What Are The Steps Of The Scientific Method?

Julia Simkus

Editor at Simply Psychology

BA (Hons) Psychology, Princeton University

Julia Simkus is a graduate of Princeton University with a Bachelor of Arts in Psychology. She is currently studying for a Master's Degree in Counseling for Mental Health and Wellness in September 2023. Julia's research has been published in peer reviewed journals.

Learn about our Editorial Process

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

Science is not just knowledge. It is also a method for obtaining knowledge. Scientific understanding is organized into theories.

The scientific method is a step-by-step process used by researchers and scientists to determine if there is a relationship between two or more variables. Psychologists use this method to conduct psychological research, gather data, process information, and describe behaviors.

It involves careful observation, asking questions, formulating hypotheses, experimental testing, and refining hypotheses based on experimental findings.

How it is Used

The scientific method can be applied broadly in science across many different fields, such as chemistry, physics, geology, and psychology. In a typical application of this process, a researcher will develop a hypothesis, test this hypothesis, and then modify the hypothesis based on the outcomes of the experiment.

The process is then repeated with the modified hypothesis until the results align with the observed phenomena. Detailed steps of the scientific method are described below.

Keep in mind that the scientific method does not have to follow this fixed sequence of steps; rather, these steps represent a set of general principles or guidelines.

7 Steps of the Scientific Method

Psychology uses an empirical approach.

Empiricism (founded by John Locke) states that the only source of knowledge comes through our senses – e.g., sight, hearing, touch, etc.

Empirical evidence does not rely on argument or belief. Thus, empiricism is the view that all knowledge is based on or may come from direct observation and experience.

The empiricist approach of gaining knowledge through experience quickly became the scientific approach and greatly influenced the development of physics and chemistry in the 17th and 18th centuries.

Steps of the Scientific Method

Step 1: Make an Observation (Theory Construction)

Every researcher starts at the very beginning. Before diving in and exploring something, one must first determine what they will study – it seems simple enough!

By making observations, researchers can establish an area of interest. Once this topic of study has been chosen, a researcher should review existing literature to gain insight into what has already been tested and determine what questions remain unanswered.

This assessment will provide helpful information about what has already been comprehended about the specific topic and what questions remain, and if one can go and answer them.

Specifically, a literature review might implicate examining a substantial amount of documented material from academic journals to books dating back decades. The most appropriate information gathered by the researcher will be shown in the introduction section or abstract of the published study results.

The background material and knowledge will help the researcher with the first significant step in conducting a psychology study, which is formulating a research question.

This is the inductive phase of the scientific process. Observations yield information that is used to formulate theories as explanations. A theory is a well-developed set of ideas that propose an explanation for observed phenomena.

Inductive reasoning moves from specific premises to a general conclusion. It starts with observations of phenomena in the natural world and derives a general law.

Step 2: Ask a Question

Once a researcher has made observations and conducted background research, the next step is to ask a scientific question. A scientific question must be defined, testable, and measurable.

A useful approach to develop a scientific question is: “What is the effect of…?” or “How does X affect Y?”

To answer an experimental question, a researcher must identify two variables: the independent and dependent variables.

The independent variable is the variable manipulated (the cause), and the dependent variable is the variable being measured (the effect).

An example of a research question could be, “Is handwriting or typing more effective for retaining information?” Answering the research question and proposing a relationship between the two variables is discussed in the next step.

Step 3: Form a Hypothesis (Make Predictions)

A hypothesis is an educated guess about the relationship between two or more variables. A hypothesis is an attempt to answer your research question based on prior observation and background research. Theories tend to be too complex to be tested all at once; instead, researchers create hypotheses to test specific aspects of a theory.

For example, a researcher might ask about the connection between sleep and educational performance. Do students who get less sleep perform worse on tests at school?

It is crucial to think about different questions one might have about a particular topic to formulate a reasonable hypothesis. It would help if one also considered how one could investigate the causalities.

It is important that the hypothesis is both testable against reality and falsifiable. This means that it can be tested through an experiment and can be proven wrong.

The falsification principle, proposed by Karl Popper , is a way of demarcating science from non-science. It suggests that for a theory to be considered scientific, it must be able to be tested and conceivably proven false.

To test a hypothesis, we first assume that there is no difference between the populations from which the samples were taken. This is known as the null hypothesis and predicts that the independent variable will not influence the dependent variable.

Examples of “if…then…” Hypotheses:

  • If one gets less than 6 hours of sleep, then one will do worse on tests than if one obtains more rest.
  • If one drinks lots of water before going to bed, one will have to use the bathroom often at night.
  • If one practices exercising and lighting weights, then one’s body will begin to build muscle.

The research hypothesis is often called the alternative hypothesis and predicts what change(s) will occur in the dependent variable when the independent variable is manipulated.

It states that the results are not due to chance and that they are significant in terms of supporting the theory being investigated.

Although one could state and write a scientific hypothesis in many ways, hypotheses are usually built like “if…then…” statements.

Step 4: Run an Experiment (Gather Data)

The next step in the scientific method is to test your hypothesis and collect data. A researcher will design an experiment to test the hypothesis and gather data that will either support or refute the hypothesis.

The exact research methods used to examine a hypothesis depend on what is being studied. A psychologist might utilize two primary forms of research, experimental research, and descriptive research.

The scientific method is objective in that researchers do not let preconceived ideas or biases influence the collection of data and is systematic in that experiments are conducted in a logical way.

Experimental Research

Experimental research is used to investigate cause-and-effect associations between two or more variables. This type of research systematically controls an independent variable and measures its effect on a specified dependent variable.

Experimental research involves manipulating an independent variable and measuring the effect(s) on the dependent variable. Repeating the experiment multiple times is important to confirm that your results are accurate and consistent.

One of the significant advantages of this method is that it permits researchers to determine if changes in one variable cause shifts in each other.

While experiments in psychology typically have many moving parts (and can be relatively complex), an easy investigation is rather fundamental. Still, it does allow researchers to specify cause-and-effect associations between variables.

Most simple experiments use a control group, which involves those who do not receive the treatment, and an experimental group, which involves those who do receive the treatment.

An example of experimental research would be when a pharmaceutical company wants to test a new drug. They give one group a placebo (control group) and the other the actual pill (experimental group).

Descriptive Research

Descriptive research is generally used when it is challenging or even impossible to control the variables in question. Examples of descriptive analysis include naturalistic observation, case studies , and correlation studies .

One example of descriptive research includes phone surveys that marketers often use. While they typically do not allow researchers to identify cause and effect, correlational studies are quite common in psychology research. They make it possible to spot associations between distinct variables and measure the solidity of those relationships.

Step 5: Analyze the Data and Draw Conclusions

Once a researcher has designed and done the investigation and collected sufficient data, it is time to inspect this gathered information and judge what has been found. Researchers can summarize the data, interpret the results, and draw conclusions based on this evidence using analyses and statistics.

Upon completion of the experiment, you can collect your measurements and analyze the data using statistics. Based on the outcomes, you will either reject or confirm your hypothesis.

Analyze the Data

So, how does a researcher determine what the results of their study mean? Statistical analysis can either support or refute a researcher’s hypothesis and can also be used to determine if the conclusions are statistically significant.

When outcomes are said to be “statistically significant,” it is improbable that these results are due to luck or chance. Based on these observations, investigators must then determine what the results mean.

An experiment will support a hypothesis in some circumstances, but sometimes it fails to be truthful in other cases.

What occurs if the developments of a psychology investigation do not endorse the researcher’s hypothesis? It does mean that the study was worthless. Simply because the findings fail to defend the researcher’s hypothesis does not mean that the examination is not helpful or instructive.

This kind of research plays a vital role in supporting scientists in developing unexplored questions and hypotheses to investigate in the future. After decisions have been made, the next step is to communicate the results with the rest of the scientific community.

This is an integral part of the process because it contributes to the general knowledge base and can assist other scientists in finding new research routes to explore.

If the hypothesis is not supported, a researcher should acknowledge the experiment’s results, formulate a new hypothesis, and develop a new experiment.

We must avoid any reference to results proving a theory as this implies 100% certainty, and there is always a chance that evidence may exist that could refute a theory.

Draw Conclusions and Interpret the Data

When the empirical observations disagree with the hypothesis, a number of possibilities must be considered. It might be that the theory is incorrect, in which case it needs altering, so it fully explains the data.

Alternatively, it might be that the hypothesis was poorly derived from the original theory, in which case the scientists were expecting the wrong thing to happen.

It might also be that the research was poorly conducted, or used an inappropriate method, or there were factors in play that the researchers did not consider. This will begin the process of the scientific method again.

If the hypothesis is supported, the researcher can find more evidence to support their hypothesis or look for counter-evidence to strengthen their hypothesis further.

In either scenario, the researcher should share their results with the greater scientific community.

Step 6: Share Your Results

One of the final stages of the research cycle involves the publication of the research. Once the report is written, the researcher(s) may submit the work for publication in an appropriate journal.

Usually, this is done by writing up a study description and publishing the article in a professional or academic journal. The studies and conclusions of psychological work can be seen in peer-reviewed journals such as  Developmental Psychology , Psychological Bulletin, the  Journal of Social Psychology, and numerous others.

Scientists should report their findings by writing up a description of their study and any subsequent findings. This enables other researchers to build upon the present research or replicate the results.

As outlined by the American Psychological Association (APA), there is a typical structure of a journal article that follows a specified format. In these articles, researchers:

  • Supply a brief narrative and background on previous research
  • Give their hypothesis
  • Specify who participated in the study and how they were chosen
  • Provide operational definitions for each variable
  • Explain the measures and methods used to collect data
  • Describe how the data collected was interpreted
  • Discuss what the outcomes mean

A detailed record of psychological studies and all scientific studies is vital to clearly explain the steps and procedures used throughout the study. So that other researchers can try this experiment too and replicate the results.

The editorial process utilized by academic and professional journals guarantees that each submitted article undergoes a thorough peer review to help assure that the study is scientifically sound. Once published, the investigation becomes another piece of the current puzzle of our knowledge “base” on that subject.

This last step is important because all results, whether they supported or did not support the hypothesis, can contribute to the scientific community. Publication of empirical observations leads to more ideas that are tested against the real world, and so on. In this sense, the scientific process is circular.

The editorial process utilized by academic and professional journals guarantees that each submitted article undergoes a thorough peer review to help assure that the study is scientifically sound.

Once published, the investigation becomes another piece of the current puzzle of our knowledge “base” on that subject.

By replicating studies, psychologists can reduce errors, validate theories, and gain a stronger understanding of a particular topic.

Step 7: Repeat the Scientific Method (Iteration)

Now, if one’s hypothesis turns out to be accurate, find more evidence or find counter-evidence. If one’s hypothesis is false, create a new hypothesis or try again.

One may wish to revise their first hypothesis to make a more niche experiment to design or a different specific question to test.

The amazingness of the scientific method is that it is a comprehensive and straightforward process that scientists, and everyone, can utilize over and over again.

So, draw conclusions and repeat because the scientific method is never-ending, and no result is ever considered perfect.

The scientific method is a process of:

  • Making an observation.
  • Forming a hypothesis.
  • Making a prediction.
  • Experimenting to test the hypothesis.

The procedure of repeating the scientific method is crucial to science and all fields of human knowledge.

Further Information

  • Karl Popper – Falsification
  • Thomas – Kuhn Paradigm Shift
  • Positivism in Sociology: Definition, Theory & Examples
  • Is Psychology a Science?
  • Psychology as a Science (PDF)

List the 6 steps of the scientific methods in order

  • Make an observation (theory construction)
  • Ask a question. A scientific question must be defined, testable, and measurable.
  • Form a hypothesis (make predictions)
  • Run an experiment to test the hypothesis (gather data)
  • Analyze the data and draw conclusions
  • Share your results so that other researchers can make new hypotheses

What is the first step of the scientific method?

The first step of the scientific method is making an observation. This involves noticing and describing a phenomenon or group of phenomena that one finds interesting and wishes to explain.

Observations can occur in a natural setting or within the confines of a laboratory. The key point is that the observation provides the initial question or problem that the rest of the scientific method seeks to answer or solve.

What is the scientific method?

The scientific method is a step-by-step process that investigators can follow to determine if there is a causal connection between two or more variables.

Psychologists and other scientists regularly suggest motivations for human behavior. On a more casual level, people judge other people’s intentions, incentives, and actions daily.

While our standard assessments of human behavior are subjective and anecdotal, researchers use the scientific method to study psychology objectively and systematically.

All utilize a scientific method to study distinct aspects of people’s thinking and behavior. This process allows scientists to analyze and understand various psychological phenomena, but it also provides investigators and others a way to disseminate and debate the results of their studies.

The outcomes of these studies are often noted in popular media, which leads numerous to think about how or why researchers came to the findings they did.

Why Use the Six Steps of the Scientific Method

The goal of scientists is to understand better the world that surrounds us. Scientific research is the most critical tool for navigating and learning about our complex world.

Without it, we would be compelled to rely solely on intuition, other people’s power, and luck. We can eliminate our preconceived concepts and superstitions through methodical scientific research and gain an objective sense of ourselves and our world.

All psychological studies aim to explain, predict, and even control or impact mental behaviors or processes. So, psychologists use and repeat the scientific method (and its six steps) to perform and record essential psychological research.

So, psychologists focus on understanding behavior and the cognitive (mental) and physiological (body) processes underlying behavior.

In the real world, people use to understand the behavior of others, such as intuition and personal experience. The hallmark of scientific research is evidence to support a claim.

Scientific knowledge is empirical, meaning it is grounded in objective, tangible evidence that can be observed repeatedly, regardless of who is watching.

The scientific method is crucial because it minimizes the impact of bias or prejudice on the experimenter. Regardless of how hard one tries, even the best-intentioned scientists can’t escape discrimination. can’t

It stems from personal opinions and cultural beliefs, meaning any mortal filters data based on one’s experience. Sadly, this “filtering” process can cause a scientist to favor one outcome over another.

For an everyday person trying to solve a minor issue at home or work, succumbing to these biases is not such a big deal; in fact, most times, it is important.

But in the scientific community, where results must be inspected and reproduced, bias or discrimination must be avoided.

When to Use the Six Steps of the Scientific Method ?

One can use the scientific method anytime, anywhere! From the smallest conundrum to solving global problems, it is a process that can be applied to any science and any investigation.

Even if you are not considered a “scientist,” you will be surprised to know that people of all disciplines use it for all kinds of dilemmas.

Try to catch yourself next time you come by a question and see how you subconsciously or consciously use the scientific method.

Print Friendly, PDF & Email

1.3: The Scientific Method

Chapter 1: scientific inquiry, chapter 2: chemistry of life, chapter 3: macromolecules, chapter 4: cell structure and function, chapter 5: membranes and cellular transport, chapter 6: cell signaling, chapter 7: metabolism, chapter 8: cellular respiration, chapter 9: photosynthesis, chapter 10: cell cycle and division, chapter 11: meiosis, chapter 12: classical and modern genetics, chapter 13: dna structure and function, chapter 14: gene expression, chapter 15: biotechnology, chapter 16: viruses, chapter 17: nutrition and digestion, chapter 18: nervous system, chapter 19: sensory systems, chapter 20: musculoskeletal system, chapter 21: endocrine system, chapter 22: circulatory and pulmonary systems, chapter 23: osmoregulation and excretion, chapter 24: immune system, chapter 25: reproduction and development, chapter 26: behavior, chapter 27: ecosystems, chapter 28: population and community ecology, chapter 29: biodiversity and conservation, chapter 30: speciation and diversity, chapter 31: natural selection, chapter 32: population genetics, chapter 33: evolutionary history, chapter 34: plant structure, growth, and nutrition, chapter 35: plant reproduction, chapter 36: plant responses to the environment.

The JoVE video player is compatible with HTML5 and Adobe Flash. Older browsers that do not support HTML5 and the H.264 video codec will still use a Flash-based video player. We recommend downloading the newest version of Flash here, but we support all versions 10 and above.

in the scientific method a hypothesis is an) observation

The scientific method is a detailed, stepwise process for answering questions. For example, a scientist makes an observation that the slugs destroy some cabbages but not those near garlic.

Such observations lead to asking questions, "Could garlic be used to deter slugs from ruining a cabbage patch?" After formulating questions, the scientist can then develop hypotheses —potential explanations for the observations that lead to specific, testable predictions.

In this case, a hypothesis could be that garlic repels slugs, which predicts that cabbages surrounded by garlic powder will suffer less damage than the ones without it. 

The hypothesis is then tested through a series of experiments designed to eliminate hypotheses.

The experimental setup involves defining variables. An independent variable is an item that is being tested, in this case, garlic addition. The dependent variable describes the measurement used to determine the outcome, such as the number of slugs on the cabbages.

In addition, the slugs must be divided into groups, experimental and control. These groups are identical, except that the experimental group is exposed to garlic powder.

After data are collected and analyzed, conclusions are made, and results are communicated to other scientists.

The scientific method is a detailed, empirical problem-solving process used by biologists and other scientists. This iterative approach involves formulating a question based on observation, developing a testable potential explanation for the observation (called a hypothesis), making and testing predictions based on the hypothesis, and using the findings to create new hypotheses and predictions.

Generally, predictions are tested using carefully-designed experiments. Based on the outcome of these experiments, the original hypothesis may need to be refined, and new hypotheses and questions can be generated. Importantly, this illustrates that the scientific method is not a stepwise recipe. Instead, it is a continuous refinement and testing of ideas based on new observations, which is the crux of scientific inquiry.

Science is mutable and continuously changes as scientists learn more about the world, physical phenomena and how organisms interact with their environment. For this reason, scientists avoid claiming to ‘prove' a specific idea. Instead, they gather evidence that either supports or refutes a given hypothesis.

Making Observations and Formulating Hypotheses

A hypothesis is preceded by an initial observation, during which information is gathered by the senses (e.g., vision, hearing) or using scientific tools and instruments. This observation leads to a question that prompts the formation of an initial hypothesis, a (testable) possible answer to the question. For example, the observation that slugs eat some cabbage plants but not cabbage plants located near garlic may prompt the question: why do slugs selectively not eat cabbage plants near garlic? One possible hypothesis, or answer to this question, is that slugs have an aversion to garlic. Based on this hypothesis, one might predict that slugs will not eat cabbage plants surrounded by a ring of garlic powder.

A hypothesis should be falsifiable, meaning that there are ways to disprove it if it is untrue. In other words, a hypothesis should be testable. Scientists often articulate and explicitly test for the opposite of the hypothesis, which is called the null hypothesis. In this case, the null hypothesis is that slugs do not have an aversion to garlic. The null hypothesis would be supported if, contrary to the prediction, slugs eat cabbage plants that are surrounded by garlic powder.

Testing a Hypothesis

When possible, scientists test hypotheses using controlled experiments that include independent and dependent variables, as well as control and experimental groups.

An independent variable is an item expected to have an effect (e.g., the garlic powder used in the slug and cabbage experiment or treatment given in a clinical trial). Dependent variables are the measurements used to determine the outcome of an experiment. In the experiment with slugs, cabbages, and garlic, the number of slugs eating cabbages is the dependent variable. This number is expected to depend on the presence or absence of garlic powder rings around the cabbage plants.

Experiments require experimental and control groups. An experimental group is treated with or exposed to the independent variable (i.e., the manipulation or treatment). For example, in the garlic aversion experiment with slugs, the experimental group is a group of cabbage plants surrounded by a garlic powder ring. A control group is subject to the same conditions as the experimental group, with the exception of the independent variable. Control groups in this experiment might include a group of cabbage plants in the same area that is surrounded by a non-garlic powder ring (to control for powder aversion) and a group that is not surrounded by any particular substance (to control for cabbage aversion). It is essential to include a control group because, without one, it is unclear whether the outcome is the result of the treatment or manipulation.

Refining a Hypothesis

If the results of an experiment support the hypothesis, further experiments may be designed and carried out to provide support for the hypothesis. The hypothesis may also be refined and made more specific. For example, additional experiments could determine whether slugs also have an aversion to other plants of the Allium genus, like onions.

If the results do not support the hypothesis, then the original hypothesis may be modified based on the new observations. It is important to rule out potential problems with the experimental design before modifying the hypothesis. For example, if slugs demonstrate an aversion to both garlic and non-garlic powder, the experiment can be carried out again using fresh garlic instead of powdered garlic. If the slugs still exhibit no aversion to garlic, then the original hypothesis can be modified.

Communication

The results of the experiments should be communicated to other scientists and the public, regardless of whether the data support the original hypothesis. This information can guide the development of new hypotheses and experimental questions.

Get cutting-edge science videos from J o VE sent straight to your inbox every month.

mktb-description

We use cookies to enhance your experience on our website.

By continuing to use our website or clicking “Continue”, you are agreeing to accept our cookies.

WeChat QR Code - JoVE

Science and the scientific method: Definitions and examples

Here's a look at the foundation of doing science — the scientific method.

Kids follow the scientific method to carry out an experiment.

The scientific method

Hypothesis, theory and law, a brief history of science, additional resources, bibliography.

Science is a systematic and logical approach to discovering how things in the universe work. It is also the body of knowledge accumulated through the discoveries about all the things in the universe. 

The word "science" is derived from the Latin word "scientia," which means knowledge based on demonstrable and reproducible data, according to the Merriam-Webster dictionary . True to this definition, science aims for measurable results through testing and analysis, a process known as the scientific method. Science is based on fact, not opinion or preferences. The process of science is designed to challenge ideas through research. One important aspect of the scientific process is that it focuses only on the natural world, according to the University of California, Berkeley . Anything that is considered supernatural, or beyond physical reality, does not fit into the definition of science.

When conducting research, scientists use the scientific method to collect measurable, empirical evidence in an experiment related to a hypothesis (often in the form of an if/then statement) that is designed to support or contradict a scientific theory .

"As a field biologist, my favorite part of the scientific method is being in the field collecting the data," Jaime Tanner, a professor of biology at Marlboro College, told Live Science. "But what really makes that fun is knowing that you are trying to answer an interesting question. So the first step in identifying questions and generating possible answers (hypotheses) is also very important and is a creative process. Then once you collect the data you analyze it to see if your hypothesis is supported or not."

Here's an illustration showing the steps in the scientific method.

The steps of the scientific method go something like this, according to Highline College :

  • Make an observation or observations.
  • Form a hypothesis — a tentative description of what's been observed, and make predictions based on that hypothesis.
  • Test the hypothesis and predictions in an experiment that can be reproduced.
  • Analyze the data and draw conclusions; accept or reject the hypothesis or modify the hypothesis if necessary.
  • Reproduce the experiment until there are no discrepancies between observations and theory. "Replication of methods and results is my favorite step in the scientific method," Moshe Pritsker, a former post-doctoral researcher at Harvard Medical School and CEO of JoVE, told Live Science. "The reproducibility of published experiments is the foundation of science. No reproducibility — no science."

Some key underpinnings to the scientific method:

  • The hypothesis must be testable and falsifiable, according to North Carolina State University . Falsifiable means that there must be a possible negative answer to the hypothesis.
  • Research must involve deductive reasoning and inductive reasoning . Deductive reasoning is the process of using true premises to reach a logical true conclusion while inductive reasoning uses observations to infer an explanation for those observations.
  • An experiment should include a dependent variable (which does not change) and an independent variable (which does change), according to the University of California, Santa Barbara .
  • An experiment should include an experimental group and a control group. The control group is what the experimental group is compared against, according to Britannica .

The process of generating and testing a hypothesis forms the backbone of the scientific method. When an idea has been confirmed over many experiments, it can be called a scientific theory. While a theory provides an explanation for a phenomenon, a scientific law provides a description of a phenomenon, according to The University of Waikato . One example would be the law of conservation of energy, which is the first law of thermodynamics that says that energy can neither be created nor destroyed. 

A law describes an observed phenomenon, but it doesn't explain why the phenomenon exists or what causes it. "In science, laws are a starting place," said Peter Coppinger, an associate professor of biology and biomedical engineering at the Rose-Hulman Institute of Technology. "From there, scientists can then ask the questions, 'Why and how?'"

Laws are generally considered to be without exception, though some laws have been modified over time after further testing found discrepancies. For instance, Newton's laws of motion describe everything we've observed in the macroscopic world, but they break down at the subatomic level.

This does not mean theories are not meaningful. For a hypothesis to become a theory, scientists must conduct rigorous testing, typically across multiple disciplines by separate groups of scientists. Saying something is "just a theory" confuses the scientific definition of "theory" with the layperson's definition. To most people a theory is a hunch. In science, a theory is the framework for observations and facts, Tanner told Live Science.

This Copernican heliocentric solar system, from 1708, shows the orbit of the moon around the Earth, and the orbits of the Earth and planets round the sun, including Jupiter and its moons, all surrounded by the 12 signs of the zodiac.

The earliest evidence of science can be found as far back as records exist. Early tablets contain numerals and information about the solar system , which were derived by using careful observation, prediction and testing of those predictions. Science became decidedly more "scientific" over time, however.

1200s: Robert Grosseteste developed the framework for the proper methods of modern scientific experimentation, according to the Stanford Encyclopedia of Philosophy. His works included the principle that an inquiry must be based on measurable evidence that is confirmed through testing.

1400s: Leonardo da Vinci began his notebooks in pursuit of evidence that the human body is microcosmic. The artist, scientist and mathematician also gathered information about optics and hydrodynamics.

1500s: Nicolaus Copernicus advanced the understanding of the solar system with his discovery of heliocentrism. This is a model in which Earth and the other planets revolve around the sun, which is the center of the solar system.

1600s: Johannes Kepler built upon those observations with his laws of planetary motion. Galileo Galilei improved on a new invention, the telescope, and used it to study the sun and planets. The 1600s also saw advancements in the study of physics as Isaac Newton developed his laws of motion.

1700s: Benjamin Franklin discovered that lightning is electrical. He also contributed to the study of oceanography and meteorology. The understanding of chemistry also evolved during this century as Antoine Lavoisier, dubbed the father of modern chemistry , developed the law of conservation of mass.

1800s: Milestones included Alessandro Volta's discoveries regarding electrochemical series, which led to the invention of the battery. John Dalton also introduced atomic theory, which stated that all matter is composed of atoms that combine to form molecules. The basis of modern study of genetics advanced as Gregor Mendel unveiled his laws of inheritance. Later in the century, Wilhelm Conrad Röntgen discovered X-rays , while George Ohm's law provided the basis for understanding how to harness electrical charges.

1900s: The discoveries of Albert Einstein , who is best known for his theory of relativity, dominated the beginning of the 20th century. Einstein's theory of relativity is actually two separate theories. His special theory of relativity, which he outlined in a 1905 paper, " The Electrodynamics of Moving Bodies ," concluded that time must change according to the speed of a moving object relative to the frame of reference of an observer. His second theory of general relativity, which he published as " The Foundation of the General Theory of Relativity ," advanced the idea that matter causes space to curve.

In 1952, Jonas Salk developed the polio vaccine , which reduced the incidence of polio in the United States by nearly 90%, according to Britannica . The following year, James D. Watson and Francis Crick discovered the structure of DNA , which is a double helix formed by base pairs attached to a sugar-phosphate backbone, according to the National Human Genome Research Institute .

2000s: The 21st century saw the first draft of the human genome completed, leading to a greater understanding of DNA. This advanced the study of genetics, its role in human biology and its use as a predictor of diseases and other disorders, according to the National Human Genome Research Institute .

  • This video from City University of New York delves into the basics of what defines science.
  • Learn about what makes science science in this book excerpt from Washington State University .
  • This resource from the University of Michigan — Flint explains how to design your own scientific study.

Merriam-Webster Dictionary, Scientia. 2022. https://www.merriam-webster.com/dictionary/scientia

University of California, Berkeley, "Understanding Science: An Overview." 2022. ​​ https://undsci.berkeley.edu/article/0_0_0/intro_01  

Highline College, "Scientific method." July 12, 2015. https://people.highline.edu/iglozman/classes/astronotes/scimeth.htm  

North Carolina State University, "Science Scripts." https://projects.ncsu.edu/project/bio183de/Black/science/science_scripts.html  

University of California, Santa Barbara. "What is an Independent variable?" October 31,2017. http://scienceline.ucsb.edu/getkey.php?key=6045  

Encyclopedia Britannica, "Control group." May 14, 2020. https://www.britannica.com/science/control-group  

The University of Waikato, "Scientific Hypothesis, Theories and Laws." https://sci.waikato.ac.nz/evolution/Theories.shtml  

Stanford Encyclopedia of Philosophy, Robert Grosseteste. May 3, 2019. https://plato.stanford.edu/entries/grosseteste/  

Encyclopedia Britannica, "Jonas Salk." October 21, 2021. https://www.britannica.com/ biography /Jonas-Salk

National Human Genome Research Institute, "​Phosphate Backbone." https://www.genome.gov/genetics-glossary/Phosphate-Backbone  

National Human Genome Research Institute, "What is the Human Genome Project?" https://www.genome.gov/human-genome-project/What  

‌ Live Science contributor Ashley Hamer updated this article on Jan. 16, 2022.

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

Alina Bradford

'Uncharted territory': El Niño to flip to La Niña in what could be the hottest year on record

What's the largest waterfall in the world?

Scientists may have pinpointed the true origin of the Hope Diamond and other pristine gemstones

The Scientific Method by Science Made Simple

Understanding and using the scientific method.

The Scientific Method is a process used to design and perform experiments. It's important to minimize experimental errors and bias, and increase confidence in the accuracy of your results.

science experiment

In the previous sections, we talked about how to pick a good topic and specific question to investigate. Now we will discuss how to carry out your investigation.

Steps of the Scientific Method

  • Observation/Research
  • Experimentation

Now that you have settled on the question you want to ask, it's time to use the Scientific Method to design an experiment to answer that question.

If your experiment isn't designed well, you may not get the correct answer. You may not even get any definitive answer at all!

The Scientific Method is a logical and rational order of steps by which scientists come to conclusions about the world around them. The Scientific Method helps to organize thoughts and procedures so that scientists can be confident in the answers they find.

OBSERVATION is first step, so that you know how you want to go about your research.

HYPOTHESIS is the answer you think you'll find.

PREDICTION is your specific belief about the scientific idea: If my hypothesis is true, then I predict we will discover this.

EXPERIMENT is the tool that you invent to answer the question, and

CONCLUSION is the answer that the experiment gives.

Don't worry, it isn't that complicated. Let's take a closer look at each one of these steps. Then you can understand the tools scientists use for their science experiments, and use them for your own.

OBSERVATION

observation  magnifying glass

This step could also be called "research." It is the first stage in understanding the problem.

After you decide on topic, and narrow it down to a specific question, you will need to research everything that you can find about it. You can collect information from your own experiences, books, the internet, or even smaller "unofficial" experiments.

Let's continue the example of a science fair idea about tomatoes in the garden. You like to garden, and notice that some tomatoes are bigger than others and wonder why.

Because of this personal experience and an interest in the problem, you decide to learn more about what makes plants grow.

For this stage of the Scientific Method, it's important to use as many sources as you can find. The more information you have on your science fair topic, the better the design of your experiment is going to be, and the better your science fair project is going to be overall.

Also try to get information from your teachers or librarians, or professionals who know something about your science fair project. They can help to guide you to a solid experimental setup.

research science fair topic

The next stage of the Scientific Method is known as the "hypothesis." This word basically means "a possible solution to a problem, based on knowledge and research."

The hypothesis is a simple statement that defines what you think the outcome of your experiment will be.

All of the first stage of the Scientific Method -- the observation, or research stage -- is designed to help you express a problem in a single question ("Does the amount of sunlight in a garden affect tomato size?") and propose an answer to the question based on what you know. The experiment that you will design is done to test the hypothesis.

Using the example of the tomato experiment, here is an example of a hypothesis:

TOPIC: "Does the amount of sunlight a tomato plant receives affect the size of the tomatoes?"

HYPOTHESIS: "I believe that the more sunlight a tomato plant receives, the larger the tomatoes will grow.

This hypothesis is based on:

(1) Tomato plants need sunshine to make food through photosynthesis, and logically, more sun means more food, and;

(2) Through informal, exploratory observations of plants in a garden, those with more sunlight appear to grow bigger.

science fair project ideas

The hypothesis is your general statement of how you think the scientific phenomenon in question works.

Your prediction lets you get specific -- how will you demonstrate that your hypothesis is true? The experiment that you will design is done to test the prediction.

An important thing to remember during this stage of the scientific method is that once you develop a hypothesis and a prediction, you shouldn't change it, even if the results of your experiment show that you were wrong.

An incorrect prediction does NOT mean that you "failed." It just means that the experiment brought some new facts to light that maybe you hadn't thought about before.

Continuing our tomato plant example, a good prediction would be: Increasing the amount of sunlight tomato plants in my experiment receive will cause an increase in their size compared to identical plants that received the same care but less light.

This is the part of the scientific method that tests your hypothesis. An experiment is a tool that you design to find out if your ideas about your topic are right or wrong.

It is absolutely necessary to design a science fair experiment that will accurately test your hypothesis. The experiment is the most important part of the scientific method. It's the logical process that lets scientists learn about the world.

On the next page, we'll discuss the ways that you can go about designing a science fair experiment idea.

The final step in the scientific method is the conclusion. This is a summary of the experiment's results, and how those results match up to your hypothesis.

You have two options for your conclusions: based on your results, either:

(1) YOU CAN REJECT the hypothesis, or

(2) YOU CAN NOT REJECT the hypothesis.

This is an important point!

You can not PROVE the hypothesis with a single experiment, because there is a chance that you made an error somewhere along the way.

What you can say is that your results SUPPORT the original hypothesis.

If your original hypothesis didn't match up with the final results of your experiment, don't change the hypothesis.

Instead, try to explain what might have been wrong with your original hypothesis. What information were you missing when you made your prediction? What are the possible reasons the hypothesis and experimental results didn't match up?

Remember, a science fair experiment isn't a failure simply because does not agree with your hypothesis. No one will take points off if your prediction wasn't accurate. Many important scientific discoveries were made as a result of experiments gone wrong!

A science fair experiment is only a failure if its design is flawed. A flawed experiment is one that (1) doesn't keep its variables under control, and (2) doesn't sufficiently answer the question that you asked of it.

Search This Site:

Science Fairs

  • Introduction
  • Project Ideas
  • Types of Projects
  • Pick a Topic
  • Scientific Method
  • Design Your Experiment
  • Present Your Project
  • What Judges Want
  • Parent Info

Recommended *

  • Sample Science Projects - botany, ecology, microbiology, nutrition

scientific method book

* This site contains affiliate links to carefully chosen, high quality products. We may receive a commission for purchases made through these links.

  • Terms of Service

Copyright © 2006 - 2023, Science Made Simple, Inc. All Rights Reserved.

The science fair projects & ideas, science articles and all other material on this website are covered by copyright laws and may not be reproduced without permission.

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

High school biology

Course: high school biology   >   unit 1.

  • Biology overview
  • Preparing to study biology
  • What is life?
  • The scientific method
  • Data to justify experimental claims examples
  • Scientific method and data analysis
  • Introduction to experimental design
  • Controlled experiments

Biology and the scientific method review

  • Experimental design and bias

The nature of biology

Properties of life.

  • Organization: Living things are highly organized (meaning they contain specialized, coordinated parts) and are made up of one or more cells .
  • Metabolism: Living things must use energy and consume nutrients to carry out the chemical reactions that sustain life. The sum total of the biochemical reactions occurring in an organism is called its metabolism .
  • Homeostasis : Living organisms regulate their internal environment to maintain the relatively narrow range of conditions needed for cell function.
  • Growth : Living organisms undergo regulated growth. Individual cells become larger in size, and multicellular organisms accumulate many cells through cell division.
  • Reproduction : Living organisms can reproduce themselves to create new organisms.
  • Response : Living organisms respond to stimuli or changes in their environment.
  • Evolution : Populations of living organisms can undergo evolution , meaning that the genetic makeup of a population may change over time.

Scientific methodology

Scientific method example: failure to toast.

  • Observation: the toaster won't toast.
  • Question: Why won't my toaster toast?
  • Hypothesis: Maybe the outlet is broken.
  • Prediction: If I plug the toaster into a different outlet, then it will toast the bread.
  • Test of prediction: Plug the toaster into a different outlet and try again.
  • Iteration time!

Experimental design

Reducing errors and bias.

  • Having a large sample size in the experiment: This helps to account for any small differences among the test subjects that may provide unexpected results.
  • Repeating experimental trials multiple times: Errors may result from slight differences in test subjects, or mistakes in methodology or data collection. Repeating trials helps reduce those effects.
  • Including all data points: Sometimes it is tempting to throw away data points that are inconsistent with the proposed hypothesis. However, this makes for an inaccurate study! All data points need to be included, whether they support the hypothesis or not.
  • Using placebos , when appropriate: Placebos prevent the test subjects from knowing whether they received a real therapeutic substance. This helps researchers determine whether a substance has a true effect.
  • Implementing double-blind studies , when appropriate: Double-blind studies prevent researchers from knowing the status of a particular participant. This helps eliminate observer bias.

Communicating findings

Things to remember.

  • A hypothesis is not necessarily the right explanation. Instead, it is a possible explanation that can be tested to see if it is likely correct, or if a new hypothesis needs to be made.
  • Not all explanations can be considered a hypothesis. A hypothesis must be testable and falsifiable in order to be valid. For example, “The universe is beautiful" is not a good hypothesis, because there is no experiment that could test this statement and show it to be false.
  • In most cases, the scientific method is an iterative process. In other words, it's a cycle rather than a straight line. The result of one experiment often becomes feedback that raises questions for more experimentation.
  • Scientists use the word "theory" in a very different way than non-scientists. When many people say "I have a theory," they really mean "I have a guess." Scientific theories, on the other hand, are well-tested and highly reliable scientific explanations of natural phenomena. They unify many repeated observations and data collected from lots of experiments.

Want to join the conversation?

  • Upvote Button navigates to signup page
  • Downvote Button navigates to signup page
  • Flag Button navigates to signup page

Great Answer

What is the Scientific Method: How does it work and why is it important?

The scientific method is a systematic process involving steps like defining questions, forming hypotheses, conducting experiments, and analyzing data. It minimizes biases and enables replicable research, leading to groundbreaking discoveries like Einstein's theory of relativity, penicillin, and the structure of DNA. This ongoing approach promotes reason, evidence, and the pursuit of truth in science.

Updated on November 18, 2023

What is the Scientific Method: How does it work and why is it important?

Beginning in elementary school, we are exposed to the scientific method and taught how to put it into practice. As a tool for learning, it prepares children to think logically and use reasoning when seeking answers to questions.

Rather than jumping to conclusions, the scientific method gives us a recipe for exploring the world through observation and trial and error. We use it regularly, sometimes knowingly in academics or research, and sometimes subconsciously in our daily lives.

In this article we will refresh our memories on the particulars of the scientific method, discussing where it comes from, which elements comprise it, and how it is put into practice. Then, we will consider the importance of the scientific method, who uses it and under what circumstances.

What is the scientific method?

The scientific method is a dynamic process that involves objectively investigating questions through observation and experimentation . Applicable to all scientific disciplines, this systematic approach to answering questions is more accurately described as a flexible set of principles than as a fixed series of steps.

The following representations of the scientific method illustrate how it can be both condensed into broad categories and also expanded to reveal more and more details of the process. These graphics capture the adaptability that makes this concept universally valuable as it is relevant and accessible not only across age groups and educational levels but also within various contexts.

a graph of the scientific method

Steps in the scientific method

While the scientific method is versatile in form and function, it encompasses a collection of principles that create a logical progression to the process of problem solving:

  • Define a question : Constructing a clear and precise problem statement that identifies the main question or goal of the investigation is the first step. The wording must lend itself to experimentation by posing a question that is both testable and measurable.
  • Gather information and resources : Researching the topic in question to find out what is already known and what types of related questions others are asking is the next step in this process. This background information is vital to gaining a full understanding of the subject and in determining the best design for experiments. 
  • Form a hypothesis : Composing a concise statement that identifies specific variables and potential results, which can then be tested, is a crucial step that must be completed before any experimentation. An imperfection in the composition of a hypothesis can result in weaknesses to the entire design of an experiment.
  • Perform the experiments : Testing the hypothesis by performing replicable experiments and collecting resultant data is another fundamental step of the scientific method. By controlling some elements of an experiment while purposely manipulating others, cause and effect relationships are established.
  • Analyze the data : Interpreting the experimental process and results by recognizing trends in the data is a necessary step for comprehending its meaning and supporting the conclusions. Drawing inferences through this systematic process lends substantive evidence for either supporting or rejecting the hypothesis.
  • Report the results : Sharing the outcomes of an experiment, through an essay, presentation, graphic, or journal article, is often regarded as a final step in this process. Detailing the project's design, methods, and results not only promotes transparency and replicability but also adds to the body of knowledge for future research.
  • Retest the hypothesis : Repeating experiments to see if a hypothesis holds up in all cases is a step that is manifested through varying scenarios. Sometimes a researcher immediately checks their own work or replicates it at a future time, or another researcher will repeat the experiments to further test the hypothesis.

a chart of the scientific method

Where did the scientific method come from?

Oftentimes, ancient peoples attempted to answer questions about the unknown by:

  • Making simple observations
  • Discussing the possibilities with others deemed worthy of a debate
  • Drawing conclusions based on dominant opinions and preexisting beliefs

For example, take Greek and Roman mythology. Myths were used to explain everything from the seasons and stars to the sun and death itself.

However, as societies began to grow through advancements in agriculture and language, ancient civilizations like Egypt and Babylonia shifted to a more rational analysis for understanding the natural world. They increasingly employed empirical methods of observation and experimentation that would one day evolve into the scientific method . 

In the 4th century, Aristotle, considered the Father of Science by many, suggested these elements , which closely resemble the contemporary scientific method, as part of his approach for conducting science:

  • Study what others have written about the subject.
  • Look for the general consensus about the subject.
  • Perform a systematic study of everything even partially related to the topic.

a pyramid of the scientific method

By continuing to emphasize systematic observation and controlled experiments, scholars such as Al-Kindi and Ibn al-Haytham helped expand this concept throughout the Islamic Golden Age . 

In his 1620 treatise, Novum Organum , Sir Francis Bacon codified the scientific method, arguing not only that hypotheses must be tested through experiments but also that the results must be replicated to establish a truth. Coming at the height of the Scientific Revolution, this text made the scientific method accessible to European thinkers like Galileo and Isaac Newton who then put the method into practice.

As science modernized in the 19th century, the scientific method became more formalized, leading to significant breakthroughs in fields such as evolution and germ theory. Today, it continues to evolve, underpinning scientific progress in diverse areas like quantum mechanics, genetics, and artificial intelligence.

Why is the scientific method important?

The history of the scientific method illustrates how the concept developed out of a need to find objective answers to scientific questions by overcoming biases based on fear, religion, power, and cultural norms. This still holds true today.

By implementing this standardized approach to conducting experiments, the impacts of researchers’ personal opinions and preconceived notions are minimized. The organized manner of the scientific method prevents these and other mistakes while promoting the replicability and transparency necessary for solid scientific research.

The importance of the scientific method is best observed through its successes, for example: 

  • “ Albert Einstein stands out among modern physicists as the scientist who not only formulated a theory of revolutionary significance but also had the genius to reflect in a conscious and technical way on the scientific method he was using.” Devising a hypothesis based on the prevailing understanding of Newtonian physics eventually led Einstein to devise the theory of general relativity .
  • Howard Florey “Perhaps the most useful lesson which has come out of the work on penicillin has been the demonstration that success in this field depends on the development and coordinated use of technical methods.” After discovering a mold that prevented the growth of Staphylococcus bacteria, Dr. Alexander Flemimg designed experiments to identify and reproduce it in the lab, thus leading to the development of penicillin .
  • James D. Watson “Every time you understand something, religion becomes less likely. Only with the discovery of the double helix and the ensuing genetic revolution have we had grounds for thinking that the powers held traditionally to be the exclusive property of the gods might one day be ours. . . .” By using wire models to conceive a structure for DNA, Watson and Crick crafted a hypothesis for testing combinations of amino acids, X-ray diffraction images, and the current research in atomic physics, resulting in the discovery of DNA’s double helix structure .

Final thoughts

As the cases exemplify, the scientific method is never truly completed, but rather started and restarted. It gave these researchers a structured process that was easily replicated, modified, and built upon. 

While the scientific method may “end” in one context, it never literally ends. When a hypothesis, design, methods, and experiments are revisited, the scientific method simply picks up where it left off. Each time a researcher builds upon previous knowledge, the scientific method is restored with the pieces of past efforts.

By guiding researchers towards objective results based on transparency and reproducibility, the scientific method acts as a defense against bias, superstition, and preconceived notions. As we embrace the scientific method's enduring principles, we ensure that our quest for knowledge remains firmly rooted in reason, evidence, and the pursuit of truth.

The AJE Team

The AJE Team

See our "Privacy Policy"

Six Steps of the Scientific Method

Learn What Makes Each Stage Important

ThoughtCo. / Hugo Lin 

  • Scientific Method
  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

The scientific method is a systematic way of learning about the world around us and answering questions. The key difference between the scientific method and other ways of acquiring knowledge are forming a hypothesis and then testing it with an experiment.

The Six Steps

The number of steps can vary from one description to another (which mainly happens when data and analysis are separated into separate steps), however, this is a fairly standard list of the six scientific method steps that you are expected to know for any science class:

  • Purpose/Question Ask a question.
  • Research Conduct background research. Write down your sources so you can cite your references. In the modern era, a lot of your research may be conducted online. Scroll to the bottom of articles to check the references. Even if you can't access the full text of a published article, you can usually view the abstract to see the summary of other experiments. Interview experts on a topic. The more you know about a subject, the easier it will be to conduct your investigation.
  • Hypothesis Propose a hypothesis . This is a sort of educated guess about what you expect. It is a statement used to predict the outcome of an experiment. Usually, a hypothesis is written in terms of cause and effect. Alternatively, it may describe the relationship between two phenomena. One type of hypothesis is the null hypothesis or the no-difference hypothesis. This is an easy type of hypothesis to test because it assumes changing a variable will have no effect on the outcome. In reality, you probably expect a change but rejecting a hypothesis may be more useful than accepting one.
  • Experiment Design and perform an experiment to test your hypothesis. An experiment has an independent and dependent variable. You change or control the independent variable and record the effect it has on the dependent variable . It's important to change only one variable for an experiment rather than try to combine the effects of variables in an experiment. For example, if you want to test the effects of light intensity and fertilizer concentration on the growth rate of a plant, you're really looking at two separate experiments.
  • Data/Analysis Record observations and analyze the meaning of the data. Often, you'll prepare a table or graph of the data. Don't throw out data points you think are bad or that don't support your predictions. Some of the most incredible discoveries in science were made because the data looked wrong! Once you have the data, you may need to perform a mathematical analysis to support or refute your hypothesis.
  • Conclusion Conclude whether to accept or reject your hypothesis. There is no right or wrong outcome to an experiment, so either result is fine. Accepting a hypothesis does not necessarily mean it's correct! Sometimes repeating an experiment may give a different result. In other cases, a hypothesis may predict an outcome, yet you might draw an incorrect conclusion. Communicate your results. The results may be compiled into a lab report or formally submitted as a paper. Whether you accept or reject the hypothesis, you likely learned something about the subject and may wish to revise the original hypothesis or form a new one for a future experiment.

When Are There Seven Steps?

Sometimes the scientific method is taught with seven steps instead of six. In this model, the first step of the scientific method is to make observations. Really, even if you don't make observations formally, you think about prior experiences with a subject in order to ask a question or solve a problem.

Formal observations are a type of brainstorming that can help you find an idea and form a hypothesis. Observe your subject and record everything about it. Include colors, timing, sounds, temperatures, changes, behavior, and anything that strikes you as interesting or significant.

When you design an experiment, you are controlling and measuring variables. There are three types of variables:

  • Controlled Variables:  You can have as many  controlled variables  as you like. These are parts of the experiment that you try to keep constant throughout an experiment so that they won't interfere with your test. Writing down controlled variables is a good idea because it helps make your experiment  reproducible , which is important in science! If you have trouble duplicating results from one experiment to another, there may be a controlled variable that you missed.
  • Independent Variable:  This is the variable you control.
  • Dependent Variable:  This is the variable you measure. It is called the dependent variable because it  depends  on the independent variable.
  • Scientific Method Flow Chart
  • What Is an Experiment? Definition and Design
  • How To Design a Science Fair Experiment
  • What Is a Hypothesis? (Science)
  • Scientific Variable
  • What Are the Elements of a Good Hypothesis?
  • Scientific Method Vocabulary Terms
  • Understanding Simple vs Controlled Experiments
  • What Are Independent and Dependent Variables?
  • What Is a Variable in Science?
  • Null Hypothesis Examples
  • Null Hypothesis Definition and Examples
  • Independent Variable Definition and Examples
  • Scientific Method Lesson Plan
  • Dependent Variable Definition and Examples

The Scientific Method Tutorial

The scientific method, steps in the scientific method.

There is a great deal of variation in the specific techniques scientists use explore the natural world. However, the following steps characterize the majority of scientific investigations:

Step 1: Make observations Step 2: Propose a hypothesis to explain observations Step 3: Test the hypothesis with further observations or experiments Step 4: Analyze data Step 5: State conclusions about hypothesis based on data analysis

Each of these steps is explained briefly below, and in more detail later in this section.

Step 1: Make observations

A scientific inquiry typically starts with observations. Often, simple observations will trigger a question in the researcher's mind.

Example: A biologist frequently sees monarch caterpillars feeding on milkweed plants, but rarely sees them feeding on other types of plants. She wonders if it is because the caterpillars prefer milkweed over other food choices.

Step 2: Propose a hypothesis

The researcher develops a hypothesis (singular) or hypotheses (plural) to explain these observations. A hypothesis is a tentative explanation of a phenomenon or observation(s) that can be supported or falsified by further observations or experimentation.

Example: The researcher hypothesizes that monarch caterpillars prefer to feed on milkweed compared to other common plants. (Notice how the hypothesis is a statement, not a question as in step 1.)

Step 3: Test the hypothesis

The researcher makes further observations and/or may design an experiment to test the hypothesis. An experiment is a controlled situation created by a researcher to test the validity of a hypothesis. Whether further observations or an experiment is used to test the hypothesis will depend on the nature of the question and the practicality of manipulating the factors involved.

Example: The researcher sets up an experiment in the lab in which a number of monarch caterpillars are given a choice between milkweed and a number of other common plants to feed on.

Step 4: Analyze data

The researcher summarizes and analyzes the information, or data, generated by these further observations or experiments.

Example: In her experiment, milkweed was chosen by caterpillars 9 times out of 10 over all other plant selections.

Step 5: State conclusions

The researcher interprets the results of experiments or observations and forms conclusions about the meaning of these results. These conclusions are generally expressed as probability statements about their hypothesis.

Example: She concludes that when given a choice, 90 percent of monarch caterpillars prefer to feed on milkweed over other common plants.

Often, the results of one scientific study will raise questions that may be addressed in subsequent research. For example, the above study might lead the researcher to wonder why monarchs seem to prefer to feed on milkweed, and she may plan additional experiments to explore this question. For example, perhaps the milkweed has higher nutritional value than other available plants.

Return to top of page

The Scientific Method Flowchart

The steps in the scientific method are presented visually in the following flow chart. The question raised or the results obtained at each step directly determine how the next step will proceed. Following the flow of the arrows, pass the cursor over each blue box. An explanation and example of each step will appear. As you read the example given at each step, see if you can predict what the next step will be.

Activity: Apply the Scientific Method to Everyday Life Use the steps of the scientific method described above to solve a problem in real life. Suppose you come home one evening and flick the light switch only to find that the light doesn’t turn on. What is your hypothesis? How will you test that hypothesis? Based on the result of this test, what are your conclusions? Follow your instructor's directions for submitting your response.

The above flowchart illustrates the logical sequence of conclusions and decisions in a typical scientific study. There are some important points to note about this process:

1. The steps are clearly linked.

The steps in this process are clearly linked. The hypothesis, formed as a potential explanation for the initial observations, becomes the focus of the study. The hypothesis will determine what further observations are needed or what type of experiment should be done to test its validity. The conclusions of the experiment or further observations will either be in agreement with or will contradict the hypothesis. If the results are in agreement with the hypothesis, this does not prove that the hypothesis is true! In scientific terms, it "lends support" to the hypothesis, which will be tested again and again under a variety of circumstances before researchers accept it as a fairly reliable description of reality.

2. The same steps are not followed in all types of research.

The steps described above present a generalized method followed in a many scientific investigations. These steps are not carved in stone. The question the researcher wishes to answer will influence the steps in the method and how they will be carried out. For example, astronomers do not perform many experiments as defined here. They tend to rely on observations to test theories. Biologists and chemists have the ability to change conditions in a test tube and then observe whether the outcome supports or invalidates their starting hypothesis, while astronomers are not able to change the path of Jupiter around the Sun and observe the outcome!

3. Collected observations may lead to the development of theories.

When a large number of observations and/or experimental results have been compiled, and all are consistent with a generalized description of how some element of nature operates, this description is called a theory. Theories are much broader than hypotheses and are supported by a wide range of evidence. Theories are important scientific tools. They provide a context for interpretation of new observations and also suggest experiments to test their own validity. Theories are discussed in more detail in another section.

The Scientific Method in Detail

In the sections that follow, each step in the scientific method is described in more detail.

Step 1: Observations

Observations in science.

An observation is some thing, event, or phenomenon that is noticed or observed. Observations are listed as the first step in the scientific method because they often provide a starting point, a source of questions a researcher may ask. For example, the observation that leaves change color in the fall may lead a researcher to ask why this is so, and to propose a hypothesis to explain this phenomena. In fact, observations also will provide the key to answering the research question.

In science, observations form the foundation of all hypotheses, experiments, and theories. In an experiment, the researcher carefully plans what observations will be made and how they will be recorded. To be accepted, scientific conclusions and theories must be supported by all available observations. If new observations are made which seem to contradict an established theory, that theory will be re-examined and may be revised to explain the new facts. Observations are the nuts and bolts of science that researchers use to piece together a better understanding of nature.

Observations in science are made in a way that can be precisely communicated to (and verified by) other researchers. In many types of studies (especially in chemistry, physics, and biology), quantitative observations are used. A quantitative observation is one that is expressed and recorded as a quantity, using some standard system of measurement. Quantities such as size, volume, weight, time, distance, or a host of others may be measured in scientific studies.

Some observations that researchers need to make may be difficult or impossible to quantify. Take the example of color. Not all individuals perceive color in exactly the same way. Even apart from limiting conditions such as colorblindness, the way two people see and describe the color of a particular flower, for example, will not be the same. Color, as perceived by the human eye, is an example of a qualitative observation.

Qualitative observations note qualities associated with subjects or samples that are not readily measured. Other examples of qualitative observations might be descriptions of mating behaviors, human facial expressions, or "yes/no" type of data, where some factor is present or absent. Though the qualities of an object may be more difficult to describe or measure than any quantities associated with it, every attempt is made to minimize the effects of the subjective perceptions of the researcher in the process. Some types of studies, such as those in the social and behavioral sciences (which deal with highly variable human subjects), may rely heavily on qualitative observations.

Question: Why are observations important to science?

Limits of Observations

Because all observations rely to some degree on the senses (eyes, ears, or steady hand) of the researcher, complete objectivity is impossible. Our human perceptions are limited by the physical abilities of our sense organs and are interpreted according to our understanding of how the world works, which can be influenced by culture, experience, or education. According to science education specialist, George F. Kneller, "Surprising as it may seem, there is no fact that is not colored by our preconceptions" ("A Method of Enquiry," from Science and Its Ways of Knowing [Upper Saddle River: Prentice-Hall Inc., 1997], 15).

Observations made by a scientist are also limited by the sensitivity of whatever equipment he is using. Research findings will be limited at times by the available technology. For example, Italian physicist and philosopher Galileo Galilei (1564–1642) was reportedly the first person to observe the heavens with a telescope. Imagine how it must have felt to him to see the heavens through this amazing new instrument! It opened a window to the stars and planets and allowed new observations undreamed of before.

In the centuries since Galileo, increasingly more powerful telescopes have been devised that dwarf the power of that first device. In the past decade, we have marveled at images from deep space , courtesy of the Hubble Space Telescope, a large telescope that orbits Earth. Because of its view from outside the distorting effects of the atmosphere, the Hubble can look 50 times farther into space than the best earth-bound telescopes, and resolve details a tenth of the size (Seeds, Michael A., Horizons: Exploring the Universe , 5 th ed. [Belmont: Wadsworth Publishing Company, 1998], 86-87).

Construction is underway on a new radio telescope that scientists say will be able to detect electromagnetic waves from the very edges of the universe! This joint U.S.-Mexican project may allow us to ask questions about the origins of the universe and the beginnings of time that we could never have hoped to answer before. Completion of the new telescope is expected by the end of 2001.

Although the amount of detail observed by Galileo and today's astronomers is vastly different, the stars and their relationships have not changed very much. Yet with each technological advance, the level of detail of observation has been increased, and with it, the power to answer more and more challenging questions with greater precision.

Question: What are some of the differences between a casual observation and a 'scientific observation'?

Step 2: The Hypothesis

A hypothesis is a statement created by the researcher as a potential explanation for an observation or phenomena. The hypothesis converts the researcher's original question into a statement that can be used to make predictions about what should be observed if the hypothesis is true. For example, given the hypothesis, "exposure to ultraviolet (UV) radiation increases the risk of skin cancer," one would predict higher rates of skin cancer among people with greater UV exposure. These predictions could be tested by comparing skin cancer rates among individuals with varying amounts of UV exposure. Note how the hypothesis itself determines what experiments or further observations should be made to test its validity. Results of tests are then compared to predictions from the hypothesis, and conclusions are stated in terms of whether or not the data supports the hypothesis. So the hypothesis serves a guide to the full process of scientific inquiry.

The Qualities of a Good Hypothesis

  • A hypothesis must be testable or provide predictions that are testable. It can potentially be shown to be false by further observations or experimentation.
  • A hypothesis should be specific. If it is too general it cannot be tested, or tests will have so many variables that the results will be complicated and difficult to interpret. A well-written hypothesis is so specific it actually determines how the experiment should be set up.
  • A hypothesis should not include any untested assumptions if they can be avoided. The hypothesis itself may be an assumption that is being tested, but it should be phrased in a way that does not include assumptions that are not tested in the experiment.
  • It is okay (and sometimes a good idea) to develop more than one hypothesis to explain a set of observations. Competing hypotheses can often be tested side-by-side in the same experiment.

Question: Why is the hypothesis important to the scientific method?

Step 3: Testing the Hypothesis

A hypothesis may be tested in one of two ways: by making additional observations of a natural situation, or by setting up an experiment. In either case, the hypothesis is used to make predictions, and the observations or experimental data collected are examined to determine if they are consistent or inconsistent with those predictions. Hypothesis testing, especially through experimentation, is at the core of the scientific process. It is how scientists gain a better understanding of how things work.

Testing a Hypothesis by Observation

Some hypotheses may be tested through simple observation. For example, a researcher may formulate the hypothesis that the sun always rises in the east. What might an alternative hypothesis be? If his hypothesis is correct, he would predict that the sun will rise in the east tomorrow. He can easily test such a prediction by rising before dawn and going out to observe the sunrise. If the sun rises in the west, he will have disproved the hypothesis. He will have shown that it does not hold true in every situation. However, if he observes on that morning that the sun does in fact rise in the east, he has not proven the hypothesis. He has made a single observation that is consistent with, or supports, the hypothesis. As a scientist, to confidently state that the sun will always rise in the east, he will want to make many observations, under a variety of circumstances. Note that in this instance no manipulation of circumstance is required to test the hypothesis (i.e., you aren't altering the sun in any way).

Testing a Hypothesis by Experimentation

An experiment is a controlled series of observations designed to test a specific hypothesis. In an experiment, the researcher manipulates factors related to the hypothesis in such a way that the effect of these factors on the observations (data) can be readily measured and compared. Most experiments are an attempt to define a cause-and-effect relationship between two factors or events—to explain why something happens. For example, with the hypothesis "roses planted in sunny areas bloom earlier than those grown in shady areas," the experiment would be testing a cause-and-effect relationship between sunlight and time of blooming.

A major advantage of setting up an experiment versus making observations of what is already available is that it allows the researcher to control all the factors or events related to the hypothesis, so that the true cause of an event can be more easily isolated. In all cases, the hypothesis itself will determine the way the experiment will be set up. For example, suppose my hypothesis is "the weight of an object is proportional to the amount of time it takes to fall a certain distance." How would you test this hypothesis?

The Qualities of a Good Experiment

  • The experiment must be conducted on a group of subjects that are narrowly defined and have certain aspects in common. This is the group to which any conclusions must later be confined. (Examples of possible subjects: female cancer patients over age 40, E. coli bacteria, red giant stars, the nicotine molecule and its derivatives.)
  • All subjects of the experiment should be (ideally) completely alike in all ways except for the factor or factors that are being tested. Factors that are compared in scientific experiments are called variables. A variable is some aspect of a subject or event that may differ over time or from one group of subjects to another. For example, if a biologist wanted to test the effect of nitrogen on grass growth, he would apply different amounts of nitrogen fertilizer to several plots of grass. The grass in each of the plots should be as alike as possible so that any difference in growth could be attributed to the effect of the nitrogen. For example, all the grass should be of the same species, planted at the same time and at the same density, receive the same amount of water and sunlight, and so on. The variable in this case would be the amount of nitrogen applied to the plants. The researcher would not compare differing amounts of nitrogen across different grass species to determine the effect of nitrogen on grass growth. What is the problem with using different species of plants to compare the effect of nitrogen on plant growth? There are different kinds of variables in an experiment. A factor that the experimenter controls, and changes intentionally to determine if it has an effect, is called an independent variable . A factor that is recorded as data in the experiment, and which is compared across different groups of subjects, is called a dependent variable . In many cases, the value of the dependent variable will be influenced by the value of an independent variable. The goal of the experiment is to determine a cause-and-effect relationship between independent and dependent variables—in this case, an effect of nitrogen on plant growth. In the nitrogen/grass experiment, (1) which factor was the independent variable? (2) Which factor was the dependent variable?
  • Nearly all types of experiments require a control group and an experimental group. The control group generally is not changed in any way, but remains in a "natural state," while the experimental group is modified in some way to examine the effect of the variable which of interest to the researcher. The control group provides a standard of comparison for the experimental groups. For example, in new drug trials, some patients are given a placebo while others are given doses of the drug being tested. The placebo serves as a control by showing the effect of no drug treatment on the patients. In research terminology, the experimental groups are often referred to as treatments , since each group is treated differently. In the experimental test of the effect of nitrogen on grass growth, what is the control group? In the example of the nitrogen experiment, what is the purpose of a control group?
  • In research studies a great deal of emphasis is placed on repetition. It is essential that an experiment or study include enough subjects or enough observations for the researcher to make valid conclusions. The two main reasons why repetition is important in scientific studies are (1) variation among subjects or samples and (2) measurement error.

Variation among Subjects

There is a great deal of variation in nature. In a group of experimental subjects, much of this variation may have little to do with the variables being studied, but could still affect the outcome of the experiment in unpredicted ways. For example, in an experiment designed to test the effects of alcohol dose levels on reflex time in 18- to 22-year-old males, there would be significant variation among individual responses to various doses of alcohol. Some of this variation might be due to differences in genetic make-up, to varying levels of previous alcohol use, or any number of factors unknown to the researcher.

Because what the researcher wants to discover is average dose level effects for this group, he must run the test on a number of different subjects. Suppose he performed the test on only 10 individuals. Do you think the average response calculated would be the same as the average response of all 18- to 22-year-old males? What if he tests 100 individuals, or 1,000? Do you think the average he comes up with would be the same in each case? Chances are it would not be. So which average would you predict would be most representative of all 18- to 22-year-old males?

A basic rule of statistics is, the more observations you make, the closer the average of those observations will be to the average for the whole population you are interested in. This is because factors that vary among a population tend to occur most commonly in the middle range, and least commonly at the two extremes. Take human height for example. Although you may find a man who is 7 feet tall, or one who is 4 feet tall, most men will fall somewhere between 5 and 6 feet in height. The more men we measure to determine average male height, the less effect those uncommon extreme (tall or short) individuals will tend to impact the average. Thus, one reason why repetition is so important in experiments is that it helps to assure that the conclusions made will be valid not only for the individuals tested, but also for the greater population those individuals represent.

"The use of a sample (or subset) of a population, an event, or some other aspect of nature for an experimental group that is not large enough to be representative of the whole" is called sampling error (Starr, Cecie, Biology: Concepts and Applications , 4 th ed. [Pacific Cove: Brooks/Cole, 2000], glossary). If too few samples or subjects are used in an experiment, the researcher may draw incorrect conclusions about the population those samples or subjects represent.

Use the jellybean activity below to see a simple demonstration of samping error.

Directions: There are 400 jellybeans in the jar. If you could not see the jar and you initially chose 1 green jellybean from the jar, you might assume the jar only contains green jelly beans. The jar actually contains both green and black jellybeans. Use the "pick 1, 5, or 10" buttons to create your samples. For example, use the "pick" buttons now to create samples of 2, 13, and 27 jellybeans. After you take each sample, try to predict the ratio of green to black jellybeans in the jar. How does your prediction of the ratio of green to black jellybeans change as your sample changes?

Measurement Error

The second reason why repetition is necessary in research studies has to do with measurement error. Measurement error may be the fault of the researcher, a slight difference in measuring techniques among one or more technicians, or the result of limitations or glitches in measuring equipment. Even the most careful researcher or the best state-of-the-art equipment will make some mistakes in measuring or recording data. Another way of looking at this is to say that, in any study, some measurements will be more accurate than others will. If the researcher is conscientious and the equipment is good, the majority of measurements will be highly accurate, some will be somewhat inaccurate, and a few may be considerably inaccurate. In this case, the same reasoning used above also applies here: the more measurements taken, the less effect a few inaccurate measurements will have on the overall average.

Step 4: Data Analysis

In any experiment, observations are made, and often, measurements are taken. Measurements and observations recorded in an experiment are referred to as data . The data collected must relate to the hypothesis being tested. Any differences between experimental and control groups must be expressed in some way (often quantitatively) so that the groups may be compared. Graphs and charts are often used to visualize the data and to identify patterns and relationships among the variables.

Statistics is the branch of mathematics that deals with interpretation of data. Data analysis refers to statistical methods of determining whether any differences between the control group and experimental groups are too great to be attributed to chance alone. Although a discussion of statistical methods is beyond the scope of this tutorial, the data analysis step is crucial because it provides a somewhat standardized means for interpreting data. The statistical methods of data analysis used, and the results of those analyses, are always included in the publication of scientific research. This convention limits the subjective aspects of data interpretation and allows scientists to scrutinize the working methods of their peers.

Why is data analysis an important step in the scientific method?

Step 5: Stating Conclusions

The conclusions made in a scientific experiment are particularly important. Often, the conclusion is the only part of a study that gets communicated to the general public. As such, it must be a statement of reality, based upon the results of the experiment. To assure that this is the case, the conclusions made in an experiment must (1) relate back to the hypothesis being tested, (2) be limited to the population under study, and (3) be stated as probabilities.

The hypothesis that is being tested will be compared to the data collected in the experiment. If the experimental results contradict the hypothesis, it is rejected and further testing of that hypothesis under those conditions is not necessary. However, if the hypothesis is not shown to be wrong, that does not conclusively prove that it is right! In scientific terms, the hypothesis is said to be "supported by the data." Further testing will be done to see if the hypothesis is supported under a number of trials and under different conditions.

If the hypothesis holds up to extensive testing then the temptation is to claim that it is correct. However, keep in mind that the number of experiments and observations made will only represent a subset of all the situations in which the hypothesis may potentially be tested. In other words, experimental data will only show part of the picture. There is always the possibility that a further experiment may show the hypothesis to be wrong in some situations. Also, note that the limits of current knowledge and available technologies may prevent a researcher from devising an experiment that would disprove a particular hypothesis.

The researcher must be sure to limit his or her conclusions to apply only to the subjects tested in the study. If a particular species of fish is shown to consume their young 90 percent of the time when raised in captivity, that doesn't necessarily mean that all fish will do so, or that this fish's behavior would be the same in its native habitat.

Finally, the conclusions of the experiment are generally stated as probabilities. A careful scientist would never say, "drug x kills cancer cells;" she would more likely say, "drug x was shown to destroy 85 percent of cancerous skin cells in rats in lab trials." Notice how very different these two statements are. There is a tendency in the media and in the general public to gravitate toward the first statement. This makes a terrific headline and is also easy to interpret; it is absolute. Remember though, in science conclusions must be confined to the population under study; broad generalizations should be avoided. The second statement is sound science. There is data to back it up. Later studies may reveal a more universal effect of the drug on cancerous cells, or they may not. Most researchers would be unwilling to stake their reputations on the first statement.

As a student, you should read and interpret popular press articles about research studies very carefully. From the text, can you determine how the experiment was set up and what variables were measured? Are the observations and data collected appropriate to the hypothesis being tested? Are the conclusions supported by the data? Are the conclusions worded in a scientific context (as probability statements) or are they generalized for dramatic effect? In any researched-based assignment, it is a good idea to refer to the original publication of a study (usually found in professional journals) and to interpret the facts for yourself.

Qualities of a Good Experiment

  • narrowly defined subjects
  • all subjects treated alike except for the factor or variable being studied
  • a control group is used for comparison
  • measurements related to the factors being studied are carefully recorded
  • enough samples or subjects are used so that conclusions are valid for the population of interest
  • conclusions made relate back to the hypothesis, are limited to the population being studied, and are stated in terms of probabilities

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Biology LibreTexts

1.1: The Scientific Method

  • Last updated
  • Save as PDF
  • Page ID 123904

  • Teresa Friedrich Finnern
  • Norco College

Learning Objectives

  • Identify the shared characteristics of the natural sciences.
  • Summarize the steps of the scientific method.
  • Compare inductive reasoning with deductive reasoning.
  • Describe the goals of basic science and applied science.

The Process of Science

Science includes such diverse fields as astronomy, biology, computer sciences, geology, logic, physics, chemistry, and mathematics (Figure \(\PageIndex{1}\)). However, those fields of science related to the physical world and its phenomena and processes are considered natural sciences . Natural sciences could be categorized as astronomy, biology, chemistry, earth science, and physics. One can divide natural sciences further into life sciences, which study living things and include biology, and physical sciences, which study nonliving matter and include astronomy, geology, physics, and chemistry. Some disciplines such as biophysics and biochemistry build on both life and physical sciences and are interdisciplinary. Natural sciences are sometimes referred to as “hard science” because they rely on the use of quantitative data; social sciences that study society and human behavior are more likely to use qualitative assessments to drive investigations and findings.

Not surprisingly, the natural science of biology has many branches or subdisciplines. Cell biologists study cell structure and function, while biologists who study anatomy investigate the structure of an entire organism. Those biologists studying physiology, however, focus on the internal functioning of an organism. Some areas of biology focus on only particular types of living things. For example, botanists explore plants, while zoologists specialize in animals.

A collage displaying examples of various fields of science

Scientific Reasoning

One thing is common to all forms of science: an ultimate goal “to know.” Curiosity and inquiry are the driving forces for the development of science. Scientists seek to understand the world and the way it operates. To do this, they use two methods of logical thinking: inductive reasoning and deductive reasoning.

Inductive reasoning is a form of logical thinking that uses related observations to arrive at a general conclusion. This type of reasoning is common in descriptive science. A life scientist such as a biologist makes observations and records them. These data can be qualitative (descriptive) or quantitative (numeric), and the raw data can be supplemented with drawings, pictures, photos, or videos. From many observations, the scientist can infer conclusions (inductions) based on evidence. Inductive reasoning involves formulating generalizations inferred from careful observation and the analysis of a large amount of data.

Deductive reasoning ,   or deduction, is the type of logic used in hypothesis-based science. In deductive reason, the pattern of thinking moves in the opposite direction as compared to inductive reasoning; that is, specific results are predicted from a general premise. Deductive reasoning is a form of logical thinking that uses a general principle or law to forecast specific results. From those general principles, a scientist can extrapolate and predict the specific results that would be valid as long as the general principles are valid. Studies in climate change can illustrate this type of reasoning. For example, scientists may predict that if the climate becomes warmer in a particular region, then the distribution of plants and animals should change. These predictions have been made and tested, and many such changes have been found, such as the modification of arable areas for agriculture, with change based on temperature averages. 

Inductive and deductive reasoning are often used in tandem to advance scientific knowledge (Example \(\PageIndex{1}\)) . Both types of logical thinking are related to the two main pathways of scientific study: descriptive science and hypothesis-based science. Descriptive (or discovery) science , which is usually inductive, aims to observe, explore, and discover, while hypothesis-based science , which is usually deductive, begins with a specific question or problem and a potential answer or solution that one can test. The boundary between these two forms of study is often blurred, and most scientific endeavors combine both approaches.

Example \(\PageIndex{1}\)

Here is an example of how the two types of reasoning might be used in similar situations.

In inductive reasoning, where a conclusion is drawn from a number of observations, one might observe that members of a species are not all the same, individuals compete for resources, and species are generally adapted to their environment. This observation could then lead to the conclusion that individuals most adapted to their environment are more likely to survive and pass their traits to the next generation.

In deductive reasoning, which uses a general premise to predict a specific result, one might start with that conclusion as a general premise, then predict the results. For example, from that premise, one might predict that if the average temperature in an ecosystem increases due to climate change, individuals better adapted to warmer temperatures will outcompete those that are not. A scientist could then design a study to test this prediction.

The Scientific Method

Biologists study the living world by posing questions about it and seeking science-based responses. The scientific method is a method of research with defined steps that include experiments and careful observation. The scientific method was used even in ancient times, but it was first documented by England’s Sir Francis Bacon (1561–1626; Figure \(\PageIndex{2}\)), who set up inductive methods for scientific inquiry. The scientific method is not exclusively used by biologists but can be applied to almost all fields of study as a logical, rational problem-solving method.

It is important to note that even though there are specific steps to the scientific method, the process of science is often more fluid, with scientists going back and forth between steps until they reach their conclusions.

Painting depicts Sir Francis Bacon in a long robe.

Observation and Question

Scientists are good observers. In the field of biology, naturalists will often will make an observation that leads to a question. A naturalist is a person who studies nature. Naturalists often describe structures, processes, and behavior, either with their eyes or with the use of a tool such as a microscope. A naturalist may not conduct experiments, but they may ask many good questions that can lead to experimentation. Scientists are also very curious. They will research for known answers to their questions or run experiments to learn the answer to their questions.

Let’s think about a simple problem that starts with an observation and apply the scientific method to solve the problem. One Monday morning, a student arrives at class and quickly discovers that the classroom is too warm. That is an observation that also describes a problem: the classroom is too warm. The student then asks a question: “Why is the classroom so warm?”

Proposing a Hypothesis

A hypothesis is an educated guess or a suggested explanation for an event, which can be tested. Sometimes, more than one hypothesis may be proposed. Once a hypothesis has been selected, the student can make a prediction. A prediction is similar to a hypothesis but it typically has the format “If . . . then . . . .”.

For example, one hypothesis might be, “The classroom is warm because no one turned on the air conditioning.” However, there could be other responses to the question, and therefore one may propose other hypotheses. A second hypothesis might be, “The classroom is warm because there is a power failure, and so the air conditioning doesn’t work.” In this case, you would have to test both hypotheses to see if either one could be supported with data.

A hypothesis may become a verified theory . This can happen if it has been repeatedly tested and confirmed, is general, and has inspired many other hypotheses, facts, and experimentations. Not all hypotheses will become theories.

Testing a Hypothesis

A valid hypothesis must be testable. It should also be falsifiable , meaning that it can be disproven by experimental results. Importantly, science does not claim to “prove” anything because scientific understandings are always subject to modification with further information. This step—openness to disproving ideas—is what distinguishes sciences from non-sciences. The presence of the supernatural, for instance, is neither testable nor falsifiable. To test a hypothesis, a researcher will conduct one or more experiments designed to eliminate one or more of the hypotheses. Each experiment will have one or more variables and one or more controls. A variable is any part of the experiment that can vary or change during the experiment. The control group contains every feature of the experimental group except that it was not manipulated. Therefore, if the results of the experimental group differ from the control group, the difference must be due to the hypothesized manipulation, rather than some outside factor. Look for the variables and controls in the examples that follow. To test the first hypothesis, the student would find out if the air conditioning is on. If the air conditioning is turned on but does not work, there should be another reason, and this hypothesis should be rejected. To test the second hypothesis, the student could check if the lights in the classroom are functional. If so, there is no power failure, and this hypothesis should be rejected. Each hypothesis should be tested by carrying out appropriate experiments. Be aware that rejecting one hypothesis does not determine whether or not the other hypotheses can be accepted; it simply eliminates one hypothesis that is not valid (Figure \(\PageIndex{3}\)). Using the scientific method, the hypotheses that are inconsistent with experimental data are rejected.

While this “warm classroom” example is based on observational results, other hypotheses and experiments might have clearer controls. For instance, a student might attend class on Monday and realize she had difficulty concentrating on the lecture. One observation to explain this occurrence might be, “When I eat breakfast before class, I am better able to pay attention.” The student could then design an experiment with a control to test this hypothesis.

Visual Connection

A flow chart with the steps in the scientific method.

The scientific method may seem too rigid and structured. It is important to keep in mind that, although scientists often follow this sequence, there is flexibility. Sometimes an experiment leads to conclusions that favor a change in approach; often, an experiment brings entirely new scientific questions to the puzzle. Many times, science does not operate in a linear fashion; instead, scientists continually draw inferences and make generalizations, finding patterns as their research proceeds. Scientific reasoning is more complex than the scientific method alone suggests. Notice, too, that the scientific method can be applied to solving problems that aren’t necessarily scientific in nature (Example \(\PageIndex{2}\)).

Example \(\PageIndex{2}\)

In the example below, the scientific method is used to solve an everyday problem. Match the scientific method steps (numbered items) with the process of solving the everyday problem (lettered items). Based on the results of the experiment, is the hypothesis correct? If it is incorrect, propose some alternative hypotheses.

Steps of the Scientific Method

  • Observation
  • Hypothesis (answer)

Process of Solving an Everyday Problem

  • There is something wrong with the electrical outlet.
  • If something is wrong with the outlet, my coffee maker also won’t work when plugged into it.
  • My toaster doesn’t toast my bread.
  • I plug my coffee maker into the outlet.
  • My coffee maker works.
  • Why doesn’t my toaster work?

Two Types of Science: Basic Science and Applied Science

The scientific community has been debating for the last few decades about the value of different types of science. Is it valuable to pursue science for the sake of simply gaining knowledge, or does scientific knowledge only have worth if we can apply it to solving a specific problem or to bettering our lives? This question focuses on the differences between two types of science: basic science and applied science.

Basic science or “pure” science seeks to expand knowledge regardless of the short-term application of that knowledge. It is not focused on developing a product or a service of immediate public or commercial value. The immediate goal of basic science is knowledge for knowledge’s sake, though this does not mean that, in the end, it may not result in a practical application.

In contrast, applied science or “technology,” aims to use science to solve real-world problems, making it possible, for example, to improve a crop yield or find a cure for a particular disease. In applied science, the problem is usually defined for the researcher.

Some individuals may perceive applied science as “useful” and basic science as “useless.” A question these people might pose to a scientist advocating knowledge acquisition would be, “What for?” A careful look at the history of science, however, reveals that basic knowledge has resulted in many remarkable applications of great value. Many scientists think that a basic understanding of science is necessary before an application is developed; therefore, applied science relies on the results generated through basic science. Other scientists think that it is time to move on from basic science and instead to find solutions to actual problems. Both approaches are valid. It is true that there are problems that demand immediate attention; however, few solutions would be found without the help of the wide knowledge foundation generated through basic science.

One example of how basic and applied science can work together to solve practical problems occurred after the discovery of DNA structure led to an understanding of the molecular mechanisms governing DNA replication. Strands of DNA, unique in every human, are found in our cells, where they provide the instructions necessary for life. During DNA replication, DNA makes new copies of itself, shortly before a cell divides. Understanding the mechanisms of DNA replication enabled scientists to develop laboratory techniques that are now used to identify genetic diseases, pinpoint individuals who were at a crime scene, and determine paternity. Without basic science, it is unlikely that applied science would exist.

Another example of the link between basic and applied research is the Human Genome Project, a study in which each human chromosome was analyzed and mapped to determine the precise sequence of DNA subunits and the exact location of each gene. (The gene is the basic unit of heredity; an individual’s complete collection of genes is their genome.) Other less complex organisms have also been studied as part of this project in order to gain a better understanding of human chromosomes. The Human Genome Project (Figure \(\PageIndex{4}\)) relied on basic research carried out with simple organisms and, later, with the human genome. An important end goal eventually became using the data for applied research, seeking cures and early diagnoses for genetically related diseases.

The human genome project’s logo is shown, depicting a human being inside a DNA double helix.

While research efforts in both basic science and applied science are usually carefully planned, it is important to note that some discoveries are made by serendipity , that is, by means of a fortunate accident or a lucky surprise. Penicillin was discovered when biologist Alexander Fleming accidentally left a petri dish of Staphylococcus bacteria open. An unwanted mold grew on the dish, killing the bacteria. The mold turned out to be Penicillium , and a new antibiotic was discovered. Even in the highly organized world of science, luck—when combined with an observant, curious mind—can lead to unexpected breakthroughs.

Reporting Scientific Work

Whether scientific research is basic science or applied science, scientists must share their findings in order for other researchers to expand and build upon their discoveries. Collaboration with other scientists—when planning, conducting, and analyzing results—are all important for scientific research. For this reason, important aspects of a scientist’s work are communicating with peers and disseminating results to peers. Scientists can share results by presenting them at a scientific meeting or conference (Figure \(\PageIndex{5}\)), but this approach can reach only the select few who are present. Instead, most scientists present their results in peer-reviewed manuscripts that are published in scientific journals. Peer-reviewed manuscripts are scientific papers that are reviewed by a scientist’s colleagues, or peers. These colleagues are qualified individuals, often experts in the same research area, who judge whether or not the scientist’s work is suitable for publication. The process of peer review helps to ensure that the research described in a scientific paper or grant proposal is original, significant, logical, and thorough. Grant proposals, which are requests for research funding, are also subject to peer review. Scientists publish their work so other scientists can reproduce their experiments under similar or different conditions to expand on the findings. The experimental results must be consistent with the findings of other scientists.

A group of undergraduate students at the BOTANY 2018 conference

A scientific paper is very different from creative writing. Although creativity is required to design experiments, there are fixed guidelines when it comes to presenting scientific results. First, scientific writing must be brief, concise, and accurate. A scientific paper needs to be succinct but detailed enough to allow peers to reproduce the experiments.

The scientific paper consists of several specific sections—introduction, materials and methods, results, and discussion. This structure is sometimes called the “IMRaD” format, an acronym for Introduction, Method, Results, and Discussion. There are usually acknowledgment and reference sections as well as an abstract (a concise summary) at the beginning of the paper. There might be additional sections depending on the type of paper and the journal where it will be published; for example, some review papers require an outline.

The introduction starts with brief, but broad, background information about what is known in the field. A good introduction also gives the rationale of the work; it justifies the work carried out and also briefly mentions the end of the paper, where the hypothesis or research question driving the research will be presented. The introduction refers to the published scientific work of others and therefore requires citations following the style of the journal. Using the work or ideas of others without proper citation is considered plagiarism .

The materials and methods section includes a complete and accurate description of the substances used, and the method and techniques used by the researchers to gather data. The description should be thorough enough to allow another researcher to repeat the experiment and obtain similar results, but it does not have to be verbose. This section will also include information on how measurements were made and what types of calculations and statistical analyses were used to examine raw data. Although the materials and methods section gives an accurate description of the experiments, it does not discuss them.

Some journals require a results section followed by a discussion section, but it is more common to combine both. If the journal does not allow the combination of both sections, the results section simply narrates the findings without any further interpretation. The results are presented by means of tables or graphs, but no duplicate information should be presented. In the discussion section, the researcher will interpret the results, describe how variables may be related, and attempt to explain the observations. It is indispensable to conduct an extensive literature search to put the results in the context of previously published scientific research. Therefore, proper citations are included in this section as well.

Finally, the conclusion section summarizes the importance of the experimental findings. While the scientific paper almost certainly answered one or more scientific questions that were stated, any good research should lead to more questions. Therefore, a well-done scientific paper leaves doors open for the researcher and others to continue and expand on the findings.

Review articles do not follow the IMRaD format because they do not present original scientific findings (they are not primary literature); instead, they summarize and comment on findings that were published as primary literature and typically include extensive reference sections.

Attributions

Curated and authored by Kammy Algiers using  1.2 (The Process of Science)  from Biology 2e  by OpenStax (licensed CC-BY ).

Pfeiffer Library

The Scientific Method

What is the scientific method, research starters, observation, analyze results, draw conclusions.

  • Scientific Method Resources

According to Kosso (2011), the scientific method is a specific step-by-step method that aims to answer a question or prove a hypothesis.  It is the process used among all scientific disciplines and is used to conduct both small and large experiments.  It has been used for centuries to solve scientific problems and identify solutions.  While the terminology can be different across disciplines, the scientific method follows these six steps (Larson, 2015):

  • Analyze results
  • Draw conclusions

Click on each link to learn more about each step in the scientific method, or watch the video below for an introduction to each step.

Research Starters  is a feature available when searching  DragonQuest . You may notice when you enter a generic search term into DragonQuest that a research starter is your first result.

If available, research starters appear at the top of you search results in DragonQuest.

Research Starter  entries are similar to a Wikipedia entry of the topic, but  Research Starters  are pulled from quality sources such as Salem Press, Encyclopedia Britannica, and American National Biography.  Research Starters  can be a great place to begin your research, if you're not yet sure about your topic details.  There are several Research Starters related to the steps of the scientific method:

  • Scientific method
  • Research methodology
  • Research methods

Using Research Starters

To use  Research Starters,  click on the title just as you would for any other  DragonQuest  entry. You will then find a broad overview of the topic. This entry is great for finding

  • Subtopics that can narrow your searching
  • Background information to support your claims
  • Sources you can use and cite in your research

We do not recommend that you use  Research Starters  as a source itself though, because of the difficulties in citation.

Citing Research Starters

Using  Research Starters  as an actual source is not recommended.

Just as we do not recommend using Wikipedia as a source,  Research Starters  is the same. Use  Research Starters  as a starting point to get ideas about how to narrow your search and to use its bibliography to find sources you can cite.

We recommend this because citing  Research Starters  can be tricky as sometimes it will have insufficient bibliographic data to create your reference page.

To begin the scientific method, you have to observe something and identify a problem.  You can observe basically anything, such as a person, place, object, situation, or environment.  Examples of an observation include:

  • "My cotton shirt gets more wet in the rain than my friend's silk shirt."
  • "I feel more tired after eating a cookie than I do after eating a salad."

Once you have made an observation, it will lead to creating a scientific question (Larson, 2015).  The question focuses on a specific part of your observation:

  • Why does a cotton shirt get more wet in the rain than a silk shirt?
  • Why do I more tired after eating a cookie than if I ate a salad?

Scientific questions lead to research and crafting a hypothesis, which are the next steps in the scientific method.  Watch the video below for more information on observations.

Once you identify a topic and question from your observations, it is time to conduct some preliminary research.  It is meant to locate a potential answer to your research question or give you ideas on how to draft your hypothesis.  In some cases, it can also help you design an experiment once you determine your hypothesis.  It is a good idea to research your topic or problem using the library and/or the Internet.  It is also recommended to check out different source types for information, such as:

  • Academic journals
  • News reports
  • Audiovisual media (radio, podcasts, etc.)

Background Information

It is important to gather lots of background information on your topic or problem so you understand the topic thoroughly.  It is also critical to find and understand what others have already written about your research question.  This prevents you from experimenting on an issue that already has a definitive answer.

If you need assistance in conducting preliminary research, view our guide on locating background information at the bottom of this box.

If you are unsure where you should start researching, you can view our list of science databases through our  A-Z database list  by selecting "Science" from the subjects dropdown menu.  We also have several research guides that cover topics in the sciences, which can be viewed on our Help page.

Not sure where to begin your research?  Try searching a database in our A-Z list or using one of our  EBSCOhost databases !

  • Finding Background Information by Pfeiffer Library Last Updated May 22, 2023 33 views this year

When you have gathered enough information on your research question and determined that your question has not already been answered, you can form a hypothesis.  A hypothesis is an educated guess or possible explanation meant to answer your research question.  It often follows the "if, then..." sentence structure because it explains a cause/effect relationship between two variables.  A hypothesis is supposed to form a relationship between the two variables.

  • Example hypothesis: "If I soak a penny in lemon juice, then it will look cleaner than if I soak it in soap."

In this example, it is explaining a relationship between a penny and different cleaning agents.  While crafting your hypothesis, it is important to make sure that your "then" statement is something that can be measured, either quantitatively or qualitatively.  In the above example, an experiment for the hypothesis would be measuring the cleanliness of the penny after being exposed to either soap or lemon juice.

For more information on hypotheses, view DragonQuest's Research Starter on hypotheses here .  Alternatively, you can watch the video below for more details on crafting hypotheses.

The fourth step in the scientific method is the experiment stage.  This is where you craft an experiment to test your hypothesis.  The point of an experiment is to find out how changing one thing impacts another (Larson, 2015).  To test a hypothesis, you must implement and change different variables in your experiment.

Anything that you modify in an experiment is considered a variable.  There are two types of variables:

  • Independent variable:  The variable that is modified in an experiment so that is has a direct impact on the dependent variable.  It is the variable that you control in the experiment (Larson, 2015).
  • Dependent variable:  The variable that is being tested in an experiment, whose measure is directly related to the change of the independent variable (the dependent variable is dependent on the independent variable).  This is what you measure to prove or disprove your hypothesis.

Every experiment must also have a control group , which is a variable that remains unchanged for the duration of the experiment (Larson, 2015).  It is used to compare the results of the dependent variable.  In the case of the sample hypothesis above, a control variable would be a penny that does not receive any cleaning agent.

Research Methods

There are several ways to conduct an experiment.  The approach you take is dependent on your own strengths and weaknesses, the nature of your topic/hypothesis, and the resources you have available to conduct the experiment.  If you are unsure as to what research method you would like to use for your experiment, you can view our research methodologies guide below.  DragonQuest also has a Research Starter on research methods, located  here .

  • Research Methodologies by Pfeiffer Library Last Updated Aug 2, 2022 24247 views this year

When designing your experiment:

  • Make a list of materials that you will need to conduct your experiment.  If you will need to purchase additional materials, create a budget.
  • Consider the best locations for your experiment, especially if outside factors (weather, etc.) may effect the results.
  • If you need additional funding for an experiment, it is recommended to consider writing a research proposal for the entity from which you want to receive funding.  You can view our guide on writing research proposals below.

You can also watch the video below to learn more about designing experiments.  Or, you can view DragonQuest's Research Starter on experiments here .

  • Writing a Research Proposal by Pfeiffer Library Last Updated May 22, 2023 13378 views this year

When conducting your experiment:

  • Record or write down your experimental procedure so that each variable it tested equally.  It is likely that you will conduct your experiment more than once, so it is important that it is conducted exactly the same each time (Larson, 2015).
  • Be aware of outside factors that could impact your experiment and results.  Outside factors could include weather patterns, time of day, location, and temperature.
  • Wear protective equipment to keep yourself safe during the experiment.
  • Record your results on a transferrable platform (Google Spreadsheets, Microsoft Excel, etc.), especially if you plan on running statistical analyses on your data using a computer program.  You should also back your data up electronically so you do not lose it!
  • Use a table or chart to record data by hand.  The x-axis (row) of a chart should represent the independent variable, while the y-axis (column) should represent the dependent variable (Riverside Local Schools, n.d.).
  • Be prepared for unexpected results.  Some experiments can unexpectedly "go wrong" resulting in different data than planned.  Do not feel defeated if this happens in your experiment!  Once the tests are completed, you can analyze and determine why the experiment went differently.

Before arriving at a conclusion, you must look at all your evidence and analyze it.  Data analysis is "the process of interpreting the meaning of the data we have collected, organized, and displayed in the form of a chart or graph" (Riverside Local Schools, p. 1.).  If you did not create a graph or chart while recording your data, you may choose to create one to analyze your results.  Or, you may choose to create a more elaborate chart from the one you used in the experiment.  Graphs and charts organize data so that you can easily identify trends or patterns.  Patterns are similarities, differences, and relationships that tell you the "big picture" of an experiment (Riverside Local Schools, n.d.).

Questions to Consider

There are several things to consider when analyzing your data:

  • What exactly am I trying to discover from this data?
  • How does my data relate to my hypothesis?
  • Are there any noticeable patterns or trends in the data?  If so, what do these patterns mean?
  • Is my data good quality?  Was my data skewed in any way?
  • Were there any limitations to retrieving this data during the experiment?

Once you have identified patterns or trends and considered the above questions, you can summarize your findings to draw your final conclusions.

Drawing conclusions is the final step in the scientific method.  It gives you the opportunity to combine your findings and communicate them to your audience.  A conclusion is "a summary of what you have learned from the experiment" (Riverside Local Schools, p. 1).  To draw a conclusion, you will compare your data analysis to your hypothesis and make a statement based on the comparison.  Your conclusion should answer the following questions:

  • Was your hypothesis correct?
  • Does my data support my hypothesis?
  • If your hypothesis was incorrect, what did you learn from the experiment?
  • Do you need to change a variable if the experiment is repeated?
  • Is your data coherent and easy to understand?
  • If the experiment failed, what did you learn?

A strong conclusion should also (American Psychological Association, 2021):

  • Be justifiable by the data you collected.
  • Provide generalizations that are limited to the sample you studied.
  • Relate your preliminary research (background information) to your experiment and state how your conclusion is relevant.
  • Be logical and address any potential discrepancies (American Psychological Association, 2021).

Reporting Your Results

Once you have drawn your conclusions, you will communicate your results to others.  This can be in the form of a formal research paper, presentation, or assignment that you submit to an instructor for a grade.  If you are looking to submit an original work to an academic journal, it will require approval and undergo peer-review before being published.  However, it is important to be aware of predatory publishers.  You can view our guide on predatory publishing below.

  • Predatory Publishing by Pfeiffer Library Last Updated Aug 2, 2023 375 views this year
  • << Previous: Welcome
  • Next: Scientific Method Resources >>
  • Last Updated: Mar 30, 2023 2:24 PM
  • URL: https://library.tiffin.edu/thescientificmethod

IMAGES

  1. Formula for Using the Scientific Method

    in the scientific method a hypothesis is an) observation

  2. Mapa Conceptual Metodo Cientifico Hypothesis Scientific Method Images

    in the scientific method a hypothesis is an) observation

  3. PPT

    in the scientific method a hypothesis is an) observation

  4. Scientific Method

    in the scientific method a hypothesis is an) observation

  5. Scientific Method: Definition and Examples

    in the scientific method a hypothesis is an) observation

  6. Scientific Method Worksheet & Example for Kids

    in the scientific method a hypothesis is an) observation

VIDEO

  1. The Scientific Method

  2. What Is A Hypothesis?

  3. Scientific Method Steps Part 3 (Types of Variables)

  4. Foundations of Science#1: The Scientific Method

  5. Scientific Method Vocab: Hypothesis Example

  6. 123-652 Research Day 1 Part 1

COMMENTS

  1. The scientific method (article)

    The scientific method. At the core of biology and other sciences lies a problem-solving approach called the scientific method. The scientific method has five basic steps, plus one feedback step: Make an observation. Ask a question. Form a hypothesis, or testable explanation. Make a prediction based on the hypothesis.

  2. Scientific Method: Definition, Steps, Examples, Uses

    Steps of Scientific Method. There are seven steps of the scientific method such as: Make an observation. Ask a question. Background research/ Research the topic. Formulate a hypothesis. Conduct an experiment to test the hypothesis. Data record and analysis. Draw a conclusion.

  3. Scientific Method: Definition and Examples

    The scientific method is a series of steps followed by scientific investigators to answer specific questions about the natural world. It involves making observations, formulating a hypothesis, and conducting scientific experiments. Scientific inquiry starts with an observation followed by the formulation of a question about what has been ...

  4. 2.2: The Scientific Method

    Figure \(\PageIndex{g}\): The scientific method is a series of defined steps that include experiments and careful observation. The steps are as follows: make an observation; ask a question; form a hypothesis that answers the question; make a prediction based on the hypothesis; do an experiment to test the prediction; analyze the results; and ...

  5. What Are The Steps Of The Scientific Method?

    The scientific method is a process that includes several steps: First, an observation or question arises about a phenomenon. Then a hypothesis is formulated to explain the phenomenon, which is used to make predictions about other related occurrences or to predict the results of new observations quantitatively. Finally, these predictions are put to the test through experiments or further ...

  6. Scientific Method: Observation, Hypothesis and Experiment

    The scientific method is a detailed, empirical problem-solving process used by biologists and other scientists. This iterative approach involves formulating a question based on observation, developing a testable potential explanation for the observation (called a hypothesis), making and testing predictions based on the hypothesis, and using the findings to create new hypotheses and predictions ...

  7. Scientific hypothesis

    scientific hypothesis, an idea that proposes a tentative explanation about a phenomenon or a narrow set of phenomena observed in the natural world.The two primary features of a scientific hypothesis are falsifiability and testability, which are reflected in an "If…then" statement summarizing the idea and in the ability to be supported or refuted through observation and experimentation.

  8. Scientific method

    The scientific method is an empirical method for acquiring knowledge that has characterized the development of science since at least the 17th century. (For notable practitioners in previous centuries, see history of scientific method.). The scientific method involves careful observation coupled with rigorous scepticism, because cognitive assumptions can distort the interpretation of the ...

  9. The scientific method (video)

    The scientific method. The scientific method is a logical approach to understanding the world. It starts with an observation, followed by a question. A testable explanation or hypothesis is then created. An experiment is designed to test the hypothesis, and based on the results, the hypothesis is refined.

  10. Science and the scientific method: Definitions and examples

    Some key underpinnings to the scientific method: The hypothesis must be testable and falsifiable, ... In science, a theory is the framework for observations and facts, Tanner told Live Science.

  11. 1.1C: The Scientific Method

    The scientific method can be applied to almost all fields of study as a logical, rational, problem-solving method. Figure 1.1C. 1 1.1 C. 1: Sir Francis Bacon: Sir Francis Bacon (1561-1626) is credited with being the first to define the scientific method. The scientific process typically starts with an observation (often a problem to be solved ...

  12. What Is a Hypothesis? The Scientific Method

    A hypothesis (plural hypotheses) is a proposed explanation for an observation. The definition depends on the subject. In science, a hypothesis is part of the scientific method. It is a prediction or explanation that is tested by an experiment. Observations and experiments may disprove a scientific hypothesis, but can never entirely prove one.

  13. The scientific method (article)

    The scientific method. At the core of physics and other sciences lies a problem-solving approach called the scientific method. The scientific method has five basic steps, plus one feedback step: Make an observation. Ask a question. Form a hypothesis, or testable explanation. Make a prediction based on the hypothesis.

  14. 1.2: The Scientific Method

    A hypothesis is an educated (based on prior knowledge or a new viewpoint) explanation for an event or observation. It is typically most useful if a scientific hypothesis can be tested. This requires that the tools to make informative measurements on the system exist and that the experimenter has sufficient control over the system in question to ...

  15. Steps of the Scientific Method

    If your hypothesis is disproved, then you can go back with the new information gained and create a new hypothesis to start the scientific process over again. Steps of the Scientific Method. 1. Ask a Question. ... But scientists always strive to keep to the core principles of the scientific method by using observations, experiments, and data to ...

  16. The Scientific Method

    The next stage of the Scientific Method is known as the "hypothesis." This word basically means "a possible solution to a problem, based on knowledge and research." ... All of the first stage of the Scientific Method -- the observation, or research stage -- is designed to help you express a problem in a single question ("Does the amount of ...

  17. Biology and the scientific method review

    Meaning. Biology. The study of living things. Observation. Noticing and describing events in an orderly way. Hypothesis. A scientific explanation that can be tested through experimentation or observation. Controlled experiment. An experiment in which only one variable is changed.

  18. What is the Scientific Method: How does it work and why is it important

    The scientific method is a systematic process involving steps like defining questions, forming hypotheses, conducting experiments, and analyzing data. It minimizes biases and enables replicable research, leading to groundbreaking discoveries like Einstein's theory of relativity, penicillin, and the structure of DNA.

  19. 6 Steps of the Scientific Method

    Hypothesis Propose a hypothesis. This is a sort of educated guess about what you expect. It is a statement used to predict the outcome of an experiment. Usually, a hypothesis is written in terms of cause and effect. ... In this model, the first step of the scientific method is to make observations. Really, even if you don't make observations ...

  20. The Scientific Method Tutorial

    The Scientific Method Steps in the Scientific Method. There is a great deal of variation in the specific techniques scientists use explore the natural world. However, the following steps characterize the majority of scientific investigations: Step 1: Make observations Step 2: Propose a hypothesis to explain observations

  21. Scientific Method

    The scientific method is a series of processes that people can use to gather knowledge about the world around them, improve that knowledge, and attempt to explain why and/or how things occur. This method involves making observations, forming questions, making hypotheses, doing an experiment, analyzing the data, and forming a conclusion.

  22. 1.1: The Scientific Method

    The Scientific Method. Biologists study the living world by posing questions about it and seeking science-based responses. The scientific method is a method of research with defined steps that include experiments and careful observation. The scientific method was used even in ancient times, but it was first documented by England's Sir Francis Bacon (1561-1626; Figure \(\PageIndex{2 ...

  23. What is the scientific method?

    According to Kosso (2011), the scientific method is a specific step-by-step method that aims to answer a question or prove a hypothesis. It is the process used among all scientific disciplines and is used to conduct both small and large experiments. It has been used for centuries to solve scientific problems and identify solutions.

  24. A TEE-Based Federated Privacy Protection Method: Proposal and ...

    With the continuous enhancement of privacy protection globally, there is a problem for the traditional machine learning paradigm, which is that training data cannot be obtained from a single place. Federated learning is considered a viable technique for preserving privacy that can train deep models with decentralized data. Aiming at two-party vertical federated learning, and at common attack ...