Are you seeking one-on-one college counseling and/or essay support? Limited spots are now available. Click here to learn more.

54 Most Interesting Technology Research Topics for 2023

May 30, 2023

Scrambling to find technology research topics for the assignment that’s due sooner than you thought? Take a scroll down these 54 interesting technology essay topics in 10 different categories, including controversial technology topics, and some example research questions for each.

Social technology research topics

Whether you have active profiles on every social media platform, you’ve taken a social media break, or you generally try to limit your engagement as much as possible, you probably understand how pervasive social technologies have become in today’s culture. Social technology will especially appeal to those looking for widely discussed, mainstream technology essay topics.

  • How do viewers respond to virtual influencers vs human influencers? Is one more effective or ethical over the other?
  • Across social media platforms, when and where is mob mentality most prevalent? How do the nuances of mob mentality shift depending on the platform or topic?
  • Portable devices like cell phones, laptops, and tablets have certainly made daily life easier in some ways. But how have they made daily life more difficult?
  • How does access to social media affect developing brains? And what about mature brains?
  • Can dating apps alter how users perceive and interact with people in real life?
  • Studies have proven “doomscrolling” to negatively impact mental health—could there ever be any positive impacts?

Cryptocurrency and blockchain technology research topics

Following cryptocurrency and blockchain technology has been a rollercoaster the last few years. And since Bitcoin’s conception in 2009, cryptocurrency has consistently showed up on many lists of controversial technology topics.

  • Is it ethical for celebrities or influential people to promote cryptocurrencies or cryptographic assets like NFTs ?
  • What are the environmental impacts of mining cryptocurrencies? Could those impacts ever change?
  • How does cryptocurrency impact financial security and financial health?
  • Could the privacy cryptocurrency offers ever be worth the added security risks?
  • How might cryptocurrency regulations and impacts continue to evolve?
  • Created to enable cryptocurrency, blockchain has since proven useful in several other industries. What new uses could blockchain have?

Artificial intelligence technology research topics

We started 2023 with M3GAN’s box office success, and now we’re fascinated (or horrified) with ChatGPT , voice cloning , and deepfakes . While people have discussed artificial intelligence for ages, recent advances have really pushed this topic to the front of our minds. Those searching for controversial technology topics should pay close attention to this one.

  • OpenAI –the company behind ChatGPT–has shown commitment to safe, moderated AI tools that they hope will provide positive benefits to society. Sam Altman, their CEO, recently testified before a US Senate He described what AI makes possible and called for more regulation in the industry. But even with companies like OpenAI displaying efforts to produce safe AI and advocating for regulations, can AI ever have a purely positive impact? Are certain pitfalls unavoidable?
  • In a similar vein, can AI ever actually be ethically or safely produced? Will there always be certain risks?
  • How might AI tools impact society across future generations?
  • Countless movies and television shows explore the idea of AI going wrong, going back all the way to 1927’s Metropolis . What has a greater impact on public perception—representations in media or industry developments? And can public perception impact industry developments and their effectiveness?

Beauty and anti-aging technology 

Throughout human history, people in many cultures have gone to extreme lengths to capture and maintain a youthful beauty. But technology has taken the pursuit of beauty and youth to another level. For those seeking technology essay topics that are both timely and timeless, this one’s a gold mine.

  • With augmented reality technology, companies like Perfect allow app users to virtually try on makeup, hair color, hair accessories, and hand or wrist accessories. Could virtual try-ons lead to a somewhat less wasteful beauty industry? What downsides should we consider?
  • Users of the Perfect app can also receive virtual diagnoses for skin care issues and virtually “beautify” themselves with smoothed skin, erased blemishes, whitened teeth, brightened under-eye circles, and reshaped facial structures. How could advancements in beauty and anti-aging technology affect self-perception and mental health?
  • What are the best alternatives to animal testing within the beauty and anti-aging industry?
  • Is anti-aging purely a cosmetic pursuit? Could anti-aging technology provide other benefits?
  • Could people actually find a “cure” to aging? And could a cure to aging lead to longer lifespans?
  • How might longer human lifespans affect the Earth?

Geoengineering technology research topics

An umbrella term, geoengineering refers to large-scale technologies that can alter the earth and its climate. Typically, these types of technologies aim to combat climate change. Those searching for controversial technology topics should consider looking into this one.

  • What benefits can solar geoengineering provide? Can they outweigh the severe risks?
  • Compare solar geoengineering methods like mirrors in space, stratospheric aerosol injection, marine cloud brightening, and other proposed methods. How have these methods evolved? How might they continue to evolve?
  • Which direct air capture methods are most sustainable?
  • How can technology contribute to reforestation efforts?
  • What are the best uses for biochar? And how can biochar help or harm the earth?
  • Out of all the carbon geoengineering methods that exist or have been proposed, which should we focus on the most?

Creative and performing arts technology topics

While tensions often arise between artists and technology, they’ve also maintained a symbiotic relationship in many ways. It’s complicated. But of course, that’s what makes it interesting. Here’s another option for those searching for timely and timeless technology essay topics.

  • How has the relationship between art and technology evolved over time?
  • How has technology impacted the ways people create art? And how has technology impacted the ways people engage with art?
  • Technology has made creating and viewing art widely accessible. Does this increased accessibility change the value of art? And do we value physical art more than digital art?
  • Does technology complement storytelling in the performing arts? Or does technology hinder storytelling in the performing arts?
  • Which current issues in the creative or performing arts could potentially be solved with technology?

Cellular agriculture technology research topics

And another route for those drawn to controversial technology topics: cellular agriculture. You’ve probably heard about popular plant-based meat options from brands like Impossible and Beyond Meat . While products made with cellular agriculture also don’t require the raising and slaughtering of livestock, they are not plant-based. Cellular agriculture allows for the production of animal-sourced foods and materials made from cultured animal cells.

  • Many consumers have a proven bias against plant-based meats. Will that same bias extend to cultured meat, despite cultured meat coming from actual animal cells?
  • Which issues can arise from patenting genes?
  • Does the animal agriculture industry provide any benefits that cellular agriculture may have trouble replicating?
  • How might products made with cellular agriculture become more affordable?
  • Could cellular agriculture conflict with the notion of a “ circular bioeconomy ?” And should we strive for a circular bioeconomy? Can we create a sustainable relationship between technology, capitalism, and the environment, with or without cellular agriculture?

Transportation technology research topics

For decades, we’ve expected flying cars to carry us into a techno-utopia, where everything’s shiny, digital, and easy. We’ve heard promises of super fast trains that can zap us across the country or even across the world. We’ve imagined spring breaks on the moon, jet packs, and teleportation. Who wouldn’t love the option to go anywhere, anytime, super quickly? Transportation technology is another great option for those seeking widely discussed, mainstream technology essay topics.

  • Once upon a time, Lady Gaga was set to perform in space as a promotion for Virgin Galactic . While Virgin Galactic never actually launched the iconic musician/actor, soon, they hope to launch their first commercial flight full of civilians–who paid $450,000 a pop–on a 90-minute trip into the stars. And if you think that’s pricey, SpaceX launched three businessmen into space for $55 million in April, 2022 (though with meals included, this is actually a total steal). So should we be launching people into space just for fun? What are the impacts of space tourism?
  • Could technology improve the way hazardous materials get transported?
  • How can the 5.9 GHz Safety Band affect drivers?
  • Which might be safer: self-driving cars or self-flying airplanes?
  • Compare hyperloop and maglev Which is better and why?
  • Can technology improve safety for cyclists?

Gaming technology topics

A recent study involving over 2000 children found links between video game play and enhanced cognitive abilities. While many different studies have found the impacts of video games to be positive or neutral, we still don’t fully understand the impact of every type of video game on every type of brain. Regardless, most people have opinions on video gaming. So this one’s for those seeking widely discussed, mainstream, and controversial technology topics.

  • Are different types or genres of video games more cognitively beneficial than others? Or are certain gaming consoles more cognitively beneficial than others?
  • How do the impacts of video games differ from other types of games, such as board games or puzzles?
  • What ethical challenges and safety risks come with virtual reality gaming?
  • How does a player perceive reality during a virtual reality game compared to during other types of video games?
  • Can neurodivergent brains benefit from video games in different ways than neurotypical brains?

Medical technology 

Advancements in healthcare have the power to change and save lives. In the last ten years, countless new medical technologies have been developed, and in the next ten years, countless more will likely emerge. Always relevant and often controversial, this final technology research topic could interest anyone.

  • Which ethical issues might arise from editing genes using CRISPR-Cas9 technology? And should this technology continue to be illegal in the United States?
  • How has telemedicine impacted patients and the healthcare they receive?
  • Can neurotechnology devices potentially affect a user’s agency, identity, privacy, and/or cognitive liberty?
  • How could the use of medical 3-D printing continue to evolve?
  • Are patients more likely to skip digital therapeutics than in-person therapeutic methods? And can the increased screen-time required by digital therapeutics impact mental health

What do you do next?

Now that you’ve picked from this list of technology essay topics, you can do a deep dive and immerse yourself in new ideas, new information, and new perspectives. And of course, now that these topics have motivated you to change the world, look into the best computer science schools , the top feeders to tech and Silicon Valley , the best summer programs for STEM students , and the best biomedical engineering schools .

  • College Success
  • High School Success

Mariya holds a BFA in Creative Writing from the Pratt Institute and is currently pursuing an MFA in writing at the University of California Davis. Mariya serves as a teaching assistant in the English department at UC Davis. She previously served as an associate editor at Carve Magazine for two years, where she managed 60 fiction writers. She is the winner of the 2015 Stony Brook Fiction Prize, and her short stories have been published in Mid-American Review , Cutbank , Sonora Review , New Orleans Review , and The Collagist , among other magazines.

  • 2-Year Colleges
  • Application Strategies
  • Best Colleges by Major
  • Best Colleges by State
  • Big Picture
  • Career & Personality Assessment
  • College Essay
  • College Search/Knowledge
  • Costs & Financial Aid
  • Data Visualizations
  • Dental School Admissions
  • Extracurricular Activities
  • Graduate School Admissions
  • High Schools
  • Law School Admissions
  • Medical School Admissions
  • Navigating the Admissions Process
  • Online Learning
  • Private High School Spotlight
  • Summer Program Spotlight
  • Summer Programs
  • Teacher Tools
  • Test Prep Provider Spotlight

“Innovative and invaluable…use this book as your college lifeline.”

— Lynn O'Shaughnessy

Nationally Recognized College Expert

College Planning in Your Inbox

Join our information-packed monthly newsletter.

Technology Research Topics

image

Table of contents

  • 1 What are Technology Research Topics?
  • 2 Tips for Writing Technology Research Papers
  • 3 Computer Science and Engineering Technology Research Topics
  • 4 Energy and Power Technology Research Topics
  • 5 Medical Devices & Diagnostics
  • 6 Pharmaceutical Technology Research Topics
  • 7 Food Technology Research Topic
  • 8 Educational Technology Research Topic
  • 9 Controversial Technology Research Topics
  • 10 Transportation Technology Research Topics
  • 11.1 Conclusion

Have you ever wondered what interesting technology topics for research papers mean? Then this article will provide you with the answer and topic examples that you can research and write on.

Have you ever wondered what interesting technology topics for research paper mean? Then this article will provide you with the answer and topic examples that you can research and write on.

Tech-related topics are among the vastest categories for college students, experts, and researchers. The field covers everything development majorly. The good thing about technology is that it cuts across every business sector and education field. It is important in Sciences, Socials and Fine Arts.

There have been many technology research topics about technology and development of sciences in the 21st century. This is due to the massive scope of this field. Researchers and thesis students have continued to research the foundation of every development. Triggering new findings that contribute to the overall improvement of the field. There have been many thesis papers on technologies, and there will still be more over the years. This is because the field has witnessed the highest and fastest growth among other disciplines and sciences.

This article seeks to take the research of technology and its concepts to a higher level. By considering very recent topics in line with the evolution and revolution of the field. The topics suggested in this article are divided into various categories to give readers a very good understanding of the latest technological concepts.

What are Technology Research Topics?

A technology research topic is a research or thesis title that gives a researcher or expert an idea of what to work on. While in certain instances, people who make technology research will have their topic scribbled out for them, most of the time, they will need to get a topic themselves. These topics make it easy for them to work on.

Generally, a topic based on the technological field will be very formal. It must contain researched data and facts. The topic must have a final aim of projecting a solution, answer, or knowledge to the targeted audience. With this being the case, getting a technology research title requires more than just picking any topic. What will pass on as the best topic for research title will be one that can be researched and provides a solution to a problem that the target audience needs. In certain instances, both the problem and the solution may be completely new to the target audience.

However, the ability of the writer to make their target audience know that there is a problem and a corresponding solution could do the thesis and project a pathway to ground-breaking research. Hence, a research title must open the researcher, thesis student, and expert to opportunities that could trigger landmark solutions.

Based on the importance of a research title to an entire technology thesis or research, a potential writer must ensure that they know what it takes to draft an excellent technology and scientific research paper title. The good thing is that tips are available to draft an excellent thesis topic.

Tips for Writing Technology Research Papers

There are very important steps that must be followed for a writer to make an excellent thesis topic. One major tip is that any topic selected must include at least one recent technology. A thesis topic that needs today’s basic technology as a roadmap has a higher probability of coming out much more successfully than one that does not include any current or new technology. It is also possible to buy a research paper based on technology to avoid all the processes of learning new technology concepts. Below are the top tips for writing excellent technology Research projects.

  • Understand The Research Assignment This step is very important and will determine whether you need to purchase a research paper or not. You have to understand the assignment to be asked to research if you seek to give out great quality work. You need to ensure that you know the problem being projected to you and what is needed as a solution. The best research paper topics technology are those the writers fully understood and created.
  • Get the Topic Idea You can only carve out a topic for an assignment that you understand. This is why the first step is imperative and why this one must follow. Understanding the topic that currently and comprehensively covers the assignment and its solution will help you develop a catching title. Even if you seek to purchase research papers for sale , you will need to fully understand the assignment and the relevant fitting topic before purchasing. You will get value for your money and wow your target audience.
  • Choose a Scope to Research If you are writing your research yourself, you should know that getting a topic is not just enough. A topic may cut into very vast areas, and it would be impossible for you to research all of these areas before your submission deadline. So the best way to ensure that you give quality research assignments is by specifying the scope of your topic. Identify which questions you want to provide answers for and focus on them. That way, your effort will be concentrated with a better output.
  • Get Good Links Knowing how to get great links for your work is very important as that will help you give out excellent work. Relying on established sources for important theories will help you establish a more convincing solution to the problem your research is about.

This article will consider major research topics on different technology research topics so that researchers and students planning to write a thesis or research paper can select from them and start their project immediately.

Computer Science and Engineering Technology Research Topics

Computer Science is one of the widest fields of Technology projects. As such, there are multiple writing topics to explore following the consistent and continuous development of the sector. As for Computer Science, there are many research works on computer engineering and more to explore. Thanks to the growth in better computer hardware and the more seamless management systems developed over time.

This section consists of 15 different research topics that thesis and college students can work on and get approval from their supervisors.

All the topics are recent and in line with global needs in 2023 and the next couple of years. They include:

  • Blockchain technology and the banking industry
  • The connection between human perception and virtual reality
  • Computer-assisted education and the future
  • High-dimensional data modeling and computer science
  • Parallel computing Languages
  • Imperative and declarative language in computer science
  • The machine architecture and the efficiency of code
  • The use of mesh generation for computational domains
  • Persistent data structure optimization
  • System programming language development
  • Cyber-physical system vs sensor network
  • Network economics and game theory
  • Computational thinking and science
  • Types of software security
  • Programming language and floating-point

more_shortcode

Energy and Power Technology Research Topics

Unlike many technology-related topics, Energy and Power is one that cuts into the spheres of politics, economics, and pure science. In the areas of Economics, Energy and Power are the second most arbitrated cases. It’s only behind Construction disputes.

However, energy and Power in Science and Practicality are not for the sake of disputes. In recent years, there has been more harmony between energy and other tech-related disciplines. This has triggered many research projects, and writing research assignments is not out of the equation.

So do you have an energy/Power research assignment to handle, then this section provides you with amazing topic ideas and scopes that you can choose and pick from? All the topics are very recent and in line with the needs of today’s assignments.

Get topics that focus on Cars, power industries, chemicals, and more.

  • The use of fuel cells for stationary power generation
  • Energy density
  • Lithium-air and lithium-ion battery
  • The better between gasoline and lithium-air batteries
  • Renewable energy technologies
  • The pros and cons of renewable energy usage
  • Algae and biofuels
  • Solar installations of India
  • The use of robots in adjusting solar panels to weather
  • Create energy and inertial confinement fusion
  • Hydrogen energy and the future
  • Alternative energy sources amidst gas price increase
  • The application of energy transformation methods in respect to hydrogen energy
  • AC systems and thermal storage
  • Loading balance using smart grid

Medical Devices & Diagnostics

Medical devices and diagnostics are fast-growing fields with many opportunities for researchers to explore. There are thousands of devices that aid doctors in treating and managing patients. However, it cannot be emphatically stated that all of these devices offer the best results, where research assignments come into play.

As medical devices, medical diagnoses are also A very concentrated research area. Diagnostic research is highly related to medical devices because diagnoses are carried out with modern gadgets being produced by experts.

This section will consider top medical devices and diagnoses research titles in line with recent needs.

  • Difference between Medical Devices and Drugs
  • How Diagnostics helps treatment in 2023
  • The Era of genetics Diagnostics and Discovery of Hidden Vulnerabilities
  • How are Medical Smart Carts changing the game of Medicine?
  • The Eventuality of AI in Smart Medical Devices
  • The Regulation of Medical Devices
  • Should Private Diagnoses Be Used for Making Critical Medical Decisions?
  • Diagnostic Devices, Genetic Tests, and In Vitro Devices
  • 3D & 4D Printing in Biomedicine
  • Innovation in Minimally Invasive Therapies, Screening and Biosensing: Complex Networks, Data-driven Models
  • Are medical Devices turning the Health Sector into a small interconnected powerhouse?
  • Advances in Methods of Diagnostic & Therapeutic Devices
  • What are Intra-Body Communication & Sensing?
  • Smart Gadgets Data Collection in terms of Neuroscience
  • The Contribution of Smartphone-Enabled Point-of-Care Diagnostic & Communication Systems

more_shortcode

Pharmaceutical Technology Research Topics

Medicine has continued to improve, with technology in this area spiking in the last 20 years than it did centuries before. Pharmaceutical technology is one of the major flag bearers of this growth. As the COVID-19 pandemic revealed, the potential of pharmaceutical technology knows no bounds as long as there is continuous research in the field.

With that being the case, there are multiple research titles and projects available to take on in this field, with the opportunity almost endless. This section lists some of these topics to help research students get great topics that they can work on for the best effect. While they are only 15, they all cover a large scope of inexhaustible topics, leaving the researcher to make their choice.

  • The technologies of pharmaceuticals and their specialty medications
  • The technology and trend of prior electronic authorization in pharmacy
  • Medication therapy management and its effectiveness
  • Electronic prescription of a controlled substance as regards the issues of drug abuse
  • Health information exchange and medication therapy management
  • How efficient and effective is a drug prescription monitoring program?
  • The script standard of NCPDP for specialty pharmacies
  • The patient’s interest in real-time pharmacy
  • AIDS: development of drugs and vaccines
  • Pharmaceutical technologies and data security
  • The DNA library technology: an overview
  • The impact of cloud ERP in the pharmaceutical industry
  • Cannabidiol medication in pain management and the future
  • Pharmaceutical research with phenotypic screening
  • The benefits of cloud technology for small pharmaceutical companies

Food Technology Research Topic

Food research assignments and thesis have been going on for decades and even centuries due to their importance to living organisms. In 2023, this trend is expected to continue with more research topics to explore. Here are some amazing topic ideas that you can choose from and offer a mind-blowing research assignment.

  • The types of machines used in the food industry
  • 3D printing and the food industry
  • Micro packaging and the future
  • The impacts of robots as regards safety in butchery
  • Swallowing disorder: 3D printed food as a solution
  • Food technology and food waste: what are the solutions
  • Biofilms and cold plasma
  • Drones and precision agriculture
  • Food industry and the time-temperature indicators
  • Preservatives, additives, and the human gut microbiome
  • Hydroponic and conventional farming
  • The elimination of byproducts in edible oil production
  • The baking industry and the newest technology
  • Electronic nose in agriculture and food industry
  • Food safety

Educational Technology Research Topic

As far as college students are concerned, technology in education and its subsequent research is the biggest assignment and thesis they have to consider. Education technology has continued to grow, with many gadgets and smart equipment introduced to facilitate better learning.

This section will consider some of the major education research titles that technology students can pick and provide excellent research.

  • How is computational thinking improving critical thinking among students
  • The effect of professional learning for college student
  • The impact of technology in educational research
  • The relevance of technology in advancing scientific research
  • Virtual reality and its role in helping student understand complex concepts
  • Global learning through technology and how it affects education standards
  • Data centers and their role in education
  • Cultural competence and socio-emotional learning
  • Artificial intelligence and educational system
  • Is the development of sufficient national capacities related to science, technology, and innovation possible?
  • How inclusive is the architecture of learning systems?
  • Student-centered learning
  • The impact of connectivity for schools and learning, especially in rural environments
  • Energy sources: their technological relativity and use in education
  • Community college: advantages and disadvantages

Controversial Technology Research Topics

As the name suggests, Controversial technology topics are among the most researched in science. How good is technology considering its effects on the global world and nature? This argument is the foundation of Controversial technology topics. See 15 different technology topics to choose from as you start your research assignment.

  • Can Human Trials Improve Drugs and Medicines Faster?
  • The Legality of Euthanasia and Assisted Killings in Medicine
  • Why Kids should not be exposed to the Internet and Social Media Gadgets in Their Earlier Years
  • How Is Technology Destroying the World’s Ecology?
  • Is Technology Leading the Destruction of the World’s Climate?
  • How Has Technology Increased Radiation and the Depletion of the World?
  • Does Technology Increase Gang Initiation due to Internet Access?
  • How Social Media Increases the Rate of Children and Young Adults Death?
  • The Relationship Between Technology and Depression
  • Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR): Editing the Human Genome
  • The Possible Devastation of World from High-Tech Military Weapons
  • Space Colonization: How it is Good and Bad for Mother Earth
  • Are Law Enforcement use of Hidden Cameras an Encroachment of Privacy?
  • How Virtual Reality Can Become the New Reality If Developed?
  • The Wins of Cochlear Implant Research

Transportation Technology Research Topics

Transportation technology research titles are among the hottest categories for students currently. See 15 best research topics for tech and science-related research to pick from.

  • Are Computerized self-driving Cars Safe?
  • The development and Advantages of hybrid cars and Electric cars
  • How to Protect your smart car from hijackers and Car Thieves?
  • Will the next-generation Cars Have Reliable GPS devices and Replace Drivers?
  • The Evolution of High-speed rail networks and How They Change Rail Transport
  • Driving and Using Cell phones: The Global Stats of Cell Phone Related Auto Accidents
  • Is Teleportation an Impossible Physics?
  • Will Gyroscopes be the new convenient solutions for public transportation?
  • Will Logistics Companies be More Efficient With Electric Trucks?
  • How Carbon fiber Serves as an optional material for unit load devices
  • The Benefits of Advanced Transport Management Systems (TMS)?
  • Can Solar Roadways Become More Cost-Effective?
  • Does Technology Provide the Possibility of Water Powered Cars?
  • How AI has Penetrated the Transport System and Make It More Effective
  • Speed and Safety: How Technology Has Revolutionized Transport Systems

Information Communication Technologies (ITC) Research Topics

ICT is arguably the biggest field of technology, thanks to the amazing developments that have been achieved over the years in the field. ICT plays a major role in different areas of human life. This includes the area of TELECOMs, Education, Family, and Industries.

This section will consider 15 major technology titles on ICT to help students get topics to work on.

  • How is technology improving Humans reading ability?
  • Do online formats of readable information encourage readers to skim through instead of Understanding the Topics?
  • How has technology made it extremely easy to get information in Seconds: a good or bad development?
  • The Misconception of Gauging Intelligence?
  • How are Internet Search Engines changing us?
  • The introduction of ICT and new technologies in Education and How they improve Students’ learning
  • Is it worrisome that schools and Colleges now educate students via iPads, social media, Smart Boards, and other new Applications?
  • Did the Digital Age trigger any loss of information and Unique Intelligence that conventional and Traditional Learning and research methods provided in the Old era?
  • Do Search Engines and Web2 Platforms censor information, leave users blindsided, and Keep them in the Dark?
  • Should Encyclopedia sites such as Wikipedia be Regulated because of the High Risk of it Providing Wrong Information to the Public?
  • Are Blogs and Online Websites Better than Books?
  • The Importance of Traditional Researching and learning in a Highly Digital World
  • Do PDFs and Other Electronic Books Promote Short Attention Span?
  • Are Tech-Savvy generations dumber or Smarter?
  • Should Schools Become Fully Digitalized?

This article shows that technology research papers require a good understanding of technological and scientific concepts. That way, people can easily understand the basis of an assignment. They know how to draft the topic and scope. They also get excellent resources for completing the projects.

This article explained what technological research papers are. It explained how to write them and listed many topic examples people can use for their projects. Therefore, if you follow all the information discussed in this article, you will get top technology ideas for research.

Readers also enjoyed

Food Research Topics

WHY WAIT? PLACE AN ORDER RIGHT NOW!

Just fill out the form, press the button, and have no worries!

We use cookies to give you the best experience possible. By continuing we’ll assume you board with our cookie policy.

technology research projects

Suggestions or feedback?

MIT News | Massachusetts Institute of Technology

  • Machine learning
  • Social justice
  • Black holes
  • Classes and programs

Departments

  • Aeronautics and Astronautics
  • Brain and Cognitive Sciences
  • Architecture
  • Political Science
  • Mechanical Engineering

Centers, Labs, & Programs

  • Abdul Latif Jameel Poverty Action Lab (J-PAL)
  • Picower Institute for Learning and Memory
  • Lincoln Laboratory
  • School of Architecture + Planning
  • School of Engineering
  • School of Humanities, Arts, and Social Sciences
  • Sloan School of Management
  • School of Science
  • MIT Schwarzman College of Computing

Download RSS feed: News Articles / In the Media / Audio

Sandra Liu poses for the camera holding her GelPalm prototype, a robotic hand with sensors. She is in a lab workspace with two computer monitors, a Rubik's cube, and electronic equipment.

Robotic palm mimics human touch

MIT CSAIL researchers enhance robotic precision with sophisticated tactile sensors in the palm and agile fingers, setting the stage for improvements in human-robot interaction and prosthetic technology.

May 20, 2024

Read full story →

Colorful rendering shows a lattice of black and grey balls making a honeycomb-shaped molecule, the MOF. Snaking around it is the polymer, represented as a translucent string of teal balls. Brown molecules, representing toxic gas, also float around.

Researchers develop a detector for continuously monitoring toxic gases

The material could be made as a thin coating to analyze air quality in industrial or home settings over time.

May 17, 2024

Jeong Min Park poses leaning on an outdoor sculpture in Killian Court.

Jeong Min Park earns 2024 Schmidt Science Fellowship

The doctoral student will use the prize to find novel phases of matter and particles.

May 16, 2024

A cute robot is at the chalkboard. The chalkboard is filled with complex charts, waves and shapes.

Scientists use generative AI to answer complex questions in physics

A new technique that can automatically classify phases of physical systems could help scientists investigate novel materials.

A hand holds a phone with an image displayed on the screen. A word bubble says “Accurate?” and a big green check mark is on the content. The background has blurry boxes of social media websites.

New tool empowers users to fight online misinformation

The Trustnet browser extension lets individuals assess the accuracy of any content on any website.

Elaine Liu leans against an electric vehicle charger inside a parking garage.

Elaine Liu: Charging ahead

The MIT senior calculates how renewables and EVs impact the grid.

A kitchen faucet runs, and it has a unique filter filled with bead-like objects. An inset shows that the beads are hydrogel capsules containing many bean-shaped yeast.

Repurposed beer yeast may offer a cost-effective way to remove lead from water

A filter made from yeast encapsulated in hydrogels can quickly absorb lead as water flows through it.

May 15, 2024

Sang-Yoep Lee, Harry Asada, and Erik Ballesteros stand in a lab. Erik is wearing the inside part of the new robotic suit, which resembles sports padding.

Robotic “SuperLimbs” could help moonwalkers recover from falls

A new MIT system could help astronauts conserve energy and extend missions on the lunar surface.

A large bright yellow star is in the top left. On bottom right, a planet in blue and purple moves quickly, and whisps of clouds trail it.

Astronomers spot a giant planet that is as light as cotton candy

The new world is the second-lightest planet discovered to date.

May 14, 2024

A digital illustration featuring two stylized humanlike figures engaged in a conversation over a tabletop board game.

Using ideas from game theory to improve the reliability of language models

A new “consensus game,” developed by MIT CSAIL researchers, elevates AI’s text comprehension and generation skills.

An illustration of the rectangular chip surface showing blue strip waveguides and red Y-shaped slots on the blue strips.

Scientists develop an affordable sensor for lead contamination

The chip-scale device could provide sensitive detection of lead levels in drinking water, whose toxicity affects 240 million people worldwide.

The Milky Way galaxy streaks diagonally across the image, glowing with celestial bodies.

MIT researchers discover the universe’s oldest stars in our own galactic backyard

Three stars circling the Milky Way’s halo formed 12 to 13 billion years ago.

A MRI image of a brain shows bright red blood vessels on a darker red background.

Using MRI, engineers have found a way to detect light deep in the brain

The new technique could enable detailed studies of how brain cells develop and communicate with each other.

May 10, 2024

Three orange blobs turn into the letters and spell “MIT.” Two cute cartoony blobs are in the corner smiling.

A better way to control shape-shifting soft robots

A new algorithm learns to squish, bend, or stretch a robot’s entire body to accomplish diverse tasks like avoiding obstacles or retrieving items.

A colorized microscopic view shows the cone-shaped microneedles laid on out a grid, in yellow, on a purple surface.

New treatment could reverse hair loss caused by an autoimmune skin disease

A microneedle patch that delivers immune-regulating molecules can teach T cells not to attack hair follicles, helping hair to regrow.

May 9, 2024

Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA, USA

  • Map (opens in new window)
  • Events (opens in new window)
  • People (opens in new window)
  • Careers (opens in new window)
  • Accessibility
  • Social Media Hub
  • MIT on Facebook
  • MIT on YouTube
  • MIT on Instagram

Impossible? Let’s see.

Whether we're shaping the future of sustainability, or optimizing algorithms, or even exploring epidemiological studies, Google Research strives to continuously progress science, advance society, and improve the lives of billions of people.

Person looking up at screen

Advancing the state of the art

Our teams advance the state of the art through research, systems engineering, and collaboration across Google. We publish hundreds of research papers each year across a wide range of domains, sharing our latest developments in order to collaboratively progress computing and science.

Learn more about our philosophy.

Watch the film

Link to Youtube Video

Read the latest

CHI 2024

May 11 · CONFERENCES & Events

PrivateSyntheticData-0-Hero

MAY 16 · BLOG

Med-Gemini-0-Hero

MAY 15 · BLOG

Model-explorer-hero

MAY 14 · BLOG

Connectomics2024-1a-ExcitatoryNeurons

MAY 02 · BLOG

Scaling-hierarchical-clustering-hero

MAY 01 · BLOG

Our research drives real-world change

MedPalm2

Improving our LLM designed for the medical domain

  • Large language models encode clinical knowledge Publication
  • Towards Expert-Level Medical Question Answering with Large Language Models Publication
  • Our latest health AI research updates Article
  • Med-PaLM 2, our expert-level medical LLM Video

Project Contrails

Project Contrails

A cost-effective and scalable way AI is helping to mitigate aviation’s climate impact

  • A human-labeled Landsat-8 contrails dataset Dataset
  • Can Google AI make flying more sustainable? Video
  • Estimates of broadband upwelling irradiance fromm GOES-16 ABI Publication
  • How AI is helping airlines mitigate the climate impact of contrails Blog

See our impact across other projects

open building

Open Buildings

Project Relate

Project Relate

Flood Forcasting

Flood Forecasting

We work across domains

Our vast breadth of work covers AI/ML foundations, responsible human-centric technology, science & societal impact, computing paradigms, and algorithms & optimization. Our research teams impact technology used by people all over the world.

One research paper started it all

The research we do today becomes the Google of the future. Google itself began with a research paper, published in 1998, and was the foundation of Google Search. Our ongoing research over the past 25 years has transformed not only the company, but how people are able to interact with the world and its information.

Legacy

Responsible research is at the heart of what we do

The impact we create from our research has the potential to reach billions of people. That's why everything we do is guided by methodology that is grounded in responsible practices and thorough consideration.

responsible-ai

Help us shape the future

Academic community

We've been working alongside the academic research community since day one. Explore the ways that we collaborate and provide resources and support through a variety of student and faculty programs.

Career Opportunities

From Accra to Zürich, to our home base in Mountain View, we’re looking for talented scientists, engineers, interns, and more to join our teams not only at Google Research but all research projects across Google.

Explore our other teams and product areas

Google Cloud

Google DeepMind

LABS.GOOGLE

Illustration

  • Research Paper Guides
  • Research Paper Topics
  • 450+ Technology Research Topics & Ideas for Your Paper
  • Speech Topics
  • Basics of Essay Writing
  • Essay Topics
  • Other Essays
  • Main Academic Essays
  • Basics of Research Paper Writing
  • Miscellaneous
  • Chicago/ Turabian
  • Data & Statistics
  • Methodology
  • Admission Writing Tips
  • Admission Advice
  • Other Guides
  • Student Life
  • Studying Tips
  • Understanding Plagiarism
  • Academic Writing Tips
  • Basics of Dissertation & Thesis Writing

Illustration

  • Essay Guides
  • Formatting Guides
  • Basics of Research Process
  • Admission Guides
  • Dissertation & Thesis Guides

450+ Technology Research Topics & Ideas for Your Paper

Technology Research Topics

Table of contents

Illustration

Use our free Readability checker

Technology is like a massive puzzle where each piece connects to form the big picture of our modern lives. Be it a classroom, office, or a hospital, technology has drastically changed the way we communicate and do business. But to truly understand its role, we need to explore different technology research topics.

And that's where this blog will be handy! Powered by solid experience, our professional term paper writers gathered multiple technology research paper topics in literally any direction. Whether you're a student looking for an intriguing subject for your project or just a tech enthusiast trying to broaden your understanding, we've got your back. Dive into this collection of tech topics and see how technological progress is shaping our world.

What Are Technology Topics?

Technology is the application of scientific knowledge for practical purposes. It's the smartphone in your hand, the electric car on your street, and the spacecraft exploring Mars. It might also be the code that protects your online privacy and the microscope that uncovers mysteries of the human cell.

Technology permeates our lives, revolutionizing the way we communicate, learn, work, and play. But, beyond the gadgets and gizmos, there's a world of diverse technology research topics, ideas, concepts, and challenges.

Technology topics zoom in on these ideas, peeling back the layers of the tech universe. As a researcher, you might study how AI is changing healthcare, explore the ethical implications of robotics, or investigate the latest innovations in renewable energy. Your project should probe into the 'how,' the 'why,' and the 'what next' of the technology that is reshaping our world. So, whether you're dissecting the impact of EdTech on traditional learning or predicting the future of space exploration, research topics in technology are limitless.

Branches of Technology Research Paper Topics

Undoubtedly, the reach of technology is extensive. It's woven its way into almost every corner of our lives. Before we move to technological research topics, let’s first see just where technology has left its mark. So, here are some areas where technology is really shaking things up:

  • Government services: E-governance, digital IDs, and digital voting are just a few examples of technology's application in government services.
  • Finance: Fintech innovations include cryptocurrencies, mobile banking, robo-advising, and contactless payments.
  • Education: Technology is used in a wide variety of educational contexts, from e-learning platforms and digital textbooks to educational games and virtual classrooms.
  • Communication: Social media, video conferencing, instant messaging, and email are all examples of tech's role in communication.
  • Healthcare: From electronic medical records and telemedicine to advanced imaging technology and robotic surgery, technology is surely transforming healthcare.
  • Agriculture: Technological advancements are revolutionizing agriculture through precision farming, automated machinery, drones, and genetic engineering.
  • Retail: It also influences retail through e-commerce, mobile payments, virtual fitting rooms, and personalized shopping experiences.
  • Environment: Tech is used in climate modeling, conservation efforts, renewable energy, and pollution control.

These are far from all sectors where technology can be applied. But this list shows how diverse topics in technology can be.

How to Choose a Technology Research Topic?

Before you select any idea, it’s important to understand what a good technology research topic is. In a nutshell, a decent topic should be interesting, relevant, and feasible to research within your available resources and time. Make sure it’s specific enough, but not to narrow so you can find enough credible resources. 

Your technology topic sets the course of your research. It influences the type and amount of information you'll search for, the methods you'll use to find it, and the way you'll interpret it. Ultimately, the right topic can make your research process not only more manageable but also more meaningful. But how to get started, you may ask. Don’t worry! Below we are going to share valuable tips from our thesis writers on how to choose a worthy topic about technology.

  • Make research Study the latest trends and explore relevant technology news. Your task is to come up with something unique that’s not been done before. Try to look for inspiration in existing literature, scientific articles, or in past projects.
  • Recognize your interests Start with what you are genuinely curious about in the field of technology. Passion can be a great motivator during the research process.
  • Consider the scope You want a topic that is neither too broad nor too narrow. It should provide enough material to explore without being overwhelming.
  • Check availability of resources Ensure there are sufficient trustworthy resources available for your chosen topic.
  • Evaluate the relevance Your technology research idea should be pertinent to your field of study and resonate with current trends. This can make your research more valuable and engaging for your audience.

Top List of Technology Research Topics

Are you looking for the best research topics about technology? Stop by! Here, we’ve carefully collected the topic ideas to ignite your curiosity and support your research. Each topic offers various data sources, allowing you to construct well-supported arguments. So, let's discover these fascinating subjects together!

  • AI's influence on healthcare.
  • Challenges of cybersecurity in a connected world.
  • Role of drones in modern agriculture.
  • Could renewable energy replace fossil fuels?
  • Impact of virtual reality on education.
  • Blockchain's potential beyond cryptocurrencies.
  • Ethical considerations in biotechnology.
  • Can smart cities enhance quality of life?
  • Autonomous vehicles – opportunities and threats.
  • Robotics in manufacturing.
  • Is big data changing decision-making processes?
  • E-waste : Challenges and solutions.
  • Role of IoT in smart homes.
  • Implications of 5G technology.
  • EdTech: A revolution in learning?

Good Technology Research Topics

Ready for another batch of inspiration? Get ready to discover great technology topics for a research paper across various disciplines. These ideas are designed to stimulate your creativity and provide substantial information for your research. So, let's explore these exciting themes together!

  • Impact of nanotechnology on medicine.
  • Harnessing quantum computing potential.
  • Augmented reality in tourism.
  • Can bioinformatics revolutionize disease prediction?
  • Sustainability in tech product design.
  • Darknet : A hidden side of the internet.
  • How does technology influence human behavior?
  • Assistive technology in special education.
  • Are smart textiles transforming the fashion industry?
  • Role of GIS in urban planning.
  • Space tourism: A reality or fantasy?
  • Potential of digital twins in engineering.
  • How is telemedicine shaping healthcare delivery?
  • Green IT : Addressing environmental issues.
  • Impact of machine learning on finance.

Interesting Technology Research Paper Topics

For those craving intriguing angles and fresh ideas, we present these interesting topics in technology. This collection is filled with thought-provoking subjects that cover the lesser-known areas of technology. Each topic is concise, clear, and ready to spark a fascinating research journey!

  • Cyber-physical systems in industry 4.0.
  • Social implications of deepfake technology.
  • Can gamification enhance learning outcomes?
  • Neuromorphic computing: Emulating the human brain.
  • Li-Fi : Light-based communication technology.
  • Health risks of prolonged screen time.
  • Quantum cryptography and secure communication.
  • Role of technology in sustainable agriculture.
  • Can we predict earthquakes with AI?
  • Virtual influencers: A new trend in marketing.
  • Tech solutions for wildlife conservation.
  • Role of 3D printing in organ transplantation.
  • Impact of automation on the job market.
  • Cloud gaming: A new era in the gaming industry.
  • Genomic editing: Possibilities and ethical concerns.

New Technology Research Topics

Understanding the fast-paced world of technology requires us to keep up with the latest developments. Hence, we bring you burning  technology research paper topics. These ideas reflect the most recent trends and advances in technology, offering fresh perspectives for your research. Let's take a look at these compelling subjects!

  • Potential of hyper automation in business processes.
  • How is AI changing digital marketing?
  • Brain-computer interfaces: The future of communication?
  • Quantum supremacy : Fact or fiction?
  • 5D data storage: Revolutionizing data preservation.
  • Rise of voice technology in consumer applications.
  • Using AI for mental health treatment.
  • Implications of edge computing for IoT devices.
  • Personalized learning with AI in education.
  • Role of technology in reducing food waste.
  • Digital twin technology in urban development.
  • Impact of AI on patent law.
  • Cybersecurity in the era of quantum computing.
  • Role of VR in disaster management training.
  • AI in talent recruitment: Pros and cons.

Unique Technology Research Topics

For those wanting to stand out with truly original research, we offer 100% authentic topics about technology. We understand that professors highly value unique perspectives. Below we've meticulously selected these technology paper topics to offer you something different. These are not your everyday technology subjects but rather unexpected gems ready to be explored.

  • Digital ethics in AI application.
  • Role of technology in countering climate change.
  • Is there a digital divide in developing countries?
  • Role of drones in disaster management.
  • Quantum internet: Possibilities and challenges.
  • Digital forensic techniques in cybersecurity.
  • Impact of technology on traditional art forms.
  • Biohacking: Can we really upgrade ourselves?
  • Technology and privacy: An inevitable trade-off?
  • Developing empathy through virtual reality.
  • AI and creativity: Can machines be artists?
  • Technology's impact on urban gardening.
  • Role of technology in accessible tourism.
  • Quantum biology: A frontier of science.
  • Unmanned underwater vehicles: Opportunities and threats.

Informative Research Topics in Technology

If you are seeking comprehensive information on technologies, this selection will definitely provide you with insights. As you may know, every study should be backed up by credible sources. Technology topics for research papers below are very easy to investigate, so you will surely find a bunch of academic resources.

  • Exploring  adaptive learning systems in online education.
  • Role of technology in modern archaeology.
  • Impact of immersive technology on journalism.
  • The rise of telehealth services.
  • Green data centers: A sustainable solution?
  • Cybersecurity in mobile banking.
  • 3D bioprinting : A revolution in healthcare?
  • How technology affects sleep quality.
  • AI in music production: A new era?
  • Technology's role in preserving endangered languages.
  • Smart grids for sustainable energy use.
  • The future of privacy in a digital world.
  • Can technology enhance sports performance?
  • Role of AR in interior design.
  • How technology is transforming public libraries.

Controversial Research Topics on Technology

Technological field touches upon areas where technology, ethics, and society intersect and often disagree. This has sparked debates and, sometimes, conspiracy theories, primarily because of the profound implications technologies have for our future. Take a look at these ideas, if you are up to a more controversial research topic about technology:

  • Facial recognition technology: Invasion of privacy?
  • Tech addiction: Myth or reality?
  • The ethics of AI in warfare.
  • Should social media platforms censor content?
  • Are cryptocurrencies a boon or a bane?
  • Is technology causing more harm than good to our health?
  • The bias in machine learning algorithms.
  • Genetic engineering: Playing God or advancing science?
  • Will AI replace human jobs?
  • Net neutrality: Freedom of internet or control?
  • The risk of AI superintelligence.
  • Tech companies' monopoly: Beneficial or detrimental?
  • Are we heading towards a surveillance society?
  • AI in law enforcement: Safeguard or threat?
  • Do we rely too much on technology?

Easy Technology Research Paper Topics

Who ever thought the tech field was only for the tech-savvy? Well, it's time to dispel that myth. Here in our collection of simple technology research topics, we've curated subjects that break down complex tech concepts into manageable chunks. We believe that every student should get a chance to run a tech related project without any hurdles.

  • Impact of social media on interpersonal communication.
  • Smartphones: A boon or a bane?
  • How technology improves accessibility for people with disabilities.
  • E-learning versus traditional learning.
  • Impact of technology on travel and tourism.
  • Pros and cons of online shopping.
  • How has technology changed entertainment?
  • Technology's role in boosting productivity at work.
  • Online safety: How to protect ourselves?
  • Importance of digital literacy in today's world.
  • How has technology influenced the music industry?
  • E-books vs printed books: A tech revolution?
  • Does technology promote loneliness?
  • Role of technology in shaping modern communication.
  • The impact of gaming on cognitive abilities.

Technology Research Topics Ideas for Students

As an experienced paper writing service online that helps students all the time, we understand that every learner has unique academic needs. With this in mind, the next section of our blog is designed to cater specifically to different academic levels. Whether you're a high school student just starting to explore technology or a doctoral candidate delving deep into a specialized topic, we've got different technology topics arranged by complexity.

Technology Research Topics for High School Students

High school students are expected to navigate complex topics, fostering critical thinking and promoting in-depth exploration. The proposed research paper topics on technology will help students understand how tech advancements shape various sectors of society and influence human life.

  • How have smartphones changed our communication?
  • Does virtual reality in museums enhance visitor experience?
  • Understanding privacy issues in social media.
  • How has technology changed the way we listen to music?
  • Role of technology in promoting fitness and healthy lifestyle.
  • Advantages and disadvantages of online learning.
  • Does excessive screen time affect sleep quality?
  • Do video games affect academic performance?
  • How do GPS systems work?
  • How has technology improved animation in films?
  • Pros and cons of using smart home devices.
  • Are self-driving cars safe?
  • Technology's role in modernizing local libraries.
  • Can technology help us lead more sustainable lifestyles?
  • Can technology help improve road safety for teenagers?

Technology Research Topics for College Students

Think technology research topics for college are all about rocket science? Think again! Our compilation of college-level tech research topics brings you a bunch of intriguing, conversation-stirring, and head-scratching questions. They're designed to let you sink into the world of technology while also pushing your academic boundaries. Time to dive in, explore, question, and take your own unique stance on hot-button issues.

  • Biometrics in identity verification: A privacy risk?
  • Impact of 5G on mobile gaming.
  • Are wearable fitness devices a true reflection of health?
  • Can machine learning help predict climate change effects?
  • Are digital currencies disrupting traditional finance?
  • Use of drones in search and rescue operations.
  • Impact of e-learning on academic performance.
  • Does artificial intelligence have a place in home security?
  • What are the ethical issues surrounding robotic surgery?
  • Are e-wallets a safer option for online transactions?
  • How has technology transformed news dissemination?
  • AI in language translation: How accurate can it be?
  • Personalized advertising: Boon or bane for online users?
  • Are smart classes making learning more interactive?
  • Influence of technology on homemade crafts and DIY culture.

Technology Research Topics for University Students

Are you browsing for university technology research ideas? We've got you covered. Whether you're about to dig deep into high-tech debates, or just taking your first steps, our list of technology research questions is your treasure chest.

  • Blockchain applications in ensuring academic integrity.
  • Impact of quantum computing on data security.
  • Are brain-computer interfaces a future communication tool?
  • Does digital currency pose a threat to the global economy?
  • Use of AI in predicting and managing natural disasters.
  • Can biometrics replace traditional identification systems?
  • Role of nanotechnology in waste management.
  • Machine learning's influence on climate change modeling.
  • Edge computing: Revolutionizing data processing?
  • Is virtual reality in psychological therapy a viable option?
  • Potential of synthetic biology in medical research.
  • Quantum cryptography: An uncrackable code?
  • Is space tourism achievable with current technology?
  • Ethical implications of gene editing technologies.
  • Artificial intelligence in governance.

Technology Research Paper Topics in Different Areas

In the next section, we've arranged a collection of technology research questions related to different areas like computer science, biotechnology, and medicine. Find an area you are interested in and look through subject-focused ideas and topics for a research paper on technology.

Technology Research Topics on Computer Science

Computer science is a field that has rapidly developed over the past decades. It deals with questions of technology's influence on society, as well as applications of cutting-edge technologies in various industries and sectors. Here are some computer science research topics on technology to get started:

  • Prospects of machine learning in malware detection.
  • Influence of cloud computing on business operations.
  • Quantum computing: potential impacts on cryptography.
  • Role of big data in personalized marketing.
  • Can AI models effectively simulate human decision-making?
  • Future of mobile applications: Towards augmented reality?
  • Pros and cons of open source software development.
  • Role of computer science in advancing virtual reality.
  • Natural language processing: Transforming human-computer interaction?
  • Developing secure e-commerce platforms: Challenges and solutions.
  • Green computing : solutions for reducing energy consumption.
  • Data mining in healthcare: An untapped opportunity?
  • Understanding cyber threats in the internet of things.
  • Algorithmic bias: Implications for automated decision-making.
  • Role of neural networks in image recognition.

Information Technology Research Topics

Information technology is a dynamic field that involves the use of computers and software to manage and process information. It's crucial in today's digital era, influencing a range of industries from healthcare to entertainment. Here are some captivating information technology related topics:

  • Impact of cloud technology on data management.
  • Role of information technology in disaster management.
  • Can artificial intelligence help improve data accuracy?
  • Cybersecurity measures for protecting personal information.
  • Evolving role of IT in healthcare administration.
  • Adaptive learning systems: A revolution in education?
  • E-governance : Impact on public administration.
  • Role of IT in modern supply chain management.
  • Bioinformatics and its role in personalized medicine.
  • Is data mining an invasion of privacy?
  • Can virtual reality enhance training and development programs?
  • Role of IT in facilitating remote work.
  • Smart devices and data security: A potential risk?
  • Harnessing IT for sustainable business practices.
  • How can big data support decision-making processes?

Technology Research Topics on Artificial Intelligence

Artificial Intelligence, or AI as we fondly call it, is all about creating machines that mimic human intelligence. It's shaping everything from how we drive our cars to how we manage our calendars. Want to understand the mind of a machine? Choose a topic about technology for a research paper from the list below:

  • AI's role in detecting fake news.
  • Chatbots in customer service: Are humans still needed?
  • Algorithmic trading: AI's impact on financial markets.
  • AI in agriculture: a step towards sustainable farming?
  • Facial recognition systems: an AI revolution or privacy threat?
  • Can AI outperform humans in creative tasks?
  • Sentiment analysis in social media: how effective is AI?
  • Siri, Alexa, and the future of AI.
  • AI in autonomous vehicles: safety concern or necessity?
  • How AI algorithms are transforming video games.
  • AI's potential in predicting and mitigating natural disasters.
  • Role of AI in combating cyber threats.
  • Influence of AI on job recruitment and HR processes.
  • Can AI help in advancing climate change research?
  • Can machines make accurate diagnoses?

Technology Research Topics in Cybersecurity Command

Cybersecurity Command focuses on strengthening digital protection. Its goal is to identify vulnerabilities, and outsmart cyber threats. Ready to crack the code of the cybersecurity command? Check out these technology topics for research designed to take you through the tunnels of cyberspace:

  • Cybersecurity strategies for a post-quantum world.
  • Role of AI in identifying cyber threats.
  • Is cybersecurity command in healthcare a matter of life and death?
  • Is there any connection between cryptocurrency and cybercrime?
  • Cyber warfare : The invisible battleground.
  • Mitigating insider threats in cybersecurity command.
  • Future of biometric authentication in cybersecurity.
  • IoT security: command challenges and solutions.
  • Cybersecurity and cloud technology: A secure match?
  • Influence of blockchain on cybersecurity command.
  • Machine learning's role in malware detection.
  • Cybersecurity protocols for mobile devices.
  • Ethics in cybersecurity: Hacking back and other dilemmas.
  • What are some steps to recovery after a breach?
  • Social engineering: Human factor in cybersecurity.

Technology Research Topics on Biotechnology

Biotechnology is an interdisciplinary field that has been gaining a lot of traction in the past few decades. It involves the application of biological principles to understand and solve various problems. The following research topic ideas for technology explore biotechnology's impact on medicine, environment, agriculture, and other sectors:

  • Can GMOs solve global hunger issues?
  • Understanding biotech's role in developing personalized medicine.
  • Using biotech to fight antibiotic resistance.
  • Pros and cons of genetically modified animals.
  • Biofuels – are they really a sustainable energy solution?
  • Ethical challenges in gene editing.
  • Role of biotech in combating climate change.
  • Can biotechnology help conserve biodiversity?
  • Biotech in beauty: Revolutionizing cosmetics.
  • Bioluminescence – a natural wonder or a biotech tool?
  • Applications of microbial biotechnology in waste management.
  • Human organ farming: Possibility or pipe dream?
  • Biotech and its role in sustainable agriculture.
  • Biotech advancements in creating allergy-free foods.
  • Exploring the future of biotech in disease detection.

>> Read more: Biology Topics to Research

Technology Research Paper Topics on Genetic Engineering

Genetic engineering is an area of science that involves the manipulation of genes to change or enhance biological characteristics. This field has raised tremendous ethical debates while offering promising solutions in medicine and agriculture. Here are some captivating topics for a technology research paper on genetic engineering:

  • Future of gene editing: Breakthrough or ethical dilemma?
  • Role of CRISPR technology in combating genetic diseases.
  • Pros and cons of genetically modified crops.
  • Impact of genetic engineering on biodiversity.
  • Can gene therapy provide a cure for cancer?
  • Genetic engineering and the quest for designer babies.
  • Legal aspects of genetic engineering.
  • Use of genetic engineering in organ transplantation.
  • Genetic modifications: Impact on human lifespan.
  • Genetically engineered pets: A step too far?
  • The role of genetic engineering in biofuels production.
  • Ethics of genetic data privacy.
  • Genetic engineering and its impact on world hunger.
  • Genetically modified insects: Solution for disease control?
  • Genetic engineering: A tool for biological warfare?

Reproduction Technology Research Paper Topics

Reproduction technology is all about the science that aids human procreation. It's a field teeming with innovation, from IVF advancements to genetic screening. Yet, it also stirs up ethical debates and thought-provoking technology topics to write about:

  • Advances in in Vitro Fertilization (IVF) technology .
  • The rise of surrogacy: Technological advancements and implications.
  • Ethical considerations in sperm and egg donation.
  • Genetic screening of embryos: A step forward or an ethical minefield?
  • Role of technology in understanding and improving fertility.
  • Artificial Wombs: Progress and prospects.
  • Ethical and legal aspects of posthumous reproduction.
  • Impact of reproductive technology on the LGBTQ+ community.
  • The promise and challenge of stem cells in reproduction.
  • Technology's role in preventing genetic diseases in unborn babies.
  • Social implications of childbearing technology.
  • The concept of 'designer babies': Ethical issues and future possibilities.
  • Reproductive cloning: Prospects and controversies.
  • Technology and the future of contraception.
  • Role of AI in predicting successful IVF treatment.

Medical Technology Topics for a Research Paper

The healthcare field is undergoing massive transformations thanks to cutting-edge medical technology. From revolutionary diagnostic tools to life-saving treatments, technology is reshaping medicine as we know it. To aid your exploration of this dynamic field, we've compiled medical technology research paper topics:

  • Role of AI in early disease detection.
  • Impact of telemedicine on rural healthcare.
  • Nanotechnology in cancer treatment: Prospects and challenges.
  • Can wearable technology improve patient outcomes?
  • Ethical considerations in genome sequencing.
  • Augmented reality in surgical procedures.
  • The rise of personalized medicine: Role of technology.
  • Mental health apps: Revolution or hype?
  • Technology and the future of prosthetics.
  • Role of Big Data in healthcare decision making.
  • Virtual reality as a tool for pain management.
  • Impact of machine learning on drug discovery.
  • The promise of medical drones for emergency response.
  • Technology's role in combating antimicrobial resistance.
  • Electronic Health Records (EHRs): Blessing or curse?

>> More ideas: Med Research Topics

Health Technology Research Topics

Health technology is driving modern healthcare to new heights. From apps that monitor vital stats to robots assisting in surgeries, technology's touch is truly transformative. Take a look at these topics related to technology applied in healthcare:

  • Role of mobile apps in managing diabetes.
  • Impact of health technology on patient privacy.
  • Wearable tech: Fad or future of personal health monitoring?
  • How can AI help in battling mental health issues?
  • Role of digital tools in promoting preventive healthcare.
  • Smart homes for the elderly: Boon or bane?
  • Technology and its impact on health insurance.
  • The effectiveness of virtual therapy sessions.
  • Can health chatbots replace human doctors?
  • Technology's role in fighting the obesity epidemic.
  • The use of blockchain in health data management.
  • Impact of technology on sleep health.
  • Social media and its effect on mental health.
  • Prospects of 3D printing in creating medical equipment.
  • Tele-rehabilitation: An effective solution for physical therapy?

>> View more: Public Health Topics to Research

Communication Technology Research Topics

With technology at the helm, our ways of communicating are changing at an unprecedented pace. From simple text messages to immersive virtual conferences, technology has rewritten the rules of engagement. So, without further ado, let's explore these communication research ideas for technology that capture the essence of this revolution.

  • AI chatbots: Re-defining customer service.
  • The impact of 5G on global communication.
  • Augmented Reality: The future of digital marketing?
  • Is 'digital divide' hindering global communication?
  • Social media's role in shaping public opinion.
  • Can holographic communication become a reality?
  • Influence of emojis in digital communication.
  • The cybersecurity challenges in modern communication.
  • Future of journalism in the digital age.
  • How technology is reshaping political communication.
  • The influence of streaming platforms on viewing habits.
  • Privacy concerns in the age of instant messaging.
  • Can technology solve the issue of language barriers?
  • The rise of podcasting: A digital renaissance.
  • Role of virtual reality in remote communication.

Research Topics on Technology in Transportation

Technology is the driving force behind the dramatic changes in transportation, making journeys safer, more efficient, and eco-friendly. Whether it's autonomous vehicles or the concept of Hyperloop, there are many transportation technology topics for a research paper to choose from:

  • Electric vehicles: A step towards sustainable travel.
  • The role of AI in traffic management.
  • Pros and cons of autonomous vehicles.
  • Hyperloop: An ambitious vision of the future?
  • Drones in goods delivery: Efficiency vs. privacy.
  • Technology's role in reducing aviation accidents.
  • Challenges in implementing smart highways.
  • The implications of blockchain in logistics.
  • Could vertical takeoff and landing (VTOL) vehicles solve traffic problems?
  • Impact of GPS technology on transportation.
  • How has technology influenced public transit systems?
  • Role of 5G in future transportation.
  • Ethical concerns over self-driving cars.
  • Technology in maritime safety: Progress and hurdles.
  • The evolution of bicycle technology: From spokes to e-bikes.

Technology Research Paper Topics on Education

The intersection of technology and education is an exciting frontier with limitless possibilities. From online learning to interactive classrooms, you can explore various technology paper topics about education:

  • How does e-learning affect student engagement?
  • VR classrooms: A glimpse into the future?
  • Can AI tutors revolutionize personalized learning?
  • Digital textbooks versus traditional textbooks: A comparison.
  • Gamification in education: Innovation or distraction?
  • The impact of technology on special education.
  • How are Massive Open Online Courses (MOOCs) reshaping higher education?
  • The role of technology in inclusive education.
  • Cybersecurity in schools: Measures and challenges.
  • The potential of Augmented Reality (AR) in classroom learning.
  • How is technology influencing homeschooling trends?
  • Balancing technology and traditional methods in early childhood education.
  • Risks and benefits of student data tracking.
  • Can coding be the new literacy in the 21st century?
  • The influence of social media on academic performance.

>> Learn more: Education Research Paper Topics

Relationships and Technology Research Topics

In the digital age, technology also impacts our relationships. It has become an integral part of how we communicate, meet people, and sustain our connections. Discover some thought-provoking angles with these research paper topics about technology:

  • How do dating apps affect modern relationships?
  • The influence of social media on interpersonal communication.
  • Is technology enhancing or hindering long-distance relationships?
  • The psychology behind online dating: A study.
  • How do virtual reality environments impact social interaction?
  • Social media friendships: Genuine or superficial?
  • How does technology-mediated communication affect family dynamics?
  • The impact of technology on work-life balance.
  • The role of technology in sustaining long-term relationships.
  • How does the 'always connected' culture influence personal boundaries?
  • Cyberbullying and its effect on teenage relationships.
  • Can technology predict compatibility in relationships?
  • The effects of 'ghosting' in digital communication.
  • How technology assists in maintaining relationships among elderly populations.
  • Social media: A boon or bane for marital relationships?

Agriculture Technology Research Paper Topics

Modern agriculture is far from just tilling the soil and harvesting crops. Technology has made remarkable strides into the fields, innovating and improving agricultural processes. Take a glance at these technology research paper topic ideas:

  • Can drone technology transform crop monitoring?
  • Precision agriculture: Benefits and challenges.
  • Aquaponics and the future of sustainable farming.
  • How is artificial intelligence aiding in crop prediction?
  • Impact of blockchain technology in food traceability.
  • The role of IoT in smart farming.
  • Vertical farming : Is it a sustainable solution for urban food supply?
  • Innovations in irrigation technology for water conservation.
  • Automated farming: A boon or a threat to employment in agriculture?
  • How satellite imagery is improving crop disease detection.
  • Biotechnology in crop improvement: Pros and cons.
  • Nanotechnology in agriculture: Scope and limitations.
  • Role of robotics in livestock management.
  • Agricultural waste management through technology.
  • Is hydroponics the future of farming?

Technological Research Topics on Environment

Our planet is facing numerous environmental challenges, and technology may hold the key to solving many of these. With innovations ranging from renewable energy sources to waste management systems, the realm of technology offers a plethora of research angles. So, if you're curious about the intersection of technology and environment, this list of research topics is for you:

  • Innovations in waste management: A technology review.
  • The role of AI in predicting climate change impacts.
  • Renewable energy: Advancements in solar technology.
  • The impact of electric vehicles on carbon emissions.
  • Can smart agriculture help solve world hunger?
  • Role of technology in water purification and conservation.
  • The impact of IoT devices on energy consumption.
  • Technology solutions for oil spills.
  • Satellite technology in environmental monitoring.
  • Technological advances in forest conservation.
  • Green buildings: Sustainable construction technology.
  • Bioengineering: A solution to soil erosion?
  • Impact of nanotechnology on environmental conservation.
  • Ocean clean-up initiatives: Evaluating existing technology.
  • How can technology help in reducing air pollution?

>> View more: Environmental Science Research Topics

Energy & Power Technology Topics for Research Paper

Energy and power are two pivotal areas where technology is bringing unprecedented changes. You can investigate renewable energy sources or efficient power transmission. If you're excited about exploring the intricacies of energy and power advancements, here are some engaging technology topics for research papers:

  • Assessing the efficiency of wind energy technologies.
  • Power storage: Current and future technology.
  • Solar panel technology: Recent advancements and future predictions.
  • Can nuclear fusion be the answer to our energy crisis?
  • Smart grid technology: A revolution in power distribution.
  • Evaluating the impact of hydropower on ecosystems.
  • The role of AI in optimizing power consumption.
  • Biofuels vs. fossil fuels: A comparative study.
  • Electric vehicle charging infrastructure: Technological challenges and solutions.
  • Technology advancements in geothermal power.
  • How is IoT technology helping in energy conservation?
  • Harnessing wave and tidal energy: Technological possibilities.
  • Role of nanotechnology in improving solar cell efficiency.
  • Power transmission losses: Can technology provide a solution?
  • Assessing the future of coal technology in the era of renewable energy.

Research Topics about Technology in Finance

The finance sector has seen drastic changes with the rise of technology, which has revolutionized the way financial transactions are conducted and services are offered. Consider these research topics in technology applied in the finance sector:

  • Rise of cryptocurrency: An evaluation of Bitcoin's impact.
  • Algorithmic trading: How does it reshape financial markets?
  • Role of AI and machine learning in financial forecasting.
  • Technological challenges in implementing digital banking.
  • How is blockchain technology transforming financial services?
  • Cybersecurity risks in online banking: Identifying solutions.
  • FinTech startups: Disrupting traditional finance systems.
  • Role of technology in financial inclusion.
  • Assessing the impact of mobile wallets on the banking sector.
  • Automation in finance: Opportunities and threats.
  • Role of big data analytics in financial decision making.
  • AI-based robo-advisors vs. human financial advisors.
  • The future of insurance technology (InsurTech).
  • Can technology solve the issue of financial fraud?
  • Impact of regulatory technology (RegTech) in maintaining compliance.

>> More ideas: Finance Research Topics

War Technology Research Paper Topics

The nature of warfare has transformed significantly with the evolution of technology, shifting the battlegrounds from land, sea, and air to the realms of cyber and space. This transition opens up a range of topics to explore. Here are some research topics in the realm of war technology:

  • Drones in warfare: Ethical implications.
  • Cyber warfare: Assessing threats and defense strategies.
  • Autonomous weapons: A boon or a curse?
  • Implications of artificial intelligence in modern warfare.
  • Role of technology in intelligence gathering.
  • Satellite technology and its role in modern warfare.
  • The future of naval warfare: Autonomous ships and submarines.
  • Hypersonic weapons: Changing the dynamics of war.
  • Impact of nuclear technology in warfare.
  • Technology and warfare: Exploring the relationship.
  • Information warfare: The role of social media.
  • Space warfare: Future possibilities and implications.
  • Bio-warfare: Understanding technology's role in development and prevention.
  • Impact of virtual reality on military training.
  • War technology and international law: A critical examination.

Food Technology Topics for Research Papers

Food technology is a field that deals with the study of food production, preservation, and safety. It involves understanding how various techniques can be applied to increase shelf life and improve nutrition value of foods. Check out our collection of food technology research paper topic ideas:

  • Lab-grown meats: Sustainable solution or a mere hype?
  • How AI is enhancing food safety and quality?
  • Precision agriculture: Revolutionizing farming practices.
  • GMOs: Assessing benefits and potential risks.
  • Role of robotics in food manufacturing and packaging.
  • Smart kitchens: Streamlining cooking through technology.
  • Nanofood: Tiny technology, big impact.
  • Sustainable food systems: Role of technology.
  • Food traceability: Ensuring transparency and accountability.
  • Food delivery apps: Changing the face of dining out.
  • The rise of plant-based alternatives and their production technologies.
  • Virtual and augmented reality in culinary experiences.
  • Technology in mitigating food waste.
  • Innovations in food packaging: Impact on freshness and sustainability.
  • IoT in smart farming: Improving yield and reducing waste.

Entertainment Technology Topics

Entertainment technology is reinventing the ways we experience amusement. This industry is always presenting new angles for research and discussion, be it the rise of virtual reality in movies or the influence of streaming platforms on the music industry. Here's a list of unique research topics related to entertainment technology:

  • Impact of virtual reality on the movie industry.
  • Streaming platforms vs traditional media: A comparative study.
  • Technology in music: Evolution and future prospects.
  • eSports: Rise of a new form of entertainment.
  • Augmented reality in theme parks.
  • The transformation of theater with digital technology.
  • AI and film editing: Redefining the art.
  • The role of technology in the rise of independent cinema.
  • Podcasts: Revolutionizing radio with technology.
  • Immersive technologies in art exhibitions.
  • The influence of technology on fashion shows and design.
  • Livestreaming concerts: A new norm in the music industry?
  • Drones in entertainment: Applications and ethics.
  • Social media as an entertainment platform.
  • The transformation of journalism in the era of digital entertainment.

Technology Research Questions

As we navigate the ever-changing landscape of technology, numerous intriguing questions arise. Below, we present new research questions about technology that can fuel your intellectual pursuit.

  • What potential does quantum computing hold for resolving complex problems?
  • How will advancements in AI impact job security across different sectors?
  • In what ways can blockchain technology reform the existing financial systems?
  • How is nanotechnology revolutionizing the field of medicine?
  • What are the ethical implications surrounding the use of facial recognition technology?
  • How will the introduction of 6G change our communication patterns?
  • In what ways is green technology contributing to sustainable development?
  • Can virtual reality transform the way we approach education?
  • How are biometrics enhancing the security measures in today's digital world?
  • How is space technology influencing our understanding of the universe?
  • What role can technology play in solving the global water crisis?
  • How can technology be leveraged to combat climate change effectively?
  • How is technology transforming the landscape of modern agriculture?
  • Can technological advancements lead to a fully renewable energy-dependent world?
  • How does technology influence the dynamics of modern warfare?

Bottom Line on Research Topics in Technology

Technology is a rapidly evolving field, and there's always something new to explore. Whether you're writing for the computer sciences, information technology or food technology realm, there are endless ideas that you can research on. Pick one of these technology research paper topics and jumpstart your project.

Illustration

Trust professionals to ‘ write a research paper for me !’ Our team of expert writers is ready to assist you in crafting an exceptional research paper on any topic. Just reach out, and we'll provide you with high-quality work tailored to your needs.

Joe_Eckel_1_ab59a03630.jpg

Joe Eckel is an expert on Dissertations writing. He makes sure that each student gets precious insights on composing A-grade academic writing.

You may also like

how to write a research paper

Education During Coronavirus

A Smithsonian magazine special report

Science | June 15, 2020

Seventy-Five Scientific Research Projects You Can Contribute to Online

From astrophysicists to entomologists, many researchers need the help of citizen scientists to sift through immense data collections

Citizen science (mobile)

Rachael Lallensack

Former Assistant Editor, Science and Innovation

If you find yourself tired of streaming services, reading the news or video-chatting with friends, maybe you should consider becoming a citizen scientist. Though it’s true that many field research projects are paused , hundreds of scientists need your help sifting through wildlife camera footage and images of galaxies far, far away, or reading through diaries and field notes from the past.

Plenty of these tools are free and easy enough for children to use. You can look around for projects yourself on Smithsonian Institution’s citizen science volunteer page , National Geographic ’s list of projects and CitizenScience.gov ’s catalog of options. Zooniverse is a platform for online-exclusive projects , and Scistarter allows you to restrict your search with parameters, including projects you can do “on a walk,” “at night” or “on a lunch break.”

To save you some time, Smithsonian magazine has compiled a collection of dozens of projects you can take part in from home.

A blue heron caught on a trail cam.

American Wildlife

If being home has given you more time to look at wildlife in your own backyard, whether you live in the city or the country, consider expanding your view, by helping scientists identify creatures photographed by camera traps. Improved battery life, motion sensors, high-resolution and small lenses have made camera traps indispensable tools for conservation.These cameras capture thousands of images that provide researchers with more data about ecosystems than ever before.

Smithsonian Conservation Biology Institute’s eMammal platform , for example, asks users to identify animals for conservation projects around the country. Currently, eMammal is being used by the Woodland Park Zoo ’s Seattle Urban Carnivore Project, which studies how coyotes, foxes, raccoons, bobcats and other animals coexist with people, and the Washington Wolverine Project, an effort to monitor wolverines in the face of climate change. Identify urban wildlife for the Chicago Wildlife Watch , or contribute to wilderness projects documenting North American biodiversity with The Wilds' Wildlife Watch in Ohio , Cedar Creek: Eyes on the Wild in Minnesota , Michigan ZoomIN , Western Montana Wildlife and Snapshot Wisconsin .

"Spend your time at home virtually exploring the Minnesota backwoods,” writes the lead researcher of the Cedar Creek: Eyes on the Wild project. “Help us understand deer dynamics, possum populations, bear behavior, and keep your eyes peeled for elusive wolves!"

A baby elephant stands between the legs of an adult elephant.

If being cooped up at home has you daydreaming about traveling, Snapshot Safari has six active animal identification projects. Try eyeing lions, leopards, cheetahs, wild dogs, elephants, giraffes, baobab trees and over 400 bird species from camera trap photos taken in South African nature reserves, including De Hoop Nature Reserve and Madikwe Game Reserve .

With South Sudan DiversityCam , researchers are using camera traps to study biodiversity in the dense tropical forests of southwestern South Sudan. Part of the Serenegeti Lion Project, Snapshot Serengeti needs the help of citizen scientists to classify millions of camera trap images of species traveling with the wildebeest migration.

Classify all kinds of monkeys with Chimp&See . Count, identify and track giraffes in northern Kenya . Watering holes host all kinds of wildlife, but that makes the locales hotspots for parasite transmission; Parasite Safari needs volunteers to help figure out which animals come in contact with each other and during what time of year.

Mount Taranaki in New Zealand is a volcanic peak rich in native vegetation, but native wildlife, like the North Island brown kiwi, whio/blue duck and seabirds, are now rare—driven out by introduced predators like wild goats, weasels, stoats, possums and rats. Estimate predator species compared to native wildlife with Taranaki Mounga by spotting species on camera trap images.

The Zoological Society of London’s (ZSL) Instant Wild app has a dozen projects showcasing live images and videos of wildlife around the world. Look for bears, wolves and lynx in Croatia ; wildcats in Costa Rica’s Osa Peninsula ; otters in Hampshire, England ; and both black and white rhinos in the Lewa-Borana landscape in Kenya.

An image featuring marine life from Invader ID.

Under the Sea

Researchers use a variety of technologies to learn about marine life and inform conservation efforts. Take, for example, Beluga Bits , a research project focused on determining the sex, age and pod size of beluga whales visiting the Churchill River in northern Manitoba, Canada. With a bit of training, volunteers can learn how to differentiate between a calf, a subadult (grey) or an adult (white)—and even identify individuals using scars or unique pigmentation—in underwater videos and images. Beluga Bits uses a “ beluga boat ,” which travels around the Churchill River estuary with a camera underneath it, to capture the footage and collect GPS data about the whales’ locations.

Many of these online projects are visual, but Manatee Chat needs citizen scientists who can train their ear to decipher manatee vocalizations. Researchers are hoping to learn what calls the marine mammals make and when—with enough practice you might even be able to recognize the distinct calls of individual animals.

Several groups are using drone footage to monitor seal populations. Seals spend most of their time in the water, but come ashore to breed. One group, Seal Watch , is analyzing time-lapse photography and drone images of seals in the British territory of South Georgia in the South Atlantic. A team in Antarctica captured images of Weddell seals every ten minutes while the seals were on land in spring to have their pups. The Weddell Seal Count project aims to find out what threats—like fishing and climate change—the seals face by monitoring changes in their population size. Likewise, the Año Nuevo Island - Animal Count asks volunteers to count elephant seals, sea lions, cormorants and more species on a remote research island off the coast of California.

With Floating Forests , you’ll sift through 40 years of satellite images of the ocean surface identifying kelp forests, which are foundational for marine ecosystems, providing shelter for shrimp, fish and sea urchins. A project based in southwest England, Seagrass Explorer , is investigating the decline of seagrass beds. Researchers are using baited cameras to spot commercial fish in these habitats as well as looking out for algae to study the health of these threatened ecosystems. Search for large sponges, starfish and cold-water corals on the deep seafloor in Sweden’s first marine park with the Koster seafloor observatory project.

The Smithsonian Environmental Research Center needs your help spotting invasive species with Invader ID . Train your eye to spot groups of organisms, known as fouling communities, that live under docks and ship hulls, in an effort to clean up marine ecosystems.

If art history is more your speed, two Dutch art museums need volunteers to start “ fishing in the past ” by analyzing a collection of paintings dating from 1500 to 1700. Each painting features at least one fish, and an interdisciplinary research team of biologists and art historians wants you to identify the species of fish to make a clearer picture of the “role of ichthyology in the past.”

Pictured is a Zerene eurydice specimen, or California dogface butterfly, caught in 1951.

Interesting Insects

Notes from Nature is a digitization effort to make the vast resources in museums’ archives of plants and insects more accessible. Similarly, page through the University of California Berkeley’s butterfly collection on CalBug to help researchers classify these beautiful critters. The University of Michigan Museum of Zoology has already digitized about 300,000 records, but their collection exceeds 4 million bugs. You can hop in now and transcribe their grasshopper archives from the last century . Parasitic arthropods, like mosquitos and ticks, are known disease vectors; to better locate these critters, the Terrestrial Parasite Tracker project is working with 22 collections and institutions to digitize over 1.2 million specimens—and they’re 95 percent done . If you can tolerate mosquito buzzing for a prolonged period of time, the HumBug project needs volunteers to train its algorithm and develop real-time mosquito detection using acoustic monitoring devices. It’s for the greater good!

Pelicans coming in for landing on PELIcam.

For the Birders

Birdwatching is one of the most common forms of citizen science . Seeing birds in the wilderness is certainly awe-inspiring, but you can birdwatch from your backyard or while walking down the sidewalk in big cities, too. With Cornell University’s eBird app , you can contribute to bird science at any time, anywhere. (Just be sure to remain a safe distance from wildlife—and other humans, while we social distance ). If you have safe access to outdoor space—a backyard, perhaps—Cornell also has a NestWatch program for people to report observations of bird nests. Smithsonian’s Migratory Bird Center has a similar Neighborhood Nest Watch program as well.

Birdwatching is easy enough to do from any window, if you’re sheltering at home, but in case you lack a clear view, consider these online-only projects. Nest Quest currently has a robin database that needs volunteer transcribers to digitize their nest record cards.

You can also pitch in on a variety of efforts to categorize wildlife camera images of burrowing owls , pelicans , penguins (new data coming soon!), and sea birds . Watch nest cam footage of the northern bald ibis or greylag geese on NestCams to help researchers learn about breeding behavior.

Or record the coloration of gorgeous feathers across bird species for researchers at London’s Natural History Museum with Project Plumage .

A pressed Wister's coralroot below a letter and sketch of the flower found in Oct. 1937

Pretty Plants

If you’re out on a walk wondering what kind of plants are around you, consider downloading Leafsnap , an electronic field guide app developed by Columbia University, the University of Maryland and the Smithsonian Institution. The app has several functions. First, it can be used to identify plants with its visual recognition software. Secondly, scientists can learn about the “ the ebb and flow of flora ” from geotagged images taken by app users.

What is older than the dinosaurs, survived three mass extinctions and still has a living relative today? Ginko trees! Researchers at Smithsonian’s National Museum of Natural History are studying ginko trees and fossils to understand millions of years of plant evolution and climate change with the Fossil Atmospheres project . Using Zooniverse, volunteers will be trained to identify and count stomata, which are holes on a leaf’s surface where carbon dioxide passes through. By counting these holes, or quantifying the stomatal index, scientists can learn how the plants adapted to changing levels of carbon dioxide. These results will inform a field experiment conducted on living trees in which a scientist is adjusting the level of carbon dioxide for different groups.

Help digitize and categorize millions of botanical specimens from natural history museums, research institutions and herbaria across the country with the Notes from Nature Project . Did you know North America is home to a variety of beautiful orchid species? Lend botanists a handby typing handwritten labels on pressed specimens or recording their geographic and historic origins for the New York Botanical Garden’s archives. Likewise, the Southeastern U.S. Biodiversity project needs assistance labeling pressed poppies, sedums, valerians, violets and more. Groups in California , Arkansas , Florida , Texas and Oklahoma all invite citizen scientists to partake in similar tasks.

A group of Harvard computers and astronomers.

Historic Women in Astronomy

Become a transcriber for Project PHaEDRA and help researchers at the Harvard-Smithsonian Center for Astrophysics preserve the work of Harvard’s women “computers” who revolutionized astronomy in the 20th century. These women contributed more than 130 years of work documenting the night sky, cataloging stars, interpreting stellar spectra, counting galaxies, and measuring distances in space, according to the project description .

More than 2,500 notebooks need transcription on Project PhaEDRA - Star Notes . You could start with Annie Jump Cannon , for example. In 1901, Cannon designed a stellar classification system that astronomers still use today. Cecilia Payne discovered that stars are made primarily of hydrogen and helium and can be categorized by temperature. Two notebooks from Henrietta Swan Leavitt are currently in need of transcription. Leavitt, who was deaf, discovered the link between period and luminosity in Cepheid variables, or pulsating stars, which “led directly to the discovery that the Universe is expanding,” according to her bio on Star Notes .

Volunteers are also needed to transcribe some of these women computers’ notebooks that contain references to photographic glass plates . These plates were used to study space from the 1880s to the 1990s. For example, in 1890, Williamina Flemming discovered the Horsehead Nebula on one of these plates . With Star Notes, you can help bridge the gap between “modern scientific literature and 100 years of astronomical observations,” according to the project description . Star Notes also features the work of Cannon, Leavitt and Dorrit Hoffleit , who authored the fifth edition of the Bright Star Catalog, which features 9,110 of the brightest stars in the sky.

A microscopic image of white blood cells

Microscopic Musings

Electron microscopes have super-high resolution and magnification powers—and now, many can process images automatically, allowing teams to collect an immense amount of data. Francis Crick Institute’s Etch A Cell - Powerhouse Hunt project trains volunteers to spot and trace each cell’s mitochondria, a process called manual segmentation. Manual segmentation is a major bottleneck to completing biological research because using computer systems to complete the work is still fraught with errors and, without enough volunteers, doing this work takes a really long time.

For the Monkey Health Explorer project, researchers studying the social behavior of rhesus monkeys on the tiny island Cayo Santiago off the southeastern coast of Puerto Rico need volunteers to analyze the monkeys’ blood samples. Doing so will help the team understand which monkeys are sick and which are healthy, and how the animals’ health influences behavioral changes.

Using the Zooniverse’s app on a phone or tablet, you can become a “ Science Scribbler ” and assist researchers studying how Huntington disease may change a cell’s organelles. The team at the United Kingdom's national synchrotron , which is essentially a giant microscope that harnesses the power of electrons, has taken highly detailed X-ray images of the cells of Huntington’s patients and needs help identifying organelles, in an effort to see how the disease changes their structure.

Oxford University’s Comprehensive Resistance Prediction for Tuberculosis: an International Consortium—or CRyPTIC Project , for short, is seeking the aid of citizen scientists to study over 20,000 TB infection samples from around the world. CRyPTIC’s citizen science platform is called Bash the Bug . On the platform, volunteers will be trained to evaluate the effectiveness of antibiotics on a given sample. Each evaluation will be checked by a scientist for accuracy and then used to train a computer program, which may one day make this process much faster and less labor intensive.

12 images from the platform showcasing different galactic formations

Out of This World

If you’re interested in contributing to astronomy research from the comfort and safety of your sidewalk or backyard, check out Globe at Night . The project monitors light pollution by asking users to try spotting constellations in the night sky at designated times of the year . (For example, Northern Hemisphere dwellers should look for the Bootes and Hercules constellations from June 13 through June 22 and record the visibility in Globe at Night’s app or desktop report page .)

For the amateur astrophysicists out there, the opportunities to contribute to science are vast. NASA's Wide-field Infrared Survey Explorer (WISE) mission is asking for volunteers to search for new objects at the edges of our solar system with the Backyard Worlds: Planet 9 project .

Galaxy Zoo on Zooniverse and its mobile app has operated online citizen science projects for the past decade. According to the project description, there are roughly one hundred billion galaxies in the observable universe. Surprisingly, identifying different types of galaxies by their shape is rather easy. “If you're quick, you may even be the first person to see the galaxies you're asked to classify,” the team writes.

With Radio Galaxy Zoo: LOFAR , volunteers can help identify supermassive blackholes and star-forming galaxies. Galaxy Zoo: Clump Scout asks users to look for young, “clumpy” looking galaxies, which help astronomers understand galaxy evolution.

If current events on Earth have you looking to Mars, perhaps you’d be interested in checking out Planet Four and Planet Four: Terrains —both of which task users with searching and categorizing landscape formations on Mars’ southern hemisphere. You’ll scroll through images of the Martian surface looking for terrain types informally called “spiders,” “baby spiders,” “channel networks” and “swiss cheese.”

Gravitational waves are telltale ripples in spacetime, but they are notoriously difficult to measure. With Gravity Spy , citizen scientists sift through data from Laser Interferometer Gravitational­-Wave Observatory, or LIGO , detectors. When lasers beamed down 2.5-mile-long “arms” at these facilities in Livingston, Louisiana and Hanford, Washington are interrupted, a gravitational wave is detected. But the detectors are sensitive to “glitches” that, in models, look similar to the astrophysical signals scientists are looking for. Gravity Spy teaches citizen scientists how to identify fakes so researchers can get a better view of the real deal. This work will, in turn, train computer algorithms to do the same.

Similarly, the project Supernova Hunters needs volunteers to clear out the “bogus detections of supernovae,” allowing researchers to track the progression of actual supernovae. In Hubble Space Telescope images, you can search for asteroid tails with Hubble Asteroid Hunter . And with Planet Hunters TESS , which teaches users to identify planetary formations, you just “might be the first person to discover a planet around a nearby star in the Milky Way,” according to the project description.

Help astronomers refine prediction models for solar storms, which kick up dust that impacts spacecraft orbiting the sun, with Solar Stormwatch II. Thanks to the first iteration of the project, astronomers were able to publish seven papers with their findings.

With Mapping Historic Skies , identify constellations on gorgeous celestial maps of the sky covering a span of 600 years from the Adler Planetarium collection in Chicago. Similarly, help fill in the gaps of historic astronomy with Astronomy Rewind , a project that aims to “make a holistic map of images of the sky.”

Get the latest Science stories in your inbox.

Rachael Lallensack

Rachael Lallensack | READ MORE

Rachael Lallensack is the former assistant web editor for science and innovation at Smithsonian .

Suggestions or feedback?

At MIT, pushing the boundaries of knowledge and possibility is our joyful obsession, and we celebrate fundamental discoveries and practical applications alike. As educators, we also value research as a potent form of learning by doing .

Research flourishes in our 30 departments across five schools and one college , as well as in dozens of centers, labs, and programs that convene experts across disciplines to explore new intellectual frontiers and solve important societal problems. Our on-campus research capabilities are enhanced through the work of MIT Lincoln Laboratory , the Woods Hole Oceanographic Institution , active research relationships with industry , and a wide range of global collaborations .

Centers, Labs & Programs

MIT continually develops organizations and partnerships that foster interdisciplinary work. Listed here are just some of the MIT labs, centers, and programs where groundbreaking research is happening every day.

View Centers, Labs & Programs

Two outstretched hands hold a small device containing two flat pieces and connective wires.

Collaborating Institutions

MIT researchers collaborate with many leading local, national, and international organizations to further drive exploration.

View Collaborating Institutions

Overhead view of two blue and yellow shoes placed next to a blue icon that signifies vibration.

SciTechDaily

  • May 21, 2024 | Ancient DNA Analysis Reveals True Appearance of “Exotic” 6th-Century Chinese Emperor
  • May 21, 2024 | New Research Suggests That Eggs Might Not Actually Be Bad for Your Heart
  • May 21, 2024 | Efficiency Unlocked: Novel Catalyst Model Sets New Standards in Fuel Cell Technology
  • May 21, 2024 | Rewiring the Brain: How Practice Really Makes Perfect
  • May 21, 2024 | Stronger, Faster, Lighter: The New Steel That’s Powering Electric Vehicles

Technology News

Read the latest technology news on SciTechDaily, your comprehensive source for the latest breakthroughs, trends, and innovations shaping the world of technology. We bring you up-to-date insights on a wide array of topics, from cutting-edge advancements in artificial intelligence and robotics to the latest in green technologies, telecommunications, and more.

Our expertly curated content showcases the pioneering minds, revolutionary ideas, and transformative solutions that are driving the future of technology and its impact on our daily lives. Stay informed about the rapid evolution of the tech landscape, and join us as we explore the endless possibilities of the digital age.

Discover recent technology news articles on topics such as Nanotechnology ,  Artificial Intelligence , Biotechnology ,  Graphene , Green Tech , Battery Tech , Computer Tech , Engineering , and Fuel-cell Tech featuring research out of MIT , Cal Tech , Yale , Georgia Tech , Karlsruhe Tech , Vienna Tech , and Michigan Technological University . Discover the future of technology with SciTechDaily.

Roll of Steel Sheets

Technology May 21, 2024

Stronger, Faster, Lighter: The New Steel That’s Powering Electric Vehicles

Calculations explore how twelve metals, including titanium, form bonds with nitrogen or carbon. Decarbonizing automobiles involves transitioning from gasoline engines to electric motors and incorporating…

3D Printing Crush Testing

Crushing It: Autonomous AI Robot Creates a Shock-Absorbing Shape No Human Ever Could

Set Up for 3D Printing Microsensors and Nanogratings

1,000 Times Smaller Than a Grain of Sand – Newest Optical Fiber Technology Could Supercharge Internet Speeds

Artificial Intelligence Danger AI Apocalypse Art Illustration

Leading AI Scientists Warn of Unleashing Risks Beyond Human Control

Abstract Battery Technology Art

Designing Safer, Higher-Performance Lithium Batteries With Nuclear Magnetic Resonance Spectroscopy

Photocatalytic Doping of Organic Semiconductors

Revolutionizing Electronics: Air-Doped Organic Semiconductors Unveiled

Stop Fake News

Trustnet Unveils a New Era in Decentralizing Online Fact-Checking

Liohi Neuromorphic Chip Powered Autonomous Drone

The Future of Flight: Researchers Develop Neuromorphic Drones That Learn Like Animals

Robotic SuperLimbs

Discover How MIT’s SuperLimbs Help Astronauts Stand Tall on the Moon

Machine Learning AI Technology Illustration

Technology May 18, 2024

Predicting Chaos With AI: The New Frontier in Autonomous Control

Recent research highlights the development of advanced machine learning algorithms capable of controlling complex systems efficiently. These new algorithms, tested on digital twins of chaotic…

Future Computing Magnetic Semiconductor Chip Concept Art

Technology May 17, 2024

Tiny Titans: Revolutionary Microcapacitors Set to Supercharge Next-Gen Electronics

New microcapacitors developed by scientists show record energy and power densities, paving the way for on-chip energy storage in electronic devices. Researchers are striving to…

Experimental Phononics Setup

What if Your Earbuds Could Do Everything Your Smartphone Could but Better? New Synthetic Materials Could Make It Possible

What if your earbuds could do everything your smartphone can do already, except better? What sounds a bit like science fiction may actually not be…

Quantum Memory Node Map

Harvard Physicists Demonstrate First Metro-Area Quantum Network in Boston

Physicists demostrate first metro-area quantum computer network in Boston. Imagining a quantum internet capable of transmitting hacker-proof information globally through photons superimposed in different quantum…

Quartz Thermal Trap

Smelting Steel Without Fossil Fuels: Solar Power Shatters the 1,000°C Barrier for Industrial Heating

Swiss researchers have developed a solar energy method using synthetic quartz to achieve temperatures above 1,000°C for industrial processes, potentially replacing fossil fuels in the…

Sensor Chip for Lead Contamination

Technology May 16, 2024

MIT Engineers Create Game-Changing Lead Detection Device

A new chip-scale device could provide sensitive detection of lead levels in drinking water, whose toxicity affects 240 million people worldwide. Engineers at MIT and…

Artificial Intelligence Game Theory Art Concept

How Game Theory Is Making AI Smarter

MIT CSAIL researchers have developed a new “consensus game” that elevates AI’s text comprehension and generation skills. MIT’s “consensus game” improves AI text generation using…

Zinc Lignin Battery

Revolutionizing Renewable Energy: Scientists Develop New Low-Cost Battery With Over 8000 Uses

Researchers at Linköping University in Sweden have developed a battery constructed from zinc and lignin that can be recharged over 8,000 times. This innovation aims…

Stretchable Microneedle Electrode Arrays

Technology May 15, 2024

The Gentle Prick: Sea Slug-Inspired Stretchable Microneedles Revolutionize Biomedical Sensors

Highly stretchable and customizable microneedles that revolutionize the interface between human bodies and invasive monitoring devices have been developed through USC research. They are promising…

Griffith University

Popular sites

Home > Griffith Sciences > School of Information and Communication Technology > Research > Current ICT Research Projects

Current ICT Research Projects

School of Information and Communication Technology

  • Learning and teaching

Be at the forefront of the latest technological advancements with a research degree at Griffith.

Explore the range of research projects available with the School of ICT in areas of computer vision and signal processing, software engineering and software quality, cyber security and network security, autonomous systems, machine learning, data analytics and big data.

For more information about the project, please contact the listed supervisor.

Computer Vision and Signal Processing

Extraction and Modelling of Power Line Corridor

Supervisors:  Dr. Mohammad Awrangjeb and Professor Bela Stantic

Description: The speedy development in electricity infrastructure due to urge in domestic and business usage as well as its importance in national economy requires a safe and secure maintenance of power line corridors (PLC) to ensure the efficient and uninterrupted power supply of electricity to consumers. The monitoring of PLC primarily includes two of the following aspects: electrical components such as power lines and pylons and surrounding objects, such as vegetation. For reliable transmission, the stability of power lines and pylons and monitoring of vegetation near PLC is important.

As power lines are comprised of very thin conductors, thus detailed information is required for accurate mapping. Airborne light detection and ranging (LiDAR) has been proven a powerful tool to overcome these challenges to enable more efficient inspection in recent years. Active airborne LiDAR systems directly capture the 3D information of power infrastructure and surrounding objects. Nevertheless,

PLCs are built with multi-loop, multi-phase structures (bundle conductors) and exists in intricate environments (e.g., mountains and forests), thus raises challenges to process airborne point cloud data for extraction and modelling of individual PLC objects.

This study aims to overcome these challenges by providing an automated and more robust solutions for PLC mapping. This research incorporates three main objectives; (i) power lines extraction, pylons and vegetation extraction, (ii) reconstruction of power lines and pylons using for 3D modelling, (iii) vegetation monitoring from airborne LiDAR data.

Related publications

ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. (Google Scholar Metrics (GSM) -Rank: 10 in Remote Sensing, GSM makes only 20 top cited in each area combining both conference and journal articles.)

DICTA 2019 (Australian in Core 2018)

Building Extraction from LiDAR point cloud data

Description: Building extraction with individual roof parts and other components such as chimneys and dormers is important for building reconstruction and 3D modelling. Using Light Detection and Ranging (LiDAR) point-cloud data the task is more complex and difficult because of the unknown semantic characteristics and inharmonious behaviour of the LiDAR input data. Most of the existing state-of-the-art methods fail to detect small true roof planes with exact boundaries due to outliers, occlusions, complex building structures, and other inconsistent nature of LiDAR data thus, accurate building detection, reconstruction, and 3D modelling a challenging and complex task. Studies have been conducted over the last two decades on individual building extraction and reconstruction using LiDAR data. The main objective of this PhD thesis is to extract buildings and individual roof parts effectively using LiDAR data for the purpose of 3D reconstruction and modelling of buildings.

Dey, E. K., Awrangjeb, M., & Stantic, B. (2019, July). An Unsupervised Outlier Detection Method For 3D Point Cloud Data. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium (pp. 2495-2498). IEEE.

Dey, E. K., Awrangjeb, M., & Stantic, B. (2020). Outlier detection and robust plane fitting for building roof extraction from LiDAR data. International Journal of Remote Sensing, 41(16), 6325-6354.

Dey, E. K. and Awrangjeb, M., "A Robust Performance Evaluation Metric for Extracted Building Boundaries From Remote Sensing Data," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 4030-4043, 2020, doi: 10.1109/JSTARS.2020.3006258.

Continual Learning on Dynamic Data Stream

Supervisors:  A/Prof. Alan Wee-Chung Liew

Description: Continual learning (CL) or lifelong learning is the ability of a model to learn continually from a stream of data. The idea of CL is to mimic human’s ability to continually acquire, fine-tune, and transfer knowledge and skills throughout their lifespan. With CL, we want to use the data that is coming to update the model autonomously based on the new activity. Data are typically discarded after use, and there is no opportunity to re-use the data for model retraining. Continual learning is a challenge for deep neural network models since the continual acquisition of incrementally available information from non-stationary data distributions generally leads to catastrophic forgetting or interference. Other challenges in CL includes adapting to emerging and disappearing concepts, adapting to concept drift, adapting to nonstationary noise, dealing with highly imbalance classes, etc. This project aims to develop novel (supervised and unsupervised) machine learning algorithms that overcome these challenges.

T.T. Nguyen, M.T. Dang, V.A. Luong, A.W.C. Liew, T.C. Liang, J. McCall, “Multi-Label Classification via Incremental Clustering on Evolving Data Stream”, Pattern Recognition, Vol. 95: 96-113, 2019.

T.T. Nguyen, T.T.T. Nguyen, V.A. Luong, N.Q.V. Hung, A.W.C. Liew, B, Stantic, “Multi-label classification via labels correlation and first order feature dependence on data stream”, Pattern Recognition, Vol. 90: 35-51, 2019.

T.T.T. Nguyen, T.T. Nguyen, A.W.C. Liew, S.L. Wang, “Variational Inference based Bayes Online Classifiers with Concept Drift Adaptation”, Pattern Recognition, Vol. 81: 280-293, 2018.

Efficient object detection for low-powered devices

Supervisors:  Dr. Gervase Tuxworth

Description: Recognising objects in images is an important task for many applications including security, autonomous navigation and image tagging and markup. Recently the field has been dominated by convolutional neural networks, with some networks reaching sizes of over 100 million parameters. These networks are typically run on specialised hardware that consumes a high amount of power, but when considering applications running on light-weight low-cost hardware, these solutions may not be suitable. This project seeks to find solutions to allow for accurate object detection on low powered devices.

Shaikh D, Manoonpong P, Tuxworth G, Bodenhagen L. Multi-sensory guidance of goal-oriented behaviour of legged robots. Proceedings of the 20th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR 2017.

Fine-grained image classification

Description: Fine-grained image classification is a challenge in computer vision, which aims at identifying the correct object in a dataset where there is both low between-class variance (different objects appear visually similar) and high intra-class variance (objects of the same class appear different). This work looks at implementing new models and techniques within convolutional neural networks to improve performance in these challenging datasets.

Park YJ, Tuxworth G, Zhou J. Insect Classification Using Squeeze-and-Excitation and Attention Modules - a Benchmark Study. IEEE International Conference on Image Processing, 2019.

Spectral-spatial-temporal processing of hyperspectral videos

Supervisors: A/Prof. Jun Zhou

Description: Hyperspectral videos contains rich spectral, spatial, and temporal information. Traditional methods treat these domains separately to undertake video analysis tasks, ignoring the intrinsic relationship embedded in the cross-modal data space. In this project, we propose to develop joint spectral-spatial-temporal processing methods to fully explore the abundant information embedded in hyperspectral videos. Fundamental theories and methods will be developed based on physics and statistical models and will be powered by the latest deep learning approaches. A number of applications in environment, agriculture, and medicine will be used to showcase the usefulness of the methods.

Fengchao Xiong, Jun Zhou, and Yuntao Qian. Material based object tracking in hyperspectral videos, IEEE Transactions on Image Processing, Vol 29, No. 1, pages 3719-3733, 2020.

Suhad Lateef Al-khafaji, Jun Zhou, Ali Zia and Alan Wee-Chung Liew. Spectral-spatial scale invariant feature transform for hyperspectral images. IEEE Transactions on Image Processing, Vol. 27, No. 2, pages 837-850, 2018.

Microscopic hyperspectral imaging

Description: Object detection and recognition is a fundamental task for microscopic imaging. It’s applications range from disease detection, cell recognition to microplastic classification. Traditional detection and recognition techniques are based on images captured in the visible light wavelength, limits the discrimination capability of systems deployed for complex microscopic imaging environment. Hyperspectral images contain light wavelength indexed reflectance from objects, therefore, enable the capability of material detection that is essential for many real-world tasks. This project provides unique opportunities to work with cross-disciplinary researchers in medical and environmental areas. The goal is to develop innovative technologies that can revolutionise the current microscopic imaging practice.

Chee Meng Ho, Qi Sun, Adrian Teo; David Wibowo, Yongsheng Gao, Jun Zhou, Yanyi Huang, Say Hwa Tan, and Chun-Xia Zhao. Development of a microfluidic droplet-based microbioreactor for microbial cultivation. ACS Biomaterials Science & Engineering, Vol. 6, No. 6, pages 3630-3637, 2020.

Yanyang Gu, Zongyuan Ge, Paul Bonnington, and Jun Zhou. Progressive transfer learning and adversarial domain adaptation for cross-domain skin disease classification. IEEE Journal of Biomedical and Health Informatics, Vol. 24, No. 5, pages 1379-1393, 2020.

Jie Liang, Jun Zhou, Lei Tong, Xiao Bai and Bin Wang. Material based salient object detection from hyperspectral images. Pattern Recognition, Vol. 76, Pages 476-490, 2018.

Software Engineering and Software Quality

Software correctness for Safe-Critical Systems

Supervisors: Professor Vladimir Estivill-Castro

Miguel Carrillo , Vladimir Estivill-Castro,  David A. Rosenblueth . Model-to-Model Transformations for Efficient Time-domain Verification of Concurrent Models by NuSMV Modules.  MODELSWARD 2020 : 287-298

Complexity Management in Enterprise Architecture

Supervisors: A/Prof. Peter Bernus

Description: The history of mankind can be characterised as a constant development of tools, technologies and systems of various kinds (agriculture, transport, communication, manufacturing, energy, etc.). These  (technical and socio-technical) systems of systems have evolved to be more and more complex and it has become increasingly difficult to manage and control their evolution.

This is a fundamental problem, because the mere survival of humankind became dependent on them.  Taming the complexity of large scale systems requires an interdisciplinary effort, that combines approaches rooted in Enterprise Architecture, AI & Cognitive Science, Systems Engineering, Management Science & Control Engineering, Cybernetics, and others.

Several interdisciplinary PhD projects are available to address the problem: How to direct the evolution and transformation of large scale systems?

Possible topics include:

  • Improving the Resilience of Australia's Supply Chain,
  • Architecting Energy Transformation,
  • Modelling Smart Manufacturing (IoT, Industry 4.0, digital twin),
  • Architecting Integrated Transport Systems, Smart Cities, Architectural Solutions to the Water Crisis,
  • Agile command and control
  • The limits of control (theory development),
  • Self Aware Systems Architecture (theory development).

Bernus, P., Noran, Goranson, T. (2020). Toward a Science of Resilience, Supportability 4.0 and Agility. In Proc. IFAC World Congress (July 2020). IFAC Papers Online ISSN: 2405-8963

Turner, P., Bernus, P., Noran, O. (2018). Enterprise Thinking for Self-aware Systems. In S. Cavalieri, M. Macchi and L. Monostori (Eds) Proc Information Control Problems in Manufacturing  IFAC Papers Online ISSN: 2405-8963

Bernus, P., Goranson, T., Gotze, J., Jensen-Waud, A., Kandjani, H., Molina, A., Noran, O., Rabelo, R.J., Romero, D., Saha, P., Turner, P. (2016) Enterprise engineering and management at the crossroads.  Computers in Industry. 79 (2016):87-102.

Bernus, P., Noran, O., Molina, A. (2015). Enterprise Architecture: Twenty Years of the GERAM Framework. Annual Reviews in Control. 39(2015):83-93

Organisationally mandated assimilation processes of an enterprise-wide information system in a radiology practice in Australia

Supervisors: Dr. Bruce Rowlands

Description: The study aims to develop a theoretical framework that integrated elements of Lamb & Kling’s (2003) social actor model concentrating on the relationships among the radiology practitioners, the technology (an enterprise-wide Health Information System), and a larger social milieu surrounding its use.

Alireza Amrollahi and Bruce Rowlands. OSPM: a design methodology for open strategic planning. Information & Management, Vol. 55, No. 6, pages 667-685, 2018

Alireza Amrollahi and Bruce Rowlands. Collaborative open strategic planning: a method and case study. Information Technology & People, Vol. 30, No. 4, pages 832-852, 2017.

IT Risk Management Implementation

Description: Two important gaps exist in IT risk management (ITM) research. Firstly, there is insufficient research on the process IT individuals go through when implementing IT-RM frameworks for the first time. Secondly, there is an absence of literature that addresses how these factors and processes can be depicted in a model.

Neda Azizi, Bruce Rowlands and Shah Jahan Miah. IT risk management implementation as sociotechnical change: a process approach. 30 th Australasian Conference on Information Systems, paper 104, 2019.

Developing the concept of individual IT culture and its impact on IT risk management implementation, paper 178, 2019.

Helping airline pilots fly more safely: Creating, validating and verifying the consistency of dynamic procedures

Supervisors: Dr. Geraldine Torrisi , Dr. Guido Carim Junior , Prof. Vladimir Estivill-Castro

Description: Do you want to help airline pilots perform their flying safer? An airplane is a very complicated safety-critical system whose technology is the main interface to those operating it. However, when a particular failure occurs, pilots must consult emergency checklists, which are either presented as paper-based or in electronic format. Electronics checklists are commonly integrated as part of the avionics or part of the Flight bags (tablets issued by the aircraft manufacturer) as a pdf file or a rudimentary electronic version of the paper-based checklist with one of another extra feature (such as tracking the actions, e.g.). When the situation is more complicated than covered by the checklists, pilots must also judge the procedures’ instructions against their flying experience to handle the problem. Situations like multiple failures, false alarms, inoperative systems are not covered by these checklists, regardless of the format, and impose additional demands on the troubleshooting activity. The situations are dynamic, but the procedures are static.

Despite some artificial intelligence tools currently converting the natural language and artifacts (diagram) of paper-based checklists, there is a need to create, validate and verify the consistency of the dynamic procedures. Your contribution would be to ensuring the information on procedures and course of action is consistent, not contradictory, complete and adequate for the set of symptoms input by pilots. Maybe modelling with behaviour trees, or some other formal logic system (such as defeasible logic) lining it with AI and reasoning. The aim is to confirm procedures are polished and even updateable while retaining consistency. You may find that there may be other challenges. For instance, can some procedures be factored out, and be re-used as subroutines? Can the description of the procedure be also assisting the pilot with a model of the state of the flight?

This PhD research topic is part of a larger project reinventing the way pilots use the documents, manuals and checklist in the cockpit. The objective is to make their work more efficient and safer by providing an intelligent system that provides the information they need, when needed.

Guido C. Carim, Tarcisio A. Saurin and Sidney W.A. Dekker. How the cockpit manages anomalies: revisiting the dynamic fault management model for aviation. Cognition, Technology & Work, Vol. 22, pages 143–157, 2020.

Guido C. Carim, Tarcisio A. Saurin, Jop Havinga, Andrew Rae, Sidney W.A. Dekker, and Éder Henriqson. Using a procedure doesn’t mean following it: A cognitive systems approach to how a cockpit manages emergencies. Safety Science, Vol. 89, pages 147-157, 2016.

Learning Analytics Implementations in Australian Universities

Supervisors: Dr. David Tuffley

Description: Learning Analytics Implementations in Australian Universities: towards a model of success.

Clark, Jo-Anne & Tuffley, David. Learning Analytics implementations in universities: towards a model of success using multiple case studies. Proceedings of the 36 th International Conference on Innovation, Practice and Research in the Use of Educational Technologies in Tertiary Education, pages 82-92, 2019.

Developing high quality software systems through Behaviour Engineering

Supervisors: Dr. Larry Wen

Description: Behavior Engineering (BE), an innovative Software Engineering approach to develop software intensive systems, was firstly proposed by Professor Geoff Dromey in Griffith University. In the past two decades, various research and real industry cases studies have been explored to investigate its capability and received fruitful results. Different from other software engineering approaches, which try to make a software design to satisfy the software requirements, while BE is extracting a software design from the software requirements through a state-of-the-art translation and integration process. This approach can quickly identify defects in software requirements and produce a solution that guarantees to fulfil the requirements.  In the past 20 years, more than one hundred papers have been published. Many software tools have been developed and large-scale case studies have been performed. BE has also been applied in many software engineering areas including requirement engineering, software change management, software process improvement, and formal method. Even though much research has been conducted, and their results have proven the value of this approach, the potential of this approach has yet been fully appreciated. There are many different paths to extend this approach and many different areas that could adapt this approach. As an example, we are currently collaborating with a Chinese company to investigate BE in software acquisition.

Many of BE related publications can be found at BE website.

Cyber Security and Network Security

Using Machine Learning to Detect Cyber Attacks in Industrial Control Systems

Supervisors: A/Prof. Ernest Foo

Description: Industrial Control systems use SCADA protocols to control the electricity grid or water treatment plants or other critical infrastructure.  Many of these systems are being connected to the Internet and are vulnerable to cyber attacks.  This project will employ machine learning and artificial intelligence to automatically detect attacks against these systems and automate the best response for defense.

IEEE Transactions on Industrial Informatics, IEEE Transactions on Information Forensics and Security, Computers & Security

Automated Process Analysis for Intrusion Detection in Industry 4.0 Systems

Description: Next generation manufacturing systems use advanced robotic technologies and complex processes to function.  However many of these systems are connected to the Internet and are vulnerable to cyber attacks.  Stealthy cyber attacks are often difficult to detect.  This project will develop algorithms to monitor system processes for anomalies to automatically detect faults and cyber attacks.

IEEE Transactions on Industrial Informatics, IEEE Transactions on Information Forensics and Security, Computers & Security, IEEE Access

Cyber Security of Vehicle Communication Systems

Description: Driver-less vehicles and Intelligent Transport Systems need to use wireless communications to function with safety.  However these communications may be vulnerable to cyber attacks that allow attackers to manipulate traffic and cause accidents. This project will explore new ways to ensure efficient authentication to detect and prevent attacks against vehicle communication systems.

IEEE Transactions on Industrial Informatics, Vehicular Communications, IEEE Transactions on Vehicular Technology

Advanced Post-Quantum Cryptosystems

Supervisors: Dr. Qinyi Li

Description: Our daily digital life is protected by public-key cryptosystems like public-key encryption and digital signature systems. The security of most public-key cryptosystems have been deployed is ultimately based on the difficulties of solving number-theoretic problems (e.g., integer factoring problem and discrete logarithm problem) using classic computers. It turns out these number-theoretic problems can be efficiently solved by large-scale quantum computers which have been theorised about for decades. There has been substantial progress towards making quantum computing practical. To protect our communication in the long-term, we need a new generation of cryptosystems to defeat quantum computers. Cryptography based on decoding problems (e.g., decoding random linear codes) is a very promising candidate. In this project, you will explore the field of post-quantum cryptography and conduct research on one the two directions: 1) designing advanced post-quantum cryptosystems e.g., attributed-based encryption, functional encryption, fully homomorphic encryption, ring/group signatures and apply them to the real-world problems, e.g., fine-grained access control on encrypted data for cloud computing, efficient search and query on the encrypted database, smart contract and cryptocurrency 2) designing and implementing (in software or hardware) practical public-key encryption and digital signature systems with strong practical security (i.e., secure against various side-channel attacks) and high practicality (i.e., can be used for the Internet security protocols or computing-resource-restricted devices like IoT devices).

Xavier Boyen, Malika Izabachene, Qinyi Li (Corresponding Author): An Efficient Lattice CCA-Secure KEM in the Standard Model. The 12th International Conference on Security and Cryptography for Networks (SCN 2020). Accepted on 14 June, 2020.

Xavier Boyen, Qinyi Li (Corresponding Author): Direct CCA-Secure KEM and Deterministic PKE from Plain LWE. The 10th International Conference on Post-Quantum Cryptography (PQCrypto 2019). LNCS 11505, pp.116-130. Springer 2019.

Xavier Boyen, Qinyi Li (Corresponding Author): All-but-Many Lossy Trapdoor Functions from Lattices and Applications. The 37th International Cryptology Conference (Crypto 2017). LNCS 10403, pp. 298-331, Springer 2017.

Xavier Boyen, Qinyi Li (Corresponding Author): Towards Tightly Secure Lattice Short Signature and Id-Based Encryption. The 22nd International Conference on Theory and Applications of Cryptography and Information Security (AsiaCrypt 2016). LNCS 10032, pp. 404-434. Springer 2016.

Application of Machine Learning Intelligence in Wireless Networks

Supervisors: Dr. Wee Lum Tan

Description: There is great potential in applying machine learning techniques to design self-organising, self-aware, intelligent wireless networks. Machine learning enables network nodes to actively learn the state of the wireless environment, detect correlations in the data, and take actions to optimise network operations and make efficient use of the limited wireless spectrum resources.

The first project will develop methods to parse the massive amount of wireless network statistics/data (e.g. channel state information, signal strength, interference, noise, traffic load/patterns, etc.) in order to analyse and predict the context of the wireless environment. Using these data, we will develop machine learning-guided techniques to address a variety of challenges in wireless networks such as power control, user traffic scheduling, spectrum management, rate selection, etc.

A major challenge of machine learning is its vulnerability to adversarial attacks. Adversarial machine learning attacks in wireless networks can cause network nodes to make incorrect decisions or interfere with data transmissions. For example, network nodes can train a classifier on various wireless statistics and use it to predict future channel availability status and adapt their transmission decisions to the spectrum dynamics. An adversary can train its classifier to be functionally equivalent to the one at the transmitter, and launch attacks (e.g. sends jamming signals) when it predicts that the transmitter will transmit data to the receiver. These attacks can significantly affect network performance, e.g. reduced spectral efficiency and increased node energy consumption.

Therefore, a second project is to investigate the impact of different machine learning vulnerabilities in wireless networks and develop techniques to detect and mitigate these attacks in highly dynamic wireless networks.

Autonomous Systems

Using Adaptive Behaviour Found in Nature to Solve Dynamic Multi-objective Optimisation Problems

Supervisors: Dr. Marde Helbig

Description: Many real-world problems require obtaining an optimal trade-off solution for conflicting goals, for example, trying to minimise the electricity cost while maximising comfort in a room. Normally if you maximise comfort, through for example switching on the air-conditioning and switching on the lights in the room, you are also increasing the electricity cost. Therefore, these two goals conflict with one another. Furthermore, a change in the weather may lead to a different desired solution for the room. Another example is finding the optimal route when using a map application or a GPS when driving from one point to another, by minimising the time required and minimising the cost (such as distance travelled or reducing toll fees and thereby avoiding the motor way). However, minimising the cost may lead to a longer travel time being required. In addition, an accident on the route may change the most optimal solution to not being valid anymore. This research investigates using Computational Intelligence algorithms to solve these types of problems, referred to as dynamic multi-objective optimisation problems. Computational Intelligence algorithms have a population of entities, where each entity represents a possible solution in the search space. These algorithms are based on adaptive behaviour found in nature, such as the flying formation of a flock of birds searching for food, pheromones used by ants when foresting for food, genetic material such DNA, etc.

M. Helbig, Heiner Zille, Mahrokh Javadi and Sanaz Mostaghim. Performance of Dynamic Algorithms on the Dynamic Distance Minimization Problem, In Proceedings of the International Genetic and Evolutionary Computation Conference (GECCO) Companion, p. 205-206, Prague, Czech Republic, 13-17 July 2019 (CORE Rank A).

M.  Helbig and   A.P. Engelbrecht. Benchmarks for dynamic multi-objective optimisation algorithms, ACM Computing Surveys, 46(3), September, 2014 (2014 impact factor: 3.373, WoS Rank: Q1).

M.  Helbig and A.P.  Engelbrecht. Performance measures for dynamic multi-objective optimisation, Information Sciences, 250:61-81, November, 2013 (2013 impact factor: 3.643, WoS Rank: Q1).

Estivill-Castro V. (2019) Game Theory Formulation for Ethical Decision Making. In: Aldinhas Ferreira M., Silva Sequeira J., Singh Virk G., Tokhi M., E. Kadar E. (eds) Robotics and Well-Being. Intelligent Systems, Control and Automation: Science and Engineering, vol 95. Springer, Cham.

Multi-agent systems to Model the Human Immunology response to viruses like COVID or to Cancer

David F. Nettleton , Vladimir Estivill-Castro,  Enrique Hernández Jiménez . Multi-agent Modeling Simulation of In-vitro T-cells for Immunologic Alternatives to Cancer Treatment.  ICAART (1) 2020 : 169-178

Intelligent optimisation and deep learning guided protein structure prediction

Supervisors: Professor Abdul Sattar

Explainable AI: reasoning with learning

Learning based search for hard combinatorial optimisation problems

Supervisors: A/Prof. Kaile Su

Description: This Project aims to advance local search technologies to address new challenges for solving hard combinatorial optimization problems in data mining, image processing, and deep neural network. This Project expects to propose new efficient local search strategies, to investigate the mechanism that integrates proposed local search strategies and machine learning for real-world applications, and to explore the local search approach to training deep neural networks. Expected outcomes of this Project include the novel paradigm for efficient local search, and the local search algorithms for solving real-world problems in data mining, image processing, and deep neural network

ChuanLuo ,  Shaowei Cai , Kaile Su,  Wenxuan Huang . CCEHC: An efficient local search algorithm for weighted partial maximum satisfiability.  Artificial Intelligence, Vol. 243 , pages 26-44, 2017.

Yi Fan ,  Nan Li ,  Chengqian Li ,  Zongjie Ma ,  Longin Jan Latecki , Kaile Su. Restart and Random Walk in Local Search for Maximum Vertex Weight Cliques with Evaluations in Clustering Aggregation.  International Joint Conference on Artificial Intelligence, pages 622-630, 2017.

Explainable AI through rule-based machine learning

Supervisors: Dr. Zhe Wang and Prof. Kewen Wang

Description: As existing deep learning systems often behave in a black-box manner and thus are incapable to provide human-understandable explanations for their predictions, which limits their wide application in decision critical applications. This project focuses on the automated construction of rule-based knowledge bases to support machine reasoning and explaining the predictions made.

Pouya Ghiasnezhad Omran, Kewen Wang, and Zhe Wang. An Embedding-based Approach to Rule Learning in Knowledge Graphs. In: IEEE Transactions on Knowledge and Data Engineering (accepted for publication).

Pouya Ghiasnezhad Omran, Kewen Wang, and Zhe Wang. Scalable Rule Learning via Learning Representation. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI-18), pages 2149-2155, 2018.

Machine Learning, Data Analytics and Big Data

Privacy-Preserving Data-Mining

David F. Nettleton , Vladimir Estivill-Castro,  Julián Salas . Privacy in Multiple On-line Social Networks - Re-identification and Predictability.  Trans. Data Priv. 12(1) : 29-56 (2019)

Explanation and verification of machine learning models

Supervisors: Dr. Zhe Hou

Description: Machine learning is a subset of artificial intelligence that is focused on building mathematical models based on sample data, and making predictions without explicitly being programmed to perform the task. Machine learning has been used in data analytics for insurance, sports, tourism, marketing and many other areas. However, most existing machine learning algorithms often give excellent prediction results without telling the user how the decisions are made. This weakness results in trust issues from the user and limitations for adopting machine learning in some applications. To realise white-box machine learning, we propose to develop a new prediction model analysis method based on automated reasoning that systematically extracts logical explanations from prediction models and presents them in a way that users can easily understand. We will then leverage my previous experience in formal verification to convert prediction model into logical model and verify it against user specifications. Finally, we will develop new learning algorithms that can train correct-by-construction prediction models with respect to user specifications.

Optimisation-driven safe reinforcement learning for medical decision-making

Description: There is a tremendous gap between today’s AI systems and the requirements in mission-critical applications. Improving reliability, safety, and security of AI decision-making is of paramount importance. These challenges drove us to develop new AI decision-making techniques which are safer and more secure. Particularly, we propose to integrate formal verification and bio-inspired optimisation techniques into (deep) reinforcement learning (RL) in order to provide a higher level of safety and security guarantees. There are three main modules for the proposed work. The first module concerns the development of new reliable optimisation algorithms that are suitable to be used as the core for reinforcement learning. The second module is about designing an efficient safe reinforcement learning algorithm using PAT and reliability-based optimisation. The third module is an application of the previous two in the scenario of cyber-physical attacks. We propose to extend the previous two modules with an adversarial deep reinforcement learning approach to train a more secure system. Finally we will apply the developed techniques in medical decision-making case studies such as the usage of respirator for COVID-19 treatments and drug dosage analysis.

Automated Intelligence Analysis of Social Media Data for Causal Discovery

Supervisors: Dr. Saiful Islam

Description: The recent growth of social media data opens-up a potentiality for automated systems to collect, process and analyse user generated data on causality. Automated discovery of causality detects the relationship between a cause and the corresponding effect. The discovered causality related information can be directly applied to several applications including automatic question answering, security and prescriptive event analysis. For instance, can we conclude that “lack of communication” caused “a disruption in bus service in Gold Coast” from the tweet “A disruption in bus service in Gold Coast due to lack of communication between translink and event organizers” posted by a user in twitter? Automated discovery of causality in social media data is not straightforward. Rather, it is a very challenging problem due to the unstructured, informal, and diverse nature of social media data. In this project, we aim to tackle this issue by developing an autonomous intelligent system that will collect and process social media data, develop transfer-learning based artificial intelligence (AI) models and algorithms to detect text causality in social media data. Some of our preliminary works have already been accepted by the community and published in the top venues of data mining and AI fields.

Data Privacy for Machine Learning

Description: Machine learning (ML) allows computer systems to train themselves to improve their performance. It is pervasive and plays a key role in a wide range of applications. At a high level, ML consists of two phases. In the first phase, it applies a learning algorithm to a set of training data drawn from some unknown distribution to generate a model (hypothesis). In the second phase, the model can be used to explain new data (e.g., classify new data from the unknown distribution, or generate new data from a distribution that is close to the unknown distribution). In many applications of ML, sensitive data is needed and therefore data privacy becomes a concern. For example, when comes to Machine Learning As a Service, remote entities (usually untrusted) provide access to machine learning algorithms using the Internet to user’s data and return the results. User’s data might be completely exposed to the remote entities if security/privacy mechanisms are not imposed. Also, even with the best privacy on the training data, output (in cleartext form) of the second phase of ML may reveal information on training data. Therefore, with ML is being applied ubiquitously, a set of techniques that protect data privacy in ML is desirable and important. In this project, you will closely analyse the data privacy issues in the context of ML and explore advanced cryptographic and privacy techniques (e.g., fully homomorphic encryption, secure multi-party computation and differential privacy) to provide innovative and practical solutions.

Unified stream learning of medical data for continuous patient outcome monitoring, prognosis, and hospital resource allocation

Supervisors: A/Prof. Alan Wee-Chung Liew

Description: This project aims to develop novel stream learning algorithms for continuous patient outcome monitoring and prognosis by taking into account patient's data collected during hospital admission. The algorithms are expected to integrate high frequency time series data with patient's demographic data, lab test data, diagnosis data, prescription data, etc. as exemplified in MIMIC-III, for accurate patient outcome monitoring and prognosis. This will in turn used to inform hospital resource planning and allocation using for example, our highly efficient binary QP solver [1]. Practical issues such as data sparsity, noisy and missing data, data non-stationarity, data leakage, prediction bias, model explainability, etc. will be investigated.

B.S.Y. Lam, A.W.C. Liew, “A Fast Binary Quadratic Programming Solver based on Stochastic Neighborhood Search”, IEEE Trans on Pattern Analysis and Machine Intelligence, 2020. DOI: 10.1109/TPAMI.2020.3010811

Privacy Preserving Big Data Analytics in Cloud Environments

Supervisors: Dr. Hui Tian

Description: Along with the advances of computing and network technologies, applying AI and machine learning techniques to analyse various types of big data from heterogeneous sources has become a major form of data processing and analysis. However, privacy leakage in accessing, processing and analysing shared (published) data is a major concern that obstacles the development of big data analytics. There have been numerous example of shocking damages and losses - both political and financial - caused by privacy breaches in different scales.

In order to safeguard data sharing for the purpose of big data analytics required by our industry and business, in the project we will investigate effective models, methods and techniques for privacy protection in data publishing, processing and analysis. For data publishing, we will study both cryptographic and non-cryptographic techniques including block cypher, randomization and anonymization to achieve effective protection of different type of data. For data processing, we will study effective privacy-preserving computing techniques including secure multi-party computation (SMC) and differential privacy. We will apply them in a cloud environment on virtualized network and computing resources. For data analysis, we will embed privacy-preserving techniques into machine learning models to achieve secure machine learning on big data.

Project outcomes will benefit both researchers and practitioners in big data analytics, machine learning, cloud computing and social network analysis, and potentially result significant economic gain for Australia's network-centric industry and business.

Hui Tian, Wenwen Sheng, Hong Shen, Can Wang. Truth Finding by Reliability Estimation on Inconsistent Entities for Heterogeneous Data Sets. Knowledge-Based Systems, Jul. 2019. (CORE B, IF 5.921)

Hui Tian, Jingtian Liu and Hong Shen. Diffusion Wavelet-based Privacy Preserving in Social Networks. Computers & Electrical Engineering, Feb. 2018. (CORE B, IF 2.663)

Ruoxuan Wei, Hui Tian and Hong Shen. Improving k-Anonymity Based Privacy Preservation for Collaborative Filtering. Computers & Electrical Engineering, Mar. 2018. (CORE B, IF 2.663)

Effective and Efficient Recommender Systems via Social Networks

Supervisors: Dr. Can Wang

Description: This project aims at building a series of efficient recommender systems with high accuracy from social networks, such as Twitter, Facebook, Instagram, Netflix, and so on. The research questions may include how to quantify the coupling relationships in recommender systems from different levels, how to enhance the interpretability of recommender systems, how to involve the trend information and how to model trust in various recommendation problems, how to speed up the recommendation process but with acceptable accuracy, and etc.

Can Wang, Chi-Hung Chi, Zhong She, Longbing Cao, Bela Stantic. Coupled Clustering Ensemble by Exploring Data Interdependence. ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 63, pages 1-38, 2018. [Impact Factor 2.538, Q1]

Can Wang, Xiangjun Dong, Fei Zhou, Longbing Cao, Chi-Hung Chi. Coupled Attribute Similarity Learning on Categorical Data. IEEE Transactions on Neural Networks and Learning Systems, Vol. 26, No. 4, pages 781-797, 2015. [Impact Factor: 11.683, Q1]

Zhe Liu ,  Lina Yao ,  Lei Bai ,  Xianzhi Wang ,  Can Wang . Spectrum-Guided Adversarial Disparity Learning. The 2020 ACM SIGKDD Conference on Knowledge Discovery and Data Mining (Accepted by KDD 2020). [CORE Ranking: A*]

Ye Tao, Can Wang, Lina Yao, Weimin Li, Yonghong Yu. TRec: Sequential Recommender Based On Latent Item Trend Information. International Joint Conference on Neural Networks (IJCNN 2020), pp. 1-8, 2020. [CORE Ranking: A]

Yunwei Zhao, Can Wang, Chi-Hung Chi, Kwok-Yan Lam, Sen Wang. A Comparative Study of Transactional and Semantic Approaches for Predicting Cascades on Twitter, The 27th International Joint Conference on Artificial Intelligence (IJCAI 2018), pages 1212-1218, 2018 [CORE Ranking: A*]

Approximate query answering in large graphs Description

Supervisors: A/Prof. Junhu Wang

Description: Graphs are increasingly being used to model complex data, and collections of graphs are getting very large, which brings big challenges to query processing. On one hand, many queries in graph databases are expensive by nature, and computing their exact answers can be infeasible when the graph size is large. On the other, in many applications an error-bounded estimate will suffice.  These motivates the work on approximate query answering in large graphs.

This project will investigate approximate query answering in large dynamic graphs where nodes and edges can be frequently updated. We will focus on property graphs where the nodes (and/or edges) are associated with key-value pairs, and queries that may involve simple aggregation (e.g., counting the number of occurrences of substructures), and develop novel techniques to efficiently find high-quality approximate answers.

The approaches will generally involve offline pre-processing (e.g., summarization, smart indexing), algorithm design, and experimental evaluation.  Due to the dynamic nature of the graphs, any auxiliary data structures need to be efficiently maintainable, and ideally incremental computation of query answers will be explored.  We are particularly interested in summarization-based techniques and applying machine-learning in auxiliary structure construction.

Xuguang Ren and Junhu Wang: Exploiting Vertex Relationships in Speeding up Subgraph Isomorphism over Large Graphs. VLDB 2015.

Xuguang Ren and Junhu Wang: Multi-Query Optimization for Subgraph Isomorphism Search. VLDB 2017.

Natural Language Question-Answering over Knowledge Graphs

Description: Knowledge graphs are tremendously popular nowadays because its ability to model diverse information. A knowledge graph can be regarded as a repository of facts about objects and their relationships, represented as labelled edges of a directed graph.  Over the last few years there have been growing interest in industry and academia to develop natural language question-answering (NLQL) systems over large knowledge graphs.  Such systems typically consists of two parts: question understanding and answer searching. Question understanding is to figure out the precise intention of the question, and answer searching is to actually find the answers based on the search intention.  Both tasks are challenging because of the ambiguity of natural language sentences and the fact that the same question an be raised in multiple ways in natural languages, and large size of knowledge graphs.

Existing approaches, whether based on question templates, machine-learning and graph embedding, or subgraph matching, suffer from limited capability in terms of the question types they can handle (i.e., they are limited to simple questions), accuracy, and efficiency. This PhD project will investigate NLQA over large knowledge graphs, with the aim of developing novel techniques to address the above limitations.

Xiangnan Ren, Neha Sengupta, Xuguang Ren, Junhu Wang, Olivier Cur. Finding Structurally Compact Subgraphs with Ontology Exploration in Large RDF data (under review by PVLDB).

Space Research

Development of new machine learning techniques for spectroscopic analysis of Martian soils and rock samples

Supervisors:  Prof. Paulo de Souza and Dr. Liat Rozemberg

Description: During combined 20 years of daily exploration of the surface of Mars, the NASA Mars Exploration Rovers Spirit and Opportunity performed thousands of spectroscopic analysis on soils and rocks [1-2]. A number of approaches have been employed to analyse these spectra including artificial neural networks [3], genetic algorithms [4, 5], and fuzzy logic [6]. These techniques were useful to extract relevant spectral parameters useful in the identification of minerals such as jarosite, hematite, goethite and primary minerals such as olivine and pyroxene [7-10].

Considering the significant temperature dependence of the spectral features and the daily variation of the Martian surface temperature, quality measurements can be at times difficult to be obtained. However, classifying similar samples and combining spectra over extensive ranges might be an acceptable approach aiming at increasing sampling quality over an extensive region visited by the rovers.

This project aims at the development of a new machine learning technique that will be able to combine similar spectroscopic measurements and utilise this combination to gain insights into mineral phase composition of the Martian surface.

[1] R. E. Arvidson, S. W. Squyres, J. F. Bell, J. G. Catalano, B. C. Clark, L. S. Crumpler, P. A. de Souza, A. G. Fairen, W. H. Farrand, V. K. Fox, R. Gellert, A. Ghosh, M. P. Golombek, J. P. Grotzinger, E. A. Guinness, K. E. Herkenhoff, B. L. Jolliff, A. H. Knoll, R. Li, S. M. McLennan, D. W. Ming, D. W. Mittlefehldt, J. M.  Moore, R. V. Morris, S. L. Murchie, et al. Ancient Aqueous Environments at Endeavour Crater, Mars. Science v. 343, p. 1248097-1248097, 2014. Doi: 10.1126/science.1248097

[2] S. W. Squyres, R. E. Arvidson, J. F. Bell, F. Calef, B. C. Clark, B. A. Cohen, L. A. Crumpler, P. A. de Souza, W. H. Farrand, R. Gellert, J. Grant, K. E. Herkenhoff, J. A. Hurowitz, J. R. Johnson, B. L. Jolliff, A. H. Knoll, R. Li, S. M. Mclennan, D. W. Ming, D. W. Mittlefehldt, T. J. Parker, G. Paulsen, M. S. Rice, S. W. Ruff, C. Schroder, A. S. Yen, K. Zacny, Ancient Impact and Aqueous Processes at Endeavour Crater, Mars. Science, v. 336, p. 570-576, 2012. doi: 10.1126/science.1220476

[3] P. A. de Souza (1998) Advances in Mössbauer data analysis. Hyperfine Interactions, 113, 383-390. doi: 10.1023/A:1012673027232.

[4] F. Susanto, P. de Souza, Mössbauer spectral curve fitting combining fundamentally different techniques, Nuclear Instruments and Methods in Physics Research Section B, v. 385 (2016) 40-45. doi: 10.1016/j.nimb.2016.08.011

[5] Jeremy Breen, P. de Souza, G. Timms, R. Ollington, Onboard assessment of XRF spectra using genetic algorithms for decision making on an autonomous underwater vehicle, Nuclear Instruments and Methods in Physics Research B 269 (2011) 1341-1245. doi: 10.1016/j.nimb.2011.03.012.

[6] P. A. de Souza (1999) Automation in Mössbauer Spectroscopy Data Analysis. Laboratory Robotics and Automation, 113-23. doi: 10.1002/(SICI)1098-2728(1999)11:1<3::AID-LRA2>3.0.CO;2-F.

[7] M. S. Rice, J. F. Bell III, E. A. Cloutis, A. Wang, S. W. Ruff, M. A. Craig, D. T. Bailey, J. R. Johnson, P. A. de Souza, W. H. Farrand (2010) Hydrated Minerals in Gusev Crater. Icarus, Vol 205, 2 (2010) 375-395. doi: 10.1016/j.icarus.2009.03.035.

[8] W. Goetz, P. Bertelsen, C. S. Binau, H. P. Gunnlaugsson, S. F. Hviid, K. M. Kinch, D. E. Madsen, M. B. Madsen, M. Olsen, R. Gellert, G. Klingelhöfer, D. W. Ming, R. V. Morris, R. Rieder, D. S. Rodionov, P. A. de Souza, C. Schröder, S. W. Squyres, T. Wdowiak, A. Yen (2005) Indication of drier periods on Mars from the chemistry and mineralogy of atmospheric dust, Nature, Vol 43662-65. doi: 10.1038/nature03807.

[9] R. V. Morris, Klingelhöfer, B. Bernhardt, C. Schröder, D. Rodionov, P. A. de Souza, A. Yen, R. Gellert, E. N. Evlanov, J. Foh, E. Kankeleit, P. Gutlich (2004) Mineralogy at Gusev Crater from the Mössbauer Spectrometer on the Spirit Rover. Science, 305, 833-836. doi: 10.1126/science.1100020.

[10] G. Klingelhöfer, R. V. Morris, B. Bernhardt, C. Schröder, D. Rodionov, P. A. de Souza, A. Yen, R. Gellert, E. N. Evlanov, B. Zubkov, J. Foh, U. Bonnes, E. Kankeleit, P. Gutlich, D. W. Ming, F. Renz, T. Wdowiak, S. W. Squyres, R. E. Arvidson (2004) Jarosite and Hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer. Science, 306,1740-1745. doi: 10.1126/science.1104653.

Connect with us

If you would like to work, study or collaborate with us, get in touch

PLANET AI Logo

Recognition

Classification

Historical Archives

Document Indexing

Forms Processing

OEM Integration

Records Classification

  • PLANETBRAIN
  • PerceptionMatrix
  • Publications

Research Projects

Resource Center

Customer Stories

  • Press & News

Enhancing PLANET BRAIN every day

Recent progress in the areas of Artificial Intelligence (AI) and Machine Learning (ML) are tremendous. Almost monthly, we see reports announcing breakthroughs in different technological aspects of AI.

As an organization focussing on research and development, we can look back on an increasing number of research projects .

technology research projects

Publicly funded Research Projects

Ki-dera (2024).

Goal: Development and validation of a radiological AI assistance system to support dementia diagnosis

Duration:  3 years

Partner: DZNE, Institute for Diagnostic and Interventional Radiology, Pediatric- und Neuroradiology, webhub GmbH

CAPTAIN (2023)

Goal: Real-time artificial intelligence annotation of multimodality endoscopy images in pancreatic cancer, allowing tumor cells to be detected during the examination and treated or removed directly

Duration:  3 years

Partner: PolyDiagnost GmbH, University Medical Center Göttingen, Institute for Diagnostic and Interventional Radiology, Faculty Engineering & Health of the University of Allied Science and Arts

Ocean Technology Center - DaTA (2022)

Partner: EvoLogics GmbH, IAV GmbH, Fraunhofer IGD, University of Rostock, IOW

Ocean Technology Center - Genomics (2022)

Partner: Leibnitz Institute for Baltic Sea Research Warnemünde, IOW, LGC Genomics, Hydrobios, Fraunhofer IGD

Intelligent Radiological Assistant (2020)

Partner: University of Rostock

NewsEye (2019)

Partner: University of Rostock, University of La Rochelle, Austrian National Library, University of Helsinki, University of Innsbruck, National Library of France, University of Montpellier, University of Vienna

READ (2016)

Goal: Recognition of historical handwritten texts (European cultural heritage 1500 – 1800)

Partner: University of Rostock, University of Greifswald, National Archives Finland, University of Erlangen-Nuremberg, University of Innsbruck, University of Valencia, University of Edinburgh, National Archives Norway, Swedish National Archives, University of Vienna

Automatic Full-Text Recognition (2014)

Goal: Algorithms for automatic full text recognition in handwritten historical documents

ORGANIC (2009)

Solutions by Industry

Solutions by Process

Popular Posts

OCR Beginner Guide

Document Classification Beginner

Data Extraction Beginner

Major Challenge – ICR

On-Premises vs. Cloud

White Paper

Press & News

Customer Support Center

© 2024 PLANET AI GmbH | All Rights Reserved | Legal Notice | Privacy Policy | Change Privacy Settings | Revoke Consents

Microsoft Research: Advancing science and technology to benefit humanity

Microsoft Research Podcast

Abstracts: May 20, 2024

Microsoft Research Podcast - Abstracts | May 20, 2024 | Andrey Kolobov

What’s Your Story: Jacki O’Neill  

May 16, 2024 | Johannes Gehrke, Jacki O'Neill

Microsoft at CHI 2024

Microsoft at CHI 2024: Innovations in human-centered design  

May 15, 2024

The image features a complex network of interconnected nodes with a molecular structure, illuminated in blue against a dark background.

MatterSim: A deep-learning model for materials under real-world conditions  

May 13, 2024 | Han Yang, Jielan Li, Hongxia Hao, Ziheng Lu

Explore Microsoft Research Forum

various abstract 3D shapes on a light blue background

Microsoft Research Forum  

Chris Bishop giving talk at Microsoft Research Forum Episode 2

Transforming health care and the natural sciences, AI and society, and the evolution of foundational AI technologies  

Microsoft Research Forum Briefing Book cover image

Research Forum Brief | January 2024  

Research Forum | Episode 2 - abstract chalkboard background

Research Forum Brief | March 2024  

Careers in research, principal data scientist – core search  .

Location : Beijing, China

Senior Data & Applied Scientist – Windows and Devices  

Location : Hyderabad, Telangana, India

Senior Researcher – DiskANN  

Location : Bangalore, Karnataka, India

Data Science – Industry Solutions Delivery, Engineering & Architecture Group  

Locations : Bangalore, Karnataka, India; Hyderabad, Telangana, India

Principal Data Scientist – Industry Solutions Engineering (ISE)  

Location : Sydney, New South Wales, Australia

Research SDE II – Microsoft Cloud and AI (C+AI)  

Location : Taipei, Taiwan

Cambridge Residency Programme: AI Design Researcher  

Location : Cambridge, UK

Senior Data Scientist – Azure  

Location : Remote

Senior Data Scientist – Microsoft Azure cloud  

Locations : Remote; Romania

Data Science Intern – Microsoft Aspire Experience  

Location : Belgrade, Serbia

Senior Machine Learning Software Engineer – Microsoft Mesh  

Data scientist – microsoft azure cloud  , data scientist 2 – industry solutions engineering (healthcare)  .

Location : Herzliya, Tel Aviv, Israel

Principal Data Scientist – Education Insights  

Applied scientist: internship opportunities  , principal ai architect – microsoft defender for endpoint  .

Locations : Beer-Sheva, Israel; Haifa, Israel; Herzliya, Tel Aviv, Israel; Nazareth, Northern, Israel

Principle Security Research Program Manager Team Lead – Microsoft Defender for Endpoint  

Data science and research: msc & phd internship opportunities  , senior researcher – azure research – systems, ai infrastructure power efficiency  .

Location : Redmond, WA, US

Senior Data Scientist – CTJ – Spectre AI team  

Location : Reston, Virginia, US

Senior Data Scientist – Threat Protection Research Team  

Principal applied scientist manager – microsoft ads  .

Locations : Redmond, WA, US; San Francisco, CA, US

Principal AI Safety Researcher – AI Red Team  

Locations : Redmond, WA, US; Remote (within US); Remote (within US/CAN)

Data Scientist II – Graph Growth and Monetization initiative  

Locations : Chile; Colombia; Mexico

Events & conferences

Facct 2024  .

Upcoming: June 3, 2024 – June 7, 2024

Rio de Janeiro, Brazil

Microsoft Research Forum | Episode 3  

Upcoming: June 4, 2024

Inclusive Digital Maker Futures Workshop  

Upcoming: June 16, 2024

Delft, Netherlands

News & awards

These recyclable circuit boards could stem e-waste  .

IEEE Spectrum  |  May 2, 2024

Providing further transparency on our responsible AI efforts  

Microsoft On the Issues  |  May 1, 2024

AI ‘for all’: How access to new models is advancing academic research, from astronomy to education  

Microsoft Source  |  Mar 12, 2024

Village by village, creating the building blocks for AI tools  

LinkedIn  |  Mar 1, 2024

  • Follow on Twitter
  • Like on Facebook
  • Follow on LinkedIn
  • Subscribe on Youtube
  • Follow on Instagram
  • Subscribe to our RSS feed

Share this page:

  • Share on Twitter
  • Share on Facebook
  • Share on LinkedIn
  • Share on Reddit

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • 15 May 2024

‘Quantum internet’ demonstration in cities is most advanced yet

  • Davide Castelvecchi

You can also search for this author in PubMed   Google Scholar

You have full access to this article via your institution.

A pair of researchers work at electronic equipment lit up in green and pink.

A quantum network node at Delft University of Technology in the Netherlands. Credit: Marieke de Lorijn for QuTech

Three separate research groups have demonstrated quantum entanglement — in which two or more objects are linked so that they contain the same information even if they are far apart — over several kilometres of existing optical fibres in real urban areas. The feat is a key step towards a future quantum internet , a network that could allow information to be exchanged while encoded in quantum states.

Together, the experiments are “the most advanced demonstrations so far” of the technology needed for a quantum internet, says physicist Tracy Northup at the University of Innsbruck in Austria. Each of the three research teams — based in the United States, China and the Netherlands — was able to connect parts of a network using photons in the optical-fibre-friendly infrared part of the spectrum, which is a “major milestone”, says fellow Innsbruck physicist Simon Baier.

technology research projects

How to build a quantum internet

A quantum internet could enable any two users to establish almost unbreakable cryptographic keys to protect sensitive information . But full use of entanglement could do much more, such as connecting separate quantum computers into one larger, more powerful machine. The technology could also enable certain types of scientific experiment, for example by creating networks of optical telescopes that have the resolution of a single dish hundreds of kilometres wide.

Two of the studies 1 , 2 were published in Nature on 15 May. The third was described last month in a preprint posted on arXiv 3 , which has not yet been peer reviewed.

Impractical environment

Many of the technical steps for building a quantum internet have been demonstrated in the laboratory over the past decade or so. And researchers have shown that they can produce entangled photons using lasers in direct line of sight of each other, either in separate ground locations or on the ground and in space.

But going from the lab to a city environment is “a different beast”, says Ronald Hanson, a physicist who led the Dutch experiment 3 at the Delft University of Technology. To build a large-scale network, researchers agree that it will probably be necessary to use existing optical-fibre technology. The trouble is, quantum information is fragile and cannot be copied; it is often carried by individual photons, rather than by laser pulses that can be detected and then amplified and emitted again. This limits the entangled photons to travelling a few tens of kilometres before losses make the whole thing impractical. “They also are affected by temperature changes throughout the day — and even by wind, if they’re above ground,” says Northup. “That’s why generating entanglement across an actual city is a big deal.”

The three demonstrations each used different kinds of ‘quantum memory’ device to store a qubit, a physical system such as a photon or atom that can be in one of two states — akin to the ‘1’ or ‘0’ of ordinary computer bits — or in a combination, or ‘quantum superposition’, of the two possibilities.

technology research projects

The quantum internet has arrived (and it hasn’t)

In one of the Nature studies, led by Pan Jian-Wei at the University of Science and Technology of China (USTC) in Hefei, qubits were encoded in the collective states of clouds of rubidium atoms 1 . The qubits’ quantum states can be set using a single photon, or can be read out by ‘tickling’ the atomic cloud to emit a photon. Pan’s team had such quantum memories set up in three separate labs in the Hefei area. Each lab was connected by optical fibres to a central ‘photonic server’ around 10 kilometres away. Any two of these nodes could be put in an entangled state if the photons from the two atom clouds arrived at the server at exactly the same time.

By contrast, Hanson and his team established a link between individual nitrogen atoms embedded in small diamond crystals with qubits encoded in the electron states of the nitrogen and in the nuclear states of nearby carbon atoms 3 . Their optical fibre went from the university in Delft through a tortuous 25-kilometre path across the suburbs of The Hague to reach a second laboratory in the city.

In the US experiment, Mikhail Lukin, a physicist at Harvard University in Cambridge, Massachusetts, and his collaborators also used diamond-based devices, but with silicon atoms instead of nitrogen, making use of the quantum states of both an electron and a silicon nucleus 2 . Single atoms are less efficient than atomic ensembles at emitting photons on demand, but they are more versatile, because they can perform rudimentary quantum computations. “Basically, we entangled two small quantum computers,” says Lukin. The two diamond-based devices were in the same building at Harvard, but to mimic the conditions of a metropolitan network, the researchers used an optical fibre that snaked around the local Boston area. “It crosses the Charles River six times,” Lukin says.

Challenges ahead

The entanglement procedure used by the Chinese and the Dutch teams required photons to arrive at a central server with exquisite timing precision, which was one of the main challenges in the experiments. Lukin’s team used a protocol that does not require such fine-tuning: instead of entangling the qubits by getting them to emit photons, the researchers sent one photon to entangle itself with the silicon atom at the first node. The same photon then went around the fibre-optic loop and came back to graze the second silicon atom, thereby entangling it with the first.

Pan has calculated that at the current pace of advance, by the end of the decade his team should be able to establish entanglement over 1,000 kilometres of optical fibres using ten or so intermediate nodes, with a procedure called entanglement swapping . (At first, such a link would be very slow, creating perhaps one entanglement per second, he adds.) Pan is the leading researcher for a project using the satellite Micius , which demonstrated the first quantum-enabled communications in space, and he says there are plans for a follow-up mission.

“The step has now really been made out of the lab and into the field,” says Hanson. “It doesn’t mean it’s commercially useful yet, but it’s a big step.”

Nature 629 , 734-735 (2024)

doi: https://doi.org/10.1038/d41586-024-01445-2

Knaut, C. M. et al. Nature 629 , 573–578 (2024).

Article   PubMed   Google Scholar  

Liu, J. L. et al. Nature 629 , 579–585 (2024).

Stolk, A. J. et al. Preprint at arXiv https://doi.org/10.48550/arXiv.2404.03723 (2024).

Download references

Reprints and permissions

Related Articles

technology research projects

The AI–quantum computing mash-up: will it revolutionize science?

  • Quantum physics
  • Quantum information

Entanglement of nanophotonic quantum memory nodes in a telecom network

Entanglement of nanophotonic quantum memory nodes in a telecom network

Article 15 MAY 24

Wavefunction matching for solving quantum many-body problems

Wavefunction matching for solving quantum many-body problems

Creation of memory–memory entanglement in a metropolitan quantum network

Creation of memory–memory entanglement in a metropolitan quantum network

An atomic boson sampler

An atomic boson sampler

Article 08 MAY 24

Assistant Professor in Plant Biology

The Plant Science Program in the Biological and Environmental Science and Engineering (BESE) Division at King Abdullah University of Science and Te...

Saudi Arabia (SA)

King Abdullah University of Science and Technology

technology research projects

Postdoctoral Fellow

New Orleans, Louisiana

Tulane University School of Medicine

technology research projects

Postdoctoral Associate - Immunology

Houston, Texas (US)

Baylor College of Medicine (BCM)

technology research projects

Postdoctoral Associate

Vice president, nature communications portfolio.

This is an exciting opportunity to play a key leadership role in the market-leading journal Nature Portfolio and help drive its overall contribution.

New York City, New York (US), Berlin, or Heidelberg

Springer Nature Ltd

technology research projects

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

U.S. flag

An official website of the United States government

Here's how you know

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. A lock ( ) or https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Keyboard Navigation

  • Agriculture and Food Security
  • Anti-Corruption
  • Conflict Prevention and Stabilization
  • Democracy, Human Rights, and Governance
  • Economic Growth and Trade
  • Environment, Energy, and Infrastructure
  • Gender Equality and Women's Empowerment
  • Global Health
  • Humanitarian Assistance
  • Innovation, Technology, and Research
  • Water and Sanitation
  • Burkina Faso
  • Central Africa Regional
  • Central African Republic
  • Côte d’Ivoire
  • Democratic Republic of the Congo
  • East Africa Regional
  • Power Africa
  • Republic of the Congo
  • Sahel Regional
  • Sierra Leone
  • South Africa
  • South Sudan
  • Southern Africa Regional
  • West Africa Regional
  • Afghanistan
  • Central Asia Regional
  • Indo-Pacific
  • Kyrgyz Republic
  • Pacific Islands
  • Philippines
  • Regional Development Mission for Asia
  • Timor-Leste
  • Turkmenistan
  • Bosnia and Herzegovina
  • North Macedonia
  • Central America and Mexico Regional Program
  • Dominican Republic
  • Eastern and Southern Caribbean
  • El Salvador
  • Middle East Regional Platform
  • West Bank and Gaza
  • Dollars to Results
  • Data Resources
  • Strategy & Planning
  • Budget & Spending
  • Performance and Financial Reporting
  • FY 2023 Agency Financial Report
  • Records and Reports
  • Budget Justification
  • Our Commitment to Transparency
  • Policy and Strategy
  • How to Work with USAID
  • Find a Funding Opportunity
  • Organizations That Work With USAID
  • Resources for Partners
  • Get involved
  • Business Forecast
  • Safeguarding and Compliance
  • Diversity, Equity, Inclusion, and Accessibility
  • Mission, Vision and Values
  • News & Information
  • Operational Policy (ADS)
  • Organization
  • Stay Connected
  • USAID History
  • Video Library
  • Coordinators
  • Nondiscrimination Notice and Civil Rights
  • Collective Bargaining Agreements
  • Disabilities Employment Program
  • Federal Employee Viewpoint Survey
  • Reasonable Accommodations
  • Urgent Hiring Needs
  • Vacancy Announcements
  • Search Search Search

Research transforms lives. It helps us understand complex problems and create solutions across cultures, regions, and sectors. By leveraging research-based tools, approaches, and innovations, we improve how we design our health systems, build resilience, boost productivity in agriculture, strengthen educational systems, and understand environmental changes.

USAID is committed to evidence-based decision making through its investments in research and development activities. By partnering with higher education institutions and increasing the use of scientific research, tools, and analysis, USAID is improving development outcomes.

Cover for ITR 2024 Research Fact Sheet

Higher Education Solutions Network (HESN)

A woman looks through a microscope

Body Higher Education Solutions Network (HESN) is a partnership between USAID and seven top universities, designed to channel the ingenuity of university students, researchers, and faculty towards global development.

Science and Technology Fellowships

A large group of people pose for a photo

Body USAID hosts several fellowship programs that are characterized by their commitment to the use of science, technology, and innovation across USAID’s sectors. Fellows bring diverse technical backgrounds to USAID, including life sciences, physical sciences, social sciences, mathematics, engineering, public health, and medicine.

Regeneron International Science and Engineering Fair (ISEF)

An adult and children look at a science project display

Body The Regeneron International Science and Engineering Fair (ISEF) is the world’s largest international pre-college science competition. Each year, ISEF brings over 1,800 high school students from 75 countries to exhibit and demonstrate ingenuity and innovation through science projects of their own design.

Policy & Coordination

A man and a woman sign official papers in front of flags

USAID’s Innovation, Technology, and Research (ITR) Hub uses research and evidence-based practice to drive successful programming and development.

Partnerships & Approaches

A group of women sit in a row, reading books and pamphlets together

Body Coming soon

Impact & Learning

A person works on a remote controlled airplane

Body Read publications and evaluations on how scientific research is contributing to international development and get first-person perspectives on how our programs are impacting lives and livelihoods.

Contact [email protected] to learn more!

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

Publications

  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

Internet & Technology

6 facts about americans and tiktok.

62% of U.S. adults under 30 say they use TikTok, compared with 39% of those ages 30 to 49, 24% of those 50 to 64, and 10% of those 65 and older.

Many Americans think generative AI programs should credit the sources they rely on

Americans’ use of chatgpt is ticking up, but few trust its election information, whatsapp and facebook dominate the social media landscape in middle-income nations, sign up for our internet, science, and tech newsletter.

New findings, delivered monthly

When Online Content Disappears

A quarter of all webpages that existed at one point between 2013 and 2023 are no longer accessible.

A quarter of U.S. teachers say AI tools do more harm than good in K-12 education

High school teachers are more likely than elementary and middle school teachers to hold negative views about AI tools in education.

Teens and Video Games Today

85% of U.S. teens say they play video games. They see both positive and negative sides, from making friends to harassment and sleep loss.

Americans’ Views of Technology Companies

Most Americans are wary of social media’s role in politics and its overall impact on the country, and these concerns are ticking up among Democrats. Still, Republicans stand out on several measures, with a majority believing major technology companies are biased toward liberals.

22% of Americans say they interact with artificial intelligence almost constantly or several times a day. 27% say they do this about once a day or several times a week.

About one-in-five U.S. adults have used ChatGPT to learn something new (17%) or for entertainment (17%).

Across eight countries surveyed in Latin America, Africa and South Asia, a median of 73% of adults say they use WhatsApp and 62% say they use Facebook.

5 facts about Americans and sports

About half of Americans (48%) say they took part in organized, competitive sports in high school or college.

How Teens and Parents Approach Screen Time

Most teens at least sometimes feel happy and peaceful when they don’t have their phone, but 44% say this makes them anxious. Half of parents say they have looked through their teen’s phone.

REFINE YOUR SELECTION

Research teams, signature reports.

technology research projects

The State of Online Harassment

Roughly four-in-ten Americans have experienced online harassment, with half of this group citing politics as the reason they think they were targeted. Growing shares face more severe online abuse such as sexual harassment or stalking

Parenting Children in the Age of Screens

Two-thirds of parents in the U.S. say parenting is harder today than it was 20 years ago, with many citing technologies – like social media or smartphones – as a reason.

Dating and Relationships in the Digital Age

From distractions to jealousy, how Americans navigate cellphones and social media in their romantic relationships.

Americans and Privacy: Concerned, Confused and Feeling Lack of Control Over Their Personal Information

Majorities of U.S. adults believe their personal data is less secure now, that data collection poses more risks than benefits, and that it is not possible to go through daily life without being tracked.

Americans and ‘Cancel Culture’: Where Some See Calls for Accountability, Others See Censorship, Punishment

Social media fact sheet, digital knowledge quiz, video: how do americans define online harassment.

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

Copyright 2024 Pew Research Center

Research at RIT

a small computer hooked up to various machines

The world needs collaborative thinkers who seek pressing problems and propose innovative, game-changing solutions. RIT’s researchers explore galaxies and help set the pace for a future in photonics. They are the creativity behind discoveries to sustain the planet; they provide medical technologies designed to help individuals overcome obstacles.  They are solving some of the current challenges in cybersecurity and imaging to protect people and organizations.

Through research, RIT is making an impact.

Sponsored research awards in 2022 fiscal year

Faculty members who have received prestigious CAREER awards from the National Science Foundation since 2014

Current researchers who have achieved $1 million or more in funding since 2000

Learn more about research awards and recognition   

Signature Research Areas

A network style diagram with padlocks signifying secure nodes.

Cybersecurity

An RIT student using an HTC Vive virtual reality unit.

Games, Film, and Digital Media

A researcher working on a drone they are about to use.

Imaging Science

A rendering of the gravitational waves generated by black holes.

Multi-messenger Astronomy

An RIT researcher pouring liquid from a beaker to a test tube.

  • Personalized Healthcare Technology

A laser being shined into a sensor.

Photonics/Quantum

A researcher in a lab in the Golisano Institute for Sustainability.

Sustainability

Key Research Centers and Institutes

  • AMPrint  (Center for Additive Manufacturing and Multifunctional Printing)
  • Battery Development Center
  • Center for Advancing Scholarship to Transform Learning  (CASTLE)
  • Center for Computational Relativity and Gravitation
  • Center for Detectors
  • Center for Human-aware AI  (CHAI)
  • Center for Imaging Science
  • Center for Public Safety Initiatives
  • The Future Photon Initiative
  • Image Permanence Institute
  • Golisano Institute for Sustainability
  • ESL Global Cybersecurity Institute
  • Laboratory for Multiwavelength Astrophysics  (LAMA)
  • MAGIC Center  (Media, Arts, Games, Innovation and Creativity)
  • New York State Pollution Prevention Institute

Industry Collaborations

RIT is one of the top universities in the nation working at the intersection of technology, the arts, and design with close ties to industry and alumni.

Resources for Researchers

Identify funding opportunities

Prepare a proposal

Policies and procedures

Manage externally funded project

Conduct research with human subjects

Computing resources

Apply for a patent

Research support for deaf and hard-of-hearing community

Learn More about resources for researchers at RIT

Latest Research News

May 13, 2024

a college age girl stands in a ceramic studio room with two large, raw clay serving platters in front of her.

Ceramics and Illustration graduate Emma Herz Thakur travels to France as a Fulbright awardee

Emma Herz Thakur ’24 feels fortunate that at RIT she met people who have won major grants, had their work featured in museums, and are connected with scholars from around the world. Now, she is one of them.

Nickesia Gordon is shown in a headshot next to an orange box that displays her name.

RIT Associate Professor Nickesia Gordon earns prestigious Fulbright award

Nickesia Gordon has always had hopes of using her knowledge and expertise in health communication, gender, and social change to make the world a better place. Now, having earned a prestigious Fulbright Scholars award, she will travel back to Jamaica to begin the process of establishing a graduate program in health communication.

a college age boy is shown in a suit jacket and white shirt leaning on a staircase railing and looking towards the left.

Graduate Joseph Casale ready to return to Malaysia as a Fulbright awardee

Joseph Casale had hardly been on a plane when he traveled to Malaysia to do research a year ago. Now, he gets the opportunity to do it again.

the words More internation fellowships and scholarships is displayed in white on a multicolor background.

Students will ‘live, learn, and explore’ abroad thanks to international fellowships and scholarships

Throughout the course of the academic year, hundreds of RIT students prepare to compete for some of the most prestigious international fellowships and scholarships available. Intensive research projects, applications, essays, and interviews all play a critical role in their selection.

a headshot of Mikkael Lamoca is shown on a white background with an orange square to the right with text that shows his name.

Mikkael Lamoca receives Fulbright scholarship to complete cutting-edge STEM cell research

Conducting hands-on research was a hallmark of the time Mikkael Lamoca ‘24 (biomedical engineering), ‘24 MS (science, technology, and public policy) spent at RIT. A Fulbright award presents him a new opportunity to conduct cutting-edge research at one of the top universities in Asia.

May 6, 2024

Nastaran Nagshineh is shown with other faculty in a small room where she defended her thesis.

RIT graduate pursues Ph.D. across time zones

Nastaran Nagshineh, a Ph.D. candidate at RIT, successfully bridged the Rochester and Dubai campuses, paving the way for future international students. Nagshineh is one of 67 Ph.D. students who defended their thesis this academic year and who will earn their doctorate.

May 1, 2024

a man looks at a computer laptop screen while sitting in front of a whiteboard with formulas scribbled across it.

Humans are the nuts and bolts of robotics research

At RIT, robots are learning to read the room—especially rooms with humans. Improved communication between robots and people is part of the human-centered philosophy that anchors much of RIT’s work in robotics.

April 29, 2024

a student is standing at a lab table testing micron glass beads to improve visualization under fluorescent microscopes.

Students discover research opportunities on the path to graduation

Independent research projects can help cultivate critical thinking, collaboration, and problem-solving skills. Whether it’s late nights spent in a RIT lab or a field study in the mountains, research experiences can be a cutting-edge way for students to prepare for the future.

More News     

Two female students in white lab coats working in a lab

Research Magazine

Want to receive a free print version of Research at RIT? Sign up for our mailing list to receive our next issue or view an archive of issues online.

Research Events

COS DEI Workshop: Socioeconomic Status in Higher Ed

COS DEI Workshop: Faculty Retention Seminar

NENY | RIT BPC Li-Ion Cells Manufacturing Seminar

All RIT Events    

Grayscale image of The Sentinel

Drive progress. Shape what's possible. Transform the future.

Our Goal: $1 Billion

Learn More about Transforming RIT  

MIT Technology Review

  • Newsletters

Super-efficient solar cells: 10 Breakthrough Technologies 2024

Solar cells that combine traditional silicon with cutting-edge perovskites could push the efficiency of solar panels to new heights.

  • Emma Foehringer Merchant archive page

Neighborhood scene with a home powered by solar panels has resident blow drying their hair, while the other resident makes eggs on the grill that resemble the solar units. Their dog looks happy in a solar-powered doghouse with a powered coffee cup next to its paw. A cyclist is passing by on a solar-powered bike.

Beyond Silicon, Caelux, First Solar, Hanwha Q Cells, Oxford PV, Swift Solar, Tandem PV

3 to 5 years

In November 2023, a buzzy solar technology broke yet another world record for efficiency. The previous record had existed for only about five months—and it likely won’t be long before it too is obsolete. This astonishing acceleration in efficiency gains comes from a special breed of next-­generation solar technology: perovskite tandem solar cells. These cells layer the traditional silicon with materials that share a unique crystal structure.

In the decade that scientists have been toying with perovskite solar technology , it has continued to best its own efficiency records, which measure how much of the sunlight that hits the cell is converted into electricity. Perovskites absorb different wavelengths of light from those absorbed by silicon cells, which account for 95% of the solar market today. When silicon and perovskites work together in tandem solar cells, they can utilize more of the solar spectrum, producing more electricity per cell. 

Technical efficiency levels for silicon-­based cells top out below 30%, while perovskite-only cells have reached experimental efficiencies of around 26%. But perovskite tandem cells have already exceeded 33% efficiency in the lab. That is the technology’s tantalizing promise: if deployed on a significant scale, perovskite tandem cells could produce more electricity than the legacy solar cells at a lower cost. 

But perovskites have stumbled when it comes to actual deployment. Silicon solar cells can last for decades. Few perovskite tandem panels have even been tested outside. 

The electrochemical makeup of perovskites means they’re sensitive to sucking up water and degrading in heat, though researchers have been working to create better barriers around panels and shifting to more stable perovskite compounds. 

In May, UK-based Oxford PV said it had reached an efficiency of 28.6% for a commercial-size perovskite tandem cell, which is significantly larger than those used to test the materials in the lab, and it plans to deliver its first panels and ramp up manufacturing in 2024. Other companies could unveil products later this decade. 

Climate change and energy

The problem with plug-in hybrids their drivers..

Plug-in hybrids are often sold as a transition to EVs, but new data from Europe shows we’re still underestimating the emissions they produce.

  • Casey Crownhart archive page

These artificial snowdrifts protect seal pups from climate change

The human-built habitats shield the pups from predators and the freezing cold, but they’re threatened by global temperature rise.

  • Matthew Ponsford archive page

How thermal batteries are heating up energy storage

The systems, which can store clean energy as heat, were chosen by readers as the 11th Breakthrough Technology of 2024.

The hard lessons of Harvard’s failed geoengineering experiment

Some observers argue the end of SCoPEx should mark the end of such proposals. Others say any future experiments should proceed in markedly different ways.

  • James Temple archive page

Stay connected

Get the latest updates from mit technology review.

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at [email protected] with a list of newsletters you’d like to receive.

Cornell Chronicle

  • Architecture & Design
  • Arts & Humanities
  • Business, Economics & Entrepreneurship
  • Computing & Information Sciences
  • Energy, Environment & Sustainability
  • Food & Agriculture
  • Global Reach
  • Health, Nutrition & Medicine
  • Law, Government & Public Policy
  • Life Sciences & Veterinary Medicine
  • Physical Sciences & Engineering
  • Social & Behavioral Sciences
  • Coronavirus
  • News & Events
  • Public Engagement
  • New York City
  • Photos of the Week
  • Big Red Sports
  • Freedom of Expression
  • Student Life
  • University Statements

Around Cornell

  • All Stories
  • In the News
  • Expert Quotes
  • Cornellians

A piece of robotic machinery in a factory setting

News directly from Cornell's colleges and centers

Research: Technology is changing how companies do business

By sarah mangus-sharpe.

A new study from the Cornell SC Johnson College of Business advances understanding of the U.S. production chain evolution amidst technological progress in information technology (IT), shedding light on the complex connections between business IT investments and organizational design. Advances in IT have sparked significant changes in how companies design their production processes. In the paper " Production Chain Organization in the Digital Age: Information Technology Use and Vertical Integration in U.S. Manufacturing ," which published April 30 in Management Science, Chris Forman , the Peter and Stephanie Nolan Professor in the Dyson School of Applied Economics and Management , and his co-author delved into what these changes mean for businesses and consumers.

Forman and Kristina McElheran, assistant professor of strategic management at University of Toronto, analyzed U.S. Census Bureau data of over 5,600 manufacturing plants to see how the production chains of businesses were affected by the internet revolution. Their use of census data allowed them to look inside the relationships among production units within and between companies and how transaction flows changed after companies invested in internet-enabled technology that facilitated coordination between them. The production units of many of the companies in their study concurrently sold to internal and external customers, a mix they refer to as plural selling. They found that the reduction in communication costs enabled by the internet shifted the mix toward more sales outside of the firm, or less vertical integration.

The research highlights the importance of staying ahead of the curve in technology. Companies that embrace digital technologies now are likely to be the ones that thrive in the future. And while there are still many unanswered questions about how these changes will play out, one thing is clear: The relationship between technology and business is only going to become more and more intertwined in the future.

Read the full story on the Cornell SC Johnson College of Business news site, BusinessFeed.

Media Contact

Media relations office.

Get Cornell news delivered right to your inbox.

You might also like

technology research projects

Gallery Heading

9 Undergraduate Research Projects That Wowed Us This Year

The telegraph. The polio vaccine. The bar code. Light beer. Throughout its history, NYU has been known for innovation, with faculty and alumni in every generation contributing to some of the most notable inventions and scientific breakthroughs of their time. But you don’t wind up in the history books—or peer-reviewed journals—by accident; academic research, like any specialized discipline, takes hard work and lots of practice. 

And at NYU, for students who are interested, that training can start early—including during an undergraduate's first years on campus. Whether through assistantships in faculty labs, summer internships, senior capstones, or independent projects inspired by coursework, undergrad students have many opportunities to take what they’re learning in the classroom and apply it to create original scholarship throughout their time at NYU. Many present their work at research conferences, and some even co-author work with faculty and graduate students that leads to publication. 

As 2023-2024 drew to a close, the NYU News team coordinated with the Office of the Provost to pull together a snapshot of the research efforts that students undertook during this school year. The nine featured here represent just a small fraction of the impressive work we encountered in fields ranging from biology, chemistry, and engineering to the social sciences, humanities, and the arts. 

These projects were presented at NYU research conferences for undergrads, including Migration and Im/Mobility , Pathways for Discovery: Undergraduate Research and Writing Symposium , Social Impact: NYU’s Applied Undergraduate Research Conference , Arts-Based Undergraduate Research Conference , Gallatin Student Research Conference ,  Dreammaker’s Summit , Tandon’s Research Excellence Exhibit , and Global Engagement Symposium . Learn more about these undergrad research opportunities and others.

Jordan Janowski (CAS '24)

Sade Chaffatt (NYU Abu Dhabi '24)

Elsa Nyongesa (GPH, CAS ’24 )

Anthony Offiah (Gallatin ’26)

Kimberly Sinchi (Tandon ’24) and Sarah Moughal (Tandon ’25)

Rohan Bajaj (Stern '24)

Lizette Saucedo (Liberal Studies ’24)

Eva Fuentes (CAS '24)

Andrea Durham (Tandon ’26)

Jordan Janowski (CAS ’24) Major: Biochemistry Thesis title: “Engineering Chirality for Functionality in Crystalline DNA”

Jordan Janowski (CAS '24). Photo by Tracey Friedman

I work in the Structural DNA Nanotechnology Lab, which was founded by the late NYU professor Ned Seeman, who is known as the father of the field. My current projects are manipulating DNA sequences to self-assemble into high order structures.

Essentially, we’re using DNA as a building material, instead of just analyzing it for its biological functions. It constantly amazes me that this is possible.

I came in as a pre-med student, but when I started working in the lab I realized that I was really interested in continuing my research there. I co-wrote a paper with postdoc Dr. Simon Vecchioni who has been a mentor to me and helped me navigate applying to grad school. I’m headed to Scripps Research in the fall. This research experience has led me to explore some of the molecules that make up life and how they could be engineered into truly unnatural curiosities and technologies.

My PI, Prof. Yoel Ohayon , has been super supportive of my place on the  NYU women’s basketball team, which I’m a  member of. He’s been coming to my games since sophomore year, and he’ll text me with the score and “great game!”— it’s been so nice to have that support for my interests beyond the lab.

Anthony Offiah (Gallatin ’26) Concentration: Fashion design and business administration MLK Scholars research project title: “project: DREAMER”

Anthony Offiah (Gallatin '26). Photo by Tracey Friedman

In “project: DREAMER,” I explored how much a person’s sense of fashion is a result of their environment or societal pressures based on their identity. Certain groups are pressured or engineered to present a certain way, and I wanted to see how much of the opposing force—their character, their personality—affected their sense of style. 

This was a summer research project through the MLK Scholars Program. I did ethnographic interviews with a few people, and asked them to co-design their ideal garments with me. They told me who they are, how they identify, and what they like in fashion, and we synthesized that into their dream garments. And then we had a photo shoot where they were empowered to make artistic choices. 

Some people told me they had a hard time conveying their sense of style because they were apprehensive about being the center of attention or of being dissimilar to the people around them. So they chose to conform to protect themselves. And then others spoke about wanting to safeguard the artistic or vulnerable—or one person used the word “feminine”—side of them so they consciously didn’t dress how they ideally would. 

We ended the interviews by stating an objective about how this co-designing process didn’t end with them just getting new clothes—it was about approaching fashion differently than how they started and unlearning how society might put them in a certain box without their approval.  

My concentration in Gallatin is fashion design and business administration. In the industry some clothing is critiqued and some clothing is praised—and navigating that is challenging, because what you like might not be well received. So doing bespoke fashion for just one person is freeing in a sense because you don’t have to worry about all that extra stuff. It’s just the art. And I like being an artist first and thinking about the business second.

Lizette Saucedo (Global Liberal Studies ’24) Major: Politics, rights, and development Thesis title: “Acknowledging and Remembering Deceased Migrants Crossing the U.S.-Mexican Border”

Lizette Saucedo (Global Liberal Studies '24). Photo by Tracey Friedman

My thesis project is on commemorating migrants who are dying on their journey north to cross the U.S.–Mexican border. I look at it through different theoretical lenses, and one of the terms is necropolitics—how politics shapes the way the State governs life and especially death. And then of the main issues aside from the deaths is that a lot of people in the U.S. don’t know about them, due to the government trying to eschew responsibility for migrant suffering. In the final portion of the thesis, I argue for presenting what some researchers call “migrant artifacts”—the personal belongings left behind by people trying to cross over—to the public, so that people can become aware and have more of a human understanding of what’s going on. 

This is my senior thesis for Liberal Studies, but the idea for it started in an International Human Rights course I took with professor Joyce Apsel . We read a book by Jason De León called The Land of the Open Graves , which I kept in the back of my mind. And then when I studied abroad in Germany during my junior year, I noticed all the different memorials and museums, and wondered why we didn’t have the equivalent in the U.S. My family comes from Mexico—my parents migrated—and ultimately all of these interests came together.

I came into NYU through the Liberal Studies program and I loved it. It’s transdisciplinary, which shaped how I view my studies. My major is politics, rights, and development and my minor is social work, but I’ve also studied museum studies, and I’ve always loved the arts. The experience of getting to work one-on-one on this thesis has really fortified my belief that I can combine all those things.

Sade Chaffatt (Abu Dhabi ’24) Major: Biology Thesis title: “The Polycomb repressive component, EED in mouse hepatocytes regulates liver homeostasis and survival following partial hepatectomy.”

Sade Chaffatt (NYU Abu Dhabi '24). Photo courtesy of NYUAD

Imagine your liver as a room. Within the liver there are epigenetic mechanisms that control gene expression. Imagine these epigenetic mechanisms as a dimmer switch, so that you could adjust the light in the room. If we remove a protein that is involved in regulating these mechanisms, there might be dysregulation—as though the light is too bright or too dim. One such protein, EED, plays a crucial role in regulating gene expression. And so my project focuses on investigating whether EED is required in mouse hepatocytes to regulate liver homeostasis and to regulate survival following surgical resection.

Stepping into the field of research is very intimidating when you’re an undergraduate student and know nothing. But my capstone mentor, Dr. Kirsten Sadler , encourages students to present their data at lab meetings and to speak with scientists. Even though this is nerve-wracking, it helps to promote your confidence in communicating science to others in the field.

If you’d asked 16-year-old me, I never would’ve imagined that I’d be doing research at this point. Representation matters a lot, and you often don't see women—especially not Black women—in research. Being at NYUAD has really allowed me to see more women in these spaces. Having had some experience in the medical field through internships, I can now say I’m more interested in research and hope to pursue a PhD in the future.

Kimberly Sinchi (Tandon ’24) Major: Computer Science Sarah Moughal (Tandon ’25) Major: Computer Science Project: Robotic Design Team's TITAN

Sarah Moughal (Tandon '25, left) and Kimberly Sinchi (Tandon '24). Photo by Tracey Friedman

Kimberly: The Robotic Design Team has been active at NYU for at least five years. We’re 60-plus undergrad and grad students majoring in electrical engineering, mechanical engineering, computer science, and integrated design. We’ve named our current project TITAN because of how huge it is. TITAN stands for “Tandon’s innovation in terraforming and autonomous navigation.”

Sarah: We compete in NASA’s lunatics competition every year, which means we build a robot from scratch to be able to compete in lunar excavation and construction. We make pretty much everything in house in the Tandon MakerSpace, and everyone gets a little experience with machining, even if you're not mechanical. A lot of it is about learning how to work with other people—communicating across majors and disciplines and learning how to explain our needs to someone who may not be as well versed in particular technologies as we are. 

Kimberly: With NYU’s Vertically Integrated Project I’ve been able to take what I was interested in and actually have a real world impact with it. NASA takes notes on every Rover that enters this competition. What worked and what didn’t actually influences their designs for rovers they send to the moon and to Mars.

Eva Fuentes (CAS ’24) Major: Anthropology Thesis title: “Examining the relationship between pelvic shape and numbers of lumbar vertebrae in primates”

Eva Fuentes (CAS '24). Photo by Tracey Friedman

I came into NYU thinking I wanted to be an art history major with maybe an archeology minor. To do the archeology minor, you have to take the core classes in anthropology, and so I had to take an intro to human evolution course. I was like, this is the coolest thing I’ve learned—ever. So I emailed people in the department to see if I could get involved. 

Since my sophomore year, I’ve been working in the Evolutionary Morphology Lab with Scott Williams, who is primarily interested in the vertebral column of primates in the fossil record because of how it can inform the evolution of posture and locomotion in humans.

For my senior thesis, I’m looking at the number of lumbar vertebrae—the vertebrae that are in the lower back specifically—and aspects of pelvic shape to see if it is possible to make inferences about the number of lumbar vertebrae a fossil may have had. The bones of the lower back are important because they tell us about posture and locomotion.

I committed to a PhD program at Washington University in St. Louis a few weeks ago to study biological anthropology. I never anticipated being super immersed in the academic world. I don’t come from an academic family. I had no idea what I was doing when I started, but Scott Williams, and everyone in the lab, is extremely welcoming and easy to talk to. It wasn't intimidating to come into this lab at all.

Elsa Nyongesa (GPH, CAS ’24 ) Major: Global Public Health and Biology Project: “Diversity in Breast Oncological Studies: Impacts on Black Women’s Health Outcomes”

Elsa Nyongesa (GPH, CAS '24). Photo by Tracey Friedman

I interned at Weill Cornell Medicine through their Travelers Summer Research Fellowship Program where I worked with my mentor, Dr. Lisa Newman, who is the head of the International Center for the Study of Breast Cancer Subtypes. I analyzed data on the frequency of different types of breast cancer across racial and ethnic groups in New York. At the same time, I was also working with Dr. Rachel Kowolsky to study minority underrepresentation in clinical research. 

In an experiential learning course taught by Professor Joyce Moon Howard in the GPH department, I created a research question based on my internship experience. I thought about how I could combine my experiences from the program which led to my exploration of the correlation between minority underrepresentation in breast oncological studies, and how it affects the health outcomes of Black women with breast cancer.

In my major, we learn about the large scope of health disparities across different groups. This opportunity allowed me to learn more about these disparities in the context of breast cancer research. As a premedical student, this experience broadened my perspective on health. I learned more about the social, economic, and environmental factors influencing health outcomes. It also encouraged me to examine literature more critically to find gaps in knowledge and to think about potential solutions to health problems. Overall, this experience deepened my philosophy of service, emphasizing the importance of health equity and advocacy at the research and clinical level.

Rohan Bajaj (Stern ’24) Major: Finance and statistics Thesis title: “Measuring Socioeconomic Changes and Investor Attitude in Chicago’s Post-Covid Economic Recovery”

Rohan Bajaj (Stern '24). Photo by Tracey Friedman

My thesis is focused on understanding the effects of community-proposed infrastructure on both the socioeconomic demographics of cities and on fiscal health. I’m originally from Chicago, so it made a lot of sense to pay tribute back to the place that raised me. I’m compiling a list of characteristics of infrastructure that has been developed since 2021 as a part of the Chicago Recovery Plan and then assessing how neighborhoods have changed geographically and economically. 

I’m looking at municipal bond yields in Chicago as a way of evaluating the fiscal health of the city. Turns out a lot of community-proposed infrastructure is focused in lower income areas within Chicago rather than higher income areas. So that makes the research question interesting, to see if there’s a correlation between the proposed and developed infrastructure projects, and if these neighborhoods are being gentrified alongside development.

I kind of stumbled into the impact investing industry accidentally from an internship I had during my time at NYU. I started working at a renewable energies brokerage in midtown, where my main job was collecting a lot of market research trends and delivering insights on how these different energy markets would come into play. I then worked with the New York State Insurance Fund, where I helped construct and execute their sustainable investment strategy from the ground up. 

I also took a class called “Design with Climate Change” with Peter Anker in Gallatin during my junior year, and a lot of that class was focused on how to have climate resilient and publicly developed infrastructure, and understanding the effects it has on society. It made me start thinking about the vital role that physical surroundings play in steering communities.

In the short term I want to continue diving into impact-focused investing and help identify urban planners and city government to develop their communities responsibly and effectively.

Andrea Durham (Tandon, ’26)  Major: Biomolecular science Research essay title: “The Rise and Fall of Aduhelm”

Andrea Durham (Tandon '26). Photo by Tracey Friedman

This is an essay I wrote last year in an advanced college essay writing class with Professor Lorraine Doran on the approval of a drug for Alzheimer’s disease called Aduhelm—a monoclonal antibody therapy developed by Biogen in 2021, which was described as being momentous and groundbreaking. But there were irregularities ranging from the design of its clinical trials to government involvement that led to the resignation of three scientists on an advisory panel, because not everybody in the scientific community agreed that it should be approved.

When I was six years old, my grandmother was diagnosed. Seeing the impact that it had over the years broke my heart and ignited a passion in me to pursue research. 

When I started at NYU, I wasn’t really sure what I was going to do in the future, or what opportunities I would go after. This writing class really gave me an opportunity to reflect on the things that were important to me in my life. The September after I wrote this paper, I started volunteering in a lab at Mount Sinai for Alzheimer's disease research, and that’s what I’m doing now—working as a volunteer at the Center for Molecular Integrative Neuroresilience under Dr. Giulio Pasinetti. I have this opportunity to be at the forefront, and because of the work I did in my writing class I feel prepared going into these settings with an understanding of the importance of conducting ethical research and working with integrity.

Welcome to the MIT CISR website!

This site uses cookies. Review our Privacy Statement.

Red briefing graphic

AI Is Everybody’s Business

This briefing presents three principles to guide business leaders when making AI investments: invest in practices that build capabilities required for AI, involve all your people in your AI journey, and focus on realizing value from your AI projects. The principles are supported by the MIT CISR data monetization research, and the briefing illustrates them using examples from the Australia Taxation Office and CarMax. The three principles apply to any kind of AI, defined as technology that performs human-like cognitive tasks; subsequent briefings will present management advice distinct to machine learning and generative tools, respectively.

Access More Research!

Any visitor to the website can read many MIT CISR Research Briefings in the webpage. But site users who have signed up on the site and are logged in can download all available briefings, plus get access to additional content. Even more content is available to members of MIT CISR member organizations .

Author Barb Wixom reads this research briefing as part of our audio edition of the series. Follow the series on SoundCloud.

DOWNLOAD THE TRANSCRIPT

Today, everybody across the organization is hungry to know more about AI. What is it good for? Should I trust it? Will it take my job? Business leaders are investing in massive training programs, partnering with promising vendors and consultants, and collaborating with peers to identify ways to benefit from AI and avoid the risk of AI missteps. They are trying to understand how to manage AI responsibly and at scale.

Our book Data Is Everybody’s Business: The Fundamentals of Data Monetization describes how organizations make money using their data.[foot]Barbara H. Wixom, Cynthia M. Beath, and Leslie Owens, Data Is Everybody's Business: The Fundamentals of Data Monetization , (Cambridge: The MIT Press, 2023), https://mitpress.mit.edu/9780262048217/data-is-everybodys-business/ .[/foot] We wrote the book to clarify what data monetization is (the conversion of data into financial returns) and how to do it (by using data to improve work, wrap products and experiences, and sell informational solutions). AI technology’s role in this is to help data monetization project teams use data in ways that humans cannot, usually because of big complexity or scope or required speed. In our data monetization research, we have regularly seen leaders use AI effectively to realize extraordinary business goals. In this briefing, we explain how such leaders achieve big AI wins and maximize financial returns.

Using AI in Data Monetization

AI refers to the ability of machines to perform human-like cognitive tasks.[foot]See Hind Benbya, Thomas H. Davenport, and Stella Pachidi, “Special Issue Editorial: Artificial Intelligence in Organizations: Current State and Future Opportunities , ” MIS Quarterly Executive 19, no. 4 (December 2020), https://aisel.aisnet.org/misqe/vol19/iss4/4 .[/foot] Since 2019, MIT CISR researchers have been studying deployed data monetization initiatives that rely on machine learning and predictive algorithms, commonly referred to as predictive AI.[foot]This research draws on a Q1 to Q2 2019 asynchronous discussion about AI-related challenges with fifty-three data executives from the MIT CISR Data Research Advisory Board; more than one hundred structured interviews with AI professionals regarding fifty-two AI projects from Q3 2019 to Q2 2020; and ten AI project narratives published by MIT CISR between 2020 and 2023.[/foot] Such initiatives use large data repositories to recognize patterns across time, draw inferences, and predict outcomes and future trends. For example, the Australian Taxation Office (ATO) used machine learning, neural nets, and decision trees to understand citizen tax-filing behaviors and produce respectful nudges that helped citizens abide by Australia’s work-related expense policies. In 2018, the nudging resulted in AUD$113 million in changed claim amounts.[foot]I. A. Someh, B. H. Wixom, and R. W. Gregory, “The Australian Taxation Office: Creating Value with Advanced Analytics,” MIT CISR Working Paper No. 447, November 2020, https://cisr.mit.edu/publication/MIT_CISRwp447_ATOAdvancedAnalytics_SomehWixomGregory .[/foot]

In 2023, we began exploring data monetization initiatives that rely on generative AI.[foot]This research draws on two asynchronous generative AI discussions (Q3 2023, N=35; Q1 2024, N=34) regarding investments and capabilities and roles and skills, respectively, with data executives from the MIT CISR Data Research Advisory Board. It also draws on in-progress case studies with large organizations in the publishing, building materials, and equipment manufacturing industries.[/foot] This type of AI analyzes vast amounts of text or image data to discern patterns in them. Using these patterns, generative AI can create new text, software code, images, or videos, usually in response to user prompts. Organizations are now beginning to openly discuss data monetization initiative deployments that include generative AI technologies. For example, used vehicle retailer CarMax reported using OpenAI’s ChatGPT chatbot to help aggregate customer reviews and other car information from multiple data sets to create helpful, easy-to-read summaries about individual used cars for its online shoppers. At any point in time, CarMax has on average 50,000 cars on its website, so to produce such content without AI the company would require hundreds of content writers and years of time; using ChatGPT, the company’s content team can generate summaries in hours.[foot]Paula Rooney, “CarMax drives business value with GPT-3.5,” CIO , May 5, 2023, https://www.cio.com/article/475487/carmax-drives-business-value-with-gpt-3-5.html ; Hayete Gallot and Shamim Mohammad, “Taking the car-buying experience to the max with AI,” January 2, 2024, in Pivotal with Hayete Gallot, produced by Larj Media, podcast, MP3 audio, https://podcasts.apple.com/us/podcast/taking-the-car-buying-experience-to-the-max-with-ai/id1667013760?i=1000640365455 .[/foot]

Big advancements in machine learning, generative tools, and other AI technologies inspire big investments when leaders believe the technologies can help satisfy pent-up demand for solutions that previously seemed out of reach. However, there is a lot to learn about novel technologies before we can properly manage them. In this year’s MIT CISR research, we are studying predictive and generative AI from several angles. This briefing is the first in a series; in future briefings we will present management advice specific to machine learning and generative tools. For now, we present three principles supported by our data monetization research to guide business leaders when making AI investments of any kind: invest in practices that build capabilities required for AI, involve all your people in your AI journey, and focus on realizing value from your AI projects.

Principle 1: Invest in Practices That Build Capabilities Required for AI

Succeeding with AI depends on having deep data science skills that help teams successfully build and validate effective models. In fact, organizations need deep data science skills even when the models they are using are embedded in tools and partner solutions, including to evaluate their risks; only then can their teams make informed decisions about how to incorporate AI effectively into work practices. We worry that some leaders view buying AI products from providers as an opportunity to use AI without deep data science skills; we do not advise this.

But deep data science skills are not enough. Leaders often hire new talent and offer AI literacy training without making adequate investments in building complementary skills that are just as important. Our research shows that an organization’s progress in AI is dependent on having not only an advanced data science capability, but on having equally advanced capabilities in data management, data platform, acceptable data use, and customer understanding.[foot]In the June 2022 MIT CISR research briefing, we described why and how organizations build the five advanced data monetization capabilities for AI. See B. H. Wixom, I. A. Someh, and C. M. Beath, “Building Advanced Data Monetization Capabilities for the AI-Powered Organization,” MIT CISR Research Briefing, Vol. XXII, No. 6, June 2022, https://cisr.mit.edu/publication/2022_0601_AdvancedAICapabilities_WixomSomehBeath .[/foot] Think about it. Without the ability to curate data (an advanced data management capability), teams cannot effectively incorporate a diverse set of features into their models. Without the ability to oversee the legality and ethics of partners’ data use (an advanced acceptable data use capability), teams cannot responsibly deploy AI solutions into production.

It’s no surprise that ATO’s AI journey evolved in conjunction with the organization’s Smarter Data Program, which ATO established to build world-class data analytics capabilities, and that CarMax emphasizes that its governance, talent, and other data investments have been core to its generative AI progress.

Capabilities come mainly from learning by doing, so they are shaped by new practices in the form of training programs, policies, processes, or tools. As organizations undertake more and more sophisticated practices, their capabilities get more robust. Do invest in AI training—but also invest in practices that will boost the organization’s ability to manage data (such as adopting a data cataloging tool), make data accessible cost effectively (such as adopting cloud policies), improve data governance (such as establishing an ethical oversight committee), and solidify your customer understanding (such as mapping customer journeys). In particular, adopt policies and processes that will improve your data governance, so that data is only used in AI initiatives in ways that are consonant with your organization's values and its regulatory environment.

Principle 2: Involve All Your People in Your AI Journey

Data monetization initiatives require a variety of stakeholders—people doing the work, developing products, and offering solutions—to inform project requirements and to ensure the adoption and confident use of new data tools and behaviors.[foot]Ida Someh, Barbara Wixom, Michael Davern, and Graeme Shanks, “Configuring Relationships between Analytics and Business Domain Groups for Knowledge Integration, ” Journal of the Association for Information Systems 24, no. 2 (2023): 592-618, https://cisr.mit.edu/publication/configuring-relationships-between-analytics-and-business-domain-groups-knowledge .[/foot] With AI, involving a variety of stakeholders in initiatives helps non-data scientists become knowledgeable about what AI can and cannot do, how long it takes to deliver certain kinds of functionality, and what AI solutions cost. This, in turn, helps organizations in building trustworthy models, an important AI capability we call AI explanation (AIX).[foot]Ida Someh, Barbara H. Wixom, Cynthia M. Beath, and Angela Zutavern, “Building an Artificial Intelligence Explanation Capability,” MIS Quarterly Executive 21, no. 2 (2022), https://cisr.mit.edu/publication/building-artificial-intelligence-explanation-capability .[/foot]

For example, at ATO, data scientists educated business colleagues on the mechanics and results of models they created. Business colleagues provided feedback on the logic used in the models and helped to fine-tune them, and this interaction helped everyone understand how the AI made decisions. The data scientists provided their model results to ATO auditors, who also served as a feedback loop to the data scientists for improving the model. The data scientists regularly reported on initiative progress to senior management, regulators, and other stakeholders, which ensured that the AI team was proactively creating positive benefits without neglecting negative external factors that might surface.

Given the consumerization of generative AI tools, we believe that pervasive worker involvement in ideating, building, refining, using, and testing AI models and tools will become even more crucial to deploying fruitful AI projects—and building trust that AI will do the right thing in the right way at the right time.

Principle 3: Focus on Realizing Value From Your AI Projects

AI is costly—just add up your organization’s expenses in tools, talent, and training. AI needs to pay off, yet some organizations become distracted with endless experimentation. Others get caught up in finding the sweet spot of the technology, ignoring the sweet spot of their business model. For example, it is easy to become enamored of using generative AI to improve worker productivity, rolling out tools for employees to write better emails and capture what happened in meetings. But unless those activities materially impact how your organization makes money, there likely are better ways to spend your time and money.

Leaders with data monetization experience will make sure their AI projects realize value in the form of increased revenues or reduced expenses by backing initiatives that are clearly aligned with real challenges and opportunities. That is step one. In our research, the leaders that realize value from their data monetization initiatives measure and track their outcomes, especially their financial outcomes, and they hold someone accountable for achieving the desired financial returns. At CarMax, a cross-functional team owned the mission to provide better website information for used car shoppers, a mission important to the company’s sales goals. Starting with sales goals in mind, the team experimented with and then chose a generative AI solution that would enhance the shopper experience and increase sales.

Figure 1: Three Principles for Getting Value from AI Investments

technology research projects

The three principles are based on the following concepts from MIT CISR data research: 1. Data liquidity: the ease of data asset recombination and reuse 2. Data democracy: an organization that empowers employees in the access and use of data 3. Data monetization: the generation of financial returns from data assets

Managing AI Using a Data Monetization Mindset

AI has and always will play a big role in data monetization. It’s not a matter of whether to incorporate AI, but a matter of how to best use it. To figure this out, quantify the outcomes of some of your organization’s recent AI projects. How much money has the organization realized from them? If the answer disappoints, then make sure the AI technology value proposition is a fit for your organization’s most important goals. Then assign accountability for ensuring that AI technology is applied in use cases that impact your income statements. If the AI technology is not a fit for your organization, then don’t be distracted by media reports of the AI du jour.

Understanding your AI technology investments can be hard if your organization is using AI tools that are bundled in software you purchase or are built for you by a consultant. To set yourself up for success, ask your partners to be transparent with you about the quality of data they used to train their AI models and the data practices they relied on. Do their answers persuade you that their tools are trustworthy? Is it obvious that your partner is using data compliantly and is safeguarding the model from producing bad or undesired outcomes? If so, make sure this good news is shared with the people in your organization and those your organization serves. If not, rethink whether to break with your partner and find another way to incorporate the AI technology into your organization, such as by hiring people to build it in-house.

To paraphrase our book’s conclusion: When people actively engage in data monetization initiatives using AI , they learn, and they help their organization learn. Their engagement creates momentum that initiates a virtuous cycle in which people’s engagement leads to better data and more bottom-line value, which in turn leads to new ideas and more engagement, which further improves data and delivers more value, and so on. Imagine this happening across your organization as all people everywhere make it their business to find ways to use AI to monetize data.

This is why AI, like data, is everybody’s business.

© 2024 MIT Center for Information Systems Research, Wixom and Beath. MIT CISR Research Briefings are published monthly to update the center’s member organizations on current research projects.

Related Publications

technology research projects

Talking Points

Ai, like data, is everybody's business.

technology research projects

Working Paper: Vignette

The australian taxation office: creating value with advanced analytics.

technology research projects

Research Briefing

Building advanced data monetization capabilities for the ai-powered organization.

technology research projects

Building AI Explanation Capability for the AI-Powered Organization

technology research projects

What is Data Monetization?

About the researchers.

Profile picture for user bwixom@mit.edu

Barbara H. Wixom, Principal Research Scientist, MIT Center for Information Systems Research (CISR)

Profile picture for user cynthia.beath@mccombs.utexas.edu

Cynthia M. Beath, Professor Emerita, University of Texas and Academic Research Fellow, MIT CISR

Mit center for information systems research (cisr).

Founded in 1974 and grounded in MIT's tradition of combining academic knowledge and practical purpose, MIT CISR helps executives meet the challenge of leading increasingly digital and data-driven organizations. We work directly with digital leaders, executives, and boards to develop our insights. Our consortium forms a global community that comprises more than seventy-five organizations.

MIT CISR Associate Members

MIT CISR wishes to thank all of our associate members for their support and contributions.

MIT CISR's Mission Expand

MIT CISR helps executives meet the challenge of leading increasingly digital and data-driven organizations. We provide insights on how organizations effectively realize value from approaches such as digital business transformation, data monetization, business ecosystems, and the digital workplace. Founded in 1974 and grounded in MIT’s tradition of combining academic knowledge and practical purpose, we work directly with digital leaders, executives, and boards to develop our insights. Our consortium forms a global community that comprises more than seventy-five organizations.

Logo UOC

UOC launches three research projects to improve its educational model

computer with elearning icons

The projects seek to tackle current challenges that have an impact on the organization while encouraging the development of online higher education worldwide (Image: Adobe Stock)

The Universitat Oberta de Catalunya's (UOC) educational model is constantly improving and evolving in accordance with the evidence obtained from its own research. The UOC, through its specific programme for the promotion of e-learning research, has just awarded grants worth a total of €36,000 to three research projects by e-learning experts with a view to applying the results to the university's methodology. In the words of Albert Sangrà , Professor of Education and co-director of the eLearning Research Programme at the UOC together with Xavier Vilajosana , Vice rector for Research, Knowledge Transfer and Entrepreneurship, the call seeks to " boost the use of the learning data collected on the Campus by introducing researchers to the university's procedures on using these data and generating value and impact from this unique and special resource that we have".

The UOC thus seeks to tackle current and short-term challenges through research projects that have an impact on the organization while encouraging the development of online higher education worldwide through its expertise. The knowledge obtained from this research can be extrapolated to other organizations around the world and help solve the challenges facing e-learning.

“The aim is to boost the use of the learning data collected on the Campus by introducing researchers to the university's procedures on using these data and generating value and impact from this unique and special resource”

Research in AI and learning analytics

" Experimenting with support mechanisms based on AI and analytical evidence " is one of the projects that has been awarded an internal UOC research grant. The project is  LISFeed+  led by  David Bañeres , a member of the  Faculty of Computer Science, Multimedia and Telecommunications  and the IN3's  SOM Research Lab , and  Anna Espasa , from the  Faculty of Psychology and Education Sciences  and the  Feed2Learn  research group. The study  aims to   improve the support given to students during their learning process  through analytical evidence-based tools. The goal is to put in place an  early warning system and a nudge system  to guide students at risk.

A second project tackles the " implementation of an assistant for teachers to provide immediate, formative and personalized feedback through AI ". The project is led by  David García , from the Faculty of Computer Science, Multimedia and Telecommunications and the  EduSTEAM  research group, and  Nati Cabrera , from the Faculty of Psychology and Education Sciences and the  EduL@b  group. The study examines  how artificial intelligence can improve feedback in higher education . The aim is to contribute to the development of new tools to improve the educational experience of students through the use of AI.

The third project backed by the UOC seeks to find out " how to improve the monitoring and assessment of online discussions through learning analytics ". The study is led by  Teresa Romeu , from the Faculty of Psychology and Education Sciences and the Edul@b research group, and  Javier Luis Cánovas , from the Faculty of Computer Science, Multimedia and Telecommunications and the SOM Research Lab. The initiative  analyses collaborative dynamics, especially through online discussions, an activity that is common to many courses and part of the UOC's educational model . Teachers must be able to access data in real time to adjust the paths of students at risk of not achieving their academic goals, as well as to facilitate the proper assessment of their development. The use of real-time data will also make it possible to use smart systems to predict student behaviour.

These three research projects reaffirm the UOC's work on and commitment to the innovative use of technology to democratize access to higher education. The UOC uses an interdisciplinary approach to promote cutting-edge research on e-learning, ranging from education sciences to information technologies.

Research in e-learning at the UOC contributes to the continuous improvement of teaching, facilitating knowledge transfer and promoting educational innovation, with the support and collaboration of the UOC's  eLearning Innovation Center . The main aim is to consolidate research in e-learning to address the global challenges of education, both within and beyond the university. The UOC thus continues to contribute to the dissemination of best practices and innovative educational solutions.

These UOC research projects contribute to the Sustainable Development Goal ( SDG ), 4,  Quality Education .

technology research projects

UOC R&I

The UOC's research and innovation (R&I) is helping overcome pressing challenges faced by global societies in the 21st century by studying interactions between technology and human & social sciences with a specific focus on the network society, e-learning and e-health .

Over 500 researchers and more than 50 research groups work in the UOC's seven faculties, its eLearning Research programme and its two research centres: the Internet Interdisciplinary Institute ( IN3 ) and the eHealth Center ( eHC ).

The university also develops online learning innovations at its eLearning Innovation Center ( eLinC ), as well as UOC community entrepreneurship and knowledge transfer via the Hubbik platform.

Open knowledge and the goals of the United Nations 2030 Agenda for Sustainable Development serve as strategic pillars for the UOC's teaching, research and innovation. More information: research.uoc.edu .

Experts UOC

Press contact.

Related news:

Technology with empathy: using conversational agents in education

Technology with empathy: using conversational agents in education

New UOC AI system lets the university monitor online students at risk of dropping out

New UOC AI system lets the university monitor online students at risk of dropping out

You may also be interested in…, most popular, related courses.

Northeastern researcher creates AI tools that help gig workers solve problems

  • Search Search

Northeastern professor Saiph Savage works with gig workers to create AI-enhanced collective bargaining tools to change the power dynamic on the gig labor market.

technology research projects

  • Copy Link Link Copied!

Protestors outside of a car with Lyft and Uber stickers on it.

Researchers at Northeastern University have created artificial intelligence tools to help gig workers organize, collect their own job-related data, analyze their work problems and come up with a strategy to implement solutions.

“Building solid AI-enhanced solutions to enable gig workers’ collective action will pave the way for a fair and ethical gig economy — one with fair wages, humane working conditions and increased job security,” says Saiph Savage , assistant professor and director of the Civic A.I. Lab at Northeastern’s Khoury College of Computer Sciences.

Gig work is typically performed by a freelancer or independent contractor. It is used by rideshare apps such as Uber and Lyft, grocery-delivery services like Instacart, and Upwork, a marketplace that connects companies with temporary on-demand workers.

Headshot of Saiph Savage.

Gig work provides flexibility to workers and employers, Savage says, and offers economic opportunities to disadvantaged groups. But it also presents challenges for some gig workers such as irregular schedules and unsteady income, lack of job security, isolation and surveillance associated with online work.

The Massachusetts attorney general recently took Uber and Lyft to court over the employment status of its gig workers. The rideshare apps have threatened to leave markets if its drivers are converted from independent contractors to employees.

For Savage, it’s all about giving gig workers the tools — in this case AI tools — to make the most-informed decisions with the greatest amount of data.

“At Northeastern, we have been developing a lot of AI tools that can support gig workers in their collective action to fight for better opportunities,” Savage says.

Featured Stories

Ozlem Ergun speaking into a microphone at a podium.

Is gig work compatible with employment status? Study finds reclassification benefits both workers and platforms

A large burger illustration surrounded by cow silhouettes over a yellow background.

Do you know where your burger comes from? Memorial Day cookout attendees unaware, food safety expert says

Cover of the book "The Politics of Memory in the Italian Populist Radical Right"

Fascism of the past still casts a shadow on Italy’s politics and anti-immigration rhetoric, Northeastern researcher says

A Signapore airlines plane in the sky.

Can airplane turbulence really kill you? Aircraft propulsion expert weighs in on Singapore Airlines death

Tools recently released by the Civic A.I. Lab include GigSousveillance, GigSense and GigAction.

The tools use large language models and social theories to create “intelligent assistants” that help gig workers understand their collective problems, propose solutions and take collective action. The tools strengthen gig workers’ collective opinion and negotiation power, Savage says.

GigSousveillance allows workers to collect their own job-related data and use that data to measure how big a workplace problem has become.

GigSense equips workers with an online AI assistant that helps make sense of their workplace problems and strategically come up with solutions.

GigAction is an AI assistant that guides workers to implement the solutions.

The AI tools help reinforce gig workers’ collective identity, potentially inspiring them to undertake actions that benefit them as a whole, Savage says.

As part of her research, Savage conducted interviews and collaborative design sessions with gig workers from Upwork, Amazon Mechanical Turk, an Amazon platform that allows businesses to connect with a global workforce, and Toloka, a crowdsourcing platform. Later, she analyzed their answers about using the new AI tools. 

“We focus a lot on helping them to identify what are the key points that they should be aiming to negotiate,” Savage says. “What are the main problems that they should be aiming to address collectively, as well as what things should they aim to bargain for with the companies.”

Savage sees potential in attracting more gig workers through social media groups. 

“From there, we move them into our platforms,” she says.

Science & Technology

technology research projects

Recent Stories

technology research projects

IMAGES

  1. Top 8 Technology Trends & Innovations driving Scientific Research in 2023

    technology research projects

  2. Making it real

    technology research projects

  3. (PDF) A Proposal for using Design Science in Educational Technology

    technology research projects

  4. 130 Top-Notch Information Technology Research Topics (2022)

    technology research projects

  5. information technology research proposal sample

    technology research projects

  6. 177 Best Technology Research Topics To Use In 2023

    technology research projects

VIDEO

  1. 15 New Science Project Ideas for 2024!

  2. 15 Best Science Projects

  3. Top 30 Science Project Ideas for 2024

  4. 30 Unique Capstone Project Topics for Information Technology

  5. Top 10 Artificial Intelligence Project Ideas 2023

  6. 230 Capstone Titles and Ideas for Computer & Electronic Engineering Students

COMMENTS

  1. 54 Most Interesting Technology Research Topics for 2023

    Artificial intelligence technology research topics. We started 2023 with M3GAN's box office success, and now we're fascinated (or horrified) with ChatGPT, voice cloning, and deepfakes. While people have discussed artificial intelligence for ages, recent advances have really pushed this topic to the front of our minds.

  2. Projects

    Projects. Our teams leverage research developments across domains to build tools and technology that impact billions of people. Sharing our learnings and tools to fuel progress in the field is core to our approach. Google is driving innovation in brain mapping, enabling breakthroughs in neuroscience. VideoPoet is a language model capable of ...

  3. 130+ Best Technology Research Topics

    5 Medical Devices & Diagnostics. 6 Pharmaceutical Technology Research Topics. 7 Food Technology Research Topic. 8 Educational Technology Research Topic. 9 Controversial Technology Research Topics. 10 Transportation Technology Research Topics. 11 Information Communication Technologies (ITC) Research Topics. 11.1 Conclusion.

  4. 100 Technology Topics for Research Papers

    Relationships and Media. 7. War. 8. Information and Communication Tech. 9. Computer Science and Robotics. Researching technology can involve looking at how it solves problems, creates new problems, and how interaction with technology has changed humankind.

  5. 10 Breakthrough Technologies 2022

    Founded at the Massachusetts Institute of Technology in 1899, MIT Technology Review is a world-renowned, independent media company whose insight, analysis, reviews, interviews and live events ...

  6. MIT's top research stories of 2021

    The year's popular research stories include a promising new approach to cancer immunotherapy, the confirmation of a 50-year-old theorem, and a major fusion breakthrough. In 2021, MIT researchers made advances toward fusion energy, confirmed Stephen Hawking's black hole theorem, developed a Covid-detecting face mask, and created a ...

  7. Research

    Research. Download RSS feed: News Articles / In the Media / Audio. Displaying 1 - 15 of 5593 news articles related to this topic. Show: News Articles. In the Media. Audio. Robotic palm mimics human touch ... setting the stage for improvements in human-robot interaction and prosthetic technology.

  8. Tech tools to make research more open and inclusive

    Gilbert suggests that leaders take their cues from their team when adopting tech tools such as Slack and WhatsApp. He says that many younger researchers view e-mail as formal and cumbersome ...

  9. Google Research

    Advancing the state of the art. Our teams advance the state of the art through research, systems engineering, and collaboration across Google. We publish hundreds of research papers each year across a wide range of domains, sharing our latest developments in order to collaboratively progress computing and science. Learn more about our philosophy.

  10. Information technology

    Information technology is the design and implementation of computer networks for data processing and communication. This includes designing the hardware for processing information and connecting ...

  11. 450+ Technology Research Topics: Best Ideas for Students

    Technology topics for research papers below are very easy to investigate, so you will surely find a bunch of academic resources. Exploring adaptive learning systems in online education. Role of technology in modern archaeology. Impact of immersive technology on journalism. The rise of telehealth services.

  12. Top 10 Projects in Technology

    Mineral, a project that was completed in 2020, brings together plant breeders and growers across Argentina, Canada, the United States and South Africa to test new models for sustainable farming using AI and machine learning. At Mineral's core is an electric-powered rover that collects granular data about soil health and crop development.

  13. Seventy-Five Scientific Research Projects You Can Contribute to Online

    Science | June 15, 2020. Seventy-Five Scientific Research Projects You Can Contribute to Online. From astrophysicists to entomologists, many researchers need the help of citizen scientists to sift ...

  14. 10 Breakthrough Technologies 2024

    Every year, the reporters and editors at MIT Technology Review survey the tech landscape and pick 10 technologies that we think have the greatest potential to change our lives in the years ahead ...

  15. Research

    Research. At MIT, pushing the boundaries of knowledge and possibility is our joyful obsession, and we celebrate fundamental discoveries and practical applications alike. As educators, we also value research as a potent form of learning by doing. Research flourishes in our 30 departments across five schools and one college, as well as in dozens ...

  16. Technology News, Research & Innovations

    Technology News. Read the latest technology news on SciTechDaily, your comprehensive source for the latest breakthroughs, trends, and innovations shaping the world of technology. We bring you up-to-date insights on a wide array of topics, from cutting-edge advancements in artificial intelligence and robotics to the latest in green technologies ...

  17. Current ICT Research Projects

    Be at the forefront of the latest technological advancements with a research degree at Griffith. Explore the range of research projects available with the School of ICT in areas of computer vision and signal processing, software engineering and software quality, cyber security and network security, autonomous systems, machine learning, data ...

  18. AI Research Projects

    every day. Recent progress in the areas of Artificial Intelligence (AI) and Machine Learning (ML) are tremendous. Almost monthly, we see reports announcing breakthroughs in different technological aspects of AI. As an organization focussing on research and development, we can look back on an increasing number of research projects.

  19. Microsoft Research

    LinkedIn | Mar 1, 2024. View more news and awards. Explore research at Microsoft, a site featuring the impact of research along with publications, products, downloads, and research careers.

  20. 'Quantum internet' demonstration in cities is most advanced yet

    Together, the experiments are "the most advanced demonstrations so far" of the technology needed for a quantum internet, says physicist Tracy Northup at the University of Innsbruck in Austria ...

  21. Research

    Research transforms lives. It helps us understand complex problems and create solutions across cultures, regions, and sectors. Research-based tools, approaches, and innovations improve the way we plan for and respond to disasters, design our health systems, build resilience, boost productivity in agriculture, strengthen educational systems, and understand environmental changes.

  22. Internet & Technology

    Americans' Views of Technology Companies. Most Americans are wary of social media's role in politics and its overall impact on the country, and these concerns are ticking up among Democrats. Still, Republicans stand out on several measures, with a majority believing major technology companies are biased toward liberals. short readsApr 3, 2024.

  23. Research at RIT

    Intensive research projects, applications, essays, and interviews all play a critical role in their selection. ... (biomedical engineering), '24 MS (science, technology, and public policy) spent at RIT. A Fulbright award presents him a new opportunity to conduct cutting-edge research at one of the top universities in Asia.

  24. Super-efficient solar cells: 10 Breakthrough Technologies 2024

    In May, UK-based Oxford PV said it had reached an efficiency of 28.6% for a commercial-size perovskite tandem cell, which is significantly larger than those used to test the materials in the lab ...

  25. Research: Technology is changing how companies do business

    The research highlights the importance of staying ahead of the curve in technology. Companies that embrace digital technologies now are likely to be the ones that thrive in the future. And while there are still many unanswered questions about how these changes will play out, one thing is clear: The relationship between technology and business ...

  26. Defense Advanced Research Projects Agency

    Microsystems Technology Office Seeking Disruptors . Registration open for June 24 MTO Open House MANTA RAY UUV COMPLETES IN-WATER TESTING . DARPA program's prototype exhibits modular, first-of-kind capabilities ... Defense Advanced Research Projects Agency 675 North Randolph Street Arlington, VA 22203-2114

  27. 9 Undergraduate Research Projects That Wowed Us This Year

    Turns out a lot of community-proposed infrastructure is focused in lower income areas within Chicago rather than higher income areas. So that makes the research question interesting, to see if there's a correlation between the proposed and developed infrastructure projects, and if these neighborhoods are being gentrified alongside development.

  28. AI Is Everybody's Business

    AI technology's role in this is to help data monetization project teams use data in ways that humans cannot, usually because of big complexity or scope or required speed. In our data monetization research, we have regularly seen leaders use AI effectively to realize extraordinary business goals.

  29. UOC launches three research projects to improve its educational model

    UOC R&I. The UOC's research and innovation (R&I) is helping overcome pressing challenges faced by global societies in the 21st century by studying interactions between technology and human & social sciences with a specific focus on the network society, e-learning and e-health.. Over 500 researchers and more than 50 research groups work in the UOC's seven faculties, its eLearning Research ...

  30. AI Collective Bargaining Tools Help Gig Workers Solve Problems

    Northeastern researcher creates AI tools that help gig workers solve problems. Northeastern professor Saiph Savage works with gig workers to create AI-enhanced collective bargaining tools to change the power dynamic on the gig labor market. A supporter of rideshare drivers from Uber and Lyft holds a sign during a protest in front of Uber ...