego newsletters delivered to your inbox.

Award-winning publication highlighting the distinction, prestige and global impact of UC San Diego.

Popular Searches: Covid-19   Ukraine   Campus & Community   Arts & Culture   Voices

  • Trying to Conceive
  • Signs & Symptoms
  • Pregnancy Tests
  • Fertility Testing
  • Fertility Treatment
  • Weeks & Trimesters
  • Staying Healthy
  • Preparing for Baby
  • Complications & Concerns
  • Pregnancy Loss
  • Breastfeeding
  • School-Aged Kids
  • Raising Kids
  • Personal Stories
  • Everyday Wellness
  • Safety & First Aid
  • Immunizations
  • Food & Nutrition
  • Active Play
  • Pregnancy Products
  • Nursery & Sleep Products
  • Nursing & Feeding Products
  • Clothing & Accessories
  • Toys & Gifts
  • Ovulation Calculator
  • Pregnancy Due Date Calculator
  • How to Talk About Postpartum Depression
  • Editorial Process
  • Meet Our Review Board

How to Teach Kids Problem-Solving Skills

KidStock / Blend Images / Getty Images

  • Steps to Follow
  • Allow Consequences

Whether your child can't find their math homework or has forgotten their lunch, good problem-solving skills are the key to helping them manage their life. 

A 2010 study published in Behaviour Research and Therapy found that kids who lack problem-solving skills may be at a higher risk of depression and suicidality.   Additionally, the researchers found that teaching a child problem-solving skills can improve mental health . 

You can begin teaching basic problem-solving skills during preschool and help your child sharpen their skills into high school and beyond.

Why Problem-Solving Skills Matter

Kids face a variety of problems every day, ranging from academic difficulties to problems on the sports field. Yet few of them have a formula for solving those problems.

Kids who lack problem-solving skills may avoid taking action when faced with a problem.

Rather than put their energy into solving the problem, they may invest their time in avoiding the issue.   That's why many kids fall behind in school or struggle to maintain friendships .

Other kids who lack problem-solving skills spring into action without recognizing their choices. A child may hit a peer who cuts in front of them in line because they are not sure what else to do.  

Or, they may walk out of class when they are being teased because they can't think of any other ways to make it stop. Those impulsive choices may create even bigger problems in the long run.

The 5 Steps of Problem-Solving

Kids who feel overwhelmed or hopeless often won't attempt to address a problem. But when you give them a clear formula for solving problems, they'll feel more confident in their ability to try. Here are the steps to problem-solving:  

  • Identify the problem . Just stating the problem out loud can make a big difference for kids who are feeling stuck. Help your child state the problem, such as, "You don't have anyone to play with at recess," or "You aren't sure if you should take the advanced math class." 
  • Develop at least five possible solutions . Brainstorm possible ways to solve the problem. Emphasize that all the solutions don't necessarily need to be good ideas (at least not at this point). Help your child develop solutions if they are struggling to come up with ideas. Even a silly answer or far-fetched idea is a possible solution. The key is to help them see that with a little creativity, they can find many different potential solutions.
  • Identify the pros and cons of each solution . Help your child identify potential positive and negative consequences for each potential solution they identified. 
  • Pick a solution. Once your child has evaluated the possible positive and negative outcomes, encourage them to pick a solution.
  • Test it out . Tell them to try a solution and see what happens. If it doesn't work out, they can always try another solution from the list that they developed in step two. 

Practice Solving Problems

When problems arise, don’t rush to solve your child’s problems for them. Instead, help them walk through the problem-solving steps. Offer guidance when they need assistance, but encourage them to solve problems on their own. If they are unable to come up with a solution, step in and help them think of some. But don't automatically tell them what to do. 

When you encounter behavioral issues, use a problem-solving approach. Sit down together and say, "You've been having difficulty getting your homework done lately. Let's problem-solve this together." You might still need to offer a consequence for misbehavior, but make it clear that you're invested in looking for a solution so they can do better next time. 

Use a problem-solving approach to help your child become more independent.

If they forgot to pack their soccer cleats for practice, ask, "What can we do to make sure this doesn't happen again?" Let them try to develop some solutions on their own.

Kids often develop creative solutions. So they might say, "I'll write a note and stick it on my door so I'll remember to pack them before I leave," or "I'll pack my bag the night before and I'll keep a checklist to remind me what needs to go in my bag." 

Provide plenty of praise when your child practices their problem-solving skills.  

Allow for Natural Consequences

Natural consequences  may also teach problem-solving skills. So when it's appropriate, allow your child to face the natural consequences of their action. Just make sure it's safe to do so. 

For example, let your teenager spend all of their money during the first 10 minutes you're at an amusement park if that's what they want. Then, let them go for the rest of the day without any spending money.

This can lead to a discussion about problem-solving to help them make a better choice next time. Consider these natural consequences as a teachable moment to help work together on problem-solving.

Becker-Weidman EG, Jacobs RH, Reinecke MA, Silva SG, March JS. Social problem-solving among adolescents treated for depression . Behav Res Ther . 2010;48(1):11-18. doi:10.1016/j.brat.2009.08.006

Pakarinen E, Kiuru N, Lerkkanen M-K, Poikkeus A-M, Ahonen T, Nurmi J-E. Instructional support predicts childrens task avoidance in kindergarten .  Early Child Res Q . 2011;26(3):376-386. doi:10.1016/j.ecresq.2010.11.003

Schell A, Albers L, von Kries R, Hillenbrand C, Hennemann T. Preventing behavioral disorders via supporting social and emotional competence at preschool age .  Dtsch Arztebl Int . 2015;112(39):647–654. doi:10.3238/arztebl.2015.0647

Cheng SC, She HC, Huang LY. The impact of problem-solving instruction on middle school students’ physical science learning: Interplays of knowledge, reasoning, and problem solving . EJMSTE . 2018;14(3):731-743.

Vlachou A, Stavroussi P. Promoting social inclusion: A structured intervention for enhancing interpersonal problem‐solving skills in children with mild intellectual disabilities . Support Learn . 2016;31(1):27-45. doi:10.1111/1467-9604.12112

Öğülmüş S, Kargı E. The interpersonal cognitive problem solving approach for preschoolers .  Turkish J Educ . 2015;4(17347):19-28. doi:10.19128/turje.181093

American Academy of Pediatrics. What's the best way to discipline my child? .

Kashani-Vahid L, Afrooz G, Shokoohi-Yekta M, Kharrazi K, Ghobari B. Can a creative interpersonal problem solving program improve creative thinking in gifted elementary students? .  Think Skills Creat . 2017;24:175-185. doi:10.1016/j.tsc.2017.02.011

Shokoohi-Yekta M, Malayeri SA. Effects of advanced parenting training on children's behavioral problems and family problem solving .  Procedia Soc Behav Sci . 2015;205:676-680. doi:10.1016/j.sbspro.2015.09.106

By Amy Morin, LCSW Amy Morin, LCSW, is the Editor-in-Chief of Verywell Mind. She's also a psychotherapist, an international bestselling author of books on mental strength and host of The Verywell Mind Podcast. She delivered one of the most popular TEDx talks of all time.

Menu Trigger

Reimagining Assessment Assessing the Transfer of Critical Thinking and Problem Solving Skills

students problem solving skills

Jeff Heyck-Williams (He, His, Him) Director of the Two Rivers Learning Institute in Washington, DC

2Rivers Skills

Educators are rethinking the purposes, forms, and nature of assessment. Beyond testing mastery of traditional content knowledge—an essential task, but not nearly sufficient—educators are designing assessment for learning as an integral part of the learning process.

Two Rivers embarked on a multi-year project to define and assess critical thinking and problem solving in project-based learning expeditions.

Two Rivers Public Charter School in Washington, D.C., is a network of EL Education schools serving over 700 students in preschool through 8th grade. Throughout our twelve-year history, we have continued to champion the importance of embracing a broader definition of student success than what has been handed to us by state and national policy. While we believe that it is essential for all students to be proficient in math, literacy, and the sciences, we believe that that is not enough. Students also need a rich set of social and cognitive skills that span beyond any given discipline.

Furthermore, we believe that we can best teach students these skills through hands-on interdisciplinary project-based learning. As EL Education schools, our projects are defined as expeditions lasting 10 to 12 weeks in which students tackle messy, real world problems that don’t have easy paths to solutions nor do they have one clear right answer. Through intentional design of these projects, teachers address the core content and basic skills defined by literacy and content standards; the social skills of collaboration and communication; the intrapersonal skills defined by character; and the broadly applicable cognitive skills of critical thinking and problem solving.

In the life of our schools, we have seen the powerful way that our students through project-based learning have embraced deeper learning outcomes, and exhibited the habits of effective critical thinking, collaboration, and personal character. However, our evidence that this is working is only found in anecdotes and in the quality of student work. We have been unable to demonstrate neither the degree to which students are developing these skills within projects nor their ability to transfer the skills beyond the context of the current project.

Focusing just on the dimensions of critical thinking and problem solving, our teachers expressed frustration at not knowing in concrete terms what those cognitive skills looked like when students exhibited them. Building on our understanding of the essential role that assessment for learning plays in the learning process and the very practical consideration of how we help teachers and students define and work towards developing these skills, we have embarked on a multi-year project to define and assess critical thinking and problem solving.

Critical thinking and problem solving, as we define it, are the set of non-discipline specific cognitive skills people use to analyze vast amounts of information and creatively solve problems. We have broken those skills down into these five core components:

  • Schema Development: The ability to learn vast amounts of information and organize it in ways that are useful for understanding
  • Metacognition and Evaluation: The ability to think critically about what one is doing and evaluate many potential choices
  • Effective Reasoning: The ability to create claims and support them with logical evidence
  • Problem Solving: The ability to identify the key questions in a problem, develop possible paths to a solution, and follow through with a solution
  • Creativity and Innovation: The ability to formulate new ideas that are useful within a particular context

Our project is working to create learning progressions in each of these core components with accompanying rubrics. The progressions of learning and rubrics will both help define for students and teachers the skills that all students should be developing as well as function as evaluative tools to provide a picture where each student sits in the development of these skills and what are the next steps for further learning.

However, we believe it is not enough for students to be able to develop these skills within the highly scaffolded context of our expeditions. If they have truly learned the skills, they should have the ability to transfer them. With this in mind, we are working to create short content-neutral performance tasks that will give teachers and students valuable information about each of the five core components listed above. Our hypothesis is that through having students tackle short novel tasks, we will be able to draw clear conclusions about their learning of critical thinking and problem solving skills.

Through the course of this work, we hope that our process will be useful to other educators interested in achieving deeper learning outcomes for their students. We realize that deeper learning will not become a reality in most schools until teachers and leaders have a clear vision for what it looks like on a day-to-day basis and how we can clearly demonstrate student growth in these essential skills. We hope that our work will help to inform how to make deeper learning a concrete reality. It is a work in progress, and we invite you to share your thoughts and follow our progress at our website  https://learn.tworiverspcs.org .

Learn more about Two Rivers' Assessment for Learning Project on their grantee page .

Jeff Heyck-Williams (He, His, Him)

Director of the two rivers learning institute.

Jeff Heyck-Williams is the director of the Two Rivers Learning Institute and a founder of Two Rivers Public Charter School. He has led work around creating school-wide cultures of mathematics, developing assessments of critical thinking and problem-solving, and supporting project-based learning.

Read More About Reimagining Assessment

Franklin HS students at museum

Three Ways Franklin Is Doing High School Differently

Carisa Corrow (she/hers)

November 13, 2023

profile of a graduate

Testing for Dummies: 5 Facts about Standardized Testing

John Tanner

August 31, 2023

Assessment Scrabble CC0

Grades vs. Continuous Learning: Learners Are Entitled to the A

Catherine Thorn

August 24, 2023

students problem solving skills

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Open access
  • Published: 11 January 2023

The effectiveness of collaborative problem solving in promoting students’ critical thinking: A meta-analysis based on empirical literature

  • Enwei Xu   ORCID: orcid.org/0000-0001-6424-8169 1 ,
  • Wei Wang 1 &
  • Qingxia Wang 1  

Humanities and Social Sciences Communications volume  10 , Article number:  16 ( 2023 ) Cite this article

15k Accesses

13 Citations

3 Altmetric

Metrics details

  • Science, technology and society

Collaborative problem-solving has been widely embraced in the classroom instruction of critical thinking, which is regarded as the core of curriculum reform based on key competencies in the field of education as well as a key competence for learners in the 21st century. However, the effectiveness of collaborative problem-solving in promoting students’ critical thinking remains uncertain. This current research presents the major findings of a meta-analysis of 36 pieces of the literature revealed in worldwide educational periodicals during the 21st century to identify the effectiveness of collaborative problem-solving in promoting students’ critical thinking and to determine, based on evidence, whether and to what extent collaborative problem solving can result in a rise or decrease in critical thinking. The findings show that (1) collaborative problem solving is an effective teaching approach to foster students’ critical thinking, with a significant overall effect size (ES = 0.82, z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]); (2) in respect to the dimensions of critical thinking, collaborative problem solving can significantly and successfully enhance students’ attitudinal tendencies (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI[0.87, 1.47]); nevertheless, it falls short in terms of improving students’ cognitive skills, having only an upper-middle impact (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI[0.58, 0.82]); and (3) the teaching type (chi 2  = 7.20, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), and learning scaffold (chi 2  = 9.03, P  < 0.01) all have an impact on critical thinking, and they can be viewed as important moderating factors that affect how critical thinking develops. On the basis of these results, recommendations are made for further study and instruction to better support students’ critical thinking in the context of collaborative problem-solving.

Similar content being viewed by others

students problem solving skills

Fostering twenty-first century skills among primary school students through math project-based learning

students problem solving skills

A meta-analysis to gauge the impact of pedagogies employed in mixed-ability high school biology classrooms

students problem solving skills

A guide to critical thinking: implications for dental education

Introduction.

Although critical thinking has a long history in research, the concept of critical thinking, which is regarded as an essential competence for learners in the 21st century, has recently attracted more attention from researchers and teaching practitioners (National Research Council, 2012 ). Critical thinking should be the core of curriculum reform based on key competencies in the field of education (Peng and Deng, 2017 ) because students with critical thinking can not only understand the meaning of knowledge but also effectively solve practical problems in real life even after knowledge is forgotten (Kek and Huijser, 2011 ). The definition of critical thinking is not universal (Ennis, 1989 ; Castle, 2009 ; Niu et al., 2013 ). In general, the definition of critical thinking is a self-aware and self-regulated thought process (Facione, 1990 ; Niu et al., 2013 ). It refers to the cognitive skills needed to interpret, analyze, synthesize, reason, and evaluate information as well as the attitudinal tendency to apply these abilities (Halpern, 2001 ). The view that critical thinking can be taught and learned through curriculum teaching has been widely supported by many researchers (e.g., Kuncel, 2011 ; Leng and Lu, 2020 ), leading to educators’ efforts to foster it among students. In the field of teaching practice, there are three types of courses for teaching critical thinking (Ennis, 1989 ). The first is an independent curriculum in which critical thinking is taught and cultivated without involving the knowledge of specific disciplines; the second is an integrated curriculum in which critical thinking is integrated into the teaching of other disciplines as a clear teaching goal; and the third is a mixed curriculum in which critical thinking is taught in parallel to the teaching of other disciplines for mixed teaching training. Furthermore, numerous measuring tools have been developed by researchers and educators to measure critical thinking in the context of teaching practice. These include standardized measurement tools, such as WGCTA, CCTST, CCTT, and CCTDI, which have been verified by repeated experiments and are considered effective and reliable by international scholars (Facione and Facione, 1992 ). In short, descriptions of critical thinking, including its two dimensions of attitudinal tendency and cognitive skills, different types of teaching courses, and standardized measurement tools provide a complex normative framework for understanding, teaching, and evaluating critical thinking.

Cultivating critical thinking in curriculum teaching can start with a problem, and one of the most popular critical thinking instructional approaches is problem-based learning (Liu et al., 2020 ). Duch et al. ( 2001 ) noted that problem-based learning in group collaboration is progressive active learning, which can improve students’ critical thinking and problem-solving skills. Collaborative problem-solving is the organic integration of collaborative learning and problem-based learning, which takes learners as the center of the learning process and uses problems with poor structure in real-world situations as the starting point for the learning process (Liang et al., 2017 ). Students learn the knowledge needed to solve problems in a collaborative group, reach a consensus on problems in the field, and form solutions through social cooperation methods, such as dialogue, interpretation, questioning, debate, negotiation, and reflection, thus promoting the development of learners’ domain knowledge and critical thinking (Cindy, 2004 ; Liang et al., 2017 ).

Collaborative problem-solving has been widely used in the teaching practice of critical thinking, and several studies have attempted to conduct a systematic review and meta-analysis of the empirical literature on critical thinking from various perspectives. However, little attention has been paid to the impact of collaborative problem-solving on critical thinking. Therefore, the best approach for developing and enhancing critical thinking throughout collaborative problem-solving is to examine how to implement critical thinking instruction; however, this issue is still unexplored, which means that many teachers are incapable of better instructing critical thinking (Leng and Lu, 2020 ; Niu et al., 2013 ). For example, Huber ( 2016 ) provided the meta-analysis findings of 71 publications on gaining critical thinking over various time frames in college with the aim of determining whether critical thinking was truly teachable. These authors found that learners significantly improve their critical thinking while in college and that critical thinking differs with factors such as teaching strategies, intervention duration, subject area, and teaching type. The usefulness of collaborative problem-solving in fostering students’ critical thinking, however, was not determined by this study, nor did it reveal whether there existed significant variations among the different elements. A meta-analysis of 31 pieces of educational literature was conducted by Liu et al. ( 2020 ) to assess the impact of problem-solving on college students’ critical thinking. These authors found that problem-solving could promote the development of critical thinking among college students and proposed establishing a reasonable group structure for problem-solving in a follow-up study to improve students’ critical thinking. Additionally, previous empirical studies have reached inconclusive and even contradictory conclusions about whether and to what extent collaborative problem-solving increases or decreases critical thinking levels. As an illustration, Yang et al. ( 2008 ) carried out an experiment on the integrated curriculum teaching of college students based on a web bulletin board with the goal of fostering participants’ critical thinking in the context of collaborative problem-solving. These authors’ research revealed that through sharing, debating, examining, and reflecting on various experiences and ideas, collaborative problem-solving can considerably enhance students’ critical thinking in real-life problem situations. In contrast, collaborative problem-solving had a positive impact on learners’ interaction and could improve learning interest and motivation but could not significantly improve students’ critical thinking when compared to traditional classroom teaching, according to research by Naber and Wyatt ( 2014 ) and Sendag and Odabasi ( 2009 ) on undergraduate and high school students, respectively.

The above studies show that there is inconsistency regarding the effectiveness of collaborative problem-solving in promoting students’ critical thinking. Therefore, it is essential to conduct a thorough and trustworthy review to detect and decide whether and to what degree collaborative problem-solving can result in a rise or decrease in critical thinking. Meta-analysis is a quantitative analysis approach that is utilized to examine quantitative data from various separate studies that are all focused on the same research topic. This approach characterizes the effectiveness of its impact by averaging the effect sizes of numerous qualitative studies in an effort to reduce the uncertainty brought on by independent research and produce more conclusive findings (Lipsey and Wilson, 2001 ).

This paper used a meta-analytic approach and carried out a meta-analysis to examine the effectiveness of collaborative problem-solving in promoting students’ critical thinking in order to make a contribution to both research and practice. The following research questions were addressed by this meta-analysis:

What is the overall effect size of collaborative problem-solving in promoting students’ critical thinking and its impact on the two dimensions of critical thinking (i.e., attitudinal tendency and cognitive skills)?

How are the disparities between the study conclusions impacted by various moderating variables if the impacts of various experimental designs in the included studies are heterogeneous?

This research followed the strict procedures (e.g., database searching, identification, screening, eligibility, merging, duplicate removal, and analysis of included studies) of Cooper’s ( 2010 ) proposed meta-analysis approach for examining quantitative data from various separate studies that are all focused on the same research topic. The relevant empirical research that appeared in worldwide educational periodicals within the 21st century was subjected to this meta-analysis using Rev-Man 5.4. The consistency of the data extracted separately by two researchers was tested using Cohen’s kappa coefficient, and a publication bias test and a heterogeneity test were run on the sample data to ascertain the quality of this meta-analysis.

Data sources and search strategies

There were three stages to the data collection process for this meta-analysis, as shown in Fig. 1 , which shows the number of articles included and eliminated during the selection process based on the statement and study eligibility criteria.

figure 1

This flowchart shows the number of records identified, included and excluded in the article.

First, the databases used to systematically search for relevant articles were the journal papers of the Web of Science Core Collection and the Chinese Core source journal, as well as the Chinese Social Science Citation Index (CSSCI) source journal papers included in CNKI. These databases were selected because they are credible platforms that are sources of scholarly and peer-reviewed information with advanced search tools and contain literature relevant to the subject of our topic from reliable researchers and experts. The search string with the Boolean operator used in the Web of Science was “TS = (((“critical thinking” or “ct” and “pretest” or “posttest”) or (“critical thinking” or “ct” and “control group” or “quasi experiment” or “experiment”)) and (“collaboration” or “collaborative learning” or “CSCL”) and (“problem solving” or “problem-based learning” or “PBL”))”. The research area was “Education Educational Research”, and the search period was “January 1, 2000, to December 30, 2021”. A total of 412 papers were obtained. The search string with the Boolean operator used in the CNKI was “SU = (‘critical thinking’*‘collaboration’ + ‘critical thinking’*‘collaborative learning’ + ‘critical thinking’*‘CSCL’ + ‘critical thinking’*‘problem solving’ + ‘critical thinking’*‘problem-based learning’ + ‘critical thinking’*‘PBL’ + ‘critical thinking’*‘problem oriented’) AND FT = (‘experiment’ + ‘quasi experiment’ + ‘pretest’ + ‘posttest’ + ‘empirical study’)” (translated into Chinese when searching). A total of 56 studies were found throughout the search period of “January 2000 to December 2021”. From the databases, all duplicates and retractions were eliminated before exporting the references into Endnote, a program for managing bibliographic references. In all, 466 studies were found.

Second, the studies that matched the inclusion and exclusion criteria for the meta-analysis were chosen by two researchers after they had reviewed the abstracts and titles of the gathered articles, yielding a total of 126 studies.

Third, two researchers thoroughly reviewed each included article’s whole text in accordance with the inclusion and exclusion criteria. Meanwhile, a snowball search was performed using the references and citations of the included articles to ensure complete coverage of the articles. Ultimately, 36 articles were kept.

Two researchers worked together to carry out this entire process, and a consensus rate of almost 94.7% was reached after discussion and negotiation to clarify any emerging differences.

Eligibility criteria

Since not all the retrieved studies matched the criteria for this meta-analysis, eligibility criteria for both inclusion and exclusion were developed as follows:

The publication language of the included studies was limited to English and Chinese, and the full text could be obtained. Articles that did not meet the publication language and articles not published between 2000 and 2021 were excluded.

The research design of the included studies must be empirical and quantitative studies that can assess the effect of collaborative problem-solving on the development of critical thinking. Articles that could not identify the causal mechanisms by which collaborative problem-solving affects critical thinking, such as review articles and theoretical articles, were excluded.

The research method of the included studies must feature a randomized control experiment or a quasi-experiment, or a natural experiment, which have a higher degree of internal validity with strong experimental designs and can all plausibly provide evidence that critical thinking and collaborative problem-solving are causally related. Articles with non-experimental research methods, such as purely correlational or observational studies, were excluded.

The participants of the included studies were only students in school, including K-12 students and college students. Articles in which the participants were non-school students, such as social workers or adult learners, were excluded.

The research results of the included studies must mention definite signs that may be utilized to gauge critical thinking’s impact (e.g., sample size, mean value, or standard deviation). Articles that lacked specific measurement indicators for critical thinking and could not calculate the effect size were excluded.

Data coding design

In order to perform a meta-analysis, it is necessary to collect the most important information from the articles, codify that information’s properties, and convert descriptive data into quantitative data. Therefore, this study designed a data coding template (see Table 1 ). Ultimately, 16 coding fields were retained.

The designed data-coding template consisted of three pieces of information. Basic information about the papers was included in the descriptive information: the publishing year, author, serial number, and title of the paper.

The variable information for the experimental design had three variables: the independent variable (instruction method), the dependent variable (critical thinking), and the moderating variable (learning stage, teaching type, intervention duration, learning scaffold, group size, measuring tool, and subject area). Depending on the topic of this study, the intervention strategy, as the independent variable, was coded into collaborative and non-collaborative problem-solving. The dependent variable, critical thinking, was coded as a cognitive skill and an attitudinal tendency. And seven moderating variables were created by grouping and combining the experimental design variables discovered within the 36 studies (see Table 1 ), where learning stages were encoded as higher education, high school, middle school, and primary school or lower; teaching types were encoded as mixed courses, integrated courses, and independent courses; intervention durations were encoded as 0–1 weeks, 1–4 weeks, 4–12 weeks, and more than 12 weeks; group sizes were encoded as 2–3 persons, 4–6 persons, 7–10 persons, and more than 10 persons; learning scaffolds were encoded as teacher-supported learning scaffold, technique-supported learning scaffold, and resource-supported learning scaffold; measuring tools were encoded as standardized measurement tools (e.g., WGCTA, CCTT, CCTST, and CCTDI) and self-adapting measurement tools (e.g., modified or made by researchers); and subject areas were encoded according to the specific subjects used in the 36 included studies.

The data information contained three metrics for measuring critical thinking: sample size, average value, and standard deviation. It is vital to remember that studies with various experimental designs frequently adopt various formulas to determine the effect size. And this paper used Morris’ proposed standardized mean difference (SMD) calculation formula ( 2008 , p. 369; see Supplementary Table S3 ).

Procedure for extracting and coding data

According to the data coding template (see Table 1 ), the 36 papers’ information was retrieved by two researchers, who then entered them into Excel (see Supplementary Table S1 ). The results of each study were extracted separately in the data extraction procedure if an article contained numerous studies on critical thinking, or if a study assessed different critical thinking dimensions. For instance, Tiwari et al. ( 2010 ) used four time points, which were viewed as numerous different studies, to examine the outcomes of critical thinking, and Chen ( 2013 ) included the two outcome variables of attitudinal tendency and cognitive skills, which were regarded as two studies. After discussion and negotiation during data extraction, the two researchers’ consistency test coefficients were roughly 93.27%. Supplementary Table S2 details the key characteristics of the 36 included articles with 79 effect quantities, including descriptive information (e.g., the publishing year, author, serial number, and title of the paper), variable information (e.g., independent variables, dependent variables, and moderating variables), and data information (e.g., mean values, standard deviations, and sample size). Following that, testing for publication bias and heterogeneity was done on the sample data using the Rev-Man 5.4 software, and then the test results were used to conduct a meta-analysis.

Publication bias test

When the sample of studies included in a meta-analysis does not accurately reflect the general status of research on the relevant subject, publication bias is said to be exhibited in this research. The reliability and accuracy of the meta-analysis may be impacted by publication bias. Due to this, the meta-analysis needs to check the sample data for publication bias (Stewart et al., 2006 ). A popular method to check for publication bias is the funnel plot; and it is unlikely that there will be publishing bias when the data are equally dispersed on either side of the average effect size and targeted within the higher region. The data are equally dispersed within the higher portion of the efficient zone, consistent with the funnel plot connected with this analysis (see Fig. 2 ), indicating that publication bias is unlikely in this situation.

figure 2

This funnel plot shows the result of publication bias of 79 effect quantities across 36 studies.

Heterogeneity test

To select the appropriate effect models for the meta-analysis, one might use the results of a heterogeneity test on the data effect sizes. In a meta-analysis, it is common practice to gauge the degree of data heterogeneity using the I 2 value, and I 2  ≥ 50% is typically understood to denote medium-high heterogeneity, which calls for the adoption of a random effect model; if not, a fixed effect model ought to be applied (Lipsey and Wilson, 2001 ). The findings of the heterogeneity test in this paper (see Table 2 ) revealed that I 2 was 86% and displayed significant heterogeneity ( P  < 0.01). To ensure accuracy and reliability, the overall effect size ought to be calculated utilizing the random effect model.

The analysis of the overall effect size

This meta-analysis utilized a random effect model to examine 79 effect quantities from 36 studies after eliminating heterogeneity. In accordance with Cohen’s criterion (Cohen, 1992 ), it is abundantly clear from the analysis results, which are shown in the forest plot of the overall effect (see Fig. 3 ), that the cumulative impact size of cooperative problem-solving is 0.82, which is statistically significant ( z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]), and can encourage learners to practice critical thinking.

figure 3

This forest plot shows the analysis result of the overall effect size across 36 studies.

In addition, this study examined two distinct dimensions of critical thinking to better understand the precise contributions that collaborative problem-solving makes to the growth of critical thinking. The findings (see Table 3 ) indicate that collaborative problem-solving improves cognitive skills (ES = 0.70) and attitudinal tendency (ES = 1.17), with significant intergroup differences (chi 2  = 7.95, P  < 0.01). Although collaborative problem-solving improves both dimensions of critical thinking, it is essential to point out that the improvements in students’ attitudinal tendency are much more pronounced and have a significant comprehensive effect (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI [0.87, 1.47]), whereas gains in learners’ cognitive skill are slightly improved and are just above average. (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI [0.58, 0.82]).

The analysis of moderator effect size

The whole forest plot’s 79 effect quantities underwent a two-tailed test, which revealed significant heterogeneity ( I 2  = 86%, z  = 12.78, P  < 0.01), indicating differences between various effect sizes that may have been influenced by moderating factors other than sampling error. Therefore, exploring possible moderating factors that might produce considerable heterogeneity was done using subgroup analysis, such as the learning stage, learning scaffold, teaching type, group size, duration of the intervention, measuring tool, and the subject area included in the 36 experimental designs, in order to further explore the key factors that influence critical thinking. The findings (see Table 4 ) indicate that various moderating factors have advantageous effects on critical thinking. In this situation, the subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), learning scaffold (chi 2  = 9.03, P  < 0.01), and teaching type (chi 2  = 7.20, P  < 0.05) are all significant moderators that can be applied to support the cultivation of critical thinking. However, since the learning stage and the measuring tools did not significantly differ among intergroup (chi 2  = 3.15, P  = 0.21 > 0.05, and chi 2  = 0.08, P  = 0.78 > 0.05), we are unable to explain why these two factors are crucial in supporting the cultivation of critical thinking in the context of collaborative problem-solving. These are the precise outcomes, as follows:

Various learning stages influenced critical thinking positively, without significant intergroup differences (chi 2  = 3.15, P  = 0.21 > 0.05). High school was first on the list of effect sizes (ES = 1.36, P  < 0.01), then higher education (ES = 0.78, P  < 0.01), and middle school (ES = 0.73, P  < 0.01). These results show that, despite the learning stage’s beneficial influence on cultivating learners’ critical thinking, we are unable to explain why it is essential for cultivating critical thinking in the context of collaborative problem-solving.

Different teaching types had varying degrees of positive impact on critical thinking, with significant intergroup differences (chi 2  = 7.20, P  < 0.05). The effect size was ranked as follows: mixed courses (ES = 1.34, P  < 0.01), integrated courses (ES = 0.81, P  < 0.01), and independent courses (ES = 0.27, P  < 0.01). These results indicate that the most effective approach to cultivate critical thinking utilizing collaborative problem solving is through the teaching type of mixed courses.

Various intervention durations significantly improved critical thinking, and there were significant intergroup differences (chi 2  = 12.18, P  < 0.01). The effect sizes related to this variable showed a tendency to increase with longer intervention durations. The improvement in critical thinking reached a significant level (ES = 0.85, P  < 0.01) after more than 12 weeks of training. These findings indicate that the intervention duration and critical thinking’s impact are positively correlated, with a longer intervention duration having a greater effect.

Different learning scaffolds influenced critical thinking positively, with significant intergroup differences (chi 2  = 9.03, P  < 0.01). The resource-supported learning scaffold (ES = 0.69, P  < 0.01) acquired a medium-to-higher level of impact, the technique-supported learning scaffold (ES = 0.63, P  < 0.01) also attained a medium-to-higher level of impact, and the teacher-supported learning scaffold (ES = 0.92, P  < 0.01) displayed a high level of significant impact. These results show that the learning scaffold with teacher support has the greatest impact on cultivating critical thinking.

Various group sizes influenced critical thinking positively, and the intergroup differences were statistically significant (chi 2  = 8.77, P  < 0.05). Critical thinking showed a general declining trend with increasing group size. The overall effect size of 2–3 people in this situation was the biggest (ES = 0.99, P  < 0.01), and when the group size was greater than 7 people, the improvement in critical thinking was at the lower-middle level (ES < 0.5, P  < 0.01). These results show that the impact on critical thinking is positively connected with group size, and as group size grows, so does the overall impact.

Various measuring tools influenced critical thinking positively, with significant intergroup differences (chi 2  = 0.08, P  = 0.78 > 0.05). In this situation, the self-adapting measurement tools obtained an upper-medium level of effect (ES = 0.78), whereas the complete effect size of the standardized measurement tools was the largest, achieving a significant level of effect (ES = 0.84, P  < 0.01). These results show that, despite the beneficial influence of the measuring tool on cultivating critical thinking, we are unable to explain why it is crucial in fostering the growth of critical thinking by utilizing the approach of collaborative problem-solving.

Different subject areas had a greater impact on critical thinking, and the intergroup differences were statistically significant (chi 2  = 13.36, P  < 0.05). Mathematics had the greatest overall impact, achieving a significant level of effect (ES = 1.68, P  < 0.01), followed by science (ES = 1.25, P  < 0.01) and medical science (ES = 0.87, P  < 0.01), both of which also achieved a significant level of effect. Programming technology was the least effective (ES = 0.39, P  < 0.01), only having a medium-low degree of effect compared to education (ES = 0.72, P  < 0.01) and other fields (such as language, art, and social sciences) (ES = 0.58, P  < 0.01). These results suggest that scientific fields (e.g., mathematics, science) may be the most effective subject areas for cultivating critical thinking utilizing the approach of collaborative problem-solving.

The effectiveness of collaborative problem solving with regard to teaching critical thinking

According to this meta-analysis, using collaborative problem-solving as an intervention strategy in critical thinking teaching has a considerable amount of impact on cultivating learners’ critical thinking as a whole and has a favorable promotional effect on the two dimensions of critical thinking. According to certain studies, collaborative problem solving, the most frequently used critical thinking teaching strategy in curriculum instruction can considerably enhance students’ critical thinking (e.g., Liang et al., 2017 ; Liu et al., 2020 ; Cindy, 2004 ). This meta-analysis provides convergent data support for the above research views. Thus, the findings of this meta-analysis not only effectively address the first research query regarding the overall effect of cultivating critical thinking and its impact on the two dimensions of critical thinking (i.e., attitudinal tendency and cognitive skills) utilizing the approach of collaborative problem-solving, but also enhance our confidence in cultivating critical thinking by using collaborative problem-solving intervention approach in the context of classroom teaching.

Furthermore, the associated improvements in attitudinal tendency are much stronger, but the corresponding improvements in cognitive skill are only marginally better. According to certain studies, cognitive skill differs from the attitudinal tendency in classroom instruction; the cultivation and development of the former as a key ability is a process of gradual accumulation, while the latter as an attitude is affected by the context of the teaching situation (e.g., a novel and exciting teaching approach, challenging and rewarding tasks) (Halpern, 2001 ; Wei and Hong, 2022 ). Collaborative problem-solving as a teaching approach is exciting and interesting, as well as rewarding and challenging; because it takes the learners as the focus and examines problems with poor structure in real situations, and it can inspire students to fully realize their potential for problem-solving, which will significantly improve their attitudinal tendency toward solving problems (Liu et al., 2020 ). Similar to how collaborative problem-solving influences attitudinal tendency, attitudinal tendency impacts cognitive skill when attempting to solve a problem (Liu et al., 2020 ; Zhang et al., 2022 ), and stronger attitudinal tendencies are associated with improved learning achievement and cognitive ability in students (Sison, 2008 ; Zhang et al., 2022 ). It can be seen that the two specific dimensions of critical thinking as well as critical thinking as a whole are affected by collaborative problem-solving, and this study illuminates the nuanced links between cognitive skills and attitudinal tendencies with regard to these two dimensions of critical thinking. To fully develop students’ capacity for critical thinking, future empirical research should pay closer attention to cognitive skills.

The moderating effects of collaborative problem solving with regard to teaching critical thinking

In order to further explore the key factors that influence critical thinking, exploring possible moderating effects that might produce considerable heterogeneity was done using subgroup analysis. The findings show that the moderating factors, such as the teaching type, learning stage, group size, learning scaffold, duration of the intervention, measuring tool, and the subject area included in the 36 experimental designs, could all support the cultivation of collaborative problem-solving in critical thinking. Among them, the effect size differences between the learning stage and measuring tool are not significant, which does not explain why these two factors are crucial in supporting the cultivation of critical thinking utilizing the approach of collaborative problem-solving.

In terms of the learning stage, various learning stages influenced critical thinking positively without significant intergroup differences, indicating that we are unable to explain why it is crucial in fostering the growth of critical thinking.

Although high education accounts for 70.89% of all empirical studies performed by researchers, high school may be the appropriate learning stage to foster students’ critical thinking by utilizing the approach of collaborative problem-solving since it has the largest overall effect size. This phenomenon may be related to student’s cognitive development, which needs to be further studied in follow-up research.

With regard to teaching type, mixed course teaching may be the best teaching method to cultivate students’ critical thinking. Relevant studies have shown that in the actual teaching process if students are trained in thinking methods alone, the methods they learn are isolated and divorced from subject knowledge, which is not conducive to their transfer of thinking methods; therefore, if students’ thinking is trained only in subject teaching without systematic method training, it is challenging to apply to real-world circumstances (Ruggiero, 2012 ; Hu and Liu, 2015 ). Teaching critical thinking as mixed course teaching in parallel to other subject teachings can achieve the best effect on learners’ critical thinking, and explicit critical thinking instruction is more effective than less explicit critical thinking instruction (Bensley and Spero, 2014 ).

In terms of the intervention duration, with longer intervention times, the overall effect size shows an upward tendency. Thus, the intervention duration and critical thinking’s impact are positively correlated. Critical thinking, as a key competency for students in the 21st century, is difficult to get a meaningful improvement in a brief intervention duration. Instead, it could be developed over a lengthy period of time through consistent teaching and the progressive accumulation of knowledge (Halpern, 2001 ; Hu and Liu, 2015 ). Therefore, future empirical studies ought to take these restrictions into account throughout a longer period of critical thinking instruction.

With regard to group size, a group size of 2–3 persons has the highest effect size, and the comprehensive effect size decreases with increasing group size in general. This outcome is in line with some research findings; as an example, a group composed of two to four members is most appropriate for collaborative learning (Schellens and Valcke, 2006 ). However, the meta-analysis results also indicate that once the group size exceeds 7 people, small groups cannot produce better interaction and performance than large groups. This may be because the learning scaffolds of technique support, resource support, and teacher support improve the frequency and effectiveness of interaction among group members, and a collaborative group with more members may increase the diversity of views, which is helpful to cultivate critical thinking utilizing the approach of collaborative problem-solving.

With regard to the learning scaffold, the three different kinds of learning scaffolds can all enhance critical thinking. Among them, the teacher-supported learning scaffold has the largest overall effect size, demonstrating the interdependence of effective learning scaffolds and collaborative problem-solving. This outcome is in line with some research findings; as an example, a successful strategy is to encourage learners to collaborate, come up with solutions, and develop critical thinking skills by using learning scaffolds (Reiser, 2004 ; Xu et al., 2022 ); learning scaffolds can lower task complexity and unpleasant feelings while also enticing students to engage in learning activities (Wood et al., 2006 ); learning scaffolds are designed to assist students in using learning approaches more successfully to adapt the collaborative problem-solving process, and the teacher-supported learning scaffolds have the greatest influence on critical thinking in this process because they are more targeted, informative, and timely (Xu et al., 2022 ).

With respect to the measuring tool, despite the fact that standardized measurement tools (such as the WGCTA, CCTT, and CCTST) have been acknowledged as trustworthy and effective by worldwide experts, only 54.43% of the research included in this meta-analysis adopted them for assessment, and the results indicated no intergroup differences. These results suggest that not all teaching circumstances are appropriate for measuring critical thinking using standardized measurement tools. “The measuring tools for measuring thinking ability have limits in assessing learners in educational situations and should be adapted appropriately to accurately assess the changes in learners’ critical thinking.”, according to Simpson and Courtney ( 2002 , p. 91). As a result, in order to more fully and precisely gauge how learners’ critical thinking has evolved, we must properly modify standardized measuring tools based on collaborative problem-solving learning contexts.

With regard to the subject area, the comprehensive effect size of science departments (e.g., mathematics, science, medical science) is larger than that of language arts and social sciences. Some recent international education reforms have noted that critical thinking is a basic part of scientific literacy. Students with scientific literacy can prove the rationality of their judgment according to accurate evidence and reasonable standards when they face challenges or poorly structured problems (Kyndt et al., 2013 ), which makes critical thinking crucial for developing scientific understanding and applying this understanding to practical problem solving for problems related to science, technology, and society (Yore et al., 2007 ).

Suggestions for critical thinking teaching

Other than those stated in the discussion above, the following suggestions are offered for critical thinking instruction utilizing the approach of collaborative problem-solving.

First, teachers should put a special emphasis on the two core elements, which are collaboration and problem-solving, to design real problems based on collaborative situations. This meta-analysis provides evidence to support the view that collaborative problem-solving has a strong synergistic effect on promoting students’ critical thinking. Asking questions about real situations and allowing learners to take part in critical discussions on real problems during class instruction are key ways to teach critical thinking rather than simply reading speculative articles without practice (Mulnix, 2012 ). Furthermore, the improvement of students’ critical thinking is realized through cognitive conflict with other learners in the problem situation (Yang et al., 2008 ). Consequently, it is essential for teachers to put a special emphasis on the two core elements, which are collaboration and problem-solving, and design real problems and encourage students to discuss, negotiate, and argue based on collaborative problem-solving situations.

Second, teachers should design and implement mixed courses to cultivate learners’ critical thinking, utilizing the approach of collaborative problem-solving. Critical thinking can be taught through curriculum instruction (Kuncel, 2011 ; Leng and Lu, 2020 ), with the goal of cultivating learners’ critical thinking for flexible transfer and application in real problem-solving situations. This meta-analysis shows that mixed course teaching has a highly substantial impact on the cultivation and promotion of learners’ critical thinking. Therefore, teachers should design and implement mixed course teaching with real collaborative problem-solving situations in combination with the knowledge content of specific disciplines in conventional teaching, teach methods and strategies of critical thinking based on poorly structured problems to help students master critical thinking, and provide practical activities in which students can interact with each other to develop knowledge construction and critical thinking utilizing the approach of collaborative problem-solving.

Third, teachers should be more trained in critical thinking, particularly preservice teachers, and they also should be conscious of the ways in which teachers’ support for learning scaffolds can promote critical thinking. The learning scaffold supported by teachers had the greatest impact on learners’ critical thinking, in addition to being more directive, targeted, and timely (Wood et al., 2006 ). Critical thinking can only be effectively taught when teachers recognize the significance of critical thinking for students’ growth and use the proper approaches while designing instructional activities (Forawi, 2016 ). Therefore, with the intention of enabling teachers to create learning scaffolds to cultivate learners’ critical thinking utilizing the approach of collaborative problem solving, it is essential to concentrate on the teacher-supported learning scaffolds and enhance the instruction for teaching critical thinking to teachers, especially preservice teachers.

Implications and limitations

There are certain limitations in this meta-analysis, but future research can correct them. First, the search languages were restricted to English and Chinese, so it is possible that pertinent studies that were written in other languages were overlooked, resulting in an inadequate number of articles for review. Second, these data provided by the included studies are partially missing, such as whether teachers were trained in the theory and practice of critical thinking, the average age and gender of learners, and the differences in critical thinking among learners of various ages and genders. Third, as is typical for review articles, more studies were released while this meta-analysis was being done; therefore, it had a time limit. With the development of relevant research, future studies focusing on these issues are highly relevant and needed.

Conclusions

The subject of the magnitude of collaborative problem-solving’s impact on fostering students’ critical thinking, which received scant attention from other studies, was successfully addressed by this study. The question of the effectiveness of collaborative problem-solving in promoting students’ critical thinking was addressed in this study, which addressed a topic that had gotten little attention in earlier research. The following conclusions can be made:

Regarding the results obtained, collaborative problem solving is an effective teaching approach to foster learners’ critical thinking, with a significant overall effect size (ES = 0.82, z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]). With respect to the dimensions of critical thinking, collaborative problem-solving can significantly and effectively improve students’ attitudinal tendency, and the comprehensive effect is significant (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI [0.87, 1.47]); nevertheless, it falls short in terms of improving students’ cognitive skills, having only an upper-middle impact (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI [0.58, 0.82]).

As demonstrated by both the results and the discussion, there are varying degrees of beneficial effects on students’ critical thinking from all seven moderating factors, which were found across 36 studies. In this context, the teaching type (chi 2  = 7.20, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), and learning scaffold (chi 2  = 9.03, P  < 0.01) all have a positive impact on critical thinking, and they can be viewed as important moderating factors that affect how critical thinking develops. Since the learning stage (chi 2  = 3.15, P  = 0.21 > 0.05) and measuring tools (chi 2  = 0.08, P  = 0.78 > 0.05) did not demonstrate any significant intergroup differences, we are unable to explain why these two factors are crucial in supporting the cultivation of critical thinking in the context of collaborative problem-solving.

Data availability

All data generated or analyzed during this study are included within the article and its supplementary information files, and the supplementary information files are available in the Dataverse repository: https://doi.org/10.7910/DVN/IPFJO6 .

Bensley DA, Spero RA (2014) Improving critical thinking skills and meta-cognitive monitoring through direct infusion. Think Skills Creat 12:55–68. https://doi.org/10.1016/j.tsc.2014.02.001

Article   Google Scholar  

Castle A (2009) Defining and assessing critical thinking skills for student radiographers. Radiography 15(1):70–76. https://doi.org/10.1016/j.radi.2007.10.007

Chen XD (2013) An empirical study on the influence of PBL teaching model on critical thinking ability of non-English majors. J PLA Foreign Lang College 36 (04):68–72

Google Scholar  

Cohen A (1992) Antecedents of organizational commitment across occupational groups: a meta-analysis. J Organ Behav. https://doi.org/10.1002/job.4030130602

Cooper H (2010) Research synthesis and meta-analysis: a step-by-step approach, 4th edn. Sage, London, England

Cindy HS (2004) Problem-based learning: what and how do students learn? Educ Psychol Rev 51(1):31–39

Duch BJ, Gron SD, Allen DE (2001) The power of problem-based learning: a practical “how to” for teaching undergraduate courses in any discipline. Stylus Educ Sci 2:190–198

Ennis RH (1989) Critical thinking and subject specificity: clarification and needed research. Educ Res 18(3):4–10. https://doi.org/10.3102/0013189x018003004

Facione PA (1990) Critical thinking: a statement of expert consensus for purposes of educational assessment and instruction. Research findings and recommendations. Eric document reproduction service. https://eric.ed.gov/?id=ed315423

Facione PA, Facione NC (1992) The California Critical Thinking Dispositions Inventory (CCTDI) and the CCTDI test manual. California Academic Press, Millbrae, CA

Forawi SA (2016) Standard-based science education and critical thinking. Think Skills Creat 20:52–62. https://doi.org/10.1016/j.tsc.2016.02.005

Halpern DF (2001) Assessing the effectiveness of critical thinking instruction. J Gen Educ 50(4):270–286. https://doi.org/10.2307/27797889

Hu WP, Liu J (2015) Cultivation of pupils’ thinking ability: a five-year follow-up study. Psychol Behav Res 13(05):648–654. https://doi.org/10.3969/j.issn.1672-0628.2015.05.010

Huber K (2016) Does college teach critical thinking? A meta-analysis. Rev Educ Res 86(2):431–468. https://doi.org/10.3102/0034654315605917

Kek MYCA, Huijser H (2011) The power of problem-based learning in developing critical thinking skills: preparing students for tomorrow’s digital futures in today’s classrooms. High Educ Res Dev 30(3):329–341. https://doi.org/10.1080/07294360.2010.501074

Kuncel NR (2011) Measurement and meaning of critical thinking (Research report for the NRC 21st Century Skills Workshop). National Research Council, Washington, DC

Kyndt E, Raes E, Lismont B, Timmers F, Cascallar E, Dochy F (2013) A meta-analysis of the effects of face-to-face cooperative learning. Do recent studies falsify or verify earlier findings? Educ Res Rev 10(2):133–149. https://doi.org/10.1016/j.edurev.2013.02.002

Leng J, Lu XX (2020) Is critical thinking really teachable?—A meta-analysis based on 79 experimental or quasi experimental studies. Open Educ Res 26(06):110–118. https://doi.org/10.13966/j.cnki.kfjyyj.2020.06.011

Liang YZ, Zhu K, Zhao CL (2017) An empirical study on the depth of interaction promoted by collaborative problem solving learning activities. J E-educ Res 38(10):87–92. https://doi.org/10.13811/j.cnki.eer.2017.10.014

Lipsey M, Wilson D (2001) Practical meta-analysis. International Educational and Professional, London, pp. 92–160

Liu Z, Wu W, Jiang Q (2020) A study on the influence of problem based learning on college students’ critical thinking-based on a meta-analysis of 31 studies. Explor High Educ 03:43–49

Morris SB (2008) Estimating effect sizes from pretest-posttest-control group designs. Organ Res Methods 11(2):364–386. https://doi.org/10.1177/1094428106291059

Article   ADS   Google Scholar  

Mulnix JW (2012) Thinking critically about critical thinking. Educ Philos Theory 44(5):464–479. https://doi.org/10.1111/j.1469-5812.2010.00673.x

Naber J, Wyatt TH (2014) The effect of reflective writing interventions on the critical thinking skills and dispositions of baccalaureate nursing students. Nurse Educ Today 34(1):67–72. https://doi.org/10.1016/j.nedt.2013.04.002

National Research Council (2012) Education for life and work: developing transferable knowledge and skills in the 21st century. The National Academies Press, Washington, DC

Niu L, Behar HLS, Garvan CW (2013) Do instructional interventions influence college students’ critical thinking skills? A meta-analysis. Educ Res Rev 9(12):114–128. https://doi.org/10.1016/j.edurev.2012.12.002

Peng ZM, Deng L (2017) Towards the core of education reform: cultivating critical thinking skills as the core of skills in the 21st century. Res Educ Dev 24:57–63. https://doi.org/10.14121/j.cnki.1008-3855.2017.24.011

Reiser BJ (2004) Scaffolding complex learning: the mechanisms of structuring and problematizing student work. J Learn Sci 13(3):273–304. https://doi.org/10.1207/s15327809jls1303_2

Ruggiero VR (2012) The art of thinking: a guide to critical and creative thought, 4th edn. Harper Collins College Publishers, New York

Schellens T, Valcke M (2006) Fostering knowledge construction in university students through asynchronous discussion groups. Comput Educ 46(4):349–370. https://doi.org/10.1016/j.compedu.2004.07.010

Sendag S, Odabasi HF (2009) Effects of an online problem based learning course on content knowledge acquisition and critical thinking skills. Comput Educ 53(1):132–141. https://doi.org/10.1016/j.compedu.2009.01.008

Sison R (2008) Investigating Pair Programming in a Software Engineering Course in an Asian Setting. 2008 15th Asia-Pacific Software Engineering Conference, pp. 325–331. https://doi.org/10.1109/APSEC.2008.61

Simpson E, Courtney M (2002) Critical thinking in nursing education: literature review. Mary Courtney 8(2):89–98

Stewart L, Tierney J, Burdett S (2006) Do systematic reviews based on individual patient data offer a means of circumventing biases associated with trial publications? Publication bias in meta-analysis. John Wiley and Sons Inc, New York, pp. 261–286

Tiwari A, Lai P, So M, Yuen K (2010) A comparison of the effects of problem-based learning and lecturing on the development of students’ critical thinking. Med Educ 40(6):547–554. https://doi.org/10.1111/j.1365-2929.2006.02481.x

Wood D, Bruner JS, Ross G (2006) The role of tutoring in problem solving. J Child Psychol Psychiatry 17(2):89–100. https://doi.org/10.1111/j.1469-7610.1976.tb00381.x

Wei T, Hong S (2022) The meaning and realization of teachable critical thinking. Educ Theory Practice 10:51–57

Xu EW, Wang W, Wang QX (2022) A meta-analysis of the effectiveness of programming teaching in promoting K-12 students’ computational thinking. Educ Inf Technol. https://doi.org/10.1007/s10639-022-11445-2

Yang YC, Newby T, Bill R (2008) Facilitating interactions through structured web-based bulletin boards: a quasi-experimental study on promoting learners’ critical thinking skills. Comput Educ 50(4):1572–1585. https://doi.org/10.1016/j.compedu.2007.04.006

Yore LD, Pimm D, Tuan HL (2007) The literacy component of mathematical and scientific literacy. Int J Sci Math Educ 5(4):559–589. https://doi.org/10.1007/s10763-007-9089-4

Zhang T, Zhang S, Gao QQ, Wang JH (2022) Research on the development of learners’ critical thinking in online peer review. Audio Visual Educ Res 6:53–60. https://doi.org/10.13811/j.cnki.eer.2022.06.08

Download references

Acknowledgements

This research was supported by the graduate scientific research and innovation project of Xinjiang Uygur Autonomous Region named “Research on in-depth learning of high school information technology courses for the cultivation of computing thinking” (No. XJ2022G190) and the independent innovation fund project for doctoral students of the College of Educational Science of Xinjiang Normal University named “Research on project-based teaching of high school information technology courses from the perspective of discipline core literacy” (No. XJNUJKYA2003).

Author information

Authors and affiliations.

College of Educational Science, Xinjiang Normal University, 830017, Urumqi, Xinjiang, China

Enwei Xu, Wei Wang & Qingxia Wang

You can also search for this author in PubMed   Google Scholar

Corresponding authors

Correspondence to Enwei Xu or Wei Wang .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Additional information.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary tables, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Xu, E., Wang, W. & Wang, Q. The effectiveness of collaborative problem solving in promoting students’ critical thinking: A meta-analysis based on empirical literature. Humanit Soc Sci Commun 10 , 16 (2023). https://doi.org/10.1057/s41599-023-01508-1

Download citation

Received : 07 August 2022

Accepted : 04 January 2023

Published : 11 January 2023

DOI : https://doi.org/10.1057/s41599-023-01508-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Impacts of online collaborative learning on students’ intercultural communication apprehension and intercultural communicative competence.

  • Hoa Thi Hoang Chau
  • Hung Phu Bui
  • Quynh Thi Huong Dinh

Education and Information Technologies (2024)

Exploring the effects of digital technology on deep learning: a meta-analysis

Sustainable electricity generation and farm-grid utilization from photovoltaic aquaculture: a bibliometric analysis.

  • A. A. Amusa
  • M. Alhassan

International Journal of Environmental Science and Technology (2024)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

students problem solving skills

The May 2024 issue of IEEE Spectrum is here!

For IEEE Members

Ieee spectrum, follow ieee spectrum, support ieee spectrum, enjoy more free content and benefits by creating an account, saving articles to read later requires an ieee spectrum account, the institute content is only available for members, downloading full pdf issues is exclusive for ieee members, downloading this e-book is exclusive for ieee members, access to spectrum 's digital edition is exclusive for ieee members, following topics is a feature exclusive for ieee members, adding your response to an article requires an ieee spectrum account, create an account to access more content and features on ieee spectrum , including the ability to save articles to read later, download spectrum collections, and participate in conversations with readers and editors. for more exclusive content and features, consider joining ieee ., join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of spectrum’s articles, archives, pdf downloads, and other benefits. learn more →, join the world’s largest professional organization devoted to engineering and applied sciences and get access to this e-book plus all of ieee spectrum’s articles, archives, pdf downloads, and other benefits. learn more →, access thousands of articles — completely free, create an account and get exclusive content and features: save articles, download collections, and talk to tech insiders — all free for full access and benefits, join ieee as a paying member., ai copilots are changing how coding is taught, professors are shifting away from syntax and emphasizing higher-level skills.

Photo-illustration of a mini AI bot looking at a laptop atop a stock of books, sitting next to human hands on a laptop.

Generative AI is transforming the software development industry. AI-powered coding tools are assisting programmers in their workflows, while jobs in AI continue to increase. But the shift is also evident in academia—one of the major avenues through which the next generation of software engineers learn how to code.

Computer science students are embracing the technology, using generative AI to help them understand complex concepts, summarize complicated research papers, brainstorm ways to solve a problem, come up with new research directions, and, of course, learn how to code.

“Students are early adopters and have been actively testing these tools,” says Johnny Chang , a teaching assistant at Stanford University pursuing a master’s degree in computer science. He also founded the AI x Education conference in 2023, a virtual gathering of students and educators to discuss the impact of AI on education.

So as not to be left behind, educators are also experimenting with generative AI. But they’re grappling with techniques to adopt the technology while still ensuring students learn the foundations of computer science.

“It’s a difficult balancing act,” says Ooi Wei Tsang , an associate professor in the School of Computing at the National University of Singapore . “Given that large language models are evolving rapidly, we are still learning how to do this.”

Less Emphasis on Syntax, More on Problem Solving

The fundamentals and skills themselves are evolving. Most introductory computer science courses focus on code syntax and getting programs to run, and while knowing how to read and write code is still essential, testing and debugging—which aren’t commonly part of the syllabus—now need to be taught more explicitly.

“We’re seeing a little upping of that skill, where students are getting code snippets from generative AI that they need to test for correctness,” says Jeanna Matthews , a professor of computer science at Clarkson University in Potsdam, N.Y.

Another vital expertise is problem decomposition. “This is a skill to know early on because you need to break a large problem into smaller pieces that an LLM can solve,” says Leo Porter , an associate teaching professor of computer science at the University of California, San Diego . “It’s hard to find where in the curriculum that’s taught—maybe in an algorithms or software engineering class, but those are advanced classes. Now, it becomes a priority in introductory classes.”

“Given that large language models are evolving rapidly, we are still learning how to do this.” —Ooi Wei Tsang, National University of Singapore

As a result, educators are modifying their teaching strategies. “I used to have this singular focus on students writing code that they submit, and then I run test cases on the code to determine what their grade is,” says Daniel Zingaro , an associate professor of computer science at the University of Toronto Mississauga . “This is such a narrow view of what it means to be a software engineer, and I just felt that with generative AI, I’ve managed to overcome that restrictive view.”

Zingaro, who coauthored a book on AI-assisted Python programming with Porter, now has his students work in groups and submit a video explaining how their code works. Through these walk-throughs, he gets a sense of how students use AI to generate code, what they struggle with, and how they approach design, testing, and teamwork.

“It’s an opportunity for me to assess their learning process of the whole software development [life cycle]—not just code,” Zingaro says. “And I feel like my courses have opened up more and they’re much broader than they used to be. I can make students work on larger and more advanced projects.”

Ooi echoes that sentiment, noting that generative AI tools “will free up time for us to teach higher-level thinking—for example, how to design software, what is the right problem to solve, and what are the solutions. Students can spend more time on optimization, ethical issues, and the user-friendliness of a system rather than focusing on the syntax of the code.”

Avoiding AI’s Coding Pitfalls

But educators are cautious given an LLM’s tendency to hallucinate . “We need to be teaching students to be skeptical of the results and take ownership of verifying and validating them,” says Matthews.

Matthews adds that generative AI “can short-circuit the learning process of students relying on it too much.” Chang agrees that this overreliance can be a pitfall and advises his fellow students to explore possible solutions to problems by themselves so they don’t lose out on that critical thinking or effective learning process. “We should be making AI a copilot—not the autopilot—for learning,” he says.

“We should be making AI a copilot—not the autopilot—for learning.” —Johnny Chang, Stanford University

Other drawbacks include copyright and bias. “I teach my students about the ethical constraints—that this is a model built off other people’s code and we’d recognize the ownership of that,” Porter says. “We also have to recognize that models are going to represent the bias that’s already in society.”

Adapting to the rise of generative AI involves students and educators working together and learning from each other. For her colleagues, Matthews’s advice is to “try to foster an environment where you encourage students to tell you when and how they’re using these tools. Ultimately, we are preparing our students for the real world, and the real world is shifting, so sticking with what you’ve always done may not be the recipe that best serves students in this transition.”

Porter is optimistic that the changes they’re applying now will serve students well in the future. “There’s this long history of a gap between what we teach in academia and what’s actually needed as skills when students arrive in the industry,” he says. “There’s hope on my part that we might help close the gap if we embrace LLMs.”

  • How Coders Can Survive—and Thrive—in a ChatGPT World ›
  • AI Coding Is Going From Copilot to Autopilot ›
  • OpenAI Codex ›

Rina Diane Caballar is a writer covering tech and its intersections with science, society, and the environment. An IEEE Spectrum Contributing Editor, she's a former software engineer based in Wellington, New Zealand.

Bruce Benson

Yes! Great summary of how things are evolving with AI. I’m a retired coder (BS comp sci) and understand the fundamentals of developing systems. Learning the lastest systems is now the greatest challenge. I was intrigued by Ansible to help me manage my homelab cluster, but who wants to learn one more scripting language? Turns out ChatGPT4 knows the syntax, semantics, and work flow of Ansible and all I do is tell is to “install log2ram on all my proxmox servers” and I get a playbook that does just that. The same with Docker Compose scripts. Wow.

Augmented Reality Slims Down With AI and Holograms

Brain-inspired computer approaches brain-like size, engineering needs more futurists, related stories, ai spam threatens the internet—ai can also protect it, what is generative ai, generative ai has a visual plagiarism problem.

You are using an outdated browser. Please upgrade your browser to improve your experience.

students problem solving skills

Issues We Care About

  • Digital Divide
  • Affordability
  • College Readiness
  • Environmental Barriers

Measuring Impact

  • WGU's Success Metrics
  • Policy Priorities
  • Annual Report
  • WGU's Story
  • Careers at WGU
  • Impact Blog

Addressing Workforce Gaps through Adult Education 

  • WGU In Your State
  • See More Tags

students problem solving skills

This post is adapted from a presentation given by Dr. Emily Riner, Government Relations Director, WGU at the 2024 NLGA Spring Meeting

Workforce shortages are plaguing our states. From nursing to accounting, supply chain to cybersecurity, and the perennial teacher crisis, these shortages are more than just statistics; they affect our families and communities deeply.

Some College, No Degree and a Big Opportunity

As we look at the data, a concerning trend emerges. While traditional higher education institutions cater well to the 18–24 age group, more than 40 million adults over 25 with some college experience find themselves without a degree or credential. These adult learners have invested significant time and money but have little to show for it.  

So, what could be done to solve this crisis? The solution may be found in the way we offer higher education.

students problem solving skills

Meeting the Needs of Adult Learners

College largely wasn’t built for adults. To effectively serve adult learners, we must rethink traditional educational models. 

Flexibility, affordability, relevance and accessibility are paramount. 

With so many other responsibilities to juggle from caregiving to full-time work, adult learners also need personalized support from enrollment to graduation. Tailored assistance helps them persist and earn their degrees.

Adult learners are savvy, and they expect respect, personalization and support as part of their learning experience.

How WGU Is Leading the Way

Western Governors University (WGU) was founded in 1997 to address workforce needs, and we’re leading the charge in catering to adult learners today. How? A personalized learning experience highlighted by the following elements:

Competency-based education Competency-based education measures skills and learning rather than time spent in a classroom. Students earn competency units (the equivalent of credit hours) when they demonstrate their skills through completing assessments. Rather than advancing only when the semester or term ends, students progress through courses as soon as they’ve proven mastery. This means they can earn a credential on their time and use their existing skills to graduate more quickly. Since WGU charges flat-rate tuition per term instead of per credit hour, learners who finish faster can earn their degrees for less.  

Enrollment counselors From day one, students who are interested in WGU get one-on-one support, starting with enrollment counselors . These counselors guide prospective students through the whole process, talking with them to understand their unique goals and helping them get enrolled quickly. 

Program mentors Personalized student support continues after enrollment with program mentors . These mentors check in with students weekly to ensure they’re feeling comfortable as they work through their online coursework. While WGU students study online, they’re never alone. Program mentors help students craft a custom degree plan with pacing that fits individual circumstances, and they provide accountability and motivation to keep students going.

Course instructors WGU course instructors are very accessible and ready to help learners progress through the course material. Students can easily schedule time to meet with them one-on-one or participate in cohort groups.  

Learner Care Dashboard WGU developed a Learner Care Dashboard that automatically alerts faculty members when a student may need individualized support, such as if they failed an assessment or haven’t logged into their coursework for a while.

Instead of waiting for a student to reach out for help, WGU faculty members proactively connect with struggling students, quickly making plans and offering support to get them back on track. 

Personalized on-time-completion rate WGU tracks more than graduation rates. We hold ourselves to an even higher standard by measuring the percentage of students who complete their credential at their personalized pace. A focus on helping students graduate supports our learners in their goals and helps us ensure our degrees are providing value, fast.

Personalized learning at WGU means we honor students’ investments, personalize a learning experience to their needs, focus on their learning, and cultivate connections.

Policy recommendations: What can state governments do?

To support adult learners and address workforce shortages, implementing policies such as adult learner grants, alternative pathways, workforce training expansion, and expanding support for competency-based education is imperative. Currently, only around 30% of states have adult learner aid available. This needs to change if we are to fill workforce gaps and increase the number of adults who have completed college degrees. 

To solve the crisis, state officials and policymakers should consider the workforce needs in their state and work toward finding tangible steps to support adult learners. Together, we can unlock their potential and build a stronger, more resilient workforce for the future.

States with Student Aid for Adult Learners

30% of states have adult learner aid available including: Alabama, California, Idaho, Indiana, Iowa, Kansas, Minnesota, Missouri, New Mexico, Ohio, Oregon, Tennessee, Texas, Utah, West Virginia

Ready to Start Your Journey?

HEALTH & NURSING

Recommended Articles

Take a look at other articles from WGU. Our articles feature information on a wide variety of subjects, written with the help of subject matter experts and researchers who are well-versed in their industries. This allows us to provide articles with interesting, relevant, and accurate information. 

students problem solving skills

Addressing Workforce Gaps through Adult Education

students problem solving skills

Types of Supply Chain Management Software: An In-Depth Guide

students problem solving skills

Top Qualities And Skills Of A Good Teacher

students problem solving skills

4 Jobs for People Who Like Problem-Solving

students problem solving skills

IgnitED: Rethinking Financial Aid Amid a Changing Higher Ed Landscape

students problem solving skills

IgnitED: The Quest to Serve Rising Talent

The university.

  • Accessibility
  • Accreditation

For Students

  • Student Portal
  • Alumni Services

Most Visited Links

  • Business Programs
  • Bachelor's Degrees
  • Student Experience
  • Online Degrees
  • Scholarships
  • Financial Aid
  • Diversity, Equity, and Inclusion
  • Testimonials
  • Student Communities

Ohio State nav bar

The Ohio State University

  • BuckeyeLink
  • Find People
  • Search Ohio State

May 9, 2024 International case competitions blend experiential learning and global perspectives

Fisher students at the Rotterdam RSM STAR Case Competition

Travelling abroad, meeting new people and experiencing new countries and cultures expands minds and perspectives. Competing in international case competitions expands students’ experiences by providing opportunities to solve real-world business challenges, become more agile and resilient, challenge assumptions and grow personally and professionally.

From the Netherlands to Canada to Washington state and virtually, several teams of Fisher students experienced the benefits of participating in globally focused case competitions this past academic year. The opportunities allowed the teams of undergraduate and graduate students to showcase their global trade and international business knowledge as well as their research, presentation and networking skills.

RSM STAR Case Competition ― Rotterdam, the Netherlands

Hosted by the Rotterdam School of Management at Erasmus University (RSM), the RSM STAR Case Competition nurtured the critical thinking and problem-solving skills of its competitors.

Fisher was one of 16 international teams – including universities from Hong Kong, Korea, British Columbia, Montreal and Singapore – that competed in two real-life business cases, one 12-hour sustainability case and one 24-hour sustainability and energy transition case.

From left, Ty Shepfer, Austin Smith, Darshita Bajoria, Andrea Hefferan and John Piehowicz at the RSM Star Case Competition.

Fisher’s undergraduate team consisted of: Darshita Bajoria, third-year finance student; Andrea Hefferan, fourth-year marketing and design thinking student; John Piehowicz, third-year finance and human resources student; and Austin Smith, fourth-year finance and Spanish student.

With a theme of “Uniting Ambition for a Decade,” the competition challenged students to showcase their business acumen, encourage innovative thinking, pioneer solutions for business, management and society and make their mark in the business world.

“The value of Rotterdam was meeting not peers and not colleagues, but friends: lifelong connections we will always keep in touch with, no matter how our paths may cross” said Piehowicz. “Rotterdam brought together people, crossing paths drawn in the sand of our lives, and forging meaningful connections with people we may seldom see, but frequently remember.”

The competition was the first for Fisher’s team. They found themselves facing a significant gap in knowledge and approach compared to other teams more familiar with the preparation required. The experience, however, was an extremely valuable one, Bajoria said.

“During the 12-hour case competition, we had to overcome numerous initial hurdles, trying to understand the competition's format and expectations, but it taught us valuable lessons that we applied to better prepare for the 24-hour case,” she said. “Both cases were complex, and there were times when we questioned whether our solutions truly addressed the case prompts. Despite these uncertainties and hurdles, we learned a lot about navigating challenges and overcoming uncertainty as a team.”

Hefferan agreed.

“The biggest challenge we had was time management and deciding when to go forward with an idea,” she said. “There were times that we wanted to scrap everything and start over, but we had spent so much time researching ideas that we had to move forward with an idea and present it as the best idea.”

Fisher's team presents their case in front of the competition judges.

Despite the challenges, Fisher finished second in its division for both competitions and tied for seventh overall.

“The team performed incredibly well for not being trained in case competitions, competing against students who had participated in multiple competitions prior to this,” said Ty Shepfer, senior lecturer and academic director of the Master of Human Resource Management Program. “Our students did an amazing job and I’m really proud of them. They represented Ohio State and Fisher well!”

Hefferan said two courses helped her think outside the box when coming up with strategies: design thinking, looking at how to structure problem solving and come up with solutions in novel ways, and sustainable marketing, focusing on the marketing aspects of the case to find ways to convince people to change their habits and switch to sustainable energy even if it is more expensive.

“Our team introduced several innovative ideas looking at sustainability beyond just environmental concerns,” Bajoria said. “We incorporated process, people and planet sustainability, infusing creativity into our solutions including implementing a blockchain-based solution to streamline supply chain management and enhance process sustainability.”

For Bajoria, the competition was a great learning opportunity to bridge the gap between theory and practice.

“This experience helped me understand how theoretical concepts translate into actionable strategies and solutions in the business world,” she said. “I learned how to analyze complex problems, develop innovative solutions and understand global business dynamics and the importance of sustainable practices in today's business world. It was incredibly rewarding to see how our ideas could make a tangible impact.”

Global Business Case Competition ― Seattle, Washington

While one team of Fisher students was competing in Rotterdam, a second team was in Seattle at the University of Washington’s Global Business Case Competition.

Students Alina Mueez, a third-year management and information systems student; Jeffrey Liu, a third-year marketing student; Yifei Zhang, a third-year finance student; and Haoxuan Han, a third-year finance student faced off against 10 other teams representing seven countries including Mexico, the Netherlands, Taiwan and Canada.

From left, Yifei Zhang, Jeffrey Liu, Alina Mueez and Haoxuan Han at the Global Business Case Competition.

The Global Business Case Competition consisted of a short case challenge and a long case analysis. The short case challenge focused on Tim Horton’s entering the Chinese market. Students were placed on a global team with each team comprised of four different universities. Teams had five hours to analyze the case, devise a solution and create a three-minute presentation with only one PowerPoint slide.

In the long case analysis, teams had 24 hours to devise a solution for Costco and its potential entrance into Brazil, the United Arab Emirates and India. Teams gave a 15-minute presentation and took part in a 10-minute question-and-answer session with a panel of judges.

“The Office of Global Business (OGB) and the Center for International Business Education and Research (CIBER) are very proud of our Fisher students for being invited to these case competitions,” said Geoff Nelson, global business operations senior analyst at Fisher’s OGB.

“Not only was this type of global experiential learning opportunity essential for our students to develop a global mindset as they prepare for careers in an increasingly interconnected world, it was also an opportunity for Ohio State CIBER to strengthen our relationship with the University of Washington, which is a fellow CIBER institution.”

The John Molson MBA International Case Competition ― Montreal, Canada

From left, Fisher team members Sai Aelakurthy, Aishat Olokotun, Yi Han and Kate Timmerman.

Fisher MBA students Sai Aelakurthy, Yi Han, Aishat Olokotun and Kate Timmerman participated in The John Molson MBA International Case Competition hosted by Concordia University in Montreal, Canada.

The team competed in a round-robin tournament against 29 teams from 12 different countries, winning three of their five case challenges, which included a cosmetic company strategy case, a live case about cultural integration and a human resources strategy case on a four-day work week.

“The team spent weeks learning to work and communicate seamlessly with each other to bring their diverse perspectives to the table to solve organizational challenges,” said Stephanie Wapner, senior lecturer and director of case competitions. “They embodied collaboration, critical thinking, continuous improvement and dedication to the team.”

With only three hours to prepare for each case, the team analyzed and evaluated unpublished business cases relying on only their knowledge, experience and abilities; no internet access was allowed. For each case, their final product demonstrated their ability to dig into a problem, develop a feasible solution and present their strategic plan to a panel of senior business leaders.

“The knowledge and insights I acquired from core courses like organizational behavior, marketing, finance, accounting, economics and operations all came together while we were solving the cases,” Han said.

Fisher student team members preparing for The John Molson MBA International Case Competition.

While the team ran into a few challenges, they stayed focused on developing a strategic plan, squeezing in just enough time to prepare their presentation despite losing part of their digital presentation during one case.

“Despite this technical issue, we were able to work together to deliver the presentation and eventually win the case,” Han said. “This was truly about group work. We each respected our different backgrounds and opinions and worked together for a solution that everyone contributed to.”

While they didn’t win all their cases, Han said the experience broadened her business acumen.

“I come from an engineering background, so this competition helped me to develop systematic thinking for business problems,” Han said. “It also helped me to think strategically, focus on teamwork, and gain a global perspective.”

BisNet International Case Competition ― Virtual

Earlier in the academic year, nine teams of four undergraduate students each competed in the online Business International Studies Network (BisNet) International Case Competition hosted by Southbridge Access.

Ohio State entered three teams and competed against teams from the University of Maryland, the University of Tennessee and the University of Southern California.

The competition challenged teams to consider options to consolidate Arcos Dorados Colombia’s food delivery service in Colombia. Teams determined which global region’s business environment offered the most suitability and how its strengths and bargaining advantages could be leveraged effectively in the global food delivery market.

Teams were evaluated on the rationale of their recommendations, depth of understanding of the case’s country and industry, quality of presentation and responses to the judges.

Participating in competitions like this gives Fisher’s students the opportunity to develop problem-solving skills and connect with professors and business owners from leading multinational organizations in emerging markets, as well as gain experience with time-change issues, different cultures and different political and socioeconomic variables in other countries.

“Global case competitions like BisNet allow our students to apply the knowledge they have gained in the classroom to real business scenarios while networking, competing and learning alongside students from top business programs all over the world,” Nelson said.

MORE ON THESE TOPICS

  • Students & Programs
  • Globalization

“This experience helped me understand how theoretical concepts translate into actionable strategies and solutions in the business world."

©2024 Fisher College of Business

2100 Neil Avenue, Columbus, Ohio 43210

If you have a disability and experience difficulty accessing this site, please contact us for assistance .

IMAGES

  1. Developing Problem-Solving Skills for Kids

    students problem solving skills

  2. 5 step problem solving method

    students problem solving skills

  3. Problem-Solving Steps

    students problem solving skills

  4. How to improve your problem solving skills and strategies

    students problem solving skills

  5. Importance of Problem Solving Skills in your Child

    students problem solving skills

  6. Problem Solving Activities: 7 Strategies

    students problem solving skills

VIDEO

  1. Problem Solving Techniques

  2. Analysis of Students Problem Solving Abilty in Terms of Self Efficacy

  3. How To Develop Analytical & Problem Solving Skills ?

  4. Teacher turns classroom into Santa Claus-themed escape room to help students learn math

  5. Key Concepts in Alternating Work and Practice

  6. Linear Systems

COMMENTS

  1. 3 Ways to Improve Student Problem-Solving

    3. Three-Act Tasks: Originally created by Dan Meyer, three-act tasks follow the three acts of a story. The first act is typically called the "setup," followed by the "confrontation" and then the "resolution.". This storyline process can be used in mathematics in which students encounter a contextual problem (e.g., a pool is being ...

  2. Teaching Problem Solving

    Problem solving is a necessary skill in all disciplines and one that the Sheridan Center is focusing on as part of the Brown Learning Collaborative, which provides students the opportunity to achieve new levels of excellence in six key skills traditionally honed in a liberal arts education ­- critical reading, writing, research, data ...

  3. Why Every Educator Needs to Teach Problem-Solving Skills

    Resolve Conflicts. In addition to increased social and emotional skills like self-efficacy and goal-setting, problem-solving skills teach students how to cooperate with others and work through disagreements and conflicts. Problem-solving promotes "thinking outside the box" and approaching a conflict by searching for different solutions.

  4. 6 Strategies To Foster Problem-Solving Skills In Students

    The importance of problem-solving skills in kids is evident. So, try to be an ideal role model for kids all the time. 6. Observe, Facilitate, And Share Feedback. Last but not least, be a guide and mentor for your students at all times. Observe them and be ready to intervene as and when it is required.

  5. Teaching Problem Solving

    To teach students problem solving skills, a teacher should be aware of principles and strategies of good problem solving in his or her discipline. The mathematician George Polya captured the problem solving principles and strategies he used in his discipline in the book How to Solve It: A New Aspect of Mathematical Method (Princeton University ...

  6. Teaching problem solving: Let students get 'stuck' and 'unstuck'

    Teaching problem solving: Let students get 'stuck' and 'unstuck'. This is the second in a six-part blog series on teaching 21st century skills, including problem solving , metacognition ...

  7. 4 Strategies to Build Your Students' Problem Solving Skills

    Here are a few effective strategies: Project-Based Learning: Projects that require planning, execution, and evaluation naturally involve problem-solving. For example, a project where students need to build a model bridge within a budget encourages them to solve logistical and financial problems. Group Work: Group work allows students to face ...

  8. Problem Solving in STEM

    Problem Solving in STEM. Solving problems is a key component of many science, math, and engineering classes. If a goal of a class is for students to emerge with the ability to solve new kinds of problems or to use new problem-solving techniques, then students need numerous opportunities to develop the skills necessary to approach and answer ...

  9. Developing Problem-Solving Skills for Kids

    Problem-Solving Skills for Kids: Student Strategies. These are strategies your students can use during independent work time to become creative problem solvers. 1. Go Step-By-Step Through The Problem-Solving Sequence. Post problem-solving anchor charts and references on your classroom wall or pin them to your Google Classroom - anything to make ...

  10. Strategies To Develop Problem-Solving Skills In Students

    Benefits of Problem-Solving Skills for Students. Learning how to solve problems offers students many advantages, such as: Improving Academic Results; When students have a well-developed set of problem-solving skills, they are often better critical and analytical thinkers as well. They are able to effectively use these 21st-century skills when ...

  11. Strategies and Methods to Teach Students Problem Solving and Critical

    Spread the loveThe ability to problem solve and think critically are two of the most important skills that PreK-12 students can learn. Why? Because students need these skills to succeed in their academics and in life in general. It allows them to find a solution to issues and complex situations that are thrown there way, even if this is the first time they are faced with the predicament. Okay ...

  12. Don't Just Tell Students to Solve Problems. Teach Them How

    The UC San Diego problem-solving curriculum, Mjahed noted, is an opportunity for students to build the skills and the confidence to learn from their failures and to work outside their comfort zone. "And from there, they see pathways to real careers," he said. Jennifer Ogo, a teacher from Kearny High School, taught the problem-solving course ...

  13. How to Teach Kids Problem-Solving Skills

    The impact of problem-solving instruction on middle school students' physical science learning: Interplays of knowledge, reasoning, and problem solving. EJMSTE . 2018;14(3):731-743. Vlachou A, Stavroussi P. Promoting social inclusion: A structured intervention for enhancing interpersonal problem‐solving skills in children with mild ...

  14. Assessing Student Critical Thinking and Problem Solving Skills

    Critical thinking and problem solving, as we define it, are the set of non-discipline specific cognitive skills people use to analyze vast amounts of information and creatively solve problems. We have broken those skills down into these five core components: Schema Development: The ability to learn vast amounts of information and organize it in ...

  15. (PDF) Enhancing students' problem-solving skills ...

    This study presents a three-stage, context-. based, problem-solving, learning activity that involves watching detective films, constructing a context-simulation activity, and introducing a project ...

  16. The effectiveness of collaborative problem solving in promoting

    Duch et al. noted that problem-based learning in group collaboration is progressive active learning, which can improve students' critical thinking and problem-solving skills. Collaborative ...

  17. (PDF) Developing Students' Problem-Solving Skills ...

    Studies on students' problem-solving skills worldwide suggest there is a room for improvement. This study aimed at improving upper-secondary school students' problem-solving skills in ...

  18. PDF Teacher-based Evaluation of Students' Problem Solving Skills

    to emphasize students' mathematical knowledge and skills, mathematical problem solving competence is a concept that goes beyond simple mathematical knowledge and skills. Therefore, the measurement tool for mathematical problem solving competence must be different from tests for mathematics knowledge and skills. However, when viewing PS as a

  19. Pennsylvania Governor's STEM Competition highlights students' problem

    HARRISBURG, Pa. (WHTM) - Tomorrow's engineers and scientists brought their skills to Harrisburg today. Students from across the state took part in the 10th Annual Governor's STEM Competition.

  20. AI Copilots Are Changing How Coding Is Taught

    Computer science students are embracing the technology, ... Less Emphasis on Syntax, More on Problem Solving. The fundamentals and skills themselves are evolving. Most introductory computer ...

  21. Vocal Coaches: Assess Problem-Solving Skills

    5 Adaptability Test. The true test of an effective problem-solving approach in vocal coaching is its adaptability to different students and situations. Assess whether the strategies you use can be ...

  22. Addressing Workforce Gaps through Adult Education

    Competency-based education measures skills and learning rather than time spent in a classroom. Students earn competency units (the equivalent of credit hours) when they demonstrate their skills through completing assessments. ... Dive into careers ideal for problem-solving enthusiasts. Explore these critical thinking roles and unlock your ...

  23. PDF successful on the job. Students understand and develop soft skills

    the education and skills that are required in ... Students understand and develop soft skills: • Communication • Problem-solving ... Third, Students in the second year can work on projects for customers. The construction program has career and technical student organizations. Students

  24. International case competitions blend experiential learning and global

    From the Netherlands to Canada, Washington state and virtually, Fisher students showcased their global trade and international business knowledge in several global case competitions this academic year. They put their critical thinking and problem-solving skills to work to create solutions to challenges ranging from sustainability to international markets, cultural integration and human resources.

  25. Rio Salado Launching Program for Introduction to Precision Optics

    Students can enroll now in: GBS 120: Workplace Communication Skills (Reviews planning, organization, development, and evaluation of written and oral communication in business settings, including informative and persuasive messages.) ... (Covers basic algebraic operations, problem solving involving metric measurement, gears, pulleys, simple ...