Sciencing_Icons_Science SCIENCE

Sciencing_icons_biology biology, sciencing_icons_cells cells, sciencing_icons_molecular molecular, sciencing_icons_microorganisms microorganisms, sciencing_icons_genetics genetics, sciencing_icons_human body human body, sciencing_icons_ecology ecology, sciencing_icons_chemistry chemistry, sciencing_icons_atomic & molecular structure atomic & molecular structure, sciencing_icons_bonds bonds, sciencing_icons_reactions reactions, sciencing_icons_stoichiometry stoichiometry, sciencing_icons_solutions solutions, sciencing_icons_acids & bases acids & bases, sciencing_icons_thermodynamics thermodynamics, sciencing_icons_organic chemistry organic chemistry, sciencing_icons_physics physics, sciencing_icons_fundamentals-physics fundamentals, sciencing_icons_electronics electronics, sciencing_icons_waves waves, sciencing_icons_energy energy, sciencing_icons_fluid fluid, sciencing_icons_astronomy astronomy, sciencing_icons_geology geology, sciencing_icons_fundamentals-geology fundamentals, sciencing_icons_minerals & rocks minerals & rocks, sciencing_icons_earth scructure earth structure, sciencing_icons_fossils fossils, sciencing_icons_natural disasters natural disasters, sciencing_icons_nature nature, sciencing_icons_ecosystems ecosystems, sciencing_icons_environment environment, sciencing_icons_insects insects, sciencing_icons_plants & mushrooms plants & mushrooms, sciencing_icons_animals animals, sciencing_icons_math math, sciencing_icons_arithmetic arithmetic, sciencing_icons_addition & subtraction addition & subtraction, sciencing_icons_multiplication & division multiplication & division, sciencing_icons_decimals decimals, sciencing_icons_fractions fractions, sciencing_icons_conversions conversions, sciencing_icons_algebra algebra, sciencing_icons_working with units working with units, sciencing_icons_equations & expressions equations & expressions, sciencing_icons_ratios & proportions ratios & proportions, sciencing_icons_inequalities inequalities, sciencing_icons_exponents & logarithms exponents & logarithms, sciencing_icons_factorization factorization, sciencing_icons_functions functions, sciencing_icons_linear equations linear equations, sciencing_icons_graphs graphs, sciencing_icons_quadratics quadratics, sciencing_icons_polynomials polynomials, sciencing_icons_geometry geometry, sciencing_icons_fundamentals-geometry fundamentals, sciencing_icons_cartesian cartesian, sciencing_icons_circles circles, sciencing_icons_solids solids, sciencing_icons_trigonometry trigonometry, sciencing_icons_probability-statistics probability & statistics, sciencing_icons_mean-median-mode mean/median/mode, sciencing_icons_independent-dependent variables independent/dependent variables, sciencing_icons_deviation deviation, sciencing_icons_correlation correlation, sciencing_icons_sampling sampling, sciencing_icons_distributions distributions, sciencing_icons_probability probability, sciencing_icons_calculus calculus, sciencing_icons_differentiation-integration differentiation/integration, sciencing_icons_application application, sciencing_icons_projects projects, sciencing_icons_news news.

  • Share Tweet Email Print
  • Home ⋅
  • Math ⋅
  • Probability & Statistics ⋅
  • Distributions

How to Write a Hypothesis for Correlation

A hypothesis for correlation predicts a statistically significant relationship.

How to Calculate a P-Value

A hypothesis is a testable statement about how something works in the natural world. While some hypotheses predict a causal relationship between two variables, other hypotheses predict a correlation between them. According to the Research Methods Knowledge Base, a correlation is a single number that describes the relationship between two variables. If you do not predict a causal relationship or cannot measure one objectively, state clearly in your hypothesis that you are merely predicting a correlation.

Research the topic in depth before forming a hypothesis. Without adequate knowledge about the subject matter, you will not be able to decide whether to write a hypothesis for correlation or causation. Read the findings of similar experiments before writing your own hypothesis.

Identify the independent variable and dependent variable. Your hypothesis will be concerned with what happens to the dependent variable when a change is made in the independent variable. In a correlation, the two variables undergo changes at the same time in a significant number of cases. However, this does not mean that the change in the independent variable causes the change in the dependent variable.

Construct an experiment to test your hypothesis. In a correlative experiment, you must be able to measure the exact relationship between two variables. This means you will need to find out how often a change occurs in both variables in terms of a specific percentage.

Establish the requirements of the experiment with regard to statistical significance. Instruct readers exactly how often the variables must correlate to reach a high enough level of statistical significance. This number will vary considerably depending on the field. In a highly technical scientific study, for instance, the variables may need to correlate 98 percent of the time; but in a sociological study, 90 percent correlation may suffice. Look at other studies in your particular field to determine the requirements for statistical significance.

State the null hypothesis. The null hypothesis gives an exact value that implies there is no correlation between the two variables. If the results show a percentage equal to or lower than the value of the null hypothesis, then the variables are not proven to correlate.

Record and summarize the results of your experiment. State whether or not the experiment met the minimum requirements of your hypothesis in terms of both percentage and significance.

Related Articles

How to determine the sample size in a quantitative..., how to calculate a two-tailed test, how to interpret a student's t-test results, how to know if something is significant using spss, quantitative vs. qualitative data and laboratory testing, similarities of univariate & multivariate statistical..., what is the meaning of sample size, distinguishing between descriptive & causal studies, how to calculate cv values, how to determine your practice clep score, what are the different types of correlations, how to calculate p-hat, how to calculate percentage error, how to calculate percent relative range, how to calculate a sample size population, how to calculate bias, how to calculate the percentage of another number, how to find y value for the slope of a line, advantages & disadvantages of finding variance.

  • University of New England; Steps in Hypothesis Testing for Correlation; 2000
  • Research Methods Knowledge Base; Correlation; William M.K. Trochim; 2006
  • Science Buddies; Hypothesis

About the Author

Brian Gabriel has been a writer and blogger since 2009, contributing to various online publications. He earned his Bachelor of Arts in history from Whitworth University.

Photo Credits

Thinkstock/Comstock/Getty Images

Find Your Next Great Science Fair Project! GO

Examples

Correlation Hypothesis

Ai generator.

Correlation Hypothesis Statement Examples

Understanding the relationships between variables is pivotal in research. Correlation hypotheses delve into the degree of association between two or more variables. In this guide, delve into an array of correlation hypothesis examples that explore connections, followed by a step-by-step tutorial on crafting these thesis statement hypothesis effectively. Enhance your research prowess with valuable tips tailored to unravel the intricate world of correlations.

What is Correlation Hypothesis?

A correlation hypothesis is a statement that predicts a specific relationship between two or more variables based on the assumption that changes in one variable are associated with changes in another variable. It suggests that there is a correlation or statistical relationship between the variables, meaning that when one variable changes, the other variable is likely to change in a consistent manner.

What is an example of a Correlation Hypothesis Statement?

Example: “If the amount of exercise increases, then the level of physical fitness will also increase.”

In this example, the correlation hypothesis suggests that there is a positive correlation between the amount of exercise a person engages in and their level of physical fitness. As exercise increases, the hypothesis predicts that physical fitness will increase as well. This hypothesis can be tested by collecting data on exercise levels and physical fitness levels and analyzing the relationship between the two variables using statistical methods.

100 Correlation Hypothesis Statement Examples

Correlation Hypothesis Statement Examples

Size: 277 KB

Discover the intriguing world of correlation through a collection of examples that illustrate how variables can be linked in research. Explore diverse scenarios where changes in one variable may correspond to changes in another, forming the basis of correlation hypotheses. These real-world instances shed light on the essence of correlation analysis and its role in uncovering connections between different aspects of data.

  • Study Hours and Exam Scores : If students study more hours per week, then their exam scores will show a positive correlation, indicating that increased study time might lead to better performance.
  • Income and Education : If the level of education increases, then income levels will also rise, demonstrating a positive correlation between education attainment and earning potential.
  • Social Media Usage and Well-being : If individuals spend more time on social media platforms, then their self-reported well-being might exhibit a negative correlation, suggesting that excessive use could impact mental health.
  • Temperature and Ice Cream Sales : If temperatures rise, then the sales of ice cream might increase, displaying a positive correlation due to the weather’s influence on consumer behavior.
  • Physical Activity and Heart Rate : If the intensity of physical activity rises, then heart rate might increase, signifying a positive correlation between exercise intensity and heart rate.
  • Age and Reaction Time : If age increases, then reaction time might show a positive correlation, indicating that as people age, their reaction times might slow down.
  • Smoking and Lung Capacity : If the number of cigarettes smoked daily increases, then lung capacity might decrease, suggesting a negative correlation between smoking and respiratory health.
  • Stress and Sleep Quality : If stress levels elevate, then sleep quality might decline, reflecting a negative correlation between psychological stress and restorative sleep.
  • Rainfall and Crop Yield : If the amount of rainfall decreases, then crop yield might also decrease, illustrating a negative correlation between precipitation and agricultural productivity.
  • Screen Time and Academic Performance : If screen time usage increases among students, then academic performance might show a negative correlation, suggesting that excessive screen time could be detrimental to studies.
  • Exercise and Body Weight : If individuals engage in regular exercise, then their body weight might exhibit a negative correlation, implying that physical activity can contribute to weight management.
  • Income and Crime Rates : If income levels decrease in a neighborhood, then crime rates might show a positive correlation, indicating a potential link between socio-economic factors and crime.
  • Social Support and Mental Health : If the level of social support increases, then individuals’ mental health scores may exhibit a positive correlation, highlighting the potential positive impact of strong social networks on psychological well-being.
  • Study Time and GPA : If students spend more time studying, then their Grade Point Average (GPA) might display a positive correlation, suggesting that increased study efforts may lead to higher academic achievement.
  • Parental Involvement and Academic Success : If parents are more involved in their child’s education, then the child’s academic success may show a positive correlation, emphasizing the role of parental support in shaping student outcomes.
  • Alcohol Consumption and Reaction Time : If alcohol consumption increases, then reaction time might slow down, indicating a negative correlation between alcohol intake and cognitive performance.
  • Social Media Engagement and Loneliness : If time spent on social media platforms increases, then feelings of loneliness might show a positive correlation, suggesting a potential connection between excessive online interaction and emotional well-being.
  • Temperature and Insect Activity : If temperatures rise, then the activity of certain insects might increase, demonstrating a potential positive correlation between temperature and insect behavior.
  • Education Level and Voting Participation : If education levels rise, then voter participation rates may also increase, showcasing a positive correlation between education and civic engagement.
  • Work Commute Time and Job Satisfaction : If work commute time decreases, then job satisfaction might show a positive correlation, indicating that shorter commutes could contribute to higher job satisfaction.
  • Sleep Duration and Cognitive Performance : If sleep duration increases, then cognitive performance scores might also rise, suggesting a potential positive correlation between adequate sleep and cognitive functioning.
  • Healthcare Access and Mortality Rate : If access to healthcare services improves, then the mortality rate might decrease, highlighting a potential negative correlation between healthcare accessibility and mortality.
  • Exercise and Blood Pressure : If individuals engage in regular exercise, then their blood pressure levels might exhibit a negative correlation, indicating that physical activity can contribute to maintaining healthy blood pressure.
  • Social Media Use and Academic Distraction : If students spend more time on social media during study sessions, then their academic focus might show a negative correlation, suggesting that excessive online engagement can hinder concentration.
  • Age and Technological Adaptation : If age increases, then the speed of adapting to new technologies might exhibit a negative correlation, suggesting that younger individuals tend to adapt more quickly.
  • Temperature and Plant Growth : If temperatures rise, then the rate of plant growth might increase, indicating a potential positive correlation between temperature and biological processes.
  • Music Exposure and Mood : If individuals listen to upbeat music, then their reported mood might show a positive correlation, suggesting that music can influence emotional states.
  • Income and Healthcare Utilization : If income levels increase, then the frequency of healthcare utilization might decrease, suggesting a potential negative correlation between income and healthcare needs.
  • Distance and Communication Frequency : If physical distance between individuals increases, then their communication frequency might show a negative correlation, indicating that proximity tends to facilitate communication.
  • Study Group Attendance and Exam Scores : If students regularly attend study groups, then their exam scores might exhibit a positive correlation, suggesting that collaborative study efforts could enhance performance.
  • Temperature and Disease Transmission : If temperatures rise, then the transmission of certain diseases might increase, pointing to a potential positive correlation between temperature and disease spread.
  • Interest Rates and Consumer Spending : If interest rates decrease, then consumer spending might show a positive correlation, suggesting that lower interest rates encourage increased economic activity.
  • Digital Device Use and Eye Strain : If individuals spend more time on digital devices, then the occurrence of eye strain might show a positive correlation, suggesting that prolonged screen time can impact eye health.
  • Parental Education and Children’s Educational Attainment : If parents have higher levels of education, then their children’s educational attainment might display a positive correlation, highlighting the intergenerational impact of education.
  • Social Interaction and Happiness : If individuals engage in frequent social interactions, then their reported happiness levels might show a positive correlation, indicating that social connections contribute to well-being.
  • Temperature and Energy Consumption : If temperatures decrease, then energy consumption for heating might increase, suggesting a potential positive correlation between temperature and energy usage.
  • Physical Activity and Stress Reduction : If individuals engage in regular physical activity, then their reported stress levels might display a negative correlation, indicating that exercise can help alleviate stress.
  • Diet Quality and Chronic Diseases : If diet quality improves, then the prevalence of chronic diseases might decrease, suggesting a potential negative correlation between healthy eating habits and disease risk.
  • Social Media Use and Body Image Dissatisfaction : If time spent on social media increases, then feelings of body image dissatisfaction might show a positive correlation, suggesting that online platforms can influence self-perception.
  • Income and Access to Quality Education : If household income increases, then access to quality education for children might improve, suggesting a potential positive correlation between financial resources and educational opportunities.
  • Workplace Diversity and Innovation : If workplace diversity increases, then the rate of innovation might show a positive correlation, indicating that diverse teams often generate more creative solutions.
  • Physical Activity and Bone Density : If individuals engage in weight-bearing exercises, then their bone density might exhibit a positive correlation, suggesting that exercise contributes to bone health.
  • Screen Time and Attention Span : If screen time increases, then attention span might show a negative correlation, indicating that excessive screen exposure can impact sustained focus.
  • Social Support and Resilience : If individuals have strong social support networks, then their resilience levels might display a positive correlation, suggesting that social connections contribute to coping abilities.
  • Weather Conditions and Mood : If sunny weather persists, then individuals’ reported mood might exhibit a positive correlation, reflecting the potential impact of weather on emotional states.
  • Nutrition Education and Healthy Eating : If individuals receive nutrition education, then their consumption of fruits and vegetables might show a positive correlation, suggesting that knowledge influences dietary choices.
  • Physical Activity and Cognitive Aging : If adults engage in regular physical activity, then their cognitive decline with aging might show a slower rate, indicating a potential negative correlation between exercise and cognitive aging.
  • Air Quality and Respiratory Illnesses : If air quality deteriorates, then the incidence of respiratory illnesses might increase, suggesting a potential positive correlation between air pollutants and health impacts.
  • Reading Habits and Vocabulary Growth : If individuals read regularly, then their vocabulary size might exhibit a positive correlation, suggesting that reading contributes to language development.
  • Sleep Quality and Stress Levels : If sleep quality improves, then reported stress levels might display a negative correlation, indicating that sleep can impact psychological well-being.
  • Social Media Engagement and Academic Performance : If students spend more time on social media, then their academic performance might exhibit a negative correlation, suggesting that excessive online engagement can impact studies.
  • Exercise and Blood Sugar Levels : If individuals engage in regular exercise, then their blood sugar levels might display a negative correlation, indicating that physical activity can influence glucose regulation.
  • Screen Time and Sleep Duration : If screen time before bedtime increases, then sleep duration might show a negative correlation, suggesting that screen exposure can affect sleep patterns.
  • Environmental Pollution and Health Outcomes : If exposure to environmental pollutants increases, then the occurrence of health issues might show a positive correlation, suggesting that pollution can impact well-being.
  • Time Management and Academic Achievement : If students improve time management skills, then their academic achievement might exhibit a positive correlation, indicating that effective planning contributes to success.
  • Physical Fitness and Heart Health : If individuals improve their physical fitness, then their heart health indicators might display a positive correlation, indicating that exercise benefits cardiovascular well-being.
  • Weather Conditions and Outdoor Activities : If weather is sunny, then outdoor activities might show a positive correlation, suggesting that favorable weather encourages outdoor engagement.
  • Media Exposure and Body Image Perception : If exposure to media images increases, then body image dissatisfaction might show a positive correlation, indicating media’s potential influence on self-perception.
  • Community Engagement and Civic Participation : If individuals engage in community activities, then their civic participation might exhibit a positive correlation, indicating an active citizenry.
  • Social Media Use and Productivity : If individuals spend more time on social media, then their productivity levels might exhibit a negative correlation, suggesting that online distractions can affect work efficiency.
  • Income and Stress Levels : If income levels increase, then reported stress levels might exhibit a negative correlation, suggesting that financial stability can impact psychological well-being.
  • Social Media Use and Interpersonal Skills : If individuals spend more time on social media, then their interpersonal skills might show a negative correlation, indicating potential effects on face-to-face interactions.
  • Parental Involvement and Academic Motivation : If parents are more involved in their child’s education, then the child’s academic motivation may exhibit a positive correlation, highlighting the role of parental support.
  • Technology Use and Sleep Quality : If screen time increases before bedtime, then sleep quality might show a negative correlation, suggesting that technology use can impact sleep.
  • Outdoor Activity and Mood Enhancement : If individuals engage in outdoor activities, then their reported mood might display a positive correlation, suggesting the potential emotional benefits of nature exposure.
  • Income Inequality and Social Mobility : If income inequality increases, then social mobility might exhibit a negative correlation, suggesting that higher inequality can hinder upward mobility.
  • Vegetable Consumption and Heart Health : If individuals increase their vegetable consumption, then heart health indicators might show a positive correlation, indicating the potential benefits of a nutritious diet.
  • Online Learning and Academic Achievement : If students engage in online learning, then their academic achievement might display a positive correlation, highlighting the effectiveness of digital education.
  • Emotional Intelligence and Workplace Performance : If emotional intelligence improves, then workplace performance might exhibit a positive correlation, indicating the relevance of emotional skills.
  • Community Engagement and Mental Well-being : If individuals engage in community activities, then their reported mental well-being might show a positive correlation, emphasizing social connections’ impact.
  • Rainfall and Agriculture Productivity : If rainfall levels increase, then agricultural productivity might exhibit a positive correlation, indicating the importance of water for crops.
  • Social Media Use and Body Posture : If screen time increases, then poor body posture might show a positive correlation, suggesting that screen use can influence physical habits.
  • Marital Satisfaction and Relationship Length : If marital satisfaction decreases, then relationship length might show a negative correlation, indicating potential challenges over time.
  • Exercise and Anxiety Levels : If individuals engage in regular exercise, then reported anxiety levels might exhibit a negative correlation, indicating the potential benefits of physical activity on mental health.
  • Music Listening and Concentration : If individuals listen to instrumental music, then their concentration levels might display a positive correlation, suggesting music’s impact on focus.
  • Internet Usage and Attention Deficits : If screen time increases, then attention deficits might show a positive correlation, implying that excessive internet use can affect concentration.
  • Financial Literacy and Debt Levels : If financial literacy improves, then personal debt levels might exhibit a negative correlation, suggesting better financial decision-making.
  • Time Spent Outdoors and Vitamin D Levels : If time spent outdoors increases, then vitamin D levels might show a positive correlation, indicating sun exposure’s role in vitamin synthesis.
  • Family Meal Frequency and Nutrition : If families eat meals together frequently, then nutrition quality might display a positive correlation, emphasizing family dining’s impact on health.
  • Temperature and Allergy Symptoms : If temperatures rise, then allergy symptoms might increase, suggesting a potential positive correlation between temperature and allergen exposure.
  • Social Media Use and Academic Distraction : If students spend more time on social media, then their academic focus might exhibit a negative correlation, indicating that online engagement can hinder studies.
  • Financial Stress and Health Outcomes : If financial stress increases, then the occurrence of health issues might show a positive correlation, suggesting potential health impacts of economic strain.
  • Study Hours and Test Anxiety : If students study more hours, then test anxiety might show a negative correlation, suggesting that increased preparation can reduce anxiety.
  • Music Tempo and Exercise Intensity : If music tempo increases, then exercise intensity might display a positive correlation, indicating music’s potential to influence workout vigor.
  • Green Space Accessibility and Stress Reduction : If access to green spaces improves, then reported stress levels might exhibit a negative correlation, highlighting nature’s stress-reducing effects.
  • Parenting Style and Child Behavior : If authoritative parenting increases, then positive child behaviors might display a positive correlation, suggesting parenting’s influence on behavior.
  • Sleep Quality and Productivity : If sleep quality improves, then work productivity might show a positive correlation, emphasizing the connection between rest and efficiency.
  • Media Consumption and Political Beliefs : If media consumption increases, then alignment with specific political beliefs might exhibit a positive correlation, suggesting media’s influence on ideology.
  • Workplace Satisfaction and Employee Retention : If workplace satisfaction increases, then employee retention rates might show a positive correlation, indicating the link between job satisfaction and tenure.
  • Digital Device Use and Eye Discomfort : If screen time increases, then reported eye discomfort might show a positive correlation, indicating potential impacts of screen exposure.
  • Age and Adaptability to Technology : If age increases, then adaptability to new technologies might exhibit a negative correlation, indicating generational differences in tech adoption.
  • Physical Activity and Mental Health : If individuals engage in regular physical activity, then reported mental health scores might exhibit a positive correlation, showcasing exercise’s impact.
  • Video Gaming and Attention Span : If time spent on video games increases, then attention span might display a negative correlation, indicating potential effects on focus.
  • Social Media Use and Empathy Levels : If social media use increases, then reported empathy levels might show a negative correlation, suggesting possible effects on emotional understanding.
  • Reading Habits and Creativity : If individuals read diverse genres, then their creative thinking might exhibit a positive correlation, emphasizing reading’s cognitive benefits.
  • Weather Conditions and Outdoor Exercise : If weather is pleasant, then outdoor exercise might show a positive correlation, suggesting weather’s influence on physical activity.
  • Parental Involvement and Bullying Prevention : If parents are actively involved, then instances of bullying might exhibit a negative correlation, emphasizing parental impact on behavior.
  • Digital Device Use and Sleep Disruption : If screen time before bedtime increases, then sleep disruption might show a positive correlation, indicating technology’s influence on sleep.
  • Friendship Quality and Psychological Well-being : If friendship quality increases, then reported psychological well-being might show a positive correlation, highlighting social support’s impact.
  • Income and Environmental Consciousness : If income levels increase, then environmental consciousness might also rise, indicating potential links between affluence and sustainability awareness.

Correlational Hypothesis Interpretation Statement Examples

Explore the art of interpreting correlation hypotheses with these illustrative examples. Understand the implications of positive, negative, and zero correlations, and learn how to deduce meaningful insights from data relationships.

  • Relationship Between Exercise and Mood : A positive correlation between exercise frequency and mood scores suggests that increased physical activity might contribute to enhanced emotional well-being.
  • Association Between Screen Time and Sleep Quality : A negative correlation between screen time before bedtime and sleep quality indicates that higher screen exposure could lead to poorer sleep outcomes.
  • Connection Between Study Hours and Exam Performance : A positive correlation between study hours and exam scores implies that increased study time might correspond to better academic results.
  • Link Between Stress Levels and Meditation Practice : A negative correlation between stress levels and meditation frequency suggests that engaging in meditation could be associated with lower perceived stress.
  • Relationship Between Social Media Use and Loneliness : A positive correlation between social media engagement and feelings of loneliness implies that excessive online interaction might contribute to increased loneliness.
  • Association Between Income and Happiness : A positive correlation between income and self-reported happiness indicates that higher income levels might be linked to greater subjective well-being.
  • Connection Between Parental Involvement and Academic Performance : A positive correlation between parental involvement and students’ grades suggests that active parental engagement might contribute to better academic outcomes.
  • Link Between Time Management and Stress Levels : A negative correlation between effective time management and reported stress levels implies that better time management skills could lead to lower stress.
  • Relationship Between Outdoor Activities and Vitamin D Levels : A positive correlation between time spent outdoors and vitamin D levels suggests that increased outdoor engagement might be associated with higher vitamin D concentrations.
  • Association Between Water Consumption and Skin Hydration : A positive correlation between water intake and skin hydration indicates that higher fluid consumption might lead to improved skin moisture levels.

Alternative Correlational Hypothesis Statement Examples

Explore alternative scenarios and potential correlations in these examples. Learn to articulate different hypotheses that could explain data relationships beyond the conventional assumptions.

  • Alternative to Exercise and Mood : An alternative hypothesis could suggest a non-linear relationship between exercise and mood, indicating that moderate exercise might have the most positive impact on emotional well-being.
  • Alternative to Screen Time and Sleep Quality : An alternative hypothesis might propose that screen time has a curvilinear relationship with sleep quality, suggesting that moderate screen exposure leads to optimal sleep outcomes.
  • Alternative to Study Hours and Exam Performance : An alternative hypothesis could propose that there’s an interaction effect between study hours and study method, influencing the relationship between study time and exam scores.
  • Alternative to Stress Levels and Meditation Practice : An alternative hypothesis might consider that the relationship between stress levels and meditation practice is moderated by personality traits, resulting in varying effects.
  • Alternative to Social Media Use and Loneliness : An alternative hypothesis could posit that the relationship between social media use and loneliness depends on the quality of online interactions and content consumption.
  • Alternative to Income and Happiness : An alternative hypothesis might propose that the relationship between income and happiness differs based on cultural factors, leading to varying happiness levels at different income ranges.
  • Alternative to Parental Involvement and Academic Performance : An alternative hypothesis could suggest that the relationship between parental involvement and academic performance varies based on students’ learning styles and preferences.
  • Alternative to Time Management and Stress Levels : An alternative hypothesis might explore the possibility of a curvilinear relationship between time management and stress levels, indicating that extreme time management efforts might elevate stress.
  • Alternative to Outdoor Activities and Vitamin D Levels : An alternative hypothesis could consider that the relationship between outdoor activities and vitamin D levels is moderated by sunscreen usage, influencing vitamin synthesis.
  • Alternative to Water Consumption and Skin Hydration : An alternative hypothesis might propose that the relationship between water consumption and skin hydration is mediated by dietary factors, influencing fluid retention and skin health.

Correlational Hypothesis Pearson Interpretation Statement Examples

Discover how the Pearson correlation coefficient enhances your understanding of data relationships with these examples. Learn to interpret correlation strength and direction using this valuable statistical measure.

  • Strong Positive Correlation : A Pearson correlation coefficient of +0.85 between study time and exam scores indicates a strong positive relationship, suggesting that increased study time is strongly associated with higher grades.
  • Moderate Negative Correlation : A Pearson correlation coefficient of -0.45 between screen time and sleep quality reflects a moderate negative correlation, implying that higher screen exposure is moderately linked to poorer sleep outcomes.
  • Weak Positive Correlation : A Pearson correlation coefficient of +0.25 between social media use and loneliness suggests a weak positive correlation, indicating that increased online engagement is weakly related to higher loneliness.
  • Strong Negative Correlation : A Pearson correlation coefficient of -0.75 between stress levels and meditation practice indicates a strong negative relationship, implying that engaging in meditation is strongly associated with lower stress.
  • Moderate Positive Correlation : A Pearson correlation coefficient of +0.60 between income and happiness signifies a moderate positive correlation, suggesting that higher income is moderately linked to greater happiness.
  • Weak Negative Correlation : A Pearson correlation coefficient of -0.30 between parental involvement and academic performance represents a weak negative correlation, indicating that higher parental involvement is weakly associated with lower academic performance.
  • Strong Positive Correlation : A Pearson correlation coefficient of +0.80 between time management and stress levels reveals a strong positive relationship, suggesting that effective time management is strongly linked to lower stress.
  • Weak Negative Correlation : A Pearson correlation coefficient of -0.20 between outdoor activities and vitamin D levels signifies a weak negative correlation, implying that higher outdoor engagement is weakly related to lower vitamin D levels.
  • Moderate Positive Correlation : A Pearson correlation coefficient of +0.50 between water consumption and skin hydration denotes a moderate positive correlation, suggesting that increased fluid intake is moderately linked to better skin hydration.
  • Strong Negative Correlation : A Pearson correlation coefficient of -0.70 between screen time and attention span indicates a strong negative relationship, implying that higher screen exposure is strongly associated with shorter attention spans.

Correlational Hypothesis Statement Examples in Psychology

Explore how correlation hypotheses apply to psychological research with these examples. Understand how psychologists investigate relationships between variables to gain insights into human behavior.

  • Sleep Patterns and Cognitive Performance : There is a positive correlation between consistent sleep patterns and cognitive performance, suggesting that individuals with regular sleep schedules exhibit better cognitive functioning.
  • Anxiety Levels and Social Media Use : There is a positive correlation between anxiety levels and excessive social media use, indicating that individuals who spend more time on social media might experience higher anxiety.
  • Self-Esteem and Body Image Satisfaction : There is a negative correlation between self-esteem and body image satisfaction, implying that individuals with higher self-esteem tend to be more satisfied with their physical appearance.
  • Parenting Styles and Child Aggression : There is a negative correlation between authoritative parenting styles and child aggression, suggesting that children raised by authoritative parents might exhibit lower levels of aggression.
  • Emotional Intelligence and Conflict Resolution : There is a positive correlation between emotional intelligence and effective conflict resolution, indicating that individuals with higher emotional intelligence tend to resolve conflicts more successfully.
  • Personality Traits and Career Satisfaction : There is a positive correlation between certain personality traits (e.g., extraversion, openness) and career satisfaction, suggesting that individuals with specific traits experience higher job contentment.
  • Stress Levels and Coping Mechanisms : There is a negative correlation between stress levels and adaptive coping mechanisms, indicating that individuals with lower stress levels are more likely to employ effective coping strategies.
  • Attachment Styles and Romantic Relationship Quality : There is a positive correlation between secure attachment styles and higher romantic relationship quality, suggesting that individuals with secure attachments tend to have healthier relationships.
  • Social Support and Mental Health : There is a negative correlation between perceived social support and mental health issues, indicating that individuals with strong social support networks tend to experience fewer mental health challenges.
  • Motivation and Academic Achievement : There is a positive correlation between intrinsic motivation and academic achievement, implying that students who are internally motivated tend to perform better academically.

Does Correlational Research Have Hypothesis?

Correlational research involves examining the relationship between two or more variables to determine whether they are related and how they change together. While correlational studies do not establish causation, they still utilize hypotheses to formulate expectations about the relationships between variables. These good hypotheses predict the presence, direction, and strength of correlations. However, in correlational research, the focus is on measuring and analyzing the degree of association rather than establishing cause-and-effect relationships.

How Do You Write a Null-Hypothesis for a Correlational Study?

The null hypothesis in a correlational study states that there is no significant correlation between the variables being studied. It assumes that any observed correlation is due to chance and lacks meaningful association. When writing a null hypothesis for a correlational study, follow these steps:

  • Identify the Variables: Clearly define the variables you are studying and their relationship (e.g., “There is no significant correlation between X and Y”).
  • Specify the Population: Indicate the population from which the data is drawn (e.g., “In the population of [target population]…”).
  • Include the Direction of Correlation: If relevant, specify the direction of correlation (positive, negative, or zero) that you are testing (e.g., “…there is no significant positive/negative correlation…”).
  • State the Hypothesis: Write the null hypothesis as a clear statement that there is no significant correlation between the variables (e.g., “…there is no significant correlation between X and Y”).

What Is Correlation Hypothesis Formula?

The correlation hypothesis is often expressed in the form of a statement that predicts the presence and nature of a relationship between two variables. It typically follows the “If-Then” structure, indicating the expected change in one variable based on changes in another. The correlation hypothesis formula can be written as:

“If [Variable X] changes, then [Variable Y] will also change [in a specified direction] because [rationale for the expected correlation].”

For example, “If the amount of exercise increases, then mood scores will improve because physical activity has been linked to better emotional well-being.”

What Is a Correlational Hypothesis in Research Methodology?

A correlational hypothesis in research methodology is a testable hypothesis statement that predicts the presence and nature of a relationship between two or more variables. It forms the basis for conducting a correlational study, where the goal is to measure and analyze the degree of association between variables. Correlational hypotheses are essential in guiding the research process, collecting relevant data, and assessing whether the observed correlations are statistically significant.

How Do You Write a Hypothesis for Correlation? – A Step by Step Guide

Writing a hypothesis for correlation involves crafting a clear and testable statement about the expected relationship between variables. Here’s a step-by-step guide:

  • Identify Variables : Clearly define the variables you are studying and their nature (e.g., “There is a relationship between X and Y…”).
  • Specify Direction : Indicate the expected direction of correlation (positive, negative, or zero) based on your understanding of the variables and existing literature.
  • Formulate the If-Then Statement : Write an “If-Then” statement that predicts the change in one variable based on changes in the other variable (e.g., “If [Variable X] changes, then [Variable Y] will also change [in a specified direction]…”).
  • Provide Rationale : Explain why you expect the correlation to exist, referencing existing theories, research, or logical reasoning.
  • Quantitative Prediction (Optional) : If applicable, provide a quantitative prediction about the strength of the correlation (e.g., “…for every one unit increase in [Variable X], [Variable Y] is predicted to increase by [numerical value].”).
  • Specify Population : Indicate the population to which your hypothesis applies (e.g., “In a sample of [target population]…”).

Tips for Writing Correlational Hypothesis

  • Base on Existing Knowledge : Ground your hypothesis in existing literature, theories, or empirical evidence to ensure it’s well-informed.
  • Be Specific : Clearly define the variables and direction of correlation you’re predicting to avoid ambiguity.
  • Avoid Causation Claims : Remember that correlational hypotheses do not imply causation. Focus on predicting relationships, not causes.
  • Use Clear Language : Write in clear and concise language, avoiding jargon that may confuse readers.
  • Consider Alternative Explanations : Acknowledge potential confounding variables or alternative explanations that could affect the observed correlation.
  • Be Open to Results : Correlation results can be unexpected. Be prepared to interpret findings even if they don’t align with your initial hypothesis.
  • Test Statistically : Once you collect data, use appropriate statistical tests to determine if the observed correlation is statistically significant.
  • Revise as Needed : If your findings don’t support your hypothesis, revise it based on the data and insights gained.

Crafting a well-structured correlational hypothesis is crucial for guiding your research, conducting meaningful analysis, and contributing to the understanding of relationships between variables.

Twitter

Text prompt

  • Instructive
  • Professional

10 Examples of Public speaking

20 Examples of Gas lighting

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

1.9 - hypothesis test for the population correlation coefficient.

There is one more point we haven't stressed yet in our discussion about the correlation coefficient r and the coefficient of determination \(R^{2}\) — namely, the two measures summarize the strength of a linear relationship in samples only . If we obtained a different sample, we would obtain different correlations, different \(R^{2}\) values, and therefore potentially different conclusions. As always, we want to draw conclusions about populations , not just samples. To do so, we either have to conduct a hypothesis test or calculate a confidence interval. In this section, we learn how to conduct a hypothesis test for the population correlation coefficient \(\rho\) (the greek letter "rho").

In general, a researcher should use the hypothesis test for the population correlation \(\rho\) to learn of a linear association between two variables, when it isn't obvious which variable should be regarded as the response. Let's clarify this point with examples of two different research questions.

Consider evaluating whether or not a linear relationship exists between skin cancer mortality and latitude. We will see in Lesson 2 that we can perform either of the following tests:

  • t -test for testing \(H_{0} \colon \beta_{1}= 0\)
  • ANOVA F -test for testing \(H_{0} \colon \beta_{1}= 0\)

For this example, it is fairly obvious that latitude should be treated as the predictor variable and skin cancer mortality as the response.

By contrast, suppose we want to evaluate whether or not a linear relationship exists between a husband's age and his wife's age ( Husband and Wife data ). In this case, one could treat the husband's age as the response:

husband's age vs wife's age plot

...or one could treat the wife's age as the response:

wife's age vs husband's age plot

In cases such as these, we answer our research question concerning the existence of a linear relationship by using the t -test for testing the population correlation coefficient \(H_{0}\colon \rho = 0\).

Let's jump right to it! We follow standard hypothesis test procedures in conducting a hypothesis test for the population correlation coefficient \(\rho\).

Steps for Hypothesis Testing for \(\boldsymbol{\rho}\) Section  

Step 1: hypotheses.

First, we specify the null and alternative hypotheses:

  • Null hypothesis \(H_{0} \colon \rho = 0\)
  • Alternative hypothesis \(H_{A} \colon \rho ≠ 0\) or \(H_{A} \colon \rho < 0\) or \(H_{A} \colon \rho > 0\)

Step 2: Test Statistic

Second, we calculate the value of the test statistic using the following formula:

Test statistic:  \(t^*=\dfrac{r\sqrt{n-2}}{\sqrt{1-R^2}}\) 

Step 3: P-Value

Third, we use the resulting test statistic to calculate the P -value. As always, the P -value is the answer to the question "how likely is it that we’d get a test statistic t* as extreme as we did if the null hypothesis were true?" The P -value is determined by referring to a t- distribution with n -2 degrees of freedom.

Step 4: Decision

Finally, we make a decision:

  • If the P -value is smaller than the significance level \(\alpha\), we reject the null hypothesis in favor of the alternative. We conclude that "there is sufficient evidence at the\(\alpha\) level to conclude that there is a linear relationship in the population between the predictor x and response y."
  • If the P -value is larger than the significance level \(\alpha\), we fail to reject the null hypothesis. We conclude "there is not enough evidence at the  \(\alpha\) level to conclude that there is a linear relationship in the population between the predictor x and response y ."

Example 1-5: Husband and Wife Data Section  

Let's perform the hypothesis test on the husband's age and wife's age data in which the sample correlation based on n = 170 couples is r = 0.939. To test \(H_{0} \colon \rho = 0\) against the alternative \(H_{A} \colon \rho ≠ 0\), we obtain the following test statistic:

\begin{align} t^*&=\dfrac{r\sqrt{n-2}}{\sqrt{1-R^2}}\\ &=\dfrac{0.939\sqrt{170-2}}{\sqrt{1-0.939^2}}\\ &=35.39\end{align}

To obtain the P -value, we need to compare the test statistic to a t -distribution with 168 degrees of freedom (since 170 - 2 = 168). In particular, we need to find the probability that we'd observe a test statistic more extreme than 35.39, and then, since we're conducting a two-sided test, multiply the probability by 2. Minitab helps us out here:

Student's t distribution with 168 DF

The output tells us that the probability of getting a test-statistic smaller than 35.39 is greater than 0.999. Therefore, the probability of getting a test-statistic greater than 35.39 is less than 0.001. As illustrated in the following video, we multiply by 2 and determine that the P-value is less than 0.002.

Since the P -value is small — smaller than 0.05, say — we can reject the null hypothesis. There is sufficient statistical evidence at the \(\alpha = 0.05\) level to conclude that there is a significant linear relationship between a husband's age and his wife's age.

Incidentally, we can let statistical software like Minitab do all of the dirty work for us. In doing so, Minitab reports:

Correlation: WAge, HAge

Pearson correlation of WAge and HAge = 0.939

P-Value = 0.000

Final Note Section  

One final note ... as always, we should clarify when it is okay to use the t -test for testing \(H_{0} \colon \rho = 0\)? The guidelines are a straightforward extension of the "LINE" assumptions made for the simple linear regression model. It's okay:

  • When it is not obvious which variable is the response.
  • For each x , the y 's are normal with equal variances.
  • For each y , the x 's are normal with equal variances.
  • Either, y can be considered a linear function of x .
  • Or, x can be considered a linear function of y .
  • The ( x , y ) pairs are independent

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Correlational Research | Guide, Design & Examples

Correlational Research | Guide, Design & Examples

Published on 5 May 2022 by Pritha Bhandari . Revised on 5 December 2022.

A correlational research design investigates relationships between variables without the researcher controlling or manipulating any of them.

A correlation reflects the strength and/or direction of the relationship between two (or more) variables. The direction of a correlation can be either positive or negative.

Table of contents

Correlational vs experimental research, when to use correlational research, how to collect correlational data, how to analyse correlational data, correlation and causation, frequently asked questions about correlational research.

Correlational and experimental research both use quantitative methods to investigate relationships between variables. But there are important differences in how data is collected and the types of conclusions you can draw.

Prevent plagiarism, run a free check.

Correlational research is ideal for gathering data quickly from natural settings. That helps you generalise your findings to real-life situations in an externally valid way.

There are a few situations where correlational research is an appropriate choice.

To investigate non-causal relationships

You want to find out if there is an association between two variables, but you don’t expect to find a causal relationship between them.

Correlational research can provide insights into complex real-world relationships, helping researchers develop theories and make predictions.

To explore causal relationships between variables

You think there is a causal relationship between two variables, but it is impractical, unethical, or too costly to conduct experimental research that manipulates one of the variables.

Correlational research can provide initial indications or additional support for theories about causal relationships.

To test new measurement tools

You have developed a new instrument for measuring your variable, and you need to test its reliability or validity .

Correlational research can be used to assess whether a tool consistently or accurately captures the concept it aims to measure.

There are many different methods you can use in correlational research. In the social and behavioural sciences, the most common data collection methods for this type of research include surveys, observations, and secondary data.

It’s important to carefully choose and plan your methods to ensure the reliability and validity of your results. You should carefully select a representative sample so that your data reflects the population you’re interested in without bias .

In survey research , you can use questionnaires to measure your variables of interest. You can conduct surveys online, by post, by phone, or in person.

Surveys are a quick, flexible way to collect standardised data from many participants, but it’s important to ensure that your questions are worded in an unbiased way and capture relevant insights.

Naturalistic observation

Naturalistic observation is a type of field research where you gather data about a behaviour or phenomenon in its natural environment.

This method often involves recording, counting, describing, and categorising actions and events. Naturalistic observation can include both qualitative and quantitative elements, but to assess correlation, you collect data that can be analysed quantitatively (e.g., frequencies, durations, scales, and amounts).

Naturalistic observation lets you easily generalise your results to real-world contexts, and you can study experiences that aren’t replicable in lab settings. But data analysis can be time-consuming and unpredictable, and researcher bias may skew the interpretations.

Secondary data

Instead of collecting original data, you can also use data that has already been collected for a different purpose, such as official records, polls, or previous studies.

Using secondary data is inexpensive and fast, because data collection is complete. However, the data may be unreliable, incomplete, or not entirely relevant, and you have no control over the reliability or validity of the data collection procedures.

After collecting data, you can statistically analyse the relationship between variables using correlation or regression analyses, or both. You can also visualise the relationships between variables with a scatterplot.

Different types of correlation coefficients and regression analyses are appropriate for your data based on their levels of measurement and distributions .

Correlation analysis

Using a correlation analysis, you can summarise the relationship between variables into a correlation coefficient : a single number that describes the strength and direction of the relationship between variables. With this number, you’ll quantify the degree of the relationship between variables.

The Pearson product-moment correlation coefficient, also known as Pearson’s r , is commonly used for assessing a linear relationship between two quantitative variables.

Correlation coefficients are usually found for two variables at a time, but you can use a multiple correlation coefficient for three or more variables.

Regression analysis

With a regression analysis , you can predict how much a change in one variable will be associated with a change in the other variable. The result is a regression equation that describes the line on a graph of your variables.

You can use this equation to predict the value of one variable based on the given value(s) of the other variable(s). It’s best to perform a regression analysis after testing for a correlation between your variables.

It’s important to remember that correlation does not imply causation . Just because you find a correlation between two things doesn’t mean you can conclude one of them causes the other, for a few reasons.

Directionality problem

If two variables are correlated, it could be because one of them is a cause and the other is an effect. But the correlational research design doesn’t allow you to infer which is which. To err on the side of caution, researchers don’t conclude causality from correlational studies.

Third variable problem

A confounding variable is a third variable that influences other variables to make them seem causally related even though they are not. Instead, there are separate causal links between the confounder and each variable.

In correlational research, there’s limited or no researcher control over extraneous variables . Even if you statistically control for some potential confounders, there may still be other hidden variables that disguise the relationship between your study variables.

Although a correlational study can’t demonstrate causation on its own, it can help you develop a causal hypothesis that’s tested in controlled experiments.

A correlation reflects the strength and/or direction of the association between two or more variables.

  • A positive correlation means that both variables change in the same direction.
  • A negative correlation means that the variables change in opposite directions.
  • A zero correlation means there’s no relationship between the variables.

A correlational research design investigates relationships between two variables (or more) without the researcher controlling or manipulating any of them. It’s a non-experimental type of quantitative research .

Controlled experiments establish causality, whereas correlational studies only show associations between variables.

  • In an experimental design , you manipulate an independent variable and measure its effect on a dependent variable. Other variables are controlled so they can’t impact the results.
  • In a correlational design , you measure variables without manipulating any of them. You can test whether your variables change together, but you can’t be sure that one variable caused a change in another.

In general, correlational research is high in external validity while experimental research is high in internal validity .

A correlation is usually tested for two variables at a time, but you can test correlations between three or more variables.

A correlation coefficient is a single number that describes the strength and direction of the relationship between your variables.

Different types of correlation coefficients might be appropriate for your data based on their levels of measurement and distributions . The Pearson product-moment correlation coefficient (Pearson’s r ) is commonly used to assess a linear relationship between two quantitative variables.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bhandari, P. (2022, December 05). Correlational Research | Guide, Design & Examples. Scribbr. Retrieved 21 October 2024, from https://www.scribbr.co.uk/research-methods/correlational-research-design/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, a quick guide to experimental design | 5 steps & examples, quasi-experimental design | definition, types & examples, qualitative vs quantitative research | examples & methods.

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

7.2 Correlational Research

Learning objectives.

  • Define correlational research and give several examples.
  • Explain why a researcher might choose to conduct correlational research rather than experimental research or another type of nonexperimental research.

What Is Correlational Research?

Correlational research is a type of nonexperimental research in which the researcher measures two variables and assesses the statistical relationship (i.e., the correlation) between them with little or no effort to control extraneous variables. There are essentially two reasons that researchers interested in statistical relationships between variables would choose to conduct a correlational study rather than an experiment. The first is that they do not believe that the statistical relationship is a causal one. For example, a researcher might evaluate the validity of a brief extraversion test by administering it to a large group of participants along with a longer extraversion test that has already been shown to be valid. This researcher might then check to see whether participants’ scores on the brief test are strongly correlated with their scores on the longer one. Neither test score is thought to cause the other, so there is no independent variable to manipulate. In fact, the terms independent variable and dependent variable do not apply to this kind of research.

The other reason that researchers would choose to use a correlational study rather than an experiment is that the statistical relationship of interest is thought to be causal, but the researcher cannot manipulate the independent variable because it is impossible, impractical, or unethical. For example, Allen Kanner and his colleagues thought that the number of “daily hassles” (e.g., rude salespeople, heavy traffic) that people experience affects the number of physical and psychological symptoms they have (Kanner, Coyne, Schaefer, & Lazarus, 1981). But because they could not manipulate the number of daily hassles their participants experienced, they had to settle for measuring the number of daily hassles—along with the number of symptoms—using self-report questionnaires. Although the strong positive relationship they found between these two variables is consistent with their idea that hassles cause symptoms, it is also consistent with the idea that symptoms cause hassles or that some third variable (e.g., neuroticism) causes both.

A common misconception among beginning researchers is that correlational research must involve two quantitative variables, such as scores on two extraversion tests or the number of hassles and number of symptoms people have experienced. However, the defining feature of correlational research is that the two variables are measured—neither one is manipulated—and this is true regardless of whether the variables are quantitative or categorical. Imagine, for example, that a researcher administers the Rosenberg Self-Esteem Scale to 50 American college students and 50 Japanese college students. Although this “feels” like a between-subjects experiment, it is a correlational study because the researcher did not manipulate the students’ nationalities. The same is true of the study by Cacioppo and Petty comparing college faculty and factory workers in terms of their need for cognition. It is a correlational study because the researchers did not manipulate the participants’ occupations.

Figure 7.2 “Results of a Hypothetical Study on Whether People Who Make Daily To-Do Lists Experience Less Stress Than People Who Do Not Make Such Lists” shows data from a hypothetical study on the relationship between whether people make a daily list of things to do (a “to-do list”) and stress. Notice that it is unclear whether this is an experiment or a correlational study because it is unclear whether the independent variable was manipulated. If the researcher randomly assigned some participants to make daily to-do lists and others not to, then it is an experiment. If the researcher simply asked participants whether they made daily to-do lists, then it is a correlational study. The distinction is important because if the study was an experiment, then it could be concluded that making the daily to-do lists reduced participants’ stress. But if it was a correlational study, it could only be concluded that these variables are statistically related. Perhaps being stressed has a negative effect on people’s ability to plan ahead (the directionality problem). Or perhaps people who are more conscientious are more likely to make to-do lists and less likely to be stressed (the third-variable problem). The crucial point is that what defines a study as experimental or correlational is not the variables being studied, nor whether the variables are quantitative or categorical, nor the type of graph or statistics used to analyze the data. It is how the study is conducted.

Figure 7.2 Results of a Hypothetical Study on Whether People Who Make Daily To-Do Lists Experience Less Stress Than People Who Do Not Make Such Lists

Results of a Hypothetical Study on Whether People Who Make Daily To-Do Lists Experience Less Stress Than People Who Do Not Make Such Lists

Data Collection in Correlational Research

Again, the defining feature of correlational research is that neither variable is manipulated. It does not matter how or where the variables are measured. A researcher could have participants come to a laboratory to complete a computerized backward digit span task and a computerized risky decision-making task and then assess the relationship between participants’ scores on the two tasks. Or a researcher could go to a shopping mall to ask people about their attitudes toward the environment and their shopping habits and then assess the relationship between these two variables. Both of these studies would be correlational because no independent variable is manipulated. However, because some approaches to data collection are strongly associated with correlational research, it makes sense to discuss them here. The two we will focus on are naturalistic observation and archival data. A third, survey research, is discussed in its own chapter.

Naturalistic Observation

Naturalistic observation is an approach to data collection that involves observing people’s behavior in the environment in which it typically occurs. Thus naturalistic observation is a type of field research (as opposed to a type of laboratory research). It could involve observing shoppers in a grocery store, children on a school playground, or psychiatric inpatients in their wards. Researchers engaged in naturalistic observation usually make their observations as unobtrusively as possible so that participants are often not aware that they are being studied. Ethically, this is considered to be acceptable if the participants remain anonymous and the behavior occurs in a public setting where people would not normally have an expectation of privacy. Grocery shoppers putting items into their shopping carts, for example, are engaged in public behavior that is easily observable by store employees and other shoppers. For this reason, most researchers would consider it ethically acceptable to observe them for a study. On the other hand, one of the arguments against the ethicality of the naturalistic observation of “bathroom behavior” discussed earlier in the book is that people have a reasonable expectation of privacy even in a public restroom and that this expectation was violated.

Researchers Robert Levine and Ara Norenzayan used naturalistic observation to study differences in the “pace of life” across countries (Levine & Norenzayan, 1999). One of their measures involved observing pedestrians in a large city to see how long it took them to walk 60 feet. They found that people in some countries walked reliably faster than people in other countries. For example, people in the United States and Japan covered 60 feet in about 12 seconds on average, while people in Brazil and Romania took close to 17 seconds.

Because naturalistic observation takes place in the complex and even chaotic “real world,” there are two closely related issues that researchers must deal with before collecting data. The first is sampling. When, where, and under what conditions will the observations be made, and who exactly will be observed? Levine and Norenzayan described their sampling process as follows:

Male and female walking speed over a distance of 60 feet was measured in at least two locations in main downtown areas in each city. Measurements were taken during main business hours on clear summer days. All locations were flat, unobstructed, had broad sidewalks, and were sufficiently uncrowded to allow pedestrians to move at potentially maximum speeds. To control for the effects of socializing, only pedestrians walking alone were used. Children, individuals with obvious physical handicaps, and window-shoppers were not timed. Thirty-five men and 35 women were timed in most cities. (p. 186)

Precise specification of the sampling process in this way makes data collection manageable for the observers, and it also provides some control over important extraneous variables. For example, by making their observations on clear summer days in all countries, Levine and Norenzayan controlled for effects of the weather on people’s walking speeds.

The second issue is measurement. What specific behaviors will be observed? In Levine and Norenzayan’s study, measurement was relatively straightforward. They simply measured out a 60-foot distance along a city sidewalk and then used a stopwatch to time participants as they walked over that distance. Often, however, the behaviors of interest are not so obvious or objective. For example, researchers Robert Kraut and Robert Johnston wanted to study bowlers’ reactions to their shots, both when they were facing the pins and then when they turned toward their companions (Kraut & Johnston, 1979). But what “reactions” should they observe? Based on previous research and their own pilot testing, Kraut and Johnston created a list of reactions that included “closed smile,” “open smile,” “laugh,” “neutral face,” “look down,” “look away,” and “face cover” (covering one’s face with one’s hands). The observers committed this list to memory and then practiced by coding the reactions of bowlers who had been videotaped. During the actual study, the observers spoke into an audio recorder, describing the reactions they observed. Among the most interesting results of this study was that bowlers rarely smiled while they still faced the pins. They were much more likely to smile after they turned toward their companions, suggesting that smiling is not purely an expression of happiness but also a form of social communication.

A woman bowling

Naturalistic observation has revealed that bowlers tend to smile when they turn away from the pins and toward their companions, suggesting that smiling is not purely an expression of happiness but also a form of social communication.

sieneke toering – bowling big lebowski style – CC BY-NC-ND 2.0.

When the observations require a judgment on the part of the observers—as in Kraut and Johnston’s study—this process is often described as coding . Coding generally requires clearly defining a set of target behaviors. The observers then categorize participants individually in terms of which behavior they have engaged in and the number of times they engaged in each behavior. The observers might even record the duration of each behavior. The target behaviors must be defined in such a way that different observers code them in the same way. This is the issue of interrater reliability. Researchers are expected to demonstrate the interrater reliability of their coding procedure by having multiple raters code the same behaviors independently and then showing that the different observers are in close agreement. Kraut and Johnston, for example, video recorded a subset of their participants’ reactions and had two observers independently code them. The two observers showed that they agreed on the reactions that were exhibited 97% of the time, indicating good interrater reliability.

Archival Data

Another approach to correlational research is the use of archival data , which are data that have already been collected for some other purpose. An example is a study by Brett Pelham and his colleagues on “implicit egotism”—the tendency for people to prefer people, places, and things that are similar to themselves (Pelham, Carvallo, & Jones, 2005). In one study, they examined Social Security records to show that women with the names Virginia, Georgia, Louise, and Florence were especially likely to have moved to the states of Virginia, Georgia, Louisiana, and Florida, respectively.

As with naturalistic observation, measurement can be more or less straightforward when working with archival data. For example, counting the number of people named Virginia who live in various states based on Social Security records is relatively straightforward. But consider a study by Christopher Peterson and his colleagues on the relationship between optimism and health using data that had been collected many years before for a study on adult development (Peterson, Seligman, & Vaillant, 1988). In the 1940s, healthy male college students had completed an open-ended questionnaire about difficult wartime experiences. In the late 1980s, Peterson and his colleagues reviewed the men’s questionnaire responses to obtain a measure of explanatory style—their habitual ways of explaining bad events that happen to them. More pessimistic people tend to blame themselves and expect long-term negative consequences that affect many aspects of their lives, while more optimistic people tend to blame outside forces and expect limited negative consequences. To obtain a measure of explanatory style for each participant, the researchers used a procedure in which all negative events mentioned in the questionnaire responses, and any causal explanations for them, were identified and written on index cards. These were given to a separate group of raters who rated each explanation in terms of three separate dimensions of optimism-pessimism. These ratings were then averaged to produce an explanatory style score for each participant. The researchers then assessed the statistical relationship between the men’s explanatory style as college students and archival measures of their health at approximately 60 years of age. The primary result was that the more optimistic the men were as college students, the healthier they were as older men. Pearson’s r was +.25.

This is an example of content analysis —a family of systematic approaches to measurement using complex archival data. Just as naturalistic observation requires specifying the behaviors of interest and then noting them as they occur, content analysis requires specifying keywords, phrases, or ideas and then finding all occurrences of them in the data. These occurrences can then be counted, timed (e.g., the amount of time devoted to entertainment topics on the nightly news show), or analyzed in a variety of other ways.

Key Takeaways

  • Correlational research involves measuring two variables and assessing the relationship between them, with no manipulation of an independent variable.
  • Correlational research is not defined by where or how the data are collected. However, some approaches to data collection are strongly associated with correlational research. These include naturalistic observation (in which researchers observe people’s behavior in the context in which it normally occurs) and the use of archival data that were already collected for some other purpose.

Discussion: For each of the following, decide whether it is most likely that the study described is experimental or correlational and explain why.

  • An educational researcher compares the academic performance of students from the “rich” side of town with that of students from the “poor” side of town.
  • A cognitive psychologist compares the ability of people to recall words that they were instructed to “read” with their ability to recall words that they were instructed to “imagine.”
  • A manager studies the correlation between new employees’ college grade point averages and their first-year performance reports.
  • An automotive engineer installs different stick shifts in a new car prototype, each time asking several people to rate how comfortable the stick shift feels.
  • A food scientist studies the relationship between the temperature inside people’s refrigerators and the amount of bacteria on their food.
  • A social psychologist tells some research participants that they need to hurry over to the next building to complete a study. She tells others that they can take their time. Then she observes whether they stop to help a research assistant who is pretending to be hurt.

Kanner, A. D., Coyne, J. C., Schaefer, C., & Lazarus, R. S. (1981). Comparison of two modes of stress measurement: Daily hassles and uplifts versus major life events. Journal of Behavioral Medicine, 4 , 1–39.

Kraut, R. E., & Johnston, R. E. (1979). Social and emotional messages of smiling: An ethological approach. Journal of Personality and Social Psychology, 37 , 1539–1553.

Levine, R. V., & Norenzayan, A. (1999). The pace of life in 31 countries. Journal of Cross-Cultural Psychology, 30 , 178–205.

Pelham, B. W., Carvallo, M., & Jones, J. T. (2005). Implicit egotism. Current Directions in Psychological Science, 14 , 106–110.

Peterson, C., Seligman, M. E. P., & Vaillant, G. E. (1988). Pessimistic explanatory style is a risk factor for physical illness: A thirty-five year longitudinal study. Journal of Personality and Social Psychology, 55 , 23–27.

Research Methods in Psychology Copyright © 2016 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

IMAGES

  1. Correlation Hypothesis

    example hypothesis for correlational study

  2. What Is a Correlational Study And Examples of correlational research

    example hypothesis for correlational study

  3. Solved 1. Design a correlational study to investigate the

    example hypothesis for correlational study

  4. PPT

    example hypothesis for correlational study

  5. PPT

    example hypothesis for correlational study

  6. PPT

    example hypothesis for correlational study

VIDEO

  1. Unit 1: Correlational Research (AP Psychology)

  2. Understanding Research Design

  3. Correlation: Comparing theory with experiment (U1-9-04)

  4. Null and Alternative Hypothosis

  5. Hypothesis Testing based on Correlation

  6. Testing the significance of correlation coefficient || MA economics || One-tail and two-tail test

COMMENTS

  1. How to Write a Hypothesis for Correlation | Sciencing

    In a correlation, the two variables undergo changes at the same time in a significant number of cases. However, this does not mean that the change in the independent variable causes the change in the dependent variable. Construct an experiment to test your hypothesis.

  2. Correlational Study Overview & Examples - Statistics By Jim

    A correlational study is an experimental design that evaluates only the correlation between variables. The researchers record measurements but do not control or manipulate the variables. Correlational research is a form of observational study.

  3. Correlation Hypothesis - 99+ Examples, PDF, Tips

    In this guide, delve into an array of correlation hypothesis examples that explore connections, followed by a step-by-step tutorial on crafting these thesis statement hypothesis effectively. Enhance your research prowess with valuable tips tailored to unravel the intricate world of correlations.

  4. 11.2: Correlation Hypothesis Test - Statistics LibreTexts

    We perform a hypothesis test of the "significance of the correlation coefficient" to decide whether the linear relationship in the sample data is strong enough to use to model the relationship in the population. The sample data are used to compute \(r\), the correlation coefficient for the sample.

  5. 12.1.2: Hypothesis Test for a Correlation - Statistics LibreTexts

    The hypotheses are: H0: ρ = 0. H1: ρ ≠ 0. The null-hypothesis of a two-tailed test states that there is no correlation (there is not a linear relation) between x and y. The alternative-hypothesis states that there is a significant correlation (there is a linear relation) between x and y.

  6. Correlational Research | When & How to Use - Scribbr

    Correlational research can be used to assess whether a tool consistently or accurately captures the concept it aims to measure. Example You develop a new scale to measure loneliness in young children based on anecdotal evidence during lockdowns.

  7. Pearson Correlation Coefficient (r) | Guide & Examples - Scribbr

    The Pearson correlation coefficient (r) is the most common way of measuring a linear correlation. It is a number between –1 and 1 that measures the strength and direction of the relationship between two variables. When one variable changes, the other variable changes in the same direction.

  8. 1.9 - Hypothesis Test for the Population Correlation Coefficient

    In general, a researcher should use the hypothesis test for the population correlation ρ to learn of a linear association between two variables, when it isn't obvious which variable should be regarded as the response. Let's clarify this point with examples of two different research questions.

  9. Correlational Research | Guide, Design & Examples - Scribbr

    Correlational research can be used to assess whether a tool consistently or accurately captures the concept it aims to measure. Example: Investigating new measurement tools You develop a new scale to measure loneliness in young children based on anecdotal evidence during lockdowns.

  10. 7.2 Correlational Research – Research Methods in Psychology

    Correlational research is a type of nonexperimental research in which the researcher measures two variables and assesses the statistical relationship (i.e., the correlation) between them with little or no effort to control extraneous variables.