Essay on Greenhouse Effect for Students and Children

500 words essay on greenhouse effect.

The past month, July of 2019, has been the hottest month in the records of human history. This means on a global scale, the average climate and temperatures are now seen a steady rise year-on-year. The culprits of this climate change phenomenon are mainly pollution , overpopulation and general disregard for the environment by the human race. However, we can specifically point to two phenomenons that contribute to the rising temperatures – global warming and the greenhouse effect. Let us see more about them in this essay on the greenhouse effect.

The earth’s surface is surrounded by an envelope of the air we call the atmosphere. Gasses in this atmosphere trap the infrared radiation of the sun which generates heat on the surface of the earth. In an ideal scenario, this effect causes the temperature on the earth to be around 15c. And without such a phenomenon life could not sustain on earth.

However, due to rapid industrialization and rising pollution, the emission of greenhouse gases has increased multifold over the last few centuries. This, in turn, causes more radiation to be trapped in the earth’s atmosphere. And as a consequence, the temperature on the surface of the planet steadily rises. This is what we refer to when we talk about the man-made greenhouse effect.

Essay on Greenhouse Effect

Causes of Greenhouse Effect

As we saw earlier in this essay on the greenhouse effect, the phenomenon itself is naturally occurring and an important one to sustain life on our planet. However, there is an anthropogenic part of this effect. This is caused due to the activities of man.

The most prominent among this is the burning of fossil fuels . Our industries, vehicles, factories, etc are overly reliant on fossil fuels for their energy and power. This has caused an immense increase in emissions of harmful greenhouse gasses such as carbon dioxide, carbon monoxide, sulfides, etc. This has multiplied the greenhouse effect and we have seen a steady rise in surface temperatures.

Other harmful activities such as deforestation, excessive urbanization, harmful agricultural practices, etc. have also led to the release of excess carbon dioxide and made the greenhouse effect more prominent. Another harmful element that causes harm to the environment is CFC (chlorofluorocarbon).

Get the huge list of more than 500 Essay Topics and Ideas

Some Effects of Greenhouse Effect

Even after overwhelming proof, there are still people who deny the existence of climate change and its devastating pitfalls. However, there are so many effects and pieces of evidence of climate change it is now undeniable. The surface temperature of the planet has risen by 1c since the 19th century. This change is largely due to the increased emissions of carbon dioxide. The most harm has been seen in the past 35 years in particular.

The oceans and the seas have absorbed a lot of this increased heat. The surfaces of these oceans have seen a rise in temperatures of 0.4c. The ice sheets and glaciers are also rapidly shrinking. The rate at which the ice caps melt in Antartica has tripled in the last decade itself. These alarming statistics and facts are proof of the major disaster we face in the form of climate change.

600 Words Essay on Greenhouse Effect

A Greenhouse , as the term suggests, is a structure made of glass which is designed to trap heat inside. Thus, even on cold chilling winter days, there is warmth inside it. Similarly, Earth also traps energy from the Sun and prevents it from escaping back. The greenhouse gases or the molecules present in the atmosphere of the Earth trap the heat of the Sun. This is what we know as the Greenhouse effect.

greenhouse effect essay

Greenhouse Gases

These gases or molecules are naturally present in the atmosphere of the Earth. However, they are also released due to human activities. These gases play a vital role in trapping the heat of the Sun and thereby gradually warming the temperature of Earth. The Earth is habitable for humans due to the equilibrium of the energy it receives and the energy that it reflects back to space.

Global Warming and the Greenhouse Effect

The trapping and emission of radiation by the greenhouse gases present in the atmosphere is known as the Greenhouse effect. Without this process, Earth will either be very cold or very hot, which will make life impossible on Earth.

The greenhouse effect is a natural phenomenon. Due to wrong human activities such as clearing forests, burning fossil fuels, releasing industrial gas in the atmosphere, etc., the emission of greenhouse gases is increasing.

Thus, this has, in turn, resulted in global warming . We can see the effects due to these like extreme droughts, floods, hurricanes, landslides, rise in sea levels, etc. Global warming is adversely affecting our biodiversity, ecosystem and the life of the people. Also, the Himalayan glaciers are melting due to this.

There are broadly two causes of the greenhouse effect:

I. Natural Causes

  • Some components that are present on the Earth naturally produce greenhouse gases. For example, carbon dioxide is present in the oceans, decaying of plants due to forest fires and the manure of some animals produces methane , and nitrogen oxide is present in water and soil.
  • Water Vapour raises the temperature by absorbing energy when there is a rise in the humidity.
  • Humans and animals breathe oxygen and release carbon dioxide in the atmosphere.

II. Man-made Causes

  • Burning of fossil fuels such as oil and coal emits carbon dioxide in the atmosphere which causes an excessive greenhouse effect. Also, while digging a coal mine or an oil well, methane is released from the Earth, which pollutes it.
  • Trees with the help of the process of photosynthesis absorb the carbon dioxide and release oxygen. Due to deforestation the carbon dioxide level is continuously increasing. This is also a major cause of the increase in the greenhouse effect.
  • In order to get maximum yield, the farmers use artificial nitrogen in their fields. This releases nitrogen oxide in the atmosphere.
  • Industries release harmful gases in the atmosphere like methane, carbon dioxide , and fluorine gas. These also enhance global warming.

All the countries of the world are facing the ill effects of global warming. The Government and non-governmental organizations need to take appropriate and concrete measures to control the emission of toxic greenhouse gases. They need to promote the greater use of renewable energy and forestation. Also, it is the duty of every individual to protect the environment and not use such means that harm the atmosphere. It is the need of the hour to protect our environment else that day is not far away when life on Earth will also become difficult.

Customize your course in 30 seconds

Which class are you in.

tutor

  • Travelling Essay
  • Picnic Essay
  • Our Country Essay
  • My Parents Essay
  • Essay on Favourite Personality
  • Essay on Memorable Day of My Life
  • Essay on Knowledge is Power
  • Essay on Gurpurab
  • Essay on My Favourite Season
  • Essay on Types of Sports

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

NASA Logo

What is the greenhouse effect?

The greenhouse effect is the process through which heat is trapped near Earth's surface by substances known as 'greenhouse gases.' Imagine these gases as a cozy blanket enveloping our planet, helping to maintain a warmer temperature than it would have otherwise. Greenhouse gases consist of carbon dioxide, methane, ozone, nitrous oxide, chlorofluorocarbons, and water vapor. Water vapor, which reacts to temperature changes, is referred to as a 'feedback', because it amplifies the effect of forces that initially caused the warming.

Scientists have determined that carbon dioxide plays a crucial role in maintaining the stability of Earth's atmosphere. If carbon dioxide were removed, the terrestrial greenhouse effect would collapse, and Earth's surface temperature would drop significantly, by approximately 33°C (59°F).

Greenhouse gases are part of Earth's atmosphere. This is why Earth is often called the 'Goldilocks' planet – its conditions are just right, not too hot or too cold, allowing life to thrive. Part of what makes Earth so amenable is its natural greenhouse effect, which maintains an average temperature of 15 ° C (59 ° F) . However, in the last century, human activities, primarily from burning fossil fuels that have led to the release of carbon dioxide and other greenhouse gases into the atmosphere, have disrupted Earth's energy balance. This has led to an increase in carbon dioxide in the atmosphere and ocean. The level of carbon dioxide in Earth’s atmosphere has been rising consistently for decades and traps extra heat near Earth's surface, causing temperatures to rise.

  • The Greenhouse Effect (UCAR)
  • NASA's Climate Kids: Meet the Greenhouse Gases! (downloadable and printable cards)
  • NASA's Climate Kids: What Is the Greenhouse Effect?

Discover More Topics From NASA

Explore Earth Science

write a essay on green house effect

Earth Science in Action

Earth Action

Earth Science Data

The sum of Earth's plants, on land and in the ocean, changes slightly from year to year as weather patterns shift.

Facts About Earth

write a essay on green house effect

Understanding Global Change

Discover why the climate and environment changes, your place in the Earth system, and paths to a resilient future.

Greenhouse effect

closeup image of storyboard

Life as we know it would be impossible if not for the greenhouse effect, the process through which heat is absorbed and re-radiated in that atmosphere. The intensity of a planet’s greenhouse effect is determined by the relative abundance of greenhouse gases in its atmosphere. Without greenhouse gases, most of Earth’s heat would be lost to outer space, and our planet would quickly turn into a giant ball of ice. Increase the amount of greenhouse gases to the levels found on the planet Venus, and the Earth would be as hot as a pizza oven! Fortunately, the strength of Earth’s greenhouse effect keeps our planet within a temperature range that supports life

On this page

What is the greenhouse effect, earth system models about the greenhouse effect, how human activities influence the greenhouse effect, explore the earth system, investigate, links to learn more.

For the classroom:

  • Teaching Resources

write a essay on green house effect

Global Change Infographic

The greenhouse effect occurs in the atmosphere, and is an essential part of How the Earth System Works. Click the image on the left to open the Understanding Global Change Infographic . Locate the greenhouse effect icon and identify other topics that cause changes to, or are affected by, the greenhouse effect.

write a essay on green house effect

Adapted from the Environmental Protection Agency greenhouse effect file

Greenhouse gases such as methane, carbon dioxide, nitrous oxide, and water vapor  significantly affect the amount of energy in the Earth system, even though they make up a tiny percentage of Earth’s atmosphere.  Solar radiation that passes through the atmosphere and reaches Earth’s surface is either reflected or absorbed . Reflected sunlight doesn’t add any heat to the Earth system because this energy bounces back into space.

However, absorbed sunlight increases the temperature of Earth’s surface, and the warmed surface re-radiates as long-wave radiation (also known as infrared radiation). Infrared radiation is invisible to the eye, but we feel it as heat.

If there were not any greenhouse gases in the atmosphere, all that heat would pass directly back into space. With greenhouse gases present, however, most of the long-wave radiation coming from Earth’s surface is absorbed and then re-radiated in all directions many times before passing back into space. Heat that is re-radiated downward, toward the Earth, is absorbed by the surface and re-radiated again.

Clouds also influence the greenhouse effect. A thick, low cloud cover can enhance the reflectivity of the atmosphere, reducing the amount of solar radiation reaching Earth’s surface, but clouds high in the atmosphere can intensify the greenhouse effect by re-radiating heat from the Earth’s surface.

Altogether, this cycle of absorption and re-radiation by greenhouse gases impedes the loss of heat from our atmosphere to space, creating the greenhouse effect. Increases in the amount of greenhouses gases will mean that more heat is trapped, increasing the amount of energy in the Earth system (Earth’s energy budget), and raising Earth’s temperature. This increase in Earth’s average temperature is also known as global warming.

This Earth system model is one way to represent the essential processes and interactions related to the greenhouse effect. Hover over the icons for brief explanations; click on the icons to learn more about each topic. Download the Earth system models on this page. There are a few ways that the relationships among these topics can be represented and explained using the Understanding Global Change icons ( download examples ).  

The greenhouse effect, which influences Earth’s average temperature, affects many of the processes that shape global climate and ecosystems.  This model shows some of the other parts of the Earth system that the greenhouse effect influences, including the water cycle and water temperature .

Humans directly affect the greenhouse effect through activities that result in greenhouse gas emissions. The Earth system model below includes some of the ways that human activities increase the amount of greenhouse gases in the atmosphere. Releasing greenhouse gases intensifies the greenhouse effect, and increases Earth’s average air temperatures (also known as global warming). Hover over or click on the icons to learn more about these human causes of change and how they influence the greenhouse effect.

Click the scene icons and bolded terms on this page to learn more about these process and phenomena.

Learn more in these real-world examples, and challenge yourself to  construct a model  that explains the Earth system relationships.

  • Ancient fossils and modern climate change
  • How Global Warming Works
  • NASA:  Global Climate Change:  A Blanket Around the Earth
  • UCAR Center for Science Education: The Greenhouse Effect
  • IPCC:  What is the Greenhouse Effect?
  • Indicators of Change (NCA.2014)
  • Human influence on the greenhouse effect
  • The Carbon Cycle and Earth’s Climate

Illustration of a question mark that links to the Climate Kids Big Questions menu.

What Is the Greenhouse Effect?

Watch this video to learn about the greenhouse effect! Click here to download this video (1920x1080, 105 MB, video/mp4). Click here to download this video about the greenhouse effect in Spanish (1920x1080, 154 MB, video/mp4).

How does the greenhouse effect work?

As you might expect from the name, the greenhouse effect works … like a greenhouse! A greenhouse is a building with glass walls and a glass roof. Greenhouses are used to grow plants, such as tomatoes and tropical flowers.

A greenhouse stays warm inside, even during the winter. In the daytime, sunlight shines into the greenhouse and warms the plants and air inside. At nighttime, it's colder outside, but the greenhouse stays pretty warm inside. That's because the glass walls of the greenhouse trap the Sun's heat.

write a essay on green house effect

A greenhouse captures heat from the Sun during the day. Its glass walls trap the Sun's heat, which keeps plants inside the greenhouse warm — even on cold nights. Credit: NASA/JPL-Caltech

The greenhouse effect works much the same way on Earth. Gases in the atmosphere, such as carbon dioxide , trap heat similar to the glass roof of a greenhouse. These heat-trapping gases are called greenhouse gases .

During the day, the Sun shines through the atmosphere. Earth's surface warms up in the sunlight. At night, Earth's surface cools, releasing heat back into the air. But some of the heat is trapped by the greenhouse gases in the atmosphere. That's what keeps our Earth a warm and cozy 58 degrees Fahrenheit (14 degrees Celsius), on average.

write a essay on green house effect

Earth's atmosphere traps some of the Sun's heat, preventing it from escaping back into space at night. Credit: NASA/JPL-Caltech

How are humans impacting the greenhouse effect?

Human activities are changing Earth's natural greenhouse effect. Burning fossil fuels like coal and oil puts more carbon dioxide into our atmosphere.

NASA has observed increases in the amount of carbon dioxide and some other greenhouse gases in our atmosphere. Too much of these greenhouse gases can cause Earth's atmosphere to trap more and more heat. This causes Earth to warm up.

What reduces the greenhouse effect on Earth?

Just like a glass greenhouse, Earth's greenhouse is also full of plants! Plants can help to balance the greenhouse effect on Earth. All plants — from giant trees to tiny phytoplankton in the ocean — take in carbon dioxide and give off oxygen.

The ocean also absorbs a lot of excess carbon dioxide in the air. Unfortunately, the increased carbon dioxide in the ocean changes the water, making it more acidic. This is called ocean acidification .

More acidic water can be harmful to many ocean creatures, such as certain shellfish and coral. Warming oceans — from too many greenhouse gases in the atmosphere — can also be harmful to these organisms. Warmer waters are a main cause of coral bleaching .

write a essay on green house effect

This photograph shows a bleached brain coral. A main cause of coral bleaching is warming oceans. Ocean acidification also stresses coral reef communities. Credit: NOAA

Illustration of a video game controller.

British Geological Survey

Quick links

  • Climate change
  • Multiple hazards
  • Decarbonisation

The greenhouse effect

Discovering Geology — Climate change

‘Greenhouse gases’ are crucial to keeping our planet at a suitable temperature for life. Without the natural greenhouse effect, the heat emitted by the Earth would simply pass outwards from the Earth’s surface into space and the Earth would have an average temperature of about -20°C.

Greenhouse gases

BGS © UKRI

The greenhouse effect: some of the infrared radiation from the Sun passes through the atmosphere, but most is absorbed and re-emitted in all directions by greenhouse gas molecules and clouds. The effect of this is to warm the Earth’s surface and the lower atmosphere.  BGS © UKRI.

A greenhouse gas is called that because it absorbs infrared radiation from the Sun in the form of heat, which is circulated in the atmosphere and eventually lost to space. Greenhouse gases also increase the rate at which the atmosphere can absorb short-wave radiation from the Sun, but this has a much weaker effect on global temperatures.

The CO 2 released from the burning of fossil fuels is accumulating as an insulating blanket around the Earth, trapping more of the Sun’s heat in our atmosphere. Actions carried out by humans are called anthropogenic actions; the anthropogenic release of CO 2 contributes to the current  enhanced greenhouse effect [1] .

Which gases cause the greenhouse effect?

The contribution that a greenhouse gas makes to the greenhouse effect depends on how much heat it absorbs, how much it re-radiates and how much of it is in the atmosphere.

In descending order, the gases that contribute most to the Earth’s greenhouse effect are:

  • water vapour (H 2 O)
  • carbon dioxide (CO 2 )
  • nitrous oxide(N 2 O)
  • methane (CH 4 )
  • ozone (O 3 )

In terms of the amount of heat these gases can absorb and re-radiate (known as their global warming potential or GWP), CH 4 is 23 times more effective and N 2 O is 296 times more effective than CO 2 . However, there is much more CO 2 in the Earth’s atmosphere than there is CH 4 or N 2 O.

Not all the greenhouse gas that we emit to the atmosphere remains there indefinitely. For example, the amount of CO 2  in the atmosphere and the amount of CO 2  dissolved in surface waters of the oceans stay in equilibrium, because the air and water mix well at the sea surface. When we add more CO 2  to the atmosphere, a proportion of it dissolves into the oceans.

Anthropogenic greenhouse gases

Since the start of the Industrial Revolution in the mid-18th century, human activities have greatly increased the concentrations of greenhouse gases in the atmosphere. Consequently, measured atmospheric concentrations of CO 2 are many times higher than pre-industrial levels.

Overview of global man-made greenhouse gas

Overview of global anthropogenic greenhouse gas emissions in 2017; figures here are expressed in CO2-equivalents. Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2015 (EPA, 2017).

Main sources of anthropogenic greenhouse gases

Carbon dioxide levels are substantially higher now than at any time in the last 750 000 years. The burning of fossil fuels has elevated CO 2 levels from an atmospheric concentration of approximately 280 parts per million (ppm) in pre-industrial times to over 400 ppm in 2018. This is a 40 per cent increase since the start of the Industrial Revolution.

CO 2 concentrations are increasing at a rate of about 2–3 ppm/year and are expected to exceed 900 ppm by the end of the 21st century.

If this continues, together with rising emissions of CH 4   and other greenhouse gases, by 2100 the global average surface temperature could have increased by up to 4.8°C compared to pre-industrial levels. Consequently, some scientists suggest goals to limit concentrations to keep temperature change below +2°C.  This would include substantial cuts in anthropogenic greenhouse gas emissions by the middle of the 21st century through large-scale changes in energy systems and land use.

In 2010, the burning of coal, natural gas and oil for electricity and heat was the largest single source of global greenhouse gas emissions (25 per cent). By comparison, in 2010, 14 per cent of global greenhouse gas emissions came from fossil fuels burned for road, rail, air and marine transportation.

Agriculture, deforestation and other changes in land use account for one quarter of net anthropogenic greenhouse gas emissions. According to a United Nations report, livestock is responsible for about 14.5 per cent of this. The main sources of emissions are:

  • feed production and processing (45 per cent)
  • outputs of greenhouse gases during digestion by cows (39 per cent)
  • manure decomposition (10 per cent

The rest is attributable to the processing and transportation of animal products.

Higher concentrations of atmospheric CH 4 are also caused by changes in land and wetland use, pipeline losses and landfill emissions. The use of fertilisers can also lead to higher N 2 O concentrations.

Agriculture is estimated to be the main driver for around 80% of deforestation worldwide.

Agriculture is estimated to be the main driver for around 80 per cent of deforestation worldwide. Source: Pixabay .

Cement manufacture contributes CO 2 to the atmosphere when calcium carbonate is heated, producing lime and CO 2 .

Estimates vary, but it is widely accepted that the cement industry produces between five and eight per cent of global anthropogenic CO 2 emissions, of which 50 per cent is produced from the chemical process itself and 40 per cent from burning fuel to power that process. The amount of CO 2 emitted by the cement industry is more than 900 kg of CO 2 for every 1000 kg of cement produced.

A cement works in Clitheroe. The cement industry produces around 5 per cent of global man-made CO2 emissions. Photo by Alan Murray-Rust.

Aerosols are small particles suspended in the atmosphere that can be produced when we burn fossil fuels. Other anthropogenic sources of aerosols include pollution from cars and factories, chlorofluorocarbons (CFCs) used in refrigeration systems and CFCs and halons used in fire suppression systems and manufacturing processes. Aerosols can also be produced naturally from a number of natural processes e.g. forest fires, volcanoes and isoprene emitted from plants.

We know that greenhouse gases provide a warming effect to Earth’s surface, but aerosol pollution in the atmosphere can counteract this warming effect. For example, sulphate aerosols from fossil fuel combustion exert a cooling influence by reducing the amount of sunlight that reaches the Earth.

Aerosols also have a detrimental impact on human health and affect other parts of the climate system, such as rainfall.

Volcanic ash dunes of Tarvurvur, Papua New Guinea.

You may also be interested in

Ammonite p815563

Discovering Geology

Discovering Geology introduces a range of geoscience topics to school-age students and learners of all ages.

Iceberg P912184

Discovering Geology: climate change

What is the difference between weather and climate? what causes the Earth’s climate to change and what are the impacts? Find out more with our Discovery Geology climate change resources.

Skaftafellsjökull Glacier

What causes the Earth’s climate to change?

Geological records demonstrate that there have been a number of large variations in Earth’s climate in the past.

Sandstone coloured red with iron oxides, indicating a hot climate at the time of deposition.

Impacts of climate change

Temperature rises can affect agriculture, sea levels and the frequency of extreme weather incidents. We can study past climate change by looking at the evidence in rocks, fossils and changes in the landscape.

Thawing permafrost in Herschel Island, 2013. Source: Boris Radosavljevic.

The carbon story

The carbon cycle describes the process in which carbon atoms continually travel from the atmosphere into the Earth, then released back into the atmosphere.

Gasometer.

Understanding carbon capture and storage

Carbon capture and storage involves capturing carbon dioxide at emission sources, such as power stations, then transporting and storing it underground.

What are we doing about climate change?

What are we doing about climate change?

BGS is committed to research aimed at slowing down the effects of a changing climate, whilst helping society to become resilient to climate change.

1. Enhanced Greenhouse effect

'Greenhouse gases' are actually crucial to keeping our planet at a habitable temperature, without them the Earth would be about minus 17 degrees! Anthropogenic or human release of carbon dioxide is what is contributing to an additional or enhanced greenhouse effect.

Was this page helpful?

How can we make this section better?*

  • How can we make this section better? *

Please select a reason*

  • Please select a reason * Select reason Didn't answer my question Too confusing Links are broken/Doesn't work

the silhouette of people can be seen as a giant glowing earth floats on a lake

  • ENVIRONMENT

How global warming is disrupting life on Earth

The signs of global warming are everywhere, and are more complex than just climbing temperatures.

Our planet is getting hotter. Since the Industrial Revolution—an event that spurred the use of fossil fuels in everything from power plants to transportation—Earth has warmed by 1 degree Celsius, about 2 degrees Fahrenheit.  

That may sound insignificant, but 2023 was the hottest year on record , and all 10 of the hottest years on record have occurred in the past decade.  

Global warming and climate change are often used interchangeably as synonyms, but scientists prefer to use “climate change” when describing the complex shifts now affecting our planet’s weather and climate systems.  

Climate change encompasses not only rising average temperatures but also natural disasters, shifting wildlife habitats, rising seas , and a range of other impacts. All of these changes are emerging as humans continue to add heat-trapping greenhouse gases , like carbon dioxide and methane, to the atmosphere.

What causes global warming?

When fossil fuel emissions are pumped into the atmosphere, they change the chemistry of our atmosphere, allowing sunlight to reach the Earth but preventing heat from being released into space. This keeps Earth warm, like a greenhouse, and this warming is known as the greenhouse effect .  

Carbon dioxide is the most commonly found greenhouse gas and about 75 percent of all the climate warming pollution in the atmosphere. This gas is a product of producing and burning oil, gas, and coal. About a quarter of Carbon dioxide also results from land cleared for timber or agriculture.  

Methane is another common greenhouse gas. Although it makes up only about 16 percent of emissions, it's roughly 25 times more potent than carbon dioxide and dissipates more quickly. That means methane can cause a large spark in warming, but ending methane pollution can also quickly limit the amount of atmospheric warming. Sources of this gas include agriculture (mostly livestock), leaks from oil and gas production, and waste from landfills.  

What are the effects of global warming?  

One of the most concerning impacts of global warming is the effect warmer temperatures will have on Earth's polar regions and mountain glaciers. The Arctic is warming four times faster than the rest of the planet. This warming reduces critical ice habitat and it disrupts the flow of the jet stream, creating more unpredictable weather patterns around the globe.  

( Learn more about the jet stream. )

A warmer planet doesn't just raise temperatures. Precipitation is becoming more extreme as the planet heats. For every degree your thermometer rises, the air holds about seven percent more moisture. This increase in moisture in the atmosphere can produce flash floods, more destructive hurricanes, and even paradoxically, stronger snow storms.  

The world's leading scientists regularly gather to review the latest research on how the planet is changing. The results of this review is synthesized in regularly published reports known as the Intergovernmental Panel on Climate Change (IPCC) reports.  

A recent report outlines how disruptive a global rise in temperature can be:

  • Coral reefs are now a highly endangered ecosystem. When corals face environmental stress, such as high heat, they expel their colorful algae and turn a ghostly white, an effect known as coral bleaching . In this weakened state, they more easily die.  
  • Trees are increasingly dying from drought , and this mass mortality is reshaping forest ecosystems.
  • Rising temperatures and changing precipitation patterns are making wildfires more common and more widespread. Research shows they're even moving into the eastern U.S. where fires have historically been less common.
  • Hurricanes are growing more destructive and dumping more rain, an effect that will result in more damage. Some scientists say we even need to be preparing for Cat 6 storms . (The current ranking system ends at Cat 5.)

How can we limit global warming?  

Limiting the rising in global warming is theoretically achievable, but politically, socially, and economically difficult.  

Those same sources of greenhouse gas emissions must be limited to reduce warming. For example, oil and gas used to generate electricity or power industrial manufacturing will need to be replaced by net zero emission technology like wind and solar power. Transportation, another major source of emissions, will need to integrate more electric vehicles, public transportation, and innovative urban design, such as safe bike lanes and walkable cities.  

( Learn more about solutions to limit global warming. )

One global warming solution that was once considered far fetched is now being taken more seriously: geoengineering. This type of technology relies on manipulating the Earth's atmosphere to physically block the warming rays of the sun or by sucking carbon dioxide straight out of the sky.

Restoring nature may also help limit warming. Trees, oceans, wetlands, and other ecosystems help absorb excess carbon—but when they're lost, so too is their potential to fight climate change.  

Ultimately, we'll need to adapt to warming temperatures, building homes to withstand sea level rise for example, or more efficiently cooling homes during heat waves.  

For Hungry Minds

Related topics.

  • CLIMATE CHANGE
  • ENVIRONMENT AND CONSERVATION
  • POLAR REGIONS

You May Also Like

write a essay on green house effect

Why all life on Earth depends on trees

write a essay on green house effect

Life probably exists beyond Earth. So how do we find it?

write a essay on green house effect

For Antarctica’s emperor penguins, ‘there is no time left’

write a essay on green house effect

Listen to 30 years of climate change transformed into haunting music

write a essay on green house effect

Polar bears are trying to adapt to a warming Arctic. It’s not working.

  • Environment
  • Perpetual Planet

History & Culture

  • History & Culture
  • History Magazine
  • Mind, Body, Wonder
  • Terms of Use
  • Privacy Policy
  • Your US State Privacy Rights
  • Children's Online Privacy Policy
  • Interest-Based Ads
  • About Nielsen Measurement
  • Do Not Sell or Share My Personal Information
  • Nat Geo Home
  • Attend a Live Event
  • Book a Trip
  • Inspire Your Kids
  • Shop Nat Geo
  • Visit the D.C. Museum
  • Learn About Our Impact
  • Support Our Mission
  • Advertise With Us
  • Customer Service
  • Renew Subscription
  • Manage Your Subscription
  • Work at Nat Geo
  • Sign Up for Our Newsletters
  • Contribute to Protect the Planet

Copyright © 1996-2015 National Geographic Society Copyright © 2015-2024 National Geographic Partners, LLC. All rights reserved

  • Liberty Fund
  • Adam Smith Works
  • Law & Liberty
  • Browse by Author
  • Browse by Topic
  • Browse by Date
  • Search EconLog
  • Latest Episodes
  • Browse by Guest
  • Browse by Category
  • Browse Extras
  • Search EconTalk
  • Latest Articles
  • Liberty Classics
  • Book Reviews
  • Search Articles
  • Books by Date
  • Books by Author
  • Search Books
  • Browse by Title
  • Biographies
  • Search Encyclopedia
  • #ECONLIBREADS
  • College Topics
  • High School Topics
  • Subscribe to QuickPicks
  • Search Guides
  • Search Videos
  • Library of Law & Liberty
  • Home   /  

ECONLIB CEE

Greenhouse Effect

By thomas schelling.

Greenhouse Effect

By Thomas Schelling,

What Is It?

The “greenhouse effect” is a complicated process by which the earth is becoming progressively warmer. The earth is bathed in sunlight, some of it reflected back into space and some absorbed. If the absorption is not matched by radiation back into space, the earth will get warmer until the intensity of that radiation matches the incoming sunlight. Some atmospheric gases absorb outward infrared radiation, warming the atmosphere. Carbon dioxide is one of these gases; so are methane, nitrous oxide, and the chlorofluorocarbons (CFCs). The concentrations of these gases are increasing, with the result that the earth is absorbing more sunlight and getting warmer.

This greenhouse phenomenon is truly the result of a “global common” (see The Tragedy of the Commons ). Because no one owns the atmosphere, no one has a sufficient incentive to take account of the change to the atmosphere caused by his or her emission of carbon. Also, carbon emitted has the same effect no matter where on earth it happens.

How Serious Is It?

The expected change in global average temperature for a doubling of CO 2 is 1.5 to 4.5 degrees centigrade. But translating a change in temperature into a change in climates is full of uncertainties. Meteorologists predict greater temperature change in the polar regions than near the equator. This change could cause changes in circulation of air and water. The results may be warmer temperatures in some places and colder in others, wetter climates in some places and drier in others.

Temperature is useful as an index of climate change. A band of about one degree covers variations in average temperatures since the last ice age. This means that climates will change more in the next one hundred years than in the last ten thousand. But to put this in perspective, remember that people have been migrating great distances for thousands of years, experiencing changes in climate greater than any being forecast.

The models of global warming project only gradual changes. Climates will “migrate” slowly. The climate of Kansas may become like Oklahoma’s, but not like that of Oregon or Massachusetts. But a caveat is in order: the models probably cannot project discontinuities because nothing goes into them that will produce drastic change. There may be phenomena that could produce drastic changes, but they are not known with enough confidence to introduce into the models.

Carbon dioxide has increased about 25 percent since the onset of the industrial revolution. The global average temperature rose almost half a degree during the first forty years of this century, was level for the next forty, and rose during the eighties. Yet whether or not we are witnessing the greenhouse effect is unknown because other decades-long influences such as changes in solar intensity and in the atmosphere’s particulate matter can obscure any smooth greenhouse trend. In other words, the increase in carbon dioxide will, by itself, cause the greenhouse effect, but other changes in the universe may offset it.

Even if we had confident estimates of climate change for different regions of the world, there would be uncertainties about the kind of world we will have fifty or a hundred years from now. Suppose the kind of climate change expected between now and, say, 2080 had already taken place, since 1900. Ask a seventy-five-year-old farm couple living on the same farm where they were born: would the change in the climate be among the most dramatic changes in either their farming or their lifestyle? The answer most likely would be no. Changes from horses to tractors and from kerosene to electricity would be much more important.

Climate change would have made a vastly greater difference to the way people lived and earned their living in 1900 than today. Today, little of our gross domestic product is produced outdoors, and therefore, little is susceptible to climate. Agriculture and forestry are less than 3 percent of total output, and little else is much affected. Even if agricultural productivity declined by a third over the next half-century, the per capita GNP we might have achieved by 2050 we would still achieve in 2051. Considering that agricultural productivity in most parts of the world continues to improve (and that many crops may benefit directly from enhanced photosynthesis due to increased carbon dioxide), it is not at all certain that the net impact on agriculture will be negative or much noticed in the developed world.

Its Effects on Developing Countries

Climate changes would have greater impact in underdeveloped countries. Agriculture provides the livelihoods of 30 percent or more of the population in much of the developing world. While there is no strong presumption that the climates prevailing in different regions fifty or a hundred years from now will be less conducive to food production, those people are vulnerable in a way that Americans and west Europeans are not. Nor can the impact on their health be dismissed. Parasitic and other vectorborne diseases affecting hundreds of millions of people are sensitive to climate.

Yet the trend in developing countries is to be less dependent on agriculture. If per capita income in such countries grows in the next forty years as rapidly as it has in the forty just past, vulnerability to climate change should diminish. This is pertinent to whether developing countries should make sacrifices to minimize the emission of gases that may change climate to their disadvantage. Their best defense against climate change will be their own continued development.

Population is an important factor. Carbon emissions in developing countries rise with population. For instance, if China holds population growth to near zero for the next couple of generations, it may do as much for the earth’s atmosphere as would a heroic anticarbon program coupled with 2 percent annual population growth. Furthermore, the most likely adverse impact of climate change would be on food production, and in the poorest parts of the world the adequacy of food depends on the number of mouths.

Why Should Developed Countries Do Anything?

Why might developed countries care enough about climate to do anything about it? The answer depends on how much people in developed countries care about people in developing countries and on how expensive it is to do something worthwhile. Abatement programs in a number of econometric models suggest that doing something worthwhile would cost about 2 percent of GNP in perpetuity. Two percent of the U.S. GNP is over $100 billion a year, and that is an annual cost that would continue forever.

One argument for doing something is that the developing countries are vulnerable, and we care about their well-being. But if the developed countries were prepared to invest, say, $200 billion a year in greenhouse gas abatement, explicitly for the benefit of developing countries fifty years or more from now, the developing countries would probably clamor, understandably, to receive the resources immediately in support of their continued development.

A second argument is that our natural environment may be severely damaged. This is the crux of the political debate over the greenhouse effect, but it is an issue that no one really understands. It is difficult to know how to value what is at risk, and difficult even to know just what is at risk. The benefits of slowing climate change by some particular amount are even more uncertain.

A third argument is that the conclusion I reported earlier—that climates will change slowly and not much—may be wrong. The models do not produce surprises. The possibility has to be considered that some atmospheric or oceanic circulatory systems may flip to alternative equilibria, producing regional changes that are sudden and extreme. A currently discussed possibility is in the way oceans behave. If the gulf stream flipped into a new pattern, the climatic consequences might be sudden and severe. (Paradoxically, global warming might severely cool western Europe.)

Is 2 percent of GNP forever, to postpone the doubling of carbon in the atmosphere, a big number or a small one? That depends on what the comparison is. A better question—assuming we were prepared to spend 2 percent of GNP to reduce the damage from climate change—is whether we might find better uses for the money.

I mentioned one such use—directly investing to improve the economies of the poorer countries. Another would be direct investment in preserving species or ecosystems or wilderness areas, if the alternative is to invest trillions in the reduction of carbon emissions.

What Solutions Are Proposed?

What can be done to reduce or offset carbon emissions? Reducing energy use and the carbon content of energy have received most of the attention. There are other possibilities. Trees store carbon. A new forest will absorb carbon until it reaches maturity; it then holds its carbon but does not absorb more. The area available for reforestation throughout the world suggests that reforestation can contribute, but not much.

Stopping or slowing deforestation is important for other reasons but is quantitatively more important than reforestation, partly because forest subsoils typically contain carbon greater than the amount in the trees themselves, and this carbon is subject to oxidation when the trees are removed.

Also, substances or objects can be put in orbit or in the stratosphere to reflect incoming sunlight. Some of these are as apparently innocuous as stimulating cloud formation and some as dramatic as huge mylar balloons in low earth orbit. If in decades to come the greenhouse impact confirms the more alarmist expectations, and if the costs of reducing emissions prove unmanageable, some of these “geoengineering” options will invite attention.

The main responses will be to adapt as the climate changes and to reduce carbon emissions. (CFCs are potent greenhouse gases and, if unchecked, might have rivaled carbon dioxide in decades to come. International actions to reduce or eliminate CFCs are making progress and are among the cheapest ways of reducing greenhouse emissions.)

It is improbable that the developing world, at least for the next several decades, will incur any significant sacrifice in the interest of reduced carbon, nor would it be advisable. Financing energy conservation, energy efficiency, and a switch from high-carbon to lower-carbon or noncarbon fuels in Asia and Africa would not only be a major economic enterprise, but also a complex effort in international diplomacy and politics. If successful, it would increase the costs to the developed world by at least another percent or two on top of the 2 percent I mentioned.

A universal carbon tax is a popular proposal among economists because it promises an efficient solution. A carbon tax set equally for all users worldwide would achieve a given reduction in the use of carbon at the lowest cost. If user A values his use of one ton of carbon at two thousand dollars more than its net-of-tax price, and if the tax is four hundred dollars per ton, he will continue to use the carbon because doing so is worthwhile. If user B values his use of one ton at only three hundred dollars more than the net-of-tax price, the tax will induce him to end his use. Thus the tax would eliminate the lowest-valued uses of carbon and would leave the highest-valued ones in place. A carbon tax would require no negotiation except over a tax rate and a formula for distributing the proceeds. But a tax rate that made a big dent in the greenhouse problem would have to be equivalent to around a dollar per gallon on motor fuel, and for the United States alone such a tax on coal, petroleum, and natural gas would currently yield close to half a trillion dollars per year in revenue, almost 10 percent of our GNP. It is doubtful that any greenhouse taxing agency would be allowed to collect that kind of revenue, or that a treaty requiring the United States to levy internal carbon taxation at that level would be ratified.

Tradable permits have been proposed as an alternative to the tax. The main possibilities are estimating “reasonable” emissions country by country and establishing commensurate quotas, or distributing tradable rights in accordance with some “equitable” criterion. Depending on how restrictive the emission rights might be, the latter amounts to distributing trillions of dollars (in present value terms), an unlikely prospect. If quotas are negotiated to correspond to countries’ currently “reasonable” emissions levels, they will surely be renegotiated every few years, and selling an emissions right will be perceived as evidence that a quota was initially too generous.

A helpful model for conceptualizing a greenhouse regime among the richer countries is the negotiations among the nations of Western Europe for distributing Marshall Plan aid after World War II. There was never a formula or explicit criterion, such as equalizing living standards, maximizing aggregate growth, or establishing a floor under levels of living. Baseline dollar-balance-of-payments deficits were a point of departure, but the negotiations took into account other factors such as investment needs and traditional consumption levels. The United States insisted that the recipients argue out and agree on shares. In the end they did not quite make it, the United States having to make the final allocation. But all the submission of data and open argument led, if not to consensus, to a reasonable appreciation of each nation’s needs. Distribution of Marshall Plan funds is the only model of multilateral negotiation involving resources commensurate with the cost of greenhouse abatement. (In the first year Marshall Plan funds were about 1.5 percent of U.S. GNP and—adjusting for overvalued currencies—probably 5 percent of recipient countries’ GNP.)

What the Marshall Plan model suggests is that the participants in a greenhouse regime would submit for each other’s scrutiny and cross-examination plans for reducing carbon emissions. The plans would be accompanied by estimates of emissions, but any commitments would be to the policies, not the emissions.

The alternative is commitments to specific levels of emissions. Because target dates would be a decade or two in the future, monitoring a country’s progress would be more ambiguous than monitoring the implementation of policies.

______________________________________________________________________________________________________________________________

Thomas C. Schelling is a professor of economics at the University of Maryland School of Public Affairs in College Park. For most of his professional life he was an economics professor at Harvard University. In 1991 he was president of the American Economic Association. He is an elected member of the National Academy of Sciences.

Ausubel, Jesse. “Does Climate Still Matter?” Nature 350, April 25, 1991, 649-52.

Cline, William R. The Greenhouse Effect: Global Economic Consequences. 1992.

Congressional Budget Office. Carbon Charges as a Response to Global Warming: The Effects of Taxing Fossil Fuels. 1990.

Dornbush, Rudiger, and James M. Poterba. Global Warming: Economic Policy Responses. 1991.

Nordhaus, William D. “The Cost of Slowing Climate Change: A Survey.” Energy Journal 12, no. 1 (1991): 37-66.

_______________________________________________________________________________________________________________________________

Related Links

Environmental Quality

Free Market Environmentalism

Global Warming: A Balance Sheet

Pollution Controls

Robert Bradley and Richard Fulmer, Those Old Oil Company Ads: Misleading, False, or Simply Reasonable? at Econlib, March 2, 2022.

Bryan Caplan, The Moral Case for Fossil Fuels: We Can Live With Warming , at EconLog, December 12, 2014.

Robert Murphy, The Economics of Climate Change , at Econlib, July 2009.

Pedro Schwartz, Climate Change: A Tragedy of the Commons? at Econlib, March 2020.

Pedro Schwartz, Climate Change: What is (Not) To Be Done , at Econlib, April 2020.

Judith Curry on Climate Change , EconTak podcast, December 23, 2013.

Martin Weitzman on Climate Change , EconTalk podcast, June 1, 2015.

RELATED CONTENT By Amy Willis

Data versus drama.

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Biology LibreTexts

3.2: The Greenhouse Effect

  • Last updated
  • Save as PDF
  • Page ID 36543

  • Laci M. Gerhart-Barley
  • College of Biological Sciences - UC Davis

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

The process by which the atmosphere absorbs the sun’s energy and prevents it from being radiated back out to space has often been compared to that of a greenhouse, leading to the nickname the greenhouse effect . It is the same process that occurs when you leave your car sitting in the sun with the windows rolled up. The sun’s rays are powerful enough to pass through the glass of the windows (or through the Earth’s atmosphere) and be absorbed by the dashboard and seats (or the Earth’s surface); however, when these surfaces emit energy, it is not powerful enough to pass back out through the window glass (or atmosphere) and in so doing becomes trapped within the car (or atmosphere) causing it to warm. There are certain atmospheric gases, termed greenhouses gases (or GHGs) that behave like the car windows, increasing the amount of energy retained in the atmosphere, and increasing the amount of warming that occurs. In Figure 3.1.1 the greenhouse effect is represented by the curved arrow showing 95% of the energy emitted by the Earth’s surface that is reabsorbed, and the amount of GHGs in the atmosphere drive the size of this arrow.

The primary GHGs considered in this section are carbon dioxide (CO 2 ), methane (CH 3 ), and nitrous oxide (N 2 O). Scientists at the National Oceanic and Atmospheric Administration (NOAA) have been tracking concentrations of these and other GHGs in the atmosphere for decades (Fig 3.2.1) and have found that all three continue to steadily increase.

GHGs.png

These increases are particularly pronounced when compared to past GHG concentrations. Scientists can measure past atmospheric composition in ice sheets in Greenland and Antarctica. As the ice sheets formed, small bubbles of air were trapped in the ice, and coring deep into the ice sheet (Fig 3.2.2a) allows scientists to reconstruct atmospheric composition from direct measurements as far back as 800,000 years (Fig 3.2.2b). From these measurements, we can see that atmospheric CO 2 levels (and temperature, as estimated from oxygen isotope composition of the ice itself) have fluctuated significantly throughout the past. The ice sheets document a clear pattern of periodic increases and decreases in CO 2 , which are coupled with increases and decreases in temperature. Periods of low CO 2 and low temperatures are glacial periods (also referred to as ‘ice ages’), and periods of high CO 2 and high temperature are inter-glacial periods. For the past 800,000 years, Earth has oscillated between glacial and inter-glacial periods roughly every 100,000 years. The maximum level that CO 2 concentrations reached in the last 800,000 years was approximately 300 parts per million (ppm). Global CO 2 levels are now over 400 ppm, a level that scientists estimate has not occurred on Earth since the Pliocene Epoch, approximately 3 million years ago.

CO2_Historic.png

This increase in CO 2 (as well as other GHGs) increases the amount of solar energy that is retained in the atmosphere as opposed to radiated back out to space, which increases the temperature of the Earth’s surface. Figure 3.2.3 shows the temperature anomaly for the decade 2014-2018 as compared to the average from 1951-1980. The National Aeronautics and Space Administration (NASA) reports that the global average temperature has increased approximately 1.4° Fahrenheit (0.8° C) since 1880, though that warming has not been evenly distributed across the Earth. As can be seen in Figure 3.2.3, the polar regions, particularly the Arctic, have warmed much more than other areas. This pattern is particularly concerning given the feedbacks that warming in polar regions may have on the melting of ice sheets and sea ice.

1284px-Change_in_Average_Temperature.png

In 2018, the state of California released its Fourth Climate Change Assessment report, which outlines the impact that global climatic changes are having and will have on the state (Fig 3.2.4). Some regions, most notably southern California, have already experienced nearly 3°F increases in annual average temperatures since the beginning of the 20th century.

CaliforniaWarming.png

Image Credits

By absorbing much of the added heat trapped by atmospheric greenhouse gases, the oceans are delaying some of the impacts of climate change. Photo: WMO/Olga Khoroshunova

5 things you should know about the greenhouse gases warming the planet

Facebook Twitter Print Email

News stories about the climate crisis often contain mentions of greenhouse gases, and the greenhouse effect. Whilst most will find the analogy easy to understand, what exactly are these gases, and why are they contributing to the warming of the Earth?

1. What is the greenhouse effect?

In a greenhouse, sunlight enters, and heat is retained. The greenhouse effect describes a similar phenomenon on a planetary scale but, instead of the glass of a greenhouse,  certain gases are increasingly raising global temperatures.

The surface of the Earth absorbs just under half of the sun’s energy, while the atmosphere absorbs 23 per cent, and the rest is reflected back into space. Natural processes ensure that the amount of incoming and outgoing energy is equal, keeping the planet’s temperature stable.

However, human activity is resulting in the increased emission of so-called greenhouse gases (GHGs) which, unlike other atmospheric gases such as oxygen and nitrogen, becomes trapped in the atmosphere, unable to escape the planet. This energy returns to the surface, where it is reabsorbed.

Because more energy enters than exits the planet, surface temperatures increase until a new balance is achieved. 

On bone-dry land, severely affected by drought, two women search for their daily water supply.

2. Why does the warming matter?

This temperature increase has long-term, adverse effects on the climate, and affects a myriad of natural systems. Effects include increases in the frequency and intensity of extreme weather events – including flooding, droughts, wildfires and hurricanes – that affect millions of people and cause trillions in economic losses.

“Human-caused greenhouse gas emissions endanger human and environmental health,” says Mark Radka, Chief of the UN Environment Programme’s ( UNEP ) Energy and Climate Branch. “And the impacts will become more widespread and severe without strong climate action.”

GHG emissions are critical to understanding and addressing the climate crisis: despite an initial dip due to COVID-19 , the latest UNEP Emissions Gap Report shows a rebound, and forecasts a disastrous global temperature rise of at least 2.7 degrees this century, unless countries make much greater efforts to reduce emissions.

The report found that GHG emissions need to be halved by 2030, if we are to limit global warming to 1.5°C compared to pre-industrial levels by the end of the century.

Carbon dioxide levels continue at record levels, despite the economic slowdown caused by the COVID-19 pandemic.

3. What are the major greenhouse gases?

Water vapour is the biggest overall contributor to the greenhouse effect. However, almost all the water vapour in the atmosphere comes from natural processes.

Carbon dioxide (CO2), methane and nitrous oxide are the major GHGs to worry about. CO2 stays in the atmosphere for up to 1,000 years, methane for around a decade, and nitrous oxide for approximately 120 years.

Measured over a 20-year period, methane is 80 times more potent than CO2 in causing global warming, while nitrous oxide is 280 times more potent.

4. How is human activity producing these greenhouse gases?

Coal, oil, and natural gas continue to power many parts of the world. Carbon is the main element in these fuels and, when they’re burned to generate electricity, power transportation, or provide heat, they produce CO2.

Oil and gas extraction, coal mining, and waste landfills account for 55 per cent of human-caused methane emissions. Approximately 32 per cent of human-caused methane emissions are attributable to cows, sheep and other ruminants that ferment food in their stomachs. Manure decomposition is another agricultural source of the gas, as is rice cultivation. 

Human-caused nitrous oxide emissions largely arise from agriculture practices. Bacteria in soil and water naturally convert nitrogen into nitrous oxide, but fertilizer use and run-off add to this process by putting more nitrogen into the environment.

Fluorinated gases – such as hydrofluorocarbons, perfluorocarbons and sulfur hexafluoride – are GHGs that do not occur naturally. Hydrofluorocarbons are refrigerants used as alternatives to chlorofluorocarbons (CFCs), which, having depleted the ozone layer,were phased out thanks to the Montreal Protocol. The others have industrial and commercial uses.

While fluorinated gases are far less prevalent than other GHGs and do not deplete the ozone layer like CFCs, they are still very powerful. Over a 20-year period, the global warming potential of some fluorinated gases is up to 16,300 times greater than that of CO2.

Wind farms generate electricity and reduce reliance on coal-powered energy.

5. What can we do to reduce GHG emissions?

Shifting to renewable energy, putting a price on carbon, and phasing out coal are all important elements in reducing GHG emissions. Ultimately, stronger emission-reduction targets are necessary for the preservation of long-term human and environmental health.

“We need to implement strong policies that back the raised ambitions,” says Mr. Radka. “We cannot continue down the same path and expect better results. Action is needed now.”

During COP26, the European Union and the United States launched the Global Methane Pledge, which will see over 100 countries aim to reduce 30 per cent of methane emissions in the fuel, agriculture and waste sectors by 2030.

Despite the challenges, there is reason to be positive. From 2010 to 2021, policies were put in place  to lower annual emissions by 11 gigatons by 2030 compared to what would have otherwise happened. Individuals can also join the UN’s #ActNow campaign for ideas to take climate-positive actions.

By making choices that have less harmful effects on the environment, everyone can be a part of the solution and influence change. Speaking up is one way to multiply impact and create change on a much bigger scale.  

UNEP’s role in reducing GHGs

  • UNEP has outlined its six-sector solution, which can reduce 29–32 gigatons of carbon dioxide by 2030 to meet the 1.5°C warming limit. The six sectors identified are: energy; industry; agricultureand food; forests andland use; transport; and buildings and cities.
  • UNEP also maintains an online “Climate Note,” a tool that visualizes the changing state of the climate with a baseline of 1990.
  • Through its other multilateral environmental agreements and reports, UNEP raises awareness and advocates for effective environmental action. UNEP will continue to work closely with its 193 Member States and other stakeholders to set the environmental agenda and advocate for a drastic reduction in GHG emissions.
  • greenhouse gas emissions

National Academies Press: OpenBook

Climate Change: Evidence and Causes: Update 2020 (2020)

Chapter: conclusion, c onclusion.

This document explains that there are well-understood physical mechanisms by which changes in the amounts of greenhouse gases cause climate changes. It discusses the evidence that the concentrations of these gases in the atmosphere have increased and are still increasing rapidly, that climate change is occurring, and that most of the recent change is almost certainly due to emissions of greenhouse gases caused by human activities. Further climate change is inevitable; if emissions of greenhouse gases continue unabated, future changes will substantially exceed those that have occurred so far. There remains a range of estimates of the magnitude and regional expression of future change, but increases in the extremes of climate that can adversely affect natural ecosystems and human activities and infrastructure are expected.

Citizens and governments can choose among several options (or a mixture of those options) in response to this information: they can change their pattern of energy production and usage in order to limit emissions of greenhouse gases and hence the magnitude of climate changes; they can wait for changes to occur and accept the losses, damage, and suffering that arise; they can adapt to actual and expected changes as much as possible; or they can seek as yet unproven “geoengineering” solutions to counteract some of the climate changes that would otherwise occur. Each of these options has risks, attractions and costs, and what is actually done may be a mixture of these different options. Different nations and communities will vary in their vulnerability and their capacity to adapt. There is an important debate to be had about choices among these options, to decide what is best for each group or nation, and most importantly for the global population as a whole. The options have to be discussed at a global scale because in many cases those communities that are most vulnerable control few of the emissions, either past or future. Our description of the science of climate change, with both its facts and its uncertainties, is offered as a basis to inform that policy debate.

A CKNOWLEDGEMENTS

The following individuals served as the primary writing team for the 2014 and 2020 editions of this document:

  • Eric Wolff FRS, (UK lead), University of Cambridge
  • Inez Fung (NAS, US lead), University of California, Berkeley
  • Brian Hoskins FRS, Grantham Institute for Climate Change
  • John F.B. Mitchell FRS, UK Met Office
  • Tim Palmer FRS, University of Oxford
  • Benjamin Santer (NAS), Lawrence Livermore National Laboratory
  • John Shepherd FRS, University of Southampton
  • Keith Shine FRS, University of Reading.
  • Susan Solomon (NAS), Massachusetts Institute of Technology
  • Kevin Trenberth, National Center for Atmospheric Research
  • John Walsh, University of Alaska, Fairbanks
  • Don Wuebbles, University of Illinois

Staff support for the 2020 revision was provided by Richard Walker, Amanda Purcell, Nancy Huddleston, and Michael Hudson. We offer special thanks to Rebecca Lindsey and NOAA Climate.gov for providing data and figure updates.

The following individuals served as reviewers of the 2014 document in accordance with procedures approved by the Royal Society and the National Academy of Sciences:

  • Richard Alley (NAS), Department of Geosciences, Pennsylvania State University
  • Alec Broers FRS, Former President of the Royal Academy of Engineering
  • Harry Elderfield FRS, Department of Earth Sciences, University of Cambridge
  • Joanna Haigh FRS, Professor of Atmospheric Physics, Imperial College London
  • Isaac Held (NAS), NOAA Geophysical Fluid Dynamics Laboratory
  • John Kutzbach (NAS), Center for Climatic Research, University of Wisconsin
  • Jerry Meehl, Senior Scientist, National Center for Atmospheric Research
  • John Pendry FRS, Imperial College London
  • John Pyle FRS, Department of Chemistry, University of Cambridge
  • Gavin Schmidt, NASA Goddard Space Flight Center
  • Emily Shuckburgh, British Antarctic Survey
  • Gabrielle Walker, Journalist
  • Andrew Watson FRS, University of East Anglia

The Support for the 2014 Edition was provided by NAS Endowment Funds. We offer sincere thanks to the Ralph J. and Carol M. Cicerone Endowment for NAS Missions for supporting the production of this 2020 Edition.

F OR FURTHER READING

For more detailed discussion of the topics addressed in this document (including references to the underlying original research), see:

  • Intergovernmental Panel on Climate Change (IPCC), 2019: Special Report on the Ocean and Cryosphere in a Changing Climate [ https://www.ipcc.ch/srocc ]
  • National Academies of Sciences, Engineering, and Medicine (NASEM), 2019: Negative Emissions Technologies and Reliable Sequestration: A Research Agenda [ https://www.nap.edu/catalog/25259 ]
  • Royal Society, 2018: Greenhouse gas removal [ https://raeng.org.uk/greenhousegasremoval ]
  • U.S. Global Change Research Program (USGCRP), 2018: Fourth National Climate Assessment Volume II: Impacts, Risks, and Adaptation in the United States [ https://nca2018.globalchange.gov ]
  • IPCC, 2018: Global Warming of 1.5°C [ https://www.ipcc.ch/sr15 ]
  • USGCRP, 2017: Fourth National Climate Assessment Volume I: Climate Science Special Reports [ https://science2017.globalchange.gov ]
  • NASEM, 2016: Attribution of Extreme Weather Events in the Context of Climate Change [ https://www.nap.edu/catalog/21852 ]
  • IPCC, 2013: Fifth Assessment Report (AR5) Working Group 1. Climate Change 2013: The Physical Science Basis [ https://www.ipcc.ch/report/ar5/wg1 ]
  • NRC, 2013: Abrupt Impacts of Climate Change: Anticipating Surprises [ https://www.nap.edu/catalog/18373 ]
  • NRC, 2011: Climate Stabilization Targets: Emissions, Concentrations, and Impacts Over Decades to Millennia [ https://www.nap.edu/catalog/12877 ]
  • Royal Society 2010: Climate Change: A Summary of the Science [ https://royalsociety.org/topics-policy/publications/2010/climate-change-summary-science ]
  • NRC, 2010: America’s Climate Choices: Advancing the Science of Climate Change [ https://www.nap.edu/catalog/12782 ]

Much of the original data underlying the scientific findings discussed here are available at:

  • https://data.ucar.edu/
  • https://climatedataguide.ucar.edu
  • https://iridl.ldeo.columbia.edu
  • https://ess-dive.lbl.gov/
  • https://www.ncdc.noaa.gov/
  • https://www.esrl.noaa.gov/gmd/ccgg/trends/
  • http://scrippsco2.ucsd.edu
  • http://hahana.soest.hawaii.edu/hot/

Image

Climate change is one of the defining issues of our time. It is now more certain than ever, based on many lines of evidence, that humans are changing Earth's climate. The Royal Society and the US National Academy of Sciences, with their similar missions to promote the use of science to benefit society and to inform critical policy debates, produced the original Climate Change: Evidence and Causes in 2014. It was written and reviewed by a UK-US team of leading climate scientists. This new edition, prepared by the same author team, has been updated with the most recent climate data and scientific analyses, all of which reinforce our understanding of human-caused climate change.

Scientific information is a vital component for society to make informed decisions about how to reduce the magnitude of climate change and how to adapt to its impacts. This booklet serves as a key reference document for decision makers, policy makers, educators, and others seeking authoritative answers about the current state of climate-change science.

READ FREE ONLINE

Welcome to OpenBook!

You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

Show this book's table of contents , where you can jump to any chapter by name.

...or use these buttons to go back to the previous chapter or skip to the next one.

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

Switch between the Original Pages , where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

To search the entire text of this book, type in your search term here and press Enter .

Share a link to this book page on your preferred social network or via email.

View our suggested citation for this chapter.

Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

Get Email Updates

Do you enjoy reading reports from the Academies online for free ? Sign up for email notifications and we'll let you know about new publications in your areas of interest when they're released.

  • Biology Article
  • Greenhouse Effect Gases

Greenhouse Effect

Table of Contents

What is the Greenhouse Effect?

Greenhouse gases, causes of greenhouse effect, effects of greenhouse effect, runaway greenhouse effect, greenhouse effect definition.

“Greenhouse effect is the process by which radiations from the sun are absorbed by the greenhouse gases and not reflected back into space. This insulates the surface of the earth and prevents it from freezing.”

A greenhouse is a house made of glass that can be used to grow plants. The sun’s radiations warm the plants and the air inside the greenhouse. The heat trapped inside can’t escape out and warms the greenhouse which is essential for the growth of the plants. Same is the case in the earth’s atmosphere.

During the day the sun heats up the earth’s atmosphere. At night, when the earth cools down the heat is radiated back into the atmosphere. During this process, the heat is absorbed by the greenhouse gases in the earth’s atmosphere. This is what makes the surface of the earth warmer, that makes the survival of living beings on earth possible.

However, due to the increased levels of greenhouse gases, the temperature of the earth has increased considerably. This has led to several drastic effects.

Let us have a look at the greenhouse gases and understand the causes and consequences of greenhouse effects with the help of a diagram.

Also Read:  Global Warming

“Greenhouse gases are the gases that absorb the infrared radiations and create a greenhouse effect. For eg., carbondioxide and chlorofluorocarbons.” Greenhouse Effect Diagram

Greenhouse gases

The Diagram shows Greenhouse Gases such as carbon dioxide are the primary cause for the Greenhouse Effect

The major contributors to the greenhouse gases are factories, automobiles, deforestation , etc. The increased number of factories and automobiles increases the amount of these gases in the atmosphere. The greenhouse gases never let the radiations escape from the earth and increase the surface temperature of the earth. This then leads to global warming.

Also Read:  Our Environment

The major causes of the greenhouse effect are:

Burning of Fossil Fuels

Fossil fuels are an important part of our lives. They are widely used in transportation and to produce electricity. Burning of fossil fuels releases carbon dioxide. With the increase in population, the utilization of fossil fuels has increased. This has led to an increase in the release of greenhouse gases in the atmosphere.

Deforestation

Plants and trees take in carbon dioxide and release oxygen. Due to the cutting of trees, there is a considerable increase in the greenhouse gases which increases the earth’s temperature.

Nitrous oxide used in fertilizers is one of the contributors to the greenhouse effect in the atmosphere.

Industrial Waste and Landfills

The industries and factories produce harmful gases which are released in the atmosphere.

Landfills also release carbon dioxide and methane that adds to the greenhouse gases.

write a essay on green house effect

The main effects of increased greenhouse gases are:

Global Warming

It is the phenomenon of a gradual increase in the average temperature of the Earth’s atmosphere. The main cause for this environmental issue is the increased volumes of greenhouse gases such as carbon dioxide and methane released by the burning of fossil fuels, emissions from the vehicles, industries and other human activities.

Depletion of  Ozone Layer

Ozone Layer protects the earth from harmful ultraviolet rays from the sun. It is found in the upper regions of the stratosphere. The depletion of the ozone layer results in the entry of the harmful UV rays to the earth’s surface that might lead to skin cancer and can also change the climate drastically.

The major cause of this phenomenon is the accumulation of natural greenhouse gases including chlorofluorocarbons, carbon dioxide, methane, etc.

Smog and Air Pollution

Smog is formed by the combination of smoke and fog. It can be caused both by natural means and man-made activities.

In general, smog is generally formed by the accumulation of more greenhouse gases including nitrogen and sulfur oxides. The major contributors to the formation of smog are automobile and industrial emissions, agricultural fires, natural forest fires and the reaction of these chemicals among themselves.

Acidification of Water Bodies

Increase in the total amount of greenhouse gases in the air has turned most of the world’s water bodies acidic. The greenhouse gases mix with the rainwater and fall as acid rain. This leads to the acidification of water bodies.

Also, the rainwater carries the contaminants along with it and falls into the river, streams and lakes thereby causing their acidification.

This phenomenon occurs when the planet absorbs more radiation than it can radiate back. Thus, the heat lost from the earth’s surface is less and the temperature of the planet keeps rising. Scientists believe that this phenomenon took place on the surface of Venus billions of years ago.

This phenomenon is believed to have occurred in the following manner:

  • A runaway greenhouse effect arises when the temperature of a planet rises to a level of the boiling point of water. As a result, all the water from the oceans converts into water vapour, which traps more heat coming from the sun and further increases the planet’s temperature. This eventually accelerates the greenhouse effect. This is also called the “positive feedback loop”.
  • There is another scenario giving way to the runaway greenhouse effect. Suppose the temperature rise due to the above causes reaches such a high level that the chemical reactions begin to occur. These chemical reactions drive carbon dioxide from the rocks into the atmosphere. This would heat the surface of the planet which would further accelerate the transfer of carbon dioxide from the rocks to the atmosphere, giving rise to the runaway greenhouse effect.

In simple words, increasing the greenhouse effect gives rise to a runaway greenhouse effect which would increase the temperature of the earth to such an extent that no life will exist in the near future.

Also Read:  Environmental Issues

To learn more about what is the greenhouse effect, its definition, causes and effects, keep visiting BYJU’S website or download the BYJU’S app for further reference.

Frequently Asked Questions

What is global warming.

The gradual increase in temperature due to the greenhouse effect caused by pollutants, CFCs and carbon dioxide is called global warming. This phenomenon has disturbed the climatic pattern of the earth.

List gases which are responsible for the greenhouse effect.

The major greenhouse gases are: 1) Carbon dioxide 2) Methane 3) Water 4) Nitrous oxide 5) Ozone 6) Chlorofluorocarbons (CFCs)

What is the greenhouse effect?

What are the major causes of the greenhouse effect.

Burning of fossil fuels, deforestation, farming and livestock production all contribute to the greenhouse effect. Industries and factories also play a major role in the release of greenhouse gases.

What would have happened if the greenhouse gases were totally missing in the earth’s atmosphere?

Quiz Image

Put your understanding of this concept to test by answering a few MCQs. Click ‘Start Quiz’ to begin!

Select the correct answer and click on the “Finish” button Check your score and answers at the end of the quiz

Visit BYJU’S for all Biology related queries and study materials

Your result is as below

Request OTP on Voice Call

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Post My Comment

write a essay on green house effect

thank you for this information this is so good

Thank you for such an informative topic

thanks for lot’s of information

Thanks for a lot information😊

Thanks again for your help

It is so much helpfull for him. thanks for this information

Thanks a lot for this information, it helped to improve my understanding.

Thank you so much. This has improved my understanding

Thank you for this information it is so interesting 👌👌

The information given by Byju’s are too useful

The term is deeply explained which is very helpful in understanding it really helps me so thank you Byju’s.

Thanks a lot for the information, it helped a lot

Thanks a lot. Very informative

Thank you sir for this beautiful explanation of topics

Thank u so much Byjus for the explanation of this topic

thankyou so much this information was very helpful

thi is so helpfull for study

Nice information

write a essay on green house effect

  • Share Share

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

close

How Do We Reduce Greenhouse Gases?

To stop climate change , we need to stop the amount of greenhouse gases, like carbon dioxide, from increasing. For the past 150 years, burning fossil fuels and cutting down forests, which naturally pull carbon dioxide out of the air, has caused greenhouse gas levels to increase. There are two main ways to stop the amount of greenhouse gases from increasing: we can stop adding them to the air, and we can increase the Earth’s ability to pull them out of the air.

This is called climate mitigation . There is not one single way to mitigate climate change. Instead, we will have to piece together many different solutions to stop the climate from warming. Below are descriptions of the main methods that we can use.

Many of these solutions are already being implemented in places around the world. Some can be tackled by individuals, such as using less energy, riding a bike instead of driving, driving an electric car, and switching to renewable energy. Other actions to mitigate climate change involve communities, regions, or nations working together to make changes, such as switching power plants from burning coal or gas to renewable energy and growing public transit.

Use less electricity.

Taking steps to use less electricity, especially when it comes from burning coal or gas, can take a big bite out of greenhouse gas emissions. Worldwide, electricity use is responsible for a quarter of all emissions. 

Some steps that you can take to use less electricity are simple and save money, like replacing incandescent light bulbs with LED bulbs that use less electricity, adding insulation to your home, and setting the thermostat lower in the winter and higher in the summer, especially when no one is home. There are also new technologies that help keep buildings energy efficient, such as glass that reflects heat, low-flow water fixtures, smart thermostats, and new air conditioning technology with refrigerants that don’t cause warming. In urban and suburban environments, green or cool roofs can limit the amount of heat that gets into buildings during hot days and help decrease the urban heat island effect .

This is an image of the roof of a home that is covered in planted vegetation, which makes it a green roof.

Green roof on the Walter Reed Community Center in Arlington, VA, US Credit: Arlington County on Flickr/CC BY-SA 2.0

Generate electricity without emissions.

Renewable energy sources include solar energy, geothermal energy, wind turbines, ocean wave and tidal energy, waste and biomass energy, and hydropower. Because they do not burn fossil fuels, these renewable energy sources do not release greenhouse gases into the atmosphere as they generate electricity. Nuclear energy also creates no greenhouse gas emissions, so it can be thought of as a solution to climate change. However, it does generate radioactive waste that needs long-term, secure storage.

Today, the amount of electricity that comes from renewable energy is growing. A few countries, such as Iceland and Costa Rica, now get nearly all of their electricity from renewable energy. In many other countries, the percentage of electricity from renewable sources is currently small (5 - 10%) but growing.

This is an image of several offshore wind turbines, with an ocean horizon.

Wind turbines can be on land or in the ocean, where high winds are common. Credit: Nicholas Doherty on Unsplash

Shrink the footprint of food.

Today, about a fifth of global carbon emissions come from raising farm animals for meat. For example, as cattle digest food they burp, releasing methane, a powerful greenhouse gas, and their manure releases the greenhouse gases carbon dioxide and nitrous oxide. And forests, which take carbon dioxide out of the air, are often cut down so that cattle have space to graze.

Eating a diet that is mostly or entirely plant-based (such as vegetables, bread, rice, and beans) lowers emissions. According to the Drawdown Project , if half the population worldwide adopts a plant-rich diet by 2050, 65 gigatons of carbon dioxide would be kept out of the atmosphere over about 30 years. (For a sense of scale, 65 gigatons of carbon dioxide is nearly two-years-worth of recent emissions from fossil fuels and industry.) Reducing food waste can make an even larger impact, saving about 90 gigatons of carbon dioxide from the atmosphere over 30 years.

This is an image of tomatoes on the vine, chick peas, sliced avocados, carrots, and onions.

Eating a plant-rich diet lowers greenhouse gas emissions. Credit: Victoria Shes on Unsplash

Travel without making greenhouse gases.

Most of the ways we have to get from place to place currently rely on fossil fuels: gasoline for vehicles and jet fuel for planes. Burning fossil fuels for transportation adds up to 14% of global greenhouse gas emissions worldwide. We can reduce emissions by shifting to alternative technologies that either don’t need gasoline (like bicycles and electric cars) or don’t need as much (like hybrid cars). Using public transportation, carpooling, biking, and walking leads to fewer vehicles on the road and less greenhouse gases in the atmosphere. Cities and towns can make it easier for people to lower greenhouse gas emissions by adding bus routes, bike paths, and sidewalks.

This is an image of an electric bike parked outside alongside a waterway.

Electric bicycles can be a way to get around without burning gasoline. Credit: Karlis Dambrans/CC BY 2.0

Reduce household waste.

Waste we put in landfills releases greenhouse gases. Almost half the gas released by landfill waste is methane, which is an especially potent greenhouse gas. Landfills are, in fact, the third largest source of methane emissions in the U.S., behind natural gas/petroleum use and animals raised for food production (and their manure). In the U.S., each member of a household produces an average of 2 kg (4.4 lbs) of trash per day. That's 726 kg (1660 lbs) of trash per person per year! Conscious choices, including avoiding unnecessary purchases, buying secondhand, eliminating reliance on single-use containers, switching to reusable bags, bottles, and beverage cups, reducing paper subscriptions and mail in favor of digital options, recycling, and composting, can all help reduce household waste.     

Reduce emissions from industry.

Manufacturing, mining for raw materials, and dealing with the waste all take energy. Most of the products that we buy — everything from phones and TVs to clothing and shoes — are created in factories, which produce up to about 20% of the greenhouse gases emitted worldwide.

There are ways to decrease emissions from manufacturing. Using materials that aren’t made from fossil fuels and don’t release greenhouse gases is a good start. For example, cement releases carbon dioxide as it hardens, but there are alternative products that don’t create greenhouse gases. Similarly, bioplastics made from plants are an alternative to plastics that come from fossil fuels. Companies can also use renewable energy sources to power factories and ship the products that they create in fuel-saving cargo ships.

Take carbon dioxide out of the air.

Along with reducing the amount of carbon dioxide that we add to the air, we can also take action to increase the amount of carbon dioxide we take out of the air. The places where carbon dioxide is pulled out of the air are called carbon sinks. For example, planting trees, bamboo, and other plants increases the number of carbon sinks. Conserving forests, grasslands, peatlands, and wetlands, where carbon is held in plants and soils, protects existing carbon sinks. Farming methods such as planting cover crops and crop rotation keep soils healthy so that they are effective carbon sinks. There are also carbon dioxide removal technologies, which may be able to pull large amounts of greenhouse gases out of the atmosphere.

This is an image of a stand of tall trees in a forest, with sunlight filtering through the branches.

As the trees and other plants in a forest use sunlight to create the food they need, they are also pulling carbon dioxide out of the air. Credit: B NW on Unsplash

© 2020 UCAR

  • Solving Climate Change
  • Why Earth Is Warming
  • The Greenhouse Effect
  • What's Your Carbon Footprint?
  • Classroom Activity: Mitigation or Adaptation?
  • Classroom Activity: Solving the Carbon Dioxide Problem
  • Stabilization Wedges (Activity and Resources)

The Greenhouse Effect and our Planet

The greenhouse effect happens when certain gases, which are known as greenhouse gases, accumulate in Earth’s atmosphere. Greenhouse gases include carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O), ozone (O 3 ), and fluorinated gases.

Biology, Ecology, Earth Science, Geography, Human Geography

Loading ...

Newsela

Greenhouse gases include gases such as carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O), ozone (O 3 ), and fluorinated gases. These greenhouse gases allow the sun's light to shine onto Earth's surface. Then the gases, such as ozone, trap the heat that reflects back from the surface inside Earth's atmosphere . The gases act like the glass walls of a greenhouse. In other words, they are warming.

The greenhouse effect happens when these gases gather in Earth's atmosphere. According to scientists, without the greenhouse effect, the average temperature of Earth would drop from 57 degrees Fahrenheit (14 degrees Celsius) to as low as negative 0.4 degrees F (minus 18 degrees C).

Do We Blame the Industrial Revolution ? Some greenhouse gases come from natural sources. For example, evaporation adds water vapor to the atmosphere. Animals and plants release carbon dioxide when they breathe. Methane is released naturally from decomposition, when soils and living things break down. Volcanoes —both on land and under the ocean —release greenhouse gases.

The Industrial Revolution happened in the late 1700s and early 1800s, when factories began producing more. Since then, people have been releasing larger quantities of greenhouse gases into the atmosphere. Greenhouse gas emissions increased 70 percent between 1970 and 2004. Emissions of carbon dioxide (CO 2 ), rose about 80 percent during that time.

The amount of CO 2 in the atmosphere far exceeds Earth's natural amount seen over the last 650,000 years.

Most of the CO 2 that people put into the atmosphere comes from burning fossil fuels . Cars, trucks, t rains and planes all burn fossil fuels. Many electric power plants do, as well. Another way humans release CO 2 into the atmosphere is by cutting down forests , because trees contain large amounts of carbon.

Human Activity + Greenhouse Gases = A Warming Earth People add methane to the atmosphere through livestock farming, landfills and fossil fuel production such as coal mining and natural gas processing. Nitrous oxide comes from agriculture and fossil fuel burning.

Fluorinated gases include chlorofluoro carbons (CFCs), hydro chlorofluoro carbons (HCFCs), and hydrofluorocarbons (HFCs). They are produced during the manufacturing of refrigeration and cooling products. Some come through aerosol cans , such as some hairsprays or spray paint.

As greenhouse gases increase, so does the temperature of Earth. The rise in Earth's average temperature contributed to by human activity is known as global warming .

The Greenhouse Effect and Climate Change Even slight increases in average global temperatures can have huge effects.

Perhaps the biggest effect is that glaciers and ice caps melt faster than usual. The meltwater d rains into the oceans , causing sea levels to rise.

Glaciers and ice caps cover about 10 percent of the world's land. They hold between 70 and 75 percent of the world's freshwater . If all of this ice melted, sea levels would rise about 70 meters (230 feet).

The Intergovernmental Panel on Climate Change says that the global sea level rose about 1.8 millimeters (0.07 inch) per year from 1961 to 1993. It rose about 3.1 millimeters (1/8 inch) per year since 1993.

This seems like only a tiny bit, but rising sea levels can cause flooding in cities along the coasts . This could force millions of people in low-lying areas out of their homes, such as in Bangladesh, the U.S. state of Florida, and the Netherlands.

Millions more people in countries such as Peru and India depend on water from melted glaciers . They use it for drinking, watering crops and hydroelectric power . Rapid loss of these glaciers would greatly hurt those countries.

Predictable Rain is Important to Many Greenhouse gas emissions also affect changes in precipitation , such as rain and snow .

In the 20th century, precipitation increased in eastern parts of North and South America, Northern Europe, and northern and Central Asia. However, it has decreased in parts of Africa, the Mediterranean, and southern Asia.

As climates change, so do the habitats for living things. Animals that are adapted to a certain climates might become threatened. Many humans depend on predictable rain patterns to grow specific crops . If the climate of an area changes, the people who live there may no longer be able to grow the crops they depend on for survival.

Scientists aren't the only Ones Who Can Help

  • Drive less. Use  public transportation , carpool, walk, or ride a bike.
  • Fly less. Airplanes produce huge amounts of greenhouse gas emissions.
  • Reduce, reuse, and  recycle .
  • Plant a tree. Trees absorb carbon dioxide, keeping it out of the atmosphere.
  • Use less  electricity .
  • Eat less meat. Cows are one of the biggest methane producers.
  • Support alternative energy sources that don’t burn fossil fuels.

Artificial Gas

Chlorofluorocarbons (CFCs) are the only greenhouse gases not created by nature. They are created through refrigeration and aerosol cans.

CFCs, used mostly as refrigerants, are chemicals that were developed in the late 19th century and came into wide use in the mid-20th century.

Other greenhouse gases, such as carbon dioxide, are emitted by human activity, at an unnatural and unsustainable level, but the molecules do occur naturally in Earth's atmosphere.

Audio & Video

Media credits.

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Illustrators

Educator reviewer, last updated.

October 19, 2023

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

Your browser is not supported

Sorry but it looks as if your browser is out of date. To get the best experience using our site we recommend that you upgrade or switch browsers.

Find a solution

  • Skip to main content
  • Skip to navigation

write a essay on green house effect

  • Back to parent navigation item
  • Primary teacher
  • Secondary/FE teacher
  • Early career or student teacher
  • Higher education
  • Curriculum support
  • Literacy in science teaching
  • Periodic table
  • Interactive periodic table
  • Climate change and sustainability
  • Resources shop
  • Collections
  • Post-lockdown teaching support
  • Remote teaching support
  • Starters for ten
  • Screen experiments
  • Assessment for learning
  • Microscale chemistry
  • Faces of chemistry
  • Classic chemistry experiments
  • Nuffield practical collection
  • Anecdotes for chemistry teachers
  • On this day in chemistry
  • Global experiments
  • PhET interactive simulations
  • Chemistry vignettes
  • Context and problem based learning
  • Journal of the month
  • Chemistry and art
  • Art analysis
  • Pigments and colours
  • Ancient art: today's technology
  • Psychology and art theory
  • Art and archaeology
  • Artists as chemists
  • The physics of restoration and conservation
  • Ancient Egyptian art
  • Ancient Greek art
  • Ancient Roman art
  • Classic chemistry demonstrations
  • In search of solutions
  • In search of more solutions
  • Creative problem-solving in chemistry
  • Solar spark
  • Chemistry for non-specialists
  • Health and safety in higher education
  • Analytical chemistry introductions
  • Exhibition chemistry
  • Introductory maths for higher education
  • Commercial skills for chemists
  • Kitchen chemistry
  • Journals how to guides
  • Chemistry in health
  • Chemistry in sport
  • Chemistry in your cupboard
  • Chocolate chemistry
  • Adnoddau addysgu cemeg Cymraeg
  • The chemistry of fireworks
  • Festive chemistry
  • Education in Chemistry
  • Teach Chemistry
  • On-demand online
  • Live online
  • Selected PD articles
  • PD for primary teachers
  • PD for secondary teachers
  • What we offer
  • Chartered Science Teacher (CSciTeach)
  • Teacher mentoring
  • UK Chemistry Olympiad
  • Who can enter?
  • How does it work?
  • Resources and past papers
  • Top of the Bench
  • Schools' Analyst
  • Regional support
  • Education coordinators
  • RSC Yusuf Hamied Inspirational Science Programme
  • RSC Education News
  • Supporting teacher training
  • Interest groups

A primary school child raises their hand in a classroom

  • More from navigation items

What causes the greenhouse effect? | 16-18 years

  • No comments

Reinforce your students’ understanding of the cause of the greenhouse effect using this lesson plan with a demonstration and activities for 16–18 year olds

In this activity, students check and clarify their understanding of the greenhouse effect by drawing and comparing diagrams. After observing a teacher demonstration, students work independently and then in collaboration with a partner to share and evaluate their ideas and agree a joint view. They then compare their view with the ideas of other pairs of students.

This activity is best used to consolidate and to check on learning after students have spent some time on this topic.

Learning objectives

Students will:

  • Understand the cause of the greenhouse effect.

Sequence of activities

Demonstration.

  • Begin with the greenhouse effect demonstration (from T. Lister’s  Classic chemistry demonstrations , number 68), emphasising the observed temperature changes but without providing an explanation at this stage.
  • Invite students to say what phenomenon is illustrated by the demonstration and then share the learning objective with them.

Activity: stage 1

  • Hand out a copy of the ’Student sheet’ to each student.
  • Ask them to draw, by themselves, an annotated diagram to explain the greenhouse effect.

Activity: stage 2

Divide students into pairs. Ask them to

  • Compare their diagrams.
  • Justify their ideas, where there are differences.
  • Agree a common diagram which they draw on an OHT or produce a PowerPoint slide.
  • One group to show and explain their diagram to the class using an OHP or a data projector.
  • Other groups to add to it (from their own diagram) until all key points have been described.
  • Remind students of the demonstration used to start the session.
  • Question them on what the lamp and lead foil represented (Sun and Earth).
  • Ensure that students modify their original diagram, where necessary, to take account of what other students have said during the session.

Take in the student diagrams and write comments which reinforce the good features. Identify any points that still need developing and indicate where additional support can be found.

The demonstration is a key part of the session and a key to its objective.

The process of comparing diagrams draws students into assessing themselves and their fellow students. It encourages them to listen to the ideas of others.

In the plenary, the students experience a wider range of ideas. They then reassess the completeness of their original diagram.

Even though this may be a final session on this topic, written feedback remains important. It confirms achievement or guides students on how to clarify their understanding.

Practical notes

Health, safety and technical notes.

  • See the  greenhouse effect demonstration  for full kit list, safety instructions and procedure for the teacher demonstration.
  • Read our standard health and safety guidance .
  • Wear eye protection.
  • It is the responsibility of the teacher to carry out an appropriate risk assessment.

Expected explanation of the greenhouse effect

  • Visible radiation is emitted from the hot sun.
  • Some of this radiation is absorbed by the Earth which is consequently warmed.
  • Warm earth emits infrared radiation.
  • Some of the radiation is absorbed by greenhouse gases such as carbon dioxide. Carbon-oxygen bonds in carbon dioxide molecules vibrate more vigorously.
  • Molecules excited in this way collide with other molecules in the atmosphere and spread absorbed energy around.
  • The atmosphere becomes warmer.

What causes the greenhouse effect? student sheet

Additional information.

This lesson plan was originally part of the  Assessment for Learning  website, published in 2008.

Assessment for Learning is an effective way of actively involving students in their learning.  Each session plan comes with suggestions about how to organise activities and worksheets that may be used with students.

Acknowledgement

T. Lister,  Classic chemistry demonstrations . London: Royal Society of Chemistry, 1995.

  • 16-18 years
  • Demonstrations
  • Formative assessment 
  • Higher-order thinking and metacognition
  • Environmental science
  • Society and ethics
  • Climate change

Specification

  • Greenhouse gases in the atmosphere maintain temperatures on Earth high enough to support life. Water vapour, carbon dioxide and methane are greenhouse gases.
  • Students should be able to describe the greenhouse effect in terms of the interaction of short and long wavelength radiation with matter.
  • Describe the greenhouse effect in terms of the interaction of radiation with matter.
  • 8.24 Describe how various gases in the atmosphere, including carbon dioxide, methane and water vapour, absorb heat radiated from the Earth, subsequently releasing energy which keeps the Earth warm: this is known as the greenhouse effect
  • C1.3.1 describe the greenhouse effect in terms of the interaction of radiation with matter
  • C6.2c describe the greenhouse effect in terms of the interaction of radiation with matter within the atmosphere
  • C6.3c describe the greenhouse effect in terms of the interaction of radiation with matter within the atmosphere
  • Hydrocarbons and alcohols burn in a plentiful supply of oxygen to produce carbon dioxide and water.
  • (g) the environmental effects and consequences of the emission of carbon dioxide and sulfur dioxide into the atmosphere through the combustion of fossil fuels
  • 2.5.28 demonstrate knowledge that the combustion of fuels is a major source of atmospheric pollution due to: combustion of hydrocarbons producing carbon dioxide, which leads to the greenhouse effect causing sea level rises, flooding and climate change;…
  • 2.5.26 demonstrate knowledge that the combustion of fuels is a major source of atmospheric pollution due to: combustion of hydrocarbons producing carbon dioxide, which leads to the greenhouse effect causing sea level rises, flooding and climate change…
  • Methane as a contributor to the greenhouse effect.
  • The greenhouse effect and the influence of human activity on it.
  • Greenhouse gases and their relative effects [especially carbon dioxide and water vapour; also methane, chlorofluorocarbons (CFCs)].
  • Possible implications of increased greenhouse effect.

Related articles

Example pages from the teacher guidance showing answers, and student worksheets at three levels

Fractional distillation and hydrocarbons | Review my learning worksheets | 14–16 years

By Lyn Nicholls

Identify learning gaps and misconceptions with this set of worksheets offering three levels of support

Previews of the Review my learning: chromatography teacher guidance and scaffolded student sheets

Chromatography | Review my learning worksheets | 14–16 years

2024-05-10T13:33:00Z By Lyn Nicholls

Previews of the Review my learning: solubility teacher guidance and scaffolded student sheets

Solubility | Review my learning worksheets | 14–16 years

No comments yet, only registered users can comment on this article., more from lesson plans.

Composite image of the Determining the structure of compounds teacher notes and student worksheet previews and a visible light spectrum

Determining the structure of compounds | 16–18 years

Examine data relating to the structure and complexity of compounds, including mass, infrared and 1 H NMR spectra

A 3D rendered model showing the structure of an oestrogen receptor molecule.

How do scientists grow protein crystals? | 14-16 years

Discover the methods and conditions used by chemical scientists to grow protein crystals in this lesson plan with activities for 14–16 year olds.

A photograph of sodium metal on a black dish

How does sodium react with chlorine? | 14-16 years

Investigate the reaction of sodium with chlorine, using students’ understanding of atoms, ions and lattice structure, in this lesson plan for 14–16 year olds.

  • Contributors
  • Email alerts

Site powered by Webvision Cloud

Log in using your username and password

  • Search More Search for this keyword Advanced search
  • Latest content
  • Current issue
  • BMJ Journals More You are viewing from: Google Indexer

You are here

  • Volume 59, Issue 5
  • The GREENHOUSE EFFECT in EFFECT
  • Article Text
  • Article info
  • Citation Tools
  • Rapid Responses
  • Article metrics

Download PDF

  • Levi Tafari
  • levitafari.freeserve.co.uk

Statistics from Altmetric.com

Request permissions.

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

People treat the EARTH
 with little respect
 global warming comes to us
 live and direct
 the EARTH is becoming
 a burnt out wreck.
 You see the GREENHOUSE EFFECT
 is in EFFECT. Burning Tropical rain forest
 producing carbon dioxide
 increasing global warming
 sea levels start to rise
 weather patterns are changing
 there’s a lesson to be learnt
 the GREENHOUSE EFFECT is in EFFECT
 we could all get burnt. Greedy developers destroy land
 to build new factories
 killing the indigenous population
 with their economic policies
 animals and plant life become extinct
 along with cures for many diseases
 the chance of breathing fresh clean air
 for ever decreases. The GREE…
 The GREE…
 The GREENHOUSE EFFECT
 Humans treating the EARTH with little respect.
 The GREE…
 The GREE…
 The GREENHOUSE EFFECT
 The EARTH is becoming a nervous wreck. Trees get axed
 to feed the consumer
 atmospheric gases clash
 which equates to danger
 and life on EARTH gets
 stranger
 and now man has his regrets.
 Because
 The GREENHOUSE
 The GREENHOUSE
 The GREENHOUSE EFFECT is in EFFECT

Acknowledgments

Linked articles.

  • In this issue Common sense, the least common sense? Carlos Alvarez-Dardet John R Ashton Journal of Epidemiology & Community Health 2005; 59 341-341 Published Online First: 14 Apr 2005.

Read the full text or download the PDF:

  • Skip to main content
  • Keyboard shortcuts for audio player

Shots - Health News

Your Health

  • Treatments & Tests
  • Health Inc.
  • Public Health

Why writing by hand beats typing for thinking and learning

Jonathan Lambert

A close-up of a woman's hand writing in a notebook.

If you're like many digitally savvy Americans, it has likely been a while since you've spent much time writing by hand.

The laborious process of tracing out our thoughts, letter by letter, on the page is becoming a relic of the past in our screen-dominated world, where text messages and thumb-typed grocery lists have replaced handwritten letters and sticky notes. Electronic keyboards offer obvious efficiency benefits that have undoubtedly boosted our productivity — imagine having to write all your emails longhand.

To keep up, many schools are introducing computers as early as preschool, meaning some kids may learn the basics of typing before writing by hand.

But giving up this slower, more tactile way of expressing ourselves may come at a significant cost, according to a growing body of research that's uncovering the surprising cognitive benefits of taking pen to paper, or even stylus to iPad — for both children and adults.

Is this some kind of joke? A school facing shortages starts teaching standup comedy

In kids, studies show that tracing out ABCs, as opposed to typing them, leads to better and longer-lasting recognition and understanding of letters. Writing by hand also improves memory and recall of words, laying down the foundations of literacy and learning. In adults, taking notes by hand during a lecture, instead of typing, can lead to better conceptual understanding of material.

"There's actually some very important things going on during the embodied experience of writing by hand," says Ramesh Balasubramaniam , a neuroscientist at the University of California, Merced. "It has important cognitive benefits."

While those benefits have long been recognized by some (for instance, many authors, including Jennifer Egan and Neil Gaiman , draft their stories by hand to stoke creativity), scientists have only recently started investigating why writing by hand has these effects.

A slew of recent brain imaging research suggests handwriting's power stems from the relative complexity of the process and how it forces different brain systems to work together to reproduce the shapes of letters in our heads onto the page.

Your brain on handwriting

Both handwriting and typing involve moving our hands and fingers to create words on a page. But handwriting, it turns out, requires a lot more fine-tuned coordination between the motor and visual systems. This seems to more deeply engage the brain in ways that support learning.

Feeling Artsy? Here's How Making Art Helps Your Brain

Shots - Health News

Feeling artsy here's how making art helps your brain.

"Handwriting is probably among the most complex motor skills that the brain is capable of," says Marieke Longcamp , a cognitive neuroscientist at Aix-Marseille Université.

Gripping a pen nimbly enough to write is a complicated task, as it requires your brain to continuously monitor the pressure that each finger exerts on the pen. Then, your motor system has to delicately modify that pressure to re-create each letter of the words in your head on the page.

"Your fingers have to each do something different to produce a recognizable letter," says Sophia Vinci-Booher , an educational neuroscientist at Vanderbilt University. Adding to the complexity, your visual system must continuously process that letter as it's formed. With each stroke, your brain compares the unfolding script with mental models of the letters and words, making adjustments to fingers in real time to create the letters' shapes, says Vinci-Booher.

That's not true for typing.

To type "tap" your fingers don't have to trace out the form of the letters — they just make three relatively simple and uniform movements. In comparison, it takes a lot more brainpower, as well as cross-talk between brain areas, to write than type.

Recent brain imaging studies bolster this idea. A study published in January found that when students write by hand, brain areas involved in motor and visual information processing " sync up " with areas crucial to memory formation, firing at frequencies associated with learning.

"We don't see that [synchronized activity] in typewriting at all," says Audrey van der Meer , a psychologist and study co-author at the Norwegian University of Science and Technology. She suggests that writing by hand is a neurobiologically richer process and that this richness may confer some cognitive benefits.

Other experts agree. "There seems to be something fundamental about engaging your body to produce these shapes," says Robert Wiley , a cognitive psychologist at the University of North Carolina, Greensboro. "It lets you make associations between your body and what you're seeing and hearing," he says, which might give the mind more footholds for accessing a given concept or idea.

Those extra footholds are especially important for learning in kids, but they may give adults a leg up too. Wiley and others worry that ditching handwriting for typing could have serious consequences for how we all learn and think.

What might be lost as handwriting wanes

The clearest consequence of screens and keyboards replacing pen and paper might be on kids' ability to learn the building blocks of literacy — letters.

"Letter recognition in early childhood is actually one of the best predictors of later reading and math attainment," says Vinci-Booher. Her work suggests the process of learning to write letters by hand is crucial for learning to read them.

"When kids write letters, they're just messy," she says. As kids practice writing "A," each iteration is different, and that variability helps solidify their conceptual understanding of the letter.

Research suggests kids learn to recognize letters better when seeing variable handwritten examples, compared with uniform typed examples.

This helps develop areas of the brain used during reading in older children and adults, Vinci-Booher found.

"This could be one of the ways that early experiences actually translate to long-term life outcomes," she says. "These visually demanding, fine motor actions bake in neural communication patterns that are really important for learning later on."

Ditching handwriting instruction could mean that those skills don't get developed as well, which could impair kids' ability to learn down the road.

"If young children are not receiving any handwriting training, which is very good brain stimulation, then their brains simply won't reach their full potential," says van der Meer. "It's scary to think of the potential consequences."

Many states are trying to avoid these risks by mandating cursive instruction. This year, California started requiring elementary school students to learn cursive , and similar bills are moving through state legislatures in several states, including Indiana, Kentucky, South Carolina and Wisconsin. (So far, evidence suggests that it's the writing by hand that matters, not whether it's print or cursive.)

Slowing down and processing information

For adults, one of the main benefits of writing by hand is that it simply forces us to slow down.

During a meeting or lecture, it's possible to type what you're hearing verbatim. But often, "you're not actually processing that information — you're just typing in the blind," says van der Meer. "If you take notes by hand, you can't write everything down," she says.

The relative slowness of the medium forces you to process the information, writing key words or phrases and using drawing or arrows to work through ideas, she says. "You make the information your own," she says, which helps it stick in the brain.

Such connections and integration are still possible when typing, but they need to be made more intentionally. And sometimes, efficiency wins out. "When you're writing a long essay, it's obviously much more practical to use a keyboard," says van der Meer.

Still, given our long history of using our hands to mark meaning in the world, some scientists worry about the more diffuse consequences of offloading our thinking to computers.

"We're foisting a lot of our knowledge, extending our cognition, to other devices, so it's only natural that we've started using these other agents to do our writing for us," says Balasubramaniam.

It's possible that this might free up our minds to do other kinds of hard thinking, he says. Or we might be sacrificing a fundamental process that's crucial for the kinds of immersive cognitive experiences that enable us to learn and think at our full potential.

Balasubramaniam stresses, however, that we don't have to ditch digital tools to harness the power of handwriting. So far, research suggests that scribbling with a stylus on a screen activates the same brain pathways as etching ink on paper. It's the movement that counts, he says, not its final form.

Jonathan Lambert is a Washington, D.C.-based freelance journalist who covers science, health and policy.

  • handwriting

Vol. CXXVII

Pasadena, CA

The Avery Greenhouse Effect

Caltech is literally killing you. The workload is inundating, the stress is nonstop, and the sleep is nonexistent. But the stressors of this Institution go beyond the mental. Caltech-hired landscapers have been criticized for spraying carcinogenic herbicides around graduate student housing [Pasadena Star News, July 18, 2019], Dining Services’ takeout containers and cups are most likely leeching microplastics [Fangni et al. (2020), Journal of Hazardous Materials ], and anyone with a functioning set of taste buds recognizes that the water is oddly metallic. But an under-recognized source of malaise is the architecture of Caltech. While you may think that I am criticizing the eyesore that is the George W. Downs Laboratory of Physics (where the shock of seeing such an ugly building forced me to switch my major from Physics to BioE), I am actually criticizing how the architecture stagnates the air within the dorms.

How did I become aware of this issue? The short of it is that, during my freshman year, I:

  • acquired a chronic infection that blew up into appendicitis,
  • was denied death,
  • met what or who some Christians tell me is “God,” what some Hindus tell me what or who is “Brahma,” and what some Buddhists tell me is the “self,” and
  • became obsessed with the basic tenets of good health like food, water, air, and exercise in hopes of never again facing Lady Death (who, in my experience, is an entirely different, albeit pleasant fellow).

In doing so, I got an air filter with the expectation that I’d be hoovering away the carpet cleaners that Housing liberally lathers onto every imaginable surface. On a whim, I got an air quality monitor. After all, why not have some metrics to quantify the effectiveness of my interventions?

What I did not expect, though, was to find that the air quality monitor was a better investment than the air filter itself. Immediately upon setting it up, my monitor generally found the particulate matters scores (and hence air quality) to be rather acceptable. However, what was alarming was the ambient reading of 1400 ppm CO2 in my room. For those who do not have the thumbstick guidelines of air quality internalized, anything above 1000 ppm is synonymous with “open your window!” [American Society of Heating, Refrigerating and Air-Conditioning Engineers] Surely my CO2 meter was wrong, I thought. But no. The atmosphere—serving as an easy calibrator—read an expected 400 ppm CO2 [climate.nasa.gov]. Breathing into the device skyrocketed the reading to nearly 40,000 ppm, which was also expected [Issarow et al. (2015), Journal of Theoretical Biology ]. Continual measurements with the meter revealed that my room actually averaged from 1400-1800 ppm, even when no one was in the room. From there, the only question that naturally followed was, “how high can these levels get when I’m sleeping?”

For reference, my roommate and I are in Avery. We’ve got pretty nice facilities here. BUT! The air circulation is kind of … not circulating. Given this, and that we cannot choose to stop ourselves from breathing, the answer is about a plateau of 2200-2600 ppm CO2. When we hosted a CUCer (Caltech Up Close participant; Caltech did not think this name through, evidently), levels reached a brain-adulterating 3700 ppm. In fact, the levels of CO2 are so highly correlated to the number of humans present in our room that I can estimate when my roommate returns for the night by simply observing when a major uptick occurs on the monitor.

It is almost self-evident that these levels of CO2 are unhealthy. This can simply be observed by going outside after spending a night in the airtight boxes that are Avery dorms and noticing that your brain comes alive after feeling starved for air. However, for the statistical aficionados among my readers, the detrimental effect of CO2 concentrations in indoor spaces can be quantified (and no, you should not use these as a guideline to figure out how much caffeine you need to “cancel out” the effects of stale air. Go outside).

Conventional wisdom says that CO2 is not a direct pollutant, but rather an indicator of stale air which, in turn, contains pollutants that are responsible for the associated effects of high CO2. However, researchers from the Department of Energy’s Lawrence Berkeley National Laboratory disputed this wisdom in a study of 24 participants, mostly college students. The researchers subjected the subjects to a Strategic Management Simulation (SMS) — a generalized test utilizing computerized simulations of everyday tasks, employed in both clinical and professional settings to assess the influence of agents such as drugs, pharmaceuticals, brain injuries, etc on cognitive performance — under elevated CO2 concentrations. Students were placed in small-office-like chambers for 2.5 hours at three concentrations of CO2: 600 ppm, 1000 ppm, and 2500 ppm. Ultrapure CO2 was injected into the air supply and stirred into the surrounding air, with all other factors (temperature, humidity, ventilation rate, pollutants, etc) kept constant. Across all metrics, at both 1000 ppm and 2500 ppm, obvious effects were noted by the researchers relative to the baseline of 600 ppm. Scores in categories of basic & applied activity, information utilization & usage, initiative, and basic strategy all decreased in the neighborhood of 20% to 50%, with some (such as initiative) decreasing by a whopping 91% at 2500 ppm [Satish et al. (2012), Environmental Health Perspectives ]. It is important to note that these metrics are derived from a score, which are derived from a contrived test, that show the effect of CO2 on artificially constructed metrics and tasks. Further, the study only utilized 24 participants, so it does demand that, if one wants to generally quantify how it affects humans, we should employ larger studies. However, despite the limitations of the study, such startling results suggest that overall brain function may be negatively impacted and that we must seek out more studies and metrics to understand how extreme this effect might be.

Harvard’s CogFx study shines some light on this. CogFx took a cohort of 302 office workers in six countries—China, India, Mexico, Thailand, the UK, and the US—and measured the effects of CO2 on cognitive function. In these studies, they employed a Stroop test (where color names are colored different colors, e.g. “Purple,” but colored blue and one must correctly name the color of the word) and an addition-subtraction test. For every 500 ppm increase, the researchers found that their response times for these tests slowed by 1.4-1.8%, and throughput (the rate of correct responses per minute) to be 2.1-2.4% lower [Laurent et al. (2021), Environmental Research Letters ]. While these numbers don’t appear to be too large in relation to the Berkeley study, one must keep in mind that they’re per 500 ppm increases, meaning at the average CO2 concentrations within my dorm room (about 1400-1800 ppm), I can expect my cognition and my ability to answer questions to be impaired by three times the above rates. And this is just while I’m awake. While I’m not solving integrals in my sleep (unless the stress of exam season gets so bad that this school invades my only refuge — dreams), I cannot imagine an agent that decreases my cognitive function to be beneficial to the memory consolidation [Klinzing et al. (2019), Nature Neuroscience ], clearing of cellular trash from my brain [Eugene and Masiak (2015), MEDtube Science ] and the general repair processes that occur while I sleep [Peters (2010), Verywell Health ].

Generally, it needn’t be harped on as to why students at Caltech should care so much about the quality of air and how it affects our cognitive function. It is quite simple: you cannot not breathe, and if the air is polluted or suffocates your brain, then you are forced to breathe it in. At such a high octane school, even a minute decrease in response times and throughput correctly not only directly impacts our grades, but also our confidence and every downstream consequence of that (mental health, physical health, the whole shebang).

And what to do about this problem? The obvious answer is “open your window,” but respectfully, the air in Pasadena is part of the LA basin ecosystem, and hence the outdoor air is completely awful. Fine particulate matter (2.5 microns, or PM2.5) is an antagonist to human health linked to increasing the rates of cancer, heart disease, and practically every chronic illness [World Health Organisation]. Further, Pasadena experiences an average of 13.8 unhealthy PM2.5 days a year, and 111 of 365 unhealthy ozone days. To understand just how bad this is, the EPA targets no more than 3.2 unhealthy ozone days per year. Worse yet, in terms of PM2.5, the American Lung Association notes that Pasadena air fails to meet federal targets for both short and long term exposure and ranks in the top ten for the most unhealthy levels nationwide [iqair.com].

And what do I personally do? In my own case, my room is situated next to Del Mar Blvd on the outskirts of campus, so I truly believe it to be a hazard to keep my window open on a bad day; I’ve woken up with the back of my throat caked with a dehydrating pith of some chemical monstrosity, no doubt a concoction of cancerous gasoline byproducts and even MORE microplastics from tires [Mueller, Steffen et al. (2021) International journal of environmental research and public health ][Tamis et al. (2021), Micropl. & Nanopl. ]. Further, our air conditioners are self-cycling and not connected to the outdoors, so it’s not as if we can pull in filtered fresh air as is possible in Venerable House. As I see it, there are only four solutions: 1) don’t breathe, 2) move out of Avery, 3) get a window adapter that allows my filter to suck in air from the outdoors, 4) knock down Avery house and rebuild it with healthy circulation air in mind. None of these are particularly attractive, and while 3 seems the most practical to me, it isn’t advice that one can give out to the general student population as it demands they whip out their construction skills, risk violating Housing policy, drain their wallets, and buy an air filter.

Now, after yapping for 1600 words that basically summarize to, “My window is open except for when the air outside sucks,” all I can really encourage is just try it out yourself. Maybe I wrote this article to complain and I’ve managed to annoy every house for complaining about Avery facilities. Or maybe, it’s an ask to just be aware of the subtleties around us and how they affect you, personally. Open your window, maybe. Drink some water, maybe. Get some sunlight, maybe. Go outside, maybe. There’s really not too much more to say. If living and dying has taught me anything, it’s that there’s a whole world out there, and there’s nary a neuron in any of our heads that’s going to benefit from being stuffed in a stuffy brain in an even stuffier room.

References:

  • Scauzillo, Steve. 2019. “Caltech Landscaper Applied ‘Probable Carcinogen’ in Graduate Housing Complex, Playground.” Pasadena Star News. July 18, 2019. https://www.pasadenastarnews.com/2019/07/17/caltech-landscaper-applied-probable-carcinogen-in-graduate-housing-complex-playground/ .
  • Du, Fangni, Huiwen Cai, Qun Zhang, Qiqing Chen, and Huahong Shi. 2020. “Microplastics in Take-out Food Containers.” Journal of Hazardous Materials 399 (November): 122969. https://doi.org/10.1016/j.jhazmat.2020.122969 .
  • Persily, Andrew, Corinne Mandin, and William Bahnfleth. 2022. “ASHRAE Position Document on Indoor Carbon Dioxide.” The American Society of Heating, Refrigerating and Air-Conditioning Engineers.
  • Buis, Alan. 2019. “The Atmosphere: Getting a Handle on Carbon Dioxide.” Climate Change: Vital Signs of the Planet. NASA. October 9, 2019. https://climate.nasa.gov/news/2915/the-atmosphere-getting-a-handle-on-carbon-dioxide/ .
  • Issarow, Chacha M et al. 2015. “Modelling the risk of airborne infectious disease using exhaled air.” Journal of theoretical biology vol. 372: 100-6. doi:10.1016/j.jtbi.2015.02.010
  • Satish, Usha et al. 2012. “Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance.” Environmental health perspectives vol. 120,12: 1671-7. doi:10.1289/ehp.1104789
  • Laurent, Jose Guillermo Cedeño et al. 2021. “Associations between Acute Exposures to PM2.5 and Carbon Dioxide Indoors and Cognitive Function in Office Workers: A Multicountry Longitudinal Prospective Observational Study.” Environmental research letters : ERL [Web site] vol. 16,9: 094047. doi:10.1088/1748-9326/ac1bd8
  • Klinzing, Jens G et al. “Mechanisms of systems memory consolidation during sleep.” 2019. Nature neuroscience vol. 22,10: 1598-1610. doi:10.1038/s41593-019-0467-3
  • Eugene, Andy R, and Jolanta Masiak. 2015. “The Neuroprotective Aspects of Sleep.” MEDtube science vol. 3,1: 35-40.
  • Peters, Brandon. 2010. “Importance of Body and Mind Restoration during Sleep.” Verywell Health. Verywell Health. October 14, 2010. https://www.verywellhealth.com/why-do-we-sleep-the-theories-and-purpose-of-sleeping-3014828 .
  • World Health Organisation. 2022. “Household Air Pollution and Health.” Who.int. World Health Organization: WHO. November 28, 2022. https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health
  • Mueller, Steffen et al. “An Assessment on Ethanol-Blended Gasoline/Diesel Fuels on Cancer Risk and Mortality.” International journal of environmental research and public health vol. 18,13 6930. 28 Jun. 2021, doi:10.3390/ijerph18136930.
  • Tamis, J.E., Koelmans, A.A., Dröge, R. et al. Environmental risks of car tire microplastic particles and other road runoff pollutants. Micropl.&Nanopl. 1, 10 (2021). https://doi.org/10.1186/s43591-021-00008-w Tamis et. al, Microplastics & Nanoplastics
  • “Pasadena Air Quality Index (AQI) and California Air Pollution | AirVisual.” n.d. Www.iqair.com. https://www.iqair.com/ca/usa/california/pasadena .

IMAGES

  1. ≫ Greenhouse Gases, Climate Change, and Global Warming Free Essay

    write a essay on green house effect

  2. Global Warming

    write a essay on green house effect

  3. Greenhouse Effect.

    write a essay on green house effect

  4. The Greenhouse Effect, Simplified

    write a essay on green house effect

  5. Greenhouse Effect Paragraph

    write a essay on green house effect

  6. Carbon cycle and greenhouse effect

    write a essay on green house effect

VIDEO

  1. Green House Effect 🤯 #facts #co2

  2. Green house effect

  3. Green House Effects Essay In English

  4. GREEN HOUSE EFFECT

  5. Global Warming

  6. Green House Effect Urdu Hindi

COMMENTS

  1. Essay on Greenhouse Effect for Students

    600 Words Essay on Greenhouse Effect. A Greenhouse, as the term suggests, is a structure made of glass which is designed to trap heat inside. Thus, even on cold chilling winter days, there is warmth inside it. Similarly, Earth also traps energy from the Sun and prevents it from escaping back. The greenhouse gases or the molecules present in the ...

  2. The Greenhouse Effect and our Planet

    The greenhouse effect happens when certain gases, which are known as greenhouse gases, accumulate in Earth's atmosphere. Greenhouse gases include carbon dioxide (CO 2), methane (CH 4), nitrous oxide (N 2 O), ozone (O 3), and fluorinated gases.. Greenhouse gases allow the sun's light to shine onto Earth's surface, and then the gases, such as ozone, trap the heat that reflects back from ...

  3. Greenhouse Effect

    greenhouse effect. phenomenon where gases allow sunlight to enter Earth's atmosphere but make it difficult for heat to escape. greenhouse gas. gas in the atmosphere, such as carbon dioxide, methane, water vapor, and ozone, that absorbs solar heat reflected by the surface of the Earth, warming the atmosphere.

  4. Greenhouse effect

    greenhouse effect, a warming of Earth's surface and troposphere (the lowest layer of the atmosphere) caused by the presence of water vapour, carbon dioxide, methane, and certain other gases in the air. Of those gases, known as greenhouse gases, water vapour has the largest effect.. The origins of the term greenhouse effect are unclear. French mathematician Joseph Fourier is sometimes given ...

  5. What is the greenhouse effect?

    The greenhouse effect is the process through which heat is trapped near Earth's surface by substances known as 'greenhouse gases.'. Imagine these gases as a cozy blanket enveloping our planet, helping to maintain a warmer temperature than it would have otherwise. Greenhouse gases consist of carbon dioxide, methane, ozone, nitrous oxide ...

  6. Greenhouse effect

    Definition. The greenhouse effect on Earth is defined as: "The infrared radiative effect of all infrared absorbing constituents in the atmosphere.Greenhouse gases (GHGs), clouds, and some aerosols absorb terrestrial radiation emitted by the Earth's surface and elsewhere in the atmosphere.": 2232 The enhanced greenhouse effect describes the fact that by increasing the concentration of GHGs in ...

  7. 21.1: The Greenhouse Effect and Climate Change

    The scientific consensus is clear: through alterations of the carbon cycle, humans are changing the global climate by increasing the effects of something known as the greenhouse effect. Figure 21.1.a 21.1. a : This graph shows the predicted temperatures from two climate models and observed temperatures from 1880 to 2020.

  8. Greenhouse effect

    The greenhouse effect occurs in the atmosphere, and is an essential part of How the Earth System Works. Click the image on the left to open the Understanding Global Change Infographic. Locate the greenhouse effect icon and identify other topics that cause changes to, or are affected by, the greenhouse effect.

  9. What Is the Greenhouse Effect?

    The Short Answer: The greenhouse effect is a process that occurs when gases in Earth's atmosphere trap the Sun's heat. This process makes Earth much warmer than it would be without an atmosphere. The greenhouse effect is one of the things that makes Earth a comfortable place to live.

  10. The greenhouse effect

    A greenhouse gas is called that because it absorbs infrared radiation from the Sun in the form of heat, which is circulated in the atmosphere and eventually lost to space. Greenhouse gases also increase the rate at which the atmosphere can absorb short-wave radiation from the Sun, but this has a much weaker effect on global temperatures.

  11. What are the effects of global warming?

    This keeps Earth warm, like a greenhouse, and this warming is known as the greenhouse effect. Carbon dioxide is the most commonly found greenhouse gas and about 75 percent of all the climate ...

  12. Greenhouse Effect

    The "greenhouse effect" is a complicated process by which the earth is becoming progressively warmer. The earth is bathed in sunlight, some of it reflected back into space and some absorbed. If the absorption is not matched by radiation back into space, the earth will get warmer until the intensity of that radiation matches the incoming ...

  13. 3.2: The Greenhouse Effect

    This page titled 3.2: The Greenhouse Effect is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Laci M. Gerhart-Barley. The process by which the atmosphere absorbs the sun's energy and prevents it from being radiated back out to space has often been compared to that of a greenhouse, leading to the nickname the ….

  14. 5 things you should know about the greenhouse gases warming the planet

    The greenhouse effect describes a similar phenomenon on a planetary scale but, instead of the glass of a greenhouse, certain gases are increasingly raising global temperatures. The surface of the Earth absorbs just under half of the sun's energy, while the atmosphere absorbs 23 per cent, and the rest is reflected back into space. Natural ...

  15. Climate Change: Evidence and Causes: Update 2020

    C ONCLUSION. This document explains that there are well-understood physical mechanisms by which changes in the amounts of greenhouse gases cause climate changes. It discusses the evidence that the concentrations of these gases in the atmosphere have increased and are still increasing rapidly, that climate change is occurring, and that most of ...

  16. What Is Greenhouse Effect?

    A greenhouse is a house made of glass that can be used to grow plants. The sun's radiations warm the plants and the air inside the greenhouse. The heat trapped inside can't escape out and warms the greenhouse which is essential for the growth of the plants. Same is the case in the earth's atmosphere. During the day the sun heats up the ...

  17. PDF greenhouse effect

    Greenhouse gases let the sun's light shine onto the Earth's surface, but they trap the heat that reflects back up into the atmosphere. In this way, they act like the glass walls of a greenhouse. This greenhouse effect keeps the Earth warm enough to sustain life. Scientists say that without the greenhouse effect, the average temperature of ...

  18. How Do We Reduce Greenhouse Gases?

    To stop climate change, we need to stop the amount of greenhouse gases, like carbon dioxide, from increasing.For the past 150 years, burning fossil fuels and cutting down forests, which naturally pull carbon dioxide out of the air, has caused greenhouse gas levels to increase. There are two main ways to stop the amount of greenhouse gases from increasing: we can stop adding them to the air ...

  19. The Greenhouse Effect and our Planet

    Greenhouse gases include gases such as carbon dioxide (CO 2), methane (CH 4), nitrous oxide (N 2 O), ozone (O 3), and fluorinated gases. These greenhouse gases allow the sun's light to shine onto Earth's surface. Then the gases, such as ozone, trap the heat that reflects back from the surface inside Earth's atmosphere.The gases act like the glass walls of a greenhouse.

  20. Global warming

    Modern global warming is the result of an increase in magnitude of the so-called greenhouse effect, a warming of Earth's surface and lower atmosphere caused by the presence of water vapour, carbon dioxide, methane, nitrous oxides, and other greenhouse gases. In 2014 the IPCC first reported that concentrations of carbon dioxide, methane, and ...

  21. What causes the greenhouse effect?

    Students should be able to describe the greenhouse effect in terms of the interaction of short and long wavelength radiation with matter. AQA Combined science: Synergy. 4.4 Explaining change. 4.4.1 The Earth's atmosphere. 4.4.1.3 The greenhouse gas effect. Describe the greenhouse effect in terms of the interaction of radiation with matter.

  22. The GREENHOUSE EFFECT in EFFECT

    global warming comes to us . live and direct . the EARTH is becoming . a burnt out wreck. . You see the GREENHOUSE EFFECT . is in EFFECT. Burning Tropical rain forest . producing carbon dioxide . increasing global warming .

  23. Why writing by hand beats typing for thinking and learning

    "When you're writing a long essay, it's obviously much more practical to use a keyboard," says van der Meer. Still, given our long history of using our hands to mark meaning in the world, some ...

  24. The Avery Greenhouse Effect

    The Avery Greenhouse Effect. May 17, 2024. Op-Ed. Henry Lane. Caltech is literally killing you. The workload is inundating, the stress is nonstop, and the sleep is nonexistent. But the stressors of this Institution go beyond the mental. Caltech-hired landscapers have been criticized for spraying carcinogenic herbicides around graduate student ...