• Open access
  • Published: 04 July 2019

A systematic review of blockchain

  • Min Xu   ORCID: orcid.org/0000-0002-3929-7759 1 ,
  • Xingtong Chen 1 &
  • Gang Kou 1  

Financial Innovation volume  5 , Article number:  27 ( 2019 ) Cite this article

96k Accesses

307 Citations

14 Altmetric

Metrics details

Blockchain is considered by many to be a disruptive core technology. Although many researchers have realized the importance of blockchain, the research of blockchain is still in its infancy. Consequently, this study reviews the current academic research on blockchain, especially in the subject area of business and economics. Based on a systematic review of the literature retrieved from the Web of Science service, we explore the top-cited articles, most productive countries, and most common keywords. Additionally, we conduct a clustering analysis and identify the following five research themes: “economic benefit,” “blockchain technology,” “initial coin offerings,” “fintech revolution,” and “sharing economy.” Recommendations on future research directions and practical applications are also provided in this paper.

Introduction

The concepts of bitcoin and blockchain were first proposed in 2008 by someone using the pseudonym Satoshi Nakamoto, who described how cryptology and an open distributed ledger can be combined into a digital currency application (Nakamoto 2008 ). At first, the extremely high volatility of bitcoin and the attitudes of many countries toward its complexity restrained its development somewhat, but the advantages of blockchain—which is bitcoin’s underlying technology—attracted increasing attention. Some of the advantages of blockchain include its distributed ledger, decentralization, information transparency, tamper-proof construction, and openness. The evolution of blockchain has been a progressive process. Blockchain is currently delimited to Blockchain 1.0, 2.0, and 3.0, based on their applications. We provide more details on the three generations of blockchain in the Appendix . The application of blockchain technology has extended from digital currency and into finance, and it has even gradually extended into health care, supply chain management, market monitoring, smart energy, and copyright protection (Engelhardt 2017 ; Hyvarinen et al. 2017 ; Kim and Laskowski 2018 ; O'Dair and Beaven 2017 ; Radanovic and Likic 2018 ; Savelyev 2018 ).

Blockchain technology has been studied by a wide variety of academic disciplines. For example, some researchers have studied the underlying technology of blockchain, such as distributed storage, peer-to-peer networking, cryptography, smart contracts, and consensus algorithms (Christidis and Devetsikiotis 2016 ; Cruz et al. 2018 ; Kraft 2016 ). Meanwhile, legal researchers are interested in the regulations and laws governing blockchain-related technology (Kiviat 2015 ; Paech 2017 ). As the old saying goes: scholars in different disciplines have many different analytical perspectives and “speak many different languages.” This paper focuses on analyzing and combing papers in the field of business and economics. We aim to identify the key nodes (e.g., the most influential articles and journals) in the related research and to find the main research themes of blockchain in our discipline. In addition, we hope to offer some recommendations for future research and provide some suggestions for businesses that wish to apply blockchain in practice.

This study will conduct a systematic and objective review that is based on data statistics and analysis. We first describe the overall number and discipline distribution of blockchain-related papers. A total of 756 journal articles were retrieved. Subsequently, we refined the subject area to business and economics, and were able to add 119 articles to our further analysis. We then explored the influential countries, journals, articles, and most common keywords. On the basis of a scientific literature analysis tool, we were able to identify five research themes on blockchain. We believe that this data-driven literature review will be able to more objectively present the status of this research.

The rest of this paper is organized as follows. In the next section, we provided an overview of the existing articles in all of the disciplines. We holistically describe the number of papers related to blockchain and discipline distribution of the literature. We then conduct a further analysis in the subject field of business and economics, where we analyze the countries, publications, highly cited papers, and so on. We also point out the main research themes of this paper, based on CiteSpace. This is followed by recommendations for promising research directions and practical applications. In the last section, we discuss the conclusions and limitations.

Overview of the current research

In our research, we first conducted a search on Web of Science Core Collection (WOS), including four online databases: Science Citation Index Expanded (SCI-EXPANDED), Social Sciences Citation Index (SSCI), Arts & Humanities Citation Index (A&HCI), and Emerging Sources Citation Index (ESCI). We chose WOS because the papers in these databases can typically reflect scholarly attention towards blockchain. When searching the term “blockchain” as a topic, we found a total of 925 records in these databases. After filtering out the less representative record types, we reduced these papers to 756 articles that were then used for further analysis. We extracted the full bibliographic record of the articles that we identified from WOS, including information on the title, author, keywords, abstract, journal, year, and other publication information. These records were then exported to CiteSpace for subsequent analysis. CiteSpace is a scientific literature analysis tool that enables us to visualize trends and patterns in the scientific literature (Chen 2004 ). In this paper, CiteSpace is used to visually represent complex structures for statistical analysis and to conduct cluster analysis.

Table  1 shows the number of academic papers published per year. We have listed the number of all of the publications in WOS, the number of articles in all of the disciplines, and the number of articles in business and economics subjects. It should be noted that we retrieved the literature on March 25, 2019. Therefore, the number of articles in 2019 is relatively small. The number of papers has continued to grow in recent years, which suggests that there is a growing interest in blockchain. All of the extracted papers in WOS were published after 2015, which is seven years after blockchain and bitcoin was first described by Nakamoto. In these initial seven years, many papers were published online or indexed by other databases. However, we have not discussed these papers here. We only chose WOS, representative high-level literature databases. This is the most common way of doing a literature review (Ipek 2019 ).

In the 756 articles that we managed to retrieve, the three most common keywords besides blockchain are bitcoin, smart contract, and cryptocurrency, with the frequency of 113 times, 72 times, and 61 times, respectively. This shows that the majority of the literature mentions the core technology of blockchain and its most widely known application—bitcoin.

In WOS, each article is assigned to one or more subject categories. Therefore, we use CiteSpace to visualize what research areas are involved in current research on blockchain. Figure  1 shows a network of such subject categories. The most common category is Computer Science, which has the largest circle, followed by Engineering and Telecommunications. Business and Economics is also a common subject area for blockchain. Consequently, in the following session, we will conduct further analysis in this field.

figure 1

Disciplines in blockchain

Articles in business and economics

Given that the main objective of our research was to understand the research of blockchain in the area of economics and management, we conduct an in-depth analysis on the papers in this field. We refined the research area to Business and Economics, and we finally retrieved 119 articles from WOS. In this session, we analyzed their published journals, research topics, citations, and so on, to depict the research status of blockchain in the field of business and economics more comprehensively.

There are several review papers on blockchain. Each of these paper contains a summary of multiple research topics, instead of a single topic. We do not include these literature reviews in our paper. However, it is undeniable that these articles also play an important role on the study of blockchain. For instance, Wang et al. ( 2019 ) investigate the influence of blockchain on supply chain practices and policies. Zhao et al. ( 2016 ) suggest blockchain will widely adopted in finance and lead to many business innovations and research opportunities.

The United States, the United Kingdom, and Germany are the top three countries by the number of papers published on blockchain; the specific data are shown in Table  2 . The United States released more papers than the other countries and it produced more than one-third of the total articles. As of the time of data collection, China contributed 11 papers, ranking fourth. The 119 papers in total are drawn from 17 countries and regions. In contrast, we searched “big data” and “financial technology” in the same way, and found 286 papers on big data that came from 24 countries, while 779 papers on fintech came from 43 countries. This shows that blockchain is still an emerging research field, and it needs more countries and scholars to join in the research effort.

We counted the journals published in these papers and we found that 44 journals published related papers. Table  3 lists the top 11 journals to have published blockchain research. First is “Strategic Change: Briefings in Entrepreneurial Finance,” followed by “Financial Innovation” and “Asia Pacific Journal of Innovation and Entrepreneurship.” The majority of papers in the journal “Strategic Change” were published in 2017, except for one in 2018 and one in 2019. Papers in the journal “Financial Innovation” were generally published in 2016, with one published in 2017 and one in 2019. All five of the papers in the journal “Asia Pacific Journal of Innovation and Entrepreneurship” were published in 2017.

Cited references

Table  4 presents the top six cited publications, which were cited no less than five times. The list consists of three books and three journal articles. Some of these publications introduce blockchain from a technical perspective and some from an application perspective. Swan’s ( 2015 ) book illustrates the application scenarios of blockchain technology. In this book, the author describes that blockchain is essentially a public ledger with potential as a decentralized digital repository of all assets—not only tangible assets but also intangible assets such as votes, software, health data, and ideas. Tapscott and Tapscott’s ( 2016 ) book explains why blockchain technology will fundamentally change the world. Yermack ( 2017 ) points out that blockchain will have a huge impact and will present many challenges to corporate governance. Böhme et al. ( 2015 ) introduce bitcoin, the first and most famous application of blockchain. Narayanan et al. ( 2016 ) also focus on bitcoin and explain how bitcoin works at a technical level. Lansiti and Lakhani ( 2017 ) argue it will take years to truly transform the blockchain because it is a fundamental rather than destructive technology, which will not drive implementation, and companies will need other incentives to adopt blockchain.

Most influential articles

These 119 papers were cited 314 times in total, and 270 times without self-citations. The number of articles that they cited are 221, of which 197 are non-self-citations. The most influential articles with more than 10 citations are listed in Table  5 . The most popular article in our dataset is Lansiti and Lakhani ( 2017 ), with 49 citations in WOS. This suggests that this article has had a strong influence on the research of blockchain. This paper believes there is still a distance to the real application of the blockchain. The other articles describe how blockchain affects and works in various areas, such as financial services, organizational management, and health care. Since blockchain is an emerging technology, it is particularly necessary to explore how to combine blockchains with various industries and fields.

By comparing the journals in Tables 4 and 5 , we find that some journals appeared in both of the lists, such as Financial Innovation. In other words, papers on blockchain are more welcomed in these journals and the journal’s papers are highly recognized by other scholars. Meanwhile, although journals such as Harvard Business Review have only published a few papers related to blockchain, they are highly cited. Consequently, the journals in both of these lists are of great importance.

Research themes

Addressing research themes is crucial to understanding a research field and exploring future research directions. This paper explored the research topic based on keywords. Keywords are representative and concise descriptions of article content. First, we analyzed the most common keywords used by the papers. We find that the top five most frequently used keywords are “blockchain,” “bitcoin,” “cryptocurrency,” “fintech,” and “smart contract.” Although the potential for blockchain applications goes way beyond digital currencies, bitcoin and other cryptocurrencies—as an important blockchain application scenario in the finance industry—were widely discussed in these articles. Smart contracts allow firms to set up automated transactions in blockchains, thus playing a fundamentally supporting role in blockchain applications. Similar to the literature in all of the subject areas, studies in business and economics also frequently use bitcoin, cryptocurrency, and smart contract as their keywords. The difference is that many researchers have combined blockchain with finance, regarding it as an important financial technology.

After analyzing the frequency of keywords, we conducted a keywords clustering analysis to identify the research themes. As shown in Fig.  2 , five clusters were identified through the log-likelihood ratio (LLR) algorithm in Citespace, they are: cluster #0 “economic benefit,” cluster #1 “blockchain technology,” cluster #2 “initial coin offerings,” cluster #3 “fintech revolution,” and cluster #4 “sharing economy.”

figure 2

Disciplines and topics

Many researchers have studied the economic benefits of blockchain. They suggest the application of blockchain technology to streamline transactions and settlement processes can effectively reduce the costs associated with manual operations. For instance, in the health care sector, blockchain can play an important role in centralizing research data, avoiding prescription drug fraud, and reducing administrative overheads (Engelhardt 2017 ). In the music industry, blockchain could improve the accuracy and availability of copyright data and significantly improve the transparency of the value chain (O'Dair and Beaven 2017 ). Swan ( 2017 ) expound the economic value of block chain through four typical applications, such as digital asset registries, leapfrog technology, long-tail personalized economic services, and payment channels and peer banking services.

The representative paper for cluster “blockchain technology” was published by Lansiti and Lakhani ( 2017 ), who analyze the inherent features of blockchain and pointed out that we still have a lot to do to apply blockchain extensively. Other researchers have explored the characteristics of blockchain technology from multiple perspectives. For example, Xu ( 2016 ) explores the types of fraud and malicious activities that blockchain technology can prevent and identifies attacks to which blockchain remains vulnerable. Meanwhile, Aune et al. ( 2017 ) propose a cryptographic approach to solve information leakage problems on a blockchain.

Initial coin offering (ICO) is also a research topic of great concern to scholars. Many researchers analyze the determinants of the success of initial coin offerings (Adhami et al. 2018 ; Ante et al. 2018 ). For example, Fisch ( 2019 ) assesses the determinants of the amount raised in ICOs and discusses the role of signaling ventures’ technological capabilities in ICOs. Deng et al. ( 2018 ) argue the outright ban on ICOs might hamper revolutionary technological development and they provided some regulatory reform suggestions on the current ICO ban in China.

Many researchers have explored blockchain’s support for various industries. The fintech revolution brought by the blockchain has received extensive attention (Yang and Li 2018 ). Researchers agree that this nascent technology may transform traditional trading methods and practice in financial industry (Ashta and Biot-Paquerot 2018 ; Chen et al. 2017 ; Kim and Sarin 2018 ). For instance, Gomber et al. ( 2018 ) discuss transformations in four areas of financial services: operations management, payments, lending, and deposit services. Dierksmeier and Seele ( 2018 ) address the impact of blockchain technology on the nature of financial transactions from a business ethics perspective.

Another cluster corresponds to the sharing economy. A handful of researchers have focused on this field and they have discussed the supporting role played by blockchain in the sharing economy. Pazaitis et al. ( 2017 ) describe a conceptual economic model of blockchain-based decentralized cooperation that might better support the dynamics of social sharing. Sun et al. ( 2016 ) discuss the contribution of emerging blockchain technologies to the three major factors of the sharing economy (i.e., human, technology, and organization). They also analyze how blockchain-based sharing services contribute to smart cities.

In this section, we will discuss the following issues: (1) What will be the future research directions for blockchain? (2) How can businesses benefit from blockchain? We hope that our discussions will be able to provide guidance for future academic development and social practice.

What will be the future research directions for blockchain?

In view of the five themes mentioned in this paper, we provide some recommendations for future research in this section.

The economic benefits of blockchain have been extensively studied in previous research. For individual businesses, it is important to understand the effects of blockchain applications on the organizational structure, mode of operation, and management model of the business. For the market as a whole, it is important to determine whether blockchain can resolve the market failures that are brought about by information asymmetry, and whether it can increase market efficiency and social welfare. However, understanding the mechanisms through which blockchain influences corporate and market efficiency will require further academic inquiry.

For researchers of blockchain technology, this paper suggests that we should pay more attention to privacy protection and security issues. Despite the fact that all of the blockchain transactions are anonymous and encrypted, there is still a risk of the data being hacked. In the security sector, there is a view that absolute security can never be guaranteed wherever physical contact exists. Consequently, the question of how to share transaction data while also protecting personal data privacy are particularly vital issues for both academic and social practice.

Initial coin offering and cryptocurrency markets have grown rapidly. They bring many interesting questions, such as how to manage digital currencies. Although the majority of the previous research has focused on the determinants of success of initial coin offerings, we believe that future research will discuss how to regulate cryptocurrency and the ICO market. The success of blockchain technology in digital currency applications prior to 2015 caught the attention of many traditional financial institutions. As blockchain has continued to reinvent itself, in 2019 it is now more than capable of meeting the needs of the finance industry. We believe that blockchain is able to achieve large-scale applications in many areas of finance, such as banking, capital markets, Internet finance, and related fields. The deep integration of blockchain technology and fintech will continue to be a promising research direction.

The sharing economy is often defined as a peer-to-peer based activity of sharing goods and services among individuals. In the future, sharing among enterprises may become an important part of the new sharing economy. Consequently, building the interconnection of blockchains may become a distinct trend. These interconnections will facilitate the linkages between processes of identity authentication, supply chain management, and payments in commercial operations. They will also allow for instantaneous information exchange and data coordination among enterprises and industries.

How can businesses benefit from blockchain?

Businesses can leverage blockchains in a variety of ways to gain an advantage over their competitors. They can streamline their core business, reduce transaction costs, and make intellectual property ownership and payments more transparent and automated (Felin and Lakhani 2018 ). Many researchers have discussed the application of blockchain in business. After analyzing these studies, we believe that enterprises can consider applying blockchain technology in the four aspects that follow.

Accounting settlement and crowdfunding

Bitcoin or another virtual currency supported by blockchain technology can help businesses to solve funding-related problems. For instance, cryptocurrencies support companies who wish to implement non-cash payments and accounting settlement. The automation of electronic transaction management accounting improves the level of control of monetary business execution, both internally and externally (Zadorozhnyi et al. 2018 ). In addition, blockchain technology represents an emerging source of venture capital crowdfunding (O'Dair and Owen 2019 ). Investors or founders of enterprises can obtain alternative entrepreneurial finance through token sales or initial coin offerings. Companies can handle financial-related issues more flexibly by holding, transferring, and issuing digital currencies that are based on blockchain technology.

Data storage and sharing

As the most valuable resource, data plays a vital role in every enterprise. Blockchain provide a reliable storage and efficient use of data (Novikov et al. 2018 ). As a decentralized and secure ledger, blockchain can be used to manage digital asset for many kinds of companies (Dutra et al. 2018 ). Decentralized data storage means you do not give the data to a centralized agency but give it instead to people around the world because no one can tamper with the data on the blockchain. Businesses can use blockchain to store data, improve the transparency and security of the data, and prevent the data from being tampered with. At the same time, blockchain also supports data sharing. For instance, all of the key parties in the accounting profession leverage an accountancy blockchain to aggregate and share instances of practitioner misconduct across the country on a nearly real-time basis (Sheldon 2018 ).

Supply chain management

Blockchain technology has the potential to significantly change supply chain management (SCM) (Treiblmaier 2018 ). Recent adoptions of the Internet of Things and blockchain technologies support better supply-chain provenance (Kim and Laskowski 2018 ). When the product goes from the manufacturer to the customer, important data are recorded in the blockchain. Companies can trace products and raw materials to effectively monitor product quality.

Smart trading

Businesses can build smart contracts on blockchain, which is widely used to implement business collaborations in general and inter-organizational business processes in particular. Enterprises can automate transactions based on smart contracts on block chains without manual confirmation. For instance, businesses can file taxes automatically under smart contracts (Vishnevsky and Chekina 2018 ).

Conclusions

This paper reviews 756 articles related to blockchain on the Web of Science Core Collection. It shows that the most common subject area is Computer Science, followed by Engineering, Telecommunications, and Business and Economics. In the research of Business and Economics, several key nodes are identified in the literature, such as the top-cited articles, most productive countries, and most common keywords. After a cluster analysis of the keywords, we identified the five most popular research themes: “economic benefit,” “blockchain technology,” “initial coin offerings,” “fintech revolution,” and “sharing economy.”

As an important emerging technology, blockchain will play a role in many fields. Therefore, we believe that the issues related to commercial applications of blockchain are critical for both academic and social practice. We propose several promising research directions. The first important research direction is understanding the mechanisms through which blockchain influences corporate and market efficiency. The second potential research direction is privacy protection and security issues. The third relates to how to manage digital currencies and how to regulate the cryptocurrency market. The fourth potential research direction is how to deeply integrate blockchain technology and fintech. The final topic is cross-chain technology—if each industry has its own blockchain system, then researchers and developers must discover new ways to exchange data. This is the key to achieving the Internet of Value. Thus, cross-chain technology will become an increasingly important topic as time goes on.

Businesses can benefit considerably from blockchain technology. Therefore, we suggest that the application of blockchain be taken into consideration when businesses have the following requirements: accounting settlement and crowdfunding, data storage and sharing, supply chain management, and smart trading.

Our study has recognized some limitations. First, this paper only analyzes the literature in Web of Science Core Collection databases (WOS), which may lead to the incompleteness of the relevant literature. Second, we filter our literature base on the subject category in WOS. In this process, we may have omitted some relevant research. Third, our recommendations have subjective limitations. We hope to initiate more research and discussions to address these points in the future.

Availability of data and materials

Data used in this paper were collected from Web of Science Core Collection.

Abbreviations

Initial coin offering

Web of Science Core Collection

Adhami S, Giudici G, Martinazzi S (2018) Why do businesses go crypto? An empirical analysis of initial coin offerings. J Econ Bus 100:64–75

Article   Google Scholar  

Ante L, Sandner P, Fiedler I (2018) Blockchain-based ICOs: pure hype or the Dawn of a new era of startup financing? J Risk Financ Manage 11(4):80

Ashta A, Biot-Paquerot G (2018) FinTech evolution: strategic value management issues in a fast changing industry. Strategic Change-Briefings in Entrepreneurial Finance 27(4):301–311

Google Scholar  

Aune RT, Krellenstein A, O'Hara M, Slama O (2017) Footprints on a Blockchain: trading and information leakage in distributed ledgers. J Trading 12(3):5–13

Böhme R, Christin N, Edelman B, Moore T (2015) Bitcoin: economics, technology, and governance. J Econ Perspect 29(2):213–238

Chen C (2004) Searching for intellectual turning points: progressive knowledge domain visualization. Proc Natl Acad Sci U S A 101(suppl:5303–5310

Chen Z, Li Y, Wu Y, Luo J (2017) The transition from traditional banking to mobile internet finance: an organizational innovation perspective - a comparative study of Citibank and ICBC. Financial Innovation 3(1):12

Christidis K, Devetsikiotis M (2016) Blockchains and smart contracts for the internet of things. Ieee Access 4:2292–2303

Crosby M, Pattanayak P, Verma S (2016) Blockchain technology: beyond bitcoin. Appl Innov 2:6–19

Cruz JP, Kaji Y, Yanai N (2018) RBAC-SC: role-based access control using smart contract. Ieee Access 6:12240–12251

Dai J, Vasarhelyi MA (2017) Toward Blockchain-based accounting and assurance. J Inf Syst 31(3):5–21

Deng H, Huang RH, Wu Q (2018) The regulation of initial coin offerings in China: problems, prognoses and prospects. Eur Bus Organ Law Rev 19(3):465–502

Dierksmeier C, Seele P (2018) Cryptocurrencies and business ethics. J Bus Ethics 152(1):1–14

Dutra A, Tumasjan A, Welpe IM (2018) Blockchain is changing how media and entertainment companies compete. MIT Sloan Manag Rev 60(1):39–3+

Engelhardt MA (2017) Hitching healthcare to the chain: an introduction to Blockchain Technology in the Healthcare Sector. Technol Innov Manage Rev 7(10):22–34

Fanning K, Centers DP (2016) Blockchain and its coming impact on financial services. J Corp Account Finance 27(5):53–57

Felin T, Lakhani K (2018) What problems will you solve with Blockchain? MIT Sloan Manag Rev 60(1):32–3+

Fisch C (2019) Initial coin offerings (ICOs) to finance new ventures. J Bus Ventur 34(1):1–22

Gomber P, Kauffman RJ, Parker C, Weber BW (2018) On the Fintech revolution: interpreting the forces of innovation, disruption, and transformation in financial services. J Manag Inf Syst 35(1):220–265

Green J, Newman P (2017) Citizen utilities: the emerging power paradigm. Energy Policy 105:283–293

Hyvarinen H, Risius M, Friis G (2017) A Blockchain-based approach towards overcoming financial fraud in public sector services. Bus Inf Syst Eng 59(6):441–456

Ipek I (2019) Organizational learning in exporting: a bibliometric analysis and critical review of the empirical research. Int Bus Rev 28(3):544–559

Kim HM, Laskowski M (2018) Toward an ontology-driven blockchain design for supply-chain provenance. Intell Syst Account Finance Manage 25(1):18–27

Kim S, Sarin A (2018) Distributed ledger and Blockchain technology: framework and use cases. J Invest Manage 16(3):90–101

Kiviat TI (2015) Beyond bitcoin: issues in regulating blockchain transactions. Duke Law J 65(3):569–608

Kraft D (2016) Difficulty control for blockchain-based consensus systems. Peer-to-Peer Networking and Applications 9(2):397–413

Lansiti M, Lakhani KR (2017) The truth about Blockchain. Harv Bus Rev 95(1):119–127

Mainelli M, Smith M (2015) Sharing ledgers for sharing economies: an exploration of mutual distributed ledgers (aka blockchain technology). J Financial Perspect 3(3):38-58

Nakamoto S (2008) Bitcoin: a peer-to-peer electronic cash system

Narayanan A, Bonneau J, Felten E, Miller A, Goldfeder S (2016). Bitcoin and cryptocurrency technologies: A Comprehensive Introduction. Princeton University Press: 336

Novikov SP, Mikheenko OV, Kulagina NA, Kazakov OD (2018) Digital registry of professional competences of the population drawing on distributed registries and smart contracts technologies. Biznes Informatika Business Inform 46(4):43–53

O'Dair M, Beaven Z (2017) The networked record industry: how blockchain technology could transform the record industry. Strateg Change Brief Entrep Finance 26(5):471–480

O'Dair M, Owen R (2019) Financing new creative enterprise through blockchain technology: opportunities and policy implications. Strateg Change Brief Entrep Finance 28(1):9–17

Paech P (2017) The governance of Blockchain financial networks. Mod Law Rev 80(6):1073–1110

Pazaitis A, De Filippi P, Kostakis V (2017) Blockchain and value systems in the sharing economy: the illustrative case of Backfeed. Technol Forecast Soc Chang 125:105–115

Pieroni A, Scarpato N, Di Nunzio L, Fallucchi F, Raso M (2018) Smarter city: smart energy grid based on blockchain technology. Int J Adv Sci Eng Inf Technol 8(1):298–306

Radanovic I, Likic R (2018) Opportunities for use of Blockchain Technology in Medicine. Appl Health Econ Health Policy 16(5):583–590

Savelyev A (2018) Copyright in the blockchain era: promises and challenges. Comput Law Secur Rev 34(3):550–561

Sheldon MD (2018) Using Blockchain to aggregate and share misconduct issues across the accounting profession. Curr Issues Audit 12(2):A27–A35

Sun J, Yan J, Zhang KZK (2016) Blockchain-based sharing services: what blockchain technology can contribute to smart cities. Financ Innov 2(1):26

Swan M (2015). Blockchain: Blueprint for a New Economy. O'Reilly Media: 152

Swan M (2017) Anticipating the economic benefits of Blockchain. Technol Innov Manage Rev 7(10):6–13

Tapscott D, Tapscott A (2016) Blockchain revolution: how the technology behind bitcoin is changing money, business, and the world. Portfolio: 368

Tapscott D, Tapscott A (2017) How Blockchain will change organizations. MIT Sloan Manag Rev 58(2):10–13

Treiblmaier H (2018) The impact of the blockchain on the supply chain: a theory-based research framework and a call for action. Supply Chain Manage Int J 23(6):545–559

Vishnevsky VP, Chekina VD (2018) Robot vs. tax inspector or how the fourth industrial revolution will change the tax system: a review of problems and solutions. J Tax Reform 4(1):6–26

Wang YL, Han JH, Beynon-Davies P (2019) Understanding blockchain technology for future supply chains: a systematic literature review and research agenda. Supply Chain Manage Int J 24(1):62–84

Xu JJ (2016) Are blockchains immune to all malicious attacks? Financ Innov 2(1):25

Yang D, Li M (2018) Evolutionary approaches and the construction of technology-driven regulations. Emerg Mark Financ Trade 54(14):3256–3271

Yermack D (2017) Corporate governance and Blockchains. Rev Finance 21(1):7–31

Zadorozhnyi ZMV, Murayskyi VV, Shevchuk OA (2018) Management accounting of electronic transactions with the use of cryptocurrencies. Financ Credit Activ Probl Theory Pract 3(26):169–177

Zhao JL, Fan S, Yan J (2016) Overview of business innovations and research opportunities in blockchain and introduction to the special issue. Financ Innov 2(1):28

Download references

Acknowledgements

Not applicable.

This research is supported by grants from National Natural Science Foundation of China (Nos. 71701168 and 71701034).

Author information

Authors and affiliations.

Southwestern University of Finance and Economics, Chengdu, China

Min Xu, Xingtong Chen & Gang Kou

You can also search for this author in PubMed   Google Scholar

Contributions

The first author contributed by retrieving literature and conducting data analysis. The second and third author contributed by writing the paper, especially the Discussion and Appendix . All authors read and approved the final manuscript.

Corresponding author

Correspondence to Min Xu .

Ethics declarations

Competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Three generations of blockchain

The scope of blockchain applications has increased from virtual currencies to financial applications to the entire social realm. Based on its applications, blockchain is delimited to Blockchain 1.0, 2.0, and 3.0.

Blockchain 1.0

Blockchain 1.0 was related to virtual currencies, such as bitcoin, which was not only the first and most widely used digital currency but it was also the first application of blockchain technology (Mainelli and Smith 2015 ). Digital currencies can reduce many of the costs associated with traditional physical currencies, such as the costs of circulation. Blockchain 1.0 produced a great many applications, one of which was Bitcoin. Most of these applications were digital currencies and tended to be used commercially for small-value payments, foreign exchange, gambling, and money laundering. At this stage, blockchain technology was generally used as a cryptocurrency and for payment systems that relied on cryptocurrency ecosystems.

Blockchain 2.0

Broadly speaking, Blockchain 2.0 includes Bitcoin 2.0, smart-contracts, smart-property, decentralized applications (Dapps), decentralized autonomous organizations (DAOs), and decentralized autonomous corporations (DACs) (Swan 2015 ). However, most people understand Blockchain 2.0 as applications in other areas of finance, where it is mainly used in securities trading, supply chain finance, banking instruments, payment clearing, anti-counterfeiting, establishing credit systems, and mutual insurance. The financial sector requires high levels of security and data integrity, and thus blockchain applications have some inherent advantages. The greatest contribution of Blockchain 2.0 was the idea of using smart-contracts to disrupt traditional currency and payment systems. Recently, the integration of blockchain and smart contract technology has become a popular research topic in problem resolution. For example, Ethereum, Codius, and Hyperledger have established programmable contract language and executable infrastructure to implement smart contracts.

Blockchain 3.0

In ‘Blockchain: Blueprint for a New Economy’, Blockchain 3.0 is described as the application of blockchain in areas other than currency and finance, such as in government, health, science, culture, and the arts (Swan 2015 ). Blockchain 3.0 aims to popularize the technology, and it focuses on the regulation and governance of its decentralization in society. The scope of this type of blockchain and its potential applications suggests that blockchain technology is a moving target (Crosby et al. 2016 ). Blockchain 3.0 envisions a more advanced form of “smart contracts” to establish a distributed organizational unit that makes and is subject to its own laws and which operates with a high degree of autonomy (Pieroni et al. 2018 ).

The integration of blockchain with tokens is an important combination of Blockchain 3.0. Tokens are proofs of digital rights, and blockchain tokens are widely recognized thanks to Ethereum and its ERC20 standard. Based on this standard, anyone can issue a custom token on Ethereum and this token can represent any right or value. Tokens refer to economic activities generated through the creation of encrypted tokens, which are principally but not exclusively based on the ERC20 standard. Tokens can serve as a form of validation of any right, including personal identity, academic diplomas, currency, receipts, keys, event tickets, rebate points, coupons, stocks, and bonds. Consequently, tokens can validate virtually any right that exists within a society. Blockchain is the back-end technology of the new era, while tokens are its front-end economic face. The combination of the two will bring about major societal transformation. Meanwhile, Blockchain 3.0 and its token economy continue to evolve.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Cite this article.

Xu, M., Chen, X. & Kou, G. A systematic review of blockchain. Financ Innov 5 , 27 (2019). https://doi.org/10.1186/s40854-019-0147-z

Download citation

Received : 01 May 2019

Accepted : 24 June 2019

Published : 04 July 2019

DOI : https://doi.org/10.1186/s40854-019-0147-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Systematic literature review
  • Business and economics

literature review of blockchain technology

A Systematic Review of Blockchain Applications

Ieee account.

  • Change Username/Password
  • Update Address

Purchase Details

  • Payment Options
  • Order History
  • View Purchased Documents

Profile Information

  • Communications Preferences
  • Profession and Education
  • Technical Interests
  • US & Canada: +1 800 678 4333
  • Worldwide: +1 732 981 0060
  • Contact & Support
  • About IEEE Xplore
  • Accessibility
  • Terms of Use
  • Nondiscrimination Policy
  • Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2024 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Springer Nature - PMC COVID-19 Collection

Logo of phenaturepg

A Systematic Literature Review of Blockchain Technology for Smart Villages

Parminder kaur.

Thapar Institute of Engineering and Technology, Patiala, Punjab India

Anshu Parashar

According to the United Nations, Sustainable Development Goals are framed for improving rural health, hunger, poverty issues, environmental conditions, and illiteracy globally. With the upcoming technology, there have been many advances in the lifestyle of people all around the world. Comparatively, more emphasis has been given to the development of urban areas than rural. The sustainable development of a country depends on the growth of its rural areas. Countless technological and theoretical models, projects, and frameworks have been proposed and implemented to help overcome sundry issues and challenges faced by rural people in quotidian life. New technological methods are deemed to be the future of livability, therefore; a technologically advanced solution for sustainable rural development is called for. Blockchain Technology is the next step for innovation and development and it has far many applications in sustainable rural development that are yet to be discovered. The objective of this paper is to explicitly review research conducted in rural development to fill the undone work in the future with better research ideas, to make rural areas a livable and advanced place while also maintaining their integrity leading to sustainable development. To conduct such a review, a systematic research methodology is applied following regulations in the conduction of standardized but explorative analysis. Within the timeline of 2010–2021, 112 papers are carefully selected to perform the systematic review. This review will provide a comprehensible as well as concise research compendium for all applications proposed, implemented, and possible in the future to realize the concept of smart villages for the development of rural areas using blockchain technology.

Graphic Abstract

An external file that holds a picture, illustration, etc.
Object name is 11831_2021_9659_Figa_HTML.jpg

Introduction

The development of a country partly depends on how well connected are its rural areas to the global chain and how technologically advanced they are. Rural areas as we know of are geographical locations sited outside town or cities with fewer populations. Essentially, we also know it as a place unprivileged of vital necessities, stricken by poverty [ 1 ], and unemployment. For many years, rural areas have been developing consecutively in Technology, Education, Housing, Governance, Human rights. Accordingly, the world’s rural population has dropped from 66.389 percent in 1960–44.286 [ 2 ] percent in 2019 due to various transformations. Years ago, people in rural areas were deprived of necessities such as water, electricity, and education. Even getting a reliable source of electricity was a strenuous effort. Moreover, female rights, reliable healthcare and subsequently securing a job were more of a dream. According to the United Nations, there can be seen a steady drop in the percentage of people residing in rural areas from 1960 to 2019 [ 3 ]. What was the core reason behind it? A general example of the reason can be migration, rural decline, demographic qualities, natural disasters, and infrastructure: transportation or socio-economic. These can further be exploited into many explanations as to what leads to those choices. Rural–Urban migration itself directs catastrophic changes in the environment and economy. Rural Decline is another consequence of migration that drains the area of services, businesses, and social capital forcing the development of the rural area to halt or probably diminish [ 4 ]. Even then, almost half of the world’s population comes under rural areas and it consists of many more issues than resolvable.

This section explores the interdependent backdrops of the rural area and a feasible solution through the concept of smart villages. Sustainable development goals with respect to Blockchain Technology are discussed in sub-Sect.  1.1.2 and a brief introduction on Blockchain Technology and development techniques are mentioned in sub-Sect.  1.1.3 .

Rural Development

Sustainable Development Goals (SDGs) were framed for improving rural health, hunger, poverty issues, environmental conditions, and illiteracy globally. The present situation of rural areas brings us to a list of issues (Fig.  1 ) that can further promote the eradication of rural areas from the global chain if not technologically. Beginning with poverty which has been an issue unresolved regardless of the various monetary schemes provided by the government drives the young generation out of the community to find jobs to sustain daily needs. Many of them fail to finish even high school, which leads to securing menial jobs in urban regions. This brings us to the second issue in the rural community, illiteracy [ 5 ]. Education that plays a vital role in the overall development of humans, as well as the community, is often disregarded to fulfill contemporary requirements such as money. In many cases, the parents exploit their children into working on the farm or small family businesses.

An external file that holds a picture, illustration, etc.
Object name is 11831_2021_9659_Fig1_HTML.jpg

Issues in rural areas

Typical issues in a rural school can be enumerated as teacher’s absenteeism, unhygienic school premises, and distant schools, technologically backward, absence of school records, inexperienced teachers, and teachers with false degrees. Those who get themselves educated, consider it better to get a job in urban areas because of job opportunities and better pay which is at times difficult since most villages lack communication between employees and job availability [ 6 ]. Basic hygiene and pollution are other issues in rural areas that deplete life expectancy and give birth to numerous diseases. Many rural communities do not have proper sanitation facilities, dumping grounds, or recycling plants. Not having the basic facilities drives people into a lack of personal hygiene such as bathing, washing, and cleanliness [ 7 ]. Pollution of land and soil is prevalent due to unhealthy sanitary practices. Hundreds of people still live without washing their hands leading to diarrhea, cholera, and the death of children [ 8 ]. Acknowledging the fact that medical practitioners, physicians are scarce on top of that reaching a nearby multispecialty hospital takes a lot of time [ 9 ]. The primary activity of rural people is said to be agriculture. It is considered to be the basic source of income for the dwellers. Farmers in many areas remain uninformed about the recent advancements in agro-technologies. The core reason for this incomprehension is the lack of broadband connection and incentives. Even though the Government provides various monetary as well as agricultural schemes, more than half of the farmers fail to enroll in one [ 10 ]. In addition to that from the consumer’s point, there is a whole heap of issues relating to the certification of quality produce, improper monitoring of crops, traceability of farm produce, and unsustainable agro-activities. Besides, the involvement of middlemen leaves the farmers with the minimal price of agricultural produce [ 11 ]. Further, given the aspects of daily needs, approximately 940 million [ 12 ] people around the world live without access to electricity, most of which belong to rural areas. In a generation where electricity is the basic need in every household, industry, medical center without which the whole institution of Earth would come to a halt, there are still people who do their daily activities without it [ 8 , 9 ]. About 1.7 billion [ 13 ] people in the world are still unbanked. The banking facility is essential for financial assistance especially much needed to financially excluded dwellers of the rural community. However, due to unreachable banking locations, time-consuming Banking processes, and in many cases lacking identity proof constrains the adults from applying for a bank account further reducing the chances of obtaining a loan or funding from government schemes [ 14 ].

The concept of a smart village [ 15 ] is to develop a rural area using technology as a medium. The biggest problems in rural areas are financial exclusion, poverty, hygiene, and education [ 16 ]. All the issues are interconnected and co-dependent, such as due to poverty, children in rural areas fail to get an education [ 17 ]. Due to illiteracy, the villagers do not come to know about various financial schemes. People seem to care very less about hygiene. Not only the waste is disposed of incorrectly, but it is also burnt giving rise to environmental pollution. Most of the time people do not find encouragement to learn how to properly discard waste material, to get educated, or find a solution to their financial problems [ 18 ].

Sustainable Development and Blockchain

The development of an economically backward area without jeopardizing the natural assets or future necessities is termed sustainable development. According to the United Nations, Sustainable Development Goals (SDG) [ 19 ] were adopted in 2015 for improving rural health, hunger, poverty issues, environmental conditions, and illiteracy globally (Fig.  2 ). The sustainable development goals that balance the socio-economic and environmental factors are:

An external file that holds a picture, illustration, etc.
Object name is 11831_2021_9659_Fig2_HTML.jpg

Sustainable development goals

For rural development, World Bank has provided programs in public administration, agricultural markets, commercialization, and agriculture business, agricultural extension, research, and many other support activities along with social protection and transportation programs for rural communities [ 2 ]. IFAD projects for eliminating poverty and hunger, activism against gender-based violence, boosting development, investing in rural people in Papua, Food and nutrition security in Latin America boosting millet value chain, income security, and nutritional security in East Africa, Climate Risk Analysis in East and Southern Africa, Climate finance gap examination for small-scale agriculture, etcetera [ 20 ]. The IEEE smart village is an approach to empowering underserved communities, providing the power, education, entrepreneur opportunities. Following are the project initiatives by IEEE Smart Village Initiative: Mural Net(MNAZ)- Broadband to underserved on tribal lands, Regis University(RGU)- measurement and evaluation Praxis Course scholarships, Sirona Cares Foundation (SCF)- SunBlazer deployment in Haiti, Village Help for South Sudan(VHSS)- South Sudan rural electrification, Lichi community solutions (LCS)- sustainable energy kiosk for rural development, Green village electricity (GVE)- Electricity project expansion in Nigeria, Global Himalayan Expedition (GHE)- Electrification of remote Himalayan villages, Seva-Bharati India (SBI)- Sustainable development of community villages, Shakti Empowerment Solutions(SES)- sustainable energy distribution for rural consumers in eastern Uttar Pradesh, India [ 21 ].

Challenges of achieving Sustainable Development Goals (SG’s) in rural areas can be elucidated in terms of different regions. As per the research [ 22 ], in Ukraine, control over the large businesses and their impact over the agribusiness structures in addition to shrinking the number of farms, jeopardizing rural population, poverty, and fewer efforts in social cohesion improvements or remote development are the principal challenges of achieving SDG.

Similarly, as per the methodology applied by the author in [ 23 ], the major challenges faced by Romania over achieving SDG are the Socio economic discrepancy among the rural dwellers’ lives as well as the Environmental incongruity.

A few of the Sustainable Development challenges faced by the Iranian Rural communities as per the authors [ 24 ] are economic setbacks, improper management, and under-planned developments, environmental factors, social concerns, and infrastructural challenges were determined. Overall implications of the studies provide us with a concise picture of significant challenges of achieving sustainable development goals in rural areas.

Sustainability and blockchain both are the call for the future to reduce cost, increase productivity, improving health, better environmental state, and availability of food, water, and sanitation. Blockchain holds the ability for long-term and inclusive progress in sustainable development and to achieve SDGs.

Blockchain Technology

In 2008 when Satoshi Nakamoto [ 25 ] (pseudonym) proposed Bitcoin, its expansion was doubted. The rise of Blockchain was such unforeseen that some enthusiasts asserted it as the biggest invention since the Internet [ 26 ]. Although W Scott Stornetta and Stuart Haber described the first cryptographically secured chain of blocks in 1991, it wasn’t until 2009 that Blockchain was implemented as the public ledger for bitcoin transactions by Nakamoto. For a substantial amount of time, Blockchain technology was only preferred for a cryptocurrency (Fig.  3 ). However, after the introduction of scripting language into the blocks by Ethereum Blockchain to work as bonds, which are now known as Smart Contracts the inventory of applications widely opened. In his paper Nakamoto proposed to create a peer-to-peer form of electronic cash that did not require a financial institution as an intermediary and would be transferred directly between one party and another. He improved the double-spending problem in Digital Signatures by implementing timestamps on the transaction and hashing them onto the ongoing chain of hash-based proof-of-work which changed the proof-of-work if tampered with hence forming an immutable record.

An external file that holds a picture, illustration, etc.
Object name is 11831_2021_9659_Fig3_HTML.jpg

Centralized and decentralized systems

Blockchain, even though it uses pseudonyms as account identifiers, has four key trust characteristics that eliminate the need for third-party authenticators. Firstly, a ledger in which after successful verification and authentication the transaction details are stored. Secondly, it is Secure since its transactions are time-stamped and hashed to the previous blocks; it makes the blockchain cryptographically secure (Fig.  4 ). Thirdly, the shared characteristic of involving multiple users provides transparency amongst all participants in the distributed ledger. Lastly, its property of being distributed eliminates operational inefficiencies, provides more security as the more the number of nodes the more resilient it is towards attacks [ 27 ].

An external file that holds a picture, illustration, etc.
Object name is 11831_2021_9659_Fig4_HTML.jpg

Blockchain technology diagram

The complexity of the working of blockchain can be simplified by exploring the components that make up its architecture [ 28 ]. The main components can be enumerated as Node, Cryptographic hash functions, Transactions, Asymmetric-key cryptography, Ledgers, Blocks, Miners, and Consensus (Fig.  5 ).

An external file that holds a picture, illustration, etc.
Object name is 11831_2021_9659_Fig5_HTML.jpg

Blockchain components

Node : A device possibly a computer forming the structure of a blockchain. A node is where the blockchain exists. Copies, as well as original records of the blockchain, are stored in a node. Classified as Full node and Light nodes, where Full node is a server in a decentralized network that contains the Block chain’s block history, and Light nodes are used for simple payment verification such as a wallet that queries the current status of a block.

Ledgers : A decentralized blockchain uses a ledger for record-keeping. As it is decentralized, it keeps many copies of the transaction including providing a copy to each user of their transaction.

Blocks : A block resembles a page in a record book (ledger). The first block is called the generic block. A block comprises a block header and block data where the block header consists of the history of the blockchain (previous hash value, timestamp, size of the block, and nonce) and miners perform hashing to validate the block, and block data keeps the record of recent transactions that are yet to enter the blocks.

Cryptographic hash functions : A digest or an algorithm that takes up an arbitrary amount of data and produces a hash value or hash which is an output of fixed size. It eliminates the use of a password, instead uses enciphered text that provides more security from attackers.

Transactions : A transaction is what the components work about. When two parties interact in blockchain, a transaction takes place. Authorization is required to approve a transaction between two parties. In a public blockchain, the transaction is inserted by consensus which happens when the majority of nodes validate the transaction.

Asymmetric-key cryptography : It is public-key cryptography that is used to enable certitude between the transacting parties who are unsure about each other’s integrity. Asymmetric-key cryptography uses mathematically related keys to ensure safety as well as the secrecy of data. The public key and Private key, even though relative is used for decryption and encryption, respectively.

Miners : When two users create a transaction, the miners validate that transaction in the block data before putting it on the ledger. The average time it takes for a miner to mine a block is 10 min. Since miners use their energy and hardware to solve a block, they also require an incentive for their work which is mostly paid in cryptocurrency.

Consensus : A consensus can be identified as a decision-making criterion. It makes sure that all the nodes validate a block and no such duplicity exists in the ledger that hasn’t been agreed upon. The discussion involved in consensus is used to solve identity-issue, clarify altercations, and establish a similar viewpoint between the participants by applying a set of rules.

Ethereum : introduced by Vitalik Buterin [ 29 ] addressed various limitations of the scripting language in the blockchain. The platform is used to build and publish distributed applications by using a programming language. It is said to be an improvement over the blockchain structure. It provides data-friendly services to all and sundry no matter their location or background. Ethereum consists of full nodes that run the Ethereum Virtual machine to deploy distributed programs such as smart contracts. Application development in blockchain can be done through Ethereum which can also call multiple other blockchain, protocols, and cryptocurrencies [ 30 ]. Ethereum uses the chain of global computers to operate and runs smart contracts that are free of intermediaries or third-party censorships. Ethereum uses an incentive mechanism [ 31 ] to encourage programmers who run the Ethereum functions to compensate for hardware and energy used in running decentralized digital applications (dapps). These incentives are called Ether which is a cryptocurrency in the Ethereum protocol.

Blockchain Development Platforms and Tools

To simplify the blockchain processes and to ease the development various tools and programming languages have been introduced.

Ethereum Virtual Machine (EVM)

The executing code and the Executing machine consist of an abstraction which is referred to as virtual machines, and Ethereum virtual machines increase the intended code execution chances, and the consensus is maintained on it [ 32 ].

Remix Integrated Development Environment is open-source software for web or desktop development. An intuitive and appealing interface remix allows smart contract development and Ethereum interaction [ 33 ]. Remix IDE has multiple plugin options such as Web3 integration, embedded Web3, and Javascript for running the contract locally. Solidity smart contract programming language is used for development in Remix IDE.

Smart Contracts

Simple programs stored on the blockchain comprise some predefined conditions [ 34 ]. Upon meeting the conditions the contract is self-executed giving the edge of non-intermediary processes as well as time efficiency. Multiple programming languages are used to develop smart contracts for blockchain; a few of them have been discussed below:

  • Solidity [ 35 ]: A highly preferred object-oriented design-based, high-level language conveniently made for developing smart contracts. Most of the solidity syntax inspiration came from C ++ , Javascript, and Python programming languages. Solidity, along with being the top smart contract language focusing on EVM in certain also supports inheritance and user-defined types.
  • Vyper [ 36 ]: Highly influenced by python and the second-best after Solidity, vyper is based on three important principles namely auditability to ensure the readability and understandability of the code for the user, Security to ensure secure smart contracts, and Simplicity of the language and the implementation.
  • Yul [ 37 ]: An intermediate smart contract development language that includes the bytecode compilation according to different backend needs. The main focuses of Yul are simplicity in bytecode translation, understandability, and readability of the scripted programs. Yul supports stack machines and is specifically tailored for them, whole-program optimization, and static type reference and value nature.

Hyperledger

A Linux framework for blockchain development that provides standards and tools for open-source blockchain applications [ 38 ]. Hyperledger enterprise helps build permissioned blockchain solutions for businesses and services. Under the Hyperledger Framework, multiple projects have been introduced:

  • Hyperledger Fabric : A modular permissioned and private framework for blockchain technology used for developing solutions for businesses and private enterprises. Fabric has a well updated smart contract interaction, faster transactions, and efficient data sharing.
  • Hyperledger Explorer : Explorer is a user-friendly blockchain development web application tool. The interface provides detailed information about the blocks, transactions, network nodes, and the state of the blocks. Hyperledger Explorer uses visualization tools for representing the blockchain data in a user-friendly and readable manner.
  • Hyperledger Sawtooth : By separating the core system, that is, specifying the business rules without interacting with the application domain is the main task of hyperledger sawtooth. It supports the Practical Byzantine Fault Tolerance (PBFT) as well as the Proof of Elapsed Time (POET). The smart contracts can be developed and run on the platform without actually knowing the core system’s design.
  • Hyperledger Caliper : A blockchain benchmark tool, the caliper used pre-defined uses cases to test the blockchain solutions along with a test result of its performance. Caliper has a very proficient success rate for testing the successful and failed transactions, provides the maximum, minimum, and average latency of transaction and read data for the test cycle.

Limitations of Blockchain are limited but cannot be disregarded [ 39 ]. From the creation of the node to the validation by miners, Blockchain consumes a lot of energy. Splitting of the chain is another problem where a node does not accept the transactions in a new chain if it is operating to the old software. The computing requirements increase as the blockchain grows. Since all the nodes cannot provide the necessary capacity, the node breaks, and the immutability and transparency of the blockchain cease to exist.

Blockchain for Smart Village Applications

The scenario in a typical village is such, in terms of the infrastructure most of it is inadequately built, there exists schools and colleges but poorly maintained, poorly built houses with no constraints for disaster management. In terms of necessities, normal villages lack stable electricity supplies, or a secure income to support electricity bills, and non-purified water. People in villages are often neglected and most of the dwellers don’t have any personal or national identity. The healthcare system in villages is simple and inefficient which does not help during major problems. Normal villages lack any technological advancement and people there live in history because of the lacking development. Sustainable development with the concept of smart villages can give a secure and feasible future to the villages.

Beyond the conventional use of blockchain in finance using cryptocurrency, numerous applications can change the way we perceive digitization. According to Kandaswamy [ 40 ], blockchain can have four types of initiatives: blockchain disruptor, digital asset, efficiency play, and record-keeper (Fig.  6 ). With similar inventiveness some of the blockchain applications with the concept of a smart village can be enumerated as:

An external file that holds a picture, illustration, etc.
Object name is 11831_2021_9659_Fig6_HTML.jpg

Blockchain elements

Healthcare : Blockchain with its record-keeping characteristics and smart contract with its privacy and security has greatly assisted the medical area by providing a solution for publicly or semi-private sharing of the medical data of patients. This can help the researchers and students to elicit a new solution or use it for clinical trials [ 41 ]. The solution for missing health documents or previous clinic visit records can be improved through blockchain. The potential of Blockchain to store patient’s record on the ledger make it possible to get treatment across the globe. Furthermore, the problem of counterfeit drugs in the market can be resolved through the traceability solution from blockchain through which fake medicines can be traced and removed from the supply chain.

International payments and insurance : Accelerated payment to international locations is possible through blockchain technology. Several Bitcoin-operated services make it easier to transfer money cross-border. The process includes converting the payer’s local currency into Bitcoin bypassing the existing banking infrastructure and then converting that Bitcoin into the receiver’s local currency. This saves the trade cost and speeds up the transaction. Apart from that, the insurance industry can also be benefitted from blockchain technology [ 42 ]. Blockchain can provide a transparent and trustworthy system to overcome the challenges of the insurance industry. Fraudulent claims, intermediary payment transactions, and big data handling are some of the many issues faced by insurance companies. Blockchain can resolve the issues through its security and transparency provided by the distributed ledger which also furnishes the authenticity of the participants. Besides, its characteristic of record-keeping comes in handy with the huge amount of customer data that is immutable in the blockchain ledger. Additionally, by using the smart contracts real-time data of the claims, reimbursements or payments can be fetched from multiple systems in no time.

Personal Identity Record-keeping : Identity is an integral part of society that provides a unique character and sense of acceptability in a country. However, physical forms of national identity are not accessible to many people around the world. The absence of identity makes it difficult for people to participate in voting, banking, employment and limits the chances of access to the financial system. Here blockchain steps in by providing identity solutions through digital identity. Additionally, self-sovereign identity arranges options to store one's identity on devices accessible across the world [ 43 ].

Supply chain and logistics : Blockchain can bring great usability to supply chain management. Procurement, traceability, digital payments, and logistics are some areas that have benefitted from blockchain technology. The distributed ledger can reduce the sharing of operational data by providing a full view of the sale/purchase data, accessible from any device. Fraud in the food supply chain is prevalent in many countries. Counterfeit products selling in the market prove hazardous to the consumer. The Block chain’s QR tracking system along with digitized physical products can be used to track products from production to delivery [ 44 ]. This technology has started benefiting the agricultural sector to develop food safety and smart farming increasing the income of small farms and food producers.

Education : Keeping physical records and transcripts can be a hassle. This blockchain provides a solution for digitizing student records, transcripts, and payment receipts [ 45 ]. Digital record-keeping can benefit a student as it will be acceptable by universities across the globe, free of manipulation, and handy. Blockchain can also be used to incentivize students through a course credit system. The credit can be translated to cryptocurrency, which can be further used as fee payment.

Blockchain with the Internet of Things (IoT) : Powerful union of two futuristic technologies makes machine-to-machine transactions easier. The decentralized authority of blockchain combined with the smart devices run by IoT allows a function to autonomously execute without a central authority [ 46 ]. Smart IoT run devices can be implemented on edge devices, reducing data transfer costs, and security issues with the blockchain collaboration [ 47 ]. Blockchain integration with IoT can highly change the agricultural sector. Supply chain traceability could benefit the farmers in eliminating the intermediaries through traceability and RFID tag-based applications. Water, soil, climate, and other sensory-type IoT devices can help in monitoring the agricultural activities and gathering the farm data and activities such as cultivation and livestock data in the blockchain ledger. IoT with blockchain will certainly revolutionize and transform many rural and urban sectors.

Motivation and Major Contributions

Sustainable Rural development starts with the participation of rural people in improving their lifestyle. Without the people working for their development, any implementation or help is incomplete. Economic and technological sector links are important for rural areas to develop. Along with that, a healthy agricultural sector improves the dweller’s linkage to the global supply sector. By managing the social, economic, environmental, and health objectives the development can be fast-forwarded. There is a considerable amount of potential in rural people which can be applied to employment issues, social disparities, E-governance, women's rights etcetera. Developing rural areas can benefit nationally, economically, and financially. This systematic literature review aims to provide extensive literature related to blockchain’s application in rural development and sustainable living. A plethora of blockchain review papers available does not provide a collective literature review of blockchain applications divided into different areas directed towards rural and sustainable development. Therefore, clear and concise information can be gained about blockchain’s work in improving rural development providing scope for future research in this direction. The primary contributions are mentioned below:

  • A systematic review of relevant literature for research trends, key applications, and areas of implementing Blockchain Technology for smart villages for sustainable rural development.
  • Identification of major issues in rural development and how they can be addressed using Blockchain Technology.
  • Exploration of the existing software, platforms, and tools for the implementation of Blockchain in Rural Development.
  • Identifications of the research gaps and future research directions for applying Blockchain Technology to Rural Development.

To conduct a fair and precise literature review, the studies have been selectively chosen after processing through the query string, and inclusion and exclusion criteria. The relevant set of research questions are formulated as depicted in Table ​ Table3 3 and also addressed in their relevant sections. The complete review methodology process is elucidated in Sect.  2 .

Research questions

The remaining paper is organized as follows: Sect.  2 presents the details and process of the review methodology adopted to include relevant studies for literature review. Section  3 presents an extensively reviewed literature study of the papers selected through review methodology. Section  4 , presents the critical analysis and discussion of the reviewed papers for a clear perspective on the existing work in Blockchain Technology pertaining to rural development and for future research directions. In Sect.  5 , the limitation of this work is mentioned. Section  6 , finally, presents the conclusion and future scope.

Review Methodology

The systematic review was conducted with relevant articles on blockchain technology in rural development. To perform a systematic review, Kitchenham’s and other related guidelines were followed [ 48 – 50 ]. To provide a transparent, systematic, understandable review of papers multiple sites and journals were visited, segregating articles into the various application of blockchain technology. The main objective of a systematic review is to write a planned article to relay a comprehensible, clearly stated literature after repeated analysis to define a problem, be replicated, or identify research gaps. To find a relevant article miscellaneous Journals, digital libraries, and web sources were delved into.

Search Strings

To find a relevant article, the following sources were considered: ACM Digital Library, IEEE, Science Direct, Elsevier, and Springer. Along with that Google Scholar was used as a web source where a broad search for scholarly articles is possible. The keywords and strings are listed in Table ​ Table1 1 .

Search criteria

Selection Criteria

To search for articles best suited for the review, the following (Table ​ (Table2) 2 ) selection criteria were applied.

Inclusion or exclusion criteria

Process Flow

The process of forming a literature review consisted of selecting relevant papers, applying inclusion or exclusion criteria on them, and reviewing them (Fig.  7 ). In the process, a total of 157 articles were considered out of which 112 papers were reviewed pertaining to the keywords specified in Table ​ Table1 1 .

An external file that holds a picture, illustration, etc.
Object name is 11831_2021_9659_Fig7_HTML.jpg

Systematic review process

Research Questions

To identify the scope of the systematic literature review, few research questions have been formed. The research questions along with the explanation on the depiction of the answers are shown in Table ​ Table3 3 .

Relevant Literature Trend

From all the papers reviewed consisting of applications of blockchain in rural development, the following applications were recognized: Agriculture, Banking, healthcare, energy, Environment, and Employment. Additionally, the articles consisting of incentive mechanisms were segregated (Fig.  8 ). From each of the applications, different areas were identified concerning each application (Fig.  11 ). Table ​ Table4 4 is a detailed table with application areas and its definition concerning Blockchain in rural development.

An external file that holds a picture, illustration, etc.
Object name is 11831_2021_9659_Fig8_HTML.jpg

Distribution of Blockchain applications in rural development

Relevant literature: blockchain application for sustainable rural development

An external file that holds a picture, illustration, etc.
Object name is 11831_2021_9659_Fig11_HTML.jpg

Areas of blockchain application in rural development

Publication Distribution

To provide a simplified view of the literature review for better understanding the articles are distributed according to the peer-reviewed journals, conference papers, and chapters as shown in Fig.  9 .

An external file that holds a picture, illustration, etc.
Object name is 11831_2021_9659_Fig9_HTML.jpg

Publication distribution

The articles are further distributed according to the applications type while also displaying the number of articles and their publication year in Fig.  10 .

An external file that holds a picture, illustration, etc.
Object name is 11831_2021_9659_Fig10_HTML.jpg

Number of articles and their area of publications (2016–2020)

For further classification, the geographic distribution of papers was performed with 112 papers (Fig.  11 ), distributed in 37 countries as shown in Fig.  12 with India, China, and the USA is the largest publishing countries followed by Italy, Spain, and Pakistan for blockchain applications in rural development.

An external file that holds a picture, illustration, etc.
Object name is 11831_2021_9659_Fig12_HTML.jpg

Geographical distribution of articles

Publication Type

The distribution of the articles according to different publication types was found (Fig.  13 ) with the largest number of publications (61) in The Institute of Electrical and Electronics Engineers (IEEE), followed by (27) in Springer, (16) in Elsevier, (3), and (5) in ACM digital library and Science direct respectively.

An external file that holds a picture, illustration, etc.
Object name is 11831_2021_9659_Fig13_HTML.jpg

Distribution of articles by journal type

Literature Review on Blockchain Technology for Sustainable Rural Development

The literature review consists of the collective work of blockchain in rural development. A total of 6 areas of application were identified after careful extraction of data and transformation globally namely: Agriculture, Banking, Environment, Energy, Employment, and Healthcare. A detailed discussion on the related work is discussed in the subsections.

Agriculture

In the agriculture sector, most of the application areas included supply chain traceability, facilitation of smart agriculture, and incentivization of services (Fig.  14 ). A detailed summary is given in Tables ​ Tables5, 5 , ​ ,6, 6 , and ​ and7 7 .

An external file that holds a picture, illustration, etc.
Object name is 11831_2021_9659_Fig14_HTML.jpg

Agriculture supply chain traceability diagram

Comparison of blockchain in agriculture supply chain traceability

Comparison of Blockchain application areas

Comparison of Blockchain applications in Incentivization

Supply Chain Traceability

The author F. Tian, [ 51 ] studied the integration of RFID (Radio-frequency Identification) and blockchain technology in building the agri-food supply chain traceability system. With the help of blockchain technology, the information shared and traceability is guaranteed. Apart from the supply chain, it also regulates food safety and quality supervision. This system can enhance the credibility and reliability of agri-food safety information. With the depletion of an application cost, this system can effectively change the current supply chain to be more quality-enhanced and safe. Similarly, Hua et al. proposed an agriculture [ 65 ] provenance system based on blockchain featured by decentralization, collective maintenance, consensus trust, and reliable data to solve the trust crisis in the product supply chain. The system’s Target is to record information related to the production supply chain: production, processing, storage, transportation, and distribution of agricultural products. It also facilitates Recordkeeping from basic planting information to provenance records. The proposed work solved the issue of the credibility of data and the difficulty of integrating the subsystem of each company.

The paper by Casado-Vara et al., [ 58 ] addressed the issues of the current supply chain such as communication gaps between vendors or the opacity of the origin of the product. The author has proposed a new model of the supply chain via blockchain where all the members of the supply chain save all their transactions in the blockchain to ensure higher security. This model also enables a circular economy that is a make-use-recycle model. With this model, all products can be traced from their origin to their sale and subsequent recycling.

Further, Caro et al., [ 70 ] presented AgriBlockIoT which is a fully decentralized blockchain-based traceability solution for agricultural food supply chain management. The proposed architecture based on API includes a controller to convert high-level function calls to corresponding for the blockchain layer and blockchain itself which is the main component of the system. The collaboration of IoT and blockchain can create transparent, fault-tolerant, immutable, and auditable agri-food traceability records. The authors Li and Wang, [ 85 ] characterized the research applications of blockchain in food supply traceability. With the help of blockchain technology and various radiofrequency devices can be integrated to collect data from farms, deploy sensors, and create intelligent contracts to implement server logic. The new system can change the traditional food supply system by making it more convenient, efficient, and trustable. Kim et al., [ 54 ] presented a theoretical, end-to-end, vis a vie “farm-to-fork”, food traceability application named Harvest Network with the integration of Blockchain technology and Internet-of-things. The process includes tracing the products from processing, grading, transportation, temperature, and contractual payment all with blockchain, IoT, and smart contracts. This can help consumers gain field-level insight into the products. Lin et al., [ 63 ] proposed an IoT and blockchain integrated self-organized, open, and ecological food traceability system. The proposed model consisted of trade, logistics, delivery, and warehousing information as well as data from IoT devices such as soil humidity, soil pH, and soil nutrition. The concept was to enable a user to get detailed information about the product they buy with the help of a trusted, self-organized smart agriculture ecosystem.

Galvez et al., [ 78 ] review the potential of blockchain technology in guaranteeing traceability and authenticity in the food supply chain. The review included blockchain solutions to traceability problems. It explained the use of a chronological distributed database to coordinate individual activities. By using a probabilistic approach to enable transparency and verifiability without a central authority, enabling consensus on a transaction to secure legitimate transactions, and time-stamped blocks providing immutable records to preserve records the traceability issues were solved. The paper also discussed the Block chain’s concept on the food supply chain which provides transparency, efficiency, security, and safety to the food produce. According to Kamble et al., [ 55 ], the supply chain practitioners found a lack of efficiency and transparency which leads to constant threats to formers and consumers. The system deployed the ISM methodology to identify Blockchain technology enablers in the agriculture supply chain. The findings implied the acceptance of blockchain technology as an innovative tool to ensure an efficient agriculture supply chain by the practitioners. To achieve further traceability the farmers could capture relevant information about the agricultural events onto the blockchain to enable transparent and trusting sources of information for the farmers. Kamilaris et al., [ 60 ] explored how the food supply chain and agriculture were impacted by blockchain technology. The stages of the supply chain with blockchain technology has been identified as (1) the provider (2) producer, (3) processing, (4) distribution, (5) retailer, and (6) consumer where a web application or device can be used to scan the item’s QR code to view its detailed information. Along with this, the author explored various challenges and benefits of the agricultural supply chain and Blockchain’s collaboration. Salah et al., [ 66 ] proposed a solution of eliminating the third parties and centralized authorities in the food supply chain along with a security system for food traceability, transparent records, and governance of interactions and transactions between the users. The model entities are related to providing secure tracking of the product and payment with Ethereum smart contracts. Thus, the presented model for traceability can be used to trace and track the soybean supply chain. S. Missineo, [ 75 ] proposed a model to secure storage origin provenance for food data. The proposed system aims to certify the production and the supply chain concerning food local products by using Blockchain Technology and Smart Contracts. The author aimed to ensure the authenticity of typical Sardinian products and to sell them online or offline. The platform ensured the consumer to check the authenticity of the product before the purchase giving details on both the production chain and supply chain. Jaiswal et al., [ 86 ] proposed multiple smart contracts deployed on the Ethereum blockchain for decentralized trading of food grains. The framework included Peer-to-peer trading, the security of food grain data, transparency, user anonymity, trust, and incentives as key features. The design of the framework consisted of four contracts namely food grain supply, bidding, trading, and utilization for the supply chain management. Dong et al., [ 56 ] proposed a collaborative model of blockchain and IoT in the agriculture sector. The data collection and transmission can be distinguished through a unique identity card given to each agricultural product. All the environmental aspects of the agricultural process can be gathered at the source. Along with that crop growth information, circulation of the product using an RFID tag and distribution process can also be recorded and stored on the distributed ledger. A QR code attached to the product can be scanned by the consumer to view product information in details.

Withal, Madumidha et al., [ 145 ] proposed the use of blockchain technology to maintain tamper-proof records, avoid intermediaries and provide security to the transactions which in turn reduces transaction costs and improves the quality of the products. The food products are labeled with RFID tags to maintain the supply chain. The author explained the revolutionary changes blockchain technology can bring to the supply chains and how it can increase the economic conditions of a country by reducing corruption rates and increasing the satisfaction of producers and consumers. Paul et al., [ 83 ] proposed a way to eliminate intermediaries between farmers and consumers to provide the right amount for the farm produce. The proposed system consists of blockchain nodes namely Supply companies, landowners, markets, and farmers. The farmer node sets the amount after the agreement period, the market node collects and stores crops and stops intermediaries from manipulating the prices, the landlord node collects the money from the land on lease, and the supply company node sells extra agricultural products to the farmers. This platform named KHET where all the nodes are interconnected through Ethereum blockchain is beneficial for farmers, landlords, and markets.

Musah et al., [ 62 ] main objective in proposing the role of blockchain in Ghana’s cocoa beans food supply chain was to evaluate the contributions made by applications of blockchain technology in the supply chain. The system provides a global traceability platform, supply chain intelligence and visibility, Africa cocoa village; impact the investing for smallholder farmer and uses Bean tracker. The author carefully studied the tools and platforms benefiting the cocoa bean production and supply chain processes.

Additionally, Baralla et al., [ 146 ] proposed a blockchain-based generic agri-food supply chain traceability system for implementing the farm-to-fork model. In this system, a QR code scan can allow the consumer to reconstruct the product history to verify product health and quality. The main contribution of this article was the authentication and verification of shared data’s integrity in supply chain management. With the help of this system, the involved operators could identify any new participants along with the supply chain which increased the degree of trust between organizations and individuals. Dakshayini et al., [ 87 ] proposed an integrated model based on Blockchain, big data, and cloud to efficiently manage crops that achieve effective demand-based decision support, simplified, transparent, and secure agricultural supply chain. The proposed model has a higher percentile of achieving demand and supply of crops which avoids the farmer’s loss, catering to consumer’s needs, provides sustainable agricultural practices, reducing middlemen involvement, and reducing price inflation problems. Saji et al., [ 88 ] proposed a model to enhance the supply chain performance by using a blockchain network. The proposed model provides security food safety, traceability, and opens new markets. The system improved farming profitability and endorsed the financial stability of cultivators. It also provided health benefits, reduced food wastage, eliminated manipulation, and adulteration, and supports the supply chain of agro-products. Saurabh and Dey, [ 69 ] identified the potential divers of blockchain concerning the grape wine supply chain. The smart contract-based module was constructed to ensure trust between participants during transactions. The proposed model enhanced the customization, competitiveness, and usability of the supply chain.

Iqbal and Butt, [ 84 ] proposed a model to save the farmer’s crops from animals at night. A repelling and notifying system (RNS) is installed in the field that receives signals during an animal attack. Human-safe ultrasonic waves are produced by this RNS which drives the animals away. This proposal also consists of a farm management system that receives the report regarding the hazards caused in the fields. This system enabled timely data delivery, efficient multi-hop communication, dependable data transmission, and low-cost technology. Chun-Ting et al., [ 73 ] proposed a blockchain-based agricultural traceability service platform for tamper-proof data storing and backup. The system design consists of Data collecting layer where IoT sensors collect environmental data, the blockchain layer takes data from the formal layer and sends them to blockchain nodes and later to blocks, and the application layer handles the requests to access transaction data based on the transaction hash. Hegde et al., [ 81 ] presented different ways of implementing blockchain with the agricultural supply chain. With the use of blockchain, the producers can get data and income security, and keep track of environmental changes that affect the crops. The traceability option provides clarity in any damage that occurred to the product and an overall increase in efficiency can be achieved by producing only required products hence reducing wastage. Peña et al., [ 89 ] presented a systematic review on blockchain in food supply chain management in Ecuador. According to the review, most of the work was done in Hyperledger composer, models for business interactions and human interactions, Traceability, Security, and Blockchain Information.

Additionally, M. Kumarathunga, [ 57 ] after reviewing presented the way to reduce transaction costs and improve farmer’s involvement in agricultural supply chains. To reduce transaction costs farmers can participate in Information sharing, goal congruence, decision synchronization, incentive alignment, resource sharing, collaborative communication, joint knowledge creation. Xu et al., [ 80 ] reviewed the working principle of blockchain technology in the agri-food sector. Blockchain technology provided data transparency, data traceability, food safety, and quality monitoring, and agriculture finance. Additionally, food safety and quality can be secured by digitizing products. According to the review, blockchain revealed a better approach to the future of the agri-food supply chain which is safer, healthier, sustainable, and reliable. Mirabelli and Solina, [ 71 ] collected and analyzed the applications of blockchain technology and its contribution to agricultural food traceability issues. The review showed that the usability of blockchain technology in the agricultural sector was still in the early stage. The review highlighted three main aspects namely starting problem, area of interest, and contribution. Blockchain can be a valid way to minimize fraud and errors in agricultural supply chains by increasing the quality and safety of food products. Shahid et al., [ 53 ] have proposed a complete solution to the blockchain-based agricultural and food supply chain. The paper aimed to provide an end-to-end solution to the growing blockchain-based agri-food supply chains. Further, it achieved the following properties: accountability, credibility, auditability, autonomy, and authenticity. The system also acted as a better alternative to the existing supply chain system by enabling a scalable and auditable system. Awan et al., [ 79 ] proposed a smart agricultural model as a transformation to the traditional agricultural supply chain. The system consists of Seed seller, Farmer, Crop buyer, Processor, Crop storage, Distributor, Retailer, Customer. To improve the food supply chain’s productivity and reliability the smart model was proposed. The model allowed farmers to enter and monitor the data in the plant. The main objective of this model was to provide equal opportunities to the participants of the agricultural food supply chain. Thejaswini and Ranjitha, [ 64 ] proposed a model that explores the problems faced by people in agriculture production and its solutions based on blockchain technology. Blockchain solutions for traceability of crops, disclosure of data, clarity in food production, and authentic agricultural products was proposed by the author. This proposed model ensured food safety, benefitted farmers, and stakeholders.

Yadav et al., [ 67 ] reviewed the blockchain adoption barriers in the Indian agricultural supply chain. The barriers can be enumerated as Lack of proper government regulation and regularity uncertainty, Huge resource, and initial capital requirement, security and privacy concerns, lack of interoperability and standardization, etc. Further, the barriers were modeled using an integrated ISM-DEMATEL approach which provided limited interpretative logic. W. Lin, [ 59 ] provided a survey to study the techniques and applications of blockchain technology. The application categories of blockchain in agriculture are Provenance traceability and food authentication, smart farming data management, trade finance in the supply chain management, and other information management systems. The paper also indicated possible future developments and applications of blockchain. Dutta et al., [ 61 ] reviewed articles related to blockchain technology’s integration with various supply chain operations. The benefits of Blockchain in supply chains can be enumerated as Data management, Improvement in transparency, Improvement in response time smart contract management, Operational efficiency, and Disintermediation, Immutability, and Intellectual Property management. According to the review, the main supply chain functions were identified as supply chain provenance, supply chain resilience, supply chain re-engineering, security enhancement, business process management, and product management. The work also examined various challenges and impacts of blockchain in the supply chain. Shahid et al., [ 77 ] proposed a solution for a blockchain-based reputation system in the agriculture and food supply chain. The system model consisted of invoking smart contracts to provide reviews based on the services to the providers. The reviews are requested by buyers and the sellers’ review the transactions and perform other transactions based on that. The system was proposed to maintain the immutability and integrity of the registered review. Torky and Hassanein, [ 82 ] presented a comprehensive survey on IoT and blockchain and their importance in developing smart applications. According to the review, crops overseeing, livestock grazing, and food supply chain are a few subsectors in precision agriculture managed by blockchain platforms. Apart from that, a novel blockchain model was also proposed to use as an important solution for major challenges in IoT-based precision agricultural systems. The objectives of Skender and Zaninović, [ 74 ] in their paper were to analyze blockchain technology’s overall perspective, investigate its potential in a sustainable supply chain to replace the shortcomings in the traditional supply chain. The traceability and transparency in the agricultural supply chain can be improved with blockchain.

To better understand the benefits and challenges and the perspective for sustainable blockchain, the author provided a conceptual framework. Borah et al., [ 68 ] proposed a novel blockchain-based Farmer and Rely called FARMAR. The system could provide fair prices and reduce duping by middlemen. The assets can be traced from farmers to consumers, reducing the artificial inflation of prices. Ferrag et al., (2020) [ 76 ] reviewed the research challenges on IoT-based agriculture and its security and privacy issues. The rest of the paper identified threat models against green IoT-based agriculture analyzed the privacy-oriented blockchain-based solutions and consensus algorithms for green IoT-based agriculture. Enescu and Ionescu, [ 52 ] proposed a model for farmers in the agri-food sector using blockchain. This system ensures a credible supply chain for producers and consumers, guaranteed timely payments between the participants. The authors proposed this system to provide transparency, security, and trust in the trading process. Chaudhari et al., [ 90 ] proposed a framework for a secure and transparent supply chain with the help of blockchain technology. With the help of this system, the farmers can get a fair price for their products. This transparent and tamper-proof supply chain system generates a bill at the end including the commissioning price as well as the total price after sold product hence benefiting the farmers in knowing the selling and market price. Xie et al., [ 91 ] proposed to construct a traceability framework For fresh E-commerce agricultural product quality and safety based on blockchain technology. To access the key control points the author used the FMECA (failure model effect and key analysis) to analyze the failure mode, impact, and hazards in the traceability chain. This system can promote agricultural development through decentralization, consensus trust, maintenance, and reliable database features.

Furthermore, Li et al., [ 92 ] proposed a blockchain-based Traceability of the fresh food supply chain With the help of business process reengineering (BPR). The overall traceability architecture is based on key links’ product quality data and participants’ transactions. The objective of this traceability system was to ensure data integrity. Flores et al., [ 93 ] proposed a model for decentralization of data and provide traceability of agricultural products with blockchain technology. Using this method could guarantee transparency of the supply chain and other operations as well as the transactions involved. Fernandez et al., [ 94 ] proposed a Blockchain-based model to improve farmer’s profits. The author aimed to improve the output primitives of the supply chain. Farmer-to-consumer product tracking and cost were the main factors in improving traceability in the supply chain. Cortez-Zaga et al., [ 95 ] proposed a model used in the Peruvian agricultural sector using blockchain. When using blockchain it can eliminate dependence on a central entity, provides integrity of the process, transactions become irrevocable, secure, and private, and provides transparency and immutability. G. Zhao, [ 96 ] presented a systematic literature review that explored the advances in the agri-food supply chain. The paper also pointed out the challenge of the applications of blockchain technology enumerated as storage capacity and scalability, privacy leakage, high-cost problem, regulation problem, throughput and latency issues, and lack of skills.

Land record maintenance using blockchain was also proposed by Bhorshetti et al., for easy maintenance of land records in real-time. The database proved to be a non-failure system and the work provided intermediary-less land title transfer and processing between owners. This system provided security, transparency, and a broker-free land management system [ 97 ]. The paper by Thakur et al. presented the issues related to land records maintenance, registration, settlements, and banks. The system ensured better land management, lesser fraudulent transactions while strengthening the sustainable development goals (SDG) and increasing the GDP of the country [ 98 ].

Agriculture Security System

Tse et al., [ 102 ] proposed food supply information security based on blockchain technology. The use of blockchain in this system can regain the people’s trust in the food market, the government can collect statistics on various kinds of food, and adulterated and fake food in the market can be eliminated. This type of technology can benefit the customer, manufacturers, and supervision departments of the food supply chain. Wu and Tsai, [ 103 ] proposed an intelligent agriculture network security system by applying dark web technology to monitor packet transmission frequency in order to prevent DDOS attacks. The system applied a darknet mechanism to identify anyone who attempts to access blockchain data. It also incorporated IoT sensors to gather data regarding temperature, humidity, and soil. This model was proposed to keep track of the farms and cultivation factors related to an environment and to establish network security for IoT networks.

Organic Farming

Reddy and Kumar, [ 101 ] presented the article based on the sustainability of the food supply chain. The author's objective was to achieve Fair Trading and a circular economy with the help of blockchain technology. With this framework, the following results but achieved: Automatic hashing for less electricity consumption, product malfunctioning and add alteration, the involvement of middlemen, availability of farming jobs, and facilitating development and unity among farmers. According to Basnayake and Rajapakse, [ 104 ], the purpose of the research was to implement a Blockchain-based solution to verify food quality. The process included Farmers issuing a product contract to control the quality of each product. For each deployment of the product contract, it would return an address that was used to generate the QR code to identify the physical product. Lastly, Consumers were also eligible to rate the product quality to ensure trust.

Smart Agriculture

To overcome remote monitoring challenges and provide security and privacy in agriculture, Patil et al., [ 105 ] proposed a lightweight architecture for smart greenhouse farming. The model consisted of four groups showing the integration of blockchain with IoT namely (1) smart greenhouse, (2) overlay network, (3) Cloud storage, and (4) End-user. This model can be used to successfully monitor the secure transmission of greenhouse data. Umamaheshwari et al., [ 106 ] proposed a model for Buying and selling crops and land. The model used Ethers as a cryptocurrency. According to the paper, the recordkeeping of crops grown in the land was useful to know the history of plantations in the land. With the help of this model, users were able to access real-time data about crops, eliminate the need for middlemen, and establish a transparent and efficient system. Voutos et al., [ 107 ] proposed the integration of IoT and smart contracts to develop smart agriculture to deliver higher quality agricultural products. It also focuses on improving the associated supply chain and logistics benefiting the participants involved. The author discussed the factors of smart agriculture as soil factors, climate, sensors, research, supply chain, storage, analytics, and smart contracts. Miloudi et al., [ 100 ] proposed IoT, Blockchain, and Geospatial technology-based Smart farming to manage the farming practices more smartly and sustainably. The system proposed smart farming management in 4 stages namely (1) Integrated blockchain with IoT platform where various IoT sensors apply analytics and sends data to the blockchain, (2) Blockchain Working Methodology where data visibility is provided through smart contracts, (3) Integrating GIS with blockchain where the data sent from IoT sensors are improvised and accuracy is facilitated through GIS geospatial tools, and (4) certifying farmers in blockchain stage facilitates authorities and privileges to the farmers through smart contracts which could greatly benefit farmers and food production industry.

Furthermore, Devi Et al., [ 108 ] Proposed a design architecture by merging IoT and BC for smart agriculture. The nodes involved in the blockchain received the information from the sensors that were connected to the things involved in the Smart Agriculture monitoring process. The design architecture enhanced the security and data transparency performance of smart agriculture. Vangala et al., [ 109 ] reviewed blockchain technology and its information security schemes. The application areas covered by the authors were agriculture monitoring, controlled agriculture/smart greenhouses, food supply chain tracking, and precision farming/smart farming. The review also presented a thorough analysis of the security attributes, application areas, advantages, drawbacks, and competing schemes’ cost of computation and communication. Branco et al., [ 110 ] proposed a conceptual approach with the integration of IoT and blockchain for a mushroom farm distribution process control system. The proposed system allowed the collection of distributed data on the environmental factors contributing to mushroom production providing collection, storage, and processing of mushroom farm data to be scalable, immutable, transparent, auditable, and secure.

Dairy Farming

Misra and Das, [ 111 ] presented a conceptual framework using blockchain to bring feasibility and efficiency in E-governance. The architecture consisted of a service-oriented architecture framework to store details of stakeholders involved in user services on demand, a blockchain architecture that would allow stakeholders to authenticate and perform transactions on the ledger, and digital identity architecture to act as a regulator in the architecture. With a dairy farmer as a user or participant in the architecture who would benefit from the transactions while having voting rights and leadership entities in the system the author conceptually explored the prototype of the dairy cooperative sector in India. Similarly, Rambim and Awuor, [ 112 ] proposed a model for dairy farmers in Kenya that explores the potential use of blockchain technology in milk delivery in rural areas. From the Naitiri Dairy farmers’ cooperative (NADAFA) in Kenya, the author introduced a Milk Delivery Blockchain Manager (MDBM) which is a decentralized platform to automatically capture the quantity and quality of milk delivered by the farmers. The delivery data stored in the blockchain is immutable, cryptographically hashed, and digitally signed. The details of delivery are accessible to the farmers. The NADAFA facilitates the system and provides payment to the dairy farmers on time. The consortium-based network provides leveraging blockchain solutions for farmers.

Under Livestock monitoring, Alonso et al., [ 113 ] worked on important trends in the applications of IoT and edge computing paradigms in the smart farming field. This helps producers to optimize processes, provides the origin of the product, and guarantees the quality to its consumers. The state of dairy cattle and feed grain can be monitored in real-time by using artificial intelligence and blockchain technology. This is to ensure the traceability and sustainability of different processes of farming. The implementation of smart farming contributed to the reduction of data traffic and reliable communications between IoT-Edge layers and the Cloud. According to Hang et al., [ 114 ], the uncertain data quality of analysts’ data can be solved through blockchain. The proposed structure brings scalability, off-chain storage, privacy, and high throughput as advancement to the previous version. Various IoT data is fetched from fish farms such as temperature, water level, oxygen, and PH data. The data storage can be a database or cloud and end-user can view the fish farm’s detailed information through smart devices. Leme et al., [ 147 ] proposed a novel infrastructure based on the integration of cloud storage and blockchain technology to monitor the overall health of livestock. The components of the architecture can be named as (1) Administrator, (2) Users, (3) Cloud service, and (4) blockchain network. With the help of RFID tags attached to the cattle, various entities can be monitored to ensure that cattle go through necessary procedures. Yang et al., [ 115 ] proposed a novel method to ensure traceability and authenticity in the livestock supply chain using blockchain. The model uses RFID-sensor-based livestock monitoring in the food industry where the sensors augment the physical tracking and solved the RFID’s inherent computational capacity limitation by using cloud services. The data is then made accessible to the end consumer through Block chain’s transparent ledger.

E-Agriculture

The analysis proposed by Li et al., [ 116 ] Investigated the convenience of sustainable electronic agriculture based on Blockchain technology and analyzed the application likelihood and challenges of Blockchain in the agricultural field. The authors selected 5 villages with similar development rates in china and Blockchain technology was applied using data statistics to the sustainable e-agriculture for exploring its convenience. Results showed that sustainable electronic agriculture based on Blockchain Technology brought great convenience to the farmer’s sales, increasing by 25% on average compared with traditional electronic agriculture. Song et al. [ 117 ], to improve the biased point of view, higher initial costs, and lack of transparency and trust proposed a system for providing sustainability in the current agri-food supply chain. The paper discussed blockchain adoption in rural areas and relative energy consumption from supply and demand perspectives.

Agriculture Monitoring

Arshad et al., [ 99 ] proposed a private blockchain-based secure access control for agriculture to monitor climatic parameters. Private Blockchain access control (PBAC) was used to guarantee secure communications where a user usually goes through initialization, authentication, and revocation. The farms monitoring system consists of the login phase, system setup phase, user/farm professional registration phase, password authentication and session key agreement phase, update or change phase, and addition of node phase. The whole system stores access records and lessen the computational and communication overhead. Forbye, N. Bore, [ 118 ] proposed a model to improve the shortcomings of existing digitized farming models through the AG-Wallet System (AGWS). The AGWS design consisted of (1) digitizing the far demand–supply, (2) The farm information pipeline was to ensure secure storage and validate events received from IoT, and (3) data analytic services that make the information visible to the participants. The system proposed by Osmanoglu et al., [ 119 ] uses a blockchain-based yield estimation solution. Farmers can share the farming plans for the upcoming harvesting season with other participants, or learn from other’s plans to review their plans. Smart contracts can be employed by participants to share their yield commitments. The author improvised a censorship-resistant, tamper-proof, and immutable public ledger of time-stamped transactions.

Talreja et al., (2020) [ 121 ] proposed a farmer’s portal with the help of blockchain technology and python to preserve the contract of trade between farmers and consumers. The farmer’s portal is a way to access farm activities. The proposed work enhanced the degree of participation, reduced intermediary cost, simplified process, provided ease of selling crops, and greater efficiency. The immutability of blockchain technology fortified farmers for getting a fair price for their crops and reduced operational costs. Abraham and Kumar, [ 120 ] proposed a blockchain-based data security system to preserve farmer’s data. The proposed work was based on a private-permissioned blockchain for controlled participation, hyper ledger fabric to support smart contracts, and system design to safely store farm data. The widened blockchain data helps farmer’s data to be accessed by other participants which can allow the government to sanction schemes based on farmer’s data. Topart et al., [ 122 ] proposed an interoperable ecosystem of farmer’s consent management. The model used a permissioned blockchain to allow only a specific group of people to access the services. The immutability of consent allows the data to be non-manipulative, distributed, signed transactions, and transparent. The consent verification for each data allows only valid users to request data. The model was proposed to respect the privacy, security, transparency, and consent of the farmer’s data.

Incentivization

Blockchain has been using incentive mechanisms since bitcoin to incentivize miners, but recently many authors have presented ways of promoting work for a reward. Incentives to promote sustainable agricultural practices by Giaffreda et al., [ 123 ]. Objectives include savings and increasing market value plus monitoring the use of water in the fields. Farmers have been relying on satellite data as it is a cheap source of agricultural services. With the use of LPWAN networks, accuracy in fields is increased along with a tensiometer-a sensing unit that is used to wirelessly communicate the data related to the humidity of the soil and a mini-meteo station that is used to measure temperature, air humidity, and air pressure. Smart contracts record the transactions from the calculated results in the cloud and release the incentives to the farmer according to their deal with the stakeholder. The proposal includes EnvCoins as the incentives, which can be further used to buy technologies for sustainable agricultural practices, for cash, or investment. Esmaeilian et al., [ 124 ] proposed an incentive mechanism for green behavior such as waste disposal, using re-furbished products, purchasing energy-efficient products, saving energy, recover, repair, and maintain. The tokens gained from sustainable behavior can be further used to access services on blockchain. Incentivization can ameliorate some of the environmental issues in rural areas with the help of rural people by motivating them to clean the areas. OpenLitterMap by S. Lynch, [ 125 ] uses geospatial analysis to geotag various types of litter. It uses LitterCoins as an incentive mechanism for the proof of work. This is to motivate people to submit correct data. It also rewards for uploading litter images from a new location. Apart from plastic and other homogenous litter, a proposal to eliminate solid waste from small municipalities in return for a reward is given by França et al., [ 148 ]. The provision was to change the original system from attack risk, data loss, power outage, and other such problems. The new digitized system proves to be a handier as it is in the form of a mobile application. The reward for selling solid waste to the collecting agent is in Green Coins, a cryptocurrency sent to the seller’s virtual wallet. This initiative led to computerization gains, information integrity, and the use of crypto-currency. Additionally, in [ 128 ] D. Zhang, worked on a similar solution to efficiently use rural waste in incentivizing rural people. The process includes the installation of smart bins and when they are full, the collection trucks will swap the waste for a digital coupon which the farmer can use to either get agricultural products from the waste to the energy plant or cash them. Blockchain makes it an easier process to transfer and record data faster with maximum transparency. Other applications of incentives for waste include Recereum, SwachhCoin, Plastic Bank, 4New, and OILSC [ 129 ].

The motivational incentive mechanism can also transform the way medical data is shared for research and diagnosis. In the paper by Zhu et al., [ 126 ], the authors gave a solution to actuate people into sharing medical data by providing them rewards for doing so. The rewards system is based on the access provided by the owner of the medical file. Through Smart contracts, a trusted payment money flow can be devised between the third party and the owner. The Shapley value was considered for the revenue distribution of medical data sharing and to study the impact of consensus on the miner’s income. Furthermore, an incentive mechanism for the accident alert system, proposed by Devi and Pamila, [ 127 ] is another blockchain-based medical application. According to the authors, most of the accidents occurs near rural places where medical help is unreachable on time. To eliminate the privacy issue of the nearby user who receives the accident report, a blockchain-based incentive method is implemented for the user who receives the accident alert to send the location of the victim to a close-by emergency service. Then the message initiator gets rewarded incentives for alerting about the accident. A similar report system mobile application for anonymous reporting is proposed by Zou et al., [ 130 ] in which reporting any incident can earn people rewards. The design goal of the author was to implement an anonymous report system, to provide privacy to the person who reports, without having to give their personal information to the system. This model induces incentive named Rcoins to whoever published the report information, the repliers, and the consenting miners. The Blockchain and Kudos by Sharples and Dominigue, [ 131 ], a reward-based permanent solution as the digital record-keeping model. The author proposed the use of blockchain to store digital certificates, achievements, and credits. Stored as a public record it can be accessed by the institutions or the student online. The model uses Kudos an educational reputation currency as a reward. The reward can be earned through uploading certificates on the blockchain, passing a test, or on course completion. Another application of blockchain-based incentive system is EduCTX by Turkanović et al., [ 132 ] which is proposed to globally enable the higher education credit platform. For potential stakeholders such as educational institutions, companies, and organizations a unified view of student’s higher education credits and grading system is placed on the global ledger through blockchain. ECTX tokens will be credited based on the completion of courses which will act as proof of completed courses.

Environment

In the environment sector, the most emphasis was given on blockchain applications in Natural hazards, Water, and Waste management in rural areas (Fig.  15 ). A detailed summary is given in Table ​ Table8 8 .

An external file that holds a picture, illustration, etc.
Object name is 11831_2021_9659_Fig15_HTML.jpg

Blockchain applications in Environment

Comparison of Blockchain applications in Environment

Waste Management

From the articles proposed, in D. Zhang, [ 128 ] the author worked on a similar solution to efficiently use rural waste in incentivizing rural people. This framework is based on China’s Yitong system which is waste to energy plant for agricultural waste and the use of blockchain to provide digital coupons or cryptocurrency in return for waste. The author proposed the use of a web application to use a QR code scanner when the waste is collected from a smart bin, also encouraging segregation of agricultural waste and residential waste. The serves receive the weight of waste, lodges it on the global ledger, and the coupon is rewarded based on the weight. Apart from plastic and other homogenous litter, a proposal to eliminate solid waste from small municipalities in return for a reward is given by França et al., [ 148 ]. The provision was to change the original system from attack risk, data loss, power outage, and other such problems. The new digitized system proves to be a handier as it is in the form of a mobile application. The reward for selling solid waste to the collecting agent is in Green Coins, a cryptocurrency sent to the seller’s virtual wallet. This initiative led to computerization gains, information integrity, and the use of crypto-currency.

Latif et al., [ 133 ] have addressed the smart waste management system with the integration of IoT and blockchain. The proposed model included identification of waste material, trace location, send to trash, categorize waste, transfer waste, recycling, and decision-making process. The sensor nodes in the model were used for waste identification, and adding new blocks and the admin and waste management offices were responsible for collecting, executing recycling, and delivering products. The recyclable wastes are transformed into useful products and share with the customers and send the non-recyclable wastes to the trash.

Natural Hazard

Additionally, Nguyen et al., [ 134 ] proposed a blockchain-based weather-based index framework based on smart contracts. In this system, a NEO smart contract with an oracle server was introduced. In the process of the farmer’s request for an insurance enrolment, the insurance entity accepts the requests, the agreement is formed based on a policy scheme, Irrigation water companies release the water reports based on which the smart contracts execute the claims to the farmers. Deployment of the system can ensure water supply in rural areas and accessibility of insurance in case of droughts or floods.

Water Management

The intelligent smart watering system proposed by Munir et al., [ 135 ] is a blockchain-based system for the smart consumption of water. The system uses IoT for capturing real-time environment conditions such as soil moisture level, light intensity, air humidity, and air temperature. The main focus of the proposed system was to develop a healthy ecosystem while efficiently using water in plantations and gardening. Forbye, A water control system to efficiently manage and coordinate the use of water in irrigation communities is proposed by Bordel et al., [ 136 ]. The prosumer environment in the model is composed of a rule definition module where users can create irrigation recipes using ECA (Event-Condition-Action) rules. These rules are executable and easily transformed into other programming languages. Inputs are taken by a transformation engine, to create, compile, and deploy a set of Smart Contracts coding all the irrigation and management logic. Finally, irrigation recipes are executed by an execution engine, which invokes deployed Smart Contracts to interact with the infrastructure. From the perspective of Dogo et al., [ 137 ] proposed convergence of IoT and Blockchain. Objectives of smart water solutions include smart measuring and monitoring across the water distribution, enhanced security, better analysis of the generated data, and enhanced revenue and efficiency.

Similarly, Hassija et al., [ 138 ] proposed a drone-mounted base station in the tactile internet environment based on blockchain. The drone-mounted small cell station was based on a Permissioned peer-to-peer blockchain. To take strategic decisions, a game theory model was deployed. The decision was based on user association; transmit power level, drone speed, and altitude. Additionally, smart contracts can add parameters and conditions based on requirements. The model’s results showed that the low network areas can experience better bandwidth with the proposed system.

Further, the proposed model by Pincheira et al., [ 139 ] presented a trustless water management system-based software architecture. The system proposed presented a decentralized water management system that could incentivize virtuous behavior in agricultural practices. Smart contracts were used for their intermediary-less characteristic. The authors also implemented a cross-platform software library to allow constrained devices to interact with blockchain directly. The author’s goal was to enable sustainable behavior between irrigation communities for reducing water consumption.

This section reviewed the application of blockchain in the electrification of rural areas (Fig.  16 ). A detailed summary is given in Table ​ Table9 9 .

An external file that holds a picture, illustration, etc.
Object name is 11831_2021_9659_Fig16_HTML.jpg

Blockchain applications in Smart Energy

Comparison of Blockchain applications in Energy

Energy Grid

In the energy sector, rural electrification and the use of renewable energy were mainly focused on in the articles. Enescu et al., [ 140 ] proposed a study on the use of photovoltaic energy. The paper showed the use of photovoltaic panels to power a power plant for the improvement of abandoned land. According to the authors, photovoltaic panels can easily pump water and is a more appropriate use of solar energy. Blockchain can help reduce the intermediary distributors hence making the selling and buying of energy more profitable. Additionally, Kulkarni and Kulkarni, [ 141 ], considering the lack of electricity in rural India, proposed a model to solve rural electrification problems. The model introduces peer-to-peer energy trading through blockchain suitable for small and remote micro-grids. A reliable and profitable electricity supply can be obtained through micro-grids. Smart contract-based meters allow transparency in the daily usage of energy used hence encouraging rural people into investing in blockchain-based electrification.

Renewable Energy

Levi-Oguike et al., [ 142 ] have presented the challenges and modalities for the adoption of blockchain technologies and to ensure energy efficiency as an advancement to the sub-Saharan Africa environment. In the case study performed by the authors, the following factors affected its use to a large extent in sub-Saharan Africa: Employment and education, displacement and resettlement, financing the technology, regulatory provisions, operational modalities, and paranoia and wariness. The overall objective of the paper was to ensure that the sub-Saharan region was involved in the innovative and industrial revolution wave. From Krajnakova et al., [ 143 ] author’s perspective following Scientific induction and deduction were made: The proposed Biomass blockchain structure is based on the use of traditional resources but the transactions are processed exclusively in a digital environment. The user can know the precise amount of energy and time when it is transferred to the consumer also ensuring real-time payment for the energy. According to the system Deal signed between biomass energy producer and consumer and transaction are based on cryptocurrency hence digitizing transaction accounting, payment and deposit mechanism, transaction security verification.

In the banking sector, most of the solutions were about issues in banking availability in rural areas, loan sanctions to under-documented people, and methods of transferring money (Fig.  17 ). A detailed summary is given in Table ​ Table10 10 .

An external file that holds a picture, illustration, etc.
Object name is 11831_2021_9659_Fig17_HTML.jpg

Blockchain applications in Banking

Comparison of blockchain applications in Banking

Guo et al., [ 151 ] proposed a novel poverty alleviation loan management called the Loan On Blockchain (LoC). In the LoC, the participating roles can be named as the Financial department to check the identity and application information of the participants, bank to provide loan to the customer, Customer to provide identity and apply for loan, civil affairs department to audit the customer identity and loan applications, Regulator to monitor fund flow and inspect ledger. This digital account model was proposed for decentralized and centralized transfer of assets. Similarly, Jain et al., [ 152 ] presented a solution named Bit-score for credit scoring for underprivileged (rural) people with the help of blockchain. The authors’ model used a self-sovereign model for identity, distributed ledger storage, credit score calculation without any extra charges, and non-financial factor for acquiring credit score. With bit-score being an improvisation over traditional credit scoring techniques it makes the transactions more transparent, decentralized, secure, and intermediary-free.

Mobile Money

Y. Hu, [ 150 ] proposed a blockchain-based digital payment system to deliver reliable services on unreliable network services in rural areas. The system management contract to record account types, user balances to avoid forks during disconnection with the help of smart contracts. True transparency can be obtained through digitization and economic growth can be boosted in poor countries. Ghatpande et al., [ 149 ] proposed a way of moving Secure, interoperable mobile money in sub-Saharan Africa (SIGMMA) to support semi-offline payments through blockchain. The model provides unreachable areas a monetary transaction solution without having to provide any identity proof while ensuring trust between parties along with not having to physically visit any bank.

Cash Transfer

Another proposal is to provide banking solutions to rural areas where a chit fund system has been designed by Kumar and Sangal, [ 154 ]. Chit fund being a traditional saving scheme in India is an easier way to have access to credit. The purpose of this system is to remove geographical barriers and provide credit scores to each user based on their transaction behavior. Unlike other anonymous blockchain applications, this system requires identity registration. Unlike traditional co-lateral systems, blockchain generates credit history to prohibit manipulation. Lastly, Jaffer et al., [ 153 ] proposed a blockchain-based distributed system that is immutable and secures the transaction logs. The self-executing smart contracts were used to automatically execute real-world contracts for auto disbursement of subsidies on meeting specific conditions. This system overcoming traditional cash transfers, and corruption and manipulation related to it can benefit rural or deserving people.

In the healthcare sector, smart healthcare systems, telemedicine, and privacy in medical data sharing to provide security and transparency in the healthcare system between doctors and patients were the commonly addressed areas in related work (Fig.  18 ). A detailed summary is given in Table ​ Table11 11 .

An external file that holds a picture, illustration, etc.
Object name is 11831_2021_9659_Fig18_HTML.jpg

Blockchain applications in Healthcare

Comparison of blockchain applications in Healthcare

Medical Data

Kaur et al., [ 157 ] proposed a blockchain-based electronic medical record storage and management system. The proposed model consisted of three main components: Domain experts (doctors, lab technicians, pharmacists, and drug manufacturers), health insurance providers, and patients. To ensure the privacy of medical data which contains most of the private information blockchain distributed data storage for heterogeneous data was proposed having a single source for data storage and access while providing high security and privacy to the users and researchers. Similarly, Zhang et al., [ 158 ] proposed secure and scalable clinical data sharing using FHIR Chain, a blockchain-based system meeting ONC (office of the national coordinator for health information technology) requirements. The technical requirements for blockchain-based clinical data sharing were verifying identity and authenticating all participants, Storing and exchanging data securely, consistent Permissioned access to data sources, applying consistent data formats, maintaining modularity. FHIRChain facilitates clinical data exchange while maintaining ownership.

Telemedicine

Guo et al., [ 161 ] proposed an ABE scheme to achieve dynamic authentication and authorization with higher flexibility and efficiency for the Medical on Demand services in the telemedicine system. The system uses a Consortium Blockchain managed by multiple authorities. Medical examinations are uploaded to the database provided by Cloud Service Provider (CSP). The medical results are downloadable from Cloud only by Medical specialists. All the data is stored in Blocks of Blockchain hence preventing any manipulation in health records. Through this system independence of choice should be provided to the patient whether they want to enroll, leave, or change access policies. Nusrat et al., [ 160 ] proposed a model of a telemedicine system for medical care and security of data of rural people by using blockchain technology. The system consisted of stations for primary treatment tests while storing data directly in the blockchain. This system ensured communication and data privacy to doctors and patients while also giving reliable medical care and benefits to underserved (rural) people.

Forbye, Yong et al., [ 159 ] have proposed a blockchain and machine learning system for vaccine supply chain traceability. The novel intelligent system based on the blockchain can be used for vaccine supervision in the vaccine supply chain. Additionally, using smart contracts for the vaccine supply chain can provide the following advantages: detection of expired vaccines, vaccine information, and vaccine coin.

Smart Healthcare System

Machine Learning holds the power to change the perception of understanding and analyzing data and decision-making in multifarious sectors. Since, the blockchain with its decentralized network focus on secure data sharing, its integration with machine learning would provide a very meticulous outcome. Few of the ways through which blockchain’s integration with machine learning and benefit the healthcare system are [ 162 ]:

  • Blockchain ledger with legitimate data collection can feed the machine learning models with highly accurate and dependable data.
  • Real data can be used to train machine learning models to increase efficiency and precision, therefore, saving cost and time.
  • Models can be trained to give the same health advice to multiple patients with alike symptoms.
  • Models can also be trained to give better clinical solutions to doctors based on the patient’s symptoms.
  • Training the models on the patient history and storing them on blockchain ledger can predict outbreaks.

For implementing the integration, Jain et al., [ 156 ] proposed an integrated model of blockchain and machine learning to detect diseases. These models can be implemented in a hospital or rural medical camps. The proposed system consisted of IoT, blockchain, cybersecurity, and machine learning. Various components measure basic parameters of the human body such as weight, pulse, blood pressure, and automatically saved the data in the ledger. The system has the potential to expand medical parameters while making it adaptive. The complete system can collect, store, and analyze the data of the patient and benefit the doctors, patients, and medical institutions.

Similarly, Tripathi et al., [ 155 ] have proposed a safe and convenient use of medical data and its user through blockchain technology. The proposed work is an improvement on issues and challenges faced regarding security and privacy. The clinical data are recorded in the blockchain ledger with access to legitimate users only. For a doctor to access a patient’s data a request has to be made and only when the patient approves the request does the data become visible. The goal of this model is to provide secure and reliable services to insurance companies, drug supply chains, and medical researchers. Lastly.

This application area mainly focused on employment visibility and temporary employment for rural job security (Fig.  19 ). Therefore, the following related research articles were identified and a detailed summary is given in Table ​ Table12 12 .

An external file that holds a picture, illustration, etc.
Object name is 11831_2021_9659_Fig19_HTML.jpg

Blockchain applications in Employment

Comparison of blockchain applications in Employment

Temporary Employment

Pinna and Ibba, [ 163 ] proposed a decentralized employment system to process employment contracts with a fully automated and fast procedure. The model consists of a new job offer event in which awaiting employers apply for jobs, an application event where a smart contract acquires the application request, a hiring event where the applicant worker meets the employer, a relationship event to enable the workers to check working situation and details, the workday event which describes the maturation of workdays, a payment event where the employee gets paid. The transparent ledger can make sure that the employment contracts were deployed with unchangeable information.

Employment Visibility

Similarly, the paper’s proposal by M. et al., [ 164 ] ensures supply chain visibility to seamlessly connect all stakeholders of the supply chain network who are a part of the Blockchain ecosystem. The paper defined two modules in BC design: the Supply module and the demand module. Supply module to collect worker's data and smart contracts to perform transactions through an application interface and store them on the ledger. Demand module to implement job allocation. The aggregators are given direct access to help track worker’s information from the ledger.

Existing Systematic Literature Reviews

A tabular representation of a few major existing works of blockchain in rural development has been done in Table ​ Table13. 13 . This table communicates the area of literature reviews, and their main contributions in the review regarding blockchain in rural or agriculture.

Existing literature reviews

An extensive literature review was done in this section which portrayed the enormous amount of work done in blockchain technology pertaining to rural development. All the functional areas and sub-areas were compared and discussed in tabular form. Multiple novel ideas and theories were identified during the literature review. At last, a small tabular representation was made for the existing systematic literature reviews and surveys in a similar area to identify the depth of the work done. In the upcoming sections, critical analysis and detailed discussion have been done based on the literature study, followed by the limitations of the survey and conclusion.

Critical Analysis Existing Technologies and Discussion

Blockchain Technology possesses much competence and futuristic hold towards rural development. In this review, all possible applications of blockchain that facilitated rural development were found, reviewed, compared, and summarized. With Agriculture being the predominant application of blockchain, various areas under it were analyzed that worked on the relief of agricultural issues in rural areas.

Starting with Supply chain traceability, the study showed integration of blockchain technology with Internet of Things [ 51 , 54 , 56 , 58 , 63 , 64 , 69 , 70 , 73 , 76 , 82 , 84 , 85 , 89 , 100 , 145 ], Cloud computing [ 65 , 87 ], Big Data [ 87 ], and Geospatial Technology [ 100 ]. Among the papers discussed, this area consisted of papers pertinent to tracing agricultural produce from the beginning of the process till it reached the consumer. The range of traceability options comprised all agricultural products as well as specifically certain products such as soybean [ 60 ], grape wine [ 69 ], and cocoa beans [ 62 ]. Furthermore, blockchain’s integration with IoT provided sensing and sharing of private data with blockchain without intermediary support. Additionally, some proposed work used QR codes [ 56 , 60 , 146 ] for viewing data directly related to the attached product. Articles supporting IoT devices were implemented for tracing agricultural produce, encouraging circular economy, fault-tolerant, and immutable APIs. A few were reviews on agriculture traceability [ 53 , 58 , 60 , 61 ] barriers [ 67 ], challenges [ 59 , 71 , 76 ] contribution [ 80 ], IoT based solutions, and future scopes [ 78 , 96 ]. Some agricultural prototypes included AgriBlockIoT [ 70 ], KHET [ 83 ], and FARMAR [ 68 ]. A few land record management articles were also discussed that implied security and broker-free methods for land titling and transferring [ 97 , 98 ]. Most of the platforms used were Ethereum Smart Contracts, Hyperledger, REST, JavaScript (Web3, node, angular), Truffle Framework APIs, and MySQL and MongoDB for cloud storage.

While traceability of agricultural produce is important, the agriculture security system is also a necessity. In this review, the articles for agriculture security systems included prevention of farm data from cyber-attacks using IoT [ 103 ] and supervision of agricultural products and food information [ 102 ]. In both the works acquired, it used Smart contracts and Ethereum Blockchain respectively, along with IoT-based sensors for farm monitoring.

Organic Farming as a part of agriculture application for sustainable farming and quality food production included two articles for analyzing the effectiveness of supply chain [ 101 ], and identifying product quality and transparency of organic food supply chain using decentralized applications and QR codes for tracing product data [ 104 ].

Furthermore, using smart methods to enhance the agricultural process was discusses in the smart agriculture Sect.  3.1.4 where farm controlling, recordkeeping, improved logistics, farm managing and improvising, and monitoring using Blockchain Technology and IoT [ 106 – 110 ] as well as cloud computing [ 105 ] and geospatial technology [ 100 ] in some articles were covered. Most emphases were given towards improving the quality of farming and its management while providing utmost security to data. Mostly used platforms to implement the proposed work were JavaScript(Node, Ganache, Truffle), Ethereum Smart Contracts, and IoT-based sensors.

Apart from the supply chain in farming, the dairy sector was one of the application areas covered in the review comprising of E-governance in the dairy sector implemented on smart contracts [ 111 ], and quality and quantity assurance of milk with a delivery platform [ 112 ] using Blockchain Technology. In addition to the dairy sector, blockchain applications in livestock management using Blockchain Technology [ 114 ], IoT and Cloud Computing [ 113 , 115 , 147 ] to monitor livestock, observe cattle using RFID tags, storing detailed information on fishes, along with livestock traceability were discussed in the review. Integration with IoT provided real-time monitoring and traceability of livestock and its by-products in the supply chain.

Similarly, to share informative farming data and techniques a review on convenience analysis of the blockchain in agriculture [ 116 ], and exploratory data planning and management of agricultural food supply chain for sustainable development [ 117 ] was given to explore the work done in E-agriculture using blockchain technology. Since one of the main motives towards implementing blockchain in agriculture is to monitor the faring process and products till it reaches the consumer, therefore, agriculture monitoring section covered farm monitoring system[ 99 ], a yield estimation system to share farming plans implemented on smart contracts [ 119 ], and an IoT based AG Wallet system to track farm activity implemented using IBM enterprise blockchain platform [ 118 ]. Penultimately, the application area was divided into farmer Sect.  3.1.9 where blockchain’s reviews to facilitate farmers such as farmer’s portal to capture farm activities using HTML and Python [ 121 ], farmer’s data storage to provide transparency for government scheme using smart contracts [ 120 ], and farmer’s data accessing using their consent [ 122 ] were discussed.

Lastly, an overall blockchain application area covering the use of incentives for numerous activities was discussed in Sect.  3.1.10 . The review included a reward-based system in return for solid waste [ 148 ], rural waste [ 128 ], anonymously reporting an activity [ 130 ], reporting an accident [ 127 ], storing educational records in ledger [ 132 ], green behavior [ 123 , 124 ], geotagging litters [ 125 ], and to safely share medical data [ 126 ]. The incentive mechanism works when an activity is performed, therefore in return for good behaviors or activity, cryptocurrency-based tokens are rewarded that can be stored in a blockchain wallet. Most of the platforms used were smart contracts while some of the systems also used ARK Blockchain, Laravel PHP, and JavaScript.

Looking through the applications of blockchain in rural areas, usage of blockchain in reinforcing environmental conditions and changing people's outlook on preserving the environment was the outcome of factors affecting rural people as they were much likely also related to environmental conditions. From this view, the environmental application areas were discovered and discussed to be Water management, Waste management, and Natural hazards.

To begin with, under Sect.  3.2.3 water management, smart measuring and monitoring [ 137 ], smart consumption [ 135 ], management [ 139 ], and control system [ 136 ] of water were discussed. These articles provided smart ways of implementing blockchain for efficient use of water in irrigation, distribution, and consumption, preventing environmental deterioration while also providing security and digitization.

Secondly, under Sect.  3.2.1 waste management, the reward system in return for waste collection and selling [ 128 , 148 ], and waste management [ 133 ] using Blockchain Technology were discussed. Covered under the integration of Blockchain Technology, Cloud Computing, and IoT, the implementation used smart contracts in the first two proposals and UML, TLA + for the latter.

Lastly, as per the research criteria, only one article contributing to the environment and natural hazards was discovered and reviewed explaining the insurance system for drought-affected farms based on the farm data stored in the blockchain ledger [ 134 ]. The model was implemented on NEO virtual machine, smart contracts, and used Oracle server as database.

Similarly, from the challenges faced by rural people acquiring an electric line, energy-efficient methods, to secure, and transparent payments issues were covered and reviewed under the energy section. The blockchain application areas in the energy sector were discovered to be Renewable energy and the Energy grid. With blockchain’s integration with renewable energy a smart contract-based energy transfer credibility system of biomass energy grid [ 143 ], and a case study of sub-Saharan Africa and its challenges and adoption of renewable energy access were discussed [ 142 ]. Whereas in the energy grid section, the blockchain’s application in providing peer-to-peer electrification with secure payments, transparent energy usage [ 144 ], and the use of smart energy grids for farming and irrigation using Ethereum Blockchain [ 140 ] were reviewed.

Besides, from the traditional use of blockchain in Finance, the banking solutions for rural people were discussed in Sect.  3.4 . From the banking applications of blockchain, the use of mobile money for semi-offline payments in sub-Saharan Africa without identity proof using a secure, interoperable mobile money system [ 149 ], and a delay-tolerant digital payment system based on Ethereum blockchain [ 150 ] were discussed. A simpler way of getting a loan with the help of blockchain is by using a hyper ledger fabric-based Loan On Blockchain(LOC) system using smart contracts [ 151 ], and a credit scoring system called Bit-score using Ethereum Blockchain [ 152 ] were discussed. Finally, a Cash Transfer area where a distributed system for automatic subsidy delivery and fund release using JavaScript and Hyperledger composer [ 153 ], and a chit fund system based on smart contracts to provide credit to rural people [ 154 ] were reviewed.

Under the Healthcare applications of blockchain, A Smart Healthcare System, Medical Data sharing, and Telemedicine were the areas discovered. Under smart healthcare, the articles reviewed were a smart model to detect diseases and measure basic health parameters using Ethereum blockchain and Raspberry Pi [ 156 ] and protected access to medical data using smart contracts [ 155 ]. For the recordkeeping of medical data and share it legitimately an electronic medical record storage management system based on ethereum and cloud storage [ 157 ], and a permissioned clinical data sharing called FHIRChain using smart contracts [ 158 ] was reviewed. Lastly, under Telemedicine, vaccine supervision and traceability for safe vaccine supply [ 159 ], secure data storage using telemedicine system based on smart contracts [ 160 ], and a telemedicine system to prevent health records manipulation using Blockchain and Cloud Database [ 161 ] were the articles reviewed.

Another challenge faced by rural people implemented to recuperate from unemployment using blockchain technology was discussed in Sect.  3.6 . Using smart contracts an employment contracts processing, handling, and safe payment system for temporary employment contracts [ 163 ], and a blockchain aggregator to perform worker data transactions and employment visibility [ 164 ] were the works reviewed in this section.

Limitations of Existing Works and Research Gaps

In this section, the limitations of the existing literature review on blockchain in rural development along with a comparison of existing systematic literature reviews have been discussed. The comparison has been shown in Table ​ Table14, 14 , and a few research gaps have been mentioned in this section as well.

Comparison of existing reviews

While Blockchain technology is leading in security and transparency, providing ways of applying its technology in disparate areas its limitations and gaps can still be identified in the proposed and implemented work. While most of the work in agriculture is for ensuring transparency and traceability in the supply chain, there are far more factors in agriculture that affect farmers and crops. Blockchain inevitably uses excessive energy in execution, but its execution in rural areas may become worrisome due to the lack of energy and load in those areas.

Collecting farm data and storing them on the ledger in small farms is easier. However, in the case of big farms, the data collection and integration may consume much time and probably manpower in accumulating and loading it in the ledger. Apart from that, IoT-based services require sensors as well as collecting livestock DNA to trace them and load their information may cost a fortune to small-scale farmers.

Teaching the application usage to laymen, that too uneducated farmers or rural people may become a troubling task. Not only that, the availability of news of the latest technologies is hardly accessible to underdeveloped countries, introducing blockchain-based applications to those areas may toil the deployment and utilization.

Mistakes can prove disadvantageous to poor people while making blockchain transactions. A lost private key or a mistakenly added extra digit to the payment can cause irreversible damage.

Thereafter, a data breach of medical data and inappropriate access to medical histories are some issues that may decrease people’s trust in the blockchain-based healthcare system for medical data privacy.

Security threat is another limitation that can affect any type of application that requires recordkeeping. Here the blockchain’s main characteristics may itself prove faulty to find the intruder as it gives total anonymity to users. With both pros and cons, robust and reliable technology can still be deployed for many usages, making livability easier and people technologically advanced.

Multiple issues pertaining to rural areas have been addressed by authors with the help of blockchain. Agriculture is the most economic factor, solutions for blockchain-based supply chain traceability provided secure, transparent, beneficial product delivery. It also ensured timely payments to farmers and quality products to consumers. Banking solutions have also been made easier with blockchain technology, providing remote banking solutions, credit and loan easiness, and easy and transparent banking. Hygiene issues that led to many diseases, generational disabilities have also been given a solution through blockchain which also incentivizes rural people for participating in waste and water management. Rural electrification solutions were also proposed with blockchain for people unable to obtain energy resources, basic electrical amenities, and expensive bills. People who were unable to receive treatments, had to travel long distances for medical assistance, were also provided a blockchain solution with which telemedicine, privacy to medical data usage, and medical-on-demand were made available. Blockchain has also been useful in providing employment solutions to the truly underserved, using a global chain for employment visibility, and secure payment for jobs [ 168 – 172 ].

The Systematic Literature Review’s objective is to provide information on the research proposed related to blockchain in rural development to provide new research opportunities, extensive knowledge about each development area, and the possibility for future development in rural areas. After distinctly reviewing every research article variant areas of applications were identified relating to the development of rural areas with the help of Blockchain Technology. Overall, 6 disparate applications in rural development were picked out; from which each of these applications has a total of 23 divergent areas combined. These areas contribute to all the research that has been done in the blockchain in the rural development sector and are distributed across 37 countries obtained from 6 journals and 1 web source ranging from the years 2010 to 2020. After searching through journals, applying more than 16 keywords, 112 articles were found in aggregate. From analyzing each article, the primary application of blockchain was identified as agriculture with 67% of research articles relative to blockchain in agriculture whence 60% were associated with supply chain traceability. About 55% of those papers were from the Institute of Electrical and Electronics Engineers (IEEE). Furthermore, in 112 research papers, 8 technologies were implemented with a total of 58 platforms and tools combined.

Research Questions Addressed

From the Research Questions defined (Table ​ (Table3), 3 ), the following inference can be made:

What are the main applications and areas of implementing Blockchain Technology in Rural Development?

Various extensively researched applications are defined in Tables ​ Tables5, 5 , ​ ,6, 6 , ​ ,7, 7 , ​ ,8, 8 , ​ ,9, 9 , ​ ,10, 10 , ​ ,11 11 and ​ and12. 12 . These applications define the Blockchain’s applications in rural development that impact the rural areas, provide security, opportunities, availability of resources, and a better lifestyle. The areas (Fig.  20 ) gave extensive knowledge about the domains of application-defined from several research articles related to it.

An external file that holds a picture, illustration, etc.
Object name is 11831_2021_9659_Fig20_HTML.jpg

Blockchain Applications and their Areas in rural development

What are the major issues in Rural Development and how they can be addressed using Blockchain Technology?

Numerous issues in rural areas are explained in Sect.  1.1.1 and the blockchain applications for the eradication of those issues are addressed in Sect.  3 .

What are the targeted software, platforms, and tools for the implementation of blockchain in rural development?

Throughout the applications, for implementation following (Table ​ (Table15) 15 ) technologies’ integration, and software and platforms were used:

Blockchain development platforms and tools

Following the review, in agriculture, most emphases were stated towards supply chain traceability and less or no work in natural resource management, overproduction, yield stagnation, and international trade. In regards to the sociological factor, research on work belonging to blockchain development for rural education, housing, women empowerment, crime reduction, brain drain, and craftsmanship is missing. For the implementation of banking, healthcare, and many other applications the required government and technological assist are still lacking. In some cases, the research proposed could be administered only in the far future, therefore contemporary work was absent. Some more gaps and future research directions are given in Sects.  4.2 and 6.1 .

The research questions mentioned in Table ​ Table3 3 are addressed in the following section (Table ​ (Table16 16 ):

Addressed locations of the Research Questions

Threat to Validity and Limitation of the Survey

While reviewing the issues in rural areas, blockchain technology, and the applications of blockchain technology in rural development certain limitations can be considered existing. All the articles were selected according to the review process and criteria implied in Sects.  2.1 , 2.2 , and 2.3 . During exclusion, some articles were not considered fit for this review, were missed, or were not found. Six applications were considered in this review, there could be more applications that we couldn’t figure or that couldn’t make the cut of criteria. A total of 23 sub-areas of all the applications were determined. Conclusively, as per our knowledge, there wasn’t any systematic review that reviewed all the application areas of blockchain technology in rural and sustainable development nevertheless there could have been a few rural and sustainable development articles that weren’t included in this review.

Conclusion and Future Work

Blockchain Technology has presented a considerable amount of work in the rural sector. While its implementation was few, the ideology is enough to motivate people into changing the lifestyle of rural people leading to the overall country’s development. In this systematic literature review, numerous applications of blockchain technology in sustainable rural development were discussed with diverse areas in each application. A comparative study of each application in all the areas pertaining to different approaches has been portrayed with differing attributes elucidating the technology, process, and techniques behind each article. The paper provides extensive literature towards each of the articles sorted after applying the review process consisting of relevant articles and keywords. The primary findings of the systematic literature review were as follows:

  • From the review, we were able to identify common and exceptional uses of blockchain technology that would help uplift the rural community and lead to sustainable rural development.
  • Various distinct approaches to implementing blockchain technology for rural welfare were discovered.
  • Platforms and tools that would facilitate the use of these applications for farmers and uninstructed agrestic people were identified and reviewed.
  • Blockchain’s integration with multiple powerful technologies for rural development was reviewed.
  • An overall idea for a collaborative approach leading to a smart village framework was constructed.

The gaps determined from reviewing the articles broadly would help researchers explore additional as well as alternative utilization of blockchain technology for sustainable rural development.

Future Work

Blockchain’s characteristics are exceptionally conducive to safety, privacy, integrity, traceability, efficiency, and transparency in every area limited by such advantages. While diverse blockchain applications for the welfare of rural community has been discussed nevertheless future work can comprise of facilitating applications in making use of blockchain incentives for a collaborative framework incorporating several services in rural areas namely Smart Village. Blockchain technology in terms of providing incentive mechanisms could lead to a better motivational unit in many areas. Incentivizing rural or urban people for education, data sharing, green farming, green behavior, and environment conservation are real future demands. Apart from emphasizing rural areas, blockchain’s integration with networking, cybersecurity, and digital advertising is also a future insistence.

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Declarations

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Parminder Kaur, Email: ude.rapaht@91em_edokamp .

Anshu Parashar, Email: ude.rapaht@rahsarapa .

  • Open access
  • Published: 08 May 2024

The digital transformation in pharmacy: embracing online platforms and the cosmeceutical paradigm shift

  • Ahmad Almeman   ORCID: orcid.org/0000-0002-6521-9463 1  

Journal of Health, Population and Nutrition volume  43 , Article number:  60 ( 2024 ) Cite this article

437 Accesses

3 Altmetric

Metrics details

In the face of rapid technological advancement, the pharmacy sector is undergoing a significant digital transformation. This review explores the transformative impact of digitalization in the global pharmacy sector. We illustrated how advancements in technologies like artificial intelligence, blockchain, and online platforms are reshaping pharmacy services and education. The paper provides a comprehensive overview of the growth of online pharmacy platforms and the pivotal role of telepharmacy and telehealth during the COVID-19 pandemic. Additionally, it discusses the burgeoning cosmeceutical market within online pharmacies, the regulatory challenges faced globally, and the private sector’s influence on healthcare technology. Conclusively, the paper highlights future trends and technological innovations, underscoring the dynamic evolution of the pharmacy landscape in response to digital transformation.

Introduction

Digital technology is driving a massive shift in the worldwide pharmacy industry with the goal of improving productivity, efficiency, and flexibility in healthcare delivery. In the pharmacy industry, implementing digital technologies like automation, computerization, and robotics is essential to cutting expenses and enhancing service delivery​​ [ 1 ]. With a predicted 14.42% annual growth rate, the digital pharmacy market is expanding significantly and is expected to reach a market volume of about $35.33 billion by 2026. This expansion reflects the pharmacy industry’s growing reliance on and promise for digital technologies​ [ 2 ].

Pharmacy services have always been focused on face-to-face communication and paper-based procedures. However, the drive for more effective, transparent, and patient-centered healthcare is clear evidence of the growing need for digital transformation. Breakthroughs like mobile communications, cloud computing, advanced analytics, and the Internet of Things (IoT) are reshaping the healthcare sector. These breakthroughs have the potential to greatly improve patient care and service delivery, as demonstrated in other industries including banking, retail, and media [ 3 ].

In the pharmacy industry, a number of significant factors are hastening this digital transition. Important concerns include the desire for cost-effectiveness, enhanced patient care, and more transparency and efficiency in medication development and manufacture. This change has been made even more rapid by the COVID-19 pandemic, which has highlighted the necessity for digital solutions to address the difficulties associated with providing healthcare in emergency situations [ 4 ].

In terms of specific technologies being adopted, artificial intelligence (AI) and machine learning are playing a pivotal role. The McKinsey Global Institute estimates that AI in the pharmaceutical industry could generate nearly $100 billion annually across the U.S. healthcare system. The use of AI and machine learning enhances decision-making, optimizes innovation, and improves the efficiency of research and clinical trials. This results in more effective patient care and a more streamlined drug development process​ [ 5 ].

The digital transformation in the pharmacy sector represents a pivotal shift in the delivery and experience of healthcare services. This evolution is more than a transient trend; it’s a fundamental alteration in the healthcare landscape [ 6 ]. The adoption of digital technologies is reshaping aspects of healthcare, including patient engagement and medication adherence, leading to enhanced healthcare outcomes. Research indicates that digital tools in pharmacy practices have resulted in more individualized and efficient patient care. Telehealth platforms, exemplified by companies like HealthTap, are being increasingly incorporated by pharmacies to augment patient care via technological solutions. The contribution of digital health technology to medication adherence is notable, employing a variety of tools such as SMS, mobile applications, and innovative devices like virtual pillboxes and intelligent pill bottles. These advancements are pivotal in addressing the critical issue of medication nonadherence in healthcare. Furthermore, digital health tools are empowering pharmacists with expanded clinical responsibilities, particularly in the management of chronic diseases like diabetes, where apps and smart devices provide essential features such as blood glucose tracking and medication reminders. This comprehensive integration of digital health into pharmacy practice signifies a transformative era in healthcare delivery and patient management [ 7 ].

Online platforms are being used increasingly by the pharmaceutical sector and educational institutions to improve efficiency, flexibility, and accessibility. The telepharmacy program at CVS Pharmacy is an example of how telepharmacy services, which provide remote counseling and prescription verification, bring pharmaceutical care to underprivileged communities [ 8 ]. Prescription accuracy and drug management are enhanced by e-prescribing software like Epic’s MyChart and digital health apps like Medisafe [ 9 ; 10 ]. Blockchain technology is also being investigated for transparent and safe supply chain management. Continuous learning and professional networking are made possible in education by Virtual Learning Environments (VLEs) like Moodle [ 11 ], simulation software like SimMan 3G Plus [ 12 ], Continuing Professional Development (CPD) platforms like the American Pharmacists Association [ 13 ], and online conference platforms, as shown in Fig.  1 . While these platforms offer significant benefits like enhanced access and cost-effectiveness, they also present challenges, including addressing the digital divide and ensuring the quality and credibility of online services to maintain professional standards and patient safety.

In this review, we summarized the digital transformation in the pharmacy sector, emphasizing the integration of online platforms and the emerging significance of cosmeceuticals. We discussed the global shift towards digital healthcare, including telehealth and online pharmacy services, and how these changes have been accelerated by the COVID-19 pandemic. The paper also examined the impact of digital technologies on pharmacy practice and education, with a focus on telepharmacy services, e-prescribing software, and digital health apps. Additionally, it addresses the challenges and opportunities presented by this transformation, including regulatory and safety concerns, and the need for continuous professional development in the digital era.

figure 1

Comprehensive overview of different platforms in the pharmaceutical industry and education illustrating purposes and exemplary cases

The global impact of online pharmacy platforms

In recent years, the landscape of pharmacy practice and education has undergone a significant transformation, driven by technological advancements and catalyzed by the global COVID-19 pandemic. A study highlighting the increasing consumer trust in online medication purchases pre, during, and post-pandemic reveals a shift in consumer behavior towards online pharmacies [ 14 ]. This trend underscores a greater reliance on these platforms, where the perceived benefits significantly outweigh the perceived risks, indicating a positive reception and growing trust in digital healthcare solutions.

The adoption of telehealth, including telepharmacy, exemplifies this shift. In the United States, patient adoption of telehealth services surged from 11% in 2019 to 46%, with healthcare providers expanding their telehealth visits [ 15 ]. This shift is a reflection of how adaptable the healthcare sector is to digital platforms and how customer acceptance is increasing. The epidemic has also served as a catalyst, hastening the creation and uptake of online telepharmacy services throughout the world. The “new normal” has forced the addition of new platforms to support established sources of health information. The creation and evaluation of an online telepharmacy service in the Philippines during the pandemic serves as an example of this, demonstrating how quickly the global pharmacy industry adopted digital solutions. These services are essential for providing and elucidating pharmaceutical information within the context of primary healthcare delivery; they are not merely supplementary [ 16 ].

Simultaneously, pharmacist-led companies such as MedEssist and MedMehave, innovated digital platforms to facilitate services like flu shots or COVID-19 tests, reflecting a move towards customer-centric, digital-first services [ 17 ]. This transition enhances convenience and access to care but also introduces significant regulatory challenges. As the growth of online medicine sales disrupts traditional pharmacy markets, navigating these challenges becomes crucial for maintaining patient safety, quality standards, and fostering a trustworthy online healthcare environment [ 18 ].

Parallel to the practice changes, educational platforms for pharmacy have also evolved, especially under the impetus of the pandemic. These platforms have integrated a mix of traditional and student-centered teaching methodologies, including remote didactic lectures and on-site experiential training. The implementation of blended learning approaches, which combine remote lectures with on-site laboratory classes, reflects a broader educational trend towards hybrid models. This approach aims to leverage the advantages of both online and traditional methods, offering a more flexible and potentially more effective educational experience [ 19 ].

It takes more than just implementing new tools to integrate educational technology into pharmacy education, it also requires understanding how these technologies affect instruction and student learning. To effectively improve the educational experience, their utilization must have a purpose. There is an increasing amount of scholarly interest in this field, as evidenced by systematic reviews of the effects of new technologies on undergraduate pharmacy teaching and learning [ 20 ]. These digital platforms will probably become more significant in the future of pharmacy education, helping to mold the profession and guaranteeing that pharmacists are equipped to fulfill the ever-changing demands of the healthcare system. This development is indicative of a larger trend in the healthcare industry toward a more flexible, patient-focused, and technologically advanced environment [ 21 ].

Digital transformation in global healthcare

The recent advancements in digital transformation within global healthcare are significantly reshaping the landscape of healthcare and pharmacy services. These transformations are largely driven by the integration of digital technologies, which are redefining the tools and methods used in health, medicine, and biomedical science, ultimately aiming to create a healthier future for people worldwide [ 22 ]. In a 2018 report [ 23 ], Amazon’s potential entry into the $500 billion U.S. pharmacy market, the second-largest retail category, through mail-order and online pharmacies was highlighted as a significant industry disruptor. With licenses in at least 12 states in the US and a strategy focused on bypassing middlemen, Amazon’s historical success positions it to transform the pharmacy landscape, promising enhanced efficiency and cost savings for consumers.

One of the critical areas identified in recent research is the establishment of five priorities of e-health policy making: strategy, consensus-building, decision-making, implementation, and evaluation. These priorities emerged from stakeholders’ perceptions and are crucial for the effective integration and adoption of digital health technologies​ [ 24 ]. This holistic approach is increasingly relevant for scholars and practitioners, suggesting a focus on how multiple stakeholders implement digital technologies for management and business purposes in the healthcare sector [ 25 ]​​. The deployment of technological modalities, encompassed within five distinct clusters, can facilitate the development of a digital transformation model. This model ensures operational efficiency through several dimensions: enhanced operational efficacy by healthcare providers, the adoption of patient-centered methodologies, the integration of organizational factors and managerial implications, the refinement of workforce practices, and the consideration of socio-economic factors [ 25 ].

Studies focusing on value creation through digital means suggest healthcare as a consumer-centric realm ripe for center-edge transformations, characterized by self-service and feedback cycles. These transformations are vital in addressing inherent tensions between patients and physicians, steering the focus towards value co-creation and service-dominant logic [ 26 ]. Participatory design and decision-making approaches are emphasized for enhancing health information technology’s performance and institutional healthcare innovation. Such approaches are particularly crucial in developing national electronic medical record systems and improving chronic disease treatment through electronic health records. Additionally, telehealth research integrates patients’ perceptions, contributing to the understanding of technology, bureaucracy, and professionalism within healthcare [ 27 ].

The impact of health information technology (HIT) on operational efficiencies is profound. Empirical studies, such as those by Hong and Lee [ 28 ], Laurenza et al. [ 29 ], and Mazor et al. [ 30 ], demonstrate positive correlations between HIT and patient satisfaction, quality of care, and operational efficiency. However, challenges remain, as Rubbio et al. [ 31 ] highlight deficiencies in resilience-oriented practices for patient safety. Organizational and managerial factors in digital healthcare transformation also receive significant attention. Hikmet et al. [ 32 ] and Agarwal et al. [ 33 ] investigate the role of organizational variables and barriers in HIT adoption, whereas Cucciniello et al. [ 34 ] delve into the interdependence between implementing electronic medical records (EMR) systems and organizational conditions. Further, Eden et al. [ 35 ] and Huber and Gärtner [ 36 ] explore workforce adaptations and the implications of health information systems in hospitals that can increases transparency of work processes and accountability. Lastly, examining healthcare financialization and digital division provides an international perspective, contrasting the regulated environment in the EU with the US’s use of online medical crowdfunding as a potential solution to reduce bankruptcy [ 37 ; 38 ]. Collectively, these studies suggest a comprehensive model where stakeholders leverage digital transformation for management, enhancing operational efficiency in healthcare service providers.

Marques and Ferreira [ 39 ] performed a systematic literature review of digital transformation in healthcare, spanning the period from 1973 to 2018. Utilizing the SMARTER (Simple Multi-attribute Rating Technique Exploiting Ranks) method, 749 potential articles were analyzed, culminating in the prioritization and selection of 53 articles for detailed examination. The literature was organized into seven thematic areas: (1) Integrated management of IT in healthcare, (2) Medical images, (3) Electronic medical records, (4) IT and portable devices in healthcare, (5) Access to e-health, (6) Telemedicine, and (7) Privacy of medical data. It was observed that the predominant focus of research resides in the domains of integrated management, electronic medical records, and medical images. Concurrently, emerging trends were identified, notably the utilization of portable devices, the proliferation of virtual services, and the escalating concerns surrounding privacy. See Fig.  2 for visual representation of multifaceted digital transformation in healthcare.

figure 2

Visual representation of multifaceted digital transformation in healthcare: a synthesis of provider-patient dynamics, HIT impact, and strategic management. HIT; health information technology, HC; healthcare, EMR; electronic medical records. IT; information technology, Pt.; patient

Telehealth and online pharmacy advancements in pandemic management

In the realm of online pharmacies and telehealth, digital health technologies have been instrumental in managing the COVID-19 pandemic through surveillance, contact tracing, diagnosis, treatment, and prevention. These technologies ensure that healthcare, including pharmacy services, is delivered more effectively, addressing the challenges of accessibility and timely care. The role of telemedicine and e-pharmacies, in particular, has been emphasized in improving access to care worldwide. By enabling remote consultations and drug delivery, these platforms are making healthcare more accessible, especially in regions where traditional healthcare infrastructure is limited or overstretched [ 40 ].

The Canadian Virtual Care Policy Framework advocates for the swift adoption and integration of virtual care, propelled by the COVID-19 pandemic. It emphasizes enhancing access and quality, ensuring equity and privacy, and devising appropriate remuneration models, employing a collaborative, patient-centered approach while addressing digital disparities. During the COVID-19 pandemic, Canadian provinces and territories rapidly adopted virtual health care, leading to 60% of visits being virtual by April 2020, up from 10 to 20% in 2019. However, these implementations were often temporary and not fully integrated into healthcare systems. By August 2020, virtual visits decreased to 40%, with variations across regions, while provinces and territories used temporary billing codes for these services. The framework’s “Diagnostique” provides a thorough analysis of policy enablers and strategies for virtual care, underscoring the need for comprehensive policy and partnership engagement [ 41 ]. In the context of digital transformation in pharmacy, the Hospital News article outlines the application and infrastructure of telepharmacy services in Canada, highlighting the geographical challenges and the early adoption of telepharmacy in certain regions since 2003. It notes the use of various technologies like Medication Order Management, Videoconferencing, and Remote Camera Verification. Although lacking specific quantitative data, the article underscores the necessity for expanded telepharmacy services to ensure uniform care quality across diverse locations [ 42 ].

Similarly, Telehealth offers extensive resources for patients and providers in the United States, emphasizing programs like the Affordable Connectivity Program and Lifeline to facilitate access. The Health Resources and Services Administration enhances telehealth through support services, research, and technical assistance, reflecting a significant outreach impact [ 43 ]. The Office for the Advancement of Telehealth (OAT) under Health Resources and Services Administration (HRSA) works to improve access to quality health care through integrated telehealth services in the US. It supports direct services, research, and technical assistance, with over 6,000 telehealth technical assistance requests sent to Telehealth Resource Centers and approximately 22,000 patients served [ 44 ].

Internationally, In the UK, the National Health Service (NHS) spearheads digital health and care, providing significant innovation opportunities through vast data management. Support for digital health spans various stages, from discovery with organizations like Biotechnology and Biological Sciences Research Council (BBSRC) and Intelligent Data Analysis (IDA) research group, to development with networks such as Catapults and CPRD, and delivery with entities like the Academic Health Science Networks (AHSNs) and DigitalHealth.London. Regulatory bodies like the Medicines and Healthcare products Regulatory Agency (MHRA) and NICE ensure safety and efficacy. The collaborative ecosystem involves academic, healthcare, and industry stakeholders, aiming to enhance health and care services through technology and innovation [ 45 ].

In Australia, the government’s investment of over $4 billion into COVID-19 telehealth measures has facilitated universal access to quality healthcare. This initiative has provided over 85 million telehealth services to more than 16 million patients, with approximately 89,000 healthcare providers engaging in this service delivery. From 1 January 2022, telehealth services, initially introduced in response to COVID-19, will become an ongoing part of Medicare. This will allow eligible patients across Australia continued access to general practice (GP), nursing, midwifery, and allied health services via telehealth, deemed clinically appropriate by the health professional [ 46 ].

European nations such as the Netherlands, Austria, and Italy are at the forefront of implementing cross-organizational patient records, significantly enhancing telehealth communication and facilitating cross-border healthcare. The role of strong government support in advancing telehealth is pivotal. Ursula von der Leyen, the President of the European Commission, has been a prominent advocate for eHealth. She proposed the establishment of a European Health Data Space to streamline health data exchange across member states. France, a leader in telehealth legislation for nearly a decade, has pioneered a public funding scheme for tele-expertise at a national scale. Despite these advancements, challenges like legislative barriers and the lack of consistent political direction continue to impede progress in the telehealth domain​ [ 47 ].

The Asia-Pacific region anticipates a surge in telehealth adoption driven by digital demand and pandemic-induced behavioral changes, while South East Asia exhibits widespread telehealth growth across healthcare aspects [ 48 ]. The telehealth adoption across the Asia-Pacific region has shown remarkable growth between 2019 and 2021 and is projected to continue rising by 2024. China’s adoption nearly doubled to 47% and is expected to reach 76%. Indonesia’s usage more than doubled to 51%, with a forecast of 72%. Malaysia and the Philippines both anticipate reaching a 70% adoption rate, increasing from 30% to 29%, respectively. India’s adoption is projected to more than double to 68%, while Singapore, which had a significant increase from 5 to 45%, is expected to achieve a 60% adoption rate. This trend indicates a robust uptake of telehealth services in the region [ 48 ].

Global telemedicine and E-pharmacy policy dynamics

In the context of telemedicine and e-pharmacy regulations within South East Asia, a notable distinction emerges with Singapore, Malaysia, and Indonesia being the only countries to have formalized legal frameworks governing both telemedicine practices and the dissemination of electronic information. In these countries, tele-consultation is restricted to patients already under the care of healthcare practitioners or as part of ongoing treatment, specifically in Singapore and Malaysia. Additionally, for scenarios requiring more intensive medical intervention, such as new referrals, emergency cases, or invasive procedures, both Malaysia and Indonesia mandate physical presence and face-to-face consultations, emphasizing a cautious and regulated approach to remote healthcare. In Malaysia, the regulations further stipulate that online prescriptions, excluding narcotics and psychotropic substances, are permissible solely under the continuation of care model, reflecting a judicious use of digital prescription services [ 49 ].

In Central and Eastern Europe (CEE), telemedicine has experienced substantial growth, primarily catalyzed by the COVID-19 pandemic, which necessitated rapid advancements in technology and alterations in healthcare practices. The region’s robust digital infrastructure, coupled with the innovative drive of local companies and the challenges posed by an aging demographic, has significantly contributed to this expansion. According to the European Commission’s Market Study on Telemedicine, the global telemedicine market was projected to grow annually by 14% by 2021, a rate that was likely surpassed due to the pandemic’s impact. More specifically, the Europe Telehealth Market, valued at US $6,185.4 million in 2019, is anticipated to witness an annual growth rate of 18.9% from 2020 to 2030. This trend underscores the increasing reliance on and potential of telemedicine in addressing healthcare needs in the CEE region [ 50 ].

In the Middle East, telehealth and telepharmacy, have seen varied degrees of adoption and progress. Despite attempts to reform healthcare delivery in the region, the progress of telemedicine has been somewhat slow, with certain expectations yet to be fully realized. However, there has been notable development in the use and adoption of these technologies [ 51 ]​. In a survey comparing the utilization of digital-health applications in Saudi Arabia and the United Arab Emirates (UAE), it was observed that a higher percentage of Saudi participants have utilized online pharmacy services (48%) compared to the UAE (36%). Conversely, awareness of teleconsultation services without prior use was higher in the UAE (43%) than in Saudi Arabia (35%). Retention data indicates that a significant proportion of users in both countries continue to engage with these services, with 80% of Saudi participants and 71% of UAE participants using teleconsultations at varying frequencies. Notably, a substantial majority of users in Saudi Arabia reported regular use of online pharmacies (90%), slightly higher than the UAE (78%), reflecting robust ongoing engagement with these digital health modalities. Notably, consumer adoption of telehealth products is primarily driven by time savings (48%) and convenience (47%), with 24-hour accessibility and efficacy both influencing 34% of users. Affordability and personal recommendations are also notable factors, while a wide range of options and quality are lesser but relevant considerations [ 52 ].

In response to the COVID-19 pandemic, a cross-sectional study was conducted among 391 licensed community pharmacists in the United Arab Emirates to assess the adoption and impact of telepharmacy services. The study revealed a predominant use of telepharmacy services, particularly via phone (95.6%) and messaging applications (80.0%). The findings highlighted that pharmacies with more pharmacists and those operating as part of a group or chain were more likely to implement a diverse range of telepharmacy services. The study identified significant barriers to telepharmacy adoption in individual pharmacies, including limited time, inadequate training, and financial constraints. There was a noticeable shift in service provision during the lockdown, with an increased reliance on telepharmacy, especially among pharmacies serving 50–100 patients per day. However, a reduction in services such as managing mild diseases and selling health products was observed during the lockdown period. The study concluded that telepharmacy played a pivotal role in supporting community pharmacies during the pandemic, with its expansion facilitated by the UAE’s advanced internet infrastructure, supportive health policies, and widespread digital connectivity [ 53 ]. Collectively, these insights reflect a global shift towards integrating and enhancing telehealth services as a response to emerging healthcare needs and technological advancements.

Unni et al. [ 54 ] provided an extensive review of telepharmacy initiatives adopted globally during the COVID-19 pandemic. Predominantly, virtual consultations were utilized to enable at-risk patients and others to remotely access pharmacists, thereby monitoring chronic illnesses, optimizing medication usage, and providing educational support [ 55 ]. Home delivery of medicines was widely implemented to decrease the necessity for in-person visits and mitigate exposure risks [ 56 ]. Additionally, patient education was prioritized to ensure effective management of health conditions from a distance [ 57 ]. Notably, a network of hospitals in China developed cloud-pharmacy care, allowing patients to consult pharmacists via text and the internet, while Spain utilized information and communication technologies for remote pharmaceutical care [ 58 ; 59 ]. Zero-contact pharmaceutical care, introduced in China, facilitated online medication consultations, eliminating direct contact [ 60 ]. The Kingdom of Saudi Arabia and other regions adapted new e-tools and teleprescriptions to enhance service accessibility [ 61 ]. The U.S. focused on credentialing pharmacists for telehealth to ensure competent service provision, and New Zealand implemented hotline numbers for phone consultations to further reduce physical visits [ 62 ; 63 ]. These initiatives reflect a significant shift towards innovative, technology-driven solutions in pharmaceutical care during a global health crisis. Refer to Fig.  3 for a graphical depiction of the worldwide distribution and applications of telepharmacy initiatives.

figure 3

The global distribution of telepharmacy programs with an analysis of geographical distribution, technological applications, and associated benefits

Tracing the Private Sector’s Impact on Healthcare’s Technological Transformation

The role of the private sector in the fourth industrial revolution.

The World Economic Forum underscores the private sector’s leading role in digital inclusion and the acceleration of actions pertinent to the Fourth Industrial Revolution. This revolution affects economies, industries, and global issues profoundly, indicating the private sector’s critical role in driving technological advancements and digital platforms that deliver impactful healthcare solutions [ 64 ].

Mapping digital transformation in healthcare

A comprehensive analysis performed by Dal Mas et al. [ 65 ] meticulously maps the intricate terrain of digital transformation in healthcare, spotlighting the private sector’s instrumental role. Initially, the investigation encompassed an extensive array of diverse studies, leading to the identification of five main areas of digital technologies: smart health technologies, data-enabled and data collection technologies, Industry 4.0 tools and technologies, cognitive technologies, and drug & disease technologies. These domains frame the future research pathways, primarily steered by the private sector’s innovative drive. A significant proportion of the literature addresses healthcare broadly, suitable for both private and public sectors, yet a notable segment specifically focuses on the private sector’s endeavors, with a pronounced emphasis on the pharmaceutical domain [ 66 ; 67 ].

Public-private partnerships in healthcare delivery

The highlighted technologies, including digital platforms and telemedicine, exemplify the private sector’s trailblazing contributions to digital healthcare advancements. For instance, public-private partnerships (PPP) in India have emerged as a pivotal model for realizing universal healthcare (UHC), especially against the backdrop of acute healthcare shortages and urban-rural divides. Notably, mega PPP projects have successfully deployed technology-enabled remote healthcare (TeRHC), demonstrating its feasibility and impact in reaching isolated communities. These initiatives, overcoming various challenges, serve as a compelling example for global adoption, underscoring the transformative role of PPP in healthcare delivery [ 68 ].. Furthermore, a considerable majority of the literature in telemedicine underscores the necessity for profound research implications, yet a significant minority suggests policy implications [ 69 ; 70 ], reflecting a complex synergy between the private and public sectors in sculpting the digital healthcare framework [ 71 ]. This synthesis underscores the private sector’s critical influence in propelling the digital transformation in healthcare, charting a course that progressively fuses technological innovation with healthcare provision.

A study highlights Indonesia’s strategic initiatives to capitalize on telehealth business opportunities, driven by the Ministry of Research and Technology’s robust support for Technology-Based Start-up Company schemes [ 72 ]. With a demographic boon of 298 million from 2020 to 2024, escalating non-communicable diseases (71%), and a growing base of 222.4 million JKN participants, the stage is set for transformative growth. Despite a critical shortage of health workers (0.4 doctors per 1000 population), the enthusiasm for telemedicine is evident, with 71% satisfaction in hospital telemedicine and 32 million active telehealth users. The Ministry’s foresight in fostering technology start-ups, exemplified by the TEMENIN platform with its 11 health platforms, is steering Indonesia towards a future where high-quality healthcare is accessible and sustainable.

Lab@AOR: a model for PPPs in healthcare sector

The “Lab@AOR” initiative stands as a paradigmatic example of PPPs effectuating digital transformation within the healthcare sector. This strategic collaboration, between the University Hospital of Marche and Loccioni [ 73 ], a private entity, underscores the capacity of PPPs to navigate intricate challenges, stimulate international cooperation, and contribute to the development of sustainable, patient-centric healthcare solutions. Specifically, Lab@AOR was instituted to confront the nuanced challenges associated with the robotization of healthcare service delivery, highlighting the initiative’s role in fostering technological advancement through public and private sector synergy [ 74 ]. The project illustrates the evolution of Lab@AOR through three main phases: the pioneering stage, where groundwork for collaboration was laid; the nurturing stage, where collaborative exchanges were fostered; and the harvesting stage, wherein the potential of the PPP was fully unleashed. In the pioneering stage, Lab@AOR focused on a critical healthcare service component: the in-hospital preparation of medications for oncological patients. The University Hospital of Marche identified a need for innovation to improve service quality, efficiency, and safety, while Loccioni sought a real-life setting to test and refine its robotized system, APOTECAchemo [ 75 ]. This convergence of needs led to a symbiotic partnership aiming to enhance healthcare delivery through technological advancement.

During the nurturing stage, the partnership expanded the scope of APOTECAchemo to include non-oncological medications and developed additional tools like APOTECAps for manual preparation support. This phase was characterized by intensive collaboration, knowledge sharing, and continuous innovation, demonstrating the dynamic capability of the PPP to adapt and evolve in response to emerging healthcare challenges. The harvesting stage marked the international expansion of Lab@AOR, transforming it from a local initiative to an international community focused on leveraging digitalization and robotization to improve care quality and patient-centeredness. The PPP’s growth was catalyzed by its open perspective and inclusive approach, engaging entities from various cultural and institutional contexts, and fostering a network of 31 nodes across 19 countries and 3 continents.

Advancements in telehealth business models and frameworks

In their investigative study, Velayati et al. [ 76 ] delved into the articulation of emergent business models in telehealth and scrutinized the deployment of established frameworks across a variety of telehealth segments. The research spanned an extensive range of sectors, notably telemonitoring, telemedicine, mobile health, and telerehabilitation, alongside telehealth more broadly. The scope further extended to encompass niche areas such as assisted living technologies, sensor-based systems, and specific fields like mobile teledermoscopy, teleradiology, telecardiology, and teletreatment, presenting a thorough analysis of the telehealth landscape. Within the telemedicine and telehealth services sector, Barker et al. [ 77 ] introduced the Arizona Telemedicine Program (ATP) Model, a quintet-layer approach aimed at efficiently distributing telemedicine services throughout Arizona. Complementing this, Lee and Chang [ 78 ] proposed a four-component model specifically tailored for mobile health (mHealth) services pertaining to chronic kidney disease, focusing on offering a cost-effective platform for disease support and management. In the realm of telemonitoring, Dijkstra et al. [ 79 ] utilized the Freeband Business Blueprint Method (FBBM), which includes service, technological, organizational, and financial domains, to facilitate multiple telemonitoring services. Furthermore, the systemic and economic differences were explored in care coordination through Business to customer (B2C) and business (B2B) models for telemonitoring patients with chronic diseases, with the B2C model’s economic advantages were highlighted [ 80 ].

General telemedicine frameworks also received attention. Lin et al. [ 81 ] constructed a six-component framework analyzing major telemedicine projects in Taiwan, while Peters et al. [ 82 ] developed the CompBizMod Framework in Germany, encompassing value proposition, co-creation, communication and transfer, and value capture, designed to evaluate and enhance competitive advantages in telemedicine. In the specialized field of telecardiology, a comprehensive nine-component sustainable business model was crafted to facilitate mutual benefits for service providers and patients. This model emphasizes the importance of a holistic approach in ensuring the longevity and effectiveness of healthcare delivery within this domain [ 83 ]. Meanwhile, Mun et al. [ 84 ] presented a suite of five teleradiology business models aimed at providing effective, high-quality, and cost-efficient diagnoses.

The teletreatment sector saw innovative models from Kijl et al. [ 85 ], who designed a model for treating patients with chronic pain, focusing on the interrelation of components in the value network and the role of information technology. Complementarily, Fusco and Turchetti [ 86 ] introduced four models for telerehabilitation post-total knee replacement, emphasizing partnerships between care units and equipment suppliers to reduce costs and waiting lists. The mHealth and assisted living technology sector witnessed the introduction of a wearable biofeedback system model by Hidefjäll and Titkova [ 87 ], which employed Alexander Osterwalder’s Business Model Canvas and focused on a comprehensive commercialization process. Additionally, Oderanti and Li [ 88 ] presented a seven-component sustainable business model for assisted living technologies, aimed at encouraging older individuals to invest in eHealth services while reducing the pressure on health systems. These diverse clusters and models reflect the multifaceted nature of telehealth, each tailoring its approach to meet the unique demands of its domain. They collectively aim to optimize service delivery, stakeholder involvement, cost efficiency, and patient care quality, marking significant strides in the ongoing evolution of digital healthcare.

Challenges and biases in healthcare technology

One key aspect is the emergence of novel medical technologies and their potential biases. These biases are often a result of insufficient consideration of patient diversity in the development and testing phases. For example, disparities in the performance of medical devices like pulse oximeters among different racial groups have been observed, potentially due to a lack of diverse representation in clinical trials. This indicates a tendency for the development of healthcare technologies that may not adequately serve all patient populations [ 89 ]. A study on the profitability and risk-return comparison across health care industries highlights the use of return on equity (ROE) as a measure of profitability from a shareholder’s perspective. This measure combines profit margin, asset utilization, and financial leverage. The study analyzed financial data of publicly traded healthcare companies, providing insights into the financial dynamics of the healthcare sector. It revealed that while companies like Pfizer Inc. and UnitedHealth Group reported similar profitability, they had substantial differences in profit margin and asset utilization, indicating diverse financial strategies within the healthcare sector. This study underscores the complexity of financial performance in healthcare, where profitability measures need to be balanced with risk assessment and the broader impact on healthcare provision​ [ 90 ].

Additionally, an article discusses the benefits, pitfalls, and potential biases in healthcare AI. It emphasizes that as the healthcare industry adopts AI, machine learning, and other modeling techniques, it is seeing benefits for both patient outcomes and cost reduction. However, the industry must be mindful of managing the risks, including biases that may arise during the implementation of AI. Lessons from other industries can provide a framework for acknowledging and managing data, machine, and human biases in AI. This perspective is crucial in understanding how the integration of advanced technologies in healthcare can be influenced by the drive for profitability and efficiency, possibly at the expense of equitable and patient-centered care [ 91 ; 92 ].

Cosmeceuticals in the online pharmacy market

Cosmeceuticals, a term derived from the combination of cosmetics and pharmaceuticals, refer to a category of products that are formulated to provide both aesthetic improvements and therapeutic benefits. These products, typically applied topically, are designed to enhance the health and beauty of the skin, going beyond the mere cosmetic appearance. The exploration of cosmeceuticals in the online pharmacy market reveals a multifaceted and rapidly expanding industry. Bridging the gap between cosmetics and pharmaceuticals, they form a significant portion of the skincare industry. Cosmeceuticals are formulated from various ingredients, with their main categories being constantly discussed and analyzed in the scientific community [ 93 ]. They have taken a considerable share of the personal care industry globally, constituting a significant part of dermatologists’ prescriptions worldwide [ 94 ]. This surge is further fueled by increasing consumer demand for effective and safe products, including anti-aging skincare cosmeceuticals, a need which has been intensified by concerns over pollution, climate change, and the COVID-19 pandemic [ 95 ].

The global cosmeceuticals market is experiencing robust growth. Valued at USD 56.78 billion in 2022, it’s projected to expand to USD 95.75 billion by 2030, with a compound annual growth rate (CAGR) of 7.45%. This growth trajectory is propelled by the innovative integration of bioactive ingredients known for their medical benefits​ [ 96 ]. Another report confirms this upward trend, indicating the market was worth $45.56 billion in 2021 and is on a path of significant growth to USD 114 billion by 2030. The global disease burden is significantly impacted by various skin diseases, with dermatitis, psoriasis, and acne vulgaris among the most prevalent, contributing 0.38%, 0.19%, and 0.29% respectively. The pervasive nature of these conditions drives a substantial demand for effective treatments, propelling the integration of cosmeceuticals into the online pharmacy market. This integration not only offers convenient access to a range of therapeutic skincare products but also caters to the rising consumer inclination towards self-care and preventive healthcare. As a result, the online availability of cosmeceuticals is not just addressing the immediate needs of individuals suffering from skin conditions but is also reshaping the landscape of personal healthcare by making specialized treatments more accessible and customizable [ 97 ]. See Fig.  4 .

figure 4

The left panel presents the market share distribution for key segments in the cosmeceuticals industry in 2021, including Skin Care Segment, and Supermarket & Specialty Stores, for Asia Pacific Revenue, with percentages for each category. The right panel displays the market value progression over time from 2021 to the projected value in 2030, with bold numbers indicating the value in billion USD for each year. The lower horizontal bar chart depicts the percentage contribution of various skin diseases to the global disease burden

Several factors are contributing to this expansion of the cosmeceuticals market. The market is driven by innovation in natural ingredients and a significant penetration of internet, smartphone, and social media applications, which attract potential consumer populations and reflect constantly changing consumer behavior [ 98 ]​​. The cosmeceuticals market’s robust CAGR and revenue share, especially in regions like Asia Pacific, further signify its burgeoning presence and potential within the global market [ 99 ]​. Integration into online pharmacies is a key aspect of this market’s evolution, offering easier access to these products for a wider customer base. As the market continues to grow, it’s anticipated that the blend of cosmeceuticals with online pharmaceutical platforms will become increasingly seamless, offering consumers a diverse range of accessible, effective, and beneficial skincare and health products. This integration is likely to be driven by the growing trend of e-commerce and digitalization in healthcare and personal care sectors.

The landscape of online pharmacies, particularly concerning cosmeceuticals, is evolving. While the overall penetration for non-specialty drugs in mail-order and online pharmacies is low, they represent a significant portion of specialty prescription revenues at 37%. Despite this, only 13% of consumers consider these as their primary pharmacy choice, indicating a growing but still emerging market​​​​. Strategies are in place to enhance the market appeal of these pharmacies, focusing on speed, convenience, and personalized experiences, such as video telehealth visits, to attract a broader consumer base [ 100 ].

The dissertation “L’Oréal Portugal: A Digital Challenge for the Active Cosmetics Division” authored by Ascenso [ 101 ] provides an in-depth examination of the impact of digital evolution on the Portuguese cosmeceutical sector and its implications for L’Oréal, a significant cosmetics company. It posits that while L’Oréal has foundational digital competencies, the rapidly evolving digital landscape presents a broad spectrum of potential risks and opportunities. The study details the operations of L’Oréal’s Active Cosmetics Division, which manages brands predominantly sold in pharmacies and parapharmacies, and explores the potential repercussions of digitalization on L’Oréal Portugal’s strategic and operational frameworks. Furthermore, the thesis highlights the expanding role of e-pharmacies and the need for legal reforms to facilitate their operation. It discusses the prevalent trends in the cosmetic industry, such as the increasing demand for natural, male-focused, and environmentally friendly products. The dissertation scrutinizes L’Oréal’s strategic pillars, including innovation, acquisition, and regional growth, emphasizing the need for the company to integrate advanced technologies and recalibrate its business methodologies in light of digital progression [ 101 ]. Although L’Oréal has initiated some digital strategies targeting consumers and pharmacies, there’s a recognized need for an intensified focus on digital marketing aimed at clients. An exploratory attempt by L’Oréal to implement an online ordering platform for pharmacies did not meet success, indicating possible industry unreadiness for such advancements. This case study serves as a critical examination of how traditional companies in the pharmaceutical and cosmetics sectors must adapt to the digital age’s challenges and opportunities [ 101 ].

In a collaborative endeavor with L’Oréal, an associated digital agency provided a comprehensive suite of services that encompasses the full management of social media pages, the development of e-commerce websites, the establishment of Customer Relationship Management (CRM) platforms tailored for pharmacies, and the execution of digital campaigns leveraging QR codes, SMS marketing, and newsletters. These digital tools confer a competitive edge, facilitating a deeper comprehension of consumer behavior and the potential to augment value extraction from customer interactions. For the laboratories, particularly those associated with cosmetics, the advantages are twofold: an increase in sell-out figures, thereby enhancing direct sales to end consumers, and a boost in sell-in metrics, reflecting a rise in transactions to pharmacies or wholesalers. The online ordering feature, as noted by João Roma, a manager at La Roche-Posay, could result in a cacophony of processes if laboratories were to individually develop distinct methods. He advocates for the utilization of pre-existing platforms, such as the established e-learning infrastructure, to spearhead ventures into the online marketplace [ 101 ].

A survey conducted specifically for L’Oréal’s e-learning platform, cosmeticaactiva.pt [ 102 ], across the Portuguese landscape garnered responses from 324 participants, comprising 71% general pharmacists, 13% technical assistants, 8% directors, 7% individuals responsible for procurement from laboratories, and 2% beauty/cosmetic advisors. The findings from this survey underscore the pervasive adoption of digital tools within the pharmacy sector: 82% of respondents affirmed the presence of their pharmacies on social media platforms, 80% reported the use of basic management software, 64% indicated the deployment of advanced management systems, 61% were conversant with online ordering systems directed at laboratories, 38% utilized a store locator, 28% had an established website presence, and a smaller segment of 12% offered online shopping facilities.

Another survey conducted within this study to evaluate the significance of dermocosmetic products in pharmacies yielded a mean importance rating of 4.38 out of 5, indicating that a majority of pharmacists consider these products to be highly important to their business operations. Factors critical to the differentiation of a proficient laboratory/supplier were innovation and cost-effectiveness, with mean scores of 1.9 and 2.7 respectively, on a scale from 1 (most important) to 5 (least important). A substantial majority of pharmacists, amounting to 81.8%, perceive their pharmacies as beacons of innovation and modernity. Detailed interviews elucidated that digital tools are indispensable in augmenting sales for cosmeceutical products by catalyzing demand—a dynamic not feasible with medicinal products. These tools are paramount in managing customer loyalty, facilitating enhanced communication with existing clients via online and mobile channels. Despite the challenges posed by digitalization, particularly in the realms of logistics and human resources, the management at L’Oréal is well-equipped to swiftly adapt to the evolving business landscape, as evidenced by the proactive adoption and integration of these digital strategies [ 101 ] as illustrated in Fig.  5 .

figure 5

Results from Ascenso [ 101 ] survey assessing digital challenges for L’Oréal in the Portuguese cosmeceutical sector. Digital Tools Usage in Pharmacies (upper left) : the bar chart showing the percentage of respondents using various digital tools in pharmacies. Suppliers’ Choosing Factors (upper right) : the bar chart displaying the mean scores of factors that distinguish a good laboratory/supplier. General Pharmacists Opinion (lower left) : A line chart illustrating the mean ratings of pharmacists’ opinions on whether the pharmaceutical sector is modern, changing, conducive to innovations, adapted to consumer needs, and more developed than other sectors. Importance of Digital Development Tools for Pharmacies (lower right) : A vertical bar chart demonstrating the mean scores for the importance of different digital development tools for pharmacies

The digital transformation strategies, exemplified by companies like L’Oréal, extend beyond the mere targeting of end consumers, encompassing the perspectives of various stakeholders, including retailers. This broadened focus reflects a holistic and integrated approach to digital marketing and customer engagement, indicative of a larger trend within the market. The significance of digital channels in facilitating comprehensive customer interaction and brand development is increasingly recognized. The distinction of organizations such as L’Oréal in their digital initiatives highlights the competitive advantage that can be garnered through innovative digital strategies.

The receptiveness of industry professionals, such as pharmacists, to emerging digital trends, along with the readiness of companies to engage in non-face-to-face sales models, marks a paradigm shift in traditional sales and distribution methods. This shift is reflective of a broader market trend where digital platforms are becoming integral to the customer journey. Furthermore, the potential for online sales in specialized sectors, such as dermocosmetics, and the benefits that organizations derive from the technological advancement of their client base, underscore an escalating acknowledgment of e-commerce and digital tools as crucial elements of a business strategy. This trend, with L’Oréal as a prime example, emphasizes the broader market movement towards digital transformation, not merely as an option but as a necessity for maintaining relevance and competitiveness in an ever-evolving market landscape.

The global regulatory landscape for cosmeceuticals

Sophisticated regulatory legislation and enforcement mechanisms characterize many developed countries such as the USA, EU Member States, Canada, and Japan. These nations, along with influential organizations like the World Health Organization (WHO), significantly shape international market rules and regulations due to their market size and regulatory capacity [ 103 ]. The WHO is particularly noted for its crucial role in setting global standards, with a focus on developing and promoting international standards related to food, biological, pharmaceutical, and similar products [ 104 ]. In contrast to pharmaceuticals, the cosmetic industry necessitates a more advanced international regulatory framework due to consumers’ extensive exposure to these products. The distinction between cosmetics and pharmaceuticals varies significantly across different countries, with the USA employing a voluntary registration system for cosmetics and the EU and Japan requiring mandatory product filings prior to marketing [ 105 ]. Concerns over the safety of pharmaceutical and cosmetic products are highlighted, with an increasing consumer focus on “natural, ecological, and clean” products [ 106 ]. However, the lack of a regulatory framework for these categories underscores the need for more advanced regulations to mitigate health risks.

Intergovernmental cooperation is emphasized, with the US and EU portrayed as dominant players in the pharmaceutical and cosmetic industries, respectively. Regulatory capacity, which is essential for defining, implementing, and monitoring market rules, varies among countries and markets. This capacity depends on several factors, including staff expertise, statutory sanctioning authority, and the degree of centralization of regulatory authority [ 103 ]. The regulatory systems of the EU and US are explored, focusing on their unique approaches to medicine authorization and regulation. The European Medicines Agency (EMA) in the EU and the Food and Drug Administration (FDA) in the US serve as pivotal regulatory bodies [ 107 ; 108 ]. The EMA’s centralized procedure and the FDA’s premarket approval process are detailed, along with subsequent postmarket regulatory procedures. For instance, EU and US cosmetic regulations are compared, revealing differences in their approaches and the evolution of the EU’s regulatory landscape through various amendments and directives. In particular, directive 76/768/EC has been superseded by Regulation (EC) N° 1223/2009, serving as the principal regulatory framework for finished cosmetic products in the EU market. This regulation enhances product safety, optimizes the sector’s framework, and eases procedures to promote the internal cosmetic market. Incorporating recent technological advancements, including nanomaterials, it maintains an internationally acknowledged regime focused on product safety without altering existing animal testing prohibitions [ 109 ].

The Eurasian Economic Union’s (EAEU) regulatory framework for medicines and medical devices is detailed, including the legal framework established for regulating the circulation of these products. The conformity assessment methods, such as the EAC Declaration and the State Registration process, are required for manufacturers to demonstrate their products’ compliance with the standards [ 110 ]. Armenia is also part of the EAEU’s legal framework, which aims to unify regulations for the production and registration of pharmaceuticals and medical products by 2025. This unification is expected to reduce administrative costs for manufacturers and improve medicinal products for patients. Despite significant developments in the cosmetics industry, Armenia does not have an extensive regulatory framework for it. Prior to joining the EAEU, the only regulation concerning cosmetic products was the Order of the Minister of Health of the Republic of Armenia on “Hygiene Requirements of the Production and Safety of Perfume-Cosmetic Products.” Since joining the EAEU, Armenia has unified its national legislation with EAEU regulations, but there are challenges and gaps in the direct applicability of the EAEU’s technical regulations in the country [ 111 ].

In the context of the necessity for clear regulatory framework stems from two reasons. Firstly, cosmeceuticals - products straddling cosmetics and drugs - demand intensified regulatory attention. Examples include the 2007 FDA seizure of Jan Marini’s Age Intervention Eyelash, which contained the drug ingredient bimatoprost, and products boasting human stem cell cultured media, which claim rejuvenating effects but may pose safety risks due to minimal oversight [ 112 ]. A noted 1450% increase in FDA warnings (from 4 to 62 letters) between 2007 and 2011 and 2012–2017, with 8 targeting stem cell ingredient promotions, underscores the growing concern [ 113 ]. The FDA’s limited capacity to identify and assess potential drug-adulterated cosmetics raises concerns.

The second aspect focuses on the necessity for a more comprehensive and unbiased scientific and medical perspective in the FDA’s ingredient review process. The Personal Care Products Safety Act proposes a balanced committee formation including industry, consumer, and medical representatives, yet advocates for the inclusion of specialized professionals like chemists, dermatologists, toxicologists, and endocrinologists. Specific ingredients like diazolidinyl urea and quarternium-15, although effective antimicrobials, are flagged for potential skin allergy risks and formaldehyde release. The preservative 4-methylisothiazolinone, banned in Europe for rinse-off products, is noted for increasing allergic contact dermatitis cases in the US [ 114 ]. The lag in US cosmetic regulation compared to the EU is acknowledged, with the Personal Care Products Safety Act considered a significant advancement, albeit in need of further refinement [ 115 ].

The importance of consumer safety in the global regulatory landscape for cosmeceuticals, particularly for products that blur the line between cosmetics and pharmaceuticals, is a critical issue due to several key factors. Firstly, the cosmeceutical market is expanding rapidly, driven by new ingredients promising various skincare benefits like anti-aging and photoprotection. This growth necessitates clear regulatory guidelines to ensure that these products are safe and their claims are clinically proven. The FDA, for instance, differentiates between cosmetics and cosmeceuticals based on their intended use, particularly if a product is marketed as a cosmetic but functions in a way that affects the structure of the human body, classifying it as a cosmeceutical [ 116 ].

Secondly, the legal and regulatory distinctions between drugs and cosmetics are significant. Drugs are subject to FDA approval based on their intended use in treating diseases or affecting the body’s structure or function, whereas cosmetics are not. This difference becomes crucial when products are marketed with drug-like claims but are not regulated as drugs, potentially leading to consumer safety issues. For example, botanical cosmeceuticals, which contain natural ingredients like herbal extracts, need thorough evaluation to ensure consistency in therapeutic effects [ 117 ]. Additionally, cosmeceutical manufacturers must be careful with marketing and advertising claims to avoid legal implications. Misleading claims can lead to lawsuits and regulatory actions, as seen in past cases where companies faced consequences for unfounded product claims. Moreover, the FDA advises cosmeceutical manufacturers to follow Good Manufacturing Practices (GMP) to reduce the risk of misbranding or mislabeling. These guidelines include production practices and specific warning statement guidelines, emphasizing the importance of substantiating the safety of these products [ 118 ].

The global regulatory landscape for online pharmacy

Online pharmacies pose various risks to consumers, including the potential health hazards from counterfeit or substandard medications and the inappropriate use of prescription drugs. The regulatory landscape for these pharmacies varies significantly across nations, with some countries like the United States implementing specific laws, while others, such as France, have instituted outright bans [ 119 ]. The European Union, for instance, has implemented a mandate effective from 1 July 2015, which requires member states to adhere to legal provisions for a common logo specific to online pharmacies. This is coupled with an obligation for national regulatory authorities to maintain a registry of all registered online medicine retailers, as detailed by the European Medicines Agency [ 120 ]. Furthermore, the sale of certain medications online within the EU is permissible, contingent upon the registration of the pharmacy or retailer with respective national authorities​ [ 121 ]. Additionally, the Council of Europe’s MEDICRIME Convention introduces an international treaty that criminalizes the online sale of counterfeit medicinal products, enforcing prosecution irrespective of the country in which the crime is perpetrated [ 122 ].

Switzerland presents a unique stance, where Swissmedic strongly advises against the online purchase of medicines due to the high risk of illegal sourcing and poor quality. However, Swiss mail-order pharmacies with a valid cantonal license to operate a mail-order business are exempted from this advisory​ [ 123 ]. The Swiss Mail-Order Pharmacists Association and its affiliates, such as Zur Rose AG and MediService AG, actively advocate for a modern and equitable regulation of mail-order medicine sales​ [ 124 ]. The legislative framework is further bolstered by the Federal Act on Medicinal Products and Medical Devices, which regulates therapeutic products to guarantee their quality, safety, and efficacy​ [ 125 ]. In the Middle East, community pharmacy practice is predominantly governed by national Ministries of Public Health or equivalent governmental entities, with most community pharmacies being privately owned​ [ 126 ]. The region’s involvement in the Global Cooperation Group, which encompasses various international regulatory bodies like the EMA and USFDA, signifies a collaborative approach towards drug regulatory affairs in the MENA region [ 127 ]. Despite these advances in regulatory collaboration, it is notable that currently no specific regulations have been detected for online purchases from online pharmacies in the Middle East, highlighting a significant area for potential regulatory development. Furthermore, a notable transition is observed in pharmacy education across several Middle Eastern nations, with an inclination towards introducing Pharm.D degrees to replace traditional pharmacy degrees, reflective of evolving educational standards in the pharmaceutical field [ 128 ]. This shift in education parallels the need for updated regulatory frameworks, especially in the context of the burgeoning online pharmacy sector.

Furthermore, Australia permits the sale of both Prescription-Only Medicines (POMs) and Over-the-Counter (OTC) medications online, provided that brick-and-mortar pharmacies comply with all relevant laws and practice standards [ 129 ]. In contrast, South Korea maintains a stringent stance, prohibiting the online sale of both POMs and OTC medicines, with sales confined exclusively to physical stores registered with the Regulatory Authority (RA) [ 130 ]. China, Japan, Russia, Singapore, and Malaysia exhibit a more selective regulatory framework. China and Russia allow the online sale of OTC medicines only, with China imposing additional restrictions on third-party e-commerce platforms and Russia having introduced a draft law in December 2017 to formalize this practice [ 131 ; 132 ]. Japan permits the online sale of certain OTC medicines, explicitly excluding specific substances such as fexofenadine and loratadine [ 133 ]. Similarly, Singapore and Malaysia endorse the online sale of specific OTC medicines only, adopting a “buyers beware” approach to caution consumers about the associated risks [ 134 ; 135 ]. Lastly, the legal landscapes in India and Indonesia remain ambiguous. India’s RA has effectively banned the online sale of medicinal products, yet this prohibition lacks legislative backing. Indonesia, too, grapples with unclear regulations, leaving the legal status of online pharmacies indeterminate [ 136 ].

In response to these risks, several initiatives have been developed to guide and certify online pharmacies. In the United States, LegitScript offers certification to online pharmacies that comply with criteria such as appropriate licensing and registration [ 137 ]. Similarly, the Verified Internet Pharmacy Practice Sites (VIPPS) program, accredited by the National Association of Boards of Pharmacy, ensures pharmacies adhere to licensing requirements in the states where they dispense medications [ 138 ]. Internationally, the Health On the Net Foundation has introduced the HONcode, an ethical standard for health websites globally. This code certifies sites that provide transparent and qualified information. However, due to the absence of international harmonization, the HONcode’s certification is limited to US and Canadian pharmacies verified by VIPPS [ 139 ]. The lack of a harmonized international approach presents significant challenges. Consumers do not have access to a comprehensive, global repository of all certified pharmacies. The diverse certification schemes are not well articulated or interconnected, leading to consumer unawareness about their significance or existence. Moreover, enforcing standards across different legal jurisdictions is complex without a unified agreement. To enhance consumer protection, it is imperative to develop and promote a standardized, minimal international code of conduct for online pharmacies. Such a code would unify requirements and allow all initiatives to clarify their roles under a common framework. Adequate oversight in the borderless online pharmacy market can only be achieved through collaborative efforts. To visualize the infographic of the global regularity landscape for the online pharmacy see Fig.  6 .

figure 6

Comprehensive representation of the regulatory landscape for global online pharmacies, detailing international and national initiatives, certification programs, and conventions aimed at minimizing risks associated with the purchase of medications via online platforms

Technological innovations and Future trends in global pharmacy

The global pharmacy sector is undergoing a transformative shift, driven by the rapid advancement of technological innovations. As the world becomes increasingly digital, the integration of cutting-edge technologies like Artificial Intelligence (AI) and blockchain is setting the stage for a new era in pharmaceutical care and management. These advancements promise to revolutionize the industry by enhancing efficiency, accuracy, and security, ultimately leading to improved patient outcomes and a more streamlined healthcare experience [ 140 ].

Walgreens, in partnership with Medline, a telehealth firm, has developed a platform for patient interaction with healthcare professionals via video chat. AI’s role extends to inventory management in retail pharmacies, allowing pharmacists to predict patient needs, stock appropriately, and use personalized software for patient reminders. Although not all inventory management software in retail pharmacies utilizes AI, some, like Blue Yonder’s software developed for Otto group, demonstrate the potential of AI in predicting product sales with high accuracy, thus enhancing supply chain efficiency [ 141 ; 142 ]. At the University of California San Francisco (UCSF) Medical Center, robotic technology is employed to improve patient safety in medication preparation and tracking. This technology has prepared medication doses with a notable error-free record and surpasses human capabilities in accuracy and efficiency. It prepares both oral and injectable medicines, including chemotherapy drugs, freeing pharmacists and nurses to focus on direct patient care. The automated system at UCSF receives electronic medication orders, with robotics handling the picking, packaging, and dispensing of individual doses. This system also assembles medications on bar-coded rings for 12-hour patient intervals and prepares sterile preparations for chemotherapy and intravascular syringes [ 143 ].

In the realm of global pharmacy, blockchain technology emerges as a pivotal force, driving advancements across various facets of healthcare and pharmaceuticals. At the forefront of its application is the enhancement of supply chain transparency [ 144 ]. Blockchain’s immutable ledger ensures the provenance and legitimacy of medical commodities, offering an unprecedented level of visibility from manufacturing to distribution. This is particularly vital in areas plagued by counterfeit drugs, where systems like MediLedger are instrumental in verifying the legality and essential details of medicines [ 145 ].

The utility of blockchain extends to the implementation of smart contracts — scripts processed on the blockchain that bolster transparency in medical studies and secure patient data management [ 146 ]. These contracts find extensive use in advanced medical settings, as evidenced by a blockchain-based telemonitoring system for remote patients and Dermonet, an online platform for dermatological consultation [ 147 ].

Furthermore, blockchain is revolutionizing patient care through patient-centric Electronic Health Records (EHRs). By decentralizing EHR maintenance, blockchain empowers patients with secure access to their historical and current health records [ 148 ]. Prototypes like MedRec and systems such as MeD Share exemplify how blockchain can provide complete, permanent access to clinical documents and facilitate the sharing of medical data between untrusted parties, respectively, ensuring high information authenticity and minimal privacy risks [ 149 ; 150 ]. In verifying medical staff credentials, blockchain again proves invaluable. Systems like ProCredEx, based on the R3 Corda blockchain protocol, streamline the credentialing process, offering rapid verification while allowing healthcare entities to leverage their existing data for enhanced transparency and assurance about medical staff experience [ 151 ].

The integration of blockchain with Internet of Things devices for remote monitoring marks another leap forward, significantly bolstering data security. By safeguarding the integrity and privacy of patient data collected by these devices, blockchain mitigates the risk of tampering and ensures that only authorized parties can access sensitive information [ 152 ]. Besides, a blockchain-based drug supply chain initiative, PharmaChain, utilizes AI for approaches against drug counterfeit and ensures the drug supply chain is more traceable, visible, and secure. For online pharmacies, this means a more reliable supply chain and assurance of drug authenticity, crucial for maintaining trust and safety [ 153 ].

In response to the COVID-19 pandemic, the PharmaGo platform has emerged as an innovative solution in Sri Lanka, revolutionizing the delivery of pharmacy services. As traditional pharmacies grapple with the challenges of meeting all customer needs in one location, PharmaGo addresses this by providing a comprehensive online pharmaceutical service. It allows customers to access a wide range of medications through a single platform, reducing the need to visit multiple pharmacies. Utilizing image processing technology, pharmacy owners can accurately identify prescribed medicines, while the system’s predictive analytics forecasts future drug demands, enhancing stock management. Additionally, PharmaGo’s AI-powered medical chatbot offers real-time guidance, ensuring a seamless and efficient customer experience. This platform represents a significant advancement in healthcare accessibility and pharmacy service delivery in the pandemic era [ 154 ]. In the same context, ontology-based medicine information system, enhancing search relevance through a chatbot interface was presented by Amalia et al. [ 155 ]. Addressing conventional search engines’ limitations in interpreting data relationships, it employs semantic technology to represent metadata informatively. The ontology as a knowledge base effectively delineates disease-medicine relationships, with evaluations indicating a 90% response validity from the chatbot, offering a robust reference for medical information retrieval and its semantic associations.

Future trends for the digital transformation of in the pharmaceutical sector

Future trends for the digital transformation of pharmacies globally are heavily influenced by the transformative impact of digital technologies on healthcare delivery. The integration of telemedicine, electronic health records, and mobile health applications is pivotal in enhancing patient care. These technologies are instrumental in improving data sharing and collaboration among healthcare professionals, increasing the efficiency of healthcare services. Additionally, they offer significant potential for personalized medicine through data analytics and play a crucial role in patient engagement and self-management of health. The importance of these technologies in creating a more connected and efficient healthcare system is underscored, marking a significant shift in the global healthcare landscape [ 156 ].

In the pharmaceutical sector, the COVID-19 pandemic has catalyzed a significant shift towards Pharmaceutical Digital Marketing (PDM), particularly for over-the-counter drugs. This shift focuses on utilizing online pharmacies and digital platforms for targeted advertising, directly reaching consumers. The trend towards purchasing OTC drugs online has grown, driven by the convenience and efficiency of digital channels. While PDM faces challenges like regulatory constraints and the need for digital proficiency, it offers substantial opportunities in enhancing customer engagement and precise marketing. The future of PDM is poised to be more consumer-centric, integrating advanced technologies like AI, and emphasizing personalized marketing strategies to strengthen brand engagement and customer interaction [ 157 ].

Artificial intelligence holds immense potential to revolutionize the field of pharmacy, offering numerous benefits that can significantly enhance efficiency and patient care. One of the primary applications of AI in this sector is the automation of routine tasks. By utilizing AI, pharmacies can automate critical processes such as prescription processing, checking for drug interactions, and managing inventory. This automation not only streamlines operations but also minimizes the likelihood of human error, thereby increasing the overall efficiency of pharmacies [ 158 ].

Furthermore, AI can play a pivotal role in personalized medication management. This is particularly beneficial for patients with chronic conditions such as diabetes who require careful management of their insulin dosages, as fluctuations in blood sugar levels can lead to serious complications. AI systems can monitor patients continuously, provide timely reminders for medication intake, and dynamically adjust treatment plans based on individual health data. Such personalized management ensures that patients receive optimal care tailored to their specific needs, potentially improving treatment outcomes. Incorporation of AI into electronic health records presents another significant advancement. By integrating AI with EHRs, healthcare providers can access real-time patient data. This integration empowers healthcare professionals to make more informed care decisions, enhancing the quality of patient care. Moreover, it significantly reduces the likelihood of medication errors, a critical concern in healthcare.

Likewise, AI’s capability to analyze extensive patient data is invaluable. It can identify patterns and trends in medication adherence, detect potential drug interactions, and pinpoint adverse drug reactions. These insights are crucial for healthcare professionals and researchers. By understanding these patterns, they can develop more effective medication adherence strategies and support systems, contributing to better patient outcomes and advancing the overall field of pharmaceutical care.

In the expansive realm of chemical space, the pharmaceutical industry faces the continual challenge of identifying new active pharmaceutical ingredients (APIs) for diverse diseases [ 159 ]. High throughput screening (HTS), despite its advancements in recent decades, remains resource-intensive and often yields unsuitable hits for drug development. The failure rate of investigational compounds remains high, with a study citing only a 6.2% success rate for orphan drugs progressing from phase I to market approval [ 160 , 161 ].

Machine learning presents a transformative approach to this challenge. It offers an alternative to manual HTS through in silico methodologies. ML-driven drug discovery boasts several advantages: it operates continuously, surpasses the capacity of manual methods, reduces costs by decreasing the number of physical compounds tested, and early identifies negative characteristics of compounds, such as off-target effects and sex-dependent variability [ 162 ].

A substantial advancement in the realm of machine learning has emerged from major pharmaceutical entities, notably AstraZeneca, in conjunction with research institutions. This progress is evidenced by the development of an innovative algorithm that demonstrates both time efficiency and effectiveness in the sphere of drug discovery. The recent introduction of this algorithm significantly enhances the process of determining binding affinities between investigational compounds and therapeutic targets. It surpasses traditional in silico methods in terms of performance. The application of this algorithm underscores the remarkable potential of machine learning in accelerating the identification and development of novel therapeutic agents [ 163 ].

Moreover, the proficiency of machine learning in managing vast and intricate datasets has rendered it indispensable in research focused on cancer targets, utilizing diverse and extensive datasets. This approach is fundamental in numerous drug discovery initiatives, especially those targeting various forms of cancer. A wide array of ML techniques, ranging from supervised to unsupervised learning, are employed to discern chemical attributes that are indicative of potential therapeutic efficacy against a spectrum of cancer targets. This methodology is crucial in identifying novel compounds that could be effective in cancer treatment, leveraging the rich and complex data available in oncological research [ 164 ].

The digital transformation in the pharmacy sector is significantly reshaping healthcare delivery, driven by the integration of cutting-edge technologies like Artificial Intelligence and blockchain. This transformation is marked by a substantial growth in the digital pharmacy market, with a projected annual growth rate of 14.42%, leading to a market volume of approximately $35.33 billion by 2026​​.

One major aspect of this transformation is the growing reliance on online pharmacy platforms, largely influenced by the COVID-19 pandemic. Consumer trust in online medication purchases has significantly increased, indicating a shift towards digital healthcare solutions. The adoption of telehealth services, including telepharmacy, has surged, with patient adoption in the United States increasing from 11% in 2019 to 46%. This shift towards digital-first services enhances convenience and access to care but also introduces regulatory challenges, particularly in maintaining patient safety and quality standards in the rapidly evolving online healthcare environment​​.

The cosmeceuticals market, a segment within online pharmacies, is experiencing robust growth. Cosmeceuticals, which bridge the gap between cosmetics and pharmaceuticals, have become a significant part of the skincare industry. The market, valued at USD 56.78 billion in 2022, is projected to expand to USD 95.75 billion by 2030. This expansion is driven by factors like innovation in natural ingredients and significant penetration of internet, smartphone, and social media applications. Despite the growth, the overall penetration for non-specialty drugs in mail-order and online pharmacies remains low, representing a significant portion of specialty prescription revenues. The evolving landscape of online pharmacies in the cosmeceuticals sector reflects a trend towards more accessible and customizable personal healthcare solutions​​.

Technological innovations are setting the stage for a new era in pharmaceutical care and management. AI’s role extends to areas like inventory management in retail pharmacies, where it predicts patient needs and enhances supply chain efficiency. Blockchain technology enhances supply chain transparency and legitimizes medical commodities, especially crucial in areas affected by counterfeit drugs. Blockchain also plays a vital role in patient-centric Electronic Health Records and telemonitoring systems. For instance, PharmaGo, an innovative platform developed in response to the pandemic, provides a comprehensive online pharmaceutical service, demonstrating the significant advancements in healthcare accessibility and pharmacy service delivery​​.

These technological advancements are instrumental in improving data sharing and collaboration among healthcare professionals. They offer significant potential for personalized medicine through data analytics, playing a crucial role in patient engagement and self-management of health. The future trends in the pharmaceutical sector, particularly influenced by the COVID-19 pandemic, indicate a shift towards Pharmaceutical Digital Marketing (PDM) and a more consumer-centric approach. AI’s potential in revolutionizing pharmacy includes automation of routine tasks, personalized medication management, real-time patient data access, and the identification of patterns in medication adherence and potential drug interactions​​.

Data availability

No datasets were generated or analysed during the current study.

Hole G, Hole AS, McFalone-Shaw I. Digitalization in pharmaceutical industry: what to focus on under the digital implementation process? Int J Pharmaceutics: X. 2021;3:100095.

CAS   Google Scholar  

Shambhavi. Digital Pharmacy on the rise: transforming the Pharma Sector. Brillio.com; Oct. 2022.

Champagne HA, Leclerc D. O., The road to digital success in pharma [Internet]. https://www.mckinsey.com/industries/life-sciences/our-insights/the-road-to-digital-success-in-pharma# ~:text=Mobile%20communications%2 C%20the%20cloud%2 C%20advanced,media%2 C%20retail%2 C%20and%20banking%20industries, August 1, 2015.

COVID-19 accelerated. digital transformation of the pharma industry by five years: Poll, Available from: http://www.pharmaceutical-technology.com/news/covid-19-accelerated-digital-transformation-of-the-pharma-industry-by-five-years-poll/#:~:text=Digital%20transformation%20in%20the%20pharmaceutical,powerful%20analytics%20than%20ever%20before?cf-view&acf-closed , March 9, 2021.

Raza MA, Aziz S, Noreen M, Saeed A, Anjum I, Ahmed M, Raza SM. Artificial Intelligence (AI) in pharmacy: an overview of innovations. INNOVATIONS Pharm 13 (2022).

Zhang X. Investment analysis based on intrinsic value in the Information Technology and Pharmaceutical sectors for advancements in Digital Healthcare. Finance Econ 1 (2023).

Clark M, Clark T, Bhatti A, Aungst T. The rise of digital health and potential implications for pharmacy practice. J Contemp Pharm Pract. 2017;64:32–40.

Article   Google Scholar  

Health C, Pharmacy CVS. USA, 2023.

MyChart. Epic’s MyChart software system, USA, 2023.

Medisafe MD, Companion. USA, 2023.

Moodle. Moodle open source learning management system, USA, 2023.

PLUS SG. SimMan 3G PLUS advanced emergency care patient simulators, USA, 2023.

Association AP. American Pharmacists Association, USA, 2023.

Fittler A, Ambrus T, Serefko A, Smejkalová L, Kijewska A, Szopa A, Káplár M. Attitudes and behaviors regarding online pharmacies in the aftermath of COVID-19 pandemic: at the tipping point towards the new normal. Front Pharmacol. 2022;13:1070473.

Article   PubMed   PubMed Central   Google Scholar  

Hiskey O. The era of telehealth pharmacy practice. J Am Pharmacists Association. 2022;62:10–1.

Plantado ANR, de Guzman HJd, Mariano JEC, Salvan MRAR, Benosa CAC, Robles YR. Development of an online telepharmacy service in the Philippines and analysis of its usage during the COVID-19 pandemic. J Pharm Pract. 2023;36:227–37.

Article   PubMed   Google Scholar  

Zhang PC. The future of pharmacy is intertwined with digital health innovation. Can Pharmacists Journal/Revue Des Pharmaciens Du Can. 2022;155:7–8.

Miller R, Wafula F, Onoka CA, Saligram P, Musiega A, Ogira D, Okpani I, Ejughemre U, Murthy S, Garimella S. When technology precedes regulation: the challenges and opportunities of e-pharmacy in low-income and middle-income countries. BMJ Global Health 6 (2021).

Shawaqfeh MS, Al Bekairy AM, Al-Azayzih A, Alkatheri AA, Qandil AM, Obaidat AA, Harbi SA, Muflih SM. Pharmacy students perceptions of their distance online learning experience during the COVID-19 pandemic: a cross-sectional survey study. J Med Educ Curric Dev. 2020;7:2382120520963039.

Lee CY, Lee SWH. Impact of the educational technology use in undergraduate pharmacy teaching and learning–A systematic review. Pharm Educ. 2021;21:159–68.

Strawbridge J, Hayden JC, Robson T, Flood M, Cullinan S, Lynch M, Morgan AT, O’Brien F, Reynolds R, Kerrigan SW. Educating pharmacy students through a pandemic: reflecting on our COVID-19 experience. Res Social Administrative Pharm. 2022;18:3204–9.

Lin B, Wu S. Digital transformation in personalized medicine with artificial intelligence and the internet of medical things. OMICS. 2022;26:77–81.

Article   CAS   PubMed   Google Scholar  

Company M. Trends disrupting pharmacy value pools and potential implications for the value chain, 2018.

Stoumpos AI, Kitsios F, Talias MA. Digital Transformation in Healthcare: Technology Acceptance and its applications. Int J Environ Res Public Health. 2023;20:3407.

Kraus S, Schiavone F, Pluzhnikova A, Invernizzi AC. Digital transformation in healthcare: analyzing the current state-of-research. J Bus Res. 2021;123:557–67.

Jefferies JG, Bishop S, Hibbert S. Customer boundary work to navigate institutional arrangements around service interactions: exploring the case of telehealth. J Bus Res. 2019;105:420–33.

Patrício L, Teixeira JG, Vink J. A service design approach to healthcare innovation: from decision-making to sense-making and institutional change. AMS Rev. 2019;9:115–20.

Hong KS, Lee D. Impact of operational innovations on customer loyalty in the healthcare sector. Service Bus. 2018;12:575–600.

Laurenza E, Quintano M, Schiavone F, Vrontis D. The effect of digital technologies adoption in healthcare industry: a case based analysis. Bus Process Manage J. 2018;24:1124–44.

Mazor I, Heart T, Even A. Simulating the impact of an online digital dashboard in emergency departments on patients length of stay. J Decis Syst. 2016;25:343–53.

Rubbio I, Bruccoleri M, Pietrosi A, Ragonese B. Digital health technology enhances resilient behaviour: evidence from the ward. Int J Oper Prod Manage. 2020;40:34–67.

Hikmet N, Bhattacherjee A, Menachemi N, Kayhan VO, Brooks RG. The role of organizational factors in the adoption of healthcare information technology in Florida hospitals. Health Care Manag Sci. 2008;11:1–9.

Agarwal R, Gao G, DesRoches C, Jha AK. Research commentary—the digital transformation of healthcare: current status and the road ahead. Inform Syst Res. 2010;21:796–809.

Cucciniello M, Lapsley I, Nasi G. Managing health care in the digital world: a comparative analysis. Health Serv Manage Res. 2016;29:132–42.

Eden R, Burton-Jones A, Casey V, Draheim M. Digital transformation requires workforce transformation. MIS Q Exec. 2019;18:1–17.

Google Scholar  

Huber C, Gärtner C. Digital transformations in healthcare professionals’ work: Dynamics of autonomy, control and accountability. Manage Revue. 2018;29:139–61.

Burtch G, Chan J. Investigating the relationship between medical crowdfunding and personal bankruptcy in the United States: evidence of a digital divide. MIS Quarterly (Forthcoming; 2018.

Seddon JJJM, Currie WL. Healthcare financialisation and the digital divide in the European Union: narrative and numbers. Inf Manag. 2017;54:1084–96.

Marques IC, Ferreira JJ. Digital transformation in the area of health: systematic review of 45 years of evolution. Health Technol. 2020;10:575–86.

Naik N, Hameed B, Sooriyaperakasam N, Vinayahalingam S, Patil V, Smriti K, Saxena J, Shah M, Ibrahim S, Singh A. Transforming healthcare through a digital revolution: a review of digital healthcare technologies and solutions. Front Digit Health. 2022;4:919985.

Canada. Virtual care policy framework, Canada, 2023.

Dhaliwall S. Telepharmacy services in Canada. Canada: Hospital News; 2018.

Telehealth HHSgov. Telehealth services in the United States, USA, 2023.

HRSA. Health Resources & Services Administration, USA, 2023.

UK.digital. health, Digital health and care, UK, 2023.

Australia AT, Services. Australia, 2023.

Imenokhoeva M. Telehealth in the European Union: Improving Access to Healthcare, HIMSS, EU, 2020.

Lucy d’Arville, Boulton A, Kapur V. Asia Pacific, Telehealth Adoption is expected to soar through 2024. BIAN and Company; 2022.

Intan Sabrina M, Defi IR. Telemedicine guidelines in South East Asia—a scoping review. Front Neurol. 2021;11:581649.

Wolf.Theiss. Telemedicine– the future of healthcare in Central and Eastern Europe, 2022.

Al-Samarraie H, Ghazal S, Alzahrani AI, Moody L. Telemedicine in Middle Eastern countries: Progress, barriers, and policy recommendations. Int J Med Informatics. 2020;141:104232.

Mahdi AlBasri H, Elwan P, Georgiev, Ustun A. Growth opportunities for digital health in KSA and UAE. McKinsey: McKinsey; 2022.

Ibrahim OM, Ibrahim RM, Al Meslamani AZ, Al Mazrouei N. Role of telepharmacy in pharmacist counselling to coronavirus disease 2019 patients and medication dispensing errors. J Telemed Telecare. 2023;29:18–27.

Unni EJ, Patel K, Beazer IR. Hung, Telepharmacy during COVID-19: a scoping review. Pharmacy. 2021;9:183.

Leila Shafiee Hanjani JS, Bell, Freeman CR. Undertaking medication review by telehealth. Australian J Gen Pract. 2020;49:826–31.

Bejarano AP, Santos PV, Robustillo-Cortés MdlA, Gómez ES, Rubio MDS. Implementation of a novel home delivery service during pandemic. Eur J Hosp Pharm (2020) ejhpharm–2020.

Elson EC, Oermann C, Duehlmeyer S, Bledsoe S. Use of telemedicine to provide clinical pharmacy services during the SARS-CoV-2 pandemic. Am J Health-System Pharm. 2020;77:1005–6.

Li H, Zheng S, Liu F, Liu W, Zhao R. Fighting against COVID-19: innovative strategies for clinical pharmacists. Res Social Administrative Pharm. 2021;17:1813–8.

Margusino-Framiñán L, Illarro-Uranga A, Lorenzo-Lorenzo K, Monte-Boquet E, Márquez-Saavedra E, Fernández-Bargiela N, Gómez-Gómez D, Lago-Rivero N, Poveda-Andrés JL, Díaz-Acedo R, Hurtado-Bouza JL, Sánchez-Gundín J, Casanova-Martínez C. Morillo-Verdugo, Pharmaceutical care to hospital outpatients during the COVID-19 pandemic. Telepharmacy Farmacia Hospitalaria. 2020;44:61–5.

PubMed   Google Scholar  

Hua X, Gu M, Zeng F, Hu H, Zhou T, Zhang Y, Shi C. Pharmacy administration and pharmaceutical care practice in a module hospital during the COVID-19 epidemic. J Am Pharmacists Association. 2020;60:431–e4381.

Asseri AA, Manna MM, Yasin IM, Moustafa MM, Roubie FM, El-Anssasy SM, Baqawie SK. Implementation and evaluation of telepharmacy during COVID-19 pandemic in an academic medical city in the Kingdom of Saudi Arabia: paving the way for telepharmacy. World J Adv Res Reviews. 2020;7:218–26.

Segal EM, Alwan L, Pitney C, Taketa C, Indorf A, Held L, Lee KS, Son M, Chi M, Diamantides E, Gosser R. Establishing clinical pharmacist telehealth services during the COVID-19 pandemic. Am J Health-System Pharm. 2020;77:1403–8.

Bukhari N, Rasheed H, Nayyer B, Babar Z-U-D. Pharmacists at the frontline beating the COVID-19 pandemic. J Pharm Policy Pract. 2020;13:8.

Smith RF. The private sector is taking the lead on enabling digital inclusion. Here’s how. in: W.E. Forum, editor, World Economic Forum, 2021.

Dal Mas F, Massaro M, Rippa P, Secundo G. The challenges of digital transformation in healthcare: an interdisciplinary literature review, framework, and future research agenda. Technovation. 2023;123:102716.

Ianculescu M, Alexandru A. Microservices–A Catalyzer for Better Managing Healthcare Data Empowerment. Stud Inf Control. 2020;29:231–42.

López-Martínez F, Núñez-Valdez ER, García-Díaz V, Bursac Z. A case study for a big data and machine learning platform to improve medical decision support in population health management. Algorithms. 2020;13:102.

Ganapathy K, Reddy S. Technology enabled remote healthcare in public private partnership mode: A story from India. Telemedicine, Telehealth and Telepresence: Principles, Strategies, Applications, and New Directions (2021) 197–233.

Gleiss A, Kohlhagen M, Pousttchi K. An apple a day–how the platform economy impacts value creation in the healthcare market. Electron Markets. 2021;31:849–76.

Bonacina S, Koch S, Meneses I, Chronaki C. Can the European EHR exchange format support shared decision making and citizen-driven health science? Public Health and Informatics, IOS; 2021. pp. 1056–60.

Samuel L, TRANSFORMING THE HEALTHCARE SYSTEM: THE PUBLIC-PRIVATE HEALTHCARE DICHOTOMY IN INDIA IN THE ERA OF DIGITAL HEALTH., Proceedings of the International Conference on Public Health, 2020, pp. 18–31.

Antarsih NR, Setyawati SP, Ningsih S, Sulaiman E, Pujiastuti N. Telehealth Business Potential in Indonesia, International Conference on Social, Economics, Business, and Education (ICSEBE 2021), Atlantis Press, 2022, pp. 73–78.

Loccioni LG. Italy, 2023.

Casprini E, Palumbo R. Reaping the benefits of digital transformation through Public-Private Partnership: A service ecosystem view applied to healthcare. Global Public Policy Gov. 2022;2:453–76.

APOTECAchemo. APOTECAchemo Advanced Robotic Chemotherapy Drug Compounding Systems, Italy, 2023.

Velayati F, Ayatollahi H, Hemmat M, Dehghan R. Telehealth business models and their components: systematic review. J Med Internet Res. 2022;24:e33128.

Barker GP, Krupinski EA, McNeely RA, Holcomb MJ, Lopez AM, Weinstein RS. The Arizona telemedicine program business model. J Telemed Telecare. 2005;11:397–402.

Lee Y-L, Chang P. Modeling a mobile health management business model for chronic kidney disease, Nursing Informatics 2016, IOS Press, 2016, pp. 1047–1048.

Dijkstra SJ, Jurriëns JA, van der Mei RD. A business model for telemonitoring services, 14th Annual High Technology Small Firms Conference, HTSF 2006, University of Twente, 2006.

Grustam AS, Vrijhoef HJ, Poulikidis V, Koymans R, Severens JL. Extending the business-to-business (B2B) model towards a business-to-consumer (B2C) model for telemonitoring patients with chronic heart failure. J Bus Models. 2018;6:106–29.

Lin T-C, Chang H-J, Huang C-C. An analysis of telemedicine in Taiwan: a business model perspective. Int J Gerontol. 2011;5:189–92.

Peters C, Blohm I, Leimeister JM. Anatomy of successful business models for complex services: insights from the telemedicine field. J Manage Inform Syst. 2015;32:75–104.

Lin S-H, Liu J-H, Wei J, Yin W-H, Chen H-H, Chiu W-T. A business model analysis of telecardiology service. Telemedicine e-Health. 2010;16:1067–73.

Mun SK, Tohme WG, Platenberg RC, Choi I. Teleradiology and emerging business models. J Telemed Telecare. 2005;11:271.

Kijl B, Nieuwenhuis LJ, Veld RM, Hermens HJ. and M.M. Vollenbroek-Hutten, Deployment of e-health services–a business model engineering strategy. Journal of telemedicine and telecare 16 (2010) 344–353.

Fusco F, Turchetti G, Interactive Business Models for Telerehabilitation after Total Knee Replacement.: Preliminary Results from Tuscany, Bioinformatics and Biomedical Engineering: Third International Conference, IWBBIO 2015, Granada, Spain, April 15–17, 2015. Proceedings, Part II 3, Springer, 2015, pp. 502–511.

Hidefjäll P, Titkova D. Business model design for a wearable biofeedback system, pHealth, 2015, pp. 213–224.

Oderanti FO, Li F. A holistic review and framework for sustainable business models for assisted living technologies and services. Int J Healthc Technol Manage. 2016;15:273–307.

Valbuena VS, Seelye S, Sjoding MW, Valley TS, Dickson RP, Gay SE, Claar D, Prescott HC, Iwashyna TJ. Racial bias and reproducibility in pulse oximetry among medical and surgical inpatients in general care in the Veterans Health Administration 2013-19: multicenter, retrospective cohort study. BMJ 378 (2022).

Bai G, Rajgopal S, Srivastava A, Zhao R. Profitability and risk-return comparison across health care industries, evidence from publicly traded companies 2010–2019. PLoS ONE. 2022;17:e0275245.

Article   CAS   PubMed   PubMed Central   Google Scholar  

McCall CJ, DeCaprio D, Gartner J. The Measurement and Mitigation of Algorithmic Bias and Unfairness in Healthcare AI Models Developed for the CMS AI Health Outcomes Challenge. medRxiv (2022) 2022.09. 29.22280537.

Hsueh P-YS. Ecosystem of patient-centered research and information System Design, Personal Health Informatics: patient participation in Precision Health. Springer; 2022. pp. 329–51.

Martin KI, Glaser DA. Cosmeceuticals: the new medicine of beauty. Mo Med. 2011;108:60.

PubMed   PubMed Central   Google Scholar  

Pandey A, Jatana GK, Sonthalia S, Cosmeceuticals SP. StatPearls Publishing Copyright © 2023, StatPearls Publishing LLC., Treasure Island (FL) ineligible companies. Disclosure: Gurpoonam Jatana declares no relevant financial relationships with ineligible companies. Disclosure: Sidharth Sonthalia declares no relevant financial relationships with ineligible companies., 2023.

Morganti P, Morganti G, Gagliardini A, Lohani A. From cosmetics to innovative cosmeceuticals—Non-woven tissues as New Biodegradable Carriers. Cosmetics. 2021;8:65.

Article   CAS   Google Scholar  

Market C. Fortune Business Insights., Cosmeceuticals Market, 2023.

LLP SMR. Global Cosmeceuticals Market, A $95.75 Billion Industry Opportunity by 2030., 2022.

R.a. Markets, Global Cosmeceuticals Market - Outlook & Forecast 2023–2028, 2023.

Research SM. Industry Report and Statistics (Facts & Figures) - Number of Users, Price, Demand & Sales Analysis by Product & Distribution Channel, 2021.

Company M. Meeting changing consumer needs: The US retail pharmacy of the future, 2023.

Ascenso FNS. L’Oréal Portugal: a digital challenge for the active cosmetics division, 2016.

cosmeticaactiva. L’Oreal E-Learning Platform in Portugal, 2023.

Bach D, Newman AL. Governing lipitor and lipstick: capacity, sequencing, and power in international pharmaceutical and cosmetics regulation. Rev Int Polit Econ. 2010;17:665–95.

Organization WH. Quality assurance of pharmaceuticals. a compendium of guidelines and related materials: Good manufacturing practices and inspection, 2007.

Rai S, Gupta A, Punetha V. Regulations of Cosmetics across the Globe. Applied Clinical Research. Clin Trials Regul Affairs. 2015;2:137–44.

Natural VLAMBERT. & Organic Living; Say ‘No’ To Chemicals For A Healthy Life. in: Raconteur, editor, 2016.

Agency EM. The European regulatory system for medicines, 2023.

FDA, Food and Drug Adimenstration in the United States of America, 2023.

Cosmetics I, Market. Industry, Entrepreneurship and SMEs, EU, European Commission 2023.

EEU EEU. TECHNICAL REGULATION ON THE SAFETY OF COSMETICS AND PERFUMERY, 2015.

Danghyan L. Armenian regulatory framework of the cosmetics and pharmaceutical industries, and its compliance with international regulations. Whether the existing regulatory framework of cosmetics and pharmaceutical industries complies with international best practice and ensures product safety and consumer protection. American University of Armenia; 2020.

TGA. Australian Public Assessment Report for Bimatoprost, 2017.

Kwa M, Welty LJ, Xu S. Adverse events reported to the US Food and Drug Administration for cosmetics and personal care products. JAMA Intern Med. 2017;177:1202–4.

DeKoven JG, Warshaw EM, Belsito DV, Sasseville D, Maibach HI, Taylor JS, Marks JG, Fowler JF, Mathias CT, DeLeo VA. North American contact dermatitis group patch test results 2013–2014. Dermatitis. 2017;28:33–46.

Janetos TM, Kwa M, Xu S. Regulation of cosmetics. JAMA Intern Med. 2018;178:1000–1.

Daum C. Self-Regulation in the Cosmetic Industry: A Necessary Reality or a Cosmetic Illusion? 2006.

Schaffer S, Reading Our Lips.: The History of Lipstick Regulation in Western Seats of Power, 2006.

Lincoln JE. Overview of the us fda gmps: good manufacturing practice (gmp)/quality system (qs) regulation (21 CFR part 820). J Validation Technol. 2012;18:17.

van der Heijden I, Pletneva N, Boyer C. How to protect consumers against the risks posed by the online pharmacy market. Swiss Med Inf 29 (2013).

Agency EM. Buying medicines online, 2015.

Union E. Buying medicine online, 2023.

ISPE. Regulating Online Pharmacies & Medicinal Product E-Commerce, 2019.

Swissmedic. Guideline on medicines and the Internet, 2020.

Kulali H. Online Pharmacy in Switzerland: A Full Guide. 2023, Pharmapidya, 2023.

Swissmedic. Current law, 2019.

El Hajj MS, Mekkawi R, Elkaffash R, Saleh R, Awaisi AE, Wilbur K. Public attitudes towards community pharmacy in Arabic speaking Middle Eastern countries: a systematic review. Res Social Administrative Pharm. 2021;17:1373–95.

DelveInsight. The Regulatory process for drug approval in the MENA region, DelveInsight, 2019.

Sallom H, Abdi A, Halboup AM, Başgut B. Evaluation of pharmaceutical care services in the Middle East Countries: a review of studies of 2013–2020. BMC Public Health. 2023;23:1364.

P.B.o. Australia, Guidelines for Dispensing of Medicines., 2019.

Center KLT. Statutes of the Republic of Korea. Pharmaceutical Affairs Act; 2016.

Goryachev I. Russia Federation: Telemedicine Law in Russia, Mondaq, 2018.

Jing M. China FDA stops online med sales, 2016.

L.a.W. o.J. Ministry of Health, List of Sales Sites for over-the-counter Drugs, 2020.

H.S.A.o, Singapore. Dangers of Buying Health Products Online, 2023.

M.o.H.o. Malaysia, Buying Medicines Online: Beware., 2023.

Ganapathy N. India’s pharmacies do battle with online rivals Straitimes, India, 2017.

LegitScript LS. Industry-Leading Certification, 2023.

NABP. The Verified Internet Pharmacy Practice Sites, 2012.

Boyer C, Baujard V, Geissbuhler A. Evolution of health web certification through the HONcode experience. Stud Health Technol Inf. 2011;169:53–7.

Tagde P, Tagde S, Bhattacharya T, Tagde P, Chopra H, Akter R, Kaushik D, Rahman MH. Blockchain and artificial intelligence technology in e-Health. Environ Sci Pollut Res. 2021;28:52810–31.

Walgreen. Convenient virtual care., 2023.

Group O. Otto Group, 2023.

U.o.C.S, Francisco, New UCSF. Robotic Pharmacy Aims to Improve Patient Safety, 2011.

Narayanaswami C, Nooyi R, Govindaswamy SR, Viswanathan R. Blockchain anchored supply chain automation. IBM J Res Dev. 2019;63:7: 1–7.

Khezr S, Moniruzzaman M, Yassine A, Benlamri R. Blockchain technology in healthcare: a comprehensive review and directions for future research. Appl Sci. 2019;9:1736.

Xia Q, Sifah EB, Asamoah KO, Gao J, Du X, Guizani M. MeDShare: Trust-less medical data sharing among cloud service providers via blockchain. IEEE access 5 (2017) 14757–14767.

Mannaro K, Pinna A, Marchesi M. Crypto-trading: Blockchain-oriented energy market, 2017 AEIT International Annual Conference, IEEE, 2017, pp. 1–5.

Rallapalli S, Minalkar A. Improving Healthcare-Big Data Analytics for. J Adv Inform Technol 7 (2016).

Wang H, Song Y. Secure cloud-based EHR system using attribute-based cryptosystem and blockchain. J Med Syst. 2018;42:152.

Cyran MA. Blockchain as a foundation for sharing healthcare data. Blockchain Healthc Today (2018).

Funk E, Riddell J, Ankel F, Cabrera D. Blockchain technology: a data framework to improve validity, trust, and accountability of information exchange in health professions education. Acad Med. 2018;93:1791–4.

Khan PW, Byun Y. A blockchain-based secure image encryption scheme for the industrial internet of things. Entropy. 2020;22:175.

Gomasta SS, Dhali A, Tahlil T, Anwar MM, Ali ABMS. PharmaChain: Blockchain-based drug supply chain provenance verification system. Heliyon. 2023;9:e17957.

Gamage RG, Bandara NS, Diyamullage DD, Senadeera KU, Abeywardena KY, Amarasena N. PharmaGo-An Online Pharmaceutical Ordering Platform, 2021 3rd International Conference on Advancements in Computing (ICAC), IEEE, 2021, pp. 365–370.

Amalia A, Sipahutar PYC, Elviwani E, Purnamasari F. Chatbot Implementation with Semantic Technology for Drugs Information Searching System. Journal of Physics: Conference Series 1566 (2020) 012077.

Trenfield SJ, Awad A, McCoubrey LE, Elbadawi M, Goyanes A, Gaisford S, Basit AW. Advancing pharmacy and healthcare with virtual digital technologies. Adv Drug Deliv Rev. 2022;182:114098.

Anis MS, Hassali MA. Pharmaceutical marketing of over-the-counter drugs in the current digital era: a review. Pharm Sci Asia 49 (2022).

Khan O, Parvez M, Kumari P, Parvez S, Ahmad S. The future of pharmacy: how AI is revolutionizing the industry. Intell Pharm. 2023;1:32–40.

Moshawih S, Hadikhani P, Fatima A, Goh HP, Kifli N, Kotra V, Goh KW, Ming LC. Comparative analysis of an anthraquinone and chalcone derivatives-based virtual combinatorial library. A cheminformatics proof-of-concept study. J Mol Graph Model. 2022;117:108307.

Moshawih S, Goh HP, Kifli N, Idris AC, Yassin H, Kotra V, Goh KW, Liew KB, Ming LC. Synergy between machine learning and Natural products Cheminformatics: application to the lead Discovery of anthraquinone derivatives. Chemical Biology & Drug Design; 2022.

Wong CH, Siah KW, Lo AW. Estimation of clinical trial success rates and related parameters. Biostatistics. 2019;20:273–86.

Moshawih S, Goh HP, Kifli N, Darwesh MAE, Ardianto C, Goh KW, Ming LC. Identification and optimization of TDP1 inhibitors from anthraquinone and chalcone derivatives: consensus scoring virtual screening and molecular simulations. J Biomol Struct Dynamics (2023) 1–25.

Moore JH, Margreitter C, Janet JP, Engkvist O, de Groot BL, Gapsys V. Automated relative binding free energy calculations from SMILES to ∆∆G. Commun Chem. 2023;6:82.

Moshawih S, Lim AF, Ardianto C, Goh KW, Kifli N, Goh HP, Jarrar Q, Ming LC. Target-based small Molecule Drug Discovery for Colorectal Cancer: a review of Molecular pathways and in Silico studies. Biomolecules. 2022;12:878.

Download references

Acknowledgements

The researcher would like to thank the Deanship of Scientific Research, Qassim University for funding the publication of this project.

Deanship of Scientific Research, Qassim University

Author information

Authors and affiliations.

Department of Pharmacology, College of Medicine, Qassim University, Buraydah, Saudi Arabia

Ahmad Almeman

You can also search for this author in PubMed   Google Scholar

Contributions

Conceived the conceptual framework, Wrote the paper, Designed search strategies, Critically reviewed the manuscript for important intellectual content: A.A.

Corresponding author

Correspondence to Ahmad Almeman .

Ethics declarations

Ethical approval and consent to participate.

Not applicable.

Consent for publication

Competing interests.

The author declares no competing interest.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Almeman, A. The digital transformation in pharmacy: embracing online platforms and the cosmeceutical paradigm shift. J Health Popul Nutr 43 , 60 (2024). https://doi.org/10.1186/s41043-024-00550-2

Download citation

Received : 14 February 2024

Accepted : 09 April 2024

Published : 08 May 2024

DOI : https://doi.org/10.1186/s41043-024-00550-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Digital transformation
  • Healthcare technology
  • Cosmeceuticals
  • Global health
  • Patient care
  • 2019 novel coronavirus
  • Drug safety

Journal of Health, Population and Nutrition

ISSN: 2072-1315

literature review of blockchain technology

Advertisement

Advertisement

Blockchain in supply chain management: a review, bibliometric, and network analysis

  • Sustainable Supply Chain Network Design
  • Published: 27 February 2021

Cite this article

literature review of blockchain technology

  • Javid Moosavi 1 ,
  • Leila M. Naeni 1 ,
  • Amir M. Fathollahi-Fard   ORCID: orcid.org/0000-0002-5939-9795 2 &
  • Ugo Fiore 3  

9046 Accesses

113 Citations

4 Altmetric

Explore all metrics

Blockchain is a distributed ledger technology that has attracted both practitioners and academics attention in recent years. Several conceptual and few empirical studies have been published focusing on addressing current issues and recommending the future research directions of supply chain management. To identify how blockchain can contribute to supply chain management, this paper conducts a systematic review through bibliometric and network analysis. We determined the key authors, significant studies, and the collaboration patterns that were not considered by the previous publications on this angel of supply chain management. Using citation and co-citation analysis, key supply chain areas that blockchain could contribute are pinpointed as supply chain management, finance, logistics, and security. Furthermore, it revealed that Internet of Things (IoT) and smart contracts are the leading emerging technologies in this field. The results of highly cited and co-cited articles demonstrate that blockchain could enhance transparency, traceability, efficiency, and information security in supply chain management. The analysis also revealed that empirical research is scarce in this field. Therefore, implementing blockchain in the real-world supply chain is a considerable future research opportunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

literature review of blockchain technology

Similar content being viewed by others

literature review of blockchain technology

Adoption of blockchain technology in supply chain operations: a comprehensive literature study analysis

literature review of blockchain technology

A bibliometric study on blockchain-based supply chain: a theme analysis, adopted methodologies, and future research agenda

literature review of blockchain technology

Blockchain Technology Implications on Supply Chain Management: A Review of the Literature

Data availability.

Not applicable.

Abeyratne S, Monfared R (2016) Blockchain ready manufacturing supply chain using distributed ledger. Int J Res Eng Technol 05(09):1–10. https://doi.org/10.15623/ijret.2016.0509001

Article   Google Scholar  

Apte S, Petrovsky N (2016) Will blockchain technology revolutionize excipient supply chain management?. Journal of Excipients and Food Chemicals 7(3):910

Baumeister RF, Leary MR (1997) Writing narrative literature reviews. Rev Gen Psychol 1(3):311–320. https://doi.org/10.1037/1089-2680.1.3.311

Borgatti SP, Mehra A, Brass DJ, Labianca G (2009) Network analysis in the social sciences. Science 323(5916):892–895. https://doi.org/10.1126/science.1165821

Article   CAS   Google Scholar  

Boyack KW, Klavans R (2010) Co-citation analysis, biblioFig.ic coupling, and direct citation: which citation approach represents the research front most accurately? J Am Soc Inf Sci Technol 61(12):2389–2404

Chang Y-W, Huang M-H, Lin C-W (2015) Evolution of research subjects in library and information science based on keyword, biblioFig.ical coupling, and co-citation analyses. Scientometrics 105(3):2071–2087. https://doi.org/10.1007/s11192-015-1762-8

China mulls blockchain development fund. (2020). www.Asiatimes.com , https://asiatimes.com/2020/05/china-mulls-blockchain-development-fund/

Christidis K, Devetsikiotis M (2016) Blockchains and smart contracts for the internet of things. IEEE Access 4:2292–2303. https://doi.org/10.1109/ACCESS.2016.2566339

Coalter, J., & Tchangalova, N. (2020). Research guides: systematic review. https://lib.guides.umd.edu/SR/welcome

Cooper MC, Lambert DM, Pagh JD (1997) Supply chain management: more than a new name for logistics. Int J Logist Manag 8(1):1–14. https://doi.org/10.1108/09574099710805556

Crosby, M. (2016). BlockChain Technology: Beyond Bitcoin. 2, 16.

Dorofeyev M, Ksov M, Ponkratov V, Masterov A, Karaev A, Vasyunina M (2018) Trends and prospects for the development of blockchain and cryptocurrencies in the digital economy. Eur Res Studi J XXI(Issue 3):429–445. https://doi.org/10.35808/ersj/1073

Ellegaard O, Wallin JA (2015) The bibliometric analysis of scholarly production: how great is the impact? Scientometrics 105(3):1809–1831. https://doi.org/10.1007/s11192-015-1645-z

Fahimnia B, Sarkis J, Davarzani H (2015) Green supply chain management: a review and bibliometric analysis. Int J Prod Econ 162:101–114

Fallahpour A, Nayeri S, Sheikhalishahi M, Wong KY, Tian G, Fathollahi-Fard AM (2021) A hyper-hybrid fuzzy decision-making framework for the sustainable-resilient supplier selection problem: a case study of Malaysian Palm oil industry. Environ Sci Pollut Res :1–21

Fathollahi-Fard AM, Ahmadi A, Mirzapour Al-e-Hashem SMJ (2020a) Sustainable closed-loop supply chain network for an integrated water supply and wastewater collection system under uncertainty. J Environ Manag 275:111277

Fathollahi-Fard AM, Ahmadi A, Goodarzian F, Cheikhrouhou N (2020b) A bi-objective home healthcare routing and scheduling problem considering patients’ satisfaction in a fuzzy environment. Appl Soft Comput 93:106385. https://doi.org/10.1016/j.asoc.2020.106385

Fathollahi-Fard AM, Hajiaghaei-Keshteli M, Tavakkoli-Moghaddam R (2018) The social engineering optimizer (SEO). Eng Appl Artif Intell 72:267–293

Fathollahi-Fard AM, Hajiaghaei-Keshteli M, Tavakkoli-Moghaddam R (2020c) Red deer algorithm (RDA): a new nature-inspired meta-heuristic. Soft Comput:1–29

Feng Tian. (2016). An agri-food supply chain traceability system for China based on RFID blockchain technology. 2016 13th International Conference on Service Systems and Service Management (ICSSSM), 1–6. https://doi.org/10.1109/ICSSSM.2016.7538424

Fonseca B d PF e, Sampaio RB, Fonseca MV d A, Zicker F (2016) Co-authorship network analysis in health research: method and potential use. Health Res Pol Syst 14(1):34. https://doi.org/10.1186/s12961-016-0104-5

Francisco K, Swanson D (2018) The supply chain has no clothes: technology adoption of blockchain for supply chain transparency. Logistics 2(1):2. https://doi.org/10.3390/logistics2010002

Gupta S, Sadoghi M (2018) Blockchain transaction processing. In: Sakr S, Zomaya A (eds) Encyclopedia of Big Data Technologies (pp. 1–11). Springer International Publishing. https://doi.org/10.1007/978-3-319-63962-8_333-1

Hackius, N., & Petersen, M. (2017). Blockchain in logistics and supply chain: trick or treat? Digitalization in supply chain management and logistics: smart and digital solutions for an industry 4.0 environment. Proceedings of the Hamburg International Conference of Logistics (HICL), Vol. 23, 3–18. https://doi.org/10.15480/882.1444

Hughes A, Park A, Kietzmann J, Archer-Brown C (2019) Beyond bitcoin: what blockchain and distributed ledger technologies mean for firms. Busi Horiz 62(3):273–281. https://doi.org/10.1016/j.bushor.2019.01.002

Hutt, R. (2018). All you need to know about blockchain, explained simply. World Economic Forum. https://www.weforum.org/agenda/2016/06/blockchain-explained-simply/

Ivanov D (2019) Disruption tails and revival policies: A simulation analysis of supply chain design and production-ordering systems in the recovery and post-disruption periods. Computers & Industrial Engineering 127:558–570

Jalali MS, Razak S, Gordon W, Perakslis E, Madnick S (2019) Health care and cybersecurity: bibliometric analysis of the literature. J Med Internet Res 21(2):e12644. https://doi.org/10.2196/12644

Kamble S, Gunasekaran A, Arha H (2019) Understanding the blockchain technology adoption in supply chains-Indian context. Int J Prod Res 57(7):2009–2033. https://doi.org/10.1080/00207543.2018.1518610

Keogh JG, Rejeb A, Khan N, Dean K, Hand KJ (2020) Data and food supply chain. Build Future Food Safety Technol:145–178. https://doi.org/10.1016/B978-0-12-818956-6.00007-5

Kim HM, Laskowski M (2016) Towards an ontology-driven blockchain design for supply chain provenance. SSRN Electron J. https://doi.org/10.2139/ssrn.2828369

Kouhizadeh M, Sarkis J (2018) Blockchain practices, potentials, and perspectives in greening supply chains. Sustainability 10(10):3652. https://doi.org/10.3390/su10103652

Kshetri N (2017) Can blockchain strengthen the internet of things? IT Professional 19(4):68–72. https://doi.org/10.1109/MITP.2017.3051335

Kshetri N (2018) Blockchain’s roles in meeting key supply chain management objectives. Int J Inf Manag 39:80–89. https://doi.org/10.1016/j.ijinfomgt.2017.12.005

Kshetri N, Voas J (2018) Blockchain in developing countries. IT Professional 20(2):11–14. https://doi.org/10.1109/MITP.2018.021921645

Kumar B, ShivaShiva Sai. (2020). . https://hackernoon.com/wtf-is-hashing-in-blockchains-z6f836i1

Li Z, Ho Y-S (2008a) Use of citation per publication as an indicator to evaluate contingent valuation research. Scientometrics 75(1):97–110

Li Z, Ho Y-S (2008b) Use of citation per publication as an indicator to evaluate contingent valuation research. Scientometrics 75(1):97–110. https://doi.org/10.1007/s11192-007-1838-1

Linda Pawczuk. (2017). When two chains combine. www.Deloitte.com , https://www2.deloitte.com/us/en/pages/consulting/articles/supply-chain-meets-blockchain.html

Liu X, Bollen J, Nelson ML, Van de Sompel H (2005) Co-authorship networks in the digital library research community. Inf Process Manag 41(6):1462–1480. https://doi.org/10.1016/j.ipm.2005.03.012

Liu Z, Jiang L, Osmani M, Demian P (2019) Building information management (BIM) and blockchain (BC) for sustainable building design information management framework. Electronics 8(7):724. https://doi.org/10.3390/electronics8070724

Lu Q, Xu X (2017) Adaptable blockchain-based systems: a case study for product traceability. IEEE Softw 34(6):21–27. https://doi.org/10.1109/MS.2017.4121227

Mark Tanner. (2018). Why China will drive blockchain and 4 related myths. www.forbes.com , https://www.forbes.com/sites/tannermark/2018/08/01/blockchain-china-misunderstandings/#544fc56213c8

Mentzer JT, DeWitt W, Keebler JS, Min S, Nix NW, Smith CD, Zacharia ZG (2001) Defining supply chain management. J Bus Logist 22(2):1–25. https://doi.org/10.1002/j.2158-1592.2001.tb00001.x

Merediz-Solà I, Bariviera AF (2019) A bibliometric analysis of bitcoin scientific production. Res Int Bus Financ 50:294–305. https://doi.org/10.1016/j.ribaf.2019.06.008

Merigó JM, Cancino CA, Coronado F, Urbano D (2016) Academic research in innovation: a country analysis. Scientometrics 108(2):559–593. https://doi.org/10.1007/s11192-016-1984-4

Min H (2019a) Blockchain technology for enhancing supply chain resilience. Busi Horiz 62(1):35–45. https://doi.org/10.1016/j.bushor.2018.08.012

Min H (2019b) Blockchain technology for enhancing supply chain resilience. Busi Horiz 62(1):35–45. https://doi.org/10.1016/j.bushor.2018.08.012

Mishra D, Gunasekaran A, Papadopoulos T, Childe SJ (2018) Big data and supply chain management: a review and bibliometric analysis. Ann Oper Res 270(1):313–336. https://doi.org/10.1007/s10479-016-2236-y

Moed HF (2006) Citation Analysis in Research Evaluation. Springer Science & Business Media

Moiwo JP, Tao F (2013) The changing dynamics in citation index publication position China in a race with the USA for global leadership. Scientometrics 95(3):1031–1050. https://doi.org/10.1007/s11192-012-0846-y

Muhuri PK, Shukla AK, Abraham A (2019) Industry 4.0: A bibliometric analysis and detailed overview. Eng Appl Artif Intell 78:218–235. https://doi.org/10.1016/j.engappai.2018.11.007

Nakamoto, S. (2019). Bitcoin: a peer-to-peer electronic cash system. In Manubot. Manubot.

Nowiński W, Kozma M (2017) How can blockchain technology disrupt the existing business models? Entrepre Busi Econo Rev 5(3):173–188. https://doi.org/10.15678/EBER.2017.050309

Perboli G, Ferrero F, Musso S, Vesco A (2018) Business models and tariff simulation in car-sharing services. Transportation Research Part A: Policy and Practice 115:32–48

Perianes-Rodríguez A, Olmeda-Gómez C, Moya-Anegón F (2010) Detecting, identifying and visualizing research groups in co-authorship networks. Scientometrics 82(2):307–319

Persson, O., Danell, R., & Schneider, J. W. (2009a). How to use Bibexcel for various types of bibliometric analysis. Celebrating Scholarly Communication Studies: A Festschrift for Olle Persson at His 60th Birthday, 5, 9–24.

Persson, O., Danell, R., & Wiborg Schneider, J. (2009b). How to use Bibexcel for various types of bibliometric analysis (pp. 9–24). ISSI. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-25636

Pournader M, Shi Y, Seuring S, Koh SL (2020) Blockchain applications in supply chains, transport and logistics: A systematic review of the literature. Int J Prod Res 58(7):2063–2081

Queiroz MM, Fosso Wamba S (2019) Blockchain adoption challenges in supply chain: an empirical investigation of the main drivers in India and the USA. Int J Inf Manag 46:70–82. https://doi.org/10.1016/j.ijinfomgt.2018.11.021

Quillen SR (1994) Collection development at the NOAA Central Library

Reyes-Gonzalez L, Gonzalez-Brambila CN, Veloso F (2016) Using co-authorship and citation analysis to identify research groups: a new way to assess performance. Scientometrics 108(3):1171–1191. https://doi.org/10.1007/s11192-016-2029-8

Saberi S, Kouhizadeh M, Sarkis J, Shen L (2019) Blockchain technology and its relationships to sustainable supply chain management. Int J Prod Res 57(7):2117–2135. https://doi.org/10.1080/00207543.2018.1533261

Saunders, M. N. K., & Lewis, P. (2012). Doing research in business and management: an essential guide to planning your project. Financial Times Prentice Hall, is an imprint of Pearson.

Shahed KS, Azeem A, Ali SM, Moktadir MA (2021) A supply chain disruption risk mitigation model to manage COVID-19 pandemic risk. Environ Sci Pollut Res :1–16

Shiau W-L, Dwivedi YK (2013) Citation and co-citation analysis to identify core and emerging knowledge in electronic commerce research. Scientometrics 94(3):1317–1337. https://doi.org/10.1007/s11192-012-0807-5

Sikorski JJ, Haughton J, Kraft M (2017) Blockchain technology in the chemical industry: Machine-to-machine electricity market. Appl Energy 195:234–246. https://doi.org/10.1016/j.apenergy.2017.03.039

Small H (1973) Co-citation in the scientific literature: a new measure of the relationship between two documents. J Am Soc Inf Sci 24(4):265–269

Snyder H (2019) Literature review as a research methodology: An overview and guidelines. J Bus Res 104:333–339. https://doi.org/10.1016/j.jbusres.2019.07.039

Swan, M. (2015). Blockchain: blueprint for a new economy. O’Reilly Media, Inc.

Systematic review—research guides at University of Maryland Libraries. (2019). https://lib.guides.umd.edu/SR

Tapscott D, Tapscott A (2017) How blockchain will change organizations. MIT Sloan Manag Rev Cambridge 58(2):10–13

Google Scholar  

Thomé AMT, Scavarda LF, Scavarda AJ (2016) Conducting systematic literature review in operations management. Prod Plan Control 27(5):408–420. https://doi.org/10.1080/09537287.2015.1129464

Toyoda K, Mathiopoulos PT, Sasase I, Ohtsuki T (2017) A novel blockchain-based product ownership management system (POMS) for anti-counterfeits in the post supply chain. IEEE access 5:17465-17477

Tranfield D, Denyer D, Smart P (2003) Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br J Manag 14(3):207–222. https://doi.org/10.1111/1467-8551.00375

Trujillo CM, Long TM (2018) Document co-citation analysis to enhance transdisciplinary research. Sci Adv 4(1):e1701130. https://doi.org/10.1126/sciadv.1701130

Underwood S (2016) Blockchain beyond bitcoin. Commun ACM 59(11):15–17. https://doi.org/10.1145/2994581

Van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84(2):523–538

van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84(2):523–538. https://doi.org/10.1007/s11192-009-0146-3

van Eck, N. J., & Waltman, L. (2011). Text mining and visualization using VOSviewer. ArXiv:1109.2058 [Cs]. http://arxiv.org/abs/1109.2058

Van Eck, N. J., & Waltman, L. (2014). Visualizing bibliometric networks. In Measuring scholarly impact (pp. 285–320). Springer.

Van Eck, N. J., & Waltman, L. (2020). VOSviewer Manual. 53.

Venkatesh VG, Kang K, Wang B, Zhong RY, Zhang A (2020) System architecture for blockchain based transparency of supply chain social sustainability. Robot Comput Integr Manuf 63:101896. https://doi.org/10.1016/j.rcim.2019.101896

Vujicic, D., Jagodic, D., & Randic, S. (2018). Blockchain technology, bitcoin, and Ethereum: a brief overview. 2018 17th International Symposium INFOTEH-JAHORINA (INFOTEH), 1–6. https://doi.org/10.1109/INFOTEH.2018.8345547

Wei, F., & Zhang, G. (2020). A document co-citation analysis method for investigating emerging trends and new developments: a case of twenty-four leading business journals [Text]. University of Borås. http://informationr.net/ir/25-1/paper842.html

White, P. B. (2019). Using data mining for citation analysis | White | College & Research Libraries. https://doi.org/10.5860/crl.80.1.76

Winkelhaus S, Grosse EH (2020) Logistics 4.0: a systematic review towards a new logistics system. Int J Prod Res 58(1):18–43. https://doi.org/10.1080/00207543.2019.1612964

Xu LD, Xu EL, Li L (2018) Industry 4.0: State of the art and future trends. Int J Prod Res 56(8):2941–2962

Ying W, Jia S, Du W (2018) Digital enablement of blockchain: evidence from HNA group. Int J Inf Manag 39:1–4. https://doi.org/10.1016/j.ijinfomgt.2017.10.004

Zeng S, Ni X, Yuan Y, Wang F-Y (2018) A bibliometric analysis of blockchain research. IEEE Intelligent Vehicles Symposium (IV) 2018:102–107. https://doi.org/10.1109/IVS.2018.8500606

Zhuang Y, Liu X, Nguyen T, He Q, Hong S (2013) Global remote sensing research trends during 1991–2010: a bibliometric analysis. Scientometrics 96(1):203–219. https://doi.org/10.1007/s11192-012-0918-z

Zibareva IV, Parmon VN (2013) Identification of “hot spots” of the science of catalysis: bibliometric and thematic analysis of nowaday reviews and monoFig.s. Russ Chem Bull 62(10):2266–2278. https://doi.org/10.1007/s11172-013-0329-1

Download references

Author information

Authors and affiliations.

School of the Built Environment, University of Technology Sydney, Sydney, Australia

Javid Moosavi & Leila M. Naeni

Department of Electrical Engineering, École de Technologie Supérieure, 1100 Notre-Dame St. W, Montréal, Canada

Amir M. Fathollahi-Fard

Department of Management Studies and Quantitative Methods, Parthenope University, Naples, Italy

You can also search for this author in PubMed   Google Scholar

Contributions

J. Mousavi: Conceptualization; Formal Analysis; Investigation; Methodology; Software; Validation; Original Draft; Visualization; Review and Editing

L. M. Naeni: Supervision; Project Admiration; Review and Editing

A. M. Fathollahi-Fard: Supervision; Review and Editing

U. Fiore: Review and Editing

Corresponding author

Correspondence to Amir M. Fathollahi-Fard .

Ethics declarations

Consent for publication.

All authors declare that they are consent for publication in the journal of Environmental Science and Pollution Research .

Competing interests

The authors declare no competing interests.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Moosavi, J., Naeni, L.M., Fathollahi-Fard, A.M. et al. Blockchain in supply chain management: a review, bibliometric, and network analysis. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-13094-3

Download citation

Received : 04 November 2020

Accepted : 17 February 2021

Published : 27 February 2021

DOI : https://doi.org/10.1007/s11356-021-13094-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Supply chain management
  • Literature review
  • Bibliometric
  • Network analysis
  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. (PDF) Blockchain Technology for Cloud Storage: A Systematic Literature

    literature review of blockchain technology

  2. (PDF) A Systematic Review of Blockchain Literature in Logistics and

    literature review of blockchain technology

  3. (PDF) A Systematic Literature Review of Blockchain Technology: Security

    literature review of blockchain technology

  4. (PDF) A Systematic Literature Review of Blockchain Technology: Security

    literature review of blockchain technology

  5. (PDF) Where Is Current Research on Blockchain Technology?—A Systematic

    literature review of blockchain technology

  6. A systematic literature review of blockchain

    literature review of blockchain technology

VIDEO

  1. How does blockchain technology enable digital identity verification within the metaverse?

  2. Blockchain for Public Services A Systematic Literature Review

  3. Power of Blockchain: Exploring Its Transformative Financial Use Cases

  4. Exploring Central Bank Digital Currencies (CBDCs)

  5. application of blockchain in SCADA systems

  6. How Traders Earn Big Bucks!

COMMENTS

  1. A systematic literature review of blockchain-based applications

    This work provides a systematic literature review of blockchain-based applications across multiple domains. The aim is to investigate the current state of blockchain technology and its applications and to highlight how specific characteristics of this disruptive technology can revolutionise "business-as-usual" practices.

  2. A Systematic Literature Review of Blockchain Technology: Applications

    In the context of today's digital era, blockchain technology has established itself as one of the transformative innovations that pushes the boundaries of data management and security. Given this situation, the present work carries out a systematic literature review of this technology. It examines three essential aspects of the blockchain world.

  3. A Systematic Literature Review of Blockchain Technology: Security

    In the study, Le et al. [21] conducted a systematic literature review of blockchain technology to provide a comprehensive understanding of its security properties, applications, and challenges ...

  4. Blockchain technology research and application: a systematic literature

    provides a comprehensive overview of blockchain technology and its applications. We begin with a summary of the development of blockchain, and then give an overview of the blockchain architec-ture and a systematic review of the research and application of blockchain technology in different fields from the perspective

  5. A Systematic Literature Review of Blockchain Technology for Smart

    In this systematic literature review, numerous applications of blockchain technology in sustainable rural development were discussed with diverse areas in each application. A comparative study of each application in all the areas pertaining to different approaches has been portrayed with differing attributes elucidating the technology, process ...

  6. A Systematic Literature Review in Blockchain: Benefits and ...

    Blockchain is a core, underlying technology with promising applications to disrupt the world of business. Using a systematic review, in this paper we provide an overview of the concept of blockchain technology, identify some advantages and barriers for business use and find that while some industries seem to benefit more from the technology (healthcare and those that depend on supply-chains ...

  7. Blockchain: a literature review

    Abstract. A blockchain consists of an ordered list with nodes and links where the nodes store information and are connected through links called chains. This technology supports the availability of a publicly maintained ledger of transactions, first gaining mainstream attraction with cryptocurrencies. A myriad of other applications have emerged ...

  8. A systematic review of blockchain

    Blockchain is considered by many to be a disruptive core technology. Although many researchers have realized the importance of blockchain, the research of blockchain is still in its infancy. Consequently, this study reviews the current academic research on blockchain, especially in the subject area of business and economics. Based on a systematic review of the literature retrieved from the Web ...

  9. Systematic Literature Review of Blockchain Applications: Smart

    Blockchain technology has received extensive attention recently, but still a large of technical challenges such as scalability and security. This paper helps to find where recent studies have been focused on and offers a broad perspective relating blockchain applications and smart contracts, their main problems and corresponding solutions and will help to specify gaps and future research. The ...

  10. A Systematic Review of Blockchain Applications

    For this study, the researchers conducted a systematic literature review to answer complex questions about the field of blockchain technology. We used an unbiased systematic review process to find works on blockchain-based applications and developed a Python code that searched various online databases. This paper provides an overview of the characteristics, mode of operation, and applications ...

  11. Blockchain Technology in Finance: A Literature Review

    The article presents the results of a systematic literature review on blockchain technology, as advanced in articles published between 2017 and 2021. In the course of reviewing the articles, we found that blockchain technology brings several opportunities to corporate financial services, banks and institutions, despite the existence of several ...

  12. Blockchain Technology: A Literature Review

    Our selection of articles allows us to provide a representative view of three primary topics. First, some of the primary current topics being discussed in regard to blockchain technology. Second, the representative categories of said topics. Third, the potential future of blockchain development along with its impact on society and technology.

  13. Blockchain Technology for Cloud Storage: A Systematic Literature Review

    The demand for Blockchain innovation and the significance of its application has inspired ever-progressing exploration in various scientific and practical areas. Even though it is still in the initial testing stage, the blockchain is being viewed as a ...

  14. A Systematic Literature Review of Blockchain Technology Adoption in

    In this study, we outline a systematic literature review on blockchain technology development, especially in Bangladesh. A systematic literature review defines, chooses, and objectively appraises a study to answer an articulated question [10]. It is essential to give a country the direction towards future

  15. Securing Critical Infrastructure with Blockchain Technology: An ...

    Currently, in the digital era, critical infrastructure is increasingly exposed to cyber threats to their operation and security. This study explores the use of blockchain technology to address these challenges, highlighting its immutability, decentralization, and transparency as keys to strengthening the resilience of these vital structures. Through a methodology encompassing literature review ...

  16. Blockchain adoption in education: a systematic literature review

    The rapid development of blockchain technology has influenced several fields, including financial, healthcare, and supply chain systems. Recently, this technology has also been applied in education thanks to its unique features, including decentralization, trustworthiness, and security. Despite the bright side of blockchain, several concerns continue to undermine its adoption in education ...

  17. A Systematic Literature Review of Blockchain Technology for Smart

    Literature Review on Blockchain Technology for Sustainable Rural Development. The literature review consists of the collective work of blockchain in rural development. A total of 6 areas of application were identified after careful extraction of data and transformation globally namely: Agriculture, Banking, Environment, Energy, Employment, and ...

  18. A Systematic Review of Blockchain-based Loyalty Programs

    Existing literature has yet fully to explore the realities of blockchain loyalty programs. One scoping review of blockchain applications states that none of the studies they review has discussed marketing at all, let alone loyalty programs (Li, Marier-Bienvenue, Perron-Brault, Wang, & Paré, 2018). Another systematic

  19. The digital transformation in pharmacy: embracing online platforms and

    Blockchain technology is also being investigated for transparent and safe supply chain management. ... Marques and Ferreira performed a systematic literature review of digital transformation in healthcare, spanning the period from 1973 to 2018. Utilizing the SMARTER (Simple Multi-attribute Rating Technique Exploiting Ranks) method, 749 ...

  20. Emerging advances of blockchain technology in finance: a content

    This literature review was prompted by an investigation of how blockchain technology revolutionized the finance sector to become its future, given that relevant financial sector research is still in its initial stages compared to blockchain technology research in other disciplines.

  21. BPPV-Chain: A Sharding Blockchain System with Output Shard Batch

    This alert has been successfully added and will be sent to: You will be notified whenever a record that you have chosen has been cited.

  22. Online Blockchain Based Certificate Generation and Validation System

    This can be achieved through the use of open-source software and blockchain technology. The prevalence of counterfeit certificates in our society has become a significant and troublesome issue. ... The purpose of this survey is to compile all relevant research into a systematic literature review, highlighting the key contributions from various ...

  23. A Systematic Literature Review of Blockchain Technology for Internet of

    The use of blockchain technology for securing IoD networks has gained growing attention. To this end, this paper presents a systematic literature review to analyze the current research area regarding the security of IoD environments using the emerging blockchain technology.

  24. Oracles in Blockchain Architectures: A Literature Review on Their

    It analyzes the role of oracles as trusted intermediaries in providing external information to the blockchain, within the context of Blockchain technology. The study examines existing literature to identify the essential attributes that ensure the integrity, transparency, and veracity of the data provided by oracles.

  25. Blockchain in supply chain management: a review ...

    A literature review can provide an overview of both disparate and interdisciplinary areas (Snyder 2019), such as blockchain and supply chain management.Moreover, it can be defined as a systematic strategy of researching, selecting, and synthesizing previous research (Baumeister and Leary 1997; Tranfield et al. 2003).There are no specific systematic literature review methodology protocols in ...