chrome icon

Challenges and Opportunities of Online Learning in the Philippine Context: Thriving in the New Normal

Content maybe subject to  copyright     Report

Citation Count

Thematic Analysis: Striving to Meet the Trustworthiness Criteria

Challenges and opportunities for higher education amid the covid-19 pandemic: the philippine context, blended learning effectiveness: the relationship between student characteristics, design features and outcomes, faculty readiness for online crisis teaching: transitioning to online teaching during the covid-19 pandemic, the challenges of online learning during the covid-19 pandemic: an essay analysis of performing arts education students, related papers (5), asynchronous discussion forums in the changing landscape of the online learning environment, asynchronous/synchronous learning chasm, how the education industries react to synchronous and asynchronous learning in covid-19: multigroup analysis insights for future online education, bichronous online learning: award-winning online instructor practices of blending asynchronous and synchronous online modalities, merging worlds: when virtual meets physical: an experiment with hybrid learning, trending questions (3).

Limited internet connectivity, loss of human interaction, and low digital skill are primary challenges of online learning in the Philippines compared to traditional classroom-based learning, as highlighted in the research.

The paper does not specifically mention free online courses or the disadvantages faced by students enrolled in them. The paper focuses on the challenges and opportunities of online learning in general in the Philippine context.

The paper does not specifically mention the use of adaptive learning in the Philippines. The paper focuses on the challenges and opportunities of online learning in general amid the Covid-19 pandemic.

  • Subscribe Now

Issues with distance learning, academic freedom persist in 2021

Already have Rappler+? Sign in to listen to groundbreaking journalism.

This is AI generated summarization, which may have errors. For context, always refer to the full article.

Issues with distance learning, academic freedom persist in 2021

In 2021, the Philippines became the last country in the world to open its classrooms to children again.

For most of the year, the Department of Education (DepEd) continued its remote learning system from 2020, when the coronavirus pandemic first struck. This, despite criticism from various stakeholders about how the system was leaving the less privileged students and teachers behind because of the digital divide.

The Duterte government had always claimed that the decision to keep schools closed was in the best interest of the children, as COVID-19 vaccines were not available to the youth for most of the year. 

When vaccination for minors did roll out, it was only for those aged 12 to 17 .

College students, meanwhile, were allowed to return to their classrooms earlier. Rite-of-passage entrance exams were waived for a second year in a row.

The year also started with a bang for academic freedom. Students and alumni of certain institutions were caught up in President Rodrigo Duterte’s ongoing crackdown on progressive groups. Schools and universities were red-tagged.

Here’s a review of education in the Philippines in 2021.

From distance learning to limited face-to-face classes

Multiple times, President Duterte rejected the return to face-to-face classes. 2021 saw the second school opening under the distance learning system.

  • Duterte rejects face-to-face classes until vaccines available in PH
  • Why PH schools remain closed a year into the pandemic
  • Face-to-face graduation rites still not allowed due to pandemic – DepEd
  • Duterte again thumbs down face-to-face classes due to Delta variant
  • Private schools want own guidelines on limited face-to-face classes
  • Private schools say low enrollment for school year 2021-2022 ‘a major concern’
  • Senators irked by DepEd’s lack of ‘urgency’ on safe school reopening
  • What the Philippines’ 2nd pandemic school opening will look like
  • IN PHOTOS: 2nd pandemic school opening in the Philippines

In September, Duterte finally agreed to allow a pilot run of limited face-to-face classes in areas in the Philippines deemed low-risk.

  • Duterte approves limited face-to-face classes in 120 schools
  • What we know so far: Pilot run of limited face-to-face classes in PH
  • PH resumes face-to-face classes in select areas after nearly 2 years of lockdown
  • Young students tend to take off masks in face-to-face classes – DepEd
  • ‘Schools are zones of peace’: DepEd frowns on presence of armed cops in classroom
  • [DOCUMENTARY] What the first day of limited face-to-face classes looks like in Pangasinan
  • 28 public schools in Metro Manila start face-to-face classes on December 6 – DepEd
  • DepEd to conclude pilot run of face-to-face classes by end-December
  • DepEd ‘very optimistic’ of shift to limited face-to-face classes in school year 2022-2023

More programs in colleges and universities were gradually included in the coverage of face-to-face classes.

  • LIST: Medical schools in the Philippines allowed to hold face-to-face classes
  • Duterte OKs limited face-to-face classes in engineering, tourism, 3 other courses
  • CHED eyes limited face-to-face classes for engineering, IT courses
  • CHED: There’s no going back, ‘flexible learning will be new norm’
  • Limited face-to-face classes for all degree programs now allowed in Alert Level 2 areas

Issues with distance learning, quality of education

The issues with distance learning from 2020 spilled over into 2021. Some of the problems that persisted were connectivity issues, academic dishonesty, and the quality of education that came with the prolonged remote setup.

  • In remote learning, some students pay someone else to do their classwork
  • DepEd probes academic dishonesty in distance learning
  • DepEd: 99% of students got passing marks because teachers were ‘considerate’
  • Pandemic highlights issues in DepEd’s K to 12 program – PCIJ
  • Teachers, school heads to get higher special hardship allowance – DepEd
  • [PODCAST] Beyond the Stories: Paano magiging epektibo ang flexible learning sa kolehiyo?
  • WATCH: Class of 2021 shares what it’s like to graduate during a pandemic
  • Rappler Talk: How effective was the past year of distance learning?
  • Distance learning in the Philippines: A year of hits and misses
  • Distance learning, year 2: Parents ask for gadgets for struggling students
  • DepEd assures students of ‘better’ learning modules for school year 2021-2022

The education department also took offense after the World Bank put out a report on poor learning results among Filipino students in July.

  • [ANALYSIS] 8 facts from WB education report they don’t want you to read
  • DepEd head demands apology from World Bank for PH poor education ranking
  • World Bank apologizes to Philippines for education report ‘oversight’
  • Duterte on PH’s poor education ranking: ‘Mahirap kasi tayo’

Entrance exams canceled

College entrance tests, deemed rites of passage for entering universities in pre-pandemic times, were suspended for the second year in a row. Here are some of them:

  • No college entrance exam in DLSU for academic year 2021-2022 due to pandemic
  • No college entrance test again in Ateneo for academic year 2022-2023
  • UP again cancels UPCAT due to pandemic

Academic freedom, advocacies

2021 opened with the Duterte government unilaterally ending an accord that prevented armed forces from entering the state university, the University of the Philippines. This sparked calls to protect academic freedom in an institution known to fight for it since the Marcos dictatorship.

Advocacy groups also continued calls from 2020 for the administration to attend to the numerous flaws in the distance learning system.

  • Duterte gov’t ends 1989 deal barring troops from UP
  • What you need to know about the 1989 UP-DND accord
  • End of UP-DND agreement an ‘assault against the freedom of UP’
  • Top universities denounce red-tagging of schools
  • Students urge schools to extend academic break amid rising COVID-19 cases
  • Empower LGUs to make decisions on school opening – advocacy group
  • Youth group slams unchanged, ‘miserable’ online learning setup
  • UP Diliman: CHED chief De Vera fails mandate to defend academic freedom
  • Students from Odette-ravaged areas call for deadline extension

 – Rappler.com

Add a comment

Please abide by Rappler's commenting guidelines .

There are no comments yet. Add your comment to start the conversation.

How does this make you feel?

Related Topics

Clothing, Apparel, Person

Michelle Abad

Recommended stories, {{ item.sitename }}, {{ item.title }}, us fda to remove all posts warning public vs using ivermectin to treat covid-19.

US FDA to remove all posts warning public vs using ivermectin to treat COVID-19

Filipinos’ happiness back to pre-pandemic levels – report

Filipinos’ happiness back to pre-pandemic levels – report

[Time Trowel] Evolution and the sneakiness of COVID

[Time Trowel] Evolution and the sneakiness of COVID

PUP’s first face-to-face entrance tests after 3 years draw over 20,000 examinees

PUP’s first face-to-face entrance tests after 3 years draw over 20,000 examinees

WHO sees ‘incredibly low’ COVID, flu vaccination rates as cases surge

WHO sees ‘incredibly low’ COVID, flu vaccination rates as cases surge

distance learning

In this economy: learning losses sa pilipinas, maaagapan pa ba.

In This Economy: Learning losses sa Pilipinas, maaagapan pa ba?

Rappler Talk: Noam Angrist on stemming PH’s learning losses due to the pandemic

Rappler Talk: Noam Angrist on stemming PH’s learning losses due to the pandemic

[EDITORIAL] Ano sana ang takeaway ni Sara Duterte sa firesale ng mga laptops?

[EDITORIAL] Ano sana ang takeaway ni Sara Duterte sa firesale ng mga laptops?

Central Visayas teachers union calls for modular classes amid increasing heat index

Central Visayas teachers union calls for modular classes amid increasing heat index

Leni on Pulse Asia survey: It’s not over ’til it’s over | Evening wRap

Leni on Pulse Asia survey: It’s not over ’til it’s over | Evening wRap

year-end stories

Generative ai’s wild 2023: ‘hallucinate’ as word of the year, $27b in investments.

Generative AI’s wild 2023: ‘Hallucinate’ as word of the year, $27B in investments

Business Sense: 2023 is generative AI’s breakout year

Business Sense: 2023 is generative AI’s breakout year

#SharePhilippines: Philippine festivals come alive again in 2023

#SharePhilippines: Philippine festivals come alive again in 2023

How House lawmakers flexed their political muscle in 2023

How House lawmakers flexed their political muscle in 2023

The top 10 most viewed Rappler Live Jam episodes of 2023

The top 10 most viewed Rappler Live Jam episodes of 2023

Checking your Rappler+ subscription...

Upgrade to Rappler+ for exclusive content and unlimited access.

Why is it important to subscribe? Learn more

You are subscribed to Rappler+

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Wiley - PMC COVID-19 Collection

Logo of pheblackwell

Students’ experience of online learning during the COVID‐19 pandemic: A province‐wide survey study

Lixiang yan.

1 Centre for Learning Analytics at Monash, Faculty of Information Technology, Monash University, Clayton VIC, Australia

Alexander Whitelock‐Wainwright

2 Portfolio of the Deputy Vice‐Chancellor (Education), Monash University, Melbourne VIC, Australia

Quanlong Guan

3 Department of Computer Science, Jinan University, Guangzhou China

Gangxin Wen

4 College of Cyber Security, Jinan University, Guangzhou China

Dragan Gašević

Guanliang chen, associated data.

The data is not openly available as it is restricted by the Chinese government.

Online learning is currently adopted by educational institutions worldwide to provide students with ongoing education during the COVID‐19 pandemic. Even though online learning research has been advancing in uncovering student experiences in various settings (i.e., tertiary, adult, and professional education), very little progress has been achieved in understanding the experience of the K‐12 student population, especially when narrowed down to different school‐year segments (i.e., primary and secondary school students). This study explores how students at different stages of their K‐12 education reacted to the mandatory full‐time online learning during the COVID‐19 pandemic. For this purpose, we conducted a province‐wide survey study in which the online learning experience of 1,170,769 Chinese students was collected from the Guangdong Province of China. We performed cross‐tabulation and Chi‐square analysis to compare students’ online learning conditions, experiences, and expectations. Results from this survey study provide evidence that students’ online learning experiences are significantly different across school years. Foremost, policy implications were made to advise government authorises and schools on improving the delivery of online learning, and potential directions were identified for future research into K‐12 online learning.

Practitioner notes

What is already known about this topic

  • Online learning has been widely adopted during the COVID‐19 pandemic to ensure the continuation of K‐12 education.
  • Student success in K‐12 online education is substantially lower than in conventional schools.
  • Students experienced various difficulties related to the delivery of online learning.

What this paper adds

  • Provide empirical evidence for the online learning experience of students in different school years.
  • Identify the different needs of students in primary, middle, and high school.
  • Identify the challenges of delivering online learning to students of different age.

Implications for practice and/or policy

  • Authority and schools need to provide sufficient technical support to students in online learning.
  • The delivery of online learning needs to be customised for students in different school years.

INTRODUCTION

The ongoing COVID‐19 pandemic poses significant challenges to the global education system. By July 2020, the UN Educational, Scientific and Cultural Organization (2020) reported nationwide school closure in 111 countries, affecting over 1.07 billion students, which is around 61% of the global student population. Traditional brick‐and‐mortar schools are forced to transform into full‐time virtual schools to provide students with ongoing education (Van Lancker & Parolin,  2020 ). Consequently, students must adapt to the transition from face‐to‐face learning to fully remote online learning, where synchronous video conferences, social media, and asynchronous discussion forums become their primary venues for knowledge construction and peer communication.

For K‐12 students, this sudden transition is problematic as they often lack prior online learning experience (Barbour & Reeves,  2009 ). Barbour and LaBonte ( 2017 ) estimated that even in countries where online learning is growing rapidly, such as USA and Canada, less than 10% of the K‐12 student population had prior experience with this format. Maladaptation to online learning could expose inexperienced students to various vulnerabilities, including decrements in academic performance (Molnar et al.,  2019 ), feeling of isolation (Song et al.,  2004 ), and lack of learning motivation (Muilenburg & Berge,  2005 ). Unfortunately, with confirmed cases continuing to rise each day, and new outbreaks occur on a global scale, full‐time online learning for most students could last longer than anticipated (World Health Organization,  2020 ). Even after the pandemic, the current mass adoption of online learning could have lasting impacts on the global education system, and potentially accelerate and expand the rapid growth of virtual schools on a global scale (Molnar et al.,  2019 ). Thus, understanding students' learning conditions and their experiences of online learning during the COVID pandemic becomes imperative.

Emerging evidence on students’ online learning experience during the COVID‐19 pandemic has identified several major concerns, including issues with internet connection (Agung et al.,  2020 ; Basuony et al.,  2020 ), problems with IT equipment (Bączek et al.,  2021 ; Niemi & Kousa,  2020 ), limited collaborative learning opportunities (Bączek et al.,  2021 ; Yates et al.,  2020 ), reduced learning motivation (Basuony et al.,  2020 ; Niemi & Kousa,  2020 ; Yates et al.,  2020 ), and increased learning burdens (Niemi & Kousa,  2020 ). Although these findings provided valuable insights about the issues students experienced during online learning, information about their learning conditions and future expectations were less mentioned. Such information could assist educational authorises and institutions to better comprehend students’ difficulties and potentially improve their online learning experience. Additionally, most of these recent studies were limited to higher education, except for Yates et al. ( 2020 ) and Niemi and Kousa’s ( 2020 ) studies on senior high school students. Empirical research targeting the full spectrum of K‐12students remain scarce. Therefore, to address these gaps, the current paper reports the findings of a large‐scale study that sought to explore K‐12 students’ online learning experience during the COVID‐19 pandemic in a provincial sample of over one million Chinese students. The findings of this study provide policy recommendations to educational institutions and authorities regarding the delivery of K‐12 online education.

LITERATURE REVIEW

Learning conditions and technologies.

Having stable access to the internet is critical to students’ learning experience during online learning. Berge ( 2005 ) expressed the concern of the divide in digital‐readiness, and the pedagogical approach between different countries could influence students’ online learning experience. Digital‐readiness is the availability and adoption of information technologies and infrastructures in a country. Western countries like America (3rd) scored significantly higher in digital‐readiness compared to Asian countries like China (54th; Cisco,  2019 ). Students from low digital‐readiness countries could experience additional technology‐related problems. Supporting evidence is emerging in recent studies conducted during the COVID‐19 pandemic. In Egypt's capital city, Basuony et al. ( 2020 ) found that only around 13.9%of the students experienced issues with their internet connection. Whereas more than two‐thirds of the students in rural Indonesia reported issues of unstable internet, insufficient internet data, and incompatible learning device (Agung et al.,  2020 ).

Another influential factor for K‐12 students to adequately adapt to online learning is the accessibility of appropriate technological devices, especially having access to a desktop or a laptop (Barbour et al., 2018 ). However, it is unlikely for most of the students to satisfy this requirement. Even in higher education, around 76% of students reported having incompatible devices for online learning and only 15% of students used laptop for online learning, whereas around 85% of them used smartphone (Agung et al.,  2020 ). It is very likely that K‐12 students also suffer from this availability issue as they depend on their parents to provide access to relevant learning devices.

Technical issues surrounding technological devices could also influence students’ experience in online learning. (Barbour & Reeves,  2009 ) argues that students need to have a high level of digital literacy to find and use relevant information and communicate with others through technological devices. Students lacking this ability could experience difficulties in online learning. Bączek et al. ( 2021 ) found that around 54% of the medical students experienced technical problems with IT equipment and this issue was more prevalent in students with lower years of tertiary education. Likewise, Niemi and Kousa ( 2020 ) also find that students in a Finish high school experienced increased amounts of technical problems during the examination period, which involved additional technical applications. These findings are concerning as young children and adolescent in primary and lower secondary school could be more vulnerable to these technical problems as they are less experienced with the technologies in online learning (Barbour & LaBonte,  2017 ). Therefore, it is essential to investigate the learning conditions and the related difficulties experienced by students in K‐12 education as the extend of effects on them remain underexplored.

Learning experience and interactions

Apart from the aforementioned issues, the extent of interaction and collaborative learning opportunities available in online learning could also influence students’ experience. The literature on online learning has long emphasised the role of effective interaction for the success of student learning. According to Muirhead and Juwah ( 2004 ), interaction is an event that can take the shape of any type of communication between two or subjects and objects. Specifically, the literature acknowledges the three typical forms of interactions (Moore,  1989 ): (i) student‐content, (ii) student‐student, and (iii) student‐teacher. Anderson ( 2003 ) posits, in the well‐known interaction equivalency theorem, learning experiences will not deteriorate if only one of the three interaction is of high quality, and the other two can be reduced or even eliminated. Quality interaction can be accomplished by across two dimensions: (i) structure—pedagogical means that guide student interaction with contents or other students and (ii) dialogue—communication that happens between students and teachers and among students. To be able to scale online learning and prevent the growth of teaching costs, the emphasise is typically on structure (i.e., pedagogy) that can promote effective student‐content and student‐student interaction. The role of technology and media is typically recognised as a way to amplify the effect of pedagogy (Lou et al.,  2006 ). Novel technological innovations—for example learning analytics‐based personalised feedback at scale (Pardo et al.,  2019 ) —can also empower teachers to promote their interaction with students.

Online education can lead to a sense of isolation, which can be detrimental to student success (McInnerney & Roberts,  2004 ). Therefore, integration of social interaction into pedagogy for online learning is essential, especially at the times when students do not actually know each other or have communication and collaboration skills underdeveloped (Garrison et al.,  2010 ; Gašević et al.,  2015 ). Unfortunately, existing evidence suggested that online learning delivery during the COVID‐19 pandemic often lacks interactivity and collaborative experiences (Bączek et al.,  2021 ; Yates et al.,  2020 ). Bączek et al., ( 2021 ) found that around half of the medical students reported reduced interaction with teachers, and only 4% of students think online learning classes are interactive. Likewise, Yates et al. ( 2020 )’s study in high school students also revealed that over half of the students preferred in‐class collaboration over online collaboration as they value the immediate support and the proximity to teachers and peers from in‐class interaction.

Learning expectations and age differentiation

Although these studies have provided valuable insights and stressed the need for more interactivity in online learning, K‐12 students in different school years could exhibit different expectations for the desired activities in online learning. Piaget's Cognitive Developmental Theory illustrated children's difficulties in understanding abstract and hypothetical concepts (Thomas,  2000 ). Primary school students will encounter many abstract concepts in their STEM education (Uttal & Cohen,  2012 ). In face‐to‐face learning, teachers provide constant guidance on students’ learning progress and can help them to understand difficult concepts. Unfortunately, the level of guidance significantly drops in online learning, and, in most cases, children have to face learning obstacles by themselves (Barbour,  2013 ). Additionally, lower primary school students may lack the metacognitive skills to use various online learning functions, maintain engagement in synchronous online learning, develop and execute self‐regulated learning plans, and engage in meaningful peer interactions during online learning (Barbour,  2013 ; Broadbent & Poon,  2015 ; Huffaker & Calvert, 2003; Wang et al.,  2013 ). Thus, understanding these younger students’ expectations is imperative as delivering online learning to them in the same way as a virtual high school could hinder their learning experiences. For students with more matured metacognition, their expectations of online learning could be substantially different from younger students. Niemi et al.’s study ( 2020 ) with students in a Finish high school have found that students often reported heavy workload and fatigue during online learning. These issues could cause anxiety and reduce students’ learning motivation, which would have negative consequences on their emotional well‐being and academic performance (Niemi & Kousa,  2020 ; Yates et al.,  2020 ), especially for senior students who are under the pressure of examinations. Consequently, their expectations of online learning could be orientated toward having additional learning support functions and materials. Likewise, they could also prefer having more opportunities for peer interactions as these interactions are beneficial to their emotional well‐being and learning performance (Gašević et al., 2013 ; Montague & Rinaldi, 2001 ). Therefore, it is imperative to investigate the differences between online learning expectations in students of different school years to suit their needs better.

Research questions

By building upon the aforementioned relevant works, this study aimed to contribute to the online learning literature with a comprehensive understanding of the online learning experience that K‐12 students had during the COVID‐19 pandemic period in China. Additionally, this study also aimed to provide a thorough discussion of what potential actions can be undertaken to improve online learning delivery. Formally, this study was guided by three research questions (RQs):

RQ1 . What learning conditions were experienced by students across 12 years of education during their online learning process in the pandemic period? RQ2 . What benefits and obstacles were perceived by students across 12 years of education when performing online learning? RQ3 . What expectations do students, across 12 years of education, have for future online learning practices ?

Participants

The total number of K‐12 students in the Guangdong Province of China is around 15 million. In China, students of Year 1–6, Year 7–9, and Year 10–12 are referred to as students of primary school, middle school, and high school, respectively. Typically, students in China start their study in primary school at the age of around six. At the end of their high‐school study, students have to take the National College Entrance Examination (NCEE; also known as Gaokao) to apply for tertiary education. The survey was administrated across the whole Guangdong Province, that is the survey was exposed to all of the 15 million K‐12 students, though it was not mandatory for those students to accomplish the survey. A total of 1,170,769 students completed the survey, which accounts for a response rate of 7.80%. After removing responses with missing values and responses submitted from the same IP address (duplicates), we had 1,048,575 valid responses, which accounts to about 7% of the total K‐12 students in the Guangdong Province. The number of students in different school years is shown in Figure  1 . Overall, students were evenly distributed across different school years, except for a smaller sample in students of Year 10–12.

An external file that holds a picture, illustration, etc.
Object name is BJET-52-2038-g004.jpg

The number of students in each school year

Survey design

The survey was designed collaboratively by multiple relevant parties. Firstly, three educational researchers working in colleges and universities and three educational practitioners working in the Department of Education in Guangdong Province were recruited to co‐design the survey. Then, the initial draft of the survey was sent to 30 teachers from different primary and secondary schools, whose feedback and suggestions were considered to improve the survey. The final survey consisted of a total of 20 questions, which, broadly, can be classified into four categories: demographic, behaviours, experiences, and expectations. Details are available in Appendix.

All K‐12 students in the Guangdong Province were made to have full‐time online learning from March 1, 2020 after the outbreak of COVID‐19 in January in China. A province‐level online learning platform was provided to all schools by the government. In addition to the learning platform, these schools can also use additional third‐party platforms to facilitate the teaching activities, for example WeChat and Dingding, which provide services similar to WhatsApp and Zoom. The main change for most teachers was that they had to shift the classroom‐based lectures to online lectures with the aid of web‐conferencing tools. Similarly, these teachers also needed to perform homework marking and have consultation sessions in an online manner.

The Department of Education in the Guangdong Province of China distributed the survey to all K‐12 schools in the province on March 21, 2020 and collected responses on March 26, 2020. Students could access and answer the survey anonymously by either scan the Quick Response code along with the survey or click the survey address link on their mobile device. The survey was administrated in a completely voluntary manner and no incentives were given to the participants. Ethical approval was granted by the Department of Education in the Guangdong Province. Parental approval was not required since the survey was entirely anonymous and facilitated by the regulating authority, which satisfies China's ethical process.

The original survey was in Chinese, which was later translated by two bilingual researchers and verified by an external translator who is certified by the Australian National Accreditation Authority of Translators and Interpreters. The original and translated survey questionnaires are available in Supporting Information. Given the limited space we have here and the fact that not every survey item is relevant to the RQs, the following items were chosen to answer the RQs: item Q3 (learning media) and Q11 (learning approaches) for RQ1, item Q13 (perceived obstacle) and Q19 (perceived benefits) for RQ2, and item Q19 (expected learning activities) for RQ3. Cross‐tabulation based approaches were used to analyse the collected data. To scrutinise whether the differences displayed by students of different school years were statistically significant, we performed Chi‐square tests and calculated the Cramer's V to assess the strengths of the association after chi‐square had determined significance.

For the analyses, students were segmented into four categories based on their school years, that is Year 1–3, Year 4–6, Year 7–9, and Year 10–12, to provide a clear understanding of the different experiences and needs that different students had for online learning. This segmentation was based on the educational structure of Chinese schools: elementary school (Year 1–6), middle school (Year 7–9), and high school (Year 10–12). Children in elementary school can further be segmented into junior (Year 1–3) or senior (Year 4–6) students because senior elementary students in China are facing more workloads compared to junior students due to the provincial Middle School Entry Examination at the end of Year 6.

Learning conditions—RQ1

Learning media.

The Chi‐square test showed significant association between school years and students’ reported usage of learning media, χ 2 (55, N  = 1,853,952) = 46,675.38, p  < 0.001. The Cramer's V is 0.07 ( df ∗ = 5), which indicates a small‐to‐medium effect according to Cohen’s ( 1988 ) guidelines. Based on Figure  2 , we observed that an average of up to 87.39% students used smartphones to perform online learning, while only 25.43% students used computer, which suggests that smartphones, with widespread availability in China (2020), have been adopted by students for online learning. As for the prevalence of the two media, we noticed that both smartphones ( χ 2 (3, N  = 1,048,575) = 9,395.05, p < 0.001, Cramer's V  = 0.10 ( df ∗ = 1)) and computers ( χ 2 (3, N  = 1,048,575) = 11,025.58, p <.001, Cramer's V  = 0.10 ( df ∗ = 1)) were more adopted by high‐school‐year (Year 7–12) than early‐school‐year students (Year 1–6), both with a small effect size. Besides, apparent discrepancies can be observed between the usages of TV and paper‐based materials across different school years, that is early‐school‐year students reported more TV usage ( χ 2 (3, N  = 1,048,575) = 19,505.08, p <.001), with a small‐to‐medium effect size, Cramer's V  = 0.14( df ∗ = 1). High‐school‐year students (especially Year 10–12) reported more usage of paper‐based materials ( χ 2 (3, N  = 1,048,575) = 23,401.64, p < 0.001), with a small‐to‐medium effect size, Cramer's V  = 0.15( df ∗ = 1).

An external file that holds a picture, illustration, etc.
Object name is BJET-52-2038-g002.jpg

Learning media used by students in online learning

Learning approaches

School years is also significantly associated with the different learning approaches students used to tackle difficult concepts during online learning, χ 2 (55, N  = 2,383,751) = 58,030.74, p < 0.001. The strength of this association is weak to moderate as shown by the Cramer's V (0.07, df ∗ = 5; Cohen,  1988 ). When encountering problems related to difficult concepts, students typically chose to “solve independently by searching online” or “rewatch recorded lectures” instead of consulting to their teachers or peers (Figure  3 ). This is probably because, compared to classroom‐based education, it is relatively less convenient and more challenging for students to seek help from others when performing online learning. Besides, compared to high‐school‐year students, early‐school‐year students (Year 1–6), reported much less use of “solve independently by searching online” ( χ 2 (3, N  = 1,048,575) = 48,100.15, p <.001), with a small‐to‐medium effect size, Cramer's V  = 0.21 ( df ∗ = 1). Also, among those approaches of seeking help from others, significantly more high‐school‐year students preferred “communicating with other students” than early‐school‐year students ( χ 2 (3, N  = 1,048,575) = 81,723.37, p < 0.001), with a medium effect size, Cramer's V  = 0.28 ( df ∗ = 1).

An external file that holds a picture, illustration, etc.
Object name is BJET-52-2038-g003.jpg

Learning approaches used by students in online learning

Perceived benefits and obstacles—RQ2

Perceived benefits.

The association between school years and perceived benefits in online learning is statistically significant, χ 2 (66, N  = 2,716,127) = 29,534.23, p  < 0.001, and the Cramer's V (0.04, df ∗ = 6) indicates a small effect (Cohen,  1988 ). Unsurprisingly, benefits brought by the convenience of online learning are widely recognised by students across all school years (Figure  4 ), that is up to 75% of students reported that it is “more convenient to review course content” and 54% said that they “can learn anytime and anywhere” . Besides, we noticed that about 50% of early‐school‐year students appreciated the “access to courses delivered by famous teachers” and 40%–47% of high‐school‐year students indicated that online learning is “helpful to develop self‐regulation and autonomy” .

An external file that holds a picture, illustration, etc.
Object name is BJET-52-2038-g005.jpg

Perceived benefits of online learning reported by students

Perceived obstacles

The Chi‐square test shows a significant association between school years and students’ perceived obstacles in online learning, χ 2 (77, N  = 2,699,003) = 31,987.56, p < 0.001. This association is relatively weak as shown by the Cramer's V (0.04, df ∗ = 7; Cohen,  1988 ). As shown in Figure  5 , the biggest obstacles encountered by up to 73% of students were the “eyestrain caused by long staring at screens” . Disengagement caused by nearby disturbance was reported by around 40% of students, especially those of Year 1–3 and 10–12. Technological‐wise, about 50% of students experienced poor Internet connection during their learning process, and around 20% of students reported the “confusion in setting up the platforms” across of school years.

An external file that holds a picture, illustration, etc.
Object name is BJET-52-2038-g001.jpg

Perceived obstacles of online learning reported by students

Expectations for future practices of online learning – RQ3

Online learning activities.

The association between school years and students’ expected online learning activities is significant, χ 2 (66, N  = 2,416,093) = 38,784.81, p < 0.001. The Cramer's V is 0.05 ( df ∗ = 6) which suggests a small effect (Cohen,  1988 ). As shown in Figure  6 , the most expected activity for future online learning is “real‐time interaction with teachers” (55%), followed by “online group discussion and collaboration” (38%). We also observed that more early‐school‐year students expect reflective activities, such as “regular online practice examinations” ( χ 2 (3, N  = 1,048,575) = 11,644.98, p < 0.001), with a small effect size, Cramer's V  = 0.11 ( df ∗ = 1). In contrast, more high‐school‐year students expect “intelligent recommendation system …” ( χ 2 (3, N  = 1,048,575) = 15,327.00, p < 0.001), with a small effect size, Cramer's V  = 0.12 ( df ∗ = 1).

An external file that holds a picture, illustration, etc.
Object name is BJET-52-2038-g006.jpg

Students’ expected online learning activities

Regarding students’ learning conditions, substantial differences were observed in learning media, family dependency, and learning approaches adopted in online learning between students in different school years. The finding of more computer and smartphone usage in high‐school‐year than early‐school‐year students can probably be explained by that, with the growing abilities in utilising these media as well as the educational systems and tools which run on these media, high‐school‐year students tend to make better use of these media for online learning practices. Whereas, the differences in paper‐based materials may imply that high‐school‐year students in China have to accomplish a substantial amount of exercise, assignments, and exam papers to prepare for the National College Entrance Examination (NCEE), whose delivery was not entirely digitised due to the sudden transition to online learning. Meanwhile, high‐school‐year students may also have preferred using paper‐based materials for exam practice, as eventually, they would take their NCEE in the paper format. Therefore, these substantial differences in students’ usage of learning media should be addressed by customising the delivery method of online learning for different school years.

Other than these between‐age differences in learning media, the prevalence of smartphone in online learning resonates with Agung et al.’s ( 2020 ) finding on the issues surrounding the availability of compatible learning device. The prevalence of smartphone in K‐12 students is potentially problematic as the majority of the online learning platform and content is designed for computer‐based learning (Berge,  2005 ; Molnar et al.,  2019 ). Whereas learning with smartphones has its own unique challenges. For example, Gikas and Grant ( 2013 ) discovered that students who learn with smartphone experienced frustration with the small screen‐size, especially when trying to type with the tiny keypad. Another challenge relates to the distraction of various social media applications. Although similar distractions exist in computer and web‐based social media, the level of popularity, especially in the young generation, are much higher in mobile‐based social media (Montag et al.,  2018 ). In particular, the message notification function in smartphones could disengage students from learning activities and allure them to social media applications (Gikas & Grant,  2013 ). Given these challenges of learning with smartphones, more research efforts should be devoted to analysing students’ online learning behaviour in the setting of mobile learning to accommodate their needs better.

The differences in learning approaches, once again, illustrated that early‐school‐year students have different needs compared to high‐school‐year students. In particular, the low usage of the independent learning methods in early‐school‐year students may reflect their inability to engage in independent learning. Besides, the differences in help seeking behaviours demonstrated the distinctive needs for communication and interaction between different students, that is early‐school‐year students have a strong reliance on teachers and high‐school‐year students, who are equipped with stronger communication ability, are more inclined to interact with their peers. This finding implies that the design of online learning platforms should take students’ different needs into account. Thus, customisation is urgently needed for the delivery of online learning to different school years.

In terms of the perceived benefits and challenges of online learning, our results resonate with several previous findings. In particular, the benefits of convenience are in line with the flexibility advantages of online learning, which were mentioned in prior works (Appana,  2008 ; Bączek et al.,  2021 ; Barbour,  2013 ; Basuony et al.,  2020 ; Harvey et al.,  2014 ). Early‐school‐year students’ higher appreciation in having “access to courses delivered by famous teachers” and lower appreciation in the independent learning skills developed through online learning are also in line with previous literature (Barbour,  2013 ; Harvey et al.,  2014 ; Oliver et al.,  2009 ). Again, these similar findings may indicate the strong reliance that early‐school‐year students place on teachers, while high‐school‐year students are more capable of adapting to online learning by developing independent learning skills.

Technology‐wise, students’ experience of poor internet connection and confusion in setting up online learning platforms are particularly concerning. The problem of poor internet connection corroborated the findings reported in prior studies (Agung et al.,  2020 ; Barbour,  2013 ; Basuony et al.,  2020 ; Berge,  2005 ; Rice,  2006 ), that is the access issue surrounded the digital divide as one of the main challenges of online learning. In the era of 4G and 5G networks, educational authorities and institutions that deliver online education could fall into the misconception of most students have a stable internet connection at home. The internet issue we observed is particularly vital to students’ online learning experience as most students prefer real‐time communications (Figure  6 ), which rely heavily on stable internet connection. Likewise, the finding of students’ confusion in technology is also consistent with prior studies (Bączek et al.,  2021 ; Muilenburg & Berge,  2005 ; Niemi & Kousa,  2020 ; Song et al.,  2004 ). Students who were unsuccessfully in setting up the online learning platforms could potentially experience declines in confidence and enthusiasm for online learning, which would cause a subsequent unpleasant learning experience. Therefore, both the readiness of internet infrastructure and student technical skills remain as the significant challenges for the mass‐adoption of online learning.

On the other hand, students’ experience of eyestrain from extended screen time provided empirical evidence to support Spitzer’s ( 2001 ) speculation about the potential ergonomic impact of online learning. This negative effect is potentially related to the prevalence of smartphone device and the limited screen size of these devices. This finding not only demonstrates the potential ergonomic issues that would be caused by smartphone‐based online learning but also resonates with the aforementioned necessity of different platforms and content designs for different students.

A less‐mentioned problem in previous studies on online learning experiences is the disengagement caused by nearby disturbance, especially in Year 1–3 and 10–12. It is likely that early‐school‐year students suffered from this problem because of their underdeveloped metacognitive skills to concentrate on online learning without teachers’ guidance. As for high‐school‐year students, the reasons behind their disengagement require further investigation in the future. Especially it would be worthwhile to scrutinise whether this type of disengagement is caused by the substantial amount of coursework they have to undertake and the subsequent a higher level of pressure and a lower level of concentration while learning.

Across age‐level differences are also apparent in terms of students’ expectations of online learning. Although, our results demonstrated students’ needs of gaining social interaction with others during online learning, findings (Bączek et al.,  2021 ; Harvey et al.,  2014 ; Kuo et al.,  2014 ; Liu & Cavanaugh,  2012 ; Yates et al.,  2020 ). This need manifested differently across school years, with early‐school‐year students preferring more teacher interactions and learning regulation support. Once again, this finding may imply that early‐school‐year students are inadequate in engaging with online learning without proper guidance from their teachers. Whereas, high‐school‐year students prefer more peer interactions and recommendation to learning resources. This expectation can probably be explained by the large amount of coursework exposed to them. Thus, high‐school‐year students need further guidance to help them better direct their learning efforts. These differences in students’ expectations for future practices could guide the customisation of online learning delivery.

Implications

As shown in our results, improving the delivery of online learning not only requires the efforts of policymakers but also depend on the actions of teachers and parents. The following sub‐sections will provide recommendations for relevant stakeholders and discuss their essential roles in supporting online education.

Technical support

The majority of the students has experienced technical problems during online learning, including the internet lagging and confusion in setting up the learning platforms. These problems with technology could impair students’ learning experience (Kauffman,  2015 ; Muilenburg & Berge,  2005 ). Educational authorities and schools should always provide a thorough guide and assistance for students who are experiencing technical problems with online learning platforms or other related tools. Early screening and detection could also assist schools and teachers to direct their efforts more effectively in helping students with low technology skills (Wilkinson et al.,  2010 ). A potential identification method involves distributing age‐specific surveys that assess students’ Information and Communication Technology (ICT) skills at the beginning of online learning. For example, there are empirical validated ICT surveys available for both primary (Aesaert et al.,  2014 ) and high school (Claro et al.,  2012 ) students.

For students who had problems with internet lagging, the delivery of online learning should provide options that require fewer data and bandwidth. Lecture recording is the existing option but fails to address students’ need for real‐time interaction (Clark et al.,  2015 ; Malik & Fatima,  2017 ). A potential alternative involves providing students with the option to learn with digital or physical textbooks and audio‐conferencing, instead of screen sharing and video‐conferencing. This approach significantly reduces the amount of data usage and lowers the requirement of bandwidth for students to engage in smooth online interactions (Cisco,  2018 ). It also requires little additional efforts from teachers as official textbooks are often available for each school year, and thus, they only need to guide students through the materials during audio‐conferencing. Educational authority can further support this approach by making digital textbooks available for teachers and students, especially those in financial hardship. However, the lack of visual and instructor presence could potentially reduce students’ attention, recall of information, and satisfaction in online learning (Wang & Antonenko,  2017 ). Therefore, further research is required to understand whether the combination of digital or physical textbooks and audio‐conferencing is appropriate for students with internet problems. Alternatively, suppose the local technological infrastructure is well developed. In that case, governments and schools can also collaborate with internet providers to issue data and bandwidth vouchers for students who are experiencing internet problems due to financial hardship.

For future adoption of online learning, policymakers should consider the readiness of the local internet infrastructure. This recommendation is particularly important for developing countries, like Bangladesh, where the majority of the students reported the lack of internet infrastructure (Ramij & Sultana,  2020 ). In such environments, online education may become infeasible, and alternative delivery method could be more appropriate, for example, the Telesecundaria program provides TV education for rural areas of Mexico (Calderoni,  1998 ).

Other than technical problems, choosing a suitable online learning platform is also vital for providing students with a better learning experience. Governments and schools should choose an online learning platform that is customised for smartphone‐based learning, as the majority of students could be using smartphones for online learning. This recommendation is highly relevant for situations where students are forced or involuntarily engaged in online learning, like during the COVID‐19 pandemic, as they might not have access to a personal computer (Molnar et al.,  2019 ).

Customisation of delivery methods

Customising the delivery of online learning for students in different school years is the theme that appeared consistently across our findings. This customisation process is vital for making online learning an opportunity for students to develop independent learning skills, which could help prepare them for tertiary education and lifelong learning. However, the pedagogical design of K‐12 online learning programs should be differentiated from adult‐orientated programs as these programs are designed for independent learners, which is rarely the case for students in K‐12 education (Barbour & Reeves,  2009 ).

For early‐school‐year students, especially Year 1–3 students, providing them with sufficient guidance from both teachers and parents should be the priority as these students often lack the ability to monitor and reflect on learning progress. In particular, these students would prefer more real‐time interaction with teachers, tutoring from parents, and regular online practice examinations. These forms of guidance could help early‐school‐year students to cope with involuntary online learning, and potentially enhance their experience in future online learning. It should be noted that, early‐school‐year students demonstrated interest in intelligent monitoring and feedback systems for learning. Additional research is required to understand whether these young children are capable of understanding and using learning analytics that relay information on their learning progress. Similarly, future research should also investigate whether young children can communicate effectively through digital tools as potential inability could hinder student learning in online group activities. Therefore, the design of online learning for early‐school‐year students should focus less on independent learning but ensuring that students are learning effective under the guidance of teachers and parents.

In contrast, group learning and peer interaction are essential for older children and adolescents. The delivery of online learning for these students should focus on providing them with more opportunities to communicate with each other and engage in collaborative learning. Potential methods to achieve this goal involve assigning or encouraging students to form study groups (Lee et al.,  2011 ), directing students to use social media for peer communication (Dabbagh & Kitsantas,  2012 ), and providing students with online group assignments (Bickle & Rucker,  2018 ).

Special attention should be paid to students enrolled in high schools. For high‐school‐year students, in particular, students in Year 10–12, we also recommend to provide them with sufficient access to paper‐based learning materials, such as revision booklet and practice exam papers, so they remain familiar with paper‐based examinations. This recommendation applies to any students who engage in online learning but has to take their final examination in paper format. It is also imperative to assist high‐school‐year students who are facing examinations to direct their learning efforts better. Teachers can fulfil this need by sharing useful learning resources on the learning management system, if it is available, or through social media groups. Alternatively, students are interested in intelligent recommendation systems for learning resources, which are emerging in the literature (Corbi & Solans,  2014 ; Shishehchi et al.,  2010 ). These systems could provide personalised recommendations based on a series of evaluation on learners’ knowledge. Although it is infeasible for situations where the transformation to online learning happened rapidly (i.e., during the COVID‐19 pandemic), policymakers can consider embedding such systems in future online education.

Limitations

The current findings are limited to primary and secondary Chinese students who were involuntarily engaged in online learning during the COVID‐19 pandemic. Despite the large sample size, the population may not be representative as participants are all from a single province. Also, information about the quality of online learning platforms, teaching contents, and pedagogy approaches were missing because of the large scale of our study. It is likely that the infrastructures of online learning in China, such as learning platforms, instructional designs, and teachers’ knowledge about online pedagogy, were underprepared for the sudden transition. Thus, our findings may not represent the experience of students who voluntarily participated in well‐prepared online learning programs, in particular, the virtual school programs in America and Canada (Barbour & LaBonte,  2017 ; Molnar et al.,  2019 ). Lastly, the survey was only evaluated and validated by teachers but not students. Therefore, students with the lowest reading comprehension levels might have a different understanding of the items’ meaning, especially terminologies that involve abstract contracts like self‐regulation and autonomy in item Q17.

In conclusion, we identified across‐year differences between primary and secondary school students’ online learning experience during the COVID‐19 pandemic. Several recommendations were made for the future practice and research of online learning in the K‐12 student population. First, educational authorities and schools should provide sufficient technical support to help students to overcome potential internet and technical problems, as well as choosing online learning platforms that have been customised for smartphones. Second, customising the online pedagogy design for students in different school years, in particular, focusing on providing sufficient guidance for young children, more online collaborative opportunity for older children and adolescent, and additional learning resource for senior students who are facing final examinations.

CONFLICT OF INTEREST

There is no potential conflict of interest in this study.

ETHICS STATEMENT

The data are collected by the Department of Education of the Guangdong Province who also has the authority to approve research studies in K12 education in the province.

Supporting information

Supplementary Material

ACKNOWLEDGEMENTS

This work is supported by the National Natural Science Foundation of China (62077028, 61877029), the Science and Technology Planning Project of Guangdong (2020B0909030005, 2020B1212030003, 2020ZDZX3013, 2019B1515120010, 2018KTSCX016, 2019A050510024), the Science and Technology Planning Project of Guangzhou (201902010041), and the Fundamental Research Funds for the Central Universities (21617408, 21619404).

SURVEY ITEMS

Yan, L , Whitelock‐Wainwright, A , Guan, Q , Wen, G , Gašević, D , & Chen, G . Students’ experience of online learning during the COVID‐19 pandemic: A province‐wide survey study . Br J Educ Technol . 2021; 52 :2038–2057. 10.1111/bjet.13102 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]

DATA AVAILABILITY STATEMENT

  • Aesaert, K. , Van Nijlen, D. , Vanderlinde, R. , & van Braak, J. (2014). Direct measures of digital information processing and communication skills in primary education: Using item response theory for the development and validation of an ICT competence scale . Computers & Education , 76 , 168–181. 10.1016/j.compedu.2014.03.013 [ CrossRef ] [ Google Scholar ]
  • Agung, A. S. N. , Surtikanti, M. W. , & Quinones, C. A. (2020). Students’ perception of online learning during COVID‐19 pandemic: A case study on the English students of STKIP Pamane Talino . SOSHUM: Jurnal Sosial Dan Humaniora , 10 ( 2 ), 225–235. 10.31940/soshum.v10i2.1316 [ CrossRef ] [ Google Scholar ]
  • Anderson, T. (2003). Getting the mix right again: An updated and theoretical rationale for interaction . The International Review of Research in Open and Distributed Learning , 4 ( 2 ). 10.19173/irrodl.v4i2.149 [ CrossRef ] [ Google Scholar ]
  • Appana, S. (2008). A review of benefits and limitations of online learning in the context of the student, the instructor and the tenured faculty . International Journal on E‐learning , 7 ( 1 ), 5–22. [ Google Scholar ]
  • Bączek, M. , Zagańczyk‐Bączek, M. , Szpringer, M. , Jaroszyński, A. , & Wożakowska‐Kapłon, B. (2021). Students’ perception of online learning during the COVID‐19 pandemic: A survey study of Polish medical students . Medicine , 100 ( 7 ), e24821. 10.1097/MD.0000000000024821 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Barbour, M. K. (2013). The landscape of k‐12 online learning: Examining what is known . Handbook of Distance Education , 3 , 574–593. [ Google Scholar ]
  • Barbour, M. , Huerta, L. , & Miron, G. (2018). Virtual schools in the US: Case studies of policy, performance and research evidence. In Society for information technology & teacher education international conference (pp. 672–677). Association for the Advancement of Computing in Education (AACE). [ Google Scholar ]
  • Barbour, M. K. , & LaBonte, R. (2017). State of the nation: K‐12 e‐learning in Canada, 2017 edition . http://k12sotn.ca/wp‐content/uploads/2018/02/StateNation17.pdf [ Google Scholar ]
  • Barbour, M. K. , & Reeves, T. C. (2009). The reality of virtual schools: A review of the literature . Computers & Education , 52 ( 2 ), 402–416. [ Google Scholar ]
  • Basuony, M. A. K. , EmadEldeen, R. , Farghaly, M. , El‐Bassiouny, N. , & Mohamed, E. K. A. (2020). The factors affecting student satisfaction with online education during the COVID‐19 pandemic: An empirical study of an emerging Muslim country . Journal of Islamic Marketing . 10.1108/JIMA-09-2020-0301 [ CrossRef ] [ Google Scholar ]
  • Berge, Z. L. (2005). Virtual schools: Planning for success . Teachers College Press, Columbia University. [ Google Scholar ]
  • Bickle, M. C. , & Rucker, R. (2018). Student‐to‐student interaction: Humanizing the online classroom using technology and group assignments . Quarterly Review of Distance Education , 19 ( 1 ), 1–56. [ Google Scholar ]
  • Broadbent, J. , & Poon, W. L. (2015). Self‐regulated learning strategies & academic achievement in online higher education learning environments: A systematic review . The Internet and Higher Education , 27 , 1–13. [ Google Scholar ]
  • Calderoni, J. (1998). Telesecundaria: Using TV to bring education to rural Mexico (Tech. Rep.). The World Bank. [ Google Scholar ]
  • Cisco . (2018). Bandwidth requirements for meetings with cisco Webex and collaboration meeting rooms white paper . http://dwz.date/dpbc [ Google Scholar ]
  • Cisco . (2019). Cisco digital readiness 2019 . https://www.cisco.com/c/m/en_us/about/corporate‐social‐responsibility/research‐resources/digital‐readiness‐index.html#/ (Library Catalog: www.cisco.com). [ Google Scholar ]
  • Clark, C. , Strudler, N. , & Grove, K. (2015). Comparing asynchronous and synchronous video vs. text based discussions in an online teacher education course . Online Learning , 19 ( 3 ), 48–69. [ Google Scholar ]
  • Claro, M. , Preiss, D. D. , San Martín, E. , Jara, I. , Hinostroza, J. E. , Valenzuela, S. , Cortes, F. , & Nussbaum, M. (2012). Assessment of 21st century ICT skills in Chile: Test design and results from high school level students . Computers & Education , 59 ( 3 ), 1042–1053. 10.1016/j.compedu.2012.04.004 [ CrossRef ] [ Google Scholar ]
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences . Routledge Academic. [ Google Scholar ]
  • Corbi, A. , & Solans, D. B. (2014). Review of current student‐monitoring techniques used in elearning‐focused recommender systems and learning analytics: The experience API & LIME model case study . IJIMAI , 2 ( 7 ), 44–52. [ Google Scholar ]
  • Dabbagh, N. , & Kitsantas, A. (2012). Personal learning environments, social media, and self‐regulated learning: A natural formula for connecting formal and informal learning . The Internet and Higher Education , 15 ( 1 ), 3–8. 10.1016/j.iheduc.2011.06.002 [ CrossRef ] [ Google Scholar ]
  • Garrison, D. R. , Cleveland‐Innes, M. , & Fung, T. S. (2010). Exploring causal relationships among teaching, cognitive and social presence: Student perceptions of the community of inquiry framework . The Internet and Higher Education , 13 ( 1–2 ), 31–36. 10.1016/j.iheduc.2009.10.002 [ CrossRef ] [ Google Scholar ]
  • Gašević, D. , Adesope, O. , Joksimović, S. , & Kovanović, V. (2015). Externally‐facilitated regulation scaffolding and role assignment to develop cognitive presence in asynchronous online discussions . The Internet and Higher Education , 24 , 53–65. 10.1016/j.iheduc.2014.09.006 [ CrossRef ] [ Google Scholar ]
  • Gašević, D. , Zouaq, A. , & Janzen, R. (2013). “Choose your classmates, your GPA is at stake!” The association of cross‐class social ties and academic performance . American Behavioral Scientist , 57 ( 10 ), 1460–1479. [ Google Scholar ]
  • Gikas, J. , & Grant, M. M. (2013). Mobile computing devices in higher education: Student perspectives on learning with cellphones, smartphones & social media . The Internet and Higher Education , 19 , 18–26. [ Google Scholar ]
  • Harvey, D. , Greer, D. , Basham, J. , & Hu, B. (2014). From the student perspective: Experiences of middle and high school students in online learning . American Journal of Distance Education , 28 ( 1 ), 14–26. 10.1080/08923647.2014.868739 [ CrossRef ] [ Google Scholar ]
  • Kauffman, H. (2015). A review of predictive factors of student success in and satisfaction with online learning . Research in Learning Technology , 23 . 10.3402/rlt.v23.26507 [ CrossRef ] [ Google Scholar ]
  • Kuo, Y.‐C. , Walker, A. E. , Belland, B. R. , Schroder, K. E. , & Kuo, Y.‐T. (2014). A case study of integrating interwise: Interaction, internet self‐efficacy, and satisfaction in synchronous online learning environments . International Review of Research in Open and Distributed Learning , 15 ( 1 ), 161–181. 10.19173/irrodl.v15i1.1664 [ CrossRef ] [ Google Scholar ]
  • Lee, S. J. , Srinivasan, S. , Trail, T. , Lewis, D. , & Lopez, S. (2011). Examining the relationship among student perception of support, course satisfaction, and learning outcomes in online learning . The Internet and Higher Education , 14 ( 3 ), 158–163. 10.1016/j.iheduc.2011.04.001 [ CrossRef ] [ Google Scholar ]
  • Liu, F. , & Cavanaugh, C. (2012). Factors influencing student academic performance in online high school algebra . Open Learning: The Journal of Open, Distance and e‐Learning , 27 ( 2 ), 149–167. 10.1080/02680513.2012.678613 [ CrossRef ] [ Google Scholar ]
  • Lou, Y. , Bernard, R. M. , & Abrami, P. C. (2006). Media and pedagogy in undergraduate distance education: A theory‐based meta‐analysis of empirical literature . Educational Technology Research and Development , 54 ( 2 ), 141–176. 10.1007/s11423-006-8252-x [ CrossRef ] [ Google Scholar ]
  • Malik, M. , & Fatima, G. (2017). E‐learning: Students’ perspectives about asynchronous and synchronous resources at higher education level . Bulletin of Education and Research , 39 ( 2 ), 183–195. [ Google Scholar ]
  • McInnerney, J. M. , & Roberts, T. S. (2004). Online learning: Social interaction and the creation of a sense of community . Journal of Educational Technology & Society , 7 ( 3 ), 73–81. [ Google Scholar ]
  • Molnar, A. , Miron, G. , Elgeberi, N. , Barbour, M. K. , Huerta, L. , Shafer, S. R. , & Rice, J. K. (2019). Virtual schools in the US 2019 . National Education Policy Center. [ Google Scholar ]
  • Montague, M. , & Rinaldi, C. (2001). Classroom dynamics and children at risk: A followup . Learning Disability Quarterly , 24 ( 2 ), 75–83. [ Google Scholar ]
  • Montag, C. , Becker, B. , & Gan, C. (2018). The multipurpose application Wechat: A review on recent research . Frontiers in Psychology , 9 , 2247. 10.3389/fpsyg.2018.02247 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Moore, M. G. (1989). Editorial: Three types of interaction . American Journal of Distance Education , 3 ( 2 ), 1–7. 10.1080/08923648909526659 [ CrossRef ] [ Google Scholar ]
  • Muilenburg, L. Y. , & Berge, Z. L. (2005). Student barriers to online learning: A factor analytic study . Distance Education , 26 ( 1 ), 29–48. 10.1080/01587910500081269 [ CrossRef ] [ Google Scholar ]
  • Muirhead, B. , & Juwah, C. (2004). Interactivity in computer‐mediated college and university education: A recent review of the literature . Journal of Educational Technology & Society , 7 ( 1 ), 12–20. [ Google Scholar ]
  • Niemi, H. M. , & Kousa, P. (2020). A case study of students’ and teachers’ perceptions in a finnish high school during the COVID pandemic . International Journal of Technology in Education and Science , 4 ( 4 ), 352–369. 10.46328/ijtes.v4i4.167 [ CrossRef ] [ Google Scholar ]
  • Oliver, K. , Osborne, J. , & Brady, K. (2009). What are secondary students’ expectations for teachers in virtual school environments? Distance Education , 30 ( 1 ), 23–45. 10.1080/01587910902845923 [ CrossRef ] [ Google Scholar ]
  • Pardo, A. , Jovanovic, J. , Dawson, S. , Gašević, D. , & Mirriahi, N. (2019). Using learning analytics to scale the provision of personalised feedback . British Journal of Educational Technology , 50 ( 1 ), 128–138. 10.1111/bjet.12592 [ CrossRef ] [ Google Scholar ]
  • Ramij, M. , & Sultana, A. (2020). Preparedness of online classes in developing countries amid covid‐19 outbreak: A perspective from Bangladesh. Afrin, Preparedness of Online Classes in Developing Countries amid COVID‐19 Outbreak: A Perspective from Bangladesh (June 29, 2020) .
  • Rice, K. L. (2006). A comprehensive look at distance education in the k–12 context . Journal of Research on Technology in Education , 38 ( 4 ), 425–448. 10.1080/15391523.2006.10782468 [ CrossRef ] [ Google Scholar ]
  • Shishehchi, S. , Banihashem, S. Y. , & Zin, N. A. M. (2010). A proposed semantic recommendation system for elearning: A rule and ontology based e‐learning recommendation system. In 2010 international symposium on information technology (Vol. 1, pp. 1–5).
  • Song, L. , Singleton, E. S. , Hill, J. R. , & Koh, M. H. (2004). Improving online learning: Student perceptions of useful and challenging characteristics . The Internet and Higher Education , 7 ( 1 ), 59–70. 10.1016/j.iheduc.2003.11.003 [ CrossRef ] [ Google Scholar ]
  • Spitzer, D. R. (2001). Don’t forget the high‐touch with the high‐tech in distance learning . Educational Technology , 41 ( 2 ), 51–55. [ Google Scholar ]
  • Thomas, R. M. (2000). Comparing theories of child development. Wadsworth/Thomson Learning. United Nations Educational, Scientific and Cultural Organization. (2020, March). Education: From disruption to recovery . https://en.unesco.org/covid19/educationresponse (Library Catalog: en.unesco.org)
  • Uttal, D. H. , & Cohen, C. A. (2012). Spatial thinking and stem education: When, why, and how? In Psychology of learning and motivation (Vol. 57 , pp. 147–181). Elsevier. [ Google Scholar ]
  • Van Lancker, W. , & Parolin, Z. (2020). Covid‐19, school closures, and child poverty: A social crisis in the making . The Lancet Public Health , 5 ( 5 ), e243–e244. 10.1016/S2468-2667(20)30084-0 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wang, C.‐H. , Shannon, D. M. , & Ross, M. E. (2013). Students’ characteristics, self‐regulated learning, technology self‐efficacy, and course outcomes in online learning . Distance Education , 34 ( 3 ), 302–323. 10.1080/01587919.2013.835779 [ CrossRef ] [ Google Scholar ]
  • Wang, J. , & Antonenko, P. D. (2017). Instructor presence in instructional video: Effects on visual attention, recall, and perceived learning . Computers in Human Behavior , 71 , 79–89. 10.1016/j.chb.2017.01.049 [ CrossRef ] [ Google Scholar ]
  • Wilkinson, A. , Roberts, J. , & While, A. E. (2010). Construction of an instrument to measure student information and communication technology skills, experience and attitudes to e‐learning . Computers in Human Behavior , 26 ( 6 ), 1369–1376. 10.1016/j.chb.2010.04.010 [ CrossRef ] [ Google Scholar ]
  • World Health Organization . (2020, July). Coronavirus disease 2019 (COVID‐19): Situation Report‐164 (Situation Report No. 164). https://www.who.int/docs/default‐source/coronaviruse/situation‐reports/20200702‐covid‐19‐sitrep‐164.pdf?sfvrsn$=$ac074f58$_$2
  • Yates, A. , Starkey, L. , Egerton, B. , & Flueggen, F. (2020). High school students’ experience of online learning during Covid‐19: The influence of technology and pedagogy . Technology, Pedagogy and Education , 9 , 1–15. 10.1080/1475939X.2020.1854337 [ CrossRef ] [ Google Scholar ]

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Published: 25 January 2021

Online education in the post-COVID era

  • Barbara B. Lockee 1  

Nature Electronics volume  4 ,  pages 5–6 ( 2021 ) Cite this article

138k Accesses

205 Citations

337 Altmetric

Metrics details

  • Science, technology and society

The coronavirus pandemic has forced students and educators across all levels of education to rapidly adapt to online learning. The impact of this — and the developments required to make it work — could permanently change how education is delivered.

The COVID-19 pandemic has forced the world to engage in the ubiquitous use of virtual learning. And while online and distance learning has been used before to maintain continuity in education, such as in the aftermath of earthquakes 1 , the scale of the current crisis is unprecedented. Speculation has now also begun about what the lasting effects of this will be and what education may look like in the post-COVID era. For some, an immediate retreat to the traditions of the physical classroom is required. But for others, the forced shift to online education is a moment of change and a time to reimagine how education could be delivered 2 .

challenges of online learning in the philippines essay

Looking back

Online education has traditionally been viewed as an alternative pathway, one that is particularly well suited to adult learners seeking higher education opportunities. However, the emergence of the COVID-19 pandemic has required educators and students across all levels of education to adapt quickly to virtual courses. (The term ‘emergency remote teaching’ was coined in the early stages of the pandemic to describe the temporary nature of this transition 3 .) In some cases, instruction shifted online, then returned to the physical classroom, and then shifted back online due to further surges in the rate of infection. In other cases, instruction was offered using a combination of remote delivery and face-to-face: that is, students can attend online or in person (referred to as the HyFlex model 4 ). In either case, instructors just had to figure out how to make it work, considering the affordances and constraints of the specific learning environment to create learning experiences that were feasible and effective.

The use of varied delivery modes does, in fact, have a long history in education. Mechanical (and then later electronic) teaching machines have provided individualized learning programmes since the 1950s and the work of B. F. Skinner 5 , who proposed using technology to walk individual learners through carefully designed sequences of instruction with immediate feedback indicating the accuracy of their response. Skinner’s notions formed the first formalized representations of programmed learning, or ‘designed’ learning experiences. Then, in the 1960s, Fred Keller developed a personalized system of instruction 6 , in which students first read assigned course materials on their own, followed by one-on-one assessment sessions with a tutor, gaining permission to move ahead only after demonstrating mastery of the instructional material. Occasional class meetings were held to discuss concepts, answer questions and provide opportunities for social interaction. A personalized system of instruction was designed on the premise that initial engagement with content could be done independently, then discussed and applied in the social context of a classroom.

These predecessors to contemporary online education leveraged key principles of instructional design — the systematic process of applying psychological principles of human learning to the creation of effective instructional solutions — to consider which methods (and their corresponding learning environments) would effectively engage students to attain the targeted learning outcomes. In other words, they considered what choices about the planning and implementation of the learning experience can lead to student success. Such early educational innovations laid the groundwork for contemporary virtual learning, which itself incorporates a variety of instructional approaches and combinations of delivery modes.

Online learning and the pandemic

Fast forward to 2020, and various further educational innovations have occurred to make the universal adoption of remote learning a possibility. One key challenge is access. Here, extensive problems remain, including the lack of Internet connectivity in some locations, especially rural ones, and the competing needs among family members for the use of home technology. However, creative solutions have emerged to provide students and families with the facilities and resources needed to engage in and successfully complete coursework 7 . For example, school buses have been used to provide mobile hotspots, and class packets have been sent by mail and instructional presentations aired on local public broadcasting stations. The year 2020 has also seen increased availability and adoption of electronic resources and activities that can now be integrated into online learning experiences. Synchronous online conferencing systems, such as Zoom and Google Meet, have allowed experts from anywhere in the world to join online classrooms 8 and have allowed presentations to be recorded for individual learners to watch at a time most convenient for them. Furthermore, the importance of hands-on, experiential learning has led to innovations such as virtual field trips and virtual labs 9 . A capacity to serve learners of all ages has thus now been effectively established, and the next generation of online education can move from an enterprise that largely serves adult learners and higher education to one that increasingly serves younger learners, in primary and secondary education and from ages 5 to 18.

The COVID-19 pandemic is also likely to have a lasting effect on lesson design. The constraints of the pandemic provided an opportunity for educators to consider new strategies to teach targeted concepts. Though rethinking of instructional approaches was forced and hurried, the experience has served as a rare chance to reconsider strategies that best facilitate learning within the affordances and constraints of the online context. In particular, greater variance in teaching and learning activities will continue to question the importance of ‘seat time’ as the standard on which educational credits are based 10 — lengthy Zoom sessions are seldom instructionally necessary and are not aligned with the psychological principles of how humans learn. Interaction is important for learning but forced interactions among students for the sake of interaction is neither motivating nor beneficial.

While the blurring of the lines between traditional and distance education has been noted for several decades 11 , the pandemic has quickly advanced the erasure of these boundaries. Less single mode, more multi-mode (and thus more educator choices) is becoming the norm due to enhanced infrastructure and developed skill sets that allow people to move across different delivery systems 12 . The well-established best practices of hybrid or blended teaching and learning 13 have served as a guide for new combinations of instructional delivery that have developed in response to the shift to virtual learning. The use of multiple delivery modes is likely to remain, and will be a feature employed with learners of all ages 14 , 15 . Future iterations of online education will no longer be bound to the traditions of single teaching modes, as educators can support pedagogical approaches from a menu of instructional delivery options, a mix that has been supported by previous generations of online educators 16 .

Also significant are the changes to how learning outcomes are determined in online settings. Many educators have altered the ways in which student achievement is measured, eliminating assignments and changing assessment strategies altogether 17 . Such alterations include determining learning through strategies that leverage the online delivery mode, such as interactive discussions, student-led teaching and the use of games to increase motivation and attention. Specific changes that are likely to continue include flexible or extended deadlines for assignment completion 18 , more student choice regarding measures of learning, and more authentic experiences that involve the meaningful application of newly learned skills and knowledge 19 , for example, team-based projects that involve multiple creative and social media tools in support of collaborative problem solving.

In response to the COVID-19 pandemic, technological and administrative systems for implementing online learning, and the infrastructure that supports its access and delivery, had to adapt quickly. While access remains a significant issue for many, extensive resources have been allocated and processes developed to connect learners with course activities and materials, to facilitate communication between instructors and students, and to manage the administration of online learning. Paths for greater access and opportunities to online education have now been forged, and there is a clear route for the next generation of adopters of online education.

Before the pandemic, the primary purpose of distance and online education was providing access to instruction for those otherwise unable to participate in a traditional, place-based academic programme. As its purpose has shifted to supporting continuity of instruction, its audience, as well as the wider learning ecosystem, has changed. It will be interesting to see which aspects of emergency remote teaching remain in the next generation of education, when the threat of COVID-19 is no longer a factor. But online education will undoubtedly find new audiences. And the flexibility and learning possibilities that have emerged from necessity are likely to shift the expectations of students and educators, diminishing further the line between classroom-based instruction and virtual learning.

Mackey, J., Gilmore, F., Dabner, N., Breeze, D. & Buckley, P. J. Online Learn. Teach. 8 , 35–48 (2012).

Google Scholar  

Sands, T. & Shushok, F. The COVID-19 higher education shove. Educause Review https://go.nature.com/3o2vHbX (16 October 2020).

Hodges, C., Moore, S., Lockee, B., Trust, T. & Bond, M. A. The difference between emergency remote teaching and online learning. Educause Review https://go.nature.com/38084Lh (27 March 2020).

Beatty, B. J. (ed.) Hybrid-Flexible Course Design Ch. 1.4 https://go.nature.com/3o6Sjb2 (EdTech Books, 2019).

Skinner, B. F. Science 128 , 969–977 (1958).

Article   Google Scholar  

Keller, F. S. J. Appl. Behav. Anal. 1 , 79–89 (1968).

Darling-Hammond, L. et al. Restarting and Reinventing School: Learning in the Time of COVID and Beyond (Learning Policy Institute, 2020).

Fulton, C. Information Learn. Sci . 121 , 579–585 (2020).

Pennisi, E. Science 369 , 239–240 (2020).

Silva, E. & White, T. Change The Magazine Higher Learn. 47 , 68–72 (2015).

McIsaac, M. S. & Gunawardena, C. N. in Handbook of Research for Educational Communications and Technology (ed. Jonassen, D. H.) Ch. 13 (Simon & Schuster Macmillan, 1996).

Irvine, V. The landscape of merging modalities. Educause Review https://go.nature.com/2MjiBc9 (26 October 2020).

Stein, J. & Graham, C. Essentials for Blended Learning Ch. 1 (Routledge, 2020).

Maloy, R. W., Trust, T. & Edwards, S. A. Variety is the spice of remote learning. Medium https://go.nature.com/34Y1NxI (24 August 2020).

Lockee, B. J. Appl. Instructional Des . https://go.nature.com/3b0ddoC (2020).

Dunlap, J. & Lowenthal, P. Open Praxis 10 , 79–89 (2018).

Johnson, N., Veletsianos, G. & Seaman, J. Online Learn. 24 , 6–21 (2020).

Vaughan, N. D., Cleveland-Innes, M. & Garrison, D. R. Assessment in Teaching in Blended Learning Environments: Creating and Sustaining Communities of Inquiry (Athabasca Univ. Press, 2013).

Conrad, D. & Openo, J. Assessment Strategies for Online Learning: Engagement and Authenticity (Athabasca Univ. Press, 2018).

Download references

Author information

Authors and affiliations.

School of Education, Virginia Tech, Blacksburg, VA, USA

Barbara B. Lockee

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Barbara B. Lockee .

Ethics declarations

Competing interests.

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article.

Lockee, B.B. Online education in the post-COVID era. Nat Electron 4 , 5–6 (2021). https://doi.org/10.1038/s41928-020-00534-0

Download citation

Published : 25 January 2021

Issue Date : January 2021

DOI : https://doi.org/10.1038/s41928-020-00534-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

A comparative study on the effectiveness of online and in-class team-based learning on student performance and perceptions in virtual simulation experiments.

BMC Medical Education (2024)

Leveraging privacy profiles to empower users in the digital society

  • Davide Di Ruscio
  • Paola Inverardi
  • Phuong T. Nguyen

Automated Software Engineering (2024)

Growth mindset and social comparison effects in a peer virtual learning environment

  • Pamela Sheffler
  • Cecilia S. Cheung

Social Psychology of Education (2024)

Nursing students’ learning flow, self-efficacy and satisfaction in virtual clinical simulation and clinical case seminar

  • Sunghee H. Tak

BMC Nursing (2023)

Online learning for WHO priority diseases with pandemic potential: evidence from existing courses and preparing for Disease X

  • Heini Utunen
  • Corentin Piroux

Archives of Public Health (2023)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

challenges of online learning in the philippines essay

Advertisement

Advertisement

The effects of online education on academic success: A meta-analysis study

  • Published: 06 September 2021
  • Volume 27 , pages 429–450, ( 2022 )

Cite this article

challenges of online learning in the philippines essay

  • Hakan Ulum   ORCID: orcid.org/0000-0002-1398-6935 1  

78k Accesses

26 Citations

11 Altmetric

Explore all metrics

The purpose of this study is to analyze the effect of online education, which has been extensively used on student achievement since the beginning of the pandemic. In line with this purpose, a meta-analysis of the related studies focusing on the effect of online education on students’ academic achievement in several countries between the years 2010 and 2021 was carried out. Furthermore, this study will provide a source to assist future studies with comparing the effect of online education on academic achievement before and after the pandemic. This meta-analysis study consists of 27 studies in total. The meta-analysis involves the studies conducted in the USA, Taiwan, Turkey, China, Philippines, Ireland, and Georgia. The studies included in the meta-analysis are experimental studies, and the total sample size is 1772. In the study, the funnel plot, Duval and Tweedie’s Trip and Fill Analysis, Orwin’s Safe N Analysis, and Egger’s Regression Test were utilized to determine the publication bias, which has been found to be quite low. Besides, Hedge’s g statistic was employed to measure the effect size for the difference between the means performed in accordance with the random effects model. The results of the study show that the effect size of online education on academic achievement is on a medium level. The heterogeneity test results of the meta-analysis study display that the effect size does not differ in terms of class level, country, online education approaches, and lecture moderators.

Avoid common mistakes on your manuscript.

1 Introduction

Information and communication technologies have become a powerful force in transforming the educational settings around the world. The pandemic has been an important factor in transferring traditional physical classrooms settings through adopting information and communication technologies and has also accelerated the transformation. The literature supports that learning environments connected to information and communication technologies highly satisfy students. Therefore, we need to keep interest in technology-based learning environments. Clearly, technology has had a huge impact on young people's online lives. This digital revolution can synergize the educational ambitions and interests of digitally addicted students. In essence, COVID-19 has provided us with an opportunity to embrace online learning as education systems have to keep up with the rapid emergence of new technologies.

Information and communication technologies that have an effect on all spheres of life are also actively included in the education field. With the recent developments, using technology in education has become inevitable due to personal and social reasons (Usta, 2011a ). Online education may be given as an example of using information and communication technologies as a consequence of the technological developments. Also, it is crystal clear that online learning is a popular way of obtaining instruction (Demiralay et al., 2016 ; Pillay et al., 2007 ), which is defined by Horton ( 2000 ) as a way of education that is performed through a web browser or an online application without requiring an extra software or a learning source. Furthermore, online learning is described as a way of utilizing the internet to obtain the related learning sources during the learning process, to interact with the content, the teacher, and other learners, as well as to get support throughout the learning process (Ally, 2004 ). Online learning has such benefits as learning independently at any time and place (Vrasidas & MsIsaac, 2000 ), granting facility (Poole, 2000 ), flexibility (Chizmar & Walbert, 1999 ), self-regulation skills (Usta, 2011b ), learning with collaboration, and opportunity to plan self-learning process.

Even though online education practices have not been comprehensive as it is now, internet and computers have been used in education as alternative learning tools in correlation with the advances in technology. The first distance education attempt in the world was initiated by the ‘Steno Courses’ announcement published in Boston newspaper in 1728. Furthermore, in the nineteenth century, Sweden University started the “Correspondence Composition Courses” for women, and University Correspondence College was afterwards founded for the correspondence courses in 1843 (Arat & Bakan, 2011 ). Recently, distance education has been performed through computers, assisted by the facilities of the internet technologies, and soon, it has evolved into a mobile education practice that is emanating from progress in the speed of internet connection, and the development of mobile devices.

With the emergence of pandemic (Covid-19), face to face education has almost been put to a halt, and online education has gained significant importance. The Microsoft management team declared to have 750 users involved in the online education activities on the 10 th March, just before the pandemic; however, on March 24, they informed that the number of users increased significantly, reaching the number of 138,698 users (OECD, 2020 ). This event supports the view that it is better to commonly use online education rather than using it as a traditional alternative educational tool when students do not have the opportunity to have a face to face education (Geostat, 2019 ). The period of Covid-19 pandemic has emerged as a sudden state of having limited opportunities. Face to face education has stopped in this period for a long time. The global spread of Covid-19 affected more than 850 million students all around the world, and it caused the suspension of face to face education. Different countries have proposed several solutions in order to maintain the education process during the pandemic. Schools have had to change their curriculum, and many countries supported the online education practices soon after the pandemic. In other words, traditional education gave its way to online education practices. At least 96 countries have been motivated to access online libraries, TV broadcasts, instructions, sources, video lectures, and online channels (UNESCO, 2020 ). In such a painful period, educational institutions went through online education practices by the help of huge companies such as Microsoft, Google, Zoom, Skype, FaceTime, and Slack. Thus, online education has been discussed in the education agenda more intensively than ever before.

Although online education approaches were not used as comprehensively as it has been used recently, it was utilized as an alternative learning approach in education for a long time in parallel with the development of technology, internet and computers. The academic achievement of the students is often aimed to be promoted by employing online education approaches. In this regard, academicians in various countries have conducted many studies on the evaluation of online education approaches and published the related results. However, the accumulation of scientific data on online education approaches creates difficulties in keeping, organizing and synthesizing the findings. In this research area, studies are being conducted at an increasing rate making it difficult for scientists to be aware of all the research outside of their ​​expertise. Another problem encountered in the related study area is that online education studies are repetitive. Studies often utilize slightly different methods, measures, and/or examples to avoid duplication. This erroneous approach makes it difficult to distinguish between significant differences in the related results. In other words, if there are significant differences in the results of the studies, it may be difficult to express what variety explains the differences in these results. One obvious solution to these problems is to systematically review the results of various studies and uncover the sources. One method of performing such systematic syntheses is the application of meta-analysis which is a methodological and statistical approach to draw conclusions from the literature. At this point, how effective online education applications are in increasing the academic success is an important detail. Has online education, which is likely to be encountered frequently in the continuing pandemic period, been successful in the last ten years? If successful, how much was the impact? Did different variables have an impact on this effect? Academics across the globe have carried out studies on the evaluation of online education platforms and publishing the related results (Chiao et al., 2018 ). It is quite important to evaluate the results of the studies that have been published up until now, and that will be published in the future. Has the online education been successful? If it has been, how big is the impact? Do the different variables affect this impact? What should we consider in the next coming online education practices? These questions have all motivated us to carry out this study. We have conducted a comprehensive meta-analysis study that tries to provide a discussion platform on how to develop efficient online programs for educators and policy makers by reviewing the related studies on online education, presenting the effect size, and revealing the effect of diverse variables on the general impact.

There have been many critical discussions and comprehensive studies on the differences between online and face to face learning; however, the focus of this paper is different in the sense that it clarifies the magnitude of the effect of online education and teaching process, and it represents what factors should be controlled to help increase the effect size. Indeed, the purpose here is to provide conscious decisions in the implementation of the online education process.

The general impact of online education on the academic achievement will be discovered in the study. Therefore, this will provide an opportunity to get a general overview of the online education which has been practiced and discussed intensively in the pandemic period. Moreover, the general impact of online education on academic achievement will be analyzed, considering different variables. In other words, the current study will allow to totally evaluate the study results from the related literature, and to analyze the results considering several cultures, lectures, and class levels. Considering all the related points, this study seeks to answer the following research questions:

What is the effect size of online education on academic achievement?

How do the effect sizes of online education on academic achievement change according to the moderator variable of the country?

How do the effect sizes of online education on academic achievement change according to the moderator variable of the class level?

How do the effect sizes of online education on academic achievement change according to the moderator variable of the lecture?

How do the effect sizes of online education on academic achievement change according to the moderator variable of the online education approaches?

This study aims at determining the effect size of online education, which has been highly used since the beginning of the pandemic, on students’ academic achievement in different courses by using a meta-analysis method. Meta-analysis is a synthesis method that enables gathering of several study results accurately and efficiently, and getting the total results in the end (Tsagris & Fragkos, 2018 ).

2.1 Selecting and coding the data (studies)

The required literature for the meta-analysis study was reviewed in July, 2020, and the follow-up review was conducted in September, 2020. The purpose of the follow-up review was to include the studies which were published in the conduction period of this study, and which met the related inclusion criteria. However, no study was encountered to be included in the follow-up review.

In order to access the studies in the meta-analysis, the databases of Web of Science, ERIC, and SCOPUS were reviewed by utilizing the keywords ‘online learning and online education’. Not every database has a search engine that grants access to the studies by writing the keywords, and this obstacle was considered to be an important problem to be overcome. Therefore, a platform that has a special design was utilized by the researcher. With this purpose, through the open access system of Cukurova University Library, detailed reviews were practiced using EBSCO Information Services (EBSCO) that allow reviewing the whole collection of research through a sole searching box. Since the fundamental variables of this study are online education and online learning, the literature was systematically reviewed in the related databases (Web of Science, ERIC, and SCOPUS) by referring to the keywords. Within this scope, 225 articles were accessed, and the studies were included in the coding key list formed by the researcher. The name of the researchers, the year, the database (Web of Science, ERIC, and SCOPUS), the sample group and size, the lectures that the academic achievement was tested in, the country that the study was conducted in, and the class levels were all included in this coding key.

The following criteria were identified to include 225 research studies which were coded based on the theoretical basis of the meta-analysis study: (1) The studies should be published in the refereed journals between the years 2020 and 2021, (2) The studies should be experimental studies that try to determine the effect of online education and online learning on academic achievement, (3) The values of the stated variables or the required statistics to calculate these values should be stated in the results of the studies, and (4) The sample group of the study should be at a primary education level. These criteria were also used as the exclusion criteria in the sense that the studies that do not meet the required criteria were not included in the present study.

After the inclusion criteria were determined, a systematic review process was conducted, following the year criterion of the study by means of EBSCO. Within this scope, 290,365 studies that analyze the effect of online education and online learning on academic achievement were accordingly accessed. The database (Web of Science, ERIC, and SCOPUS) was also used as a filter by analyzing the inclusion criteria. Hence, the number of the studies that were analyzed was 58,616. Afterwards, the keyword ‘primary education’ was used as the filter and the number of studies included in the study decreased to 3152. Lastly, the literature was reviewed by using the keyword ‘academic achievement’ and 225 studies were accessed. All the information of 225 articles was included in the coding key.

It is necessary for the coders to review the related studies accurately and control the validity, safety, and accuracy of the studies (Stewart & Kamins, 2001 ). Within this scope, the studies that were determined based on the variables used in this study were first reviewed by three researchers from primary education field, then the accessed studies were combined and processed in the coding key by the researcher. All these studies that were processed in the coding key were analyzed in accordance with the inclusion criteria by all the researchers in the meetings, and it was decided that 27 studies met the inclusion criteria (Atici & Polat, 2010 ; Carreon, 2018 ; Ceylan & Elitok Kesici, 2017 ; Chae & Shin, 2016 ; Chiang et al. 2014 ; Ercan, 2014 ; Ercan et al., 2016 ; Gwo-Jen et al., 2018 ; Hayes & Stewart, 2016 ; Hwang et al., 2012 ; Kert et al., 2017 ; Lai & Chen, 2010 ; Lai et al., 2015 ; Meyers et al., 2015 ; Ravenel et al., 2014 ; Sung et al., 2016 ; Wang & Chen, 2013 ; Yu, 2019 ; Yu & Chen, 2014 ; Yu & Pan, 2014 ; Yu et al., 2010 ; Zhong et al., 2017 ). The data from the studies meeting the inclusion criteria were independently processed in the second coding key by three researchers, and consensus meetings were arranged for further discussion. After the meetings, researchers came to an agreement that the data were coded accurately and precisely. Having identified the effect sizes and heterogeneity of the study, moderator variables that will show the differences between the effect sizes were determined. The data related to the determined moderator variables were added to the coding key by three researchers, and a new consensus meeting was arranged. After the meeting, researchers came to an agreement that moderator variables were coded accurately and precisely.

2.2 Study group

27 studies are included in the meta-analysis. The total sample size of the studies that are included in the analysis is 1772. The characteristics of the studies included are given in Table 1 .

2.3 Publication bias

Publication bias is the low capability of published studies on a research subject to represent all completed studies on the same subject (Card, 2011 ; Littell et al., 2008 ). Similarly, publication bias is the state of having a relationship between the probability of the publication of a study on a subject, and the effect size and significance that it produces. Within this scope, publication bias may occur when the researchers do not want to publish the study as a result of failing to obtain the expected results, or not being approved by the scientific journals, and consequently not being included in the study synthesis (Makowski et al., 2019 ). The high possibility of publication bias in a meta-analysis study negatively affects (Pecoraro, 2018 ) the accuracy of the combined effect size, causing the average effect size to be reported differently than it should be (Borenstein et al., 2009 ). For this reason, the possibility of publication bias in the included studies was tested before determining the effect sizes of the relationships between the stated variables. The possibility of publication bias of this meta-analysis study was analyzed by using the funnel plot, Orwin’s Safe N Analysis, Duval and Tweedie’s Trip and Fill Analysis, and Egger’s Regression Test.

2.4 Selecting the model

After determining the probability of publication bias of this meta-analysis study, the statistical model used to calculate the effect sizes was selected. The main approaches used in the effect size calculations according to the differentiation level of inter-study variance are fixed and random effects models (Pigott, 2012 ). Fixed effects model refers to the homogeneity of the characteristics of combined studies apart from the sample sizes, while random effects model refers to the parameter diversity between the studies (Cumming, 2012 ). While calculating the average effect size in the random effects model (Deeks et al., 2008 ) that is based on the assumption that effect predictions of different studies are only the result of a similar distribution, it is necessary to consider several situations such as the effect size apart from the sample error of combined studies, characteristics of the participants, duration, scope, and pattern of the study (Littell et al., 2008 ). While deciding the model in the meta-analysis study, the assumptions on the sample characteristics of the studies included in the analysis and the inferences that the researcher aims to make should be taken into consideration. The fact that the sample characteristics of the studies conducted in the field of social sciences are affected by various parameters shows that using random effects model is more appropriate in this sense. Besides, it is stated that the inferences made with the random effects model are beyond the studies included in the meta-analysis (Field, 2003 ; Field & Gillett, 2010 ). Therefore, using random effects model also contributes to the generalization of research data. The specified criteria for the statistical model selection show that according to the nature of the meta-analysis study, the model should be selected just before the analysis (Borenstein et al., 2007 ; Littell et al., 2008 ). Within this framework, it was decided to make use of the random effects model, considering that the students who are the samples of the studies included in the meta-analysis are from different countries and cultures, the sample characteristics of the studies differ, and the patterns and scopes of the studies vary as well.

2.5 Heterogeneity

Meta-analysis facilitates analyzing the research subject with different parameters by showing the level of diversity between the included studies. Within this frame, whether there is a heterogeneous distribution between the studies included in the study or not has been evaluated in the present study. The heterogeneity of the studies combined in this meta-analysis study has been determined through Q and I 2 tests. Q test evaluates the random distribution probability of the differences between the observed results (Deeks et al., 2008 ). Q value exceeding 2 value calculated according to the degree of freedom and significance, indicates the heterogeneity of the combined effect sizes (Card, 2011 ). I 2 test, which is the complementary of the Q test, shows the heterogeneity amount of the effect sizes (Cleophas & Zwinderman, 2017 ). I 2 value being higher than 75% is explained as high level of heterogeneity.

In case of encountering heterogeneity in the studies included in the meta-analysis, the reasons of heterogeneity can be analyzed by referring to the study characteristics. The study characteristics which may be related to the heterogeneity between the included studies can be interpreted through subgroup analysis or meta-regression analysis (Deeks et al., 2008 ). While determining the moderator variables, the sufficiency of the number of variables, the relationship between the moderators, and the condition to explain the differences between the results of the studies have all been considered in the present study. Within this scope, it was predicted in this meta-analysis study that the heterogeneity can be explained with the country, class level, and lecture moderator variables of the study in terms of the effect of online education, which has been highly used since the beginning of the pandemic, and it has an impact on the students’ academic achievement in different lectures. Some subgroups were evaluated and categorized together, considering that the number of effect sizes of the sub-dimensions of the specified variables is not sufficient to perform moderator analysis (e.g. the countries where the studies were conducted).

2.6 Interpreting the effect sizes

Effect size is a factor that shows how much the independent variable affects the dependent variable positively or negatively in each included study in the meta-analysis (Dinçer, 2014 ). While interpreting the effect sizes obtained from the meta-analysis, the classifications of Cohen et al. ( 2007 ) have been utilized. The case of differentiating the specified relationships of the situation of the country, class level, and school subject variables of the study has been identified through the Q test, degree of freedom, and p significance value Fig.  1 and 2 .

3 Findings and results

The purpose of this study is to determine the effect size of online education on academic achievement. Before determining the effect sizes in the study, the probability of publication bias of this meta-analysis study was analyzed by using the funnel plot, Orwin’s Safe N Analysis, Duval and Tweedie’s Trip and Fill Analysis, and Egger’s Regression Test.

When the funnel plots are examined, it is seen that the studies included in the analysis are distributed symmetrically on both sides of the combined effect size axis, and they are generally collected in the middle and lower sections. The probability of publication bias is low according to the plots. However, since the results of the funnel scatter plots may cause subjective interpretations, they have been supported by additional analyses (Littell et al., 2008 ). Therefore, in order to provide an extra proof for the probability of publication bias, it has been analyzed through Orwin’s Safe N Analysis, Duval and Tweedie’s Trip and Fill Analysis, and Egger’s Regression Test (Table 2 ).

Table 2 consists of the results of the rates of publication bias probability before counting the effect size of online education on academic achievement. According to the table, Orwin Safe N analysis results show that it is not necessary to add new studies to the meta-analysis in order for Hedges g to reach a value outside the range of ± 0.01. The Duval and Tweedie test shows that excluding the studies that negatively affect the symmetry of the funnel scatter plots for each meta-analysis or adding their exact symmetrical equivalents does not significantly differentiate the calculated effect size. The insignificance of the Egger tests results reveals that there is no publication bias in the meta-analysis study. The results of the analysis indicate the high internal validity of the effect sizes and the adequacy of representing the studies conducted on the relevant subject.

In this study, it was aimed to determine the effect size of online education on academic achievement after testing the publication bias. In line with the first purpose of the study, the forest graph regarding the effect size of online education on academic achievement is shown in Fig.  3 , and the statistics regarding the effect size are given in Table 3 .

figure 1

The flow chart of the scanning and selection process of the studies

figure 2

Funnel plot graphics representing the effect size of the effects of online education on academic success

figure 3

Forest graph related to the effect size of online education on academic success

The square symbols in the forest graph in Fig.  3 represent the effect sizes, while the horizontal lines show the intervals in 95% confidence of the effect sizes, and the diamond symbol shows the overall effect size. When the forest graph is analyzed, it is seen that the lower and upper limits of the combined effect sizes are generally close to each other, and the study loads are similar. This similarity in terms of study loads indicates the similarity of the contribution of the combined studies to the overall effect size.

Figure  3 clearly represents that the study of Liu and others (Liu et al., 2018 ) has the lowest, and the study of Ercan and Bilen ( 2014 ) has the highest effect sizes. The forest graph shows that all the combined studies and the overall effect are positive. Furthermore, it is simply understood from the forest graph in Fig.  3 and the effect size statistics in Table 3 that the results of the meta-analysis study conducted with 27 studies and analyzing the effect of online education on academic achievement illustrate that this relationship is on average level (= 0.409).

After the analysis of the effect size in the study, whether the studies included in the analysis are distributed heterogeneously or not has also been analyzed. The heterogeneity of the combined studies was determined through the Q and I 2 tests. As a result of the heterogeneity test, Q statistical value was calculated as 29.576. With 26 degrees of freedom at 95% significance level in the chi-square table, the critical value is accepted as 38.885. The Q statistical value (29.576) counted in this study is lower than the critical value of 38.885. The I 2 value, which is the complementary of the Q statistics, is 12.100%. This value indicates that the accurate heterogeneity or the total variability that can be attributed to variability between the studies is 12%. Besides, p value is higher than (0.285) p = 0.05. All these values [Q (26) = 29.579, p = 0.285; I2 = 12.100] indicate that there is a homogeneous distribution between the effect sizes, and fixed effects model should be used to interpret these effect sizes. However, some researchers argue that even if the heterogeneity is low, it should be evaluated based on the random effects model (Borenstein et al., 2007 ). Therefore, this study gives information about both models. The heterogeneity of the combined studies has been attempted to be explained with the characteristics of the studies included in the analysis. In this context, the final purpose of the study is to determine the effect of the country, academic level, and year variables on the findings. Accordingly, the statistics regarding the comparison of the stated relations according to the countries where the studies were conducted are given in Table 4 .

As seen in Table 4 , the effect of online education on academic achievement does not differ significantly according to the countries where the studies were conducted in. Q test results indicate the heterogeneity of the relationships between the variables in terms of countries where the studies were conducted in. According to the table, the effect of online education on academic achievement was reported as the highest in other countries, and the lowest in the US. The statistics regarding the comparison of the stated relations according to the class levels are given in Table 5 .

As seen in Table 5 , the effect of online education on academic achievement does not differ according to the class level. However, the effect of online education on academic achievement is the highest in the 4 th class. The statistics regarding the comparison of the stated relations according to the class levels are given in Table 6 .

As seen in Table 6 , the effect of online education on academic achievement does not differ according to the school subjects included in the studies. However, the effect of online education on academic achievement is the highest in ICT subject.

The obtained effect size in the study was formed as a result of the findings attained from primary studies conducted in 7 different countries. In addition, these studies are the ones on different approaches to online education (online learning environments, social networks, blended learning, etc.). In this respect, the results may raise some questions about the validity and generalizability of the results of the study. However, the moderator analyzes, whether for the country variable or for the approaches covered by online education, did not create significant differences in terms of the effect sizes. If significant differences were to occur in terms of effect sizes, we could say that the comparisons we will make by comparing countries under the umbrella of online education would raise doubts in terms of generalizability. Moreover, no study has been found in the literature that is not based on a special approach or does not contain a specific technique conducted under the name of online education alone. For instance, one of the commonly used definitions is blended education which is defined as an educational model in which online education is combined with traditional education method (Colis & Moonen, 2001 ). Similarly, Rasmussen ( 2003 ) defines blended learning as “a distance education method that combines technology (high technology such as television, internet, or low technology such as voice e-mail, conferences) with traditional education and training.” Further, Kerres and Witt (2003) define blended learning as “combining face-to-face learning with technology-assisted learning.” As it is clearly observed, online education, which has a wider scope, includes many approaches.

As seen in Table 7 , the effect of online education on academic achievement does not differ according to online education approaches included in the studies. However, the effect of online education on academic achievement is the highest in Web Based Problem Solving Approach.

4 Conclusions and discussion

Considering the developments during the pandemics, it is thought that the diversity in online education applications as an interdisciplinary pragmatist field will increase, and the learning content and processes will be enriched with the integration of new technologies into online education processes. Another prediction is that more flexible and accessible learning opportunities will be created in online education processes, and in this way, lifelong learning processes will be strengthened. As a result, it is predicted that in the near future, online education and even digital learning with a newer name will turn into the main ground of education instead of being an alternative or having a support function in face-to-face learning. The lessons learned from the early period online learning experience, which was passed with rapid adaptation due to the Covid19 epidemic, will serve to develop this method all over the world, and in the near future, online learning will become the main learning structure through increasing its functionality with the contribution of new technologies and systems. If we look at it from this point of view, there is a necessity to strengthen online education.

In this study, the effect of online learning on academic achievement is at a moderate level. To increase this effect, the implementation of online learning requires support from teachers to prepare learning materials, to design learning appropriately, and to utilize various digital-based media such as websites, software technology and various other tools to support the effectiveness of online learning (Rolisca & Achadiyah, 2014 ). According to research conducted by Rahayu et al. ( 2017 ), it has been proven that the use of various types of software increases the effectiveness and quality of online learning. Implementation of online learning can affect students' ability to adapt to technological developments in that it makes students use various learning resources on the internet to access various types of information, and enables them to get used to performing inquiry learning and active learning (Hart et al., 2019 ; Prestiadi et al., 2019 ). In addition, there may be many reasons for the low level of effect in this study. The moderator variables examined in this study could be a guide in increasing the level of practical effect. However, the effect size did not differ significantly for all moderator variables. Different moderator analyzes can be evaluated in order to increase the level of impact of online education on academic success. If confounding variables that significantly change the effect level are detected, it can be spoken more precisely in order to increase this level. In addition to the technical and financial problems, the level of impact will increase if a few other difficulties are eliminated such as students, lack of interaction with the instructor, response time, and lack of traditional classroom socialization.

In addition, COVID-19 pandemic related social distancing has posed extreme difficulties for all stakeholders to get online as they have to work in time constraints and resource constraints. Adopting the online learning environment is not just a technical issue, it is a pedagogical and instructive challenge as well. Therefore, extensive preparation of teaching materials, curriculum, and assessment is vital in online education. Technology is the delivery tool and requires close cross-collaboration between teaching, content and technology teams (CoSN, 2020 ).

Online education applications have been used for many years. However, it has come to the fore more during the pandemic process. This result of necessity has brought with it the discussion of using online education instead of traditional education methods in the future. However, with this research, it has been revealed that online education applications are moderately effective. The use of online education instead of face-to-face education applications can only be possible with an increase in the level of success. This may have been possible with the experience and knowledge gained during the pandemic process. Therefore, the meta-analysis of experimental studies conducted in the coming years will guide us. In this context, experimental studies using online education applications should be analyzed well. It would be useful to identify variables that can change the level of impacts with different moderators. Moderator analyzes are valuable in meta-analysis studies (for example, the role of moderators in Karl Pearson's typhoid vaccine studies). In this context, each analysis study sheds light on future studies. In meta-analyses to be made about online education, it would be beneficial to go beyond the moderators determined in this study. Thus, the contribution of similar studies to the field will increase more.

The purpose of this study is to determine the effect of online education on academic achievement. In line with this purpose, the studies that analyze the effect of online education approaches on academic achievement have been included in the meta-analysis. The total sample size of the studies included in the meta-analysis is 1772. While the studies included in the meta-analysis were conducted in the US, Taiwan, Turkey, China, Philippines, Ireland, and Georgia, the studies carried out in Europe could not be reached. The reason may be attributed to that there may be more use of quantitative research methods from a positivist perspective in the countries with an American academic tradition. As a result of the study, it was found out that the effect size of online education on academic achievement (g = 0.409) was moderate. In the studies included in the present research, we found that online education approaches were more effective than traditional ones. However, contrary to the present study, the analysis of comparisons between online and traditional education in some studies shows that face-to-face traditional learning is still considered effective compared to online learning (Ahmad et al., 2016 ; Hamdani & Priatna, 2020 ; Wei & Chou, 2020 ). Online education has advantages and disadvantages. The advantages of online learning compared to face-to-face learning in the classroom is the flexibility of learning time in online learning, the learning time does not include a single program, and it can be shaped according to circumstances (Lai et al., 2019 ). The next advantage is the ease of collecting assignments for students, as these can be done without having to talk to the teacher. Despite this, online education has several weaknesses, such as students having difficulty in understanding the material, teachers' inability to control students, and students’ still having difficulty interacting with teachers in case of internet network cuts (Swan, 2007 ). According to Astuti et al ( 2019 ), face-to-face education method is still considered better by students than e-learning because it is easier to understand the material and easier to interact with teachers. The results of the study illustrated that the effect size (g = 0.409) of online education on academic achievement is of medium level. Therefore, the results of the moderator analysis showed that the effect of online education on academic achievement does not differ in terms of country, lecture, class level, and online education approaches variables. After analyzing the literature, several meta-analyses on online education were published (Bernard et al., 2004 ; Machtmes & Asher, 2000 ; Zhao et al., 2005 ). Typically, these meta-analyzes also include the studies of older generation technologies such as audio, video, or satellite transmission. One of the most comprehensive studies on online education was conducted by Bernard et al. ( 2004 ). In this study, 699 independent effect sizes of 232 studies published from 1985 to 2001 were analyzed, and face-to-face education was compared to online education, with respect to success criteria and attitudes of various learners from young children to adults. In this meta-analysis, an overall effect size close to zero was found for the students' achievement (g +  = 0.01).

In another meta-analysis study carried out by Zhao et al. ( 2005 ), 98 effect sizes were examined, including 51 studies on online education conducted between 1996 and 2002. According to the study of Bernard et al. ( 2004 ), this meta-analysis focuses on the activities done in online education lectures. As a result of the research, an overall effect size close to zero was found for online education utilizing more than one generation technology for students at different levels. However, the salient point of the meta-analysis study of Zhao et al. is that it takes the average of different types of results used in a study to calculate an overall effect size. This practice is problematic because the factors that develop one type of learner outcome (e.g. learner rehabilitation), particularly course characteristics and practices, may be quite different from those that develop another type of outcome (e.g. learner's achievement), and it may even cause damage to the latter outcome. While mixing the studies with different types of results, this implementation may obscure the relationship between practices and learning.

Some meta-analytical studies have focused on the effectiveness of the new generation distance learning courses accessed through the internet for specific student populations. For instance, Sitzmann and others (Sitzmann et al., 2006 ) reviewed 96 studies published from 1996 to 2005, comparing web-based education of job-related knowledge or skills with face-to-face one. The researchers found that web-based education in general was slightly more effective than face-to-face education, but it is insufficient in terms of applicability ("knowing how to apply"). In addition, Sitzmann et al. ( 2006 ) revealed that Internet-based education has a positive effect on theoretical knowledge in quasi-experimental studies; however, it positively affects face-to-face education in experimental studies performed by random assignment. This moderator analysis emphasizes the need to pay attention to the factors of designs of the studies included in the meta-analysis. The designs of the studies included in this meta-analysis study were ignored. This can be presented as a suggestion to the new studies that will be conducted.

Another meta-analysis study was conducted by Cavanaugh et al. ( 2004 ), in which they focused on online education. In this study on internet-based distance education programs for students under 12 years of age, the researchers combined 116 results from 14 studies published between 1999 and 2004 to calculate an overall effect that was not statistically different from zero. The moderator analysis carried out in this study showed that there was no significant factor affecting the students' success. This meta-analysis used multiple results of the same study, ignoring the fact that different results of the same student would not be independent from each other.

In conclusion, some meta-analytical studies analyzed the consequences of online education for a wide range of students (Bernard et al., 2004 ; Zhao et al., 2005 ), and the effect sizes were generally low in these studies. Furthermore, none of the large-scale meta-analyzes considered the moderators, database quality standards or class levels in the selection of the studies, while some of them just referred to the country and lecture moderators. Advances in internet-based learning tools, the pandemic process, and increasing popularity in different learning contexts have required a precise meta-analysis of students' learning outcomes through online learning. Previous meta-analysis studies were typically based on the studies, involving narrow range of confounding variables. In the present study, common but significant moderators such as class level and lectures during the pandemic process were discussed. For instance, the problems have been experienced especially in terms of eligibility of class levels in online education platforms during the pandemic process. It was found that there is a need to study and make suggestions on whether online education can meet the needs of teachers and students.

Besides, the main forms of online education in the past were to watch the open lectures of famous universities and educational videos of institutions. In addition, online education is mainly a classroom-based teaching implemented by teachers in their own schools during the pandemic period, which is an extension of the original school education. This meta-analysis study will stand as a source to compare the effect size of the online education forms of the past decade with what is done today, and what will be done in the future.

Lastly, the heterogeneity test results of the meta-analysis study display that the effect size does not differ in terms of class level, country, online education approaches, and lecture moderators.

*Studies included in meta-analysis

Ahmad, S., Sumardi, K., & Purnawan, P. (2016). Komparasi Peningkatan Hasil Belajar Antara Pembelajaran Menggunakan Sistem Pembelajaran Online Terpadu Dengan Pembelajaran Klasikal Pada Mata Kuliah Pneumatik Dan Hidrolik. Journal of Mechanical Engineering Education, 2 (2), 286–292.

Article   Google Scholar  

Ally, M. (2004). Foundations of educational theory for online learning. Theory and Practice of Online Learning, 2 , 15–44. Retrieved on the 11th of September, 2020 from https://eddl.tru.ca/wp-content/uploads/2018/12/01_Anderson_2008-Theory_and_Practice_of_Online_Learning.pdf

Arat, T., & Bakan, Ö. (2011). Uzaktan eğitim ve uygulamaları. Selçuk Üniversitesi Sosyal Bilimler Meslek Yüksek Okulu Dergisi , 14 (1–2), 363–374. https://doi.org/10.29249/selcuksbmyd.540741

Astuti, C. C., Sari, H. M. K., & Azizah, N. L. (2019). Perbandingan Efektifitas Proses Pembelajaran Menggunakan Metode E-Learning dan Konvensional. Proceedings of the ICECRS, 2 (1), 35–40.

*Atici, B., & Polat, O. C. (2010). Influence of the online learning environments and tools on the student achievement and opinions. Educational Research and Reviews, 5 (8), 455–464. Retrieved on the 11th of October, 2020 from https://academicjournals.org/journal/ERR/article-full-text-pdf/4C8DD044180.pdf

Bernard, R. M., Abrami, P. C., Lou, Y., Borokhovski, E., Wade, A., Wozney, L., et al. (2004). How does distance education compare with classroom instruction? A meta- analysis of the empirical literature. Review of Educational Research, 3 (74), 379–439. https://doi.org/10.3102/00346543074003379

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis . Wiley.

Book   Google Scholar  

Borenstein, M., Hedges, L., & Rothstein, H. (2007). Meta-analysis: Fixed effect vs. random effects . UK: Wiley.

Card, N. A. (2011). Applied meta-analysis for social science research: Methodology in the social sciences . Guilford.

Google Scholar  

*Carreon, J. R. (2018 ). Facebook as integrated blended learning tool in technology and livelihood education exploratory. Retrieved on the 1st of October, 2020 from https://files.eric.ed.gov/fulltext/EJ1197714.pdf

Cavanaugh, C., Gillan, K. J., Kromrey, J., Hess, M., & Blomeyer, R. (2004). The effects of distance education on K-12 student outcomes: A meta-analysis. Learning Point Associates/North Central Regional Educational Laboratory (NCREL) . Retrieved on the 11th of September, 2020 from https://files.eric.ed.gov/fulltext/ED489533.pdf

*Ceylan, V. K., & Elitok Kesici, A. (2017). Effect of blended learning to academic achievement. Journal of Human Sciences, 14 (1), 308. https://doi.org/10.14687/jhs.v14i1.4141

*Chae, S. E., & Shin, J. H. (2016). Tutoring styles that encourage learner satisfaction, academic engagement, and achievement in an online environment. Interactive Learning Environments, 24(6), 1371–1385. https://doi.org/10.1080/10494820.2015.1009472

*Chiang, T. H. C., Yang, S. J. H., & Hwang, G. J. (2014). An augmented reality-based mobile learning system to improve students’ learning achievements and motivations in natural science inquiry activities. Educational Technology and Society, 17 (4), 352–365. Retrieved on the 11th of September, 2020 from https://www.researchgate.net/profile/Gwo_Jen_Hwang/publication/287529242_An_Augmented_Reality-based_Mobile_Learning_System_to_Improve_Students'_Learning_Achievements_and_Motivations_in_Natural_Science_Inquiry_Activities/links/57198c4808ae30c3f9f2c4ac.pdf

Chiao, H. M., Chen, Y. L., & Huang, W. H. (2018). Examining the usability of an online virtual tour-guiding platform for cultural tourism education. Journal of Hospitality, Leisure, Sport & Tourism Education, 23 (29–38), 1. https://doi.org/10.1016/j.jhlste.2018.05.002

Chizmar, J. F., & Walbert, M. S. (1999). Web-based learning environments guided by principles of good teaching practice. Journal of Economic Education, 30 (3), 248–264. https://doi.org/10.2307/1183061

Cleophas, T. J., & Zwinderman, A. H. (2017). Modern meta-analysis: Review and update of methodologies . Switzerland: Springer. https://doi.org/10.1007/978-3-319-55895-0

Cohen, L., Manion, L., & Morrison, K. (2007). Observation.  Research Methods in Education, 6 , 396–412. Retrieved on the 11th of September, 2020 from https://www.researchgate.net/profile/Nabil_Ashraf2/post/How_to_get_surface_potential_Vs_Voltage_curve_from_CV_and_GV_measurements_of_MOS_capacitor/attachment/5ac6033cb53d2f63c3c405b4/AS%3A612011817844736%401522926396219/download/Very+important_C-V+characterization+Lehigh+University+thesis.pdf

Colis, B., & Moonen, J. (2001). Flexible Learning in a Digital World: Experiences and Expectations. Open & Distance Learning Series . Stylus Publishing.

CoSN. (2020). COVID-19 Response: Preparing to Take School Online. CoSN. (2020). COVID-19 Response: Preparing to Take School Online. Retrieved on the 3rd of September, 2021 from https://www.cosn.org/sites/default/files/COVID-19%20Member%20Exclusive_0.pdf

Cumming, G. (2012). Understanding new statistics: Effect sizes, confidence intervals, and meta-analysis. New York, USA: Routledge. https://doi.org/10.4324/9780203807002

Deeks, J. J., Higgins, J. P. T., & Altman, D. G. (2008). Analysing data and undertaking meta-analyses . In J. P. T. Higgins & S. Green (Eds.), Cochrane handbook for systematic reviews of interventions (pp. 243–296). Sussex: John Wiley & Sons. https://doi.org/10.1002/9780470712184.ch9

Demiralay, R., Bayır, E. A., & Gelibolu, M. F. (2016). Öğrencilerin bireysel yenilikçilik özellikleri ile çevrimiçi öğrenmeye hazır bulunuşlukları ilişkisinin incelenmesi. Eğitim ve Öğretim Araştırmaları Dergisi, 5 (1), 161–168. https://doi.org/10.23891/efdyyu.2017.10

Dinçer, S. (2014). Eğitim bilimlerinde uygulamalı meta-analiz. Pegem Atıf İndeksi, 2014(1), 1–133. https://doi.org/10.14527/pegem.001

*Durak, G., Cankaya, S., Yunkul, E., & Ozturk, G. (2017). The effects of a social learning network on students’ performances and attitudes. European Journal of Education Studies, 3 (3), 312–333. 10.5281/zenodo.292951

*Ercan, O. (2014). Effect of web assisted education supported by six thinking hats on students’ academic achievement in science and technology classes . European Journal of Educational Research, 3 (1), 9–23. https://doi.org/10.12973/eu-jer.3.1.9

Ercan, O., & Bilen, K. (2014). Effect of web assisted education supported by six thinking hats on students’ academic achievement in science and technology classes. European Journal of Educational Research, 3 (1), 9–23.

*Ercan, O., Bilen, K., & Ural, E. (2016). “Earth, sun and moon”: Computer assisted instruction in secondary school science - Achievement and attitudes. Issues in Educational Research, 26 (2), 206–224. https://doi.org/10.12973/eu-jer.3.1.9

Field, A. P. (2003). The problems in using fixed-effects models of meta-analysis on real-world data. Understanding Statistics, 2 (2), 105–124. https://doi.org/10.1207/s15328031us0202_02

Field, A. P., & Gillett, R. (2010). How to do a meta-analysis. British Journal of Mathematical and Statistical Psychology, 63 (3), 665–694. https://doi.org/10.1348/00071010x502733

Geostat. (2019). ‘Share of households with internet access’, National statistics office of Georgia . Retrieved on the 2nd September 2020 from https://www.geostat.ge/en/modules/categories/106/information-and-communication-technologies-usage-in-households

*Gwo-Jen, H., Nien-Ting, T., & Xiao-Ming, W. (2018). Creating interactive e-books through learning by design: The impacts of guided peer-feedback on students’ learning achievements and project outcomes in science courses. Journal of Educational Technology & Society., 21 (1), 25–36. Retrieved on the 2nd of October, 2020 https://ae-uploads.uoregon.edu/ISTE/ISTE2019/PROGRAM_SESSION_MODEL/HANDOUTS/112172923/CreatingInteractiveeBooksthroughLearningbyDesignArticle2018.pdf

Hamdani, A. R., & Priatna, A. (2020). Efektifitas implementasi pembelajaran daring (full online) dimasa pandemi Covid-19 pada jenjang Sekolah Dasar di Kabupaten Subang. Didaktik: Jurnal Ilmiah PGSD STKIP Subang, 6 (1), 1–9.

Hart, C. M., Berger, D., Jacob, B., Loeb, S., & Hill, M. (2019). Online learning, offline outcomes: Online course taking and high school student performance. Aera Open, 5(1).

*Hayes, J., & Stewart, I. (2016). Comparing the effects of derived relational training and computer coding on intellectual potential in school-age children. The British Journal of Educational Psychology, 86 (3), 397–411. https://doi.org/10.1111/bjep.12114

Horton, W. K. (2000). Designing web-based training: How to teach anyone anything anywhere anytime (Vol. 1). Wiley Publishing.

*Hwang, G. J., Wu, P. H., & Chen, C. C. (2012). An online game approach for improving students’ learning performance in web-based problem-solving activities. Computers and Education, 59 (4), 1246–1256. https://doi.org/10.1016/j.compedu.2012.05.009

*Kert, S. B., Köşkeroğlu Büyükimdat, M., Uzun, A., & Çayiroğlu, B. (2017). Comparing active game-playing scores and academic performances of elementary school students. Education 3–13, 45 (5), 532–542. https://doi.org/10.1080/03004279.2016.1140800

*Lai, A. F., & Chen, D. J. (2010). Web-based two-tier diagnostic test and remedial learning experiment. International Journal of Distance Education Technologies, 8 (1), 31–53. https://doi.org/10.4018/jdet.2010010103

*Lai, A. F., Lai, H. Y., Chuang W. H., & Wu, Z.H. (2015). Developing a mobile learning management system for outdoors nature science activities based on 5e learning cycle. Proceedings of the International Conference on e-Learning, ICEL. Proceedings of the International Association for Development of the Information Society (IADIS) International Conference on e-Learning (Las Palmas de Gran Canaria, Spain, July 21–24, 2015). Retrieved on the 14th November 2020 from https://files.eric.ed.gov/fulltext/ED562095.pdf

Lai, C. H., Lin, H. W., Lin, R. M., & Tho, P. D. (2019). Effect of peer interaction among online learning community on learning engagement and achievement. International Journal of Distance Education Technologies (IJDET), 17 (1), 66–77.

Littell, J. H., Corcoran, J., & Pillai, V. (2008). Systematic reviews and meta-analysis . Oxford University.

*Liu, K. P., Tai, S. J. D., & Liu, C. C. (2018). Enhancing language learning through creation: the effect of digital storytelling on student learning motivation and performance in a school English course. Educational Technology Research and Development, 66 (4), 913–935. https://doi.org/10.1007/s11423-018-9592-z

Machtmes, K., & Asher, J. W. (2000). A meta-analysis of the effectiveness of telecourses in distance education. American Journal of Distance Education, 14 (1), 27–46. https://doi.org/10.1080/08923640009527043

Makowski, D., Piraux, F., & Brun, F. (2019). From experimental network to meta-analysis: Methods and applications with R for agronomic and environmental sciences. Dordrecht: Springer. https://doi.org/10.1007/978-94-024_1696-1

* Meyers, C., Molefe, A., & Brandt, C. (2015). The Impact of the" Enhancing Missouri's Instructional Networked Teaching Strategies"(eMINTS) Program on Student Achievement, 21st-Century Skills, and Academic Engagement--Second-Year Results . Society for Research on Educational Effectiveness. Retrieved on the 14 th November, 2020 from https://files.eric.ed.gov/fulltext/ED562508.pdf

OECD. (2020). ‘A framework to guide an education response to the COVID-19 Pandemic of 2020 ’. https://doi.org/10.26524/royal.37.6

Pecoraro, V. (2018). Appraising evidence . In G. Biondi-Zoccai (Ed.), Diagnostic meta-analysis: A useful tool for clinical decision-making (pp. 99–114). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-78966-8_9

Pigott, T. (2012). Advances in meta-analysis . Springer.

Pillay, H. , Irving, K., & Tones, M. (2007). Validation of the diagnostic tool for assessing Tertiary students’ readiness for online learning. Higher Education Research & Development, 26 (2), 217–234. https://doi.org/10.1080/07294360701310821

Prestiadi, D., Zulkarnain, W., & Sumarsono, R. B. (2019). Visionary leadership in total quality management: efforts to improve the quality of education in the industrial revolution 4.0. In the 4th International Conference on Education and Management (COEMA 2019). Atlantis Press

Poole, D. M. (2000). Student participation in a discussion-oriented online course: a case study. Journal of Research on Computing in Education, 33 (2), 162–177. https://doi.org/10.1080/08886504.2000.10782307

Rahayu, F. S., Budiyanto, D., & Palyama, D. (2017). Analisis penerimaan e-learning menggunakan technology acceptance model (Tam)(Studi Kasus: Universitas Atma Jaya Yogyakarta). Jurnal Terapan Teknologi Informasi, 1 (2), 87–98.

Rasmussen, R. C. (2003). The quantity and quality of human interaction in a synchronous blended learning environment . Brigham Young University Press.

*Ravenel, J., T. Lambeth, D., & Spires, B. (2014). Effects of computer-based programs on mathematical achievement scores for fourth-grade students. i-manager’s Journal on School Educational Technology, 10 (1), 8–21. https://doi.org/10.26634/jsch.10.1.2830

Rolisca, R. U. C., & Achadiyah, B. N. (2014). Pengembangan media evaluasi pembelajaran dalam bentuk online berbasis e-learning menggunakan software wondershare quiz creator dalam mata pelajaran akuntansi SMA Brawijaya Smart School (BSS). Jurnal Pendidikan Akuntansi Indonesia, 12(2).

Sitzmann, T., Kraiger, K., Stewart, D., & Wisher, R. (2006). The comparative effective- ness of Web-based and classroom instruction: A meta-analysis . Personnel Psychology, 59 (3), 623–664. https://doi.org/10.1111/j.1744-6570.2006.00049.x

Stewart, D. W., & Kamins, M. A. (2001). Developing a coding scheme and coding study reports. In M. W. Lipsey & D. B. Wilson (Eds.), Practical meta­analysis: Applied social research methods series (Vol. 49, pp. 73–90). Sage.

Swan, K. (2007). Research on online learning. Journal of Asynchronous Learning Networks, 11 (1), 55–59.

*Sung, H. Y., Hwang, G. J., & Chang, Y. C. (2016). Development of a mobile learning system based on a collaborative problem-posing strategy. Interactive Learning Environments, 24 (3), 456–471. https://doi.org/10.1080/10494820.2013.867889

Tsagris, M., & Fragkos, K. C. (2018). Meta-analyses of clinical trials versus diagnostic test accuracy studies. In G. Biondi-Zoccai (Ed.), Diagnostic meta-analysis: A useful tool for clinical decision-making (pp. 31–42). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-78966-8_4

UNESCO. (2020, Match 13). COVID-19 educational disruption and response. Retrieved on the 14 th November 2020 from https://en.unesco.org/themes/education-emergencies/ coronavirus-school-closures

Usta, E. (2011a). The effect of web-based learning environments on attitudes of students regarding computer and internet. Procedia-Social and Behavioral Sciences, 28 (262–269), 1. https://doi.org/10.1016/j.sbspro.2011.11.051

Usta, E. (2011b). The examination of online self-regulated learning skills in web-based learning environments in terms of different variables. Turkish Online Journal of Educational Technology-TOJET, 10 (3), 278–286. Retrieved on the 14th November 2020 from https://files.eric.ed.gov/fulltext/EJ944994.pdf

Vrasidas, C. & MsIsaac, M. S. (2000). Principles of pedagogy and evaluation for web-based learning. Educational Media International, 37 (2), 105–111. https://doi.org/10.1080/095239800410405

*Wang, C. H., & Chen, C. P. (2013). Effects of facebook tutoring on learning english as a second language. Proceedings of the International Conference e-Learning 2013, (2009), 135–142. Retrieved on the 15th November 2020 from https://files.eric.ed.gov/fulltext/ED562299.pdf

Wei, H. C., & Chou, C. (2020). Online learning performance and satisfaction: Do perceptions and readiness matter? Distance Education, 41 (1), 48–69.

*Yu, F. Y. (2019). The learning potential of online student-constructed tests with citing peer-generated questions. Interactive Learning Environments, 27 (2), 226–241. https://doi.org/10.1080/10494820.2018.1458040

*Yu, F. Y., & Chen, Y. J. (2014). Effects of student-generated questions as the source of online drill-and-practice activities on learning . British Journal of Educational Technology, 45 (2), 316–329. https://doi.org/10.1111/bjet.12036

*Yu, F. Y., & Pan, K. J. (2014). The effects of student question-generation with online prompts on learning. Educational Technology and Society, 17 (3), 267–279. Retrieved on the 15th November 2020 from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.565.643&rep=rep1&type=pdf

*Yu, W. F., She, H. C., & Lee, Y. M. (2010). The effects of web-based/non-web-based problem-solving instruction and high/low achievement on students’ problem-solving ability and biology achievement. Innovations in Education and Teaching International, 47 (2), 187–199. https://doi.org/10.1080/14703291003718927

Zhao, Y., Lei, J., Yan, B, Lai, C., & Tan, S. (2005). A practical analysis of research on the effectiveness of distance education. Teachers College Record, 107 (8). https://doi.org/10.1111/j.1467-9620.2005.00544.x

*Zhong, B., Wang, Q., Chen, J., & Li, Y. (2017). Investigating the period of switching roles in pair programming in a primary school. Educational Technology and Society, 20 (3), 220–233. Retrieved on the 15th November 2020 from https://repository.nie.edu.sg/bitstream/10497/18946/1/ETS-20-3-220.pdf

Download references

Author information

Authors and affiliations.

Primary Education, Ministry of Turkish National Education, Mersin, Turkey

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Hakan Ulum .

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Ulum, H. The effects of online education on academic success: A meta-analysis study. Educ Inf Technol 27 , 429–450 (2022). https://doi.org/10.1007/s10639-021-10740-8

Download citation

Received : 06 December 2020

Accepted : 30 August 2021

Published : 06 September 2021

Issue Date : January 2022

DOI : https://doi.org/10.1007/s10639-021-10740-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Online education
  • Student achievement
  • Academic success
  • Meta-analysis
  • Find a journal
  • Publish with us
  • Track your research

Instructional Design

7 top challenges with online learning for students (and solutions), share this article.

We'll discuss the biggest challenges of online learning and possible solutions to these problems to create a more impactful experience for students.

We live in a world where anything and everything you could ever want to know is ~ literally ~ at your fingertips. Thanks to the internet and the rapid growth of technology, online learning has never been more popular and effective. 

While there are some great perks associated with online learning, such as accessibility, flexibility, and affordability, that’s not to say that online learning doesn’t come with its downsides… online learning can be challenging to get accustomed to at first, and there are some obstacles that come with the territory. 

In this blog we will go into depth on the different problems encountered in online learning, and provide valuable solutions for the problems faced by students in online classes. This way, if you’re a teacher, you’ll know how to support students who are struggling. And if you’re a student, you’ll know what to do when you face challenges with online learning. 

Continue reading or jump ahead: 

  • Types of online learning  

Synchronous learning

Asynchronous learning, microlearning, mobile learning (m learning).

  • Gamification  
  • Isolation  
  • Lack of motivation 

Time management 

Distractions .

  • Technical issues  
  • Communication 

Personal barriers 

Overview of top solutions to overcome online learning challenges.

Check out: Thinkific Online Learning Trends 2024

What is online learning?

Before we dive into all of the problems faced by students in online classes, let’s go over exactly what online learning consists of, and break down the different types of online learning out there. 

Online learning – also commonly referred to as eLearning – has rapidly grown in popularity over the past few years, and eLearning is essentially any kind of learning you can do from your own device and an internet connection. The best part is that you can be anywhere in the world while learning online. 

Online learning has earned its seat in the education industry as it provides more accessibility and flexibility for students, allowing them to choose a learning style that works best for them. It can also be more cost efficient for both students and teachers, cutting back on the overhead expenses that are associated with in-person learning. 

Think of online learning as an umbrella term for all of the different types of eLearning out there. There are multiple ways in which you can learn or teach online, and there is no one right way to approach online education. 

Below we have listed some of the most common forms of online learning that are currently being offered. 

Types of online learning 

First off, there are two ways in which you can consume information online: asynchronous or synchronous learning. 

Asynchronous online learning involves a self-paced learning environment where learners can access the course material and complete assignments at any time and from any place in the world. This is a major appeal for most people when it comes to online learning. 

On the other hand, synchronous online learning is an interactive and live teaching style that mimics in-person instruction, and uses real-time participation and active discussions to facilitate learning goals, regardless of location. This is very similar to learning in-person, however with the added convenience of not having to leave your bed if you don’t wish to!   

Here are some other common forms of online learning: 

  • Microlearning – Short-form lessons that mainly involve bite-sized, digestible content. The goal of microlearning is to focus on learning core concepts and theories, while consuming this information within 5 and 10 minutes for better understanding. This style of eLearning weeds out the fluff and unnecessary details, so that students can grasp key points more efficiently.   
  • Mobile learning (M Learning) – The use of mobile technology like smartphones to facilitate  educational purposes. With M Learning,  students are able to learn on-the-go through videos, podcasts, and bite-sized lessons. Students are more likely to take up M Learning as it is flexible and convenient, and it’s easy to form a habit or routine this way. 
  • Gamification – Involves the use of game elements in the learning process. Examples of this include point systems, leaderboards, and rewards to incentivize learning. This style boots student engagement and creates an immersive environment where learning doesn’t have to feel like a chore. 

Related: The Advantages and Disadvantages of Learning in Online Classes in 2023

Top challenges with online learning 

Now that we’ve covered our basis and explored the various types of online learning, let’s go deeper into some of the challenges faced with these specific modalities of eLearning. 

While distance education and short-form learning techniques have lowered costs, increased flexibility, and reduced the need for physical infrastructure for both students and teachers, it does not come without its downsides. Listed below are some common challenges with online learning. 

Synchronous learning is great for student participation, however there are some key challenges that are worth noting. This particular online learning style closely mimics in-person lectures, so for those who learn best in-person, this is your next best option as there is an emphasis on live lectures and student participation. 

However, synchronous courses don’t always have the flexibility that is often desired when it comes to online learning. In fact, it can be tough for those in different timezones to engage with this type of eLearning. It can also be difficult for some students to find a quiet and private environment to be fully engaged with lectures. As well, if there are any internet troubles, then you are potentially missing out on valuable class time, especially if lectures aren’t recorded.  

Asynchronous classes can be very similar to synchronous learning, just without the live “in-person” component. While there are deadlines and due dates to meet, students have more flexibility with how and when they learn, and can allocate their time in a way that works with their schedule. 

The top problem with asynchronous learning is the lack of personal interactions and peer-to-peer support. Another big challenge is that it can be tough to receive immediate instructor feedback or help – there will most likely be a d elay before an instructor can respond to a query, which negatively impacts the learning experience. Asynchronous courses are also known for having a lack of structure, which can make learning confusing and unmotivating for students.

Microlearning caters to those looking to quickly grasp the concept of a subject, and is generally for learners with limited time. Due to this time constraint, it is challenging to learn complex problems or skill development with microlearning. This limits microlearning to only a few concepts, or more of a surface-level learning experience. 

Microlearning also runs a high risk of fragmented learning if the course is not managed correctly, which can be frustrating for learners. Because of this, it can sometimes be a struggle to keep track of student success and progress with microlearning. 

Worldwide, there are approximately 6.94 billion smartphones – which means that M Learning is only increasing in popularity. The ability to learn from your smartphone is a huge breakthrough in the online learning industry, however there are some noteworthy challenges with this learning style. 

A major challenge is content compatibility. Most times, content created for eLearning doesn’t always smoothly transfer over to mobile devices, affecting both the student and instructor. In this case, content has to be refurbished or recreated so mobile learners can access it properly, which can be very time-consuming.  

Other challenges include small screens, difficulty reading text, and learner retention. M Learning typically produces ultra-short-form content, also making it difficult to learn in-depth concepts. 

Gamification 

Gamification learning uses play for educational goals, and many smartphone apps have mastered the art of game-based learning. While this is a fantastic short-form learning technique that is rapidly growing, some challenges include it being seen as “mandatory fun,” difficulty boosting user engagement, and misaligned motivation to earn rewards instead of retaining core concepts. 

Gamification can also be prone to technological issues such as accessibility, usability, and reliability – which can easily deter potential learners. 

Related: Top Advantages and Disadvantages of Mobile Learning

Problems faced by students in online classes

Now that we’ve gone over some of the problems encountered in online learning, let’s switch gears to the more specific problems faced by students in online classes. 

Noting these challenges will be beneficial for both students and teachers, which is why we will also provide some key solutions to overcome these challenges with online learning. 

Listed below are some of the most common challenges (and solutions) with online learning that students face: 

Humans, by nature, are social animals. One of the biggest obstacles to overcome with online learning is isolation – it can be incredibly lonely to enroll in an online course, and students can often feel disconnected from their peers and instructors. Although students sometimes get to interact with their classmates over Zoom or Google Meet, it is not the same as physical interaction.  

Feeling isolated can lead to students feeling disconnected from class, and they may not engage the way they normally would in an in-person setting. This is especially prevalent with asynchronous learning, where there is even less of a chance to interact with other students.

It’s easy to get frustrated when you can’t talk to your teachers and classmates face-to-face and voice the concerns you have immediately. However, there are things you can do to power through, including:  

  • Find out if your course has a student support system in place. Some online courses have advisors who guide and support students throughout the duration of their online program .
  • Check if your course offers networking opportunities for students. Some courses allow students to interact with their peers via chats and forums. It’s similar to interacting with classmates in a physical class, except it requires a little more effort to reach out. 
  • Interact with your teachers and classmates during your online classes as much as possible. You can do this through social media outlets like Facebook groups and WhatsApp, email chat rooms, and classroom forums. To facilitate more interactions, be sure to ask lots of questions, organize group projects, and participate in discussions with your peers.

Combating isolation with online learning will take some effort on the students’ behalf, however once you’ve laid the foundation of pushing yourself out of your comfort zone to communicate with others, the rest will be easy! 

Online instructors, you can also help students overcome feelings of isolation by creating group projects and encouraging classmate interactions. As well, try to make yourself available at certain hours for students who want to reach you.

Lack of motivation

Feeling isolated also trickles into our next big problem that online students face, which is a lack of motivation to participate. Lack of motivation is a common issue amongst students. It requires a significant amount of self-discipline to learn online, and this is often a skill that needs to be consistently worked on. 

Due to a lack of face-to-face interaction, some students find it hard to focus during online classes. The physical absence of teachers or classmates takes away the sense of urgency to attend classes on time, meet deadlines, and make progress. This could lead to procrastination and declining grades. 

Staring at a screen for hours on end – even outside of online classes – can also deter learners from attending classes and completing their coursework in a timely manner. Learning online is not always as exciting as in-person lessons, so it can take a while to adjust. 

Here are some ways that students can increase their motivation to learn online and succeed academically: 

  • Set realistic short-term and long-term goals to help stay on track with classes, assignments, and projects. To-do lists are great reminders for meeting deadlines, and crossing activities off a to-do list can be highly motivating.
  • Reach out to a classmate (this also helps combating isolation) and hold each other accountable for attending online lectures, completing coursework, and finishing assignments and projects. 
  • Practicing positive affirmations will help increase your motivation and drive to succeed with online learning. Giving yourself short pep-talk to affirm that you can do whatever you set your mind to will help keep you on track during tough times. 
  • Regularly participating in class can provide a sense of belonging that keeps you motivated to continue learning. Ask questions, share your opinions, and engage in healthy debate. 

Teachers can also incorporate gamification in their online courses to motivate their students to attend and participate during online classes.

It’s hard enough to juggle your normal day-to-day activities without being a student. Adding online learning into the mix can make it even more of a challenge to navigate all these responsibilities. 

While online learning provides students with unparalleled flexibility to do other activities, the tradeoff is being able to manage your time in a responsible and effective manner. It can be extremely easy to fall into the habit of letting things slip, and before you know it you’ll be struggling to keep up with your online course. 

Time management is an important skill that helps students stay focused and disciplined – keeping your priorities in line will help you not only with online courses, but in all aspects of your life. 

Here are some ways to manage your time better for online classes: 

  • Set a schedule and stick to it. This will help build discipline and keep yourself accountable. Make sure to include lots of mini breaks so that you don’t exhaust yourself!
  • Create a priorities list, and work from most to least important. With time, this habit will increase your overall productivity.
  • Set early deadlines so that you’re not scrambling to stay on top of your assignments. 
  • Break tasks into smaller chunks instead of trying to complete them all at once. Trust us, your brain will thank you!

Teachers can also try to make it a priority to check-in on students, especially with asynchronous learning.  

We all know how easy it is to become distracted, nevermind learning online at home with ALL the distractions that you could ever imagine present! It takes some serious dedication and commitment to work successfully from the comfort of your own space. 

Along with in-person distractions, such as your TV, bed, making food, or roommates, there are also online distractions to be wary of. As wonderful as the internet is for learning purposes, it also comes with constant notifications from blogs, videos, and social media platforms. This can easily distract students from their classes and assignments, and it’s dangerous territory for falling into that rabbithole of mindless scrolling. 

If you’re getting distracted by your surroundings or procrastinating with social media, here are some things you can do to focus: 

  • Dedicate a quiet area of your home that is free of distractions. This will help focus your mindset on the task at hand, which are your online classes. 
  • Turn on social media blockers during classes and when you are working on assignments .
  • Tell people around you about your daily schedule. You become more accountable when you tell others about your commitments and plans. Think of these people like human alarm clocks. 
  • Leave your phone (and any other distractions) in a different room while you complete your coursework. You will feel less compelled to procrastinate, leaving you with a more efficient study sesh. 

If you are an instructor, you can help combat any learning distractions by using a dynamic learning design to make classes engaging for students . Encouraging your students to build things, take surveys, and have debates can help them concentrate more on their studies.

Technical issues 

Technical issues are the culprit of disengagement for online learning. Learning online requires teachers and students to understand how to use multiple forms of technology – some of which have steep learning curves.

From low internet bandwidth, spotty reception, and video glitches (to name a few), these issues disrupt the flow of learning and make it a tedious task.

With online learning, students need to find proactive ways to become their own IT department, as technological assistance may not always be available right away. 

To reduce technical issues that students and teachers experience during online classes, here’s some preventative measures to take: 

  • Before enrolling in an online class, students should check if they have access to the necessary technology they need to succeed at home. If they don’t, they should check if the school offers technical help (via phone, email, and live chat) to online students.
  • When attending online classes, students and teachers should use a high-quality internet service provider (ISP) for fast connection. If they don’t have access to a good ISP at home, they can use free Wi-Fi at a public library or coffee shop nearby. 
  • As an online student, search engines are your best friend! More often than not, you can find the answer to your tech problem by plugging your question into Google. 

Teachers should provide a comprehensive guide that contains IT information and digital literacy guidelines to streamline the process for students if something goes wrong. It’s also very helpful for teachers to record class sessions in case some students miss lectures due to tech issues.

Communication

It can be more challenging for students to communicate with their peers and instructor in an online environment. Learning online doesn’t come with the option to walk up to the teacher after class (unless your instructor allows questions in synchronous classes), so students can feel more alone if they are confused. 

Even when a student asks a question online, they might not receive a response right away depending on the availability and timezone of their instructor. 

  • Most of the time, the answers will be in the student syllabus. Make sure you carefully go over the course outline, as you may have missed the answer you are looking for. 
  • Post your questions in student groups. Chances are, one of your peers will be able to help you out, especially if they’ve already asked the same question or have taken the course before. 
  • Take advantage of online office hours if the teacher provides them. Then you know an exact time for when your instructor can provide assistance. 

As a teacher, you will want to be proactive when planning your course. Be sure to provide you students with an in-depth outline of the course that covers common questions and solutions. This will help in the long run, so you don’t have a herd of students banging on your virtual door looking for answers!

Some students may have problems with online classes due to learning difficulties or disabilities. Students with dyslexia, autism, poor vision, hearing impairment, and other disabilities need extra attention to succeed academically. 

Online learning is praised for its adaptability and inclusivity, which means that if you inquire about accommodations, the course creator or institution could most likely work with you to improve usability. 

As an instructor, here are some ways you can make your online course more universally accessible to all learners, including those with learning disabilities: 

  • Include captions to your audio and video content for students with hearing impairments.
  • Have voice-over descriptions of text and images.
  • Provide alternative learning options like keyboard shortcuts for certain exercises.
  • Use AI-powered personal assistants for students with special needs.
  • Hold extra office hours for those who need extra assistance.
  • Offer assignment extensions.

Related: The Most Common Barriers to Learning – And How to Overcome Them

Since we’ve covered A LOT of information in this post on how to overcome challenges with online learning, here is a summary of the most important takeaways: 

  • Practice self-discipline by creating an online learning schedule 
  • Connect with classmates to motivate each other 
  • Increase motivation by practicing good online study habits 
  • Take study breaks to avoid burnout and lower screen-time levels 
  • Dedicate a quiet study space with no distractions
  • Be proactive when looking for answers – but don’t be shy when asking questions
  • Set early deadlines to stay on top of assignments 
  • Become familiar with online support systems in place 

There you have it! A complete overview of the top challenges with online learning, and how to effectively manage these obstacles.

We hope you are able to implement these solutions into your online learning journey, and embrace online education with confidence. 

If you’re an online creator looking to break into the lucrative industry of online teaching, try Thinkific today. 

This blog was originally published in August 2022, it’s since been updated in April 2024 to become even more useful.

Highly creative and curious about life, Megan is a blog writer and content creator who loves to inspire and uplift people with the written word. During her free time she is an avid yogi, travel junkie, beach enthusiast, and reader.

  • How To Design An Effective Learning Path
  • 4 Cooperative Learning Strategies for Your Class
  • 4 Strategies To Boost Participation In Online Courses
  • 5 Techniques to Create an Effective Online Course

Related Articles

How to do a voiceover on google slides or powerpoint.

This guide will show you 4 different ways to do voiceover slides, whether you're a PowerPoint or a Google Slides user.

How to Price Your Online Course (Complete Guide to Course Pricing)

Choosing a price is a critical step in the online course creation process. Here is a complete guide on how to price your online course.

The Top 10 Education App Development Companies (2024)

Discover the best educational app development services to transform your ideas into interactive learning experiences.

Try Thinkific for yourself!

Accomplish your course creation and student success goals faster with thinkific..

Download this guide and start building your online program!

It is on its way to your inbox

IMAGES

  1. Philippines: Classes Resume Virtually for Millions of Children

    challenges of online learning in the philippines essay

  2. 37 challenges of online learning in the Philippines

    challenges of online learning in the philippines essay

  3. 37 challenges of online learning in the Philippines

    challenges of online learning in the philippines essay

  4. What are the Biggest Challenges of Online Education Today?

    challenges of online learning in the philippines essay

  5. 37 challenges of online learning in the Philippines

    challenges of online learning in the philippines essay

  6. (PDF) Students' online learning challenges during the pandemic and how

    challenges of online learning in the philippines essay

VIDEO

  1. PANAYAM: Mga Naidudulot ng Online Learning sa Mental Health ng mga Estudyante Ngayong Pandemya

  2. PROBLEMS IN THE EDUCATION SYSTEM OF THE PHILIPPINES

  3. Philippine Strategies to Embracing Education 4.0

  4. The Hilarious Struggle for a Driver's License in the Philippines 🚗😅

  5. 24 Oras: Alternative learning system, iniaalok sa mga natigil sa pag-aaral

  6. Likas na Yaman / Mga Likas na Yaman / Araling Panlipunan

COMMENTS

  1. Challenges and Opportunities of Online Learning in the Philippine

    The Challenges of Online Learning during the COVID-19 Pandemic: An Essay Analysis of Performing Arts Education Students. Studies in Learning and Teaching, 1(2). ... (2020). The COVID-19 Pandemic through the Lens of Education in the Philippines: The New Normal. International Journal of Pedagogical Develpment and Lifelong Learning, 1(1) ...

  2. Students' online learning challenges during the pandemic and how they

    This data suggests that online learning challenges during the pandemic somehow vary from the typical challenges that students experience in a pre-pandemic online learning environment. ... Simbulan N. COVID-19 and its impact on higher education in the Philippines. Higher Education in Southeast Asia and beyond. 2020; 8:15-18. [Google Scholar ...

  3. (PDF) Distance Learning in the Philippines in the Light of COVID-19

    PDF | On May 1, 2020, Christopher Paulo Manlapaz published Distance Learning in the Philippines in the Light of COVID-19 Pandemic: Challenges and Future Directions | Find, read and cite all the ...

  4. (PDF) Online classes and learning in the Philippines during the Covid

    Abstract. The COVID-19 pandemic brought great disruption to all aspects of life specifically on how. classes were conducted both in an offline and online modes. The sudden shift to purely online ...

  5. Students' online learning challenges during the pandemic ...

    Recently, the education system has faced an unprecedented health crisis that has shaken up its foundation. Given today's uncertainties, it is vital to gain a nuanced understanding of students' online learning experience in times of the COVID-19 pandemic. Although many studies have investigated this area, limited information is available regarding the challenges and the specific strategies ...

  6. PDF Students' online learning challenges during the pandemic ...

    Students' online learning challenges during the pandemic and how they cope with them: The case of the Philippines ... Philippines Education and Information Technologies (2021) 26:7321-7338 /Published online: 28 May 2021. 1 3 that allow teachers to deliver instruction interactively, share resources seamlessly,

  7. Challenges and Opportunities of Online Learning in the Philippine

    This paper has shown so many responses about the challenges experienced by the students while studying online, such as, positive and negative impact of online learning, economic conditions ...

  8. Online Classes and Learning in the Philippines During the ...

    Abstract. The COVID-19 pandemic brought great disruption to all aspects of life specifically on how classes were conducted both in an offline and online modes. The sudden shift to purely online method of teaching and learning was a result of the lockdowns that were imposed by the Philippine government. While some institutions have dealt with ...

  9. PDF Difficulties in Remote Learning: Voices of Philippine University ...

    To respond to the challenge of innovating educational delivery mechanisms in higher education, colleges and universities across the globe ventured into different practices such as distance education, online teaching, remote learning, blended learning, and mobile learning. These practices can be collectively called emergency remote education (ERE).

  10. PDF Issues and Challenges in Open and Distance e-Learning ...

    Philippines, the term "open and distance e-learning" (ODeL) has been coined to refer to the new mode of online or Web-based DE. More specifically, ODeL refers to "forms of education provision that use ... issues and challenges in online learning design especially in DE contexts. These related themes are presented briefly in the next section.

  11. Challenges and Opportunities of Online Learning in the Philippine

    (DOI: 10.1145/3514262.3514318) The research focused on the challenges and opportunities given by the fast transition of academic institutions to remote online learning amid the country's Covid-19 pandemic. Data from online surveys and focus groups were analyzed using descriptive statistics and theme analysis. The consequences and complexity of limited internet connectivity, loss of human ...

  12. Distance learning in the Philippines: A year of hits and misses

    An online survey conducted by the multisectoral group Movement for Safe, Equitable, Quality and Relevant Education (SEQuRE) found that 86.7% of students under modular learning, 66% under online ...

  13. Online Learning: Challenges and Solutions for Learners and Teachers

    The article presents some challenges faced by teachers and learners, supplemented with the recommendations to remove them. JEL Code: A20. The COVID-19 pandemic has led to an expansion in the demand for online teaching and learning across the globe. Online teaching and learning is attracting many students for enhanced learning experiences.

  14. Challenges and Opportunities of Online Learning in the Philippine

    The research focused on the challenges and opportunities given by the fast transition of academic institutions to remote online learning amid the country's Covid-19 pandemic and the adaptability of the children to the online platform and the teachers' originality, flexibility, and eagerness to learn in the digital environment transformed these issues into learning opportunities. The research ...

  15. Issues with distance learning, academic freedom persist in 2021

    Here's a review of education in the Philippines in 2021. From distance learning to limited face-to-face classes. Multiple times, President Duterte rejected the return to face-to-face classes ...

  16. Students' experience of online learning during the COVID‐19 pandemic: A

    The problem of poor internet connection corroborated the findings reported in prior studies (Agung et al., 2020; Barbour, 2013; Basuony et al., 2020; Berge, 2005; Rice, 2006), that is the access issue surrounded the digital divide as one of the main challenges of online learning. In the era of 4G and 5G networks, educational authorities and ...

  17. (PDF) Students' online learning challenges during the ...

    How do students in the Philippines cope with the challenges of online learning during the pandemic? This study explores the students' perceptions, experiences, and strategies in adapting to the ...

  18. PDF University ESL Students' Challenges and Insights Towards Online

    Abstract. The sudden change of English language learning and teaching from face-to-face classroom interaction to blended learning activities using digital platforms has initiated numerous challenges for English as Second Language (ESL) students in the various universities in the Philippines including Mindanao State University- Marawi City ...

  19. Online education in the post-COVID era

    In response to the COVID-19 pandemic, technological and administrative systems for implementing online learning, and the infrastructure that supports its access and delivery, had to adapt quickly.

  20. The Challenges of Online Learning during the COVID-19 Pandemic: An

    This paper aims to analyze student essays in the form of perspectives or responses about the challenges of online learning during the COVID-19 pandemic by collecting fifteen students as samples in the Fundamentals of Education I course. COVID-19 pandemic has changed the way of learning in higher education. Teaching, and learning activities that are usually carried out with face-to-face ...

  21. The effects of online education on academic success: A meta ...

    The purpose of this study is to analyze the effect of online education, which has been extensively used on student achievement since the beginning of the pandemic. In line with this purpose, a meta-analysis of the related studies focusing on the effect of online education on students' academic achievement in several countries between the years 2010 and 2021 was carried out. Furthermore, this ...

  22. 7 Top Challenges with Online Learning For Students (and Solutions)

    Increase motivation by practicing good online study habits. Take study breaks to avoid burnout and lower screen-time levels. Dedicate a quiet study space with no distractions. Be proactive when looking for answers - but don't be shy when asking questions. Set early deadlines to stay on top of assignments.

  23. 8 common challenges of online learning (and how to solve them)

    As a workaround, large files may need to be compressed. 2. Compatibility. Compatibility is another one of the most common challenges of online learning. Compatibility issues arise when learners in ...