Logo for University System of New Hampshire Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Evan Glazer (University of Georgia)

Editor’s Note: Dr. Glazer chose to use the term Problem-based Instruction and Inquiry, but my reading and other references to this chapter also use the term Problem-based Learning. The reader can assume the terms are equivalent.

Description

  • Problem-based inquiry is an effort to challenge students to address real-world problems and resolve realistic dilemmas.

Such problems create opportunities for meaningful activities that engage students in problem solving and higher-ordered thinking in authentic settings. Many textbooks attempt to promote these skills through contrived settings without relevance to students’ lives or interests. A notorious algebra problem concerns the time at which two railway trains will pass each other:

Two trains leave different stations headed toward each other. Station A is 500 miles west of Station B. Train A leaves station A at 12:00 pm traveling toward Station B at a rate of 60 miles per hour. Train B leaves Station B at 2:30 pm for Station A at a rate of 45 miles per hour. At what time will the trains meet?

Reading this question, one might respond, “Who cares?”, or, “Why do we need to know this?” Such questions have created substantial anxiety among students and have, perhaps, even been the cause of nightmares. Critics would argue that classic “story problems” leave a lasting impression of meaningless efforts to confuse and torment students, as if they have come from hell’s library. Problem-based inquiry, on the other hand, intends to engage students in relevant, realistic problems.

Several changes would need to be made in the above problem to promote problem-based inquiry. It would first have to be acknowledged that the trains are not, in fact, traveling at constant rates when they are in motion; negotiating curves or changing tracks at high speeds can result in accidents.

Further, all of the information about the problem cannot be presented to the learner at the outset; that is, some ambiguity must exist in the context so that students have an opportunity to engage in a problem-solving activity. In addition, the situation should involve a meaningful scenario. Suppose that a person intends to catch a connecting train at the second station and requires a time-efficient itinerary? What if we are not given data about the trains, but instead, the outcome of a particular event, such as an accident?

Why should we use problem-based inquiry to help students learn?

The American educational system has been criticized for having an underachieving curriculum that leads students to memorize and regurgitate facts that do not apply to their lives (Martin, 1987; Paul, 1993). Many claim that the traditional classroom environment, with its orderly conduct and didactic teaching methods in which the teacher dispenses information, has greatly inhibited students’ opportunities to think critically (Dossey et al., 1988; Goodlad, 1984; Wood, 1987). Problem-based inquiry is an attempt to overcome these obstacles and confront the concerns presented by the National Assessment of Educational Progress:

If an unfriendly foreign power had attempted to impose on America the mediocre educational performance that exists today, we might well have viewed it as an act of war. We have, in effect, been committing an act of unthinking, unilateral educational disarmament. (A Nation at Risk, 1983)

Problem-based inquiry emphasizes learning as a process that involves problem solving and critical thinking in situated contexts. It provides opportunities to address broader learning goals that focus on preparing students for active and responsible citizenship. Students gain experience in tackling realistic problems, and emphasis is placed on using communication, cooperation, and resources to formulate ideas and develop reasoning skills.

What is a framework for a problem-based inquiry?

Situated cognition, constructivism, social learning, and communities of practice are assumed theories of learning and cognition in problem-based inquiry environments. These theories have common themes about the context and the process of learning and are often associated.

Characteristics

Some common characteristics in problem-based learning models:

Activity is grounded in a general question about a problem that has multiple possible answers and methods for addressing the question. Each problem has a general question that guides the overall task followed by ill-structured problems or questions that are generated throughout the problem-solving process. That is, to address the larger question, students must derive and investigate smaller problems or questions that relate to the findings and implications of the broader goal. The problems or questions thus created are most likely new to the students and lack known definitive methods or answers that have been predetermined by the teacher.

Learning is student-centered; the teacher acts as facilitator. In essence, the teacher creates an environment where students take ownership in the direction and content of their learning.

Students work collaboratively towards addressing the general question . All of the students work together to attain the shared goal of producing a solution to the problem. Consequently, the groups co-depend on each other’s performance and contributions in order to make their own advances in reasoning toward answering the research questions and the overall problem.

Learning is driven by the context of the problem and is not bound by an established curriculum. In this environment, students determine what and how much they need to learn in order to accomplish a specific task. Consequently, acquired information and learned concepts and strategies are tied directly to the context of the learning situation. Learning is not confined to a preset curriculum. Creation of a final product is not a necessary requirement of all problem-based inquiry models.

Project-based learning models most often include this type of product as an integral part of the learning process, because learning is expected to occur primarily in the act of creating something. Unlike problem based inquiry models, project-based learning does not necessarily address a real-world problem, nor does it focus on providing argumentation for resolution of an issue.

In a problem-based inquiry setting, there is greater emphasis on problem-solving, analysis, resolution, and explanation of an authentic dilemma. Sometimes this analysis and explanation is represented in the form of a project, but it can also take the form of verbal debate and written summary.

Instructional models and applications

  • There is no single method for designing problem-based inquiry learning environments.

Various techniques have been used to generate the problem and stimulate learning. Promoting student-ownership, using a particular medium to focus attention, telling stories, simulating and recreating events, and utilizing resources and data on the Internet are among them. The instructional model, problem based learning will be discussed next with attention to instructional strategies and practical examples.

Problem-Based Learning

  • Problem-based learning (PBL) is an instructional strategy in which students actively resolve complex problems in realistic situations.

It can be used to teach individual lessons, units, or even entire curricula. PBL is often approached in a team environment with emphasis on building skills related to consensual decision making, dialogue and discussion, team maintenance, conflict management, and team leadership. While the fundamental approach of problem solving in situated environments has been used throughout the history of schooling, the term PBL did not appear until the 1970s and was devised as an alternative approach to medical education.

In most medical programs, students initially take a series of fact intensive courses in biology and anatomy and then participate in a field experience as a medical resident in a hospital or clinic. However, Barrows reported that, unfortunately, medical residents frequently had difficulty applying knowledge from their classroom experiences in work-related, problem-solving situations. He argued that the classical framework of learning medical knowledge first in classrooms through studying and testing was too passive and removed from context to take on meaning.

Consequently, PBL was first seen as a medical field immersion experience whereby students learned about their medical specialty through direct engagement in realistic problems and gradual apprenticeship in natural or simulated settings. Problem solving is emphasized as an initial area of learning and development in PBL medical programs more so than memorizing a series of facts outside their natural context.

In addition to the field of medicine, PBL is used in many areas of education and training. In academic courses, PBL is used as a tool to help students understand the utility of a particular concept or study. For example, students may learn about recycling and materials as they determine methods that will reduce the county landfill problem.

In addition, alternative education programs have been created with a PBL emphasis to help at-risk students learn in a different way through partnerships with local businesses and government. In vocational education, PBL experiences often emphasize participation in natural settings.

For example, students in architecture address the problem of designing homes for impoverished areas. Many of the residents need safe housing and cannot afford to purchase typical homes. Consequently, students learn about architectural design and resolving the problem as they construct homes made from recycled materials. In business and the military, simulations are used as a means of instruction in PBL. The affective and physiological stress associated with warfare can influence strategic planning, so PBL in military settings promotes the use of “war games” as a tactic for facing authentic crises.

In business settings, simulations of “what if” scenarios are used to train managers in various strategies and problem-solving approaches to conflict resolution. In both military and business settings, the simulation is a tool that provides an opportunity to not only address realistic problems but to learn from mistakes in a more forgiving way than in an authentic context.

Designing the learning environment

The following elements are commonly associated with PBL activities.

Problem generation: The problems must address concepts and principles relevant to the content domain. Problems are not investigated by students solely for problem solving experiences but as a means of understanding the subject area. Some PBL activities incorporate multidisciplinary approaches, assuming the teacher can provide and coordinate needed resources such as additional content, instructional support, and other teachers. In addition, the problems must relate to real issues that are present in society or students’ lives. Contrived scenarios detract from the perceived usefulness of a concept.

Problem presentation: Students must “own” the problem, either by creating or selecting it. Ownership also implies that their contributions affect the outcome of solving the problem. Thus, more than one solution and more than one method of achieving a solution to the problem are often possible. Furthermore, ownership means that students take responsibility for representing and communicating their work in a unique way.

Predetermined formats of problem structure and analysis towards resolution are not recommended; however, the problem should be presented such that the information in the problem does not call attention to critical factors in the case that will lead to immediate resolution. Ownership also suggests that students will ask further questions, reveal further information, and synthesize critical factors throughout the problem-solving process.

Teacher role: Teachers act primarily as cognitive coaches by facilitating learning and modeling higher order thinking and meta cognitive skills. As facilitators, teachers give students control over how they learn and provide support and structure in the direction of their learning. They help the class create a common framework of expectations using tools such as general guidelines and time lines.

As cognitive modelers, teachers think aloud about strategies and questions that influence how students manage the progress of their learning and accomplish group tasks. In addition, teachers continually question students about the concepts they are learning in the context of the problem in order to probe their understanding, challenge their thinking, and help them deepen or extend their ideas.

Student role: Students first define or select an ill-structured problem that has no obvious solution. They develop alternative hypotheses to resolve the problem and discuss and negotiate their conjectures in a group. Next, they access, evaluate, and utilize data from a variety of available sources to support or refute their hypotheses. They may alter, develop, or synthesize hypotheses in light of new information. Finally, they develop clearly stated solutions that fit the problem and its inherent conditions, based upon information and reasoning to support their arguments. Solutions can be in the form of essays, presentations, or projects.

Maine School Engages Kids With Problem-Solving Challenges (11:37)

https://youtu.be/i17F-b5GG94

[PBS NewsHour].(2013, May 6). Maine School Engages Kids with Problem Solving Challenges. [Video File]. Retrieve from https://youtu.be/i17F-b5GG94

Special correspondent John Tulenko of Leaning Matters reports on a public middle school in Portland, Maine that is taking a different approach to teaching students. Teachers have swapped traditional curriculum for an unusually comprehensive science curriculum that emphasizes problem-solving, with a little help from some robots.

Effectiveness of Problem and Inquiry-based learning.

Why does inquiry-based learning only have an effect size of 0.31 when it is an approach to learning that seems to engage students and teachers so readily in the process of learning?

When is the right and wrong time to introduce inquiry and problem based learning?

Watch video from John Hattie on inquiry and problem-based learning, (2:11 minutes).

[Corwin]. (2015, Nov. 9). John Hattie on inquiry-based learning. [Video File]. Retrieved from https://youtu.be/YUooOYbgSUg.

Glazer, E. (2010) Emerging Perspectives on Learning, Teaching, and Technology, Global Text, Michael Orey. (Chapter 14) Attribution CC 3.0. Retrieved from https://textbookequity.org/Textbooks/Orey_Emerging_Perspectives_Learning.pdf

Instructional Methods, Strategies and Technologies to Meet the Needs of All Learners Copyright © 2017 by Evan Glazer (University of Georgia) is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

practical examples of problem solving in education

Worked Examples

Decorative - Chalkboard with math formulas written in white chalk

What are worked examples?

Worked examples are step-by-step illustrations of the process required to complete a task or solve a problem. In a worked example, students are provided with the task or problem formulation, the procedure or the step-by-step process for solving the problem, and the solution. When using worked examples effectively, instructors engage students in self-explaining these procedures or solutions, encouraging them to reflect more deeply on the principles illustrated in the worked example. Worked examples can be designed to teach well-structured tasks, such as applying Newton’s Second Law, as well as more ill-structured tasks, such as constructing an argument, modeling biological pathways, or devising a mathematical proof (Renkl, 2023).

Worked examples are useful in the initial acquisition of cognitive skills because they allow students to understand principles and their applications more deeply before applying them on their own (Renkl, 2014b). Worked examples have shown to be particularly effective for novice learners, who may experience high levels of cognitive load when learning new concepts and procedures simultaneously (Renkl, 2014a). In fact, worked examples tend to be more efficient and effective for initial skill acquisition compared to problem solving (Renkl, 2014a). If designed well, worked examples can provide models for learners to follow when tackling similar problems, allowing them to transfer knowledge from one task to another (see Caveats section below).

Worked examples can be applied to a wide range of disciplines and contexts beyond STEM.

Worked examples can be created for any procedural task. For instance, in the field of law, worked examples have been used to teach students how to reason through legal cases and construct legal arguments (Nievelstein et al ., 2013; Schworm & Renkl, 2007), while worked examples have similarly been used to assist learners in understanding negotiation strategies (Gentner et al. , 2003). In language and literature, worked examples can be used to help students write essays or understand different writing styles (Kyun et al ., 2013), while in the arts, worked examples have been used to teach students to differentiate between artistic styles (Rourke & Sweller, 2009).

Furthermore, worked examples can be used inside and outside of class time and for a variety of class types. For instance, during class, instructors can either demonstrate a worked example interactively or provide students with a written worked example for students to work on individually and/or in groups. Outside of class, worked examples can be provided for students to study on their own time (see Caveats section for what to avoid when implementing worked examples). In lab-based courses, for example, instructors can convert any demonstration, which is often performed when modeling a procedure, into an effective worked example by asking students to reflect on specific and important aspects of the demonstration (e.g., Why would you do X instead of Y first? What are the advantages and disadvantages of using this type of protocol for isolating X?).

Why are worked examples important?

Early research conducted by Sweller and Cooper (1985) showed that after an initial introduction to a series of algebraic problems, replacing practice problems with worked example counterparts resulted in higher learning gains. The worked example condition was also more efficient; learners given problems to solve took almost six times longer to complete the learning sequence and had more errors than those provided with worked examples to study from. Subsequent studies have supported the finding that if implemented well, studying worked examples is more effective in the initial stages of learning than learning primarily through problem solving (Figure 1 and Salden, Koedinger, Renkl, Aleven, & McLaren, 2010). Though students may usually be provided with examples or demonstrations in the initial stages of learning, the number of worked examples is typically low and insufficient for learning underlying principles. These demonstrations are also often done passively with little student engagement, which does not lead to deep learning and neutralizes the worked example effect. In fact, when implementing worked examples with features that get students to actively study the solutions (see the Caveats section for more), the worked example effect nearly doubles (Hattie, 2009).

Figure 1. Worked example problems result in faster learning and better performance in comparison to problem solving. After an initial period of instruction where the theory for solving certain geometry problems was explained and illustrated with worked examples, students were randomly placed in problem-solving conditions (PH and PL) or worked example conditions (WH and WL). In the problem-solving conditions, students were given a series of geometry problems to solve, and after the students attempted the problems, they could study their solutions. In the worked example conditions, students were given the exact same series of problems with their solutions upfront and instructed to study them. The problem-solving and worked example conditions came in two flavors: low-variability and high-variability. The low-variability problems (PL = problem solving with low-variability problems and WL= worked examples with low-variability problems) only differed in values, whereas the high variability problems (PH = problem solving with high-variability problems and WH= worked examples with high-variability problems) differed in values and problem format. The worked example conditions (both low and high variability) required less instruction time and also yielded better performance at the end of the intervention than either of the problem-solving conditions. Problem variability also had a substantial influence in the worked example condition, with higher variability worked examples resulting in better performance as well. Adapted from Paas, F. G. W. C., & van Merrienboer, J. J. G. (1994).

Why are worked examples more effective for initial skill acquisition than practice?

When introducing a new task or skill, it may seem counterintuitive to provide students with worked examples to study instead of giving them practice time to solve or complete the task. When students are introduced to a new task, they often do not have a firm grasp of the material and principles being represented in the task and may resort to ineffective problem-solving strategies such as aimless trial-and-error or plug-and-chug (Renkl, A., 2023). Trial-and-error involves trying various solutions without a proper problem-solving strategy, while plug-and-chug involves looking for existing problems with similar surface-level features without considering if their underlying structure aligns with the current problem. For example, when faced with a mechanics problem presented in the context of an inclined plane, novice students may search for another “inclined plane problem” without considering whether the underlying concept is the same (Figure 2 and Chi et al ., 1989).

Figure 2. Differences in categorization of physics problems between novices and experts. Novice students tend to categorize example physics problems such as the two different examples represented in this figure, based on their literal features: "inclined plane problems." In contrast, experts tend to categorize problems based on their deep structure: illustration of physics concepts such as conservation of energy as shown in this example. Adapted from Chi, M.T.H., Feltovich, P.J. and Glaser, R. (1981).

These ineffective problem-solving strategies are taxing on cognitive load because they lead students down unproductive paths while already processing a lot of new information, including understanding newly introduced concepts and making sense of the problem being presented. Engaging prematurely in problem solving without fully understanding the task domain and procedure leaves little working memory capacity for learners to understand the validity of a particular solution or the ability to integrate new knowledge for future use (Sweller, 1988).

Providing step-by-step illustrations of a solution or procedure in worked examples reduces cognitive load by allowing students to focus their cognitive resources on understanding the principles illustrated in the solution. Therefore, providing worked examples for students to study can help them understand the principles and strategies needed to approach the task effectively, without overtaxing cognitive load (Clark & Mayer, 2011).

As learners become more proficient, educators can transition to more practice exercises and tasks to help students automate problem-solving strategies or procedures (see Caveats section below). In fact, when students have sufficient prior knowledge about the specific task or problem, asking students to study worked examples can decrease competence in performing said task (often called expertise reversal, Kalyuga & Renkl 2010). It is important for instructors to balance the use of worked examples with independent practice to maximize learning outcomes for students at different stages of proficiency within a learning sequence.

7.013 – Introductory Biology

During recitations, students were provided with a handout containing worked examples. The teaching assistants (TAs) would lead the class through at least one of the worked examples, step by step, to ensure that students understood the problem-solving strategies illustrated in those worked examples. Then, students were given a set of slightly more complex but similar additional problems to solve independently. One or several students would then volunteer to guide the class through the steps they used to solve these additional problems. By incorporating both worked examples and problems to solve for a given concept, students had the opportunity to more deeply understand the concepts learned, and instructors could better monitor progress by observing what happened when the surface features and the complexity of the problems changed.

21A.819.1X – How To Conduct Conversational Social Science Research

Students were provided with two examples of an informal interview protocol and informed which one was well constructed and which was not. After reading both worked examples, students were asked to annotate each example and provide suggestions for improvement. They were then able to review the instructor’s own annotations and explanations for suggestions. By beginning with the knowledge of which examples demonstrated good or poor interview protocol (correct and incorrect worked examples), students could engage more meaningfully with the worked examples, reflecting on their annotations and exploring their reasoning for suggested improvements. Using incorrect worked examples, either alone or in combination with correct examples, has been shown to be more effective than using correct worked examples alone (Booth et al ., 2013).

practical examples of problem solving in education

The instructors in this course also utilized worked examples of interview techniques by providing example videos of interviews. One video demonstrated good interview techniques (a correct worked example), while the other demonstrated poor interview techniques (an incorrect worked example). After watching these videos, students were asked to assess them for improvements regarding best practices in conversational interviewing. They were then able to compare their assessments with the instructor’s explanations, designed to help reinforce their understanding of effective interview techniques.

Caveats (and how to address them)

Worked examples effectively teach new tasks or solve new problem types. However, the worked example effect can be negated if certain design features are not considered. Here are some concerns that instructors have often brought up about worked examples and strategies for ameliorating them:

1. Students might passively read solutions without extracting underlying principles.

While worked examples have shown to be effective, their effectiveness depends on students cognitively engaging with them. Unfortunately, worked examples are often presented passively, without requiring engagement. Research shows that few students will naturally engage in self-explanation strategies when studying solutions. To address this issue, it is recommended that students be encouraged to self-explain the solutions. This can be accomplished in a variety of ways using self-explanation strategies. For example, instructors can present a solution step by step and embed pertinent questions that help students reflect on the deeper structure of the problem, such as “Why was this strategy used?” and “What was the principle applied here?” Self-explanation strategies promote deeper thinking by requiring students to explain the rationale of the solution to themselves and its relation to the core concepts. For additional information on self-explanation strategies, see the Resources section.

2. Students might memorize solutions without deepening their understanding.

It is important to vary the surface features of example tasks or problems to prevent rote memorization of solutions. This can be achieved by presenting multiple worked examples that appear dissimilar on the surface, but are representations of the same concept (see Figures 1 & 2). When exposed to contrasting problems that address the same core concept, students can more easily identify the commonalities that unify all the example problems, the deeper structure, and will be less likely to memorize solutions based on surface features (Renkl, 2014a and Paas & van Merrienboer, 1994).

3. Worked examples may not prepare students to approach tasks or solve problems independently.

When students are introduced to a new task, worked examples are more effective than having students problem solve. However, as they deepen in understanding how to perform the task or solve the problem, it is beneficial to encourage them to attempt the tasks independently to develop proficiency and automaticity (Renkl, 2014b). Instructors can do this by alternating worked examples and problems to solve in an increasingly more complex task sequence. Additionally, instructors can reduce the support provided in worked examples, such as having students solve more parts of the example and providing fewer worked-out steps. Faded support is helpful in transitioning from studying worked examples to problem solving (Renkl & Atkinson, 2003), particularly if tasks and problems are complex and challenging.

  • Renkl, A. (2014a). Learning from worked examples: How to prepare students for meaningful problem solving. In V. A. Benassi, C. E. Overson, & C. M. Hakala (Eds.), Applying science of learning in education: Infusing psychological science into the curriculum (pp. 118–130). Society for the Teaching of Psychology. HTTP (downloaded PDF freely available)
  • Renkl, A. (2023). Using Worked Examples for Ill-Structured Learning Content. In Overson, C. E., Hakala, C. M., Kordonowy, L.L., and Benassi, V. A. & (Eds.), In Their Own Words: What Scholars and Teachers Want You To Know About Why and How To Apply the Science of Learning in Your Academic Setting (pp. 207–224). Society for the Teaching of Psychology. HTTP (downloaded PDF freely available)

Booth, J. L., Lange, K. E., Koedinger, K. R., & Newton, K. J. (2013). Using example problems to improve student learning in algebra: Differentiating between correct and incorrect examples. Learning and Instruction , 25, 24–34. http://doi.org/10.1016/j.learninstruc.2012.11.002

Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self‐Explanations: How Students Study and Use Examples in Learning to Solve Problems. Cognitive Science , 13(2), 145–182. http://doi.org/10.1207/s15516709cog1302_1

Chi, M.T.H., Feltovich, P.J. and Glaser, R. (1981). Categorization and Representation of Physics Problems by Experts and Novices. Cognitive Science , 5, 121-152. https://doi.org/10.1207/s15516709cog0502_2

Clark, R.C. & Mayer, R.E. (2011). Leveraging Examples in e-Learning. In e-Learning and the Science of Instruction (eds R.C. Clark and R.E. Mayer). https://doi.org/10.1002/9781118255971.ch11

Gentner, D., Loewenstein, J., & Thompson, L. (2003). Learning and transfer: A general role for analogical encoding. Journal of Educational Psychology , 95(2), 393-408. https://doi.org/10.1037/0022- 0663.95.2.393

Hattie, J. A. C. (2009). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. New York, NY: Routledge.

Kalyuga, S., & Renkl, A. (2010). Expertise reversal effect and its instructional implications: Introduction to the special issue. Instructional Science , 38(3), 209–215. http://doi.org/10.1007/s11251-009-9102-0

Kyun, S., Kalyuga, S., & Sweller, J. (2013). The Effect of Worked Examples When Learning to Write Essays in English Literature. The Journal of Experimental Education , 81(3), 385–408. http://doi.org/10.1080/00220973.2012.727884

Nievelstein, F., van Gog, T., van Dijck, G., & Boshuizen, H. P. A. (2013). The worked example and expertise reversal effect in less structured tasks: Learning to reason about legal cases. Contemporary Educational Psychology , 38(2), 118-125. https://doi.org/10.1016/j.cedpsych.2012.12.004

Paas, F. G. W. C., & van Merrienboer, J. J. G. (1994). Variability of worked examples and transfer of geometrical problem-solving skills: A cognitive-load approach. Journal of Educational Psychology , 86(1), 122–133. http://doi.org/10.1037/0022-0663.86.1.122

Renkl, A. (2014a). Learning from worked examples: How to prepare students for meaningful problem solving. In V. A. Benassi, C. E. Overson, & C. M. Hakala (Eds.), Applying science of learning in education: Infusing psychological science into the curriculum (pp. 118–130). Society for the Teaching of Psychology.

Renkl, A. (2014b). Toward an instructionally oriented theory of example-based learning. Cognitive Science: a Multidisciplinary Journal , 38(1), 1–37. http://doi.org/10.1111/cogs.12086

Renkl, A., & Atkinson, R. K. (2010). Structuring the Transition From Example Study to Problem Solving in Cognitive Skill Acquisition: A Cognitive Load Perspective. Educational Psychologist . http://doi.org/10.1207/S15326985EP3801_3

Renkl, A. (2023). Using Worked Examples for Ill-Structured Learning Content. In Overson, C. E.,  Hakala, C. M., Kordonowy, L.L., and Benassi, V. A.  & (Eds.), In Their Own Words: What Scholars and Teachers Want You To KNow About Why and How To Apply the Science of Learning in Your Academic Setting (pp. 207–224). Society for the Teaching of Psychology.

Rourke, A., & Sweller, J. (2009). The worked-example effect using ill-defined problems: Learning to recognise designers’ styles. Learning and Instruction, 19(2), 185–199. http://doi.org/10.1016/j.learninstruc.2008.03.006

Salden, R. J. C. M., Koedinger, K. R., Renkl, A., Aleven, V., & McLaren, B. M. (2010). Accounting for Beneficial Effects of Worked Examples in Tutored Problem Solving. Educational Psychology Review, 22(4), 379–392. http://doi.org/10.1007/s10648-010-9143-6

Schworm, S., & Renkl, A. (2007). Learning argumentation skills through the use of prompts for self-explaining examples. Journal of Educational Psychology , 99(2), 285–296. http://doi.org/10.1037/0022-0663.99.2.285

Sweller, J. (1988). Cognitive Load During Problem Solving: Effects on Learning. Cognitive Science, 12: 257–285. http://doi.org/10.1207/s15516709cog1202_4

Sweller, J., & Cooper, G. A. (1985). The use of worked examples as a substitute for problem solving in learning algebra. Cognition and Instruction, 2 (1), 59–89. https://doi.org/10.1207/s1532690xci0201_3

Future Education Magazine Logo

Problem-Based Learning: A Transformative Pedagogy

practical examples of problem solving in education

Conventional approaches are consistently under review to align with the changing requirements of learners. A pedagogical innovation at the forefront of this evolution is Problem-Based Learning (PBL), which redirects the emphasis from the passive acquisition of information to dynamic problem-solving. This in-depth examination delves into the nuanced intricacies of Problem-Based Learning, elucidating its significant influence on the learning journey. Furthermore, practical examples underscore its adaptability, illustrating how PBL is applied across various academic disciplines.

Problem-Based Learning represents a transformative shift in educational methodologies, fostering active engagement and critical thinking among learners. By immersing students in authentic problem-solving scenarios, PBL instills a sense of relevance and purpose in their educational pursuits. This article explores the multifaceted process of Problem-Based Learning, illuminating its impact on the overall learning experience. Through real-world applications across diverse fields, PBL emerges as an instrumental tool, preparing students with not only subject-specific knowledge but also essential skills for navigating the complexities of the modern world.

Understanding Problem-Based Learning (PBL):

Problem-Based Learning is fundamentally a student-centric methodology designed to immerse learners in contextualized problem-solving. Unlike traditional approaches where information is presented first, PBL initiates the learning process with authentic, ill-structured problems. These scenarios mirror real-world challenges, sparking curiosity and driving exploration. PBL is not confined to specific subjects; it is a versatile tool applicable across various disciplines.

The Problem-Based Learning Process:

1. introduction to the problem.

  • PBL commences with the presentation of a complex, real-world problem pertinent to the subject matter.
  • This initial step serves to capture the interest and curiosity of learners by introducing them to a scenario that mirrors professional challenges.

2. Problem Analysis and Definition

  • Students collaboratively analyze the presented problem, breaking it down to identify underlying issues and gaps in their knowledge.
  • This phase fosters critical thinking, communication skills, and the ability to extract essential information from complex situations.

3. Learning Objectives Identification

  • Through meticulous problem analysis, learners pinpoint the knowledge and skills required to address the identified issues.
  • This aligns learning objectives with practical problem-solving, ensuring a purposeful and goal-oriented educational experience.

4. Independent Study

Problem-Based Learning: 3 Best Examples | Future Education Magazine

  • Empowered with the identified learning objectives, students embark on independent research, acquiring the necessary knowledge and skills.
  • This stage promotes self-directed learning, encouraging learners to take ownership of their educational journey.

5. Collaborative Learning

  • PBL places a significant emphasis on group collaboration, as learners bring diverse perspectives and insights to the problem-solving process.
  • Through discussions, debates, and information sharing, students refine their understanding and coalesce individual expertise.

6. Application of Knowledge

  • Armed with the acquired knowledge, students propose and implement solutions to the original problem.
  • This hands-on application solidifies their understanding and prepares them for real-world challenges they may encounter in their future professions.

Impact on Learning:

1. engagement and motivation.

Problem-Based Learning: 3 Best Examples | Future Education Magazine

  • PBL kindles intrinsic motivation as learners grapple with authentic problems, fostering a sense of purpose and relevance.
  • The hands-on, practical nature of PBL keeps students engaged, leading to a more profound understanding of the subject matter.

2. Critical Thinking and Problem-Solving Skills

  • PBL hones critical thinking skills by immersing learners in open-ended problems that require analysis and solution synthesis.
  • The iterative nature of problem-solving in PBL cultivates resilience and adaptability, crucial for navigating professional challenges where solutions may not be straightforward.

3. Collaboration and Communication

  • Group-based problem-solving in PBL nurtures effective collaboration and communication skills.
  • Students learn to articulate their ideas, actively listen to peers, and collectively strategize, mirroring real-world teamwork dynamics.

4. Application of Knowledge in Real-World Context

  • PBL bridges the gap between theoretical knowledge and practical application, preparing learners for the complexities of professional environments.
  • The acquired knowledge is not isolated but integrated into a holistic understanding of real-world challenges, allowing students to see the direct relevance of their education.

Examples of Problem-Based Learning (PBL) Applications:

1. medical education.

Problem-Based Learning: 3 Best Examples | Future Education Magazine

PBL is extensively utilized in medical schools, where students diagnose and develop treatment plans for simulated patient cases, mirroring the challenges of medical practice.

Application: Medical students collaboratively work on cases, improving diagnostic skills and honing the ability to develop comprehensive treatment plans.

2. Engineering Design Challenges

Engineering courses leverage PBL for design challenges , where students collaborate to address complex engineering problems, fostering innovation and practical application.

Application: Engineering students engage in real-world design challenges, promoting creativity and preparing them for the intricacies of engineering projects.

3. Business Strategy Formulation

In business courses, PBL scenarios might involve formulating strategic plans for companies facing market challenges, and honing students’ strategic thinking and decision-making skills.

Application: Business students collaboratively devise strategic plans, enhancing their ability to analyze market dynamics and make informed decisions.

Conclusion:

Problem-based learning (PBL) emerges as a dynamic and impactful educational methodology that transcends the traditional model of passive information absorption. This approach revolutionizes the learning experience by turning it into an active, collaborative expedition marked by exploration and problem-solving. PBL achieves this transformation by immersing learners in authentic, real-world challenges, ensuring that education goes beyond theoretical concepts and directly applies to practical scenarios.

The significance of PBL extends beyond skill acquisition; it cultivates a perpetual passion for learning driven by curiosity and relevance. As students grapple with genuine problems, they develop critical thinking, problem-solving abilities, and a profound understanding of the subject matter. This not only prepares them for the intricacies of professional life but also nurtures a lifelong enthusiasm for acquiring knowledge. Problem-based learning emerges as a pivotal element, acting as a cornerstone in the preparation of individuals for the complexities of the modern world. Its ability to bridge the gap between theoretical knowledge and practical application positions PBL as a transformative force, empowering learners to navigate challenges with confidence and adaptability.

Also Read: 7 Important Steps of Project-Based Learning

Most Popular Stories

Minneapolis Education Support Professionals Reach Tentative Deal: A Win for MPS and MFT

Minneapolis Education Support Professionals Reach Tentative Deal: A Win for MPS and MFT

Source- People's World Minneapolis, MN - The Minneapolis education community breathed a sigh of relief as Minneapolis education support professionals

Genocide Education Work Group Put on Hold After Removal of Muslim Activist

Genocide Education Work Group Put on Hold After Removal of Muslim Activist

Source- Sahan Journal The Minnesota Department of Education recently found itself embroiled in controversy after the removal of a Muslim

Computer Science: Unraveling the Threads of Innovation

Computer Science: Unraveling the Threads of Innovation

In the vast tapestry of human achievement, few disciplines have woven together innovation and progress as intricately as the Computer

The Impact and Availability of Fully Funded Scholarships

The Impact and Availability of Fully Funded Scholarships

Fully funded scholarships represent a gateway to educational opportunities that transcend financial barriers. In recent years, the availability and impact

Education Department Scrambles to Make Up for Lost Time After FAFSA Blunders

Education Department Scrambles to Make Up for Lost Time After FAFSA Blunders

The Education Department is currently facing a monumental challenge as it races to address the fallout from a series of

Unlocking Global Opportunities: The Role and Impact of International Schools

Unlocking Global Opportunities: The Role and Impact of International Schools

In today’s interconnected world, the demand for high-quality education that prepares students for global challenges and opportunities has never been

Alpine School District Faces Backlash Over Special Education Restructuring

Alpine School District Faces Backlash Over Special Education Restructuring

Source-Daily Herald Josh Smith’s emotional plea echoed through the Alpine school board meeting as he advocated for his son Michael,

BCP Council to Pay £8k after Boy’s Education Injustice

BCP Council to Pay £8k after Boy’s Education Injustice

A recent ruling has put Bournemouth, Christchurch, and Poole (BCP) Council under scrutiny as they are mandated to pay £8,000

Join Our Newsletter!

Get the latest education updates delivered to your inbox.

Future Education Magazine Logo White

Future Education Magazine is an exceptional source of knowledge and resources for those looking to choose the right path in education. Whether you are a student, parent, educator, or education enthusiast, our magazine is committed to providing you with insightful and valuable content.

  • Higher Education
  • Professional Courses
  • Privacy Policy
  • Terms & Conditions
  • [email protected]
  • +1 (408) 520-9503
  • 3277 S White Rd #41 San Jose, CA 95148, United States

Copyright © 2024: Future Education Magazine | All rights reserved.

  • Author Rights
  • Diversity, Equity & Inclusion

Journal of Leadership Education

  • JOLE 2023 Special Issue
  • Editorial Staff
  • 20th Anniversary Issue
  • The Development of Problem-Solving Skills for Aspiring Educational Leaders

Jeremy D. Visone 10.12806/V17/I4/R3

Introduction

Solving problems is a quintessential aspect of the role of an educational leader. In particular, building leaders, such as principals, assistant principals, and deans of students, are frequently beset by situations that are complex, unique, and open-ended. There are often many possible pathways to resolve the situations, and an astute educational leader needs to consider many factors and constituencies before determining a plan of action. The realm of problem solving might include student misconduct, personnel matters, parental complaints, school culture, instructional leadership, as well as many other aspects of educational administration. Much consideration has been given to the development of problem-solving skills for educational leaders. This study was designed to answer the following research question: “How do aspiring educational leaders’ problem solving skills, as well as perceptions of their problem-solving skills, develop during a year-long graduate course sequence focused on school-level leadership that includes the presentation of real-world scenarios?” This mixed-methods study extends research about the development of problem-solving skills conducted with acting administrators (Leithwood & Steinbach, 1992, 1995).

The Nature of Problems

Before examining how educational leaders can process and solve problems effectively, it is worth considering the nature of problems. Allison (1996) posited simply that problems are situations that require thought and/or actions. Further, there are different types of problems presented to educational leaders. First, there are  well-structured problems , which can be defined as those with clear goals and relatively prescribed resolution pathways, including an easy way of determining whether goals were met (Allison, 1996).

Conversely,  ill-structured problems  are those with more open-ended profiles, whereby the goals, resolution pathways, or evidence of success are not necessarily clear. These types of problems could also be considered  unstructured  (Leithwood & Steinbach, 1995) or  open-design  (Allison, 1996). Many of the problems presented to educational leaders are unstructured problems. For example, a principal must decide how to discipline children who misbehave, taking into consideration their disciplinary history, rules and protocols of the school, and other contextual factors; determine how best to raise student achievement (Duke, 2014); and resolve personnel disputes among staff members. None of these problems point to singular solutions that can be identified as “right” or “wrong.” Surely there are responses that are less desirable than others (i.e. suspension or recommendation for expulsion for minor infractions), but, with justification and context, many possible solutions exist.

Problem-Solving Perspectives and Models

Various authors have shared perspectives about effective problem solving. Marzano, Waters, and McNulty (2005) outlined the “21 Responsibilities of the School Leader.” These responsibilities are highly correlated with student achievement based upon the authors’ meta- analysis of 69 studies about leadership’s effect on student achievement. The most highly correlated of the responsibilities was  situational awareness , which refers to understanding the school deeply enough to anticipate what might go wrong from day-to-day, navigate the individuals and groups within the school, and recognize issues that might surface at a later time (Marzano et al., 2005). Though the authors discuss the utility of situational awareness for long- term, large-scale decision making, in order for an educational leader to effectively solve the daily problems that come her way, she must again have a sense of situational awareness, lest she make seemingly smaller-scale decisions that will lead to large-scale problems later.

Other authors have focused on problems that can be considered more aligned with the daily work of educational leaders. Considering the problem-type classification dichotomies of Allison (1996) and Leithwood and Steinbach (1995), problems that educational leaders face on a daily basis can be identified as either well-structured or unstructured. Various authors have developed problem-solving models focused on unstructured problems (Bolman & Deal, 2008; Leithwood & Steinbach, 1995; Simon, 1993), and these models will be explored next.

Simon (1993) outlined three phases of the decision-making process. The first is to find problems that need attention. Though many problems of educational leaders are presented directly to them via, for example, an adult referring a child for discipline, a parent registering a complaint about a staff member, or a staff member describing a grievance with a colleague, there is a corollary skill of identifying what problems—of the many that come across one’s desk— require immediate attention, or ultimately, any attention, at all. Second, Simon identified “designing possible courses of action” (p. 395). Finally, educational leaders must evaluate the quality of their decisions. From this point of having selected a viable and positively evaluated potential solution pathway, implementation takes place.

Bolman and Deal (2008) outlined a model of reframing problems using four different frames, through which problems of practice can be viewed. These frames provide leaders with a more complete set of perspectives than they would likely utilize on their own. The  structural frame  represents the procedural and systems-oriented aspects of an organization. Within this frame, a leader might ask whether there is a supervisory relationship involved in a problem, if a protocol exists to solve such a problem, or what efficiencies or logical processes can help steer a leader toward a resolution that meets organizational goals. The  human resource frame  refers to the needs of individuals within the organization. A leader might try to solve a problem of practice with the needs of constituents in mind, considering the development of employees and the balance between their satisfaction and intellectual stimulation and the organization’s needs. The  political frame  includes the often competing interests among individuals and groups within the organization, whereby alliances and negotiations are needed to navigate the potential minefield of many groups’ overlapping aims. From the political frame, a leader could consider what the interpersonal costs will be for the leader and organization among different constituent groups, based upon which alternatives are selected. Last, the  symbolic frame  includes elements of meaning within an organization, such as traditions, unspoken rules, and myths. A leader may need to consider this frame when proposing a solution that might interfere with a long-standing organizational tradition.

Bolman and Deal (2008) identified the political and symbolic frames as weaknesses in most leaders’ consideration of problems of practice, and the weakness in recognizing political aspects of decision making for educational leaders was corroborated by Johnson and Kruse (2009). An implication for leadership preparation is to instruct students in the considerations of these frames and promote their utility when examining problems.

Authors have noted that experts use different processes than novice problem solvers (Simon, 1993; VanLehn, 1991). An application of this would be Simon’s (1993) assertion that experts can rely on their extensive experience to remember solutions to many problems, without having to rely on an extensive analytical process. Further, they may not even consider a “problem” identified by a novice a problem, at all. With respect to educational leaders, Leithwood and Steinbach (1992, 1995) outlined a set of competencies possessed by expert principals, when compared to their typical counterparts. Expert principals were better at identifying the nature of problems; possessing a sense of priority, difficulty, how to proceed, and connectedness to prior situations; setting meaningful goals for problem solving, such as seeking goals that are student-centered and knowledge-focused; using guiding principles and long-term purposes when determining the best courses of action; seeing fewer obstacles and constraints when presented with problems; outlining detailed plans for action that include gathering extensive information to inform decisions along the plan’s pathway; and responding with confidence and calm to problem solving. Next, I will examine how problem-solving skills are developed.

Preparation for Educational Leadership Problem Solving

How can the preparation of leaders move candidates toward the competencies of expert principals? After all, leading a school has been shown to be a remarkably complex enterprise (Hallinger & McCary, 1990; Leithwood & Steinbach, 1992), especially if the school is one where student achievement is below expectations (Duke, 2014), and the framing of problems by educational leaders has been espoused as a critically important enterprise (Bolman & Deal, 2008; Dimmock, 1996; Johnson & Kruse, 2009; Leithwood & Steinbach, 1992, 1995; Myran & Sutherland, 2016). In other disciplines, such as business management, simulations and case studies are used to foster problem-solving skills for aspiring leaders (Rochford & Borchert, 2011; Salas, Wildman, & Piccolo, 2009), and attention to problem-solving skills has been identified as an essential curricular component in the training of journalism and mass communication students (Bronstein & Fitzpatrick, 2015). Could such real-world problem solving methodologies be effective in the preparation of educational leaders? In a seminal study about problem solving for educational leaders, Leithwood and Steinbach (1992, 1995) sought to determine if effective problem-solving expertise could be explicitly taught, and, if so, could teaching problem- processing expertise be helpful in moving novices toward expert competence? Over the course of four months and four separate learning sessions, participants in the control group were explicitly taught subskills within six problem-solving components: interpretation of the problem for priority, perceived difficulty, data needed for further action, and anecdotes of prior experience that can inform action; goals for solving the problem; large-scale principles that guide decision making; barriers or obstacles that need to be overcome; possible courses of action; and the confidence of the leader to solve the problem. The authors asserted that providing conditions to participants that included models of effective problem-solving, feedback, increasingly complex problem-solving demands, frequent opportunities for practice, group problem-solving, individual reflection, authentic problems, and help to stimulate metacognition and reflection would result in educational leaders improving their problem-solving skills.

The authors used two experts’ ratings of participants’ problem-solving for both process (their methods of attacking the problem) and product (their solutions) using a 0-3 scale in a pretest-posttest design. They found significant increases in some problem-solving skills (problem interpretation, goal setting, and identification of barriers or obstacles that need to be overcome) after explicit instruction (Leithwood & Steinbach, 1992, 1995). They recommended conducting more research on the preparation of educational leaders, with particular respect to approaches that would improve the aspiring leaders’ problem-solving skills.

Solving problems for practicing principals could be described as constructivist, since most principals do solve problems within a social context of other stakeholders, such as teachers, parents, and students (Leithwood & Steinbach, 1992). Thus, some authors have examined providing opportunities for novice or aspiring leaders to construct meaning from novel scenarios using the benefits of, for example, others’ point of view, expert modeling, simulations, and prior knowledge (Duke, 2014; Leithwood & Steinbach, 1992, 1995; Myran & Sutherland, 2016; Shapira-Lishchinsky, 2015). Such collaborative inquiry has been effective for teachers, as well (DeLuca, Bolden, & Chan, 2017). Such learning can be considered consistent with the ideas of other social constructivist theorists (Berger & Luckmann, 1966; Vygotsky, 1978) as well, since individuals are working together to construct meaning, and they are pushing into areas of uncertainty and lack of expertise.

Shapira-Lishchinsky (2015) added some intriguing findings and recommendations to those of Leithwood and Steinbach (1992, 1995). In this study, 50 teachers with various leadership roles in their schools were presented regularly with ethical dilemmas during their coursework. Participants either interacted with the dilemmas as members of a role play or by observing those chosen. When the role play was completed, the entire group debriefed and discussed the ethical dilemmas and role-playing participants’ treatment of the issues. This method was shown, through qualitative analysis of participants’ discussions during the simulations, to produce rich dialogue and allow for a safe and controlled treatment of difficult issues. As such, the use of simulations was presented as a viable means through which to prepare aspiring educational leaders. Further, the author suggested the use of further studies with simulation-based learning that seek to gain information about aspiring leaders’ self-efficacy and psychological empowerment. A notable example of project-based scenarios in a virtual collaboration environment to prepare educational leaders is the work of Howard, McClannon, and Wallace (2014). Shapira-Lishchinsky (2015) also recommended similar research in other developed countries to observe the utility of the approaches of simulation and social constructivism to examine them for a wider and diverse aspiring administrator candidate pool.

Further, in an extensive review of prior research studies on the subject, Hallinger and Bridges (2017) noted that Problem-Based Learning (PBL), though applied successfully in other professions and written about extensively (Hallinger & Bridges, 1993, 2017; Stentoft, 2017), was relatively unheralded in the preparation of educational leaders. According to the authors, characteristics of PBL included problems replacing theory as the organization of course content, student-led group work, creation of simulated products by students, increased student ownership over learning, and feedback along the way from professors. Their review noted that PBL had positive aspects for participants, such as increased motivation, real-world connections, and positive pressure that resulted from working with a team. However, participants also expressed concerns about time constraints, lack of structure, and interpersonal dynamics within their teams. There were positive effects found on aspiring leaders’ problem-solving skill development with PBL (Copland, 2000; Hallinger & Bridges, 2017). Though PBL is much more prescribed than the scenarios strategy described in the Methods section below, the applicability of real-world problems to the preparation of educational leaders is summarized well by Copland (2000):

[I]nstructional practices that activate prior knowledge and situate learning in contexts similar to those encountered in practice are associated with the development of students’ ability to understand and frame problems. Moreover, the incorporation of debriefing techniques that encourage students’ elaboration of knowledge and reflection on learning appear to help students solidify a way of thinking about problems. (p. 604)

This study involved a one-group pretest-posttest design. No control group was assigned, as the pedagogical strategy in question—the use of real-world scenarios to build problem-solving skill for aspiring educational leaders—is integral to the school’s curriculum that prepares leaders, and, therefore, it is unethical to deny to student participants (Gay & Airasian, 2003). Thus, all participants were provided instruction with the use of real-world scenarios.

Participants.  Graduate students at a regional, comprehensive public university in the Northeast obtaining a 6 th -year degree (equivalent to a second master’s degree) in educational leadership and preparing for certification as educational administrators served as participants. Specifically, students in three sections of the same full-year, two-course sequence, entitled “School Leadership I and II” were invited to participate. This particular course was selected from the degree course sequence, as it deals most directly with the problem-solving nature and daily work of school administrators. Some key outcomes of the course include students using data to drive school improvement action plans, communicating effectively with a variety of stakeholders, creating a safe and caring school climate, creating and maintaining a strategic and viable school budget, articulating all the steps in a hiring process for teachers and administrators, and leading with cultural proficiency.

The three sections were taught by two different professors. The professors used real- world scenarios in at least half of their class meetings throughout the year, or in approximately 15 classes throughout the year. During these classes, students were presented with realistic situations that have occurred, or could occur, in actual public schools. Students worked with their classmates to determine potential solutions to the problems and then discussed their responses as a whole class under the direction of their professor, a master practitioner. Both professors were active school administrators, with more than 25 years combined educational leadership experience in public schools. It should be noted that the scenario presentation and discussions took place during the class sessions, only. These were not presented for homework or in online forums.

Of the 44 students in these three sections, 37 volunteered to participate at some point in the data collection sequence, but not all students in the pretest session attended the posttest session months later and vice versa. As a result, only 20 students’ data were used for the matched pairs analysis. All 37 participants were certified professional educators in public schools in Connecticut. The participants’ professional roles varied and included classroom teachers, instructional coaches, related service personnel, unified arts teachers, as well as other non- administrative educational roles. Characteristics of participants in the overall and matched pairs groups can be found in Table 1.

Table 1 Participant Characteristics

Procedure.  Participants’ data were compared between a fall of 2016 baseline data collection period and a spring of 2017 posttest data collection period. During the fall data collection period, participants were randomly assigned one of two versions of a Google Forms survey. After items about participant characteristics, the survey consisted of 11 items designed to elicit quantitative and qualitative data about participants’ perceptions of their problem-solving abilities, as well as their ability to address real-world problems faced by educational leaders. The participants were asked to rate their perception of their situational awareness, flexibility, and problem solving ability on a 10-point (1-10) Likert scale, following operational definitions of the terms (Marzano, Waters, & McNulty, 2005; Winter, 1982). They were asked, for each construct, to write open-ended responses to justify their numerical rating. They were then asked to write what they perceived they still needed to improve their problem-solving skills. The final four items included two real-world, unstructured, problem-based scenarios for which participants were asked to create plans of action. They were also asked to rate their problem-solving confidence with respect to their proposed action plans for each scenario on a 4-point (0-3) Likert scale.

During the spring data collection period, participants accessed the opposite version of the Google Forms survey from the one they completed in the fall. All items were identical on the two survey versions, except the scenarios, which were different on each survey version. The use of two versions was to ensure that any differences in perceived or actual difficulty among the four scenarios provided would not alter results based upon the timing of participant access (Leithwood & Steinbach, 1995). In order to link participants’ fall and spring data in a confidential manner, participants created a unique, six-digit alphanumeric code.

A focus group interview followed each spring data collection session. The interviews were recorded to allow for accurate transcription. The list of standard interview questions can be found in Table 2. This interview protocol was designed to elicit qualitative data with respect to aspiring educational leaders’ perceptions about their developing problem-solving abilities.

Table 2 Focus Group Interview Questions ___________________________________________________________________________________________

Please describe the development of your problem-solving skills as an aspiring educational leader over the course of this school year. In what ways have you improved your skills? Be as specific as you can.

What has been helpful to you (i.e. coursework, readings, experiences, etc.) in this development of your problem-solving skills? Why?

What do you believe you still need for the development in your problem-solving skills as an aspiring educational leader?

Discuss your perception of your ability to problem solve as an aspiring educational leader. How has this changed from the beginning of this school year? Why?

Please add anything else you perceive is relevant to this conversation about the development of your problem-solving skills as an aspiring educational leader.

___________________________________________________________________________________________

Data Analysis.

Quantitative data .  Data were obtained from participants’ responses to Likert-scale items relating to their confidence levels with respect to aspects of problem solving, as well as from the rating of participants’ responses to the given scenarios  against a rubric. The educational leadership problem-solving rubric chosen (Leithwood & Steinbach, 1995) was used with permission, and it reflects the authors’ work with explicitly teaching practicing educational leaders components of problem solving. The adapted rubric can be found in Figure 1. Through the use of this rubric, each individual response by a participant to a presented scenario was assigned a score from 0-15. It should be noted that affect data (representing the final 3 possible points on the 18-point rubric) were obtained via participants’ self-reporting their confidence with respect to their proposed plans of action. To align with the rubric, participants self-assessed their confidence through this item with a 0-3 scale.

0 = No Use of the Subskill 1 = There is Some Indication of Use of the Subskill 2 = The Subskill is Present to Some Degree 3 = The Subskill is Present to a Marked Degree; This is a Fine Example of this Subskill

Figure 1.  Problem-solving model for unstructured problems. Adapted from “Expert Problem Solving: Evidence from School and District Leaders,” by K. Leithwood and R. Steinbach, pp. 284-285. Copyright 1995 by the State University of New York Press.

I compared Likert-scale items and rubric scores via descriptive statistics and rubric scores also via a paired sample  t -test and Cohen’s  d , all using the software program IBM SPSS. I did not compare the Likert-scale items about situational awareness, flexibility, and problem solving ability with  t -tests or Cohen’s  d , since these items did not represent a validated instrument. They were only single items based upon participants’ ratings compared to literature-based definitions. However, the value of the comparison of means from fall to spring was triangulated with qualitative results to provide meaning. For example, to say that participants’ self-assessment ratings for perceived problem-solving abilities increased, I examined both the mean difference for items from fall to spring and what participants shared throughout the qualitative survey items and focus group interviews.

Prior to scoring participants’ responses to the scenarios using the rubric, and in an effort to maximize the content validity of the rubric scores, I calibrated my use of the rubric with two experts from the field. Two celebrated principals, representing more than 45 combined years of experience in school-level administration, collaboratively and comparatively scored participant responses. Prior to scoring, the team worked collaboratively to construct appropriate and comprehensive exemplar responses to the four problem-solving scenarios. Then the team blindly scored fall pretest scenario responses using the Leithwood and Steinbach (1995) rubric, and upon comparing scores, the interrater reliability correlation coefficient was .941, indicating a high degree of agreement throughout the team.

Qualitative data.  These data were obtained from open-ended items on the survey, including participants’ responses to the given scenarios, as well as the focus group interview transcripts. I analyzed qualitative data consistent with the grounded theory principles of Strauss and Corbin (1998) and the constant comparative methods of Glaser (1965), including a period of open coding of results, leading to axial coding to determine the codes’ dimensions and relationships between categories and their subcategories, and selective coding to arrive at themes. Throughout the entire data analysis process, I repeatedly returned to raw data to determine the applicability of emergent codes to previously analyzed data. Some categorical codes based upon the review of literature were included in the initial coding process. These codes were derived from the existing theoretical problem-solving models of Bolman and Deal (2008) and Leithwood and Steinbach (1995). These codes included  modeling ,  relationships , and  best for kids . Open codes that emerged from the participants’ responses included  experience ,  personality traits ,  current job/role , and  team . Axial coding revealed, for example, that current jobs or roles cited, intuitively, provided both sufficient building-wide perspective and situational memory (i.e. for special education teachers and school counselors) and insufficient experiences (i.e. for classroom teachers) to solve the given problems with confidence. From such understandings of the codes, categories, and their dimensions, themes were developed.

Quantitative Results.   First, participants’ overall, aggregate responses (not matched pairs) were compared from the fall to spring, descriptively. These findings are outlined in Table  3. As is seen in the table, each item saw a modest increase over the course of the year. Participant perceptions of their problem-solving abilities across the three constructs presented (situational awareness, flexibility, and problem solving) did increase over the course of the year, as did the average group score for the problem-solving scenarios. However, due to participant differences in the two data collection periods, these aggregate averages do not represent a matched-pair dataset.

Table 3 Fall to Spring Comparison of Likert-Scale and Rubric-Scored Items

a  These problem-solving dimensions from literature were rated by participants on a scale from 1- 10. b  Participants received a rubric score for each scenario between 0-18. Participants’ two scenario scores for each data collection period (fall, spring) were averaged to arrive at the scores represented here.

In order to determine the statistical significance of the increase in participants’ problem- solving rubric scores, a paired-samples  t -test was applied to the fall ( M  = 9.15;  SD  = 2.1) and spring ( M  = 9.25;  SD  = 2.3) averages. Recall that 20 participants had valid surveys for both the fall and spring. The  t -test ( t  = -.153;  df  = 19;  p  = .880) revealed no statistically significant change from fall to spring, despite the minor increase (0.10). I applied Cohen’s  d  to calculate the effect size. The small sample size ( n  = 20) for the paired-sample  t -test may have contributed to the lack of statistical significance. However, standard deviations were also relatively small, so the question of effect size was of particular importance. Cohen’s  d  was 0.05, which is also very small, indicating that little change—really no improvement, from a statistical standpoint—in participants’ ability to create viable action plans to solve real-world problems occurred throughout the year. However, the participants’ perceptions of their problem-solving abilities did increase, as evidenced by the increases in the paired-samples perception means shown in Table 3, though these data were only examined descriptively (from a quantitative perspective) due to the fact that these questions were individual items that are not part of a validated instrument.

Qualitative Results.   Participant responses to open-ended items on the questionnaire, responses to the scenarios, and oral responses to focus group interview questions served as sources of qualitative data. Since the responses to the scenarios were focused on participant competence with problem solving, as measured by the aforementioned rubric (Leithwood &  Steinbach, 1995), these data were examined separately from data collected from the other two sources.

Responses to scenarios.  As noted, participants’ rubric ratings for the scenarios did not display a statistically significant increase from fall to spring. As such, this outline will not focus upon changes in responses from fall to spring. Rather, I examined the responses, overall, through the lens of the Leithwood and Steinbach (1995) problem-solving framework indicators against which they were rated. Participants typically had outlined reasonable, appropriate, and logical solution processes. For example, in a potential bullying case scenario, two different participants offered, “I would speak to the other [students] individually if they have said or done anything mean to other student [ sic ] and be clear that it is not tolerable and will result in major consequences” and “I would initiate an investigation into the situation beginning with [an] interview with the four girls.” These responses reflect actions that the consulted experts anticipated from participants and deemed as logical and needed interventions. However, these two participants omitted other needed steps, such as addressing the bullied student’s mental health needs, based upon her mother’s report of suicidal ideations. Accordingly, participants earned points for reasonable and logical responses very consistently, yet, few full-credit responses were observed.

Problem interpretation scores were much more varied. For this indicator, some participants were able to identify many, if not all, the major issues in the scenarios that needed attention. For example, for a scenario where two teachers were not interacting professionally toward each other, many participants correctly identified that this particular scenario could include elements of sexual harassment, professionalism, teaching competence, and personality conflict. However, many other participants missed at least two of these key elements of the problem, leaving their solution processes incomplete. The categories of (a) goals and (b) principles and values also displayed a similarly wide distribution of response ratings.

One category, constraints, presented consistent difficulty for the participants. Ratings were routinely 0 and 1. Participants could not consistently report what barriers or obstacles would need addressing prior to success with their proposed solutions. To be clear, it was not a matter of participants listing invalid or unrealistic barriers or obstacles; rather, the participants were typically omitting constraints altogether from their responses. For example, for a scenario involving staff members arriving late and unprepared to data team meetings, many participants did not identify that a school culture of not valuing data-driven decision making or lack of norms for data team work could be constraints that the principal could likely face prior to reaching a successful resolution.

Responses to open-ended items.  When asked for rationale regarding their ratings for situational awareness, flexibility, and problem solving, participants provided open-ended responses. These responses revealed patterns worth considering, and, again, this discussion will consider, in aggregate, responses made in both the pre- and post- data collection periods, again due to the similarities in responses between the two data collection periods. The most frequently observed code (112 incidences) was  experience . Closely related were the codes  current job/role  (50 incidences). Together, these codes typically represented a theme that participants were linking their confidence with respect to problem solving with their exposure (or lack thereof) in their professional work. For example, a participant reported, “As a school counselor, I have a lot of contact with many stakeholders in the school -admin [ sic ], parents, teachers, staff, etc. I feel that I have a pretty good handle on the systemic issues.” This example is one of many where individuals working in counseling, instructional coaching, special education, and other support roles expressed their advanced levels of perspective based upon their regular contact with many stakeholders, including administrators. Thus, they felt they had more prior knowledge and situational memory about problems in their schools.

However, this category of codes also included those, mostly classroom or unified arts teachers, who expressed that their relative lack of experiences outside their own classrooms limited their perspective for larger-scale problem solving. One teacher succinctly summarized this sentiment, “I have limited experience in being part of situations outside of my classroom.” Another focused on the general problem solving skill in her classroom not necessarily translating to confidence with problem solving at the school level: “I feel that I have a high situational awareness as a teacher in the classroom, but as I move through these leadership programs I find that I struggle to take the perspective of a leader.” These experiences were presented in opposition to their book learning or university training. There were a number of instances (65 combined) of references to the value of readings, class discussions, group work, scenarios presented, research, and coursework in the spring survey. When asked what the participants need more, again, experience was referenced often. One participant summarized this concept, “I think that I, personally, need more experience in the day-to-day . . . setting.” Another specifically separated experiences from scenario work, “[T]here is [ sic ] some things you can not [ sic ] learn from merely discussing a ‘what if” scenario. A seasoned administrator learns problem solving skills on the job.”

Another frequently cited code was  personality traits  (63 incidences), which involved participants linking elements of their own personalities to their perceived abilities to process problems, almost exclusively from an assets perspective. Examples of traits identified by participants as potentially helpful in problem solving included: open-mindedness, affinity for working with others, not being judgmental, approachability, listening skills, and flexibility. One teacher exemplified this general approach by indicating, “I feel that I am a good listener in regards to inviting opinions. I enjoy learning through cooperation and am always willing to adapt my teaching to fit needs of the learners.” However, rare statements of personality traits interfering with problem solving included, “I find it hard to trust others [ sic ] abilities” and “my personal thoughts and biases.”

Another important category of the participant responses involved connections with others. First, there were many references to  relationships  (27 incidences), mostly from the perspective that building positive relationships leads to greater problem-solving ability, as the aspiring leader knows stakeholders better and can rely on them due to the history of positive interactions. One participant framed this idea from a deficit perspective, “Not knowing all the outlying relationships among staff members makes situational awareness difficult.” Another identified that established positive relationships are already helpful to an aspiring leader, “I have strong rapport with fellow staff members and administrators in my building.” In a related way, many instances of the code  team  were identified (29). These references overwhelmingly identified that solving problems within a team context is helpful. One participant stated, “I often team with people to discuss possible solutions,” while another elaborated,

I recognize that sometimes problems may arise for which I am not the most qualified or may not have the best answer. I realize that I may need to rely on others or seek out help/opinions to ensure that I make the appropriate decision.

Overall, participants recognized that problem-solving for leaders does not typically occur in a vacuum.

Responses to focus group interview questions.  As with the open-ended responses, patterns were evident in the interview responses, and many of these findings were supportive of the aforementioned themes. First, participants frequently referenced the power of group work to help build their understanding about problems and possible solutions. One participant stated, “hearing other people talk and realizing other concerns that you may not have thought of . . . even as a teacher sometimes, you look at it this way, and someone else says to see it this way.” Another added, “seeing it from a variety of persons [ sic ] point of views. How one person was looking at it, and how another person was looking at it was really helpful.” Also, the participants noted the quality of the discussion was a direct result of “professors who have had real-life experience” as practicing educational leaders, so they could add more realistic feedback and insight to the discussions.

Perhaps most notable in the participant responses during the focus groups was the emphasis on the value of real-world scenarios for the students. These were referenced, without prompting, in all three focus groups by many participants. Answers to the question about what has been most helpful in the development of their problem-solving skills included, “I think the real-world application we are doing,” “I think being presented with all the scenarios,” and “[the professor] brought a lot of real situations.”

With respect to what participants believed they still needed to become better and more confident problem solvers, two patterns emerged. First, students recognized that they have much more to learn, especially with respect to policy and law. It is noteworthy that, with few exceptions, these students had not taken the policy or law courses in the program, and they had not yet completed their administrative internships. Some students actually reported rating themselves as less capable problem solvers in the spring because they now understood more clearly what they lacked in knowledge. One student exemplified this sentiment, “I might have graded myself higher in the fall than I did now . . . [I now can] self identify areas I could improve in that I was not as aware of.” Less confidence in the spring was a minority opinion, however. In a more typical response, another participant stated, “I feel much more prepared for that than I did at the beginning of the year.”

Overall, the most frequently discussed future need identified was experience, either through the administrative internship or work as a formal school administrator. Several students summarized this idea, “That real-world experience to have to deal with it without being able to talk to 8 other people before having to deal with it . . . until you are the person . . . you don’t know” and “They tell you all they want. You don’t know it until you are in it.” Overall, most participants perceived themselves to have grown as problem solvers, but they overwhelmingly recognized that they needed more learning and experience to become confident and effective problem solvers.

This study continues a research pathway about the development of problem-solving skills for administrators by focusing on their preparation. The participants did not see a significant increase in their problem-solving skills over the year-long course in educational leadership.

Whereas, this finding is not consistent with the findings of others who focused on the development of problem-solving skills for school leaders (Leithwood & Steinbach, 1995; Shapira-Lishchinsky, 2015), nor is it consistent with PBL research about the benefits of that approach for aspiring educational leaders (Copland, 2000; Hallinger & Bridges, 2017), it is important to note that the participants in this study were at a different point in their careers. First, they were aspirants, as opposed to practicing leaders. Also, the studied intervention (scenarios) was not the same or nearly as comprehensive as the prescriptive PBL approach. Further, unlike the participants in either the practicing leader or PBL studies, because these individuals had not yet had their internship experiences, they had no practical work as educational leaders. This theme of lacking practical experience was observed in both open-ended responses and focus group interviews, with participants pointing to their upcoming internship experiences, or even their eventual work as administrators, as a key missing piece of their preparation.

Despite the participants’ lack of real gains across the year of preparation in their problem- solving scores, the participants did, generally, report an increase in their confidence in problem solving, which they attributed to a number of factors. The first was the theme of real-world context. This finding was consistent with others who have advocated for teaching problem solving through real-world scenarios (Duke, 2014; Leithwood & Steinbach, 1992, 1995; Myran & Sutherland, 2016; Shapira-Lishchinsky, 2015). This study further adds to this conversation, not only a corroboration of the importance of this method (at least in aspiring leaders’ minds), but also that participants specifically recognized their professors’ experiences as school administrators as important for providing examples, context, and credibility to the work in the classroom.

In addition to the scenario approach, the participants also recognized the importance of learning from one another. In addition to the experiences of their practitioner-professors, many participants espoused the value of hearing the diverse perspectives of other students. The use of peer discussion was also an element of instruction in the referenced studies (Leithwood & Steinbach, 1995; Shapira-Lishchinsky, 2015), corroborating the power of aspiring leaders learning from one another and supporting existing literature about the social nature of problem solving (Berger & Luckmann, 1966; Leithwood & Steinbach, 1992; Vygotsky, 1978).

Finally, the ultimate theme identified through this study is the need for real-world experience in the field as an administrator or intern. It is simply not enough to learn about problem solving or learn the background knowledge needed to solve problems, even when the problems presented are real-world in nature. Scenarios are not enough for aspiring leaders to perceive their problem-solving abilities to be adequate or for their actual problem-solving abilities to improve. They need to be, as some of the participants reasoned, in positions of actual responsibility, where the weight of their decisions will have tangible impacts on stakeholders, including students.

The study of participants’ responses to the scenarios connected to the Four Frames model of Bolman and Deal (2008). The element for which participants received the consistently highest scores was identifying solution processes. This area might most logically be connected to the structural and human resource frames, as solutions typically involve working to meet individuals’ needs, as is necessary in the human resource frame, and attending to protocols and procedures, which is the essence of the structural frame. As identified above, the political and symbolic frames have been cited by the authors as the most underdeveloped by educational leaders, and this assertion is corroborated by the finding in this study that participants struggled the most with identifying constraints, which can sometimes arise from an understanding of the competing personal interests in an organization (political frame) and the underlying meaning behind aspects of an organization (symbolic frame), such as unspoken rules and traditions. The lack of success identifying constraints is also consistent with participants’ statements that they needed actual experiences in leadership roles, during which they would likely encounter, firsthand, the types of constraints they were unable to articulate for the given scenarios. Simply, they had not yet “lived” these types of obstacles.

The study includes several notable limitations. First, the study’s size is limited, particularly with only 20 participants’ data available for the matched pairs analysis. Further, this study was conducted at one university, within one particular certification program, and over three sections of one course, which represented about one-half of the time students spend in the program. It is likely that more gains in problem-solving ability and confidence would have been observed if this study was continued through the internship year. Also, the study did not include a control group. The lack of an experimental design limits the power of conclusions about causality. However, this limitation is mitigated by two factors. First, the results did not indicate a statistically significant improvement, so there is not a need to attribute a gain score to a particular variable (i.e. use of scenarios), anyway, and, second, the qualitative results did reveal the perceived value for participants in the use of scenarios, without any prompting of the researcher. Finally, the participant pool was not particularly diverse, though this fact is not particularly unusual for the selected university, in general, representing a contemporary challenge the university’s state is facing to educate its increasingly diverse student population, with a teaching and administrative workforce that is predominantly White.

The findings in this study invite further research. In addressing some of the limitations identified here, expanding this study to include aspiring administrators across other institutions representing different areas of the United States and other developed countries, would provide a more generalizable set of results. Further, studying the development of problem-solving skills during the administrative internship experience would also add to the work outlined here by considering the practical experience of participants.

In short, this study illustrates for those who prepare educational leaders the value of using scenarios in increasing aspiring leaders’ confidence and knowledge. However, intuitively, scenarios alone are not enough to engender significant change in their actual problem-solving abilities. Whereas, real-world context is important to the development of aspiring educational leaders’ problem-solving skills, the best context is likely to be the real work of administration.

Allison, D. J. (1996). Problem finding, classification and interpretation: In search of a theory of administrative problem processing. In K. Leithwood, J. Chapman, D. Corson, P. Hallinger, & A. Hart (Eds.),  International handbook of educational leadership and administration  (pp. 477–549). Norwell, MA: Kluwer Academic.

Berger, P. L., & Luckmann, T. (1966).  The social construction of reality . Garden City, NJ: Doubleday.

Bolman, L. G., & Deal, T. E. (2008).  Re-framing organizations: Artistry, choice and leadership  (4th ed.). San Francisco: Jossey Bass.

Bronstein, C., & Fitzpatrick, K. R. (2015). Preparing tomorrow’s leaders: Integrating leadership development in journalism and mass communication education.  Journalism & Mass Communication Educator, 70 (1), 75–88. https://doi.org/10.1177/1077695814566199

Copland, M. A. (2000). Problem-based learning and prospective principals’ problem-framing ability.  Educational Administration Quarterly ,  36 , 585–607.

Deluca, C., Bolden, B., & Chan, J. (2017). Systemic professional learning through collaborative inquiry: Examining teachers’ perspectives.  Teaching and Teacher Education ,  67 , 67–78. https://doi.org/10.1016/j.tate.2017.05.014

Dimmock, C. (1996). Dilemmas for school leaders and administrators in restructuring. In K. Leithwood, J. Chapman, D. Corson, P. Hallinger, & A. Hart (Eds.),  International Handbook of Educational Leadership and Administration  (pp. 135–170). Norwell, MA: Kluwer Academic.

Duke, D. L. (2014). A bold approach to developing leaders for low-performing schools. Management in Education, 28 (3), 80–85. https://doi.org/10.1177/0892020614537665

Gay, L. R., & Airasian, P. (2003).  Educational research: Competancies for analysis and applications  (7th ed.). Upper Saddle River, NJ: Pearson Education.

Glaser, B. G. (1965). The constant comparative method of qualitative analysis.  Social Problems, 12 (4), 436-445.

Hallinger, P., & Bridges, E. (1993). Problem-based learning in medical and managerial education. In P. Hallinger, K. Leithwood, & J. Murphy (Eds.),  Cognitive perspectives on educational leadership  (pp. 253–267). New York: Teachers’ College Press.

Hallinger, P., & Bridges, E. M. (2017). A systematic review of research on the use of problem- based learning in the preparation and development of school leaders.  Educational Administration Quarterly . 53(2), 255-288. https://doi.org/10.1177/0013161X16659347

Hallinger, P., & McCary, C. E. (1990). Developing the strategic thinking of instructional leaders. Elementary School Journal ,  91 (2), 89–108.

Howard, B. B., McClannon, T. W., & Wallace, P. R. (2014). Collaboration through role play among graduate students in educational leadership in distance learning.  American Journal of Distance Education ,  28 (1), 51–61. https://doi.org/10.1080/08923647.2014.868665

Johnson, B. L., & Kruse, S. D. (2009).  Decision making for educational leaders: Underexamined dimensions and issues . Albany, NY: State University of New York Press.

Leithwood, K., & Steinbach, R. (1992). Improving the problem-solving expertise of school administrators: Theory and practice.  Education and Urban Society ,  24 (3), 317–345. Retrieved from https://journals.sagepub.com.ccsu.idm.oclc.org/doi/pdf/10.1177/0013124592024003003

Leithwood, K., & Steinbach, R. (1995).  Expert problem solving: Evidence from school and district leaders . Albany, NY: State University of New York Press.

Marzano, R. J., Waters, T., & McNulty, B. A. (2005).  School leadership that works: From research to results . Denver, CO: ASCD.

Myran, S., & Sutherland, I. (2016). Problem posing in leadership education: Using case study to foster more effective problem solving.  Journal of Cases in Educational Leadership ,  19 (4), 57–71. https://doi.org/10.1177/1555458916664763

Rochford, L., & Borchert, P. S. (2011). Assessing higher level learning: Developing rubrics for case analysis.  Journal of Education for Business ,  86 , 258–265. https://doi.org/10.1080/08832323.2010.512319

Salas, E., Wildman, J. L., & Piccolo, R. F. (2009). Using simulation based training to enhance management education.  Academy of Management Learning & Education ,  8 (4), 559–573. https://doi.org/10.5465/AMLE.2009.47785474

Shapira-Lishchinsky, O. (2015). Simulation-based constructivist approach for education leaders. Educational Management Administration & Leadership ,  43 (6), 972–988. https://doi.org/10.1177/1741143214543203

Simon, H. A. (1993). Decision making: Rational, nonrational, and irrational.  Educational Administration Quarterly ,  29 (3), 392–411. https://doi.org/10.1177/0013161X93029003009

Stentoft, D. (2017). From saying to doing interdisciplinary learning: Is problem-based learning the answer?  Active Learning in Higher Education ,  18 (1), 51–61. https://doi.org/10.1177/1469787417693510

Strauss, A., & Corbin, J. (1998).  Basics of qualitative research  (2nd ed.). Thousand Oaks, CA: Sage.

VanLehn, K. (1991). Rule acquisition events in the discovery of problem-solving strategies. Cognitive Science ,  15 (1), 1–47. https://doi.org/10.1016/0364-0213(91)80012-T

Vygotsky, L. S. (1978).  Mind in society . Cambridge, MA: Harvard University Press.

Winter, R. (1982). Dilemma analysis: A contribution to methodology for action research. Cambridge Journal of Education, 12 (3), 166-173.

Author Biography

Dr. Jeremy Visone is an Assistant Professor of Educational Leadership, Policy, & Instructional Technology. Until 2016, he worked as an administrator at both the elementary and secondary levels, most recently at Anna Reynolds Elementary School, a National Blue Ribbon School in 2016. Dr. Visone can be reached at  [email protected] .

  Problems and Problem Solving

What is a problem?

In common language, a problem is an unpleasant situation, a difficulty.

But in education the first definition in Webster's Dictionary — "a question raised for inquiry, consideration, or solution" — is a common meaning.

More generally in education, it's useful to define problem broadly — as any situation, in any area of life, where you have an opportunity to make a difference, to make things better — so problem solving is converting an actual current state into a desired future state that is better, so you have "made things better."  Whenever you are thinking creatively-and-critically about ways to increase the quality of life (or to avoid a decrease in quality) for yourself and/or for others, you are actively involved in problem solving.  Defined in this way, problem solving includes almost everything you do in life.

  Problem-Solving Skills  —  Creative and Critical

An important goal of education is helping students learn how to think more productively while solving problems, by combining creative thinking (to generate ideas) and critical thinking (to evaluate ideas) with accurate knowledge (about the truth of reality).  Both modes of thinking (creative & critical) are essential for a well-rounded productive thinker, according to experts in both fields:

Richard Paul (a prominent advocate of CRITICAL THINKING ) says, "Alternative solutions are often not given, they must be generated or thought-up.  Critical thinkers must be creative thinkers as well, generating possible solutions in order to find the best one.  Very often a problem persists, not because we can't tell which available solution is best, but because the best solution has not yet been made available — no one has thought of it yet."

Patrick Hillis & Gerard Puccio (who focus on CREATIVE THINKING ) describe the combining of creative generation with critical evaluation in a strategy of creative-and-critical Problem Solving that "contains many tools which can be used interchangeably within any of the stages.  These tools are selected according to the needs of the task and are either divergent (i.e., used to generate options) or convergent (i.e., used to evaluate options)."

Creative Thinking can be motivated and guided by Creative Thinking:   One of the interactions between creative thinking and critical thinking occurs when we use critical Evaluation to motivate and guide creative Generation in a critical - and - creative process of Guided Generation that is Guided Creativity .  In my links-page for CREATIVITY you can explore this process in three stages, to better understand how a process of Guided Creativity — explored & recognized by you in Part 1 and then described by me in Part 2 — could be used (as illustrated in Part 3 ) to improve “the party atmosphere” during a dinner you'll be hosting, by improving a relationship.

  Education for Problem Solving

By using broad definitions for problem solving and education, we can show students how they already are using productive thinking to solve problems many times every day, whenever they try to “make things better” in some way..

Problem Solving:   a problem is an opportunity , in any area of life, to make things better.   Whenever a decision-and-action helps you “ make it better ” — when you convert an actual state (in the past) into a more desirable actual state (in the present and/or future) — you are problem solving, and this includes almost everything you do in life, in all areas of life.      { You can make things better if you increase quality for any aspect of life, or you maintain quality by reducing a potential decrease of quality.   }     /     design thinking ( when it's broadly defined ) is the productive problem-solving thinking we use to solve problems.  We can design (i.e. find, invent, or improve ) a better product, activity, relationship, and/or strategy (in General Design ) and/or (in Science-Design ) explanatory theory.     {   The editor of this links-page ( Craig Rusbult ) describes problem solving in all areas of life .}

note:  To help you decide whether to click a link or avoid it, links highlighted with green or purple go to pages I've written, in my website about Education for Problem Solving or in this website for THINKING SKILLS ( CREATIVE and CRITICAL ) we use to SOLVE PROBLEMS .

Education:   In another broad definition, education is learning from life-experiences, learning how to improve, to become more effective in making things better.   For example, Maya Angelou – describing an essential difference between past and present – says "I did then what I knew how to do. Now that I know better, I do better, " where improved problem solving skills (when "do better" leads to being able to more effectively "make things better") has been a beneficial result of education, of "knowing better" due to learning from life-experiences.

Growth:   One of the best ways to learn more effectively is by developing-and-using a better growth mindset so — when you ask yourself “how well am I doing in this area of life?” and honestly self-answer “not well enough” — instead of thinking “not ever” you are thinking “not yet” because you know that your past performance isn't your future performance;  and you are confident that in this area of life (and in other areas) you can “grow” by improving your understandings-and-skills, when you invest intelligent effort in your self-education and self-improving.  And you can "be an educator" by supporting the self-improving of other people by helping them improve their own growth mindsets.    { resources for Growth Mindset }

Growth in Problem-Solving Skills:   A main goal of this page is to help educators help students improve their skill in solving problems — by improving their ability to think productively (to more effectively combine creative thinking with critical thinking and accurate knowledge ) — in all areas of their everyday living.    {resources: growth mindset for problem solving that is creative-and-critical }

How?   You can improve your Education for Problem Solving by creatively-and-critically using general principles & strategies (like those described above & below, and elsewhere) and adapting them to specific situations, customizing them for your students (for their ages, abilities, experiences,...) and teachers, for your community and educational goals.

Promote Productive Thinking:

classroom (with Students & Teachers) actively doing Design Thinking

Build Educational Bridges:

When we show students how they use a similar problem-solving process (with design thinking ) for almost everything they do in life , we can design a wide range of activities that let us build two-way educational bridges:

• from Life into School, building on the experiences of students, to improve confidence:   When we help students recognize how they have been using a problem-solving process of design thinking in a wide range of problem-solving situations,... then during a classroom design activity they can think “I have done this before (during design-in-life ) so I can do it again (for design-in-school )” to increase their confidence about learning.  They will become more confident that they can (and will) improve the design-thinking skills they have been using (and will be using) to solve problems in life and in school.

• from School into Life, appealing to the hopes of students, to improve motivation:   We can show each student how they will be using design thinking for "almost everything they do" in their future life (in their future whole-life, inside & outside school) so the design-thinking skills they are improving in school will transfer from school into life and will help them achieve their personal goals for life .  When students want to learn in school because they are learning for life, this will increase their motivations to learn.

Improve Educational Equity:

When we build these bridges (past-to-present from Life into School , and present-to-future from School into Life ) we can improve transfers of learning — in time (past-to-present & present-to-future) and between areas (in school-life & whole-life) for whole-person education — and transitions in attitudes to improve a student's confidence & motivations.  This will promote diversity and equity in education by increasing confidence & motivation for a wider range of students, and providing a wider variety of opportunities for learning in school, and for success in school.  We want to “open up the options” for all students, so they will say “yes, I can do this” for a wider variety of career-and-life options, in areas of STEM (Science, Technology, Engineering, Math) and non-STEM .

This will help us improve diversity-and-equity in education by increasing confidence & motivations for a wider range of students, and providing a wider variety of opportunities for learning in school, and success in school.

  Design Curriculum & Instruction:  

teachers doing DEEPdt Design Thinking

• DEFINE GOALS for desired outcomes, for ideas-and-skills we want students to learn,

• DESIGN INSTRUCTION with learning activities (and associated teaching activities ) that will provide opportunities for experience with these ideas & skills, and help students learn more from their experiences.     {more about Defining Goals and Designing Instruction }   {one valuable activity is using a process-of-inquiry to learn principles-for-inquiry }

  Problem-Solving Process for Science and Design

We'll look at problem-solving process for science (below) and design ( later ) separately, and for science-and-design together., problem-solving process for science, is there a “scientific method”      we have reasons to say....

    NO, because there is not a rigid sequence of steps that is used in the same way by all scientists, in all areas of science, at all times,  but also...
    YES, because expert scientists (and designers) tend to be more effective when they use flexible strategies — analogous to the flexible goal-directed improvising of a hockey player, but not the rigid choreography of a figure skater — to coordinate their thinking-and-actions in productive ways, so they can solve problems more effectively.

Below are some models that can help students understand and do the process of science.  We'll begin with simplicity, before moving on to models that are more complex so they can describe the process more completely-and-accurately.

A simple model of science is PHEOC (Problem, Hypothesis, Experiment, Observe, Conclude).  When PHEOC, or a similar model, is presented — or is misinterpreted — as a rigid sequence of fixed steps, this can lead to misunderstandings of science, because the real-world process of science is flexible.  An assumption that “model = rigidity” is a common criticism of all models-for-process, but this unfortunate stereotype of "rigidity" is not logically justifiable because all models emphasize the flexibility of problem-solving process in real life, and (ideally) in the classroom.  If a “step by step” model (like PHEOC or its variations) is interpreted properly and is used wisely, the model can be reasonably accurate and educationally useful.  For example,...

A model that is even simpler — the 3-step POE (Predict, Observe, Learn) — has the essentials of scientific logic, and is useful for classroom instruction.

Science Buddies has Steps of the Scientific Method with a flowchart showing options for flexibility of timing.  They say, "Even though we show the scientific method as a series of steps, keep in mind that new information or thinking might cause a scientist to back up and repeat steps at any point during the process.  A process like the scientific method that involves such backing up and repeating is called an iterative process."    And they compare Scientific Method with Engineering Design Process .

Lynn Fancher explains - in The Great SM - that "while science can be done (and often is) following different kinds of protocols, the [typical simplified] description of the scientific method includes some very important features that should lead to understanding some very basic aspects of all scientific practice," including Induction & Deduction and more.

From thoughtco.com, many thoughts to explore in a big website .

Other models for the problem solving process of science are more complex, so they can be more thorough — by including a wider range of factors that actually occur in real-life science, that influence the process of science when it's done by scientists who work as individuals and also as members of their research groups & larger communities — and thus more accurate.  For example,

Understanding Science (developed at U.C. Berkeley - about ) describes a broad range of science-influencers, * beyond the core of science: relating evidence and ideas .  Because "the process of science is exciting" they want to "give users an inside look at the general principles, methods, and motivations that underlie all of science."  You can begin learning in their homepage (with US 101, For Teachers, Resource Library,...) and an interactive flowchart for "How Science Works" that lets you explore with mouse-overs and clicking.

* These factors affect the process of science, and occasionally (at least in the short run) the results of science.  To learn more about science-influencers,...
    Knowledge Building (developed by Bereiter & Scardamalia, links - history ) describes a human process of socially constructing knowledge.
    The Ethics of Science by Henry Bauer — author of Scientific Literacy and the Myth of the Scientific Method (click "look inside") — examines The Knowledge Filter and a Puzzle and Filter Model of "how science really works."

[[ i.o.u. - soon, in mid-June 2021, I'll fix the links in this paragraph.]] Another model that includes a wide range of factors (empirical, social, conceptual) is Integrated Scientific Method by Craig Rusbult, editor of this links-page .  Part of my PhD work was developing this model of science, in a unifying synthesis of ideas from scholars in many fields, from scientists, philosophers, historians, sociologists, psychologists, educators, and myself.  The model is described in two brief outlines ( early & later ), more thoroughly, in a Basic Overview (with introduction, two visual/verbal representations, and summaries for 9 aspects of Science Process ) and a Detailed Overview (examining the 9 aspects more deeply, with illustrations from history & philosophy of science), and even more deeply in my PhD dissertation (with links to the full text, plus a “world record” Table of Contents, references, a visual history of my diagrams for Science Process & Design Process, and using my integrative model for [[ integrative analysis of instruction ).   /   Later, I developed a model for the basic logic-and-actions of Science Process in the context of a [[ more general Design Process .

Problem-Solving Process for Design

Because "designing" covers a wide range of activities, we'll look at three kinds of designing..

Engineering Design Process:   As with Scientific Method,

    a basic process of Engineering Design can be outlined in a brief models-with-steps  –  5   5 in cycle   7 in cycle   8   10   3 & 11 .     {these pages are produced by ==[later, I'll list their names]}
    and it can be examined in more depth:  here & here and in some of the models-with-steps (5... 3 & 11), and later .

Problem-Solving Process:   also has models-with-steps (  4   4   5   6   7  ) * and models-without-steps (like the editor's model for Design-Thinking Process ) to describe creative-and-critical thinking strategies that are similar to Engineering Design Process, and are used in a wider range of life — for all problem-solving situations (and these include almost everything we do in life) — not just for engineering.     { *  these pages are produced by ==}

Design-Thinking Process:   uses a similar creative-and-critical process, * but with a focus on human - centered problems & solutions & solving - process and a stronger emphasis on using empathy .  (and creativity )

* how similar?  This depends on whether we define Design Thinking in ways that are narrow or broad.   {the wide scope of problem-solving design thinking }  {why do I think broad definitions (for objectives & process) are educationally useful ?}

Education for Design Thinking (at Stanford's Design School and beyond)

  Problem Solving in Our Schools:

Improving education for problem solving, educators should want to design instruction that will help students improve their thinking skills.  an effective strategy for doing this is..., goal-directed designing of curriculum & instruction.

When we are trying to solve a problem (to “make things better”) by improving our education for problem solving, a useful two-part process is to...

    1.  Define GOALS for desired outcomes, for the ideas-and-skills we want students to learn;
    2.  Design INSTRUCTION with Learning Activities that will provide opportunities for experience with these ideas & skills, and will help students learn more from their experiences.

Basically, the first part ( Define Goals ) is deciding WHAT to Teach , and the second part ( Design Instruction ) is deciding HOW to Teach .

But before looking at WHAT and HOW   , here are some ways to combine them with...

Strategies for Goal-Directed Designing of WHAT-and-HOW.

Understanding by Design ( UbD ) is a team of experts in goal-directed designing,

as described in an overview of Understanding by Design from Vanderbilt U.

Wikipedia describes two key features of UbD:  "In backward design, the teacher starts with classroom outcomes [#1 in Goal-Directed Designing above ] and then [#2] plans the curriculum, * choosing activities and materials that help determine student ability and foster student learning," and  "The goal of Teaching for Understanding is to give students the tools to take what they know, and what they will eventually know, and make a mindful connection between the ideas. ...  Transferability of skills is at the heart of the technique.  Jay McTighe and Grant Wiggin's technique.  If a student is able to transfer the skills they learn in the classroom to unfamiliar situations, whether academic or non-academic, they are said to truly understand."

* UbD "offers a planning process and structure to guide curriculum, assessment, and instruction.  Its two key ideas are contained in the title:  1) focus on teaching and assessing for understanding and learning transfer, and   2) design curriculum “backward” from those ends."

ASCD – the Association for Supervision and Curriculum Development (specializing in educational leadership ) – has a resources-page for Understanding by Design that includes links to The UbD Framework and Teaching for Meaning and Understanding: A Summary of Underlying Theory and Research plus sections for online articles and books — like Understanding by Design ( by Grant Wiggins & Jay McTighe with free intro & U U ) and Upgrade Your Teaching: Understanding by Design Meets Neuroscience ( about How the Brain Learns Best by Jay McTighe & Judy Willis who did a fascinating ASCD Webinar ) and other books — plus DVDs and videos (e.g. overview - summary ) & more .

Other techniques include Integrative Analysis of Instruction and Goal-Directed Aesop's Activities .

In two steps for a goal-directed designing of education , you:

1)  Define GOALS (for WHAT you want students to improve) ;

2)  Design INSTRUCTION (for HOW to achieve these Goals) .

Although the sections below are mainly about 1. WHAT to Teach (by defining Goals ) and 2. HOW to Teach (by designing Instruction ) there is lots of overlapping, so you will find some "how" in the WHAT, and lots of "what" in the HOW.

P ERSONAL Skills   (for Thinking about Self)

A very useful personal skill is developing-and-using a...

Growth Mindset:  If self-education is broadly defined as learning from your experiences,   better self-education is learning more effectively by learning more from experience, and getting more experiences.   One of the best ways to learn more effectively is by developing a better growth mindset so — when you ask yourself “how well am I doing in this area of life?” and honestly answer “not well enough” — you are thinking “not yet” (instead of “not ever”) because you are confident that in this area of life (as in most areas, including those that are most important) you can “grow” by improving your skills, when you invest intelligent effort in your self-education.  And you can support the self-education of other people by helping them improve their own growth mindsets.     Carol Dweck Revisits the Growth Mindset and (also by Dweck) a video, Increasing Educational Equity and Opportunity .     3 Ways Educators Can Promote A Growth Mindset by Dan LaSalle, for Teach for America.     Growth Mindset: A Driving Philosophy, Not Just a Tool by David Hochheiser, for Edutopia.     Growth Mindset, Educational Equity, and Inclusive Excellence by Kris Slowinski who links to 5 videos .     What’s Missing from the Conversation: The Growth Mindset in Cultural Competency by Rosetta Lee.     YouTube video search-pages for [ growth mindset ] & [ mindset in education ] & [ educational equity mindset ].

also:  Growth Mindset for Creativity

Self-Perception -- [[a note to myself: accurate understanding/evaluation of self + confidence in ability to improve/grow ]]

M ETA C OGNITIVE Skills   (for Solving Problems)

What is metacognition?   Thinking is cognition.   When you observe your thinking and think about your thinking (maybe asking “how can I think more effectively?”) this is meta- cognition, which is cognition about cognition.  To learn more about metacognition — what it is, why it's valuable, and how to use it more effectively — some useful web-resources are:

a comprehensive introductory overview by Nancy Chick, for Vanderbilt U.

my links-section has descriptions of (and links to) pages by other authors: Jennifer Livingston, How People Learn, Marsha Lovett, Carleton College, Johan Lehrer, Rick Sheets, William Peirce, and Steven Shannon, plus links for Self-Efficacy with a Growth Mindset , and more about metacognition.

my summaries about the value of combining cognition-and-metacognition and regulating it for Thinking Strategies (of many kinds ) to improve Performing and/or Learning by Learning More from Experience with a process that is similar to...

the Strategies for Self-Regulated Learning developed by other educators.

videos — search youtube for [ metacognition ] and [ metacognitive strategies ] and [ metacognition in education ].

And in other parts of this links-page,

As one part of guiding students during an inquiry activity a teacher can stimulate their metacognition by helping them reflect on their experiences.

While solving problems, almost always it's useful to think with empathy and also with metacognitive self-empathy by asking “what do they want?” and “what do I want?” and aiming for a win-win solution.

P ROCESS -C OORDINATING Skills   (for Solving Problems)

THINKING SKILLS and THINKING PROCESS:  When educators develop strategies to improve the problem solving abilities of students, usually their focus is on thinking skills.   But thinking process is also important.

Therefore, it's useful to define thinking skills broadly, to include thinking that leads to decisions-about-actions, and actions:

        thinking  →  action-decisions  →  actions

[[ I.O.U. -- later, in mid-June 2021, the ideas below will be developed -- and i'll connect it with Metacognitive Skills because we use Metacognition to Coordinate Process.

[[ here are some ideas that eventually will be in this section:

Collaborative Problem Solving [[ this major new section will link to creative.htm# collaborative-creativity (with a brief summary of ideas from there) and expand these ideas to include general principles and "coordinating the collaboration" by deciding who will do what, when, with some individual "doing" and some together "doing" ]]

actions can be mental and/or physical (e.g. actualizing Experimental Design to do a Physical Experiment, or actualizing an Option-for-Action into actually doing the Action

[[a note to myself: educational goals:  we should help students improve their ability to combine their thinking skills — their creative Generating of Options and critical Generating of Options, plus using their Knowledge-of-Ideas that includes content-area knowledge plus the Empathy that is emphasized in Design Thinking — into an effective thinking process .

[[ Strategies for Coordinating:  students can do this by skillfully Coordinating their Problem-Solving Actions (by using their Conditional Knowledge ) into an effective Problem-Solving Process.

[[ During a process of design, you coordinate your thinking-and-actions by making action decisions about “what to do next.”  How?  When you are "skillfully Coordinating..." you combine cognitive/metacognitive awareness (of your current problem-solving process) with (by knowing, for each skill, what it lets you accomplish, and the conditions in which it will be useful).

[[ a little more about problem-solving process

[[ here are more ideas that might be used here:

Sometimes tenacious hard work is needed, and perseverance is rewarded.  Or it may be wise to be flexible – to recognize that what you've been doing may not be the best approach, so it's time to try something new – and when you dig in a new location your flexibility pays off.

Perseverance and flexibility are contrasting virtues.  When you aim for an optimal balancing of this complementary pair, self-awareness by “knowing yourself” is useful.  Have you noticed a personal tendency to err on the side of either too much perseverance or not enough?  Do you tend to be overly rigid, or too flexible?

Making a wise decision about perseverance — when you ask, “Do I want to continue in the same direction, or change course?” * — is more likely when you have an aware understanding of your situation, your actions, the results, and your goals.  Comparing results with goals is a Quality Check, providing valuable feedback that you can use as a “compass” to help you move in a useful direction.  When you look for signs of progress toward your goals in the direction you're moving, you may have a feeling, based on logic and experience, that your strategy for coordinating the process of problem solving isn't working well, and it probably never will.  Or you may feel that the goal is almost in sight and you'll soon reach it.

- How I didn't Learn to Ski (and then did) with Persevering plus Flexible Insight -

PRINCIPLES for PROBLEM SOLVING

Should we explicitly teach principles for thinking, can we use a process of inquiry to teach principles for inquiry, should we use a “model” for problem-solving process.

combining models?

What are the benefits of infusion and separate programs?  

Principles & Strategies & Models ?

Should we explicitly teach “principles” for thinking?

Using evidence and logic — based on what we know about the ways people think and learn — we should expect a well-designed combination of “experience + reflection + principles” to be more educationally effective than experience by itself, to help students improve their creative-and-critical thinking skills and whole-process skills in solving problems (for design-inquiry) and answering questions (for science-inquiry).

Can we use a process-of-inquiry to teach principles-for-inquiry?

classroom (with Students & Teachers) actively doing Design Thinking

*   In a typical sequence of ERP, students first get Experiences by doing a design activity.  During an activity and afterward, they can do Reflections (by thinking about their experiences) and this will help them recognize Principles for doing Design-Thinking Process that is Problem-Solving Process.     { design thinking is problem-solving thinking }

During reflections & discussions, typically students are not discovering new thoughts & actions.  Instead they are recognizing that during a process of design they are using skills they already know because they already have been using Design Thinking to do almost everything in their life .  A teacher can facilitate these recognitions by guiding students with questions about what they are doing now, and what they have done in the past, and how these experiences are similar, but also are different in some ways.  When students remember (their prior experience) and recognize (the process they did use, and are using), they can formulate principles for their process of design thinking.  But when they formulate principles for their process of problem solving, they are just making their own experience-based prior knowledge — of how they have been solving problems, and are now solving problems — more explicit and organized.

If we help students "make their own experience-based prior knowledge... more explicit and organized" by showing them how their knowledge can be organized into a model for problem-solving process, will this help them improve their problem-solving abilities?

IOU - This mega-section will continue being developed in mid-June 2021.

[[a note to myself: thinking skills and thinking process — What is the difference? - Experience + Reflection + Principles - coordination-decisions

[[are the following links specifically for this section about "experience + principles"? maybe not because these seem to be about principles, not whether to teach principles.]]

An excellent overview is Teaching Thinking Skills by Kathleen Cotton. (the second half of her page is a comprehensive bibliography)

This article is part of The School Improvement Research Series (available from Education Northwest and ERIC ) where you can find many useful articles about thinking skills & other topics, by Cotton & other authors.  [[a note to myself: it still is excellent, even though it's fairly old, written in 1991 -- soon, I will search to find more-recent overviews ]]

Another useful page — What Is a Thinking Curriculum ? (by Fennimore & Tinzmann) — begins with principles and then moves into applications in Language Arts, Mathematics, Sciences, and Social Sciences.

My links-page for Teaching-Strategies that promote Active Learning explores a variety of ideas about strategies for teaching (based on principles of constructivism, meaningful reception,...) in ways that are intended to stimulate active learning and improve thinking skills.   Later, a continuing exploration of the web will reveal more web-pages with useful “thinking skills & problem solving” ideas (especially for K-12 students & teachers) and I'll share these with you, here and in TEACHING ACTIVITIES .

Of course, thinking skills are not just for scholars and schoolwork, as emphasized in an ERIC Digest , Higher Order Thinking Skills in Vocational Education .  And you can get information about 23 ==Programs that Work from the U.S. Dept of Education. 

goals can include improving affective factors & character == e.g. helping students learn how to develop & use use non-violent solutions for social problems .

INFUSION and/or SEPARATE PROGRAMS?

In education for problem solving, one unresolved question is "What are the benefits of infusion, or separate programs? "  What is the difference?

With infusion , thinking skills are closely integrated with content instruction in a subject area, in a "regular" course.

In separate programs , independent from content-courses, the explicit focus of a course is to help students improve their thinking skills.

In her overview of the field, Kathleen Cotton says,

    Of the demonstrably effective programs, about half are of the infused variety, and the other half are taught separately from the regular curriculum. ...  The strong support that exists for both approaches... indicates that either approach can be effective.  Freseman represents what is perhaps a means of reconciling these differences [between enthusiastic advocates of each approach] when he writes, at the conclusion of his 1990 study: “Thinking skills need to be taught directly before they are applied to the content areas. ...  I consider the concept of teaching thinking skills directly to be of value especially when there follows an immediate application to the content area.”

For principles and examples of infusion , check the National Center for Teaching Thinking which lets you see == What is Infusion? (an introduction to the art of infusing thinking skills into content instruction), and == sample lessons (for different subjects, grade levels, and thinking skills). -- resources from teach-think-org -- [also, lessons designed to infuse Critical and Creative Thinking into content instruction]

Infusing Teaching Thinking Into Subject-Area Instruction (by Robert Swarz & David Perkins) - and more about the book

And we can help students improve their problem-solving skills with teaching strategies that provide structure for instruction and strategies for thinking . ==[use structure+strategies only in edu-section?

Adobe [in creative]

MORE about Teaching Principles for Problem Solving

[[ i.o.u. -- this section is an "overlap" between #1 (Goals) and #2 (Methods) so... maybe i'll put it in-between them? -- i'll decide soon, maybe during mid-June 2021 ]]

Two Kinds of Inquiry Activities  (for Science and Design )

To more effectively help students improve their problem-solving skills, teachers can provide opportunities for students to be actively involved in solving problems, with inquiry activities .  What happens during inquiry?  Opportunities for inquiry occur whenever a gap in knowledge — in conceptual knowledge (so students don't understand) or procedural knowledge (so they don't know what to do, or how) — stimulates action (mental and/or physical) and students are allowed to think-do-learn.

Students can be challenged to solve two kinds of problems during two kinds of inquiry activity:

    during Science-Inquiry they try to improve their understanding, by asking problem-questions and seeking answers.  During their process of solving problems, they are using Science-Design , aka Science , to design a better explanatory theory.
    during Design-Inquiry they try to improve some other aspect(s) of life, by defining problem-projects and seeking solutions.   During their process of solving problems, they are using General Design (which includes Engineering and more) to design a better product, activity, or strategy.
    But... whether the main objective is for Science-Design or General Design, a skilled designer will be flexible, will do whatever will help them solve the problem(s).  Therefore a “scientist” sometimes does engineering, and an “engineer” sometimes does science.  A teacher can help students recognize how-and-why they also do these “ crossover actions ” during an activity for Science Inquiry or Design Inquiry.  Due to these connections, we can build transfer-bridges between the two kinds of inquiry ,  and combine both to develop “hybrid activities” for Science-and-Design Inquiry.

Goal-Priorities:  There are two kinds of inquiry, so (re: Goals for What to Learn) what emphasis do we want to place on activities for Science -Inquiry and Design -Inquiry?  (in the limited amount of classroom time that teachers can use for Inquiry Activities)

Two Kinds of Improving  (for Performing and Learning )

Goal-Priorities:  There are two kinds of improving, so (re: Goals for What to Learn) what emphasis do we want to place on better Performing (now) and Learning (for later)?

When defining goals for education, we ask “How important is improving the quality of performing now, and (by learning now ) of performing later   ?”   For example, a basketball team (coach & players) will have a different emphasis in an early-season practice (when their main goal is learning well) and end-of-season championship game (when their main goal is performing well).     {we can try to optimize the “total value” of performing/learning/enjoying for short-term fun plus long-term satisfactions }

SCIENCE   (to use-learn-teach Skills for Problem Solving )

Problem-solving skills used for science.

This section supplements models for Scientific Method that "begin with simplicity, before moving on to models that are more complex so they can describe the process more completely-and-accurately. "  On the spectrum of simplicity → complexity , one of the simplest models is...

POE (Predict, Observe, Learn) to give students practice with the basic scientific logic we use to evaluate an explanatory theory about “what happens, how, and why.”  POE is often used for classroom instruction — with interactive lectures [iou - their website is temporarily being "restored"] & in other ways — and research has shown it to be effective.  A common goal of instruction-with-POE is to improve the conceptual knowledge of students, especially to promote conceptual change their alternative concepts to scientific concepts.  But students also improve their procedural knowledge for what the process of science is, and how to do the process.     { more – What's missing from POE ( experimental skills ) w hen students use it for evidence-based argumentation    and   Ecologies - Educational & Conceptual  }

Dany Adams (at Smith College) explicitly teaches critical thinking skills – and thus experiment-using skills – in the context of scientific method.

Science Buddies has models for Scientific Method (and for Engineering Design Process ) and offers Detailed Help that is useful for “thinking skills” education. ==[DetH]

Next Generation Science Standards ( NGSS ) emphasizes the importance of designing curriculum & instruction for Three Dimensional Learning with productive interactions between problem-solving Practices (for Science & Engineering ) and Crosscutting Concepts and Disciplinary Core Ideas.

Science: A Process Approach ( SAPA ) was a curriculum program earlier, beginning in the 1960s.  Michael Padilla explains how SAPA defined The Science Process Skills as "a set of broadly transferable abilities, appropriate to many science disciplines and reflective of the behavior of scientists.  SAPA categorized process skills into two types, basic and integrated.  The basic (simpler) process skills provide a foundation for learning the integrated (more complex) skills."   Also, What the Research Says About Science Process Skills by Karen Ostlund;  and Students' Understanding of the Procedures of Scientific Enquiry by Robin Millar, who examines several approaches and concludes (re: SAPA) that "The process approach is not, therefore, a sound basis for curriculum planning, nor does the analysis on which it is based provide a productive framework for research."  But I think parts of it can be used creatively for effective instruction.     { more about SAPA }

ENGINEERING   (to use-learn-teach Skills for Problem Solving )

Problem-solving skills used for engineering.

Engineering is Elementary ( E i E ) develops activities for students in grades K-8.  To get a feeling for the excitement they want to share with teachers & students, watch an "about EiE" video and explore their website .  To develop its curriculum products, EiE uses research-based Design Principles and works closely with teachers to get field-testing feedback, in a rigorous process of educational design .  During instruction, teachers use a simple 5-phase flexible model of engineering design process "to guide students through our engineering design challenges... using terms [ Ask, Imagine, Plan, Create, Improve ] children can understand."   {plus other websites about EiE }

Project Lead the Way ( PLTW ), another major developer of k-12 curriculum & instruction for engineering and other areas, has a website you can explore to learn about their educational philosophy & programs (at many schools ) & resources and more.  And you can web-search for other websites about PLTW.

Science Buddies , at level of k-12, has tips for science & engineering .

EPICS ( home - about ), at college level, is an engineering program using EPICS Design Process with a framework supplemented by sophisticated strategies from real-world engineering.  EPICS began at Purdue University and is now used at ( 29 schools) (and more with IUCCE ) including Purdue, Princeton, Notre Dame, Texas A&M, Arizona State, UC San Diego, Drexel, and Butler.

DESIGN THINKING   (to use-learn-teach Skills for Problem Solving )

Design Thinking emphasizes the importance of using empathy to solve human-centered problems.

Stanford Institute of Design ( d.school ) is an innovative pioneer in teaching a process of human-centered design thinking that is creative-and-critical with empathy .  In their Design Thinking Bootleg – that's an updated version of their Bootcamp Bootleg – they share a wide variety of attitudes & techniques — about brainstorming and much more — to stimulate productive design thinking with the objective of solving real-world problems.   {their first pioneer was David Kelley }

The d.school wants to "help prepare a generation of students to rise with the challenges of our times."  This goal is shared by many other educators, in k-12 and colleges, who are excited about design thinking.  Although d.school operates at college level, they (d.school + IDEO ) are active in K-12 education as in their website about Design Thinking in Schools ( FAQ - resources ) that "is a directory [with brief descriptions] of schools and programs that use design thinking in the curriculum for K12 students...  design thinking is a powerful way for today’s students to learn, and it’s being implemented by educators all around the world."     { more about Education for Design Thinking in California & Atlanta & Pittsburgh & elsewhere} [[a note to myself: @ ws and maybe my broad-definition page]]

On twitter, # DTk12 chat is an online community of enthusiastic educators who are excited about Design Thinking ( DT ) for K-12 Education, so they host a weekly twitter chat (W 9-10 ET) and are twitter-active informally 24/7.

PROBLEM-BASED LEARNING   (to use-learn-teach Skills for Problem Solving )

Problem-Based Learning ( PBL ? ) is a way to improve motivation, thinking, and learning.  You can learn more from:

overviews of PBL from U of WA & Learning-Theories.com ;

and (in ERIC Digests) using PBL for science & math plus a longer introduction - challenges for students & teachers (we never said it would be easy!) ;

a deeper examination by John Savery (in PDF & [without abstract] web-page );

Most Popular Papers from The Interdisciplinary Journal of Problem-based Learning ( about IJPBL ).

videos about PBL by Edutopia (9:26) and others ;

a search in ACSD for [problem-based learning] → a comprehensive links-page for Problem-Based Learning and an ACSD-book about...

Problems as Possibilities by Linda Torp and Sara Sage:  Table of Contents - Introduction (for 2nd Edition) - samples from the first & last chapters - PBL Resources (including WeSites in Part IV) .

PBL in Schools:

Samford University uses PBL (and other activities) for Transformational Learning that "emphasizes the whole person, ... helps students grow physically, mentally, and spiritually, and encourages them to value public service as well as personal gain."

In high school education, Problem-Based Learning Design Institute from Illinois Math & Science Academy ( about );  they used to have an impressive PBL Network ( sitemap & web-resources from 2013, and 9-23-2013 story about Kent, WA ) that has mysteriously disappeared. https://www.imsa.edu/academics/inquiry/resources/ research_ethics

Vanderbilt U has Service Learning thru Community Engagement with Challenges and Opportunities and tips for Teaching Step by Step & Best Practices and Resource-Links for many programs, organizations, articles, and more.

What is PBL?   The answer is " Problem-Based Learning and/or Project-Based Learning " because both meanings are commonly used.  Here are 3 pages (+ Wikipedia) that compare PBL with PBL, examine similarities & differences, consider definitions:

    John Larmer says "we [at Buck Institute for Education which uses Project Based Learning ] decided to call problem-based learning a subset of project-based learning [with these definitions, ProblemBL is a narrower category, so all ProblemBL is ProjectBL, but not vice versa] – that is, one of the ways a teacher could frame a project is to solve a problem, " and concludes that "the semantics aren't worth worrying about, at least not for very long.  The two PBLs are really two sides of the same coin. ...  The bottom line is the same:  both PBLs can powerfully engage and effectively teach your students!"     Chris Campbell concludes, "it is probably the importance of conducting active learning with students that is worthy and not the actual name of the task.  Both problem-based and project-based learning have their place in today’s classroom and can promote 21st Century learning."     Jan Schwartz says "there is admittedly a blurring of lines between these two approaches to education, but there are differences."     Wikipedia has Problem-Based Learning (with "both" in P5BL ) and Project-Based Learning .

i.o.u. - If you're wondering "What can I do in my classroom today ?", eventually (maybe in June 2021) there will be a section for "thinking skills activities" in this page, and in the area for TEACHING ACTIVITIES .

ASA Blue-Sky Banner

Log in to Witsby: ASCD’s Next-Generation Professional Learning and Credentialing Platform

EL Study Guide / Problems of Practice

author avatar

Why Problem Solving?

How do you make it work, what's the problem, resources for further study, pd in focus.

  • Everyday Problem-Based Learning: Quick Projects to Build Problem-Based Fluency (2017) by Brian Pete and Robin Fogerty.
  • Authentic Learning in the Digital Age: Engaging Students Through Inquiry (2014) by Larissa Pahamov.
  • Project-Based Learning: An Answer to the Common Core Challenge
  • Understanding by Design: The Backward Design Process

practical examples of problem solving in education

EL ’s experienced team of writers and editors produces Educational Leadership magazine, an award-winning publication that reaches hundreds of thousands of K-12 educators and leaders each year. Our work directly supports the mission of ASCD: To empower educators to achieve excellence in learning, teaching, and leading so that every child is healthy, safe, engaged, supported, and challenged. 

ASCD is a community dedicated to educators' professional growth and well-being.

Let us help you put your vision into action., related articles.

undefined

Creating Autonomy Within Fidelity

undefined

Taking Risks with Rough Draft Teaching

undefined

Been to a Good Lecture?

undefined

Picture Books Aren’t Just for the Youngest Students

undefined

Leading for a New Vision of Science Teaching

From our issue.

Product cover image 118064b.jpg

To process a transaction with a Purchase Order please send to [email protected]

helpful professor logo

39 Best Problem-Solving Examples

problem-solving examples and definition, explained below

Problem-solving is a process where you’re tasked with identifying an issue and coming up with the most practical and effective solution.

This indispensable skill is necessary in several aspects of life, from personal relationships to education to business decisions.

Problem-solving aptitude boosts rational thinking, creativity, and the ability to cooperate with others. It’s also considered essential in 21st Century workplaces.

If explaining your problem-solving skills in an interview, remember that the employer is trying to determine your ability to handle difficulties. Focus on explaining exactly how you solve problems, including by introducing your thoughts on some of the following frameworks and how you’ve applied them in the past.

Problem-Solving Examples

1. divergent thinking.

Divergent thinking refers to the process of coming up with multiple different answers to a single problem. It’s the opposite of convergent thinking, which would involve coming up with a singular answer .

The benefit of a divergent thinking approach is that it can help us achieve blue skies thinking – it lets us generate several possible solutions that we can then critique and analyze .

In the realm of problem-solving, divergent thinking acts as the initial spark. You’re working to create an array of potential solutions, even those that seem outwardly unrelated or unconventional, to get your brain turning and unlock out-of-the-box ideas.

This process paves the way for the decision-making stage, where the most promising ideas are selected and refined.

Go Deeper: Divervent Thinking Examples

2. Convergent Thinking

Next comes convergent thinking, the process of narrowing down multiple possibilities to arrive at a single solution.

This involves using your analytical skills to identify the best, most practical, or most economical solution from the pool of ideas that you generated in the divergent thinking stage.

In a way, convergent thinking shapes the “roadmap” to solve a problem after divergent thinking has supplied the “destinations.”

Have a think about which of these problem-solving skills you’re more adept at: divergent or convergent thinking?

Go Deeper: Convergent Thinking Examples

3. Brainstorming

Brainstorming is a group activity designed to generate a multitude of ideas regarding a specific problem. It’s divergent thinking as a group , which helps unlock even more possibilities.

A typical brainstorming session involves uninhibited and spontaneous ideation, encouraging participants to voice any possible solutions, no matter how unconventional they might appear.

It’s important in a brainstorming session to suspend judgment and be as inclusive as possible, allowing all participants to get involved.

By widening the scope of potential solutions, brainstorming allows better problem definition, more creative solutions, and helps to avoid thinking “traps” that might limit your perspective.

Go Deeper: Brainstorming Examples

4. Thinking Outside the Box

The concept of “thinking outside the box” encourages a shift in perspective, urging you to approach problems from an entirely new angle.

Rather than sticking to traditional methods and processes, it involves breaking away from conventional norms to cultivate unique solutions.

In problem-solving, this mindset can bypass established hurdles and bring you to fresh ideas that might otherwise remain undiscovered.

Think of it as going off the beaten track when regular routes present roadblocks to effective resolution.

5. Case Study Analysis

Analyzing case studies involves a detailed examination of real-life situations that bear relevance to the current problem at hand.

For example, if you’re facing a problem, you could go to another environment that has faced a similar problem and examine how they solved it. You’d then bring the insights from that case study back to your own problem.

This approach provides a practical backdrop against which theories and assumptions can be tested, offering valuable insights into how similar problems have been approached and resolved in the past.

See a Broader Range of Analysis Examples Here

6. Action Research

Action research involves a repetitive process of identifying a problem, formulating a plan to address it, implementing the plan, and then analyzing the results. It’s common in educational research contexts.

The objective is to promote continuous learning and improvement through reflection and action. You conduct research into your problem, attempt to apply a solution, then assess how well the solution worked. This becomes an iterative process of continual improvement over time.

For problem-solving, this method offers a way to test solutions in real-time and allows for changes and refinements along the way, based on feedback or observed outcomes. It’s a form of active problem-solving that integrates lessons learned into the next cycle of action.

Go Deeper: Action Research Examples

7. Information Gathering

Fundamental to solving any problem is the process of information gathering.

This involves collecting relevant data , facts, and details about the issue at hand, significantly aiding in the understanding and conceptualization of the problem.

In problem-solving, information gathering underpins every decision you make.

This process ensures your actions are based on concrete information and evidence, allowing for an informed approach to tackle the problem effectively.

8. Seeking Advice

Seeking advice implies turning to knowledgeable and experienced individuals or entities to gain insights on problem-solving.

It could include mentors, industry experts, peers, or even specialized literature.

The value in this process lies in leveraging different perspectives and proven strategies when dealing with a problem. Moreover, it aids you in avoiding pitfalls, saving time, and learning from others’ experiences.

9. Creative Thinking

Creative thinking refers to the ability to perceive a problem in a new way, identify unconventional patterns, or produce original solutions.

It encourages innovation and uniqueness, often leading to the most effective results.

When applied to problem-solving, creative thinking can help you break free from traditional constraints, ideal for potentially complex or unusual problems.

Go Deeper: Creative Thinking Examples

10. Conflict Resolution

Conflict resolution is a strategy developed to resolve disagreements and arguments, often involving communication, negotiation, and compromise.

When employed as a problem-solving technique, it can diffuse tension, clear bottlenecks, and create a collaborative environment.

Effective conflict resolution ensures that differing views or disagreements do not become roadblocks in the process of problem-solving.

Go Deeper: Conflict Resolution Examples

11. Addressing Bottlenecks

Bottlenecks refer to obstacles or hindrances that slow down or even halt a process.

In problem-solving, addressing bottlenecks involves identifying these impediments and finding ways to eliminate them.

This effort not only smooths the path to resolution but also enhances the overall efficiency of the problem-solving process.

For example, if your workflow is not working well, you’d go to the bottleneck – that one point that is most time consuming – and focus on that. Once you ‘break’ this bottleneck, the entire process will run more smoothly.

12. Market Research

Market research involves gathering and analyzing information about target markets, consumers, and competitors.

In sales and marketing, this is one of the most effective problem-solving methods. The research collected from your market (e.g. from consumer surveys) generates data that can help identify market trends, customer preferences, and competitor strategies.

In this sense, it allows a company to make informed decisions, solve existing problems, and even predict and prevent future ones.

13. Root Cause Analysis

Root cause analysis is a method used to identify the origin or the fundamental reason for a problem.

Once the root cause is determined, you can implement corrective actions to prevent the problem from recurring.

As a problem-solving procedure, root cause analysis helps you to tackle the problem at its source, rather than dealing with its surface symptoms.

Go Deeper: Root Cause Analysis Examples

14. Mind Mapping

Mind mapping is a visual tool used to structure information, helping you better analyze, comprehend and generate new ideas.

By laying out your thoughts visually, it can lead you to solutions that might not have been apparent with linear thinking.

In problem-solving, mind mapping helps in organizing ideas and identifying connections between them, providing a holistic view of the situation and potential solutions.

15. Trial and Error

The trial and error method involves attempting various solutions until you find one that resolves the problem.

It’s an empirical technique that relies on practical actions instead of theories or rules.

In the context of problem-solving, trial and error allows you the flexibility to test different strategies in real situations, gaining insights about what works and what doesn’t.

16. SWOT Analysis

SWOT is an acronym standing for Strengths, Weaknesses, Opportunities, and Threats.

It’s an analytic framework used to evaluate these aspects in relation to a particular objective or problem.

In problem-solving, SWOT Analysis helps you to identify favorable and unfavorable internal and external factors. It helps to craft strategies that make best use of your strengths and opportunities, whilst addressing weaknesses and threats.

Go Deeper: SWOT Analysis Examples

17. Scenario Planning

Scenario planning is a strategic planning method used to make flexible long-term plans.

It involves imagining, and then planning for, multiple likely future scenarios.

By forecasting various directions a problem could take, scenario planning helps manage uncertainty and is an effective tool for problem-solving in volatile conditions.

18. Six Thinking Hats

The Six Thinking Hats is a concept devised by Edward de Bono that proposes six different directions or modes of thinking, symbolized by six different hat colors.

Each hat signifies a different perspective, encouraging you to switch ‘thinking modes’ as you switch hats. This method can help remove bias and broaden perspectives when dealing with a problem.

19. Decision Matrix Analysis

Decision Matrix Analysis is a technique that allows you to weigh different factors when faced with several possible solutions.

After listing down the options and determining the factors of importance, each option is scored based on each factor.

Revealing a clear winner that both serves your objectives and reflects your values, Decision Matrix Analysis grounds your problem-solving process in objectivity and comprehensiveness.

20. Pareto Analysis

Also known as the 80/20 rule, Pareto Analysis is a decision-making technique.

It’s based on the principle that 80% of problems are typically caused by 20% of the causes, making it a handy tool for identifying the most significant issues in a situation.

Using this analysis, you’re likely to direct your problem-solving efforts more effectively, tackling the root causes producing most of the problem’s impact.

21. Critical Thinking

Critical thinking refers to the ability to analyze facts to form a judgment objectively.

It involves logical, disciplined thinking that is clear, rational, open-minded, and informed by evidence.

For problem-solving, critical thinking helps evaluate options and decide the most effective solution. It ensures your decisions are grounded in reason and facts, and not biased or irrational assumptions.

Go Deeper: Critical Thinking Examples

22. Hypothesis Testing

Hypothesis testing usually involves formulating a claim, testing it against actual data, and deciding whether to accept or reject the claim based on the results.

In problem-solving, hypotheses often represent potential solutions. Hypothesis testing provides verification, giving a statistical basis for decision-making and problem resolution.

Usually, this will require research methods and a scientific approach to see whether the hypothesis stands up or not.

Go Deeper: Types of Hypothesis Testing

23. Cost-Benefit Analysis

A cost-benefit analysis (CBA) is a systematic process of weighing the pros and cons of different solutions in terms of their potential costs and benefits.

It allows you to measure the positive effects against the negatives and informs your problem-solving strategy.

By using CBA, you can identify which solution offers the greatest benefit for the least cost, significantly improving efficacy and efficiency in your problem-solving process.

Go Deeper: Cost-Benefit Analysis Examples

24. Simulation and Modeling

Simulations and models allow you to create a simplified replica of real-world systems to test outcomes under controlled conditions.

In problem-solving, you can broadly understand potential repercussions of different solutions before implementation.

It offers a cost-effective way to predict the impacts of your decisions, minimizing potential risks associated with various solutions.

25. Delphi Method

The Delphi Method is a structured communication technique used to gather expert opinions.

The method involves a group of experts who respond to questionnaires about a problem. The responses are aggregated and shared with the group, and the process repeats until a consensus is reached.

This method of problem solving can provide a diverse range of insights and solutions, shaped by the wisdom of a collective expert group.

26. Cross-functional Team Collaboration

Cross-functional team collaboration involves individuals from different departments or areas of expertise coming together to solve a common problem or achieve a shared goal.

When you bring diverse skills, knowledge, and perspectives to a problem, it can lead to a more comprehensive and innovative solution.

In problem-solving, this promotes communal thinking and ensures that solutions are inclusive and holistic, with various aspects of the problem being addressed.

27. Benchmarking

Benchmarking involves comparing one’s business processes and performance metrics to the best practices from other companies or industries.

In problem-solving, it allows you to identify gaps in your own processes, determine how others have solved similar problems, and apply those solutions that have proven to be successful.

It also allows you to compare yourself to the best (the benchmark) and assess where you’re not as good.

28. Pros-Cons Lists

A pro-con analysis aids in problem-solving by weighing the advantages (pros) and disadvantages (cons) of various possible solutions.

This simple but powerful tool helps in making a balanced, informed decision.

When confronted with a problem, a pro-con analysis can guide you through the decision-making process, ensuring all possible outcomes and implications are scrutinized before arriving at the optimal solution. Thus, it helps to make the problem-solving process both methodical and comprehensive.

29. 5 Whys Analysis

The 5 Whys Analysis involves repeatedly asking the question ‘why’ (around five times) to peel away the layers of an issue and discover the root cause of a problem.

As a problem-solving technique, it enables you to delve into details that you might otherwise overlook and offers a simple, yet powerful, approach to uncover the origin of a problem.

For example, if your task is to find out why a product isn’t selling your first answer might be: “because customers don’t want it”, then you ask why again – “they don’t want it because it doesn’t solve their problem”, then why again – “because the product is missing a certain feature” … and so on, until you get to the root “why”.

30. Gap Analysis

Gap analysis entails comparing current performance with potential or desired performance.

You’re identifying the ‘gaps’, or the differences, between where you are and where you want to be.

In terms of problem-solving, a Gap Analysis can help identify key areas for improvement and design a roadmap of how to get from the current state to the desired one.

31. Design Thinking

Design thinking is a problem-solving approach that involves empathy, experimentation, and iteration.

The process focuses on understanding user needs, challenging assumptions , and redefining problems from a user-centric perspective.

In problem-solving, design thinking uncovers innovative solutions that may not have been initially apparent and ensures the solution is tailored to the needs of those affected by the issue.

32. Analogical Thinking

Analogical thinking involves the transfer of information from a particular subject (the analogue or source) to another particular subject (the target).

In problem-solving, you’re drawing parallels between similar situations and applying the problem-solving techniques used in one situation to the other.

Thus, it allows you to apply proven strategies to new, but related problems.

33. Lateral Thinking

Lateral thinking requires looking at a situation or problem from a unique, sometimes abstract, often non-sequential viewpoint.

Unlike traditional logical thinking methods, lateral thinking encourages you to employ creative and out-of-the-box techniques.

In solving problems, this type of thinking boosts ingenuity and drives innovation, often leading to novel and effective solutions.

Go Deeper: Lateral Thinking Examples

34. Flowcharting

Flowcharting is the process of visually mapping a process or procedure.

This form of diagram can show every step of a system, process, or workflow, enabling an easy tracking of the progress.

As a problem-solving tool, flowcharts help identify bottlenecks or inefficiencies in a process, guiding improved strategies and providing clarity on task ownership and process outcomes.

35. Multivoting

Multivoting, or N/3 voting, is a method where participants reduce a large list of ideas to a prioritized shortlist by casting multiple votes.

This voting system elevates the most preferred options for further consideration and decision-making.

As a problem-solving technique, multivoting allows a group to narrow options and focus on the most promising solutions, ensuring more effective and democratic decision-making.

36. Force Field Analysis

Force Field Analysis is a decision-making technique that identifies the forces for and against change when contemplating a decision.

The ‘forces’ represent the differing factors that can drive or hinder change.

In problem-solving, Force Field Analysis allows you to understand the entirety of the context, favoring a balanced view over a one-sided perspective. A comprehensive view of all the forces at play can lead to better-informed problem-solving decisions.

TRIZ, which stands for “The Theory of Inventive Problem Solving,” is a problem-solving, analysis, and forecasting methodology.

It focuses on finding contradictions inherent in a scenario. Then, you work toward eliminating the contraditions through finding innovative solutions.

So, when you’re tackling a problem, TRIZ provides a disciplined, systematic approach that aims for ideal solutions and not just acceptable ones. Using TRIZ, you can leverage patterns of problem-solving that have proven effective in different cases, pivoting them to solve the problem at hand.

38. A3 Problem Solving

A3 Problem Solving, derived from Lean Management, is a structured method that uses a single sheet of A3-sized paper to document knowledge from a problem-solving process.

Named after the international paper size standard of A3 (or 11-inch by 17-inch paper), it succinctly records all key details of the problem-solving process from problem description to the root cause and corrective actions.

Used in problem-solving, this provides a straightforward and logical structure for addressing the problem, facilitating communication between team members, ensuring all critical details are included, and providing a record of decisions made.

39. Scenario Analysis

Scenario Analysis is all about predicting different possible future events depending upon your decision.

To do this, you look at each course of action and try to identify the most likely outcomes or scenarios down the track if you take that course of action.

This technique helps forecast the impacts of various strategies, playing each out to their (logical or potential) end. It’s a good strategy for project managers who need to keep a firm eye on the horizon at all times.

When solving problems, Scenario Analysis assists in preparing for uncertainties, making sure your solution remains viable, regardless of changes in circumstances.

How to Answer “Demonstrate Problem-Solving Skills” in an Interview

When asked to demonstrate your problem-solving skills in an interview, the STAR method often proves useful. STAR stands for Situation, Task, Action, and Result.

Situation: Begin by describing a specific circumstance or challenge you encountered. Make sure to provide enough detail to allow the interviewer a clear understanding. You should select an event that adequately showcases your problem-solving abilities.

For instance, “In my previous role as a project manager, we faced a significant issue when our key supplier abruptly went out of business.”

Task: Explain what your responsibilities were in that situation. This serves to provide context, allowing the interviewer to understand your role and the expectations placed upon you.

For instance, “It was my task to ensure the project remained on track despite this setback. Alternative suppliers needed to be found without sacrificing quality or significantly increasing costs.”

Action: Describe the steps you took to manage the problem. Highlight your problem-solving process. Mention any creative approaches or techniques that you used.

For instance, “I conducted thorough research to identify potential new suppliers. After creating a shortlist, I initiated contact, negotiated terms, assessed samples for quality and made a selection. I also worked closely with the team to re-adjust the project timeline.”

Result: Share the outcomes of your actions. How did the situation end? Did your actions lead to success? It’s particularly effective if you can quantify these results.

For instance, “As a result of my active problem solving, we were able to secure a new supplier whose costs were actually 10% cheaper and whose quality was comparable. We adjusted the project plan and managed to complete the project just two weeks later than originally planned, despite the major vendor setback.”

Remember, when you’re explaining your problem-solving skills to an interviewer, what they’re really interested in is your approach to handling difficulties, your creativity and persistence in seeking a resolution, and your ability to carry your solution through to fruition. Tailoring your story to highlight these aspects will help exemplify your problem-solving prowess.

Go Deeper: STAR Interview Method Examples

Benefits of Problem-Solving

Problem-solving is beneficial for the following reasons (among others):

  • It can help you to overcome challenges, roadblocks, and bottlenecks in your life.
  • It can save a company money.
  • It can help you to achieve clarity in your thinking.
  • It can make procedures more efficient and save time.
  • It can strengthen your decision-making capacities.
  • It can lead to better risk management.

Whether for a job interview or school, problem-solving helps you to become a better thinking, solve your problems more effectively, and achieve your goals. Build up your problem-solving frameworks (I presented over 40 in this piece for you!) and work on applying them in real-life situations.

Chris

Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ Social-Emotional Learning (Definition, Examples, Pros & Cons)
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ What is Educational Psychology?
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ What is IQ? (Intelligence Quotient)
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 5 Top Tips for Succeeding at University

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

  • Skip to main content
  • Skip to primary sidebar

IResearchNet

Problem Solving

Problem solving, a fundamental cognitive process deeply rooted in psychology, plays a pivotal role in various aspects of human existence, especially within educational contexts. This article delves into the nature of problem solving, exploring its theoretical underpinnings, the cognitive and psychological processes that underlie it, and the application of problem-solving skills within educational settings and the broader real world. With a focus on both theory and practice, this article underscores the significance of cultivating problem-solving abilities as a cornerstone of cognitive development and innovation, shedding light on its applications in fields ranging from education to clinical psychology and beyond, thereby paving the way for future research and intervention in this critical domain of human cognition.

Introduction

Problem solving, a quintessential cognitive process deeply embedded in the domains of psychology and education, serves as a linchpin for human intellectual development and adaptation to the ever-evolving challenges of the world. The fundamental capacity to identify, analyze, and surmount obstacles is intrinsic to human nature and has been a subject of profound interest for psychologists, educators, and researchers alike. This article aims to provide a comprehensive exploration of problem solving, investigating its theoretical foundations, cognitive intricacies, and practical applications in educational contexts. With a clear understanding of its multifaceted nature, we will elucidate the pivotal role that problem solving plays in enhancing learning, fostering creativity, and promoting cognitive growth, setting the stage for a detailed examination of its significance in both psychology and education. In the continuum of psychological research and educational practice, problem solving stands as a cornerstone, enabling individuals to navigate the complexities of their world. This article’s thesis asserts that problem solving is not merely a cognitive skill but a dynamic process with profound implications for intellectual growth and application in diverse real-world contexts.

The Nature of Problem Solving

Problem solving, within the realm of psychology, refers to the cognitive process through which individuals identify, analyze, and resolve challenges or obstacles to achieve a desired goal. It encompasses a range of mental activities, such as perception, memory, reasoning, and decision-making, aimed at devising effective solutions in the face of uncertainty or complexity.

Problem solving as a subject of inquiry has drawn from various theoretical perspectives, each offering unique insights into its nature. Among the seminal theories, Gestalt psychology has highlighted the role of insight and restructuring in problem solving, emphasizing that individuals often reorganize their mental representations to attain solutions. Information processing theories, inspired by computer models, emphasize the systematic and step-by-step nature of problem solving, likening it to information retrieval and manipulation. Furthermore, cognitive psychology has provided a comprehensive framework for understanding problem solving by examining the underlying cognitive processes involved, such as attention, memory, and decision-making. These theoretical foundations collectively offer a richer comprehension of how humans engage in and approach problem-solving tasks.

Problem solving is not a monolithic process but a series of interrelated stages that individuals progress through. These stages are integral to the overall problem-solving process, and they include:

  • Problem Representation: At the outset, individuals must clearly define and represent the problem they face. This involves grasping the nature of the problem, identifying its constraints, and understanding the relationships between various elements.
  • Goal Setting: Setting a clear and attainable goal is essential for effective problem solving. This step involves specifying the desired outcome or solution and establishing criteria for success.
  • Solution Generation: In this stage, individuals generate potential solutions to the problem. This often involves brainstorming, creative thinking, and the exploration of different strategies to overcome the obstacles presented by the problem.
  • Solution Evaluation: After generating potential solutions, individuals must evaluate these alternatives to determine their feasibility and effectiveness. This involves comparing solutions, considering potential consequences, and making choices based on the criteria established in the goal-setting phase.

These components collectively form the roadmap for navigating the terrain of problem solving and provide a structured approach to addressing challenges effectively. Understanding these stages is crucial for both researchers studying problem solving and educators aiming to foster problem-solving skills in learners.

Cognitive and Psychological Aspects of Problem Solving

Problem solving is intricately tied to a range of cognitive processes, each contributing to the effectiveness of the problem-solving endeavor.

  • Perception: Perception serves as the initial gateway in problem solving. It involves the gathering and interpretation of sensory information from the environment. Effective perception allows individuals to identify relevant cues and patterns within a problem, aiding in problem representation and understanding.
  • Memory: Memory is crucial in problem solving as it enables the retrieval of relevant information from past experiences, learned strategies, and knowledge. Working memory, in particular, helps individuals maintain and manipulate information while navigating through the various stages of problem solving.
  • Reasoning: Reasoning encompasses logical and critical thinking processes that guide the generation and evaluation of potential solutions. Deductive and inductive reasoning, as well as analogical reasoning, play vital roles in identifying relationships and formulating hypotheses.

While problem solving is a universal cognitive function, individuals differ in their problem-solving skills due to various factors.

  • Intelligence: Intelligence, as measured by IQ or related assessments, significantly influences problem-solving abilities. Higher levels of intelligence are often associated with better problem-solving performance, as individuals with greater cognitive resources can process information more efficiently and effectively.
  • Creativity: Creativity is a crucial factor in problem solving, especially in situations that require innovative solutions. Creative individuals tend to approach problems with fresh perspectives, making novel connections and generating unconventional solutions.
  • Expertise: Expertise in a specific domain enhances problem-solving abilities within that domain. Experts possess a wealth of knowledge and experience, allowing them to recognize patterns and solutions more readily. However, expertise can sometimes lead to domain-specific biases or difficulties in adapting to new problem types.

Despite the cognitive processes and individual differences that contribute to effective problem solving, individuals often encounter barriers that impede their progress. Recognizing and overcoming these barriers is crucial for successful problem solving.

  • Functional Fixedness: Functional fixedness is a cognitive bias that limits problem solving by causing individuals to perceive objects or concepts only in their traditional or “fixed” roles. Overcoming functional fixedness requires the ability to see alternative uses and functions for objects or ideas.
  • Confirmation Bias: Confirmation bias is the tendency to seek, interpret, and remember information that confirms preexisting beliefs or hypotheses. This bias can hinder objective evaluation of potential solutions, as individuals may favor information that aligns with their initial perspectives.
  • Mental Sets: Mental sets are cognitive frameworks or problem-solving strategies that individuals habitually use. While mental sets can be helpful in certain contexts, they can also limit creativity and flexibility when faced with new problems. Recognizing and breaking out of mental sets is essential for overcoming this barrier.

Understanding these cognitive processes, individual differences, and common obstacles provides valuable insights into the intricacies of problem solving and offers a foundation for improving problem-solving skills and strategies in both educational and practical settings.

Problem Solving in Educational Settings

Problem solving holds a central position in educational psychology, as it is a fundamental skill that empowers students to navigate the complexities of the learning process and prepares them for real-world challenges. It goes beyond rote memorization and standardized testing, allowing students to apply critical thinking, creativity, and analytical skills to authentic problems. Problem-solving tasks in educational settings range from solving mathematical equations to tackling complex issues in subjects like science, history, and literature. These tasks not only bolster subject-specific knowledge but also cultivate transferable skills that extend beyond the classroom.

Problem-solving skills offer numerous advantages to both educators and students. For teachers, integrating problem-solving tasks into the curriculum allows for more engaging and dynamic instruction, fostering a deeper understanding of the subject matter. Additionally, it provides educators with insights into students’ thought processes and areas where additional support may be needed. Students, on the other hand, benefit from the development of critical thinking, analytical reasoning, and creativity. These skills are transferable to various life situations, enhancing students’ abilities to solve complex real-world problems and adapt to a rapidly changing society.

Teaching problem-solving skills is a dynamic process that requires effective pedagogical approaches. In K-12 education, educators often use methods such as the problem-based learning (PBL) approach, where students work on open-ended, real-world problems, fostering self-directed learning and collaboration. Higher education institutions, on the other hand, employ strategies like case-based learning, simulations, and design thinking to promote problem solving within specialized disciplines. Additionally, educators use scaffolding techniques to provide support and guidance as students develop their problem-solving abilities. In both K-12 and higher education, a key component is metacognition, which helps students become aware of their thought processes and adapt their problem-solving strategies as needed.

Assessing problem-solving abilities in educational settings involves a combination of formative and summative assessments. Formative assessments, including classroom discussions, peer evaluations, and self-assessments, provide ongoing feedback and opportunities for improvement. Summative assessments may include standardized tests designed to evaluate problem-solving skills within a particular subject area. Performance-based assessments, such as essays, projects, and presentations, offer a holistic view of students’ problem-solving capabilities. Rubrics and scoring guides are often used to ensure consistency in assessment, allowing educators to measure not only the correctness of answers but also the quality of the problem-solving process. The evolving field of educational technology has also introduced computer-based simulations and adaptive learning platforms, enabling precise measurement and tailored feedback on students’ problem-solving performance.

Understanding the pivotal role of problem solving in educational psychology, the diverse pedagogical strategies for teaching it, and the methods for assessing and measuring problem-solving abilities equips educators and students with the tools necessary to thrive in educational environments and beyond. Problem solving remains a cornerstone of 21st-century education, preparing students to meet the complex challenges of a rapidly changing world.

Applications and Practical Implications

Problem solving is not confined to the classroom; it extends its influence to various real-world contexts, showcasing its relevance and impact. In business, problem solving is the driving force behind product development, process improvement, and conflict resolution. For instance, companies often use problem-solving methodologies like Six Sigma to identify and rectify issues in manufacturing. In healthcare, medical professionals employ problem-solving skills to diagnose complex illnesses and devise treatment plans. Additionally, technology advancements frequently stem from creative problem solving, as engineers and developers tackle challenges in software, hardware, and systems design. Real-world problem solving transcends specific domains, as individuals in diverse fields address multifaceted issues by drawing upon their cognitive abilities and creative problem-solving strategies.

Clinical psychology recognizes the profound therapeutic potential of problem-solving techniques. Problem-solving therapy (PST) is an evidence-based approach that focuses on helping individuals develop effective strategies for coping with emotional and interpersonal challenges. PST equips individuals with the skills to define problems, set realistic goals, generate solutions, and evaluate their effectiveness. This approach has shown efficacy in treating conditions like depression, anxiety, and stress, emphasizing the role of problem-solving abilities in enhancing emotional well-being. Furthermore, cognitive-behavioral therapy (CBT) incorporates problem-solving elements to help individuals challenge and modify dysfunctional thought patterns, reinforcing the importance of cognitive processes in addressing psychological distress.

Problem solving is the bedrock of innovation and creativity in various fields. Innovators and creative thinkers use problem-solving skills to identify unmet needs, devise novel solutions, and overcome obstacles. Design thinking, a problem-solving approach, is instrumental in product design, architecture, and user experience design, fostering innovative solutions grounded in human needs. Moreover, creative industries like art, literature, and music rely on problem-solving abilities to transcend conventional boundaries and produce groundbreaking works. By exploring alternative perspectives, making connections, and persistently seeking solutions, creative individuals harness problem-solving processes to ignite innovation and drive progress in all facets of human endeavor.

Understanding the practical applications of problem solving in business, healthcare, technology, and its therapeutic significance in clinical psychology, as well as its indispensable role in nurturing innovation and creativity, underscores its universal value. Problem solving is not only a cognitive skill but also a dynamic force that shapes and improves the world we inhabit, enhancing the quality of life and promoting progress and discovery.

In summary, problem solving stands as an indispensable cornerstone within the domains of psychology and education. This article has explored the multifaceted nature of problem solving, from its theoretical foundations rooted in Gestalt psychology, information processing theories, and cognitive psychology to its integral components of problem representation, goal setting, solution generation, and solution evaluation. It has delved into the cognitive processes underpinning effective problem solving, including perception, memory, and reasoning, as well as the impact of individual differences such as intelligence, creativity, and expertise. Common barriers to problem solving, including functional fixedness, confirmation bias, and mental sets, have been examined in-depth.

The significance of problem solving in educational settings was elucidated, underscoring its pivotal role in fostering critical thinking, creativity, and adaptability. Pedagogical approaches and assessment methods were discussed, providing educators with insights into effective strategies for teaching and evaluating problem-solving skills in K-12 and higher education.

Furthermore, the practical implications of problem solving were demonstrated in the real world, where it serves as the driving force behind advancements in business, healthcare, and technology. In clinical psychology, problem-solving therapies offer effective interventions for emotional and psychological well-being. The symbiotic relationship between problem solving and innovation and creativity was explored, highlighting the role of this cognitive process in pushing the boundaries of human accomplishment.

As we conclude, it is evident that problem solving is not merely a skill but a dynamic process with profound implications. It enables individuals to navigate the complexities of their environment, fostering intellectual growth, adaptability, and innovation. Future research in the field of problem solving should continue to explore the intricate cognitive processes involved, individual differences that influence problem-solving abilities, and innovative teaching methods in educational settings. In practice, educators and clinicians should continue to incorporate problem-solving strategies to empower individuals with the tools necessary for success in education, personal development, and the ever-evolving challenges of the real world. Problem solving remains a steadfast ally in the pursuit of knowledge, progress, and the enhancement of human potential.

References:

  • Anderson, J. R. (1995). Cognitive psychology and its implications. W. H. Freeman.
  • Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In The psychology of learning and motivation (Vol. 2, pp. 89-195). Academic Press.
  • Duncker, K. (1945). On problem-solving. Psychological Monographs, 58(5), i-113.
  • Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology, 12(3), 306-355.
  • Jonassen, D. H., & Hung, W. (2008). All problems are not equal: Implications for problem-based learning. Interdisciplinary Journal of Problem-Based Learning, 2(2), 6.
  • Kitchener, K. S., & King, P. M. (1981). Reflective judgment: Concepts of justification and their relation to age and education. Journal of Applied Developmental Psychology, 2(2), 89-116.
  • Luchins, A. S. (1942). Mechanization in problem solving: The effect of Einstellung. Psychological Monographs, 54(6), i-95.
  • Mayer, R. E. (1992). Thinking, problem solving, cognition. W. H. Freeman.
  • Newell, A., & Simon, H. A. (1972). Human problem solving (Vol. 104). Prentice-Hall Englewood Cliffs, NJ.
  • Osborn, A. F. (1953). Applied imagination: Principles and procedures of creative problem solving (3rd ed.). Charles Scribner’s Sons.
  • Polya, G. (1945). How to solve it: A new aspect of mathematical method. Princeton University Press.
  • Sternberg, R. J. (2003). Wisdom, intelligence, and creativity synthesized. Cambridge University Press.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Open access
  • Published: 11 January 2023

The effectiveness of collaborative problem solving in promoting students’ critical thinking: A meta-analysis based on empirical literature

  • Enwei Xu   ORCID: orcid.org/0000-0001-6424-8169 1 ,
  • Wei Wang 1 &
  • Qingxia Wang 1  

Humanities and Social Sciences Communications volume  10 , Article number:  16 ( 2023 ) Cite this article

15k Accesses

14 Citations

3 Altmetric

Metrics details

  • Science, technology and society

Collaborative problem-solving has been widely embraced in the classroom instruction of critical thinking, which is regarded as the core of curriculum reform based on key competencies in the field of education as well as a key competence for learners in the 21st century. However, the effectiveness of collaborative problem-solving in promoting students’ critical thinking remains uncertain. This current research presents the major findings of a meta-analysis of 36 pieces of the literature revealed in worldwide educational periodicals during the 21st century to identify the effectiveness of collaborative problem-solving in promoting students’ critical thinking and to determine, based on evidence, whether and to what extent collaborative problem solving can result in a rise or decrease in critical thinking. The findings show that (1) collaborative problem solving is an effective teaching approach to foster students’ critical thinking, with a significant overall effect size (ES = 0.82, z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]); (2) in respect to the dimensions of critical thinking, collaborative problem solving can significantly and successfully enhance students’ attitudinal tendencies (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI[0.87, 1.47]); nevertheless, it falls short in terms of improving students’ cognitive skills, having only an upper-middle impact (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI[0.58, 0.82]); and (3) the teaching type (chi 2  = 7.20, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), and learning scaffold (chi 2  = 9.03, P  < 0.01) all have an impact on critical thinking, and they can be viewed as important moderating factors that affect how critical thinking develops. On the basis of these results, recommendations are made for further study and instruction to better support students’ critical thinking in the context of collaborative problem-solving.

Similar content being viewed by others

practical examples of problem solving in education

Fostering twenty-first century skills among primary school students through math project-based learning

practical examples of problem solving in education

A meta-analysis to gauge the impact of pedagogies employed in mixed-ability high school biology classrooms

practical examples of problem solving in education

A guide to critical thinking: implications for dental education

Introduction.

Although critical thinking has a long history in research, the concept of critical thinking, which is regarded as an essential competence for learners in the 21st century, has recently attracted more attention from researchers and teaching practitioners (National Research Council, 2012 ). Critical thinking should be the core of curriculum reform based on key competencies in the field of education (Peng and Deng, 2017 ) because students with critical thinking can not only understand the meaning of knowledge but also effectively solve practical problems in real life even after knowledge is forgotten (Kek and Huijser, 2011 ). The definition of critical thinking is not universal (Ennis, 1989 ; Castle, 2009 ; Niu et al., 2013 ). In general, the definition of critical thinking is a self-aware and self-regulated thought process (Facione, 1990 ; Niu et al., 2013 ). It refers to the cognitive skills needed to interpret, analyze, synthesize, reason, and evaluate information as well as the attitudinal tendency to apply these abilities (Halpern, 2001 ). The view that critical thinking can be taught and learned through curriculum teaching has been widely supported by many researchers (e.g., Kuncel, 2011 ; Leng and Lu, 2020 ), leading to educators’ efforts to foster it among students. In the field of teaching practice, there are three types of courses for teaching critical thinking (Ennis, 1989 ). The first is an independent curriculum in which critical thinking is taught and cultivated without involving the knowledge of specific disciplines; the second is an integrated curriculum in which critical thinking is integrated into the teaching of other disciplines as a clear teaching goal; and the third is a mixed curriculum in which critical thinking is taught in parallel to the teaching of other disciplines for mixed teaching training. Furthermore, numerous measuring tools have been developed by researchers and educators to measure critical thinking in the context of teaching practice. These include standardized measurement tools, such as WGCTA, CCTST, CCTT, and CCTDI, which have been verified by repeated experiments and are considered effective and reliable by international scholars (Facione and Facione, 1992 ). In short, descriptions of critical thinking, including its two dimensions of attitudinal tendency and cognitive skills, different types of teaching courses, and standardized measurement tools provide a complex normative framework for understanding, teaching, and evaluating critical thinking.

Cultivating critical thinking in curriculum teaching can start with a problem, and one of the most popular critical thinking instructional approaches is problem-based learning (Liu et al., 2020 ). Duch et al. ( 2001 ) noted that problem-based learning in group collaboration is progressive active learning, which can improve students’ critical thinking and problem-solving skills. Collaborative problem-solving is the organic integration of collaborative learning and problem-based learning, which takes learners as the center of the learning process and uses problems with poor structure in real-world situations as the starting point for the learning process (Liang et al., 2017 ). Students learn the knowledge needed to solve problems in a collaborative group, reach a consensus on problems in the field, and form solutions through social cooperation methods, such as dialogue, interpretation, questioning, debate, negotiation, and reflection, thus promoting the development of learners’ domain knowledge and critical thinking (Cindy, 2004 ; Liang et al., 2017 ).

Collaborative problem-solving has been widely used in the teaching practice of critical thinking, and several studies have attempted to conduct a systematic review and meta-analysis of the empirical literature on critical thinking from various perspectives. However, little attention has been paid to the impact of collaborative problem-solving on critical thinking. Therefore, the best approach for developing and enhancing critical thinking throughout collaborative problem-solving is to examine how to implement critical thinking instruction; however, this issue is still unexplored, which means that many teachers are incapable of better instructing critical thinking (Leng and Lu, 2020 ; Niu et al., 2013 ). For example, Huber ( 2016 ) provided the meta-analysis findings of 71 publications on gaining critical thinking over various time frames in college with the aim of determining whether critical thinking was truly teachable. These authors found that learners significantly improve their critical thinking while in college and that critical thinking differs with factors such as teaching strategies, intervention duration, subject area, and teaching type. The usefulness of collaborative problem-solving in fostering students’ critical thinking, however, was not determined by this study, nor did it reveal whether there existed significant variations among the different elements. A meta-analysis of 31 pieces of educational literature was conducted by Liu et al. ( 2020 ) to assess the impact of problem-solving on college students’ critical thinking. These authors found that problem-solving could promote the development of critical thinking among college students and proposed establishing a reasonable group structure for problem-solving in a follow-up study to improve students’ critical thinking. Additionally, previous empirical studies have reached inconclusive and even contradictory conclusions about whether and to what extent collaborative problem-solving increases or decreases critical thinking levels. As an illustration, Yang et al. ( 2008 ) carried out an experiment on the integrated curriculum teaching of college students based on a web bulletin board with the goal of fostering participants’ critical thinking in the context of collaborative problem-solving. These authors’ research revealed that through sharing, debating, examining, and reflecting on various experiences and ideas, collaborative problem-solving can considerably enhance students’ critical thinking in real-life problem situations. In contrast, collaborative problem-solving had a positive impact on learners’ interaction and could improve learning interest and motivation but could not significantly improve students’ critical thinking when compared to traditional classroom teaching, according to research by Naber and Wyatt ( 2014 ) and Sendag and Odabasi ( 2009 ) on undergraduate and high school students, respectively.

The above studies show that there is inconsistency regarding the effectiveness of collaborative problem-solving in promoting students’ critical thinking. Therefore, it is essential to conduct a thorough and trustworthy review to detect and decide whether and to what degree collaborative problem-solving can result in a rise or decrease in critical thinking. Meta-analysis is a quantitative analysis approach that is utilized to examine quantitative data from various separate studies that are all focused on the same research topic. This approach characterizes the effectiveness of its impact by averaging the effect sizes of numerous qualitative studies in an effort to reduce the uncertainty brought on by independent research and produce more conclusive findings (Lipsey and Wilson, 2001 ).

This paper used a meta-analytic approach and carried out a meta-analysis to examine the effectiveness of collaborative problem-solving in promoting students’ critical thinking in order to make a contribution to both research and practice. The following research questions were addressed by this meta-analysis:

What is the overall effect size of collaborative problem-solving in promoting students’ critical thinking and its impact on the two dimensions of critical thinking (i.e., attitudinal tendency and cognitive skills)?

How are the disparities between the study conclusions impacted by various moderating variables if the impacts of various experimental designs in the included studies are heterogeneous?

This research followed the strict procedures (e.g., database searching, identification, screening, eligibility, merging, duplicate removal, and analysis of included studies) of Cooper’s ( 2010 ) proposed meta-analysis approach for examining quantitative data from various separate studies that are all focused on the same research topic. The relevant empirical research that appeared in worldwide educational periodicals within the 21st century was subjected to this meta-analysis using Rev-Man 5.4. The consistency of the data extracted separately by two researchers was tested using Cohen’s kappa coefficient, and a publication bias test and a heterogeneity test were run on the sample data to ascertain the quality of this meta-analysis.

Data sources and search strategies

There were three stages to the data collection process for this meta-analysis, as shown in Fig. 1 , which shows the number of articles included and eliminated during the selection process based on the statement and study eligibility criteria.

figure 1

This flowchart shows the number of records identified, included and excluded in the article.

First, the databases used to systematically search for relevant articles were the journal papers of the Web of Science Core Collection and the Chinese Core source journal, as well as the Chinese Social Science Citation Index (CSSCI) source journal papers included in CNKI. These databases were selected because they are credible platforms that are sources of scholarly and peer-reviewed information with advanced search tools and contain literature relevant to the subject of our topic from reliable researchers and experts. The search string with the Boolean operator used in the Web of Science was “TS = (((“critical thinking” or “ct” and “pretest” or “posttest”) or (“critical thinking” or “ct” and “control group” or “quasi experiment” or “experiment”)) and (“collaboration” or “collaborative learning” or “CSCL”) and (“problem solving” or “problem-based learning” or “PBL”))”. The research area was “Education Educational Research”, and the search period was “January 1, 2000, to December 30, 2021”. A total of 412 papers were obtained. The search string with the Boolean operator used in the CNKI was “SU = (‘critical thinking’*‘collaboration’ + ‘critical thinking’*‘collaborative learning’ + ‘critical thinking’*‘CSCL’ + ‘critical thinking’*‘problem solving’ + ‘critical thinking’*‘problem-based learning’ + ‘critical thinking’*‘PBL’ + ‘critical thinking’*‘problem oriented’) AND FT = (‘experiment’ + ‘quasi experiment’ + ‘pretest’ + ‘posttest’ + ‘empirical study’)” (translated into Chinese when searching). A total of 56 studies were found throughout the search period of “January 2000 to December 2021”. From the databases, all duplicates and retractions were eliminated before exporting the references into Endnote, a program for managing bibliographic references. In all, 466 studies were found.

Second, the studies that matched the inclusion and exclusion criteria for the meta-analysis were chosen by two researchers after they had reviewed the abstracts and titles of the gathered articles, yielding a total of 126 studies.

Third, two researchers thoroughly reviewed each included article’s whole text in accordance with the inclusion and exclusion criteria. Meanwhile, a snowball search was performed using the references and citations of the included articles to ensure complete coverage of the articles. Ultimately, 36 articles were kept.

Two researchers worked together to carry out this entire process, and a consensus rate of almost 94.7% was reached after discussion and negotiation to clarify any emerging differences.

Eligibility criteria

Since not all the retrieved studies matched the criteria for this meta-analysis, eligibility criteria for both inclusion and exclusion were developed as follows:

The publication language of the included studies was limited to English and Chinese, and the full text could be obtained. Articles that did not meet the publication language and articles not published between 2000 and 2021 were excluded.

The research design of the included studies must be empirical and quantitative studies that can assess the effect of collaborative problem-solving on the development of critical thinking. Articles that could not identify the causal mechanisms by which collaborative problem-solving affects critical thinking, such as review articles and theoretical articles, were excluded.

The research method of the included studies must feature a randomized control experiment or a quasi-experiment, or a natural experiment, which have a higher degree of internal validity with strong experimental designs and can all plausibly provide evidence that critical thinking and collaborative problem-solving are causally related. Articles with non-experimental research methods, such as purely correlational or observational studies, were excluded.

The participants of the included studies were only students in school, including K-12 students and college students. Articles in which the participants were non-school students, such as social workers or adult learners, were excluded.

The research results of the included studies must mention definite signs that may be utilized to gauge critical thinking’s impact (e.g., sample size, mean value, or standard deviation). Articles that lacked specific measurement indicators for critical thinking and could not calculate the effect size were excluded.

Data coding design

In order to perform a meta-analysis, it is necessary to collect the most important information from the articles, codify that information’s properties, and convert descriptive data into quantitative data. Therefore, this study designed a data coding template (see Table 1 ). Ultimately, 16 coding fields were retained.

The designed data-coding template consisted of three pieces of information. Basic information about the papers was included in the descriptive information: the publishing year, author, serial number, and title of the paper.

The variable information for the experimental design had three variables: the independent variable (instruction method), the dependent variable (critical thinking), and the moderating variable (learning stage, teaching type, intervention duration, learning scaffold, group size, measuring tool, and subject area). Depending on the topic of this study, the intervention strategy, as the independent variable, was coded into collaborative and non-collaborative problem-solving. The dependent variable, critical thinking, was coded as a cognitive skill and an attitudinal tendency. And seven moderating variables were created by grouping and combining the experimental design variables discovered within the 36 studies (see Table 1 ), where learning stages were encoded as higher education, high school, middle school, and primary school or lower; teaching types were encoded as mixed courses, integrated courses, and independent courses; intervention durations were encoded as 0–1 weeks, 1–4 weeks, 4–12 weeks, and more than 12 weeks; group sizes were encoded as 2–3 persons, 4–6 persons, 7–10 persons, and more than 10 persons; learning scaffolds were encoded as teacher-supported learning scaffold, technique-supported learning scaffold, and resource-supported learning scaffold; measuring tools were encoded as standardized measurement tools (e.g., WGCTA, CCTT, CCTST, and CCTDI) and self-adapting measurement tools (e.g., modified or made by researchers); and subject areas were encoded according to the specific subjects used in the 36 included studies.

The data information contained three metrics for measuring critical thinking: sample size, average value, and standard deviation. It is vital to remember that studies with various experimental designs frequently adopt various formulas to determine the effect size. And this paper used Morris’ proposed standardized mean difference (SMD) calculation formula ( 2008 , p. 369; see Supplementary Table S3 ).

Procedure for extracting and coding data

According to the data coding template (see Table 1 ), the 36 papers’ information was retrieved by two researchers, who then entered them into Excel (see Supplementary Table S1 ). The results of each study were extracted separately in the data extraction procedure if an article contained numerous studies on critical thinking, or if a study assessed different critical thinking dimensions. For instance, Tiwari et al. ( 2010 ) used four time points, which were viewed as numerous different studies, to examine the outcomes of critical thinking, and Chen ( 2013 ) included the two outcome variables of attitudinal tendency and cognitive skills, which were regarded as two studies. After discussion and negotiation during data extraction, the two researchers’ consistency test coefficients were roughly 93.27%. Supplementary Table S2 details the key characteristics of the 36 included articles with 79 effect quantities, including descriptive information (e.g., the publishing year, author, serial number, and title of the paper), variable information (e.g., independent variables, dependent variables, and moderating variables), and data information (e.g., mean values, standard deviations, and sample size). Following that, testing for publication bias and heterogeneity was done on the sample data using the Rev-Man 5.4 software, and then the test results were used to conduct a meta-analysis.

Publication bias test

When the sample of studies included in a meta-analysis does not accurately reflect the general status of research on the relevant subject, publication bias is said to be exhibited in this research. The reliability and accuracy of the meta-analysis may be impacted by publication bias. Due to this, the meta-analysis needs to check the sample data for publication bias (Stewart et al., 2006 ). A popular method to check for publication bias is the funnel plot; and it is unlikely that there will be publishing bias when the data are equally dispersed on either side of the average effect size and targeted within the higher region. The data are equally dispersed within the higher portion of the efficient zone, consistent with the funnel plot connected with this analysis (see Fig. 2 ), indicating that publication bias is unlikely in this situation.

figure 2

This funnel plot shows the result of publication bias of 79 effect quantities across 36 studies.

Heterogeneity test

To select the appropriate effect models for the meta-analysis, one might use the results of a heterogeneity test on the data effect sizes. In a meta-analysis, it is common practice to gauge the degree of data heterogeneity using the I 2 value, and I 2  ≥ 50% is typically understood to denote medium-high heterogeneity, which calls for the adoption of a random effect model; if not, a fixed effect model ought to be applied (Lipsey and Wilson, 2001 ). The findings of the heterogeneity test in this paper (see Table 2 ) revealed that I 2 was 86% and displayed significant heterogeneity ( P  < 0.01). To ensure accuracy and reliability, the overall effect size ought to be calculated utilizing the random effect model.

The analysis of the overall effect size

This meta-analysis utilized a random effect model to examine 79 effect quantities from 36 studies after eliminating heterogeneity. In accordance with Cohen’s criterion (Cohen, 1992 ), it is abundantly clear from the analysis results, which are shown in the forest plot of the overall effect (see Fig. 3 ), that the cumulative impact size of cooperative problem-solving is 0.82, which is statistically significant ( z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]), and can encourage learners to practice critical thinking.

figure 3

This forest plot shows the analysis result of the overall effect size across 36 studies.

In addition, this study examined two distinct dimensions of critical thinking to better understand the precise contributions that collaborative problem-solving makes to the growth of critical thinking. The findings (see Table 3 ) indicate that collaborative problem-solving improves cognitive skills (ES = 0.70) and attitudinal tendency (ES = 1.17), with significant intergroup differences (chi 2  = 7.95, P  < 0.01). Although collaborative problem-solving improves both dimensions of critical thinking, it is essential to point out that the improvements in students’ attitudinal tendency are much more pronounced and have a significant comprehensive effect (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI [0.87, 1.47]), whereas gains in learners’ cognitive skill are slightly improved and are just above average. (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI [0.58, 0.82]).

The analysis of moderator effect size

The whole forest plot’s 79 effect quantities underwent a two-tailed test, which revealed significant heterogeneity ( I 2  = 86%, z  = 12.78, P  < 0.01), indicating differences between various effect sizes that may have been influenced by moderating factors other than sampling error. Therefore, exploring possible moderating factors that might produce considerable heterogeneity was done using subgroup analysis, such as the learning stage, learning scaffold, teaching type, group size, duration of the intervention, measuring tool, and the subject area included in the 36 experimental designs, in order to further explore the key factors that influence critical thinking. The findings (see Table 4 ) indicate that various moderating factors have advantageous effects on critical thinking. In this situation, the subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), learning scaffold (chi 2  = 9.03, P  < 0.01), and teaching type (chi 2  = 7.20, P  < 0.05) are all significant moderators that can be applied to support the cultivation of critical thinking. However, since the learning stage and the measuring tools did not significantly differ among intergroup (chi 2  = 3.15, P  = 0.21 > 0.05, and chi 2  = 0.08, P  = 0.78 > 0.05), we are unable to explain why these two factors are crucial in supporting the cultivation of critical thinking in the context of collaborative problem-solving. These are the precise outcomes, as follows:

Various learning stages influenced critical thinking positively, without significant intergroup differences (chi 2  = 3.15, P  = 0.21 > 0.05). High school was first on the list of effect sizes (ES = 1.36, P  < 0.01), then higher education (ES = 0.78, P  < 0.01), and middle school (ES = 0.73, P  < 0.01). These results show that, despite the learning stage’s beneficial influence on cultivating learners’ critical thinking, we are unable to explain why it is essential for cultivating critical thinking in the context of collaborative problem-solving.

Different teaching types had varying degrees of positive impact on critical thinking, with significant intergroup differences (chi 2  = 7.20, P  < 0.05). The effect size was ranked as follows: mixed courses (ES = 1.34, P  < 0.01), integrated courses (ES = 0.81, P  < 0.01), and independent courses (ES = 0.27, P  < 0.01). These results indicate that the most effective approach to cultivate critical thinking utilizing collaborative problem solving is through the teaching type of mixed courses.

Various intervention durations significantly improved critical thinking, and there were significant intergroup differences (chi 2  = 12.18, P  < 0.01). The effect sizes related to this variable showed a tendency to increase with longer intervention durations. The improvement in critical thinking reached a significant level (ES = 0.85, P  < 0.01) after more than 12 weeks of training. These findings indicate that the intervention duration and critical thinking’s impact are positively correlated, with a longer intervention duration having a greater effect.

Different learning scaffolds influenced critical thinking positively, with significant intergroup differences (chi 2  = 9.03, P  < 0.01). The resource-supported learning scaffold (ES = 0.69, P  < 0.01) acquired a medium-to-higher level of impact, the technique-supported learning scaffold (ES = 0.63, P  < 0.01) also attained a medium-to-higher level of impact, and the teacher-supported learning scaffold (ES = 0.92, P  < 0.01) displayed a high level of significant impact. These results show that the learning scaffold with teacher support has the greatest impact on cultivating critical thinking.

Various group sizes influenced critical thinking positively, and the intergroup differences were statistically significant (chi 2  = 8.77, P  < 0.05). Critical thinking showed a general declining trend with increasing group size. The overall effect size of 2–3 people in this situation was the biggest (ES = 0.99, P  < 0.01), and when the group size was greater than 7 people, the improvement in critical thinking was at the lower-middle level (ES < 0.5, P  < 0.01). These results show that the impact on critical thinking is positively connected with group size, and as group size grows, so does the overall impact.

Various measuring tools influenced critical thinking positively, with significant intergroup differences (chi 2  = 0.08, P  = 0.78 > 0.05). In this situation, the self-adapting measurement tools obtained an upper-medium level of effect (ES = 0.78), whereas the complete effect size of the standardized measurement tools was the largest, achieving a significant level of effect (ES = 0.84, P  < 0.01). These results show that, despite the beneficial influence of the measuring tool on cultivating critical thinking, we are unable to explain why it is crucial in fostering the growth of critical thinking by utilizing the approach of collaborative problem-solving.

Different subject areas had a greater impact on critical thinking, and the intergroup differences were statistically significant (chi 2  = 13.36, P  < 0.05). Mathematics had the greatest overall impact, achieving a significant level of effect (ES = 1.68, P  < 0.01), followed by science (ES = 1.25, P  < 0.01) and medical science (ES = 0.87, P  < 0.01), both of which also achieved a significant level of effect. Programming technology was the least effective (ES = 0.39, P  < 0.01), only having a medium-low degree of effect compared to education (ES = 0.72, P  < 0.01) and other fields (such as language, art, and social sciences) (ES = 0.58, P  < 0.01). These results suggest that scientific fields (e.g., mathematics, science) may be the most effective subject areas for cultivating critical thinking utilizing the approach of collaborative problem-solving.

The effectiveness of collaborative problem solving with regard to teaching critical thinking

According to this meta-analysis, using collaborative problem-solving as an intervention strategy in critical thinking teaching has a considerable amount of impact on cultivating learners’ critical thinking as a whole and has a favorable promotional effect on the two dimensions of critical thinking. According to certain studies, collaborative problem solving, the most frequently used critical thinking teaching strategy in curriculum instruction can considerably enhance students’ critical thinking (e.g., Liang et al., 2017 ; Liu et al., 2020 ; Cindy, 2004 ). This meta-analysis provides convergent data support for the above research views. Thus, the findings of this meta-analysis not only effectively address the first research query regarding the overall effect of cultivating critical thinking and its impact on the two dimensions of critical thinking (i.e., attitudinal tendency and cognitive skills) utilizing the approach of collaborative problem-solving, but also enhance our confidence in cultivating critical thinking by using collaborative problem-solving intervention approach in the context of classroom teaching.

Furthermore, the associated improvements in attitudinal tendency are much stronger, but the corresponding improvements in cognitive skill are only marginally better. According to certain studies, cognitive skill differs from the attitudinal tendency in classroom instruction; the cultivation and development of the former as a key ability is a process of gradual accumulation, while the latter as an attitude is affected by the context of the teaching situation (e.g., a novel and exciting teaching approach, challenging and rewarding tasks) (Halpern, 2001 ; Wei and Hong, 2022 ). Collaborative problem-solving as a teaching approach is exciting and interesting, as well as rewarding and challenging; because it takes the learners as the focus and examines problems with poor structure in real situations, and it can inspire students to fully realize their potential for problem-solving, which will significantly improve their attitudinal tendency toward solving problems (Liu et al., 2020 ). Similar to how collaborative problem-solving influences attitudinal tendency, attitudinal tendency impacts cognitive skill when attempting to solve a problem (Liu et al., 2020 ; Zhang et al., 2022 ), and stronger attitudinal tendencies are associated with improved learning achievement and cognitive ability in students (Sison, 2008 ; Zhang et al., 2022 ). It can be seen that the two specific dimensions of critical thinking as well as critical thinking as a whole are affected by collaborative problem-solving, and this study illuminates the nuanced links between cognitive skills and attitudinal tendencies with regard to these two dimensions of critical thinking. To fully develop students’ capacity for critical thinking, future empirical research should pay closer attention to cognitive skills.

The moderating effects of collaborative problem solving with regard to teaching critical thinking

In order to further explore the key factors that influence critical thinking, exploring possible moderating effects that might produce considerable heterogeneity was done using subgroup analysis. The findings show that the moderating factors, such as the teaching type, learning stage, group size, learning scaffold, duration of the intervention, measuring tool, and the subject area included in the 36 experimental designs, could all support the cultivation of collaborative problem-solving in critical thinking. Among them, the effect size differences between the learning stage and measuring tool are not significant, which does not explain why these two factors are crucial in supporting the cultivation of critical thinking utilizing the approach of collaborative problem-solving.

In terms of the learning stage, various learning stages influenced critical thinking positively without significant intergroup differences, indicating that we are unable to explain why it is crucial in fostering the growth of critical thinking.

Although high education accounts for 70.89% of all empirical studies performed by researchers, high school may be the appropriate learning stage to foster students’ critical thinking by utilizing the approach of collaborative problem-solving since it has the largest overall effect size. This phenomenon may be related to student’s cognitive development, which needs to be further studied in follow-up research.

With regard to teaching type, mixed course teaching may be the best teaching method to cultivate students’ critical thinking. Relevant studies have shown that in the actual teaching process if students are trained in thinking methods alone, the methods they learn are isolated and divorced from subject knowledge, which is not conducive to their transfer of thinking methods; therefore, if students’ thinking is trained only in subject teaching without systematic method training, it is challenging to apply to real-world circumstances (Ruggiero, 2012 ; Hu and Liu, 2015 ). Teaching critical thinking as mixed course teaching in parallel to other subject teachings can achieve the best effect on learners’ critical thinking, and explicit critical thinking instruction is more effective than less explicit critical thinking instruction (Bensley and Spero, 2014 ).

In terms of the intervention duration, with longer intervention times, the overall effect size shows an upward tendency. Thus, the intervention duration and critical thinking’s impact are positively correlated. Critical thinking, as a key competency for students in the 21st century, is difficult to get a meaningful improvement in a brief intervention duration. Instead, it could be developed over a lengthy period of time through consistent teaching and the progressive accumulation of knowledge (Halpern, 2001 ; Hu and Liu, 2015 ). Therefore, future empirical studies ought to take these restrictions into account throughout a longer period of critical thinking instruction.

With regard to group size, a group size of 2–3 persons has the highest effect size, and the comprehensive effect size decreases with increasing group size in general. This outcome is in line with some research findings; as an example, a group composed of two to four members is most appropriate for collaborative learning (Schellens and Valcke, 2006 ). However, the meta-analysis results also indicate that once the group size exceeds 7 people, small groups cannot produce better interaction and performance than large groups. This may be because the learning scaffolds of technique support, resource support, and teacher support improve the frequency and effectiveness of interaction among group members, and a collaborative group with more members may increase the diversity of views, which is helpful to cultivate critical thinking utilizing the approach of collaborative problem-solving.

With regard to the learning scaffold, the three different kinds of learning scaffolds can all enhance critical thinking. Among them, the teacher-supported learning scaffold has the largest overall effect size, demonstrating the interdependence of effective learning scaffolds and collaborative problem-solving. This outcome is in line with some research findings; as an example, a successful strategy is to encourage learners to collaborate, come up with solutions, and develop critical thinking skills by using learning scaffolds (Reiser, 2004 ; Xu et al., 2022 ); learning scaffolds can lower task complexity and unpleasant feelings while also enticing students to engage in learning activities (Wood et al., 2006 ); learning scaffolds are designed to assist students in using learning approaches more successfully to adapt the collaborative problem-solving process, and the teacher-supported learning scaffolds have the greatest influence on critical thinking in this process because they are more targeted, informative, and timely (Xu et al., 2022 ).

With respect to the measuring tool, despite the fact that standardized measurement tools (such as the WGCTA, CCTT, and CCTST) have been acknowledged as trustworthy and effective by worldwide experts, only 54.43% of the research included in this meta-analysis adopted them for assessment, and the results indicated no intergroup differences. These results suggest that not all teaching circumstances are appropriate for measuring critical thinking using standardized measurement tools. “The measuring tools for measuring thinking ability have limits in assessing learners in educational situations and should be adapted appropriately to accurately assess the changes in learners’ critical thinking.”, according to Simpson and Courtney ( 2002 , p. 91). As a result, in order to more fully and precisely gauge how learners’ critical thinking has evolved, we must properly modify standardized measuring tools based on collaborative problem-solving learning contexts.

With regard to the subject area, the comprehensive effect size of science departments (e.g., mathematics, science, medical science) is larger than that of language arts and social sciences. Some recent international education reforms have noted that critical thinking is a basic part of scientific literacy. Students with scientific literacy can prove the rationality of their judgment according to accurate evidence and reasonable standards when they face challenges or poorly structured problems (Kyndt et al., 2013 ), which makes critical thinking crucial for developing scientific understanding and applying this understanding to practical problem solving for problems related to science, technology, and society (Yore et al., 2007 ).

Suggestions for critical thinking teaching

Other than those stated in the discussion above, the following suggestions are offered for critical thinking instruction utilizing the approach of collaborative problem-solving.

First, teachers should put a special emphasis on the two core elements, which are collaboration and problem-solving, to design real problems based on collaborative situations. This meta-analysis provides evidence to support the view that collaborative problem-solving has a strong synergistic effect on promoting students’ critical thinking. Asking questions about real situations and allowing learners to take part in critical discussions on real problems during class instruction are key ways to teach critical thinking rather than simply reading speculative articles without practice (Mulnix, 2012 ). Furthermore, the improvement of students’ critical thinking is realized through cognitive conflict with other learners in the problem situation (Yang et al., 2008 ). Consequently, it is essential for teachers to put a special emphasis on the two core elements, which are collaboration and problem-solving, and design real problems and encourage students to discuss, negotiate, and argue based on collaborative problem-solving situations.

Second, teachers should design and implement mixed courses to cultivate learners’ critical thinking, utilizing the approach of collaborative problem-solving. Critical thinking can be taught through curriculum instruction (Kuncel, 2011 ; Leng and Lu, 2020 ), with the goal of cultivating learners’ critical thinking for flexible transfer and application in real problem-solving situations. This meta-analysis shows that mixed course teaching has a highly substantial impact on the cultivation and promotion of learners’ critical thinking. Therefore, teachers should design and implement mixed course teaching with real collaborative problem-solving situations in combination with the knowledge content of specific disciplines in conventional teaching, teach methods and strategies of critical thinking based on poorly structured problems to help students master critical thinking, and provide practical activities in which students can interact with each other to develop knowledge construction and critical thinking utilizing the approach of collaborative problem-solving.

Third, teachers should be more trained in critical thinking, particularly preservice teachers, and they also should be conscious of the ways in which teachers’ support for learning scaffolds can promote critical thinking. The learning scaffold supported by teachers had the greatest impact on learners’ critical thinking, in addition to being more directive, targeted, and timely (Wood et al., 2006 ). Critical thinking can only be effectively taught when teachers recognize the significance of critical thinking for students’ growth and use the proper approaches while designing instructional activities (Forawi, 2016 ). Therefore, with the intention of enabling teachers to create learning scaffolds to cultivate learners’ critical thinking utilizing the approach of collaborative problem solving, it is essential to concentrate on the teacher-supported learning scaffolds and enhance the instruction for teaching critical thinking to teachers, especially preservice teachers.

Implications and limitations

There are certain limitations in this meta-analysis, but future research can correct them. First, the search languages were restricted to English and Chinese, so it is possible that pertinent studies that were written in other languages were overlooked, resulting in an inadequate number of articles for review. Second, these data provided by the included studies are partially missing, such as whether teachers were trained in the theory and practice of critical thinking, the average age and gender of learners, and the differences in critical thinking among learners of various ages and genders. Third, as is typical for review articles, more studies were released while this meta-analysis was being done; therefore, it had a time limit. With the development of relevant research, future studies focusing on these issues are highly relevant and needed.

Conclusions

The subject of the magnitude of collaborative problem-solving’s impact on fostering students’ critical thinking, which received scant attention from other studies, was successfully addressed by this study. The question of the effectiveness of collaborative problem-solving in promoting students’ critical thinking was addressed in this study, which addressed a topic that had gotten little attention in earlier research. The following conclusions can be made:

Regarding the results obtained, collaborative problem solving is an effective teaching approach to foster learners’ critical thinking, with a significant overall effect size (ES = 0.82, z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]). With respect to the dimensions of critical thinking, collaborative problem-solving can significantly and effectively improve students’ attitudinal tendency, and the comprehensive effect is significant (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI [0.87, 1.47]); nevertheless, it falls short in terms of improving students’ cognitive skills, having only an upper-middle impact (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI [0.58, 0.82]).

As demonstrated by both the results and the discussion, there are varying degrees of beneficial effects on students’ critical thinking from all seven moderating factors, which were found across 36 studies. In this context, the teaching type (chi 2  = 7.20, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), and learning scaffold (chi 2  = 9.03, P  < 0.01) all have a positive impact on critical thinking, and they can be viewed as important moderating factors that affect how critical thinking develops. Since the learning stage (chi 2  = 3.15, P  = 0.21 > 0.05) and measuring tools (chi 2  = 0.08, P  = 0.78 > 0.05) did not demonstrate any significant intergroup differences, we are unable to explain why these two factors are crucial in supporting the cultivation of critical thinking in the context of collaborative problem-solving.

Data availability

All data generated or analyzed during this study are included within the article and its supplementary information files, and the supplementary information files are available in the Dataverse repository: https://doi.org/10.7910/DVN/IPFJO6 .

Bensley DA, Spero RA (2014) Improving critical thinking skills and meta-cognitive monitoring through direct infusion. Think Skills Creat 12:55–68. https://doi.org/10.1016/j.tsc.2014.02.001

Article   Google Scholar  

Castle A (2009) Defining and assessing critical thinking skills for student radiographers. Radiography 15(1):70–76. https://doi.org/10.1016/j.radi.2007.10.007

Chen XD (2013) An empirical study on the influence of PBL teaching model on critical thinking ability of non-English majors. J PLA Foreign Lang College 36 (04):68–72

Google Scholar  

Cohen A (1992) Antecedents of organizational commitment across occupational groups: a meta-analysis. J Organ Behav. https://doi.org/10.1002/job.4030130602

Cooper H (2010) Research synthesis and meta-analysis: a step-by-step approach, 4th edn. Sage, London, England

Cindy HS (2004) Problem-based learning: what and how do students learn? Educ Psychol Rev 51(1):31–39

Duch BJ, Gron SD, Allen DE (2001) The power of problem-based learning: a practical “how to” for teaching undergraduate courses in any discipline. Stylus Educ Sci 2:190–198

Ennis RH (1989) Critical thinking and subject specificity: clarification and needed research. Educ Res 18(3):4–10. https://doi.org/10.3102/0013189x018003004

Facione PA (1990) Critical thinking: a statement of expert consensus for purposes of educational assessment and instruction. Research findings and recommendations. Eric document reproduction service. https://eric.ed.gov/?id=ed315423

Facione PA, Facione NC (1992) The California Critical Thinking Dispositions Inventory (CCTDI) and the CCTDI test manual. California Academic Press, Millbrae, CA

Forawi SA (2016) Standard-based science education and critical thinking. Think Skills Creat 20:52–62. https://doi.org/10.1016/j.tsc.2016.02.005

Halpern DF (2001) Assessing the effectiveness of critical thinking instruction. J Gen Educ 50(4):270–286. https://doi.org/10.2307/27797889

Hu WP, Liu J (2015) Cultivation of pupils’ thinking ability: a five-year follow-up study. Psychol Behav Res 13(05):648–654. https://doi.org/10.3969/j.issn.1672-0628.2015.05.010

Huber K (2016) Does college teach critical thinking? A meta-analysis. Rev Educ Res 86(2):431–468. https://doi.org/10.3102/0034654315605917

Kek MYCA, Huijser H (2011) The power of problem-based learning in developing critical thinking skills: preparing students for tomorrow’s digital futures in today’s classrooms. High Educ Res Dev 30(3):329–341. https://doi.org/10.1080/07294360.2010.501074

Kuncel NR (2011) Measurement and meaning of critical thinking (Research report for the NRC 21st Century Skills Workshop). National Research Council, Washington, DC

Kyndt E, Raes E, Lismont B, Timmers F, Cascallar E, Dochy F (2013) A meta-analysis of the effects of face-to-face cooperative learning. Do recent studies falsify or verify earlier findings? Educ Res Rev 10(2):133–149. https://doi.org/10.1016/j.edurev.2013.02.002

Leng J, Lu XX (2020) Is critical thinking really teachable?—A meta-analysis based on 79 experimental or quasi experimental studies. Open Educ Res 26(06):110–118. https://doi.org/10.13966/j.cnki.kfjyyj.2020.06.011

Liang YZ, Zhu K, Zhao CL (2017) An empirical study on the depth of interaction promoted by collaborative problem solving learning activities. J E-educ Res 38(10):87–92. https://doi.org/10.13811/j.cnki.eer.2017.10.014

Lipsey M, Wilson D (2001) Practical meta-analysis. International Educational and Professional, London, pp. 92–160

Liu Z, Wu W, Jiang Q (2020) A study on the influence of problem based learning on college students’ critical thinking-based on a meta-analysis of 31 studies. Explor High Educ 03:43–49

Morris SB (2008) Estimating effect sizes from pretest-posttest-control group designs. Organ Res Methods 11(2):364–386. https://doi.org/10.1177/1094428106291059

Article   ADS   Google Scholar  

Mulnix JW (2012) Thinking critically about critical thinking. Educ Philos Theory 44(5):464–479. https://doi.org/10.1111/j.1469-5812.2010.00673.x

Naber J, Wyatt TH (2014) The effect of reflective writing interventions on the critical thinking skills and dispositions of baccalaureate nursing students. Nurse Educ Today 34(1):67–72. https://doi.org/10.1016/j.nedt.2013.04.002

National Research Council (2012) Education for life and work: developing transferable knowledge and skills in the 21st century. The National Academies Press, Washington, DC

Niu L, Behar HLS, Garvan CW (2013) Do instructional interventions influence college students’ critical thinking skills? A meta-analysis. Educ Res Rev 9(12):114–128. https://doi.org/10.1016/j.edurev.2012.12.002

Peng ZM, Deng L (2017) Towards the core of education reform: cultivating critical thinking skills as the core of skills in the 21st century. Res Educ Dev 24:57–63. https://doi.org/10.14121/j.cnki.1008-3855.2017.24.011

Reiser BJ (2004) Scaffolding complex learning: the mechanisms of structuring and problematizing student work. J Learn Sci 13(3):273–304. https://doi.org/10.1207/s15327809jls1303_2

Ruggiero VR (2012) The art of thinking: a guide to critical and creative thought, 4th edn. Harper Collins College Publishers, New York

Schellens T, Valcke M (2006) Fostering knowledge construction in university students through asynchronous discussion groups. Comput Educ 46(4):349–370. https://doi.org/10.1016/j.compedu.2004.07.010

Sendag S, Odabasi HF (2009) Effects of an online problem based learning course on content knowledge acquisition and critical thinking skills. Comput Educ 53(1):132–141. https://doi.org/10.1016/j.compedu.2009.01.008

Sison R (2008) Investigating Pair Programming in a Software Engineering Course in an Asian Setting. 2008 15th Asia-Pacific Software Engineering Conference, pp. 325–331. https://doi.org/10.1109/APSEC.2008.61

Simpson E, Courtney M (2002) Critical thinking in nursing education: literature review. Mary Courtney 8(2):89–98

Stewart L, Tierney J, Burdett S (2006) Do systematic reviews based on individual patient data offer a means of circumventing biases associated with trial publications? Publication bias in meta-analysis. John Wiley and Sons Inc, New York, pp. 261–286

Tiwari A, Lai P, So M, Yuen K (2010) A comparison of the effects of problem-based learning and lecturing on the development of students’ critical thinking. Med Educ 40(6):547–554. https://doi.org/10.1111/j.1365-2929.2006.02481.x

Wood D, Bruner JS, Ross G (2006) The role of tutoring in problem solving. J Child Psychol Psychiatry 17(2):89–100. https://doi.org/10.1111/j.1469-7610.1976.tb00381.x

Wei T, Hong S (2022) The meaning and realization of teachable critical thinking. Educ Theory Practice 10:51–57

Xu EW, Wang W, Wang QX (2022) A meta-analysis of the effectiveness of programming teaching in promoting K-12 students’ computational thinking. Educ Inf Technol. https://doi.org/10.1007/s10639-022-11445-2

Yang YC, Newby T, Bill R (2008) Facilitating interactions through structured web-based bulletin boards: a quasi-experimental study on promoting learners’ critical thinking skills. Comput Educ 50(4):1572–1585. https://doi.org/10.1016/j.compedu.2007.04.006

Yore LD, Pimm D, Tuan HL (2007) The literacy component of mathematical and scientific literacy. Int J Sci Math Educ 5(4):559–589. https://doi.org/10.1007/s10763-007-9089-4

Zhang T, Zhang S, Gao QQ, Wang JH (2022) Research on the development of learners’ critical thinking in online peer review. Audio Visual Educ Res 6:53–60. https://doi.org/10.13811/j.cnki.eer.2022.06.08

Download references

Acknowledgements

This research was supported by the graduate scientific research and innovation project of Xinjiang Uygur Autonomous Region named “Research on in-depth learning of high school information technology courses for the cultivation of computing thinking” (No. XJ2022G190) and the independent innovation fund project for doctoral students of the College of Educational Science of Xinjiang Normal University named “Research on project-based teaching of high school information technology courses from the perspective of discipline core literacy” (No. XJNUJKYA2003).

Author information

Authors and affiliations.

College of Educational Science, Xinjiang Normal University, 830017, Urumqi, Xinjiang, China

Enwei Xu, Wei Wang & Qingxia Wang

You can also search for this author in PubMed   Google Scholar

Corresponding authors

Correspondence to Enwei Xu or Wei Wang .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Additional information.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary tables, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Xu, E., Wang, W. & Wang, Q. The effectiveness of collaborative problem solving in promoting students’ critical thinking: A meta-analysis based on empirical literature. Humanit Soc Sci Commun 10 , 16 (2023). https://doi.org/10.1057/s41599-023-01508-1

Download citation

Received : 07 August 2022

Accepted : 04 January 2023

Published : 11 January 2023

DOI : https://doi.org/10.1057/s41599-023-01508-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Impacts of online collaborative learning on students’ intercultural communication apprehension and intercultural communicative competence.

  • Hoa Thi Hoang Chau
  • Hung Phu Bui
  • Quynh Thi Huong Dinh

Education and Information Technologies (2024)

Exploring the effects of digital technology on deep learning: a meta-analysis

Sustainable electricity generation and farm-grid utilization from photovoltaic aquaculture: a bibliometric analysis.

  • A. A. Amusa
  • M. Alhassan

International Journal of Environmental Science and Technology (2024)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

practical examples of problem solving in education

Resilient Educator logo

ChatGPT for Teachers

Trauma-informed practices in schools, teacher well-being, cultivating diversity, equity, & inclusion, integrating technology in the classroom, social-emotional development, covid-19 resources, invest in resilience: summer toolkit, civics & resilience, all toolkits, degree programs, trauma-informed professional development, teacher licensure & certification, how to become - career information, classroom management, instructional design, lifestyle & self-care, online higher ed teaching, current events, 5 problem-solving activities for the classroom.

5 Problem-Solving Activities for the Classroom

Problem-solving skills are necessary in all areas of life, and classroom problem solving activities can be a great way to get students prepped and ready to solve real problems in real life scenarios. Whether in school, work or in their social relationships, the ability to critically analyze a problem, map out all its elements and then prepare a workable solution is one of the most valuable skills one can acquire in life.

Educating your students about problem solving skills from an early age in school can be facilitated through classroom problem solving activities. Such endeavors encourage cognitive as well as social development, and can equip students with the tools they’ll need to address and solve problems throughout the rest of their lives. Here are five classroom problem solving activities your students are sure to benefit from as well as enjoy doing:

1. Brainstorm bonanza

Having your students create lists related to whatever you are currently studying can be a great way to help them to enrich their understanding of a topic while learning to problem-solve. For example, if you are studying a historical, current or fictional event that did not turn out favorably, have your students brainstorm ways that the protagonist or participants could have created a different, more positive outcome. They can brainstorm on paper individually or on a chalkboard or white board in front of the class.

2. Problem-solving as a group

Have your students create and decorate a medium-sized box with a slot in the top. Label the box “The Problem-Solving Box.” Invite students to anonymously write down and submit any problem or issue they might be having at school or at home, ones that they can’t seem to figure out on their own. Once or twice a week, have a student draw one of the items from the box and read it aloud. Then have the class as a group figure out the ideal way the student can address the issue and hopefully solve it.

3. Clue me in

This fun detective game encourages problem-solving, critical thinking and cognitive development. Collect a number of items that are associated with a specific profession, social trend, place, public figure, historical event, animal, etc. Assemble actual items (or pictures of items) that are commonly associated with the target answer. Place them all in a bag (five-10 clues should be sufficient.) Then have a student reach into the bag and one by one pull out clues. Choose a minimum number of clues they must draw out before making their first guess (two- three). After this, the student must venture a guess after each clue pulled until they guess correctly. See how quickly the student is able to solve the riddle.

4. Survivor scenarios

Create a pretend scenario for students that requires them to think creatively to make it through. An example might be getting stranded on an island, knowing that help will not arrive for three days. The group has a limited amount of food and water and must create shelter from items around the island. Encourage working together as a group and hearing out every child that has an idea about how to make it through the three days as safely and comfortably as possible.

5. Moral dilemma

Create a number of possible moral dilemmas your students might encounter in life, write them down, and place each item folded up in a bowl or bag. Some of the items might include things like, “I saw a good friend of mine shoplifting. What should I do?” or “The cashier gave me an extra $1.50 in change after I bought candy at the store. What should I do?” Have each student draw an item from the bag one by one, read it aloud, then tell the class their answer on the spot as to how they would handle the situation.

Classroom problem solving activities need not be dull and routine. Ideally, the problem solving activities you give your students will engage their senses and be genuinely fun to do. The activities and lessons learned will leave an impression on each child, increasing the likelihood that they will take the lesson forward into their everyday lives.

You may also like to read

  • Classroom Activities for Introverted Students
  • Activities for Teaching Tolerance in the Classroom
  • 5 Problem-Solving Activities for Elementary Classrooms
  • 10 Ways to Motivate Students Outside the Classroom
  • Motivating Introverted Students to Excel in the Classroom
  • How to Engage Gifted and Talented Students in the Classroom

Categorized as: Tips for Teachers and Classroom Resources

Tagged as: Assessment Tools ,  Engaging Activities

  • Online & Campus Doctorate (EdD) in Higher Edu...
  • Degrees and Certificates for Teachers & Educa...
  • Programming Teacher: Job Description and Sala...

STEM Problem Solving: Inquiry, Concepts, and Reasoning

  • Published: 29 January 2022
  • Volume 32 , pages 381–397, ( 2023 )

Cite this article

practical examples of problem solving in education

  • Aik-Ling Tan   ORCID: orcid.org/0000-0002-4627-4977 1 ,
  • Yann Shiou Ong   ORCID: orcid.org/0000-0002-6092-2803 1 ,
  • Yong Sim Ng   ORCID: orcid.org/0000-0002-8400-2040 1 &
  • Jared Hong Jie Tan 1  

9733 Accesses

8 Citations

2 Altmetric

Explore all metrics

Balancing disciplinary knowledge and practical reasoning in problem solving is needed for meaningful learning. In STEM problem solving, science subject matter with associated practices often appears distant to learners due to its abstract nature. Consequently, learners experience difficulties making meaningful connections between science and their daily experiences. Applying Dewey’s idea of practical and science inquiry and Bereiter’s idea of referent-centred and problem-centred knowledge, we examine how integrated STEM problem solving offers opportunities for learners to shuttle between practical and science inquiry and the kinds of knowledge that result from each form of inquiry. We hypothesize that connecting science inquiry with practical inquiry narrows the gap between science and everyday experiences to overcome isolation and fragmentation of science learning. In this study, we examine classroom talk as students engage in problem solving to increase crop yield. Qualitative content analysis of the utterances of six classes of 113 eighth graders and their teachers were conducted for 3 hours of video recordings. Analysis showed an almost equal amount of science and practical inquiry talk. Teachers and students applied their everyday experiences to generate solutions. Science talk was at the basic level of facts and was used to explain reasons for specific design considerations. There was little evidence of higher-level scientific conceptual knowledge being applied. Our observations suggest opportunities for more intentional connections of science to practical problem solving, if we intend to apply higher-order scientific knowledge in problem solving. Deliberate application and reference to scientific knowledge could improve the quality of solutions generated.

Similar content being viewed by others

practical examples of problem solving in education

Discovery Learning—Jerome Bruner

Social constructivism—jerome bruner.

practical examples of problem solving in education

Scientific Thinking and Critical Thinking in Science Education

Avoid common mistakes on your manuscript.

1 Introduction

As we enter to second quarter of the twenty-first century, it is timely to take stock of both the changes and demands that continue to weigh on our education system. A recent report by World Economic Forum highlighted the need to continuously re-position and re-invent education to meet the challenges presented by the disruptions brought upon by the fourth industrial revolution (World Economic Forum, 2020 ). There is increasing pressure for education to equip children with the necessary, relevant, and meaningful knowledge, skills, and attitudes to create a “more inclusive, cohesive and productive world” (World Economic Forum, 2020 , p. 4). Further, the shift in emphasis towards twenty-first century competencies over mere acquisition of disciplinary content knowledge is more urgent since we are preparing students for “jobs that do not yet exist, technology that has not yet been invented, and problems that has yet exist” (OECD, 2018 , p. 2). Tan ( 2020 ) concurred with the urgent need to extend the focus of education, particularly in science education, such that learners can learn to think differently about possibilities in this world. Amidst this rhetoric for change, the questions that remained to be answered include how can science education transform itself to be more relevant; what is the role that science education play in integrated STEM learning; how can scientific knowledge, skills and epistemic practices of science be infused in integrated STEM learning; what kinds of STEM problems should we expose students to for them to learn disciplinary knowledge and skills; and what is the relationship between learning disciplinary content knowledge and problem solving skills?

In seeking to understand the extent of science learning that took place within integrated STEM learning, we dissected the STEM problems that were presented to students and examined in detail the sense making processes that students utilized when they worked on the problems. We adopted Dewey’s ( 1938 ) theoretical idea of scientific and practical/common-sense inquiry and Bereiter’s ideas of referent-centred and problem-centred knowledge building process to interpret teacher-students’ interactions during problem solving. There are two primary reasons for choosing these two theoretical frameworks. Firstly, Dewey’s ideas about the relationship between science inquiry and every day practical problem-solving is important in helping us understand the role of science subject matter knowledge and science inquiry in solving practical real-world problems that are commonly used in STEM learning. Secondly, Bereiter’s ideas of referent-centred and problem-centred knowledge augment our understanding of the types of knowledge that students can learn when they engage in solving practical real-world problems.

Taken together, Dewey’s and Bereiter’s ideas enable us to better understand the types of problems used in STEM learning and their corresponding knowledge that is privileged during the problem-solving process. As such, the two theoretical lenses offered an alternative and convincing way to understand the actual types of knowledge that are used within the context of integrated STEM and help to move our understanding of STEM learning beyond current focus on examining how engineering can be used as an integrative mechanism (Bryan et al., 2016 ) or applying the argument of the strengths of trans-, multi-, or inter-disciplinary activities (Bybee, 2013 ; Park et al., 2020 ) or mapping problems by the content and context as pure STEM problems, STEM-related problems or non-STEM problems (Pleasants, 2020 ). Further, existing research (for example, Gale et al., 2000 ) around STEM education focussed largely on description of students’ learning experiences with insufficient attention given to the connections between disciplinary conceptual knowledge and inquiry processes that students use to arrive at solutions to problems. Clarity in the role of disciplinary knowledge and the related inquiry will allow for more intentional design of STEM problems for students to learn higher-order knowledge. Applying Dewey’s idea of practical and scientific inquiry and Bereiter’s ideas of referent-centred and problem-centred knowledge, we analysed six lessons where students engaged with integrated STEM problem solving to propose answers to the following research questions: What is the extent of practical and scientific inquiry in integrated STEM problem solving? and What conceptual knowledge and problem-solving skills are learnt through practical and science inquiry during integrated STEM problem solving?

2 Inquiry in Problem Solving

Inquiry, according to Dewey ( 1938 ), involves the direct control of unknown situations to change them into a coherent and unified one. Inquiry usually encompasses two interrelated activities—(1) thinking about ideas related to conceptual subject-matter and (2) engaging in activities involving our senses or using specific observational techniques. The National Science Education Standards released by the National Research Council in the US in 1996 defined inquiry as “…a multifaceted activity that involves making observations; posing questions; examining books and other sources of information to see what is already known; planning investigations; reviewing what is already known in light of experimental evidence; using tools to gather, analyze, and interpret data; proposing answers, explanations, and predictions; and communicating the results. Inquiry requires identification of assumptions, use of critical and logical thinking, and consideration of alternative explanations” (p. 23). Planning investigation; collecting empirical evidence; using tools to gather, analyse and interpret data; and reasoning are common processes shared in the field of science and engineering and hence are highly relevant to apply to integrated STEM education.

In STEM education, establishing the connection between general inquiry and its application helps to link disciplinary understanding to epistemic knowledge. For instance, methods of science inquiry are popular in STEM education due to the familiarity that teachers have with scientific methods. Science inquiry, a specific form of inquiry, has appeared in many science curriculum (e.g. NRC, 2000 ) since Dewey proposed in 1910 that learning of science should be perceived as both subject-matter and a method of learning science (Dewey, 1910a , 1910b ). Science inquiry which involved ways of doing science should also encompass the ways in which students learn the scientific knowledge and investigative methods that enable scientific knowledge to be constructed. Asking scientifically orientated questions, collecting empirical evidence, crafting explanations, proposing models and reasoning based on available evidence are affordances of scientific inquiry. As such, science should be pursued as a way of knowing rather than merely acquisition of scientific knowledge.

Building on these affordances of science inquiry, Duschl and Bybee ( 2014 ) advocated the 5D model that focused on the practice of planning and carrying out investigations in science and engineering, representing two of the four disciplines in STEM. The 5D model includes science inquiry aspects such as (1) deciding on what and how to measure, observe and sample; (2) developing and selecting appropriate tools to measure and collect data; (3) recording the results and observations in a systematic manner; (4) creating ways to represent the data and patterns that are observed; and (5) determining the validity and the representativeness of the data collected. The focus on planning and carrying out investigations in the 5D model is used to help teachers bridge the gap between the practices of building and refining models and explanation in science and engineering. Indeed, a common approach to incorporating science inquiry in integrated STEM curriculum involves student planning and carrying out scientific investigations and making sense of the data collected to inform engineering design solution (Cunningham & Lachapelle, 2016 ; Roehrig et al., 2021 ). Duschl and Bybee ( 2014 ) argued that it is needful to design experiences for learners to appreciate that struggles are part of problem solving in science and engineering. They argued that “when the struggles of doing science is eliminated or simplified, learners get the wrong perceptions of what is involved when obtaining scientific knowledge and evidence” (Duschl & Bybee, 2014 , p. 2). While we concur with Duschl and Bybee about the need for struggles, in STEM learning, these struggles must be purposeful and grade appropriate so that students will also be able to experience success amidst failure.

The peculiar nature of science inquiry was scrutinized by Dewey ( 1938 ) when he cross-examined the relationship between science inquiry and other forms of inquiry, particularly common-sense inquiry. He positioned science inquiry along a continuum with general or common-sense inquiry that he termed as “logic”. Dewey argued that common-sense inquiry serves a practical purpose and exhibits features of science inquiry such as asking questions and a reliance on evidence although the focus of common-sense inquiry tends to be different. Common-sense inquiry deals with issues or problems that are in the immediate environment where people live, whereas the objects of science inquiry are more likely to be distant (e.g. spintronics) from familiar experiences in people’s daily lives. While we acknowledge the fundamental differences (such as novel discovery compared with re-discovering science, ‘messy’ science compared with ‘sanitised’ science) between school science and science that is practiced by scientists, the subject of interest in science (understanding the world around us) remains the same.

The unfamiliarity between the functionality and purpose of science inquiry to improve the daily lives of learners does little to motivate learners to learn science (Aikenhead, 2006 ; Lee & Luykx, 2006 ) since learners may not appreciate the connections of science inquiry in their day-to-day needs and wants. Bereiter ( 1992 ) has also distinguished knowledge into two forms—referent-centred and problem-centred. Referent-centred knowledge refers to subject-matter that is organised around topics such as that in textbooks. Problem-centred knowledge is knowledge that is organised around problems, whether they are transient problems, practical problems or problems of explanations. Bereiter argued that referent-centred knowledge that is commonly taught in schools is limited in their applications and meaningfulness to the lives of students. This lack of familiarity and affinity to referent-centred knowledge is likened to the science subject-matter knowledge that was mentioned by Dewey. Rather, it is problem-centred knowledge that would be useful when students encounter problems. Learning problem-centred knowledge will allow learners to readily harness the relevant knowledge base that is useful to understand and solve specific problems. This suggests a need to help learners make the meaningful connections between science and their daily lives.

Further, Dewey opined that while the contexts in which scientific knowledge arise could be different from our daily common-sense world, careful consideration of scientific activities and applying the resultant knowledge to daily situations for use and enjoyment is possible. Similarly, in arguing for problem-centred knowledge, Bereiter ( 1992 ) questioned the value of inert knowledge that plays no role in helping us understand or deal with the world around us. Referent-centred knowledge has a higher tendency to be inert due to the way that the knowledge is organised and the way that the knowledge is encountered by learners. For instance, learning about the equation and conditions for photosynthesis is not going to help learners appreciate how plants are adapted for photosynthesis and how these adaptations can allow plants to survive changes in climate and for farmers to grow plants better by creating the best growing conditions. Rather, students could be exposed to problems of explanations where they are asked to unravel the possible reasons for low crop yield and suggest possible ways to overcome the problem. Hence, we argue here that the value of the referent knowledge is that they form the basis and foundation for the students to be able to discuss or suggest ways to overcome real life problems. Referent-centred knowledge serves as part of the relevant knowledge base that can be harnessed to solve specific problems or as foundational knowledge students need to progress to learn higher-order conceptual knowledge that typically forms the foundations or pillars within a discipline. This notion of referent-centred knowledge serving as foundational knowledge that can be and should be activated for application in problem-solving situation is shown by Delahunty et al. ( 2020 ). They found that students show high reliance on memory when they are conceptualising convergent problem-solving tasks.

While Bereiter argues for problem-centred knowledge, he cautioned that engagement should be with problems of explanation rather than transient or practical problems. He opined that if learners only engage in transient or practical problem alone, they will only learn basic-category types of knowledge and fail to understand higher-order conceptual knowledge. For example, for photosynthesis, basic-level types of knowledge included facts about the conditions required for photosynthesis, listing the products formed from the process of photosynthesis and knowing that green leaves reflect green light. These basic-level knowledges should intentionally help learners learn higher-level conceptual knowledge that include learners being able to draw on the conditions for photosynthesis when they encounter that a plant is not growing well or is exhibiting discoloration of leaves.

Transient problems disappear once a solution becomes available and there is a high likelihood that we will not remember the problem after that. Practical problems, according to Bereiter are “stuck-door” problems that could be solved with or without basic-level knowledge and often have solutions that lacks precise definition. There are usually a handful of practical strategies, such as pulling or pushing the door harder, kicking the door, etc. that will work for the problems. All these solutions lack a well-defined approach related to general scientific principles that are reproducible. Problems of explanations are the most desirable types of problems for learners since these are problems that persist and recur such that they can become organising points for knowledge. Problems of explanations consist of the conceptual representations of (1) a text base that serves to represent the text content and (2) a situation model that shows the portion of the world in which the text is relevant. The idea of text base to represent text content in solving problems of explanations is like the idea of domain knowledge and structural knowledge (refers to knowledge of how concepts within a domain are connected) proposed by Jonassen ( 2000 ). He argued that both types of knowledges are required to solve a range of problems from well-structured problems to ill-structured problems with a simulated context, to simple ill-structured problems and to complex ill-structured problems.

Jonassen indicated that complex ill-structured problems are typically design problems and are likely to be the most useful forms of problems for learners to be engaged in inquiry. Complex ill-structured design problems are the “wicked” problems that Buchanan ( 1992 ) discussed. Buchanan’s idea is that design aims to incorporate knowledge from different fields of specialised inquiry to become whole. Complex or wicked problems are akin to the work of scientists who navigate multiple factors and evidence to offer models that are typically oversimplified, but they apply them to propose possible first approximation explanations or solutions and iteratively relax constraints or assumptions to refine the model. The connections between the subject matter of science and the design process to engineer a solution are delicate. While it is important to ensure that practical concerns and questions are taken into consideration in designing solutions (particularly a material artefact) to a practical problem, the challenge here lies in ensuring that creativity in design is encouraged even if students initially lack or neglect the scientific conceptual understanding to explain/justify their design. In his articulation of wicked problems and the role of design thinking, Buchanan ( 1992 ) highlighted the need to pay attention to category and placement. Categories “have fixed meanings that are accepted within the framework of a theory or a philosophy and serve as the basis for analyzing what already exist” (Buchanan, 1992 , p. 12). Placements, on the other hand, “have boundaries to shape and constrain meaning, but are not rigidly fixed and determinate” (p. 12).

The difference in the ideas presented by Dewey and Bereiter lies in the problem design. For Dewey, scientific knowledge could be learnt from inquiring into practical problems that learners are familiar with. After all, Dewey viewed “modern science as continuous with, and to some degree an outgrowth and refinement of, practical or ‘common-sense’ inquiry” (Brown, 2012 ). For Bereiter, he acknowledged the importance of familiar experiences, but instead of using them as starting points for learning science, he argued that practical problems are limiting in helping learners acquire higher-order knowledge. Instead, he advocated for learners to organize their knowledge around problems that are complex, persistent and extended and requiring explanations to better understand the problems. Learners are to have a sense of the kinds of problems to which the specific concept is relevant before they can be said to have grasp the concept in a functionally useful way.

To connect between problem solving, scientific knowledge and everyday experiences, we need to examine ways to re-negotiate the disciplinary boundaries (such as epistemic understanding, object of inquiry, degree of precision) of science and make relevant connections to common-sense inquiry and to the problem at hand. Integrated STEM appears to be one way in which the disciplinary boundaries of science can be re-negotiated to include practices from the fields of technology, engineering and mathematics. In integrated STEM learning, inquiry is seen more holistically as a fluid process in which the outcomes are not absolute but are tentative. The fluidity of the inquiry process is reflected in the non-deterministic inquiry approach. This means that students can use science inquiry, engineering design, design process or any other inquiry approaches that fit to arrive at the solution. This hybridity of inquiry between science, common-sense and problems allows for some familiar aspects of the science inquiry process to be applied to understand and generate solutions to familiar everyday problems. In attempting to infuse elements of common-sense inquiry with science inquiry in problem-solving, logic plays an important role to help learners make connections. Hypothetically, we argue that with increasing exposure to less familiar ways of thinking such as those associated with science inquiry, students’ familiarity with scientific reasoning increases, and hence such ways of thinking gradually become part of their common-sense, which students could employ to solve future relevant problems. The theoretical ideas related to complexities of problems, the different forms of inquiry afforded by different problems and the arguments for engaging in problem solving motivated us to examine empirically how learners engage with ill-structured problems to generate problem-centred knowledge. Of particular interest to us is how learners and teachers weave between practical and scientific reasoning as they inquire to integrate the components in the original problem into a unified whole.

3.1 Context

The integrated STEM activity in our study was planned using the S-T-E-M quartet instructional framework (Tan et al., 2019 ). The S-T-E-M quartet instructional framework positions complex, persistent and extended problems at its core and focusses on the vertical disciplinary knowledge and understanding of the horizontal connections between the disciplines that could be gained by learners through solving the problem (Tan et al., 2019 ). Figure  1 depicts the disciplinary aspects of the problem that was presented to the students. The activity has science and engineering as the two lead disciplines. It spanned three 1-h lessons and required students to both learn and apply relevant scientific conceptual knowledge to solve a complex, real-world problem through processes that resemble the engineering design process (Wheeler et al., 2019 ).

figure 1

Connections across disciplines in integrate STEM activity

figure 2

Frequency of different types of reasoning

In the first session (1 h), students were introduced to the problem and its context. The problem pertains to the issue of limited farmland in a land scarce country that imports 90% of food (Singapore Food Agency [SFA], 2020 ). The students were required to devise a solution by applying knowledge of the conditions required for photosynthesis and plant growth to design and build a vertical farming system to help farmers increase crop yield with limited farmland. This context was motivated by the government’s effort to generate interests and knowledge in farming to achieve the 30 by 30 goal—supplying 30% of country’s nutritional needs by 2030. The scenario was a fictitious one where they were asked to produce 120 tonnes of Kailan (a type of leafy vegetable) with two hectares of land instead of the usual six hectares over a specific period. In addition to the abovementioned constraints, the teacher also discussed relevant success criteria for evaluating the solution with the students. Students then researched about existing urban farming approaches. They were given reading materials pertaining to urban farming to help them understand the affordances and constraints of existing solutions. In the second session (6 h), students engaged in ideation to generate potential solutions. They then designed, built and tested their solution and had opportunities to iteratively refine their solution. Students were given a list of materials (e.g. mounting board, straws, ice-cream stick, glue, etc.) that they could use to design their solutions. In the final session (1 h), students presented their solution and reflected on how well their solution met the success criteria. The prior scientific conceptual knowledge that students require to make sense of the problem include knowledge related to plant nutrition, namely, conditions for photosynthesis, nutritional requirements of Kailin and growth cycle of Kailin. The problem resembles a real-world problem that requires students to engage in some level of explanation of their design solution.

A total of 113 eighth graders (62 boys and 51 girls), 14-year-olds, from six classes and their teachers participated in the study. The students and their teachers were recruited as part of a larger study that examined the learning experiences of students when they work on integrated STEM activities that either begin with a problem, a solution or are focused on the content. Invitations were sent to schools across the country and interested schools opted in for the study. For the study reported here, all students and teachers were from six classes within a school. The teachers had all undergone 3 h of professional development with one of the authors on ways of implementing the integrated STEM activity used in this study. During the professional development session, the teachers learnt about the rationale of the activity, familiarize themselves with the materials and clarified the intentions and goals of the activity. The students were mostly grouped in groups of three, although a handful of students chose to work independently. The group size of students was not critical for the analysis of talk in this study as the analytic focus was on the kinds of knowledge applied rather than collaborative or group think. We assumed that the types of inquiry adopted by teachers and students were largely dependent on the nature of problem. Eighth graders were chosen for this study since lower secondary science offered at this grade level is thematic and integrated across biology, chemistry and physics. Furthermore, the topic of photosynthesis is taught under the theme of Interactions at eighth grade (CPDD, 2021 ). This thematic and integrated nature of science at eighth grade offered an ideal context and platform for integrated STEM activities to be trialled.

The final lessons in a series of three lessons in each of the six classes was analysed and reported in this study. Lessons where students worked on their solutions were not analysed because the recordings had poor audibility due to masking and physical distancing requirements as per COVID-19 regulations. At the start of the first lesson, the instructions given by the teacher were:

You are going to present your models. Remember the scenario that you were given at the beginning that you were tasked to solve using your model. …. In your presentation, you have to present your prototype and its features, what is so good about your prototype, how it addresses the problem and how it saves costs and space. So, this is what you can talk about during your presentation. ….. pay attention to the presentation and write down questions you like to ask the groups after the presentation… you can also critique their model, you can evaluate, critique and ask questions…. Some examples of questions you can ask the groups are? Do you think your prototype can achieve optimal plant growth? You can also ask questions specific to their models.

3.2 Data collection

Parental consent was sought a month before the start of data collection. The informed consent adhered to confidentiality and ethics guidelines as described by the Institutional Review Board. The data collection took place over a period of one month with weekly video recording. Two video cameras, one at the front and one at the back of the science laboratory were set up. The front camera captured the students seated at the front while the back video camera recorded the teacher as well as the groups of students at the back of the laboratory. The video recordings were synchronized so that the events captured from each camera can be interpreted from different angles. After transcription of the raw video files, the identities of students were substituted with pseudonyms.

3.3 Data analysis

The video recordings were analysed using the qualitative content analysis approach. Qualitative content analysis allows for patterns or themes and meanings to emerge from the process of systematic classification (Hsieh & Shannon, 2005 ). Qualitative content analysis is an appropriate analytic method for this study as it allows us to systematically identify episodes of practical inquiry and science inquiry to map them to the purposes and outcomes of these episodes as each lesson unfolds.

In total, six h of video recordings where students presented their ideas while the teachers served as facilitator and mentor were analysed. The video recordings were transcribed, and the transcripts were analysed using the NVivo software. Our unit of analysis is a single turn of talk (one utterance). We have chosen to use utterances as proxy indicators of reasoning practices based on the assumption that an utterance relates to both grammar and context. An utterance is a speech act that reveals both meaning and intentions of the speaker within specific contexts (Li, 2008 ).

Our research analytical lens is also interpretative in nature and the validity of our interpretation is through inter-rater discussion and agreement. Each utterance at the speaker level in transcripts was examined and coded either as relevant to practical reasoning or scientific reasoning based on the content. The utterances could be a comment by the teacher, a question by a student or a response by another student. Deductive coding is deployed with the two codes, practical reasoning and scientific reasoning derived from the theoretical ideas of Dewey and Bereiter as described earlier. Practical reasoning refers to utterances that reflect commonsensical knowledge or application of everyday understanding. Scientific reasoning refers to utterances that consist of scientifically oriented questions, scientific terms, or the use of empirical evidence to explain. Examples of each type of reasoning are highlighted in the following section. Each coded utterance is then reviewed for detailed description of the events that took place that led to that specific utterance. The description of the context leading to the utterance is considered an episode. The episodes and codes were discussed and agreed upon by two of the authors. Two coders simultaneously watched the videos to identify and code the episodes. The coders interpreted the content of each utterance, examine the context where the utterance was made and deduced the purpose of the utterance. Once each coder has established the sense-making aspect of the utterance in relation to the context, a code of either practical reasoning or scientific reasoning is assigned. Once that was completed, the two coders compared their coding for similarities and differences. They discussed the differences until an agreement was reached. Through this process, an agreement of 85% was reached between the coders. Where disagreement persisted, codes of the more experienced coder were adopted.

4 Results and Discussion

The specific STEM lessons analysed were taken from the lessons whereby students presented the model of their solutions to the class for peer evaluation. Every group of students stood in front of the class and placed their model on the bench as they presented. There was also a board where they could sketch or write their explanations should they want to. The instructions given by the teacher to the students were to explain their models and state reasons for their design.

4.1 Prevalence of Reasoning

The 6h of videos consists of 1422 turns of talk. Three hundred four turns of talk (21%) were identified as talk related to reasoning, either practical reasoning or scientific reasoning. Practical reasoning made up 62% of the reasoning turns while 38% were scientific reasoning (Fig. 2 ).

The two types of reasoning differ in the justifications that are used to substantiate the claims or decisions made. Table 1 describes the differences between the two categories of reasoning.

4.2 Applications of Scientific Reasoning

Instances of engagement with scientific reasoning (for instance, using scientific concepts to justify, raising scientifically oriented questions, or providing scientific explanations) revolved around the conditions for photosynthesis and the concept of energy conversion when students were presenting their ideas or when they were questioned by their peers. For example, in explaining the reason for including fish in their plant system, one group of students made connection to cyclical energy transfer: “…so as the roots of the plants submerged in the water, faeces from the fish will be used as fertilizers so that the plant can grow”. The students considered how organic matter that is still trapped within waste materials can be released and taken up by plants to enhance the growth. The application of scientific reasoning made their design one that is innovative and sustainable as evaluated by the teacher. Some students attempted more ecofriendly designs by considering energy efficiencies through incorporating water turbines in their farming systems. They applied the concept of different forms of energy and energy conversion when their peers inquired about their design. The same scientific concepts were explained at different levels of details by different students. At one level, the students explained in a purely descriptive manner of what happens to the different entities in their prototypes, with implied changes to the forms of energy─ “…spins then generates electricity. So right, when the water falls down, then it will spin. The water will fall on the fan blade thing, then it will spin and then it generates electricity. So, it saves electricity, and also saves water”. At another level, students defended their design through an explanation of energy conversion─ “…because when the water flows right, it will convert gravitational potential energy so, when it reaches the bottom, there is not really much gravitational potential energy”. While these instances of applying scientific reasoning indicated that students have knowledge about the scientific phenomena and can apply them to assist in the problem-solving process, we are not able to establish if students understood the science behind how the dynamo works to generate electricity. Students in eighth grade only need to know how a generator works at a descriptive level and the specialized understanding how a dynamo works is beyond the intended learning outcomes at this grade level.

The application of scientific concepts for justification may not always be accurate. For instance, the naïve conception that students have about plants only respiring at night and not in the day surfaced when one group of students tried to justify the growth rates of Kailan─ “…I mean, they cannot be making food 24/7 and growing 24/7. They have nighttime for a reason. They need to respire”. These students do not appreciate that plants respire in the day as well, and hence respiration occurs 24/7. This naïve conception that plants only respire at night is one that is common among learners of biology (e.g. Svandova, 2014 ) since students learn that plant gives off oxygen in the day and takes in oxygen at night. The hasty conclusion to that observation is that plants carry out photosynthesis in the day and respire at night. The relative rates of photosynthesis and respiration were not considered by many students.

Besides naïve conceptions, engagement with scientific ideas to solve a practical problem offers opportunities for unusual and alternative ideas about science to surface. For instance, another group of students explained that they lined up their plants so that “they can take turns to absorb sunlight for photosynthesis”. These students appear to be explaining that the sun will move and depending on the position of the sun, some plants may be under shade, and hence rates of photosynthesis are dependent on the position of the sun. However, this idea could also be interpreted as (1) the students failed to appreciate that sunlight is everywhere, and (2) plants, unlike animals, particularly humans, do not have the concept of turn-taking. These diverse ideas held by students surfaced when students were given opportunities to apply their knowledge of photosynthesis to solve a problem.

4.3 Applications of Practical Reasoning

Teachers and students used more practical reasoning during an integrated STEM activity requiring both science and engineering practices as seen from 62% occurrence of practical reasoning compared with 38% for scientific reasoning. The intention of the activity to integrate students’ scientific knowledge related to plant nutrition to engineering practice of building a model of vertical farming system could be the reason for the prevalence of practical reasoning. The practical reasoning used related to structural design considerations of the farming system such as how water, light and harvesting can be carried out in the most efficient manner. Students defended the strengths of designs using logic based on their everyday experiences. In the excerpt below (transcribed verbatim), we see students applied their everyday experiences when something is “thinner” (likely to mean narrower), logically it would save space. Further, to reach a higher level, you use a machine to climb up.

Excerpt 1. “Thinner, more space” Because it is more thinner, so like in terms of space, it’s very convenient. So right, because there is – because it rotates right, so there is this button where you can stop it. Then I also installed steps, so that – because there are certain places you can’t reach even if you stop the – if you stop the machine, so when you stop it and you climb up, and then you see the condition of the plants, even though it costs a lot of labour, there is a need to have an experienced person who can grow plants. Then also, when like – when water reach the plants, cos the plants I want to use is soil-based, so as the water reach the soil, the soil will xxx, so like the water will be used, and then we got like – and then there’s like this filter that will filter like the dirt.

In the examples of practical reasoning, we were not able to identify instances where students and teachers engaged with discussion around trade-off and optimisation. Understanding constraints, trade-offs and optimisations are important ideas in informed design matrix for engineering as suggested by Crismond and Adams ( 2012 ). For instance, utterances such as “everything will be reused”, “we will be saving space”, “it looks very flimsy” or “so that it can contains [sic] the plants” were used. These utterances were made both by students while justifying their own prototypes and also by peers who challenged the design of others. Longer responses involving practical reasoning were made based on common-sense, everyday logic─ “…the product does not require much manpower, so other than one or two supervisors like I said just now, to harvest the Kailan, hence, not too many people need to be used, need to be hired to help supervise the equipment and to supervise the growth”. We infer that the higher instances of utterances related to practical reasoning could be due to the presence of more concrete artefacts that is shown, and the students and teachers were more focused on questioning the structure at hand. This inference was made as instructions given by the teacher at the start of students’ presentation focus largely on the model rather than the scientific concepts or reasoning behind the model.

4.4 Intersection Between Scientific and Practical Reasoning

Comparing science subject matter knowledge and problem-solving to the idea of categories and placement (Buchanan, 1992 ), subject matter is analogous to categories where meanings are fixed with well-established epistemic practices and norms. The problem-solving process and design of solutions are likened to placements where boundaries are less rigid, hence opening opportunities for students’ personal experiences and ideas to be presented. Placements allow students to apply their knowledge from daily experiences and common-sense logic to justify decisions. Common-sense knowledge and logic are more accessible, and hence we observe higher frequency of usage. Comparatively, while science subject matter (categories) is also used, it is observed less frequently. This could possibly be due either to less familiarity with the subject matter or lack of appropriate opportunity to apply in practical problem solving. The challenge for teachers during implementation of a STEM problem-solving activity, therefore, lies in the balance of the application of scientific and practical reasoning to deepen understanding of disciplinary knowledge in the context of solving a problem in a meaningful manner.

Our observations suggest that engaging students with practical inquiry tasks with some engineering demands such as the design of modern farm systems offers opportunities for them to convert their personal lived experiences into feasible concrete ideas that they can share in a public space for critique. The peer critique following the sharing of their practical ideas allows for both practical and scientific questions to be asked and for students to defend their ideas. For instance, after one group of students presented their prototype that has silvered surfaces, a student asked a question: “what is the function of the silver panels?”, to which his peers replied : “Makes the light bounce. Bounce the sunlight away and then to other parts of the tray.” This question indicated that students applied their knowledge that shiny silvered surfaces reflect light, and they used this knowledge to disperse the light to other trays where the crops were growing. An example of a practical question asked was “what is the purpose of the ladder?”, to which the students replied: “To take the plants – to refill the plants, the workers must climb up”. While the process of presentation and peer critique mimic peer review in the science inquiry process, the conceptual knowledge of science may not always be evident as students paid more attention to the design constraints such as lighting, watering, and space that was set in the activity. Given the context of growing plants, engagement with the science behind nutritional requirements of plants, the process of photosynthesis, and the adaptations of plants could be more deliberately explored.

5 Conclusion

The goal of our work lies in applying the theoretical ideas of Dewey and Bereiter to better understand reasoning practices in integrate STEM problem solving. We argue that this is a worthy pursue to better understand the roles of scientific reasoning in practical problem solving. One of the goals of integrated STEM education in schools is to enculture students into the practices of science, engineering and mathematics that include disciplinary conceptual knowledge, epistemic practices, and social norms (Kelly & Licona, 2018 ). In the integrated form, the boundaries and approaches to STEM learning are more diverse compared with monodisciplinary ways of problem solving. For instance, in integrated STEM problem solving, besides scientific investigations and explanations, students are also required to understand constraints, design optimal solutions within specific parameters and even to construct prototypes. For students to learn the ways of speaking, doing and being as they participate in integrated STEM problem solving in schools in a meaningful manner, students could benefit from these experiences.

With reference to the first research question of What is the extent of practical and scientific reasoning in integrated STEM problem solving, our analysis suggests that there are fewer instances of scientific reasoning compared with practical reasoning. Considering the intention of integrated STEM learning and adopting Bereiter’s idea that students should learn higher-order conceptual knowledge through engagement with problem solving, we argue for a need for scientific reasoning to be featured more strongly in integrated STEM lessons so that students can gain higher order scientific conceptual knowledge. While the lessons observed were strong in design and building, what was missing in generating solutions was the engagement in investigations, where learners collected or are presented with data and make decisions about the data to allow them to assess how viable the solutions are. Integrated STEM problems can be designed so that science inquiry can be infused, such as carrying out investigations to figure out relationships between variables. Duschl and Bybee ( 2014 ) have argued for the need to engage students in problematising science inquiry and making choices about what works and what does not.

With reference to the second research question , What is achieved through practical and scientific reasoning during integrated STEM problem solving? , our analyses suggest that utterance for practical reasoning are typically used to justify the physical design of the prototype. These utterances rely largely on what is observable and are associated with basic-level knowledge and experiences. The higher frequency of utterances related to practical reasoning and the nature of the utterances suggests that engagement with practical reasoning is more accessible since they relate more to students’ lived experiences and common-sense. Bereiter ( 1992 ) has urged educators to engage learners in learning that is beyond basic-level knowledge since accumulation of basic-level knowledge does not lead to higher-level conceptual learning. Students should be encouraged to use scientific knowledge also to justify their prototype design and to apply scientific evidence and logic to support their ideas. Engagement with scientific reasoning is preferred as conceptual knowledge, epistemic practices and social norms of science are more widely recognised compared with practical reasoning that are likely to be more varied since they rely on personal experiences and common-sense. This leads us to assert that both context and content are important in integrated STEM learning. Understanding the context or the solution without understanding the scientific principles that makes it work makes the learning less meaningful since we “…cannot strip learning of its context, nor study it in a ‘neutral’ context. It is always situated, always relayed to some ongoing enterprise”. (Bruner, 2004 , p. 20).

To further this discussion on how integrated STEM learning experiences harness the ideas of practical and scientific reasoning to move learners from basic-level knowledge to higher-order conceptual knowledge, we propose the need for further studies that involve working with teachers to identify and create relevant problems-of-explanations that focuses on feasible, worthy inquiry ideas such as those related to specific aspects of transportation, alternative energy sources and clean water that have impact on the local community. The design of these problems can incorporate opportunities for systematic scientific investigations and scaffolded such that there are opportunities to engage in epistemic practices of the constitute disciplines of STEM. Researchers could then examine the impact of problems-of-explanations on students’ learning of higher order scientific concepts. During the problem-solving process, more attention can be given to elicit students’ initial and unfolding ideas (practical) and use them as a basis to start the science inquiry process. Researchers can examine how to encourage discussions that focus on making meaning of scientific phenomena that are embedded within specific problems. This will help students to appreciate how data can be used as evidence to support scientific explanations as well as justifications for the solutions to problems. With evidence, learners can be guided to work on reasoning the phenomena with explanatory models. These aspects should move engagement in integrated STEM problem solving from being purely practice to one that is explanatory.

6 Limitations

There are four key limitations of our study. Firstly, the degree of generalisation of our observations is limited. This study sets out to illustrate what how Dewey and Bereiter’s ideas can be used as lens to examine knowledge used in problem-solving. As such, the findings that we report here is limited in its ability to generalise across different contexts and problems. Secondly, the lessons that were analysed came from teacher-frontal teaching and group presentation of solution and excluded students’ group discussions. We acknowledge that there could potentially be talk that could involve practical and scientific reasonings within group work. There are two practical consideration for choosing to analyse the first and presentation segments of the suite of lesson. Firstly, these two lessons involved participation from everyone in class and we wanted to survey the use of practical and scientific reasoning by the students as a class. Secondly, methodologically, clarity of utterances is important for accurate analysis and as students were wearing face masks during the data collection, their utterances during group discussions lack the clarity for accurate transcription and analysis. Thirdly, insights from this study were gleaned from a small sample of six classes of students. Further work could involve more classes of students although that could require more resources devoted to analysis of the videos. Finally, the number of students varied across groups and this could potentially affect the reasoning practices during discussions.

Data Availability

The datasets used and analysed during the current study are available from the corresponding author on reasonable request.

Aikenhead, G. S. (2006). Science education for everyday life: Evidence-based practice . Teachers College Press.

Google Scholar  

Bereiter, C. (1992). Referent-centred and problem-centred knowledge: Elements of an educational epistemology. Interchange, 23 (4), 337–361.

Article   Google Scholar  

Breiner, J. M., Johnson, C. C., Harkness, S. S., & Koehler, C. M. (2012). What is STEM? A discussion about conceptions of STEM in education and partnership. School Science and Mathematics, 112 (1), 3–11. https://doi.org/10.1111/j.194908594.2011.00109.x

Brown, M. J. (2012). John Dewey’s logic of science. HOPS: The Journal of the International Society for the History of Philosophy of Science, 2 (2), 258–306.

Bruner, J. (2004). The psychology of learning: A short history (pp.13–20). Winter: Daedalus.

Bryan, L. A., Moore, T. J., Johnson, C. C., & Roehrig, G. H. (2016). Integrated STEM education. In C. C. Johnson, E. E. Peters-Burton, & T. J. Moore (Eds.), STEM road map: A framework for integrated STEM education (pp. 23–37). Routledge.

Buchanan, R. (1992). Wicked problems in design thinking. Design Issues, 8 (2), 5–21.

Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities . NSTA Press.

Crismond, D. P., & Adams, R. S. (2012). The informed design teaching and learning matrix. Journal of Engineering Education, 101 (4), 738–797.

Cunningham, C. M., & Lachapelle, P. (2016). Experiences to engage all students. Educational Designer , 3(9), 1–26. https://www.educationaldesigner.org/ed/volume3/issue9/article31/

Curriculum Planning and Development Division [CPDD] (2021). 2021 Lower secondary science express/ normal (academic) teaching and learning syllabus . Singapore: Ministry of Education.

Delahunty, T., Seery, N., & Lynch, R. (2020). Exploring problem conceptualization and performance in STEM problem solving contexts. Instructional Science, 48 , 395–425. https://doi.org/10.1007/s11251-020-09515-4

Dewey, J. (1938). Logic: The theory of inquiry . Henry Holt and Company Inc.

Dewey, J. (1910a). Science as subject-matter and as method. Science, 31 (787), 121–127.

Dewey, J. (1910b). How we think . D.C. Heath & Co Publishers.

Book   Google Scholar  

Duschl, R. A., & Bybee, R. W. (2014). Planning and carrying out investigations: an entry to learning and to teacher professional development around NGSS science and engineering practices. International Journal of STEM Education, 1 (12). DOI: https://doi.org/10.1186/s40594-014-0012-6 .

Gale, J., Alemder, M., Lingle, J., & Newton, S (2000). Exploring critical components of an integrated STEM curriculum: An application of the innovation implementation framework. International Journal of STEM Education, 7(5), https://doi.org/10.1186/s40594-020-0204-1 .

Hsieh, H.-F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. Qualitative Health Research, 15 (9), 1277–1288.

Jonassen, D. H. (2000). Toward a design theory of problem solving. ETR&D, 48 (4), 63–85.

Kelly, G., & Licona, P. (2018). Epistemic practices and science education. In M. R. Matthews (Ed.), History, philosophy and science teaching: New perspectives (pp. 139–165). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-62616-1 .

Lee, O., & Luykx, A. (2006). Science education and student diversity: Synthesis and research agenda . Cambridge University Press.

Li, D. (2008). The pragmatic construction of word meaning in utterances. Journal of Chinese Language and Computing, 18 (3), 121–137.

National Research Council. (1996). The National Science Education standards . National Academy Press.

National Research Council (2000). Inquiry and the national science education standards: A guide for teaching and learning. Washington, DC: The National Academies Press. https://doi.org/10.17226/9596 .

OECD (2018). The future of education and skills: Education 2030. Downloaded on October 3, 2020 from https://www.oecd.org/education/2030/E2030%20Position%20Paper%20(05.04.2018).pdf

Park, W., Wu, J.-Y., & Erduran, S. (2020) The nature of STEM disciplines in science education standards documents from the USA, Korea and Taiwan: Focusing on disciplinary aims, values and practices.  Science & Education, 29 , 899–927.

Pleasants, J. (2020). Inquiring into the nature of STEM problems: Implications for pre-college education. Science & Education, 29 , 831–855.

Roehrig, G. H., Dare, E. A., Ring-Whalen, E., & Wieselmann, J. R. (2021). Understanding coherence and integration in integrated STEM curriculum. International Journal of STEM Education, 8(2), https://doi.org/10.1186/s40594-020-00259-8

SFA (2020). The food we eat . Downloaded on May 5, 2021 from https://www.sfa.gov.sg/food-farming/singapore-food-supply/the-food-we-eat

Svandova, K. (2014). Secondary school students’ misconceptions about photosynthesis and plant respiration: Preliminary results. Eurasia Journal of Mathematics, Science, & Technology Education, 10 (1), 59–67.

Tan, M. (2020). Context matters in science education. Cultural Studies of Science Education . https://doi.org/10.1007/s11422-020-09971-x

Tan, A.-L., Teo, T. W., Choy, B. H., & Ong, Y. S. (2019). The S-T-E-M Quartet. Innovation and Education , 1 (1), 3. https://doi.org/10.1186/s42862-019-0005-x

Wheeler, L. B., Navy, S. L., Maeng, J. L., & Whitworth, B. A. (2019). Development and validation of the Classroom Observation Protocol for Engineering Design (COPED). Journal of Research in Science Teaching, 56 (9), 1285–1305.

World Economic Forum (2020). Schools of the future: Defining new models of education for the fourth industrial revolution. Retrieved on Jan 18, 2020 from https://www.weforum.org/reports/schools-of-the-future-defining-new-models-of-education-for-the-fourth-industrial-revolution/

Download references

Acknowledgements

The authors would like to acknowledge the contributions of the other members of the research team who gave their comment and feedback in the conceptualization stage.

This study is funded by Office of Education Research grant OER 24/19 TAL.

Author information

Authors and affiliations.

Natural Sciences and Science Education, meriSTEM@NIE, National Institute of Education, Nanyang Technological University, Singapore, Singapore

Aik-Ling Tan, Yann Shiou Ong, Yong Sim Ng & Jared Hong Jie Tan

You can also search for this author in PubMed   Google Scholar

Contributions

The first author conceptualized, researched, read, analysed and wrote the article.

The second author worked on compiling the essential features and the variations tables.

The third and fourth authors worked with the first author on the ideas and refinements of the idea.

Corresponding author

Correspondence to Yann Shiou Ong .

Ethics declarations

Competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Tan, AL., Ong, Y.S., Ng, Y.S. et al. STEM Problem Solving: Inquiry, Concepts, and Reasoning. Sci & Educ 32 , 381–397 (2023). https://doi.org/10.1007/s11191-021-00310-2

Download citation

Accepted : 28 November 2021

Published : 29 January 2022

Issue Date : April 2023

DOI : https://doi.org/10.1007/s11191-021-00310-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Practical Inquiry
  • Science Inquiry
  • Referent-centered knowledge
  • Problem-centered knowledge
  • Find a journal
  • Publish with us
  • Track your research

TechBeamers

  • Python Multiline String
  • Python Multiline Comment
  • Python Iterate String
  • Python Dictionary
  • Python Lists
  • Python List Contains
  • Page Object Model
  • TestNG Annotations
  • Python Function Quiz
  • Python String Quiz
  • Python OOP Test
  • Java Spring Test
  • Java Collection Quiz
  • JavaScript Skill Test
  • Selenium Skill Test
  • Selenium Python Quiz
  • Shell Scripting Test
  • Latest Python Q&A
  • CSharp Coding Q&A
  • SQL Query Question
  • Top Selenium Q&A
  • Top QA Questions
  • Latest Testing Q&A
  • REST API Questions
  • Linux Interview Q&A
  • Shell Script Questions
  • Python Quizzes
  • Testing Quiz
  • Shell Script Quiz
  • WebDev Interview
  • Python Basic
  • Python Examples
  • Python Advanced
  • Python Selenium
  • General Tech

Problem-Solving Method of Teaching: All You Need to Know

What is Problem-Solving Method of Teaching?

Ever wondered about the problem-solving method of teaching? We’ve got you covered, from its core principles to practical tips, benefits, and real-world examples.

The problem-solving method of teaching is a student-centered approach to learning that focuses on developing students’ problem-solving skills. In this method, students are presented with real-world problems to solve, and they are encouraged to use their own knowledge and skills to come up with solutions. The teacher acts as a facilitator, providing guidance and support as needed, but ultimately the students are responsible for finding their own solutions.

Problem-Solving Method of Teaching Example

Must Read: How to Tell Me About Yourself in an Interview

5 Most Important Benefits of Problem-Solving Method of Teaching

The new way of teaching primarily helps students develop critical thinking skills and real-world application abilities. It also promotes independence and self-confidence in problem-solving.

The problem-solving method of teaching has a number of benefits. It helps students to:

1. Enhances critical thinking: By presenting students with real-world problems to solve, the problem-solving method of teaching forces them to think critically about the situation and to come up with their own solutions. This process helps students to develop their critical thinking skills, which are essential for success in school and in life.

2. Fosters creativity: The problem-solving method of teaching encourages students to be creative in their approach to solving problems. There is often no one right answer to a problem, so students are free to come up with their own unique solutions. This process helps students to develop their creativity, which is an important skill in all areas of life.

3. Encourages real-world application: The problem-solving method of teaching helps students learn how to apply their knowledge to real-world situations. By solving real-world problems, students are able to see how their knowledge is relevant to their lives and to the world around them. This helps students to become more motivated and engaged learners.

4. Builds student confidence: When students are able to successfully solve problems, they gain confidence in their abilities. This confidence is essential for success in all areas of life, both academic and personal.

5. Promotes collaborative learning: The problem-solving method of teaching often involves students working together to solve problems. This collaborative learning process helps students to develop their teamwork skills and to learn from each other.

Know 6 Steps in the Problem-Solving Method of Teaching

Know the 6 Steps

Also Read: Do You Know the Difference Between ChatGPT and GPT-4?

The problem-solving method of teaching typically involves the following steps:

  • Identifying the problem. The first step is to identify the problem that students will be working on. This can be done by presenting students with a real-world problem, or by asking them to come up with their own problems.
  • Understanding the problem. Once students have identified the problem, they need to understand it fully. This may involve breaking the problem down into smaller parts or gathering more information about the problem.
  • Generating solutions. Once students understand the problem, they need to generate possible solutions. This can be done by brainstorming, or by using problem-solving techniques such as root cause analysis or the decision matrix.
  • Evaluating solutions. Students need to evaluate the pros and cons of each solution before choosing one to implement.
  • Implementing the solution. Once students have chosen a solution, they need to implement it. This may involve taking action or developing a plan.
  • Evaluating the results. Once students have implemented the solution, they need to evaluate the results to see if it was successful. If the solution is not successful, students may need to go back to step 3 and generate new solutions.

Find Out Examples of the Problem-Solving Method of Teaching

Here are a few examples of how the problem-solving method of teaching can be used in different subjects:

  • Math: Students could be presented with a real-world problem such as budgeting for a family or designing a new product. Students would then need to use their math skills to solve the problem.
  • Science: Students could be presented with a science experiment, or asked to research a scientific topic and come up with a solution to a problem. Students would then need to use their science knowledge and skills to solve the problem.
  • Social studies: Students could be presented with a historical event or current social issue, and asked to come up with a solution. Students would then need to use their social studies knowledge and skills to solve the problem.

5 How Tos For Using The Problem-Solving Method Of Teaching

Here are a few tips for using the problem-solving method of teaching effectively:

  • Choose problems that are relevant to students’ lives and interests.
  • Make sure that the problems are challenging but achievable.
  • Provide students with the resources they need to solve the problems, such as books, websites, or experts.
  • Encourage students to work collaboratively and to share their ideas.
  • Be patient and supportive. Problem-solving can be a challenging process, but it is also a rewarding one.

Also Try: 1-10 Random Number Generator

How to Choose: Let’s Draw a Comparison

The following table compares the different problem-solving methods:

Which Method is the Most Suitable?

The most suitable method of teaching will depend on a number of factors, such as the subject matter, the student’s age and ability level, and the teacher’s own preferences. However, the problem-solving method of teaching is a valuable approach that can be used in any subject area and with students of all ages.

Here are some additional tips for using the problem-solving method of teaching effectively:

  • Differentiate instruction. Not all students learn at the same pace or in the same way. Teachers can differentiate instruction to meet the needs of all learners by providing different levels of support and scaffolding.
  • Use formative assessment. Formative assessment can be used to monitor students’ progress and to identify areas where they need additional support. Teachers can then use this information to provide students with targeted instruction.
  • Create a positive learning environment. Students need to feel safe and supported in order to learn effectively. Teachers can create a positive learning environment by providing students with opportunities for collaboration, celebrating their successes, and creating a classroom culture where mistakes are seen as learning opportunities.

Interested in New Tech: 7 IoT Trends to Watch in 2023

Some Unique Examples to Refer to Before We Conclude

Here are a few unique examples of how the problem-solving method of teaching can be used in different subjects:

  • English: Students could be presented with a challenging text, such as a poem or a short story, and asked to analyze the text and come up with their own interpretation.
  • Art: Students could be asked to design a new product or to create a piece of art that addresses a social issue.
  • Music: Students could be asked to write a song about a current event or to create a new piece of music that reflects their cultural heritage.

The problem-solving method of teaching is a powerful tool that can be used to help students develop the skills they need to succeed in school and in life. By creating a learning environment where students are encouraged to think critically and solve problems, teachers can help students to become lifelong learners.

You Might Also Like

How to fix load css asynchronously, how to fix accessibility issues with tables in wordpress, apache spark introduction and architecture, difference between spring and spring boot, langchain chatbot – let’s create a full-fledged app, sign up for daily newsletter, be keep up get the latest breaking news delivered straight to your inbox..

Harsh S. Avatar

Popular Tutorials

SQL Interview Questions List

Top 50 SQL Query Interview Questions for Practice

Demo Websites You Need to Practice Selenium

7 Demo Websites to Practice Selenium Automation in 2024

SQL Exercises with Sample Table and Demo Data

SQL Exercises – Complex Queries

Java Coding Questions for Software Testers

15 Java Coding Questions for Testers

30 Quick Python Programming Questions On List, Tuple & Dictionary

30 Python Programming Questions On List, Tuple, and Dictionary

practical examples of problem solving in education

  • What is Lean?
  • Our Approach To Lean
  • History & What We’ve Done
  • Lean Research
  • Lean Capability Development
  • Login / Sign up

Sign up and join the community

Email address *

Subscribe to our newsletter

Please select all the ways you would like to hear from us Email

Your personal data will be used to support your experience throughout this website, to manage access to your account, and for other purposes described in our privacy policy .

Home > Example of learning to use the A3 Practical Problem Solving Method

Example of learning to use the A3 Practical Problem Solving Method

30th September 2021 - Peter Watkins

Canal & River Trust Logo Link for further explanantion

Example of learning to use the A3 Practical Problem Solving Method.

LEA has an ongoing partnership with a great charity called the Canal & River Trust. (Learn more about them by clicking on their Logo).

As part of their Lean Learning Journey , we are developing the capabilities of some of their leaders. This will allow them to be able to Teach and Coach others to maintain & stabilise the daily work. It will also help them reach their long term goals.

The first part of their development was to learn & practice A3 8 Step Practical Problem Solving . From this they can go on to Teach and Coach others in the organisation.

Developing Capability and Improving the work at the same time!

Example of learning to use the A3 Practical Problem Solving Method

Five Leaders have just recently completed their very first 8 Step Practical Problem Solving A3 – based on solving some real organisational problems. 4 out of 5 the leaders had never followed any scientific method to solve problems before.

They went through LEA’s recommended Lean Learning Journey Process for the A3 8 Step Practical Problem Solving method. This involved being coached weekly by LEA’s Senior Lean Coaches to achieve Skill Level 3: Capable.

A key part of the development process is to do a final report out to the senior managers. As a result, this involved going through and explaining their problem solving activities using a visual A3 to tell the story. The video below is one of those leaders presenting his A3 problem solving story.

Watch this short Video of an A3 explanation from Ben Arthur – Business Intelligence Manager at Canal & River Trust

This video is an example of learning to use the A3 Practical Problem Solving Method.

In this video blog, Ben Arthur explains his first ever A3 Problem Solving activity to an online audience. Ben was asked 15 minutes of question, at the end of this presentation, but we had to cut the Q & A section out due to the length. A full version will be available on our YouTube channel . You can also download a PDF of Ben’s A3 to see more of the detail than can be shown on the screen.

Do you have a structured Learning Process for Developing Capability?

Developing capability four diferent skills level chart

Problem Solving is the number one skill to develop in people who want to apply lean thinking & practice.

Why? Because the starting point for lean is understanding what situational problems you need to solve. Then follow a robust method to solve these problems – rather than jumping to solutions.

Therefore, if you can engage everyone in identifying & solving problems you will deliver more value to your customers and organisation.

Using the LEA learning platform and supported by a Skill Level 4 Coach, leaders can progress through the Learning Process shown below to become Capable.

In short, following a structured PDCA Learning process enables people to get a good result, even on their first attempt.

Example of learning to use the A3 Practical Problem Solving Method

Overview of our Learning Process for A3 8 Step Practical Problem Solving skill development

Example of learning to use the A3 Practical Problem Solving Method

Skill Level 1: Knowledge

Using the top part of our Visual Teach Poster (see right) the Leaders cover the basic Knowledge on the Background, Purpose, Process and People. These are all aspects of the A3 8 Step Practical Problem Solving Method.

In addition, the leaders gain knowledge about why they need to use it, the underlying thinking behind the process to use it correctly. and their role when using it.

Example of learning to use the A3 Practical Problem Solving Method

Skill Level 2: Understanding

Using our online learning platform and live coaching sessions, the leaders go on to gain a deep  Understanding . This is how to actually apply the 8 Steps of the A3 Practical Problem Solving (PPS) method.

For example in the picture, the leaders also gain some practical experience  by completing a PPS A3 from a case study exercise. They then compare it with our answer in live debriefing sessions to confirm their understanding of each step.

Example of learning to use the A3 Practical Problem Solving Method

Skill Level 3: Capable

To become capable the leaders need to develop their skill by solving a real business problem.

After going through an initial problem selection process, they are coached “step by step” over 12 weeks in 1 hour sessions by an LEA Senior Coach.

Periodically they also go through an evaluation process to check understanding and visualisation of their A3 problem solving story.

At the end of the 12 weeks a final report out session is completed to share their problem solving story and result. The session is attended by their immediate & senior manager(s).

Have a look at Ben’s A3 as an example, just click on link above!

If you are interested in Learning the A3 8 Step Practical Problem Solving method, please take a look at our all supporting Learning Materials and courses

A3 Problem Solving On-Demand Webinar

  • Construction
  • Manufacturing
  • Public Sector
  • Retail & Hospitality
  • Supply Chain
  • Capability Development
  • Lean Leadership
  • Lean Principles
  • Management System
  • Process Improvement
  • Product Development
  • Tools & Techniques
  • Transformation
  • Demand Analysis
  • Flow Costing
  • Lean & Green
  • lean certification
  • Lean Digital
  • lean learning
  • Lean Summit
  • Lean Thinking
  • Lean Transformation Framework
  • Managment Routines
  • People Capability
  • Problem Solving
  • product development
  • Purpose Process People
  • Rapid Problem Solving
  • Standardised Work
  • Supply Chain Management
  • Teach Poster
  • Training Within Industry (TWI)
  • UK Lean Summit
  • Value Stream Analysis
  • Value Stream Mapping (VSM)
  • Value Streams
  • Visual Management

Problem-Solving Method in Teaching

The problem-solving method is a highly effective teaching strategy that is designed to help students develop critical thinking skills and problem-solving abilities . It involves providing students with real-world problems and challenges that require them to apply their knowledge, skills, and creativity to find solutions. This method encourages active learning, promotes collaboration, and allows students to take ownership of their learning.

Table of Contents

Definition of problem-solving method.

Problem-solving is a process of identifying, analyzing, and resolving problems. The problem-solving method in teaching involves providing students with real-world problems that they must solve through collaboration and critical thinking. This method encourages students to apply their knowledge and creativity to develop solutions that are effective and practical.

Meaning of Problem-Solving Method

The meaning and Definition of problem-solving are given by different Scholars. These are-

Woodworth and Marquis(1948) : Problem-solving behavior occurs in novel or difficult situations in which a solution is not obtainable by the habitual methods of applying concepts and principles derived from past experience in very similar situations.

Skinner (1968): Problem-solving is a process of overcoming difficulties that appear to interfere with the attainment of a goal. It is the procedure of making adjustments in spite of interference

Benefits of Problem-Solving Method

The problem-solving method has several benefits for both students and teachers. These benefits include:

  • Encourages active learning: The problem-solving method encourages students to actively participate in their own learning by engaging them in real-world problems that require critical thinking and collaboration
  • Promotes collaboration: Problem-solving requires students to work together to find solutions. This promotes teamwork, communication, and cooperation.
  • Builds critical thinking skills: The problem-solving method helps students develop critical thinking skills by providing them with opportunities to analyze and evaluate problems
  • Increases motivation: When students are engaged in solving real-world problems, they are more motivated to learn and apply their knowledge.
  • Enhances creativity: The problem-solving method encourages students to be creative in finding solutions to problems.

Steps in Problem-Solving Method

The problem-solving method involves several steps that teachers can use to guide their students. These steps include

  • Identifying the problem: The first step in problem-solving is identifying the problem that needs to be solved. Teachers can present students with a real-world problem or challenge that requires critical thinking and collaboration.
  • Analyzing the problem: Once the problem is identified, students should analyze it to determine its scope and underlying causes.
  • Generating solutions: After analyzing the problem, students should generate possible solutions. This step requires creativity and critical thinking.
  • Evaluating solutions: The next step is to evaluate each solution based on its effectiveness and practicality
  • Selecting the best solution: The final step is to select the best solution and implement it.

Verification of the concluded solution or Hypothesis

The solution arrived at or the conclusion drawn must be further verified by utilizing it in solving various other likewise problems. In case, the derived solution helps in solving these problems, then and only then if one is free to agree with his finding regarding the solution. The verified solution may then become a useful product of his problem-solving behavior that can be utilized in solving further problems. The above steps can be utilized in solving various problems thereby fostering creative thinking ability in an individual.

The problem-solving method is an effective teaching strategy that promotes critical thinking, creativity, and collaboration. It provides students with real-world problems that require them to apply their knowledge and skills to find solutions. By using the problem-solving method, teachers can help their students develop the skills they need to succeed in school and in life.

  • Jonassen, D. (2011). Learning to solve problems: A handbook for designing problem-solving learning environments. Routledge.
  • Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn? Educational Psychology Review, 16(3), 235-266.
  • Mergendoller, J. R., Maxwell, N. L., & Bellisimo, Y. (2006). The effectiveness of problem-based instruction: A comparative study of instructional methods and student characteristics. Interdisciplinary Journal of Problem-based Learning, 1(2), 49-69.
  • Richey, R. C., Klein, J. D., & Tracey, M. W. (2011). The instructional design knowledge base: Theory, research, and practice. Routledge.
  • Savery, J. R., & Duffy, T. M. (2001). Problem-based learning: An instructional model and its constructivist framework. CRLT Technical Report No. 16-01, University of Michigan. Wojcikowski, J. (2013). Solving real-world problems through problem-based learning. College Teaching, 61(4), 153-156

Micro Teaching Skills

You are using an outdated browser. Please upgrade your browser to improve your experience.

practical examples of problem solving in education

Health & Nursing

Courses and certificates.

  • Bachelor's Degrees
  • View all Business Bachelor's Degrees
  • Business Management – B.S. Business Administration
  • Healthcare Administration – B.S.
  • Human Resource Management – B.S. Business Administration
  • Information Technology Management – B.S. Business Administration
  • Marketing – B.S. Business Administration
  • Accounting – B.S. Business Administration
  • Finance – B.S.
  • Supply Chain and Operations Management – B.S.
  • Accelerated Information Technology Bachelor's and Master's Degree (from the School of Technology)
  • Health Information Management – B.S. (from the Leavitt School of Health)

Master's Degrees

  • View all Business Master's Degrees
  • Master of Business Administration (MBA)
  • MBA Information Technology Management
  • MBA Healthcare Management
  • Management and Leadership – M.S.
  • Accounting – M.S.
  • Marketing – M.S.
  • Human Resource Management – M.S.
  • Master of Healthcare Administration (from the Leavitt School of Health)
  • Data Analytics – M.S. (from the School of Technology)
  • Information Technology Management – M.S. (from the School of Technology)
  • Education Technology and Instructional Design – M.Ed. (from the School of Education)

Certificates

  • View all Business Degrees

Bachelor's Preparing For Licensure

  • View all Education Bachelor's Degrees
  • Elementary Education – B.A.
  • Special Education and Elementary Education (Dual Licensure) – B.A.
  • Special Education (Mild-to-Moderate) – B.A.
  • Mathematics Education (Middle Grades) – B.S.
  • Mathematics Education (Secondary)– B.S.
  • Science Education (Middle Grades) – B.S.
  • Science Education (Secondary Chemistry) – B.S.
  • Science Education (Secondary Physics) – B.S.
  • Science Education (Secondary Biological Sciences) – B.S.
  • Science Education (Secondary Earth Science)– B.S.
  • View all Education Degrees

Bachelor of Arts in Education Degrees

  • Educational Studies – B.A.

Master of Science in Education Degrees

  • View all Education Master's Degrees
  • Curriculum and Instruction – M.S.
  • Educational Leadership – M.S.
  • Education Technology and Instructional Design – M.Ed.

Master's Preparing for Licensure

  • Teaching, Elementary Education – M.A.
  • Teaching, English Education (Secondary) – M.A.
  • Teaching, Mathematics Education (Middle Grades) – M.A.
  • Teaching, Mathematics Education (Secondary) – M.A.
  • Teaching, Science Education (Secondary) – M.A.
  • Teaching, Special Education (K-12) – M.A.

Licensure Information

  • State Teaching Licensure Information

Master's Degrees for Teachers

  • Mathematics Education (K-6) – M.A.
  • Mathematics Education (Middle Grade) – M.A.
  • Mathematics Education (Secondary) – M.A.
  • English Language Learning (PreK-12) – M.A.
  • Endorsement Preparation Program, English Language Learning (PreK-12)
  • Science Education (Middle Grades) – M.A.
  • Science Education (Secondary Chemistry) – M.A.
  • Science Education (Secondary Physics) – M.A.
  • Science Education (Secondary Biological Sciences) – M.A.
  • Science Education (Secondary Earth Science)– M.A.
  • View all Technology Bachelor's Degrees
  • Cloud Computing – B.S.
  • Computer Science – B.S.
  • Cybersecurity and Information Assurance – B.S.
  • Data Analytics – B.S.
  • Information Technology – B.S.
  • Network Engineering and Security – B.S.
  • Software Engineering – B.S.
  • Accelerated Information Technology Bachelor's and Master's Degree
  • Information Technology Management – B.S. Business Administration (from the School of Business)
  • View all Technology Master's Degrees
  • Cybersecurity and Information Assurance – M.S.
  • Data Analytics – M.S.
  • Information Technology Management – M.S.
  • MBA Information Technology Management (from the School of Business)
  • Full Stack Engineering
  • Web Application Deployment and Support
  • Front End Web Development
  • Back End Web Development

3rd Party Certifications

  • IT Certifications Included in WGU Degrees
  • View all Technology Degrees
  • View all Health & Nursing Bachelor's Degrees
  • Nursing (RN-to-BSN online) – B.S.
  • Nursing (Prelicensure) – B.S. (Available in select states)
  • Health Information Management – B.S.
  • Health and Human Services – B.S.
  • Psychology – B.S.
  • Health Science – B.S.
  • Healthcare Administration – B.S. (from the School of Business)
  • View all Nursing Post-Master's Certificates
  • Nursing Education—Post-Master's Certificate
  • Nursing Leadership and Management—Post-Master's Certificate
  • Family Nurse Practitioner—Post-Master's Certificate
  • Psychiatric Mental Health Nurse Practitioner —Post-Master's Certificate
  • View all Health & Nursing Degrees
  • View all Nursing & Health Master's Degrees
  • Nursing – Education (BSN-to-MSN Program) – M.S.
  • Nursing – Leadership and Management (BSN-to-MSN Program) – M.S.
  • Nursing – Nursing Informatics (BSN-to-MSN Program) – M.S.
  • Nursing – Family Nurse Practitioner (BSN-to-MSN Program) – M.S. (Available in select states)
  • Nursing – Psychiatric Mental Health Nurse Practitioner (BSN-to-MSN Program) – M.S. (Available in select states)
  • Nursing – Education (RN-to-MSN Program) – M.S.
  • Nursing – Leadership and Management (RN-to-MSN Program) – M.S.
  • Nursing – Nursing Informatics (RN-to-MSN Program) – M.S.
  • Master of Healthcare Administration
  • MBA Healthcare Management (from the School of Business)
  • Business Leadership (with the School of Business)
  • Supply Chain (with the School of Business)
  • Back End Web Development (with the School of Technology)
  • Front End Web Development (with the School of Technology)
  • Web Application Deployment and Support (with the School of Technology)
  • Full Stack Engineering (with the School of Technology)
  • Single Courses
  • Course Bundles

Apply for Admission

Admission requirements.

  • New Students
  • WGU Returning Graduates
  • WGU Readmission
  • Enrollment Checklist
  • Accessibility
  • Accommodation Request
  • School of Education Admission Requirements
  • School of Business Admission Requirements
  • School of Technology Admission Requirements
  • Leavitt School of Health Admission Requirements

Additional Requirements

  • Computer Requirements
  • No Standardized Testing
  • Clinical and Student Teaching Information

Transferring

  • FAQs about Transferring
  • Transfer to WGU
  • Transferrable Certifications
  • Request WGU Transcripts
  • International Transfer Credit
  • Tuition and Fees
  • Financial Aid
  • Scholarships

Other Ways to Pay for School

  • Tuition—School of Business
  • Tuition—School of Education
  • Tuition—School of Technology
  • Tuition—Leavitt School of Health
  • Your Financial Obligations
  • Tuition Comparison
  • Applying for Financial Aid
  • State Grants
  • Consumer Information Guide
  • Responsible Borrowing Initiative
  • Higher Education Relief Fund

FAFSA Support

  • Net Price Calculator
  • FAFSA Simplification
  • See All Scholarships
  • Military Scholarships
  • State Scholarships
  • Scholarship FAQs

Payment Options

  • Payment Plans
  • Corporate Reimbursement
  • Current Student Hardship Assistance
  • Military Tuition Assistance

WGU Experience

  • How You'll Learn
  • Scheduling/Assessments
  • Accreditation
  • Student Support/Faculty
  • Military Students
  • Part-Time Options
  • Virtual Military Education Resource Center
  • Student Outcomes
  • Return on Investment
  • Students and Gradutes
  • Career Growth
  • Student Resources
  • Communities
  • Testimonials
  • Career Guides
  • Skills Guides
  • Online Degrees
  • All Degrees
  • Explore Your Options

Admissions & Transfers

  • Admissions Overview

Tuition & Financial Aid

Student Success

  • Prospective Students
  • Current Students
  • Military and Veterans
  • Commencement
  • Careers at WGU
  • Advancement & Giving
  • Partnering with WGU

WESTERN GOVERNORS UNIVERSITY

Developing your problem-solving skills.

practical examples of problem solving in education

Problem-Solving Skills

Problem-solving skills enhance your ability to identify a difficult or unforeseen situation and determine an appropriate solution. 

Using the right problem-solving approach will empower you to offer practical solutions in your professional and personal life anytime you’re faced with a problem.

This page covers different types of problem-solving skills, why they matter, and how to acquire them.

Why Are Problem-Solving Skills Important?

Problem-solving skills are crucial in empowering individuals to handle large or small obstacles throughout various aspects of life. Here are just a few ways that these skills can help you:

  • Overcoming challenges: Life will always present you with problems that may hinder your personal or professional progress. Problem-solving skills empower you to identify solutions, giving you control over your future.
  • Enhancing decision-making: Problem-solving skills help you assess problems as they come, gauge all the possible solutions, and make the best decision. 
  • Promoting innovation: Practical problem-solving skills encourage creative thinking, enabling you to develop innovative ideas. You can then evaluate these ideas to identify effective solutions to tackle obstacles.
  • Increasing efficiency: Problem-solving skills help individuals and organizations improve efficiency and save time and resources. You are assured of increased productivity if you can identify the root cause of a problem, get the appropriate solution, and implement it promptly.
  • Building resilience: Since problems are part of everyone’s day-to-day life, being equipped with problem-solving skills will enable you to respond quickly and rationally to unforeseen situations and not succumb to setbacks.

What Are the Benefits of Having Problem-Solving Skills?

When you frequently apply your problem-solving skills, you become more proficient at analyzing, resolving, and adapting to challenges.

In the workplace, people with strong problem-solving skills apply a combination of creative thinking and analytical skills to help them become more confident when making decisions in the face of challenges. 

They’re better equipped to handle the challenges their job brings Problem solvers can observe, judge, and act quickly when faced with adversity.

Problem-solving skills enable you to prioritize, plan, and execute your strategies. You also learn how to think outside the box and identify opportunities in problems. 

practical examples of problem solving in education

Examples of Problem-Solving Skills

Problem-solving skills are effective in helping you identify the source of a problem and how to solve it with a structured approach.

Here are some skills associated with problem-solving:

  • Analyzing data: When addressing a number of problems, it’s important to gather relevant for a thorough understanding of the issue and its underlying causes.
  • Brainstorming creative solutions: Brainstorming allows you to find the right information from the different causes of the problem and develop innovative solutions. 
  • Researching to gather relevant information: Having clarity on your research goals and digging into reliable resources to get relevant information.
  • Use critical thinking to evaluate options: This involves objective questioning, analyzing, and systematically assessing available options. You should be able to differentiate facts from opinions. 
  • Implementing logical and systematic approaches: Exploring the key components of each option to understand their practicality and relevance to the problem. Use predefined criteria to evaluate the options and then conduct a SWOT (strengths, weaknesses, opportunities, threats) analysis to determine their viability.
  • Collaborating with others to find solutions: Team members gather to offer their input, giving potential solutions and collectively analyzing them to solve the problem.
  • Creative thinking: This may include generating new ideas to solve problems. It involves brainstorming, mind mapping, lateral thinking, and analogical reasoning. 
  • Decision-making: This is the capability to evaluate options, weigh pros and cons, and make informed decisions based on available information. 
  • Problem identification: The ability to recognize and define problems accurately and clearly.  
  • Problem structuring: The skill involves taking complicated or vague problems and dissecting them into smaller subproblems that are easier to understand and solve. 

How Can I Use Problem-Solving Skills? 

Problem-solving skills will have a lasting impact on your life. In your personal and professional life, you will encounter many challenges requiring you to use problem-solving skills.

Here are some instances where you’ll use problem-solving skills: 

Career Success

Problem-solving skills will help you tackle challenges at any workplace, make informed decisions, and help the organizations you work with to succeed., personal growth, these skills equip you to overcome everyday life obstacles, like managing personal finances, resolving conflicts in relationships, and more..

Innovation and Entrepreneurship

By solving problems, you can generate creative ideas, develop innovative solutions, and even solve societal problems.

Decision-Making

Making big and small decisions by gathering alternatives, evaluating outcomes, and deciding on the best course of action.

How Can I Learn Problem-Solving Skills?

At wgu, we offer several programs and courses that focus on teaching and enhancing problem-solving skills. , here are ways you can learn problem-solving skills at wgu., school of business.

You’ll learn how to apply problem-solving skills in the world of entrepreneurship and business. For example, our Bachelor of Science in Business Administration–Human Resource Management, offers problem-solving skills as a key component. 

With business degree programs, you will learn to:

  • Generate a solution to a problem.
  • Conduct research to find solutions to a problem.
  • Articulate findings and resolutions to a problem.         
  • Apply contextual reasoning to understand problems.
  • Analyze data for the nature and extent of a problem.

School of Technology

You’ll learn how to apply problem-solving skills within the ever-evolving world of IT. We have different bachelor of science degrees in Cloud Computing, such as Muilticloud Track, Amazon Web Services Track, and BS in Cloud Computing - Azure Track.

With IT-related degree programs, you will learn to: 

  • Select appropriate problem-solving techniques.                    
  • Resolve a challenge using a problem-solving process.
  • Recommend multiple solutions for a variety of problems.
  • Implement approaches to address complex problems.
  • Identify problems using various common frameworks.

School of Education

You’ll learn how problem-solving skills are crucial in the education sector. For example, our Master of Science in Educational Leadership covers problem-solving in the School of Education courses.

With education degree programs, you will learn to:

  • Implement problem-solving skills for issue resolution.
  • Solve complex problems.   
  • Identify the cause of a problem.
  • Solve problems in the manner most appropriate for each problem.    

Frequently Asked Questions

What are the steps involved in the problem-solving process?

The problem-solving process involves the following steps:

  • Problem identification: Clearly state the problem, what makes you view it as a problem, and how you discovered it.
  • Problem analysis: Gather data to help you fully understand the problem and its root causes.
  • Generating potential solutions: Look for all the possible ideas from different angles to solve the problem. 
  • Evaluating alternatives: Scrutinize the available options to identify the best idea. 
  • Implementing the chosen solution: Follow through on the necessary steps to resolve the problem.
  • Reviewing the results: Gather feedback to test the results against your expectations.

How can I improve my critical thinking skills to enhance my problem-solving?

You can improve your critical thinking skills through the following:

  • Logical reasoning: Embrace creative hobbies, learn new skills, and socialize with others.
  • Evaluating evidence: Determine the relevance and quality of the evidence available to challenge or support claims.
  • Considering multiple perspectives: Being open to learning from your peers and adjusting your views accordingly.

What are some effective techniques for generating creative solutions to problems?

Creative problem solving (CPS) is about innovatively solving problems. The techniques below will aid you in the CPS process:

  • Brainstorming: Gather relevant parties and spontaneously contribute ideas to offer the solution.
  • Mind mapping: Capture and organize any form of information and ideas in a structured way to enhance your logical and creative thinking.
  • Analogical reasoning: Use analogies to simplify complex scenarios to makes them easy to comprehend.

How can problem-solving skills be applied in everyday life?

Picture this: your car breaks down while running errands. It’s important to identify the problem with your car and analyze the symptoms and potential root causes of the breakdown, such as mechanical issues or battery failure. You decide that a faulty batter is the issue so you start to identify potential solutions. 

The solutions may include calling for roadside assistance, finding a mechanic nearby, or seeking help from friends or family. You then evaluate the potential solutions by weighing in factors such as cost, time, and convenience.  The best solution you find may be to call a nearby friend to help you jump-start the car and get back on the road to complete your errands. 

This is an everyday occurrence in which problem-solving skills are applicable. Other situations may vary with the degree of difficulty, urgency, and solutions required.

Are specific problem-solving skills valuable in a team or collaborative setting?

Yes. With effective communication, effective conflict resolution strategies, active listening, and consensus building, team members can build healthy working relationships and succeed in their daily decision-making processes.

Find Your Degree

Ready to take the next step in developing your problem-solving skills? Take our degree quiz to find the perfect program for you! With our flexible online learning options and personalized support, you can achieve your educational and career goals on your own terms.

The University

For students.

  • Student Portal
  • Alumni Services

Most Visited Links

  • Business Programs
  • Student Experience
  • Diversity, Equity, and Inclusion
  • Student Communities

Career Sidekick

26 Expert-Backed Problem Solving Examples – Interview Answers

Published: February 13, 2023

Interview Questions and Answers

Actionable advice from real experts:

picture of Biron Clark

Biron Clark

Former Recruiter

practical examples of problem solving in education

Contributor

Dr. Kyle Elliott

Career Coach

practical examples of problem solving in education

Hayley Jukes

Editor-in-Chief

Biron Clark

Biron Clark , Former Recruiter

Kyle Elliott , Career Coach

Image of Hayley Jukes

Hayley Jukes , Editor

As a recruiter , I know employers like to hire people who can solve problems and work well under pressure.

 A job rarely goes 100% according to plan, so hiring managers are more likely to hire you if you seem like you can handle unexpected challenges while staying calm and logical.

But how do they measure this?

Hiring managers will ask you interview questions about your problem-solving skills, and they might also look for examples of problem-solving on your resume and cover letter. 

In this article, I’m going to share a list of problem-solving examples and sample interview answers to questions like, “Give an example of a time you used logic to solve a problem?” and “Describe a time when you had to solve a problem without managerial input. How did you handle it, and what was the result?”

  • Problem-solving involves identifying, prioritizing, analyzing, and solving problems using a variety of skills like critical thinking, creativity, decision making, and communication.
  • Describe the Situation, Task, Action, and Result ( STAR method ) when discussing your problem-solving experiences.
  • Tailor your interview answer with the specific skills and qualifications outlined in the job description.
  • Provide numerical data or metrics to demonstrate the tangible impact of your problem-solving efforts.

What are Problem Solving Skills? 

Problem-solving is the ability to identify a problem, prioritize based on gravity and urgency, analyze the root cause, gather relevant information, develop and evaluate viable solutions, decide on the most effective and logical solution, and plan and execute implementation. 

Problem-solving encompasses other skills that can be showcased in an interview response and your resume. Problem-solving skills examples include:

  • Critical thinking
  • Analytical skills
  • Decision making
  • Research skills
  • Technical skills
  • Communication skills
  • Adaptability and flexibility

Why is Problem Solving Important in the Workplace?

Problem-solving is essential in the workplace because it directly impacts productivity and efficiency. Whenever you encounter a problem, tackling it head-on prevents minor issues from escalating into bigger ones that could disrupt the entire workflow. 

Beyond maintaining smooth operations, your ability to solve problems fosters innovation. It encourages you to think creatively, finding better ways to achieve goals, which keeps the business competitive and pushes the boundaries of what you can achieve. 

Effective problem-solving also contributes to a healthier work environment; it reduces stress by providing clear strategies for overcoming obstacles and builds confidence within teams. 

Examples of Problem-Solving in the Workplace

  • Correcting a mistake at work, whether it was made by you or someone else
  • Overcoming a delay at work through problem solving and communication
  • Resolving an issue with a difficult or upset customer
  • Overcoming issues related to a limited budget, and still delivering good work through the use of creative problem solving
  • Overcoming a scheduling/staffing shortage in the department to still deliver excellent work
  • Troubleshooting and resolving technical issues
  • Handling and resolving a conflict with a coworker
  • Solving any problems related to money, customer billing, accounting and bookkeeping, etc.
  • Taking initiative when another team member overlooked or missed something important
  • Taking initiative to meet with your superior to discuss a problem before it became potentially worse
  • Solving a safety issue at work or reporting the issue to those who could solve it
  • Using problem solving abilities to reduce/eliminate a company expense
  • Finding a way to make the company more profitable through new service or product offerings, new pricing ideas, promotion and sale ideas, etc.
  • Changing how a process, team, or task is organized to make it more efficient
  • Using creative thinking to come up with a solution that the company hasn’t used before
  • Performing research to collect data and information to find a new solution to a problem
  • Boosting a company or team’s performance by improving some aspect of communication among employees
  • Finding a new piece of data that can guide a company’s decisions or strategy better in a certain area

Problem-Solving Examples for Recent Grads/Entry-Level Job Seekers

  • Coordinating work between team members in a class project
  • Reassigning a missing team member’s work to other group members in a class project
  • Adjusting your workflow on a project to accommodate a tight deadline
  • Speaking to your professor to get help when you were struggling or unsure about a project
  • Asking classmates, peers, or professors for help in an area of struggle
  • Talking to your academic advisor to brainstorm solutions to a problem you were facing
  • Researching solutions to an academic problem online, via Google or other methods
  • Using problem solving and creative thinking to obtain an internship or other work opportunity during school after struggling at first

How To Answer “Tell Us About a Problem You Solved”

When you answer interview questions about problem-solving scenarios, or if you decide to demonstrate your problem-solving skills in a cover letter (which is a good idea any time the job description mentions problem-solving as a necessary skill), I recommend using the STAR method.

STAR stands for:

It’s a simple way of walking the listener or reader through the story in a way that will make sense to them. 

Start by briefly describing the general situation and the task at hand. After this, describe the course of action you chose and why. Ideally, show that you evaluated all the information you could given the time you had, and made a decision based on logic and fact. Finally, describe the positive result you achieved.

Note: Our sample answers below are structured following the STAR formula. Be sure to check them out!

EXPERT ADVICE

practical examples of problem solving in education

Dr. Kyle Elliott , MPA, CHES Tech & Interview Career Coach caffeinatedkyle.com

How can I communicate complex problem-solving experiences clearly and succinctly?

Before answering any interview question, it’s important to understand why the interviewer is asking the question in the first place.

When it comes to questions about your complex problem-solving experiences, for example, the interviewer likely wants to know about your leadership acumen, collaboration abilities, and communication skills, not the problem itself.

Therefore, your answer should be focused on highlighting how you excelled in each of these areas, not diving into the weeds of the problem itself, which is a common mistake less-experienced interviewees often make.

Tailoring Your Answer Based on the Skills Mentioned in the Job Description

As a recruiter, one of the top tips I can give you when responding to the prompt “Tell us about a problem you solved,” is to tailor your answer to the specific skills and qualifications outlined in the job description. 

Once you’ve pinpointed the skills and key competencies the employer is seeking, craft your response to highlight experiences where you successfully utilized or developed those particular abilities. 

For instance, if the job requires strong leadership skills, focus on a problem-solving scenario where you took charge and effectively guided a team toward resolution. 

By aligning your answer with the desired skills outlined in the job description, you demonstrate your suitability for the role and show the employer that you understand their needs.

Amanda Augustine expands on this by saying:

“Showcase the specific skills you used to solve the problem. Did it require critical thinking, analytical abilities, or strong collaboration? Highlight the relevant skills the employer is seeking.”  

Interview Answers to “Tell Me About a Time You Solved a Problem”

Now, let’s look at some sample interview answers to, “Give me an example of a time you used logic to solve a problem,” or “Tell me about a time you solved a problem,” since you’re likely to hear different versions of this interview question in all sorts of industries.

The example interview responses are structured using the STAR method and are categorized into the top 5 key problem-solving skills recruiters look for in a candidate.

1. Analytical Thinking

practical examples of problem solving in education

Situation: In my previous role as a data analyst , our team encountered a significant drop in website traffic.

Task: I was tasked with identifying the root cause of the decrease.

Action: I conducted a thorough analysis of website metrics, including traffic sources, user demographics, and page performance. Through my analysis, I discovered a technical issue with our website’s loading speed, causing users to bounce. 

Result: By optimizing server response time, compressing images, and minimizing redirects, we saw a 20% increase in traffic within two weeks.

2. Critical Thinking

practical examples of problem solving in education

Situation: During a project deadline crunch, our team encountered a major technical issue that threatened to derail our progress.

Task: My task was to assess the situation and devise a solution quickly.

Action: I immediately convened a meeting with the team to brainstorm potential solutions. Instead of panicking, I encouraged everyone to think outside the box and consider unconventional approaches. We analyzed the problem from different angles and weighed the pros and cons of each solution.

Result: By devising a workaround solution, we were able to meet the project deadline, avoiding potential delays that could have cost the company $100,000 in penalties for missing contractual obligations.

3. Decision Making

practical examples of problem solving in education

Situation: As a project manager , I was faced with a dilemma when two key team members had conflicting opinions on the project direction.

Task: My task was to make a decisive choice that would align with the project goals and maintain team cohesion.

Action: I scheduled a meeting with both team members to understand their perspectives in detail. I listened actively, asked probing questions, and encouraged open dialogue. After carefully weighing the pros and cons of each approach, I made a decision that incorporated elements from both viewpoints.

Result: The decision I made not only resolved the immediate conflict but also led to a stronger sense of collaboration within the team. By valuing input from all team members and making a well-informed decision, we were able to achieve our project objectives efficiently.

4. Communication (Teamwork)

practical examples of problem solving in education

Situation: During a cross-functional project, miscommunication between departments was causing delays and misunderstandings.

Task: My task was to improve communication channels and foster better teamwork among team members.

Action: I initiated regular cross-departmental meetings to ensure that everyone was on the same page regarding project goals and timelines. I also implemented a centralized communication platform where team members could share updates, ask questions, and collaborate more effectively.

Result: Streamlining workflows and improving communication channels led to a 30% reduction in project completion time, saving the company $25,000 in operational costs.

5. Persistence 

Situation: During a challenging sales quarter, I encountered numerous rejections and setbacks while trying to close a major client deal.

Task: My task was to persistently pursue the client and overcome obstacles to secure the deal.

Action: I maintained regular communication with the client, addressing their concerns and demonstrating the value proposition of our product. Despite facing multiple rejections, I remained persistent and resilient, adjusting my approach based on feedback and market dynamics.

Result: After months of perseverance, I successfully closed the deal with the client. By closing the major client deal, I exceeded quarterly sales targets by 25%, resulting in a revenue increase of $250,000 for the company.

Tips to Improve Your Problem-Solving Skills

Throughout your career, being able to showcase and effectively communicate your problem-solving skills gives you more leverage in achieving better jobs and earning more money .

So to improve your problem-solving skills, I recommend always analyzing a problem and situation before acting.

 When discussing problem-solving with employers, you never want to sound like you rush or make impulsive decisions. They want to see fact-based or data-based decisions when you solve problems.

Don’t just say you’re good at solving problems. Show it with specifics. How much did you boost efficiency? Did you save the company money? Adding numbers can really make your achievements stand out.

To get better at solving problems, analyze the outcomes of past solutions you came up with. You can recognize what works and what doesn’t.

Think about how you can improve researching and analyzing a situation, how you can get better at communicating, and deciding on the right people in the organization to talk to and “pull in” to help you if needed, etc.

Finally, practice staying calm even in stressful situations. Take a few minutes to walk outside if needed. Step away from your phone and computer to clear your head. A work problem is rarely so urgent that you cannot take five minutes to think (with the possible exception of safety problems), and you’ll get better outcomes if you solve problems by acting logically instead of rushing to react in a panic.

You can use all of the ideas above to describe your problem-solving skills when asked interview questions about the topic. If you say that you do the things above, employers will be impressed when they assess your problem-solving ability.

More Interview Resources

  • 3 Answers to “How Do You Handle Stress?”
  • How to Answer “How Do You Handle Conflict?” (Interview Question)
  • Sample Answers to “Tell Me About a Time You Failed”

picture of Biron Clark

About the Author

Biron Clark is a former executive recruiter who has worked individually with hundreds of job seekers, reviewed thousands of resumes and LinkedIn profiles, and recruited for top venture-backed startups and Fortune 500 companies. He has been advising job seekers since 2012 to think differently in their job search and land high-paying, competitive positions. Follow on Twitter and LinkedIn .

Read more articles by Biron Clark

About the Contributor

Kyle Elliott , career coach and mental health advocate, transforms his side hustle into a notable practice, aiding Silicon Valley professionals in maximizing potential. Follow Kyle on LinkedIn .

Image of Hayley Jukes

About the Editor

Hayley Jukes is the Editor-in-Chief at CareerSidekick with five years of experience creating engaging articles, books, and transcripts for diverse platforms and audiences.

Continue Reading

12 Expert-Approved Responses to ‘What Makes You Unique?’ in Job Interviews

15 most common pharmacist interview questions and answers, 15 most common paralegal interview questions and answers, top 30+ funny interview questions and answers, 60 hardest interview questions and answers, 100+ best ice breaker questions to ask candidates, top 20 situational interview questions (& sample answers), 15 most common physical therapist interview questions and answers.

IMAGES

  1. 39 Best Problem-Solving Examples (2024)

    practical examples of problem solving in education

  2. 10 Problem Solving Skills Examples: How To Improve

    practical examples of problem solving in education

  3. five step process for problem solving is

    practical examples of problem solving in education

  4. Problem Solving Strategies for Education

    practical examples of problem solving in education

  5. Top 15 Problem-Solving Activities for Your Team to Master

    practical examples of problem solving in education

  6. Problem Solving Activities: 7 Strategies

    practical examples of problem solving in education

VIDEO

  1. How to Deal with Deception from Jordan Peterson #success

  2. problem solving practical hssc part 1 #hssc #psychology #practical

  3. Teaching Activity #12 Problems and solutions

  4. Real numbers. Ex 1.1 Remaining Questions-Class 10th- Part 3- Antu Bansal- AR Maths Zone

  5. Problem solving method of teaching Steps in problem Solving Method समस्या समाधान विधि के चरण #ctet

  6. Types of Problem Solving

COMMENTS

  1. Ch. 5 Problem Based Learning

    Each problem has a general question that guides the overall task followed by ill-structured problems or questions that are generated throughout the problem-solving process. That is, to address the larger question, students must derive and investigate smaller problems or questions that relate to the findings and implications of the broader goal.

  2. 18 Problem-Based Learning Examples (2024)

    Problem-based learning (PBL) is a student-centered teaching method where students are given the opportunity to solve open-ended real-world problems. The teacher provides limited guidance and is usually referred to as a "facilitator". The burden of responsibility for the majority of the work rests squarely on the shoulders of the students.

  3. Worked Examples

    Worked examples are step-by-step illustrations of the process required to complete a task or solve a problem. In a worked example, students are provided with the task or problem formulation, the procedure or the step-by-step process for solving the problem, and the solution. When using worked examples effectively, instructors engage students in ...

  4. Problem-Based Learning: 3 Best Examples

    Through meticulous problem analysis, learners pinpoint the knowledge and skills required to address the identified issues. This aligns learning objectives with practical problem-solving, ensuring a purposeful and goal-oriented educational experience. 4. Independent Study

  5. The Development of Problem-Solving Skills for Aspiring Educational

    Introduction Solving problems is a quintessential aspect of the role of an educational leader. In particular, building leaders, such as principals, assistant principals, and deans of students, are frequently beset by situations that are complex, unique, and open-ended. There are often many possible pathways to resolve the situations, and an astute educational leader needs to…

  6. Teaching Problem Solving

    Problem solving is a necessary skill in all disciplines and one that the Sheridan Center is focusing on as part of the Brown Learning Collaborative, which provides students the opportunity to achieve new levels of excellence in six key skills traditionally honed in a liberal arts education ­- critical reading, writing, research, data ...

  7. Problem-Based Learning: 4 Practical Issues Teachers Need to Deal With

    Problem-based learning (PBL): It's all the rage. PBL is an innovative addition to modern K-12 pedagogy, but it can seem overwhelming for beginners. It doesn't have to be, though. PBL's principal goal—meeting students where they are and putting them to work solving real-world problems—marks a significant shift from old educational models.

  8. Problem Solving Education

    Problem-Solving Skills — Creative and Critical. An important goal of education is helping students learn how to think more productively while solving problems, by combining creative thinking (to generate ideas) and critical thinking (to evaluate ideas) with accurate knowledge (about the truth of reality). Both modes of thinking (creative & critical) are essential for a well-rounded ...

  9. 8

    Learning by problem solving versus by examples: The benefits of generating and receiving information. Proceedings of the 14th annual conference of the Cognitive Science Society (pp. 956 - 961). Hillsdale: Erlaum.Google Scholar

  10. EL Study Guide / Problems of Practice

    EL Study Guide / Problems of Practice. The October 2017 issue of Educational Leadership focuses on problem-based learning—or approaches to instruction that give students time and space to grapple with and present solutions to complex challenges. Many of the contributors argue that giving students well-structured opportunities for this type of ...

  11. 39 Best Problem-Solving Examples (2024)

    10. Conflict Resolution. Conflict resolution is a strategy developed to resolve disagreements and arguments, often involving communication, negotiation, and compromise. When employed as a problem-solving technique, it can diffuse tension, clear bottlenecks, and create a collaborative environment.

  12. Solving Real-Life Problems of Practice and Education Leaders' School

    When educational leaders think about how to solve problems, we expect them to identify a problem, think about causes and a theory of action, implement changes, and reflect on effects. This straightforward sequence is actually quite challenging. Through writings and interviews collected over 2 years within a doctor of education program, this study examines leaders' problem solving in real ...

  13. Engaging Problem-Solving Activities That Spark Student Interest

    Discuss lessons learned and the importance of problem-solving skills. This is one of the problem solving activities that can create a simulated environmental crisis scenario, fostering collaboration, critical thinking, and problem-solving skills in students. 5. Mathematical Escape Puzzle: Crack the Code.

  14. Problem Solving

    Problem solving remains a cornerstone of 21st-century education, preparing students to meet the complex challenges of a rapidly changing world. Applications and Practical Implications. Problem solving is not confined to the classroom; it extends its influence to various real-world contexts, showcasing its relevance and impact.

  15. 3 Examples of Problems of Practice in Education and How ...

    Now let's take a look at three examples of problems of practice. Example 1. Subject areas are not challenging enough. Our test data indicate that our students are not achieving at the same levels nor progressing as much each year as the average student in the state.

  16. The effectiveness of collaborative problem solving in promoting

    Collaborative problem-solving has been widely embraced in the classroom instruction of critical thinking, which is regarded as the core of curriculum reform based on key competencies in the field ...

  17. 5 Problem-Solving Activities for the Classroom

    2. Problem-solving as a group. Have your students create and decorate a medium-sized box with a slot in the top. Label the box "The Problem-Solving Box.". Invite students to anonymously write down and submit any problem or issue they might be having at school or at home, ones that they can't seem to figure out on their own.

  18. STEM Problem Solving: Inquiry, Concepts, and Reasoning

    Balancing disciplinary knowledge and practical reasoning in problem solving is needed for meaningful learning. In STEM problem solving, science subject matter with associated practices often appears distant to learners due to its abstract nature. Consequently, learners experience difficulties making meaningful connections between science and their daily experiences. Applying Dewey's idea of ...

  19. Problem-Solving Method of Teaching: All You Need to Know

    The problem-solving method of teaching has a number of benefits. It helps students to: 1. Enhances critical thinking: By presenting students with real-world problems to solve, the problem-solving method of teaching forces them to think critically about the situation and to come up with their own solutions. This process helps students to develop ...

  20. Example of learning to use the A3 Practical Problem Solving Method

    This video is an example of learning to use the A3 Practical Problem Solving Method. In this video blog, Ben Arthur explains his first ever A3 Problem Solving activity to an online audience. Ben was asked 15 minutes of question, at the end of this presentation, but we had to cut the Q & A section out due to the length.

  21. Problem-Solving Method In Teaching

    The problem-solving method is an effective teaching strategy that promotes critical thinking, creativity, and collaboration. It provides students with real-world problems that require them to apply their knowledge and skills to find solutions. By using the problem-solving method, teachers can help their students develop the skills they need to ...

  22. Problem Solving Skills

    Problem-solving skills empower you to identify solutions, giving you control over your future. Enhancing decision-making: Problem-solving skills help you assess problems as they come, gauge all the possible solutions, and make the best decision. Promoting innovation: Practical problem-solving skills encourage creative thinking, enabling you to ...

  23. 26 Expert-Backed Problem Solving Examples

    The example interview responses are structured using the STAR method and are categorized into the top 5 key problem-solving skills recruiters look for in a candidate. 1. Analytical Thinking. Situation: In my previous role as a data analyst, our team encountered a significant drop in website traffic.