Clinical Presentation

Clinical considerations for care of children and adults with confirmed COVID-19

‹   View Table of Contents

  • The clinical presentation of COVID-19 ranges from asymptomatic to critical illness.
  • An infected person can transmit SARS-CoV-2, the virus that causes COVID-19, before the onset of symptoms. Symptoms can change over the course of illness and can progress in severity.
  • Uncommon presentations of COVID-19 can occur, might vary by the age of the patient, and are a challenge to recognize.
  • In adults, age is the strongest risk factor for severe COVID-19. The risk of severe COVID-19 increases with increasing age especially for persons over 65 years and with increasing number of certain underlying medical conditions .

Incubation Period

Data suggest that incubation periods may differ by SARS-CoV-2 variant. Meta-analyses of studies published in 2020 identified a pooled mean incubation period of 6.5 days from exposure to symptom onset. (1) A study conducted during high levels of Delta variant transmission reported an incubation period of 4.3 days, (2) and studies performed during high levels of Omicron variant transmission reported a median incubation period of 3–4 days. (3,4)

Presentation

People with COVID-19 may be asymptomatic or may commonly experience one or more of the following symptoms (not a comprehensive list) (5) :

  • Fever or chills
  • Shortness of breath or difficulty breathing
  • Myalgia (Muscle or body aches)
  • New loss of taste or smell
  • Sore throat
  • Congestion or runny nose
  • Nausea or vomiting

The clinical presentation of COVID-19 ranges from asymptomatic to severe illness, and COVID-19 symptoms may change over the course of illness. COVID-19 symptoms can be difficult to differentiate from and can overlap with other viral respiratory illnesses such as influenza(flu) and respiratory syncytial virus (RSV) . Because symptoms may progress quickly, close follow-up is needed, especially for:

  • older adults
  • people with disabilities
  • people with immunocompromising conditions, and
  • people with medical conditions that place them at greater risk for severe illness or death.

The NIH COVID-19 Treatment Guidelines  group SARS-CoV-2 infection into five categories based on severity of illness:

  • Asymptomatic or pre-symptomatic infection : people who test positive for SARS-CoV-2 using a virologic test (i.e., a nucleic acid amplification test [NAAT] or an antigen test) but who have no symptoms that are consistent with COVID-19.
  • Mild illness : people who may have any of the various signs and symptoms of COVID-19 but who do not have shortness of breath, dyspnea, or abnormal chest imaging.
  • Moderate illness : people who have evidence of lower respiratory disease during clinical assessment or imaging and who have an oxygen saturation (SpO 2 ) ≥94% on room air at sea level.
  • Severe illness : people who have oxygen saturation <94% on room air at sea level, a ratio of arterial partial pressure of oxygen to fraction of inspired oxygen (PaO 2 /FiO 2 ) <300 mm Hg, a respiratory rate >30 breaths/min, or lung infiltrates >50%
  • Critical illness : people who have respiratory failure, septic shock, or multiple organ dysfunction.

Asymptomatic and presymptomatic presentation

Studies have documented SARS-CoV-2 infection in people who never develop symptoms (asymptomatic presentation) and in people who are asymptomatic when tested but develop symptoms later (presymptomatic presentation). ( 6,7 ) It is unclear what percentage of people who initially appear asymptomatic progress to clinical disease.   Multiple publications have reported cases of people with abnormalities on chest imaging that are consistent with COVID-19 very early in the course of illness, even before the onset of symptoms or a positive COVID-19 test. (9)

Radiographic Considerations and Findings

Chest radiographs of patients with severe COVID-19 may demonstrate bilateral air-space consolidation. (23)  Chest computed tomography (CT) images from patients with COVID-19 may demonstrate bilateral, peripheral ground glass opacities and consolidation. (24,25)  Less common CT findings can include intra- or interlobular septal thickening with ground glass opacities (hazy opacity) or focal and rounded areas of ground glass opacity surrounded by a ring or arc of denser consolidation (reverse halo sign). (24)

Multiple studies suggest that abnormalities on CT or chest radiograph may be present in people who are asymptomatic, pre-symptomatic, or before RT-PCR detection of SARS-CoV-2 RNA in nasopharyngeal specimens. (25)

Common COVID-19 symptoms

Fever, cough, shortness of breath, fatigue, headache, and myalgia are among the most commonly reported symptoms in people with COVID-19. (5) Some people with COVID-19 have gastrointestinal symptoms such as nausea, vomiting, or diarrhea, sometimes prior to having fever or lower respiratory tract signs and symptoms. (10) Loss of smell and taste can occur, although these symptoms are reported to be less common since Omicron began circulating, as compared to earlier during the COVID-19 pandemic. (11,19-21) People can experience SARS-CoV-2 infection (asymptomatic or symptomatic), even if they are up to date with their COVID-19 vaccines or were previously infected. (8)

Several studies have reported ocular symptoms associated with SARS-CoV-2 infection, including redness, tearing, dry eye or foreign body sensation, discharge or increased secretions, and eye itching or pain. (13)

A wide range of dermatologic manifestations have been associated with COVID-19; timing of skin manifestations in relation to other COVID-19 symptoms and signs is variable. (14) Some skin manifestations may be associated with increased disease severity. (15) Images of cutaneous findings in COVID-19 are available from the American Academy of Dermatology .

Uncommon COVID-19 symptoms

Less common presentations of COVID-19 can occur. Older adults may present with different symptoms than children and younger adults. Some older adults can experience SARS-CoV-2 infection accompanied by delirium, falls, reduced mobility or generalized weakness, and glycemic changes. ( 12)

Transmission

People infected with SARS-CoV-2 can transmit the virus even if they are asymptomatic or presymptomatic. ( 16) Peak transmissibility appears to occur early during the infectious period (prior to symptom onset until a few days after), but infected persons can shed infectious virus up to 10 days following infection. (22 ) Both vaccinated and unvaccinated people can transmit SARS-CoV-2. ( 17,18) Clinicians should consider encouraging all people to take the following prevention actions to limit SARS-CoV-2 transmission:

  • stay up to date with COVID-19 vaccines,
  • test for COVID-19 when symptomatic or exposed to someone with COVID-19, as recommended by CDC,
  • wear a high-quality mask  when recommended,
  • avoiding contact with individuals who have suspected or confirmed COVID-19,
  • improving ventilation when possible,
  • and follow basic health and hand hygiene guidance .

Clinicians should also recommend that people who are infected with SARS-CoV-2, follow CDC guidelines  for isolation.

Table of Contents

  • › Clinical Presentation
  • Clinical Progression, Management, and Treatment
  • Special Clinical Considerations
  • Bhaskaran K, Bacon S, Evans SJ, et al. Factors associated with deaths due to COVID-19 versus other causes: population-based cohort analysis of UK primary care data and linked national death registrations within the OpenSAFELY platform. Lancet Reg Health Eur. Jul 2021;6:100109. doi:10.1016/j.lanepe.2021.100109
  • Kim L, Garg S, O'Halloran A, et al. Risk Factors for Intensive Care Unit Admission and In-hospital Mortality among Hospitalized Adults Identified through the U.S. Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET). Clin Infect Dis. Jul 16 2020;doi:10.1093/cid/ciaa1012
  • Kompaniyets L, Pennington AF, Goodman AB, et al. Underlying Medical Conditions and Severe Illness Among 540,667 Adults Hospitalized With COVID-19, March 2020-March 2021. Preventing chronic disease. Jul 1 2021;18:E66. doi:10.5888/pcd18.210123
  • Ko JY, Danielson ML, Town M, et al. Risk Factors for COVID-19-associated hospitalization: COVID-19-Associated Hospitalization Surveillance Network and Behavioral Risk Factor Surveillance System. Clin Infect Dis. Sep 18 2020;doi:10.1093/cid/ciaa1419
  • Wortham JM, Lee JT, Althomsons S, et al. Characteristics of Persons Who Died with COVID-19 - United States, February 12-May 18, 2020. MMWR Morb Mortal Wkly Rep. Jul 17 2020;69(28):923-929. doi:10.15585/mmwr.mm6928e1
  • Yang X, Zhang J, Chen S, et al. Demographic Disparities in Clinical Outcomes of COVID-19: Data From a Statewide Cohort in South Carolina. Open Forum Infect Dis. Sep 2021;8(9):ofab428. doi:10.1093/ofid/ofab428
  • Rader B.; Gertz AL, D.; Gilmer, M.; Wronski, L.; Astley, C.; Sewalk, K.; Varrelman, T.; Cohen, J.; Parikh, R.; Reese, H.; Reed, C.; Brownstein J. Use of At-Home COVID-19 Tests — United States, August 23, 2021–March 12, 2022. MMWR Morb Mortal Wkly Rep. April 1, 2022;71(13):489–494. doi:http://dx.doi.org/10.15585/mmwr.mm7113e1
  • Pingali C, Meghani M, Razzaghi H, et al. COVID-19 Vaccination Coverage Among Insured Persons Aged >/=16 Years, by Race/Ethnicity and Other Selected Characteristics - Eight Integrated Health Care Organizations, United States, December 14, 2020-May 15, 2021. MMWR Morb Mortal Wkly Rep. Jul 16 2021;70(28):985-990. doi:10.15585/mmwr.mm7028a1
  • Wiltz JL, Feehan AK, Molinari NM, et al. Racial and Ethnic Disparities in Receipt of Medications for Treatment of COVID-19 - United States, March 2020-August 2021. MMWR Morb Mortal Wkly Rep. Jan 21 2022;71(3):96-102. doi:10.15585/mmwr.mm7103e1
  • Murthy NC, Zell E, Fast HE, et al. Disparities in First Dose COVID-19 Vaccination Coverage among Children 5-11 Years of Age, United States. Emerg Infect Dis. May 2022;28(5):986-989. doi:10.3201/eid2805.220166
  • Saelee R, Zell E, Murthy BP, et al. Disparities in COVID-19 Vaccination Coverage Between Urban and Rural Counties - United States, December 14, 2020-January 31, 2022. MMWR Morb Mortal Wkly Rep. Mar 4 2022;71(9):335-340. doi:10.15585/mmwr.mm7109a2
  • Burki TK. The role of antiviral treatment in the COVID-19 pandemic. Lancet Respir Med. Feb 2022;10(2):e18. doi:10.1016/S2213-2600(22)00011-X
  • Jayk Bernal A, Gomes da Silva MM, Musungaie DB, et al. Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized Patients. N Engl J Med. Feb 10 2022;386(6):509-520. doi:10.1056/NEJMoa2116044
  • Sjoding MW, Dickson RP, Iwashyna TJ, Gay SE, Valley TS. Racial Bias in Pulse Oximetry Measurement. N Engl J Med. Dec 17 2020;383(25):2477-2478. doi:10.1056/NEJMc2029240
  • Jordan TB, Meyers CL, Schrading WA, Donnelly JP. The utility of iPhone oximetry apps: A comparison with standard pulse oximetry measurement in the emergency department. Am J Emerg Med. May 2020;38(5):925-928. doi:10.1016/j.ajem.2019.07.020
  • Iuliano AD, Brunkard JM, Boehmer TK, et al. Trends in Disease Severity and Health Care Utilization During the Early Omicron Variant Period Compared with Previous SARS-CoV-2 High Transmission Periods - United States, December 2020-January 2022. MMWR Morb Mortal Wkly Rep. Jan 28 2022;71(4):146-152. doi:10.15585/mmwr.mm7104e4
  • Taylor CA, Whitaker M, Anglin O, et al. COVID-19-Associated Hospitalizations Among Adults During SARS-CoV-2 Delta and Omicron Variant Predominance, by Race/Ethnicity and Vaccination Status - COVID-NET, 14 States, July 2021-January 2022. MMWR Morb Mortal Wkly Rep. Mar 25 2022;71(12):466-473. doi:10.15585/mmwr.mm7112e2
  • Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence - 25 U.S. Jurisdictions, April 4-December 25, 2021. MMWR Morb Mortal Wkly Rep. Jan 28 2022;71(4):132-138. doi:10.15585/mmwr.mm7104e2
  • Danza P, Koo TH, Haddix M, et al. SARS-CoV-2 Infection and Hospitalization Among Adults Aged >/=18 Years, by Vaccination Status, Before and During SARS-CoV-2 B.1.1.529 (Omicron) Variant Predominance - Los Angeles County, California, November 7, 2021-January 8, 2022. MMWR Morb Mortal Wkly Rep. Feb 4 2022;71(5):177-181. doi:10.15585/mmwr.mm7105e1

To receive email updates about COVID-19, enter your email address:

Exit Notification / Disclaimer Policy

  • The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
  • Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
  • You will be subject to the destination website's privacy policy when you follow the link.
  • CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 13 November 2020

Clinical presentations, laboratory and radiological findings, and treatments for 11,028 COVID-19 patients: a systematic review and meta-analysis

  • Carlos K. H. Wong 1 , 2   na1 ,
  • Janet Y. H. Wong 3   na1 ,
  • Eric H. M. Tang 1 ,
  • C. H. Au 1 &
  • Abraham K. C. Wai 4  

Scientific Reports volume  10 , Article number:  19765 ( 2020 ) Cite this article

5973 Accesses

47 Citations

3 Altmetric

Metrics details

  • Health care
  • Medical research
  • Microbiology
  • Risk factors

This systematic review and meta-analysis investigated the comorbidities, symptoms, clinical characteristics and treatment of COVID-19 patients. Epidemiological studies published in 2020 (from January–March) on the clinical presentation, laboratory findings and treatments of COVID-19 patients were identified from PubMed/MEDLINE and Embase databases. Studies published in English by 27th March, 2020 with original data were included. Primary outcomes included comorbidities of COVID-19 patients, their symptoms presented on hospital admission, laboratory results, radiological outcomes, and pharmacological and in-patient treatments. 76 studies were included in this meta-analysis, accounting for a total of 11,028 COVID-19 patients in multiple countries. A random-effects model was used to aggregate estimates across eligible studies and produce meta-analytic estimates. The most common comorbidities were hypertension (18.1%, 95% CI 15.4–20.8%). The most frequently identified symptoms were fever (72.4%, 95% CI 67.2–77.7%) and cough (55.5%, 95% CI 50.7–60.3%). For pharmacological treatment, 63.9% (95% CI 52.5–75.3%), 62.4% (95% CI 47.9–76.8%) and 29.7% (95% CI 21.8–37.6%) of patients were given antibiotics, antiviral, and corticosteroid, respectively. Notably, 62.6% (95% CI 39.9–85.4%) and 20.2% (95% CI 14.6–25.9%) of in-patients received oxygen therapy and non-invasive mechanical ventilation, respectively. This meta-analysis informed healthcare providers about the timely status of characteristics and treatments of COVID-19 patients across different countries.

PROSPERO Registration Number: CRD42020176589

Similar content being viewed by others

in clinical presentation meaning

Global prevalence and effect of comorbidities and smoking status on severity and mortality of COVID-19 in association with age and gender: a systematic review, meta-analysis and meta-regression

in clinical presentation meaning

Frequency, risk factors, and outcomes of hospital readmissions of COVID-19 patients

in clinical presentation meaning

Risk factors for severe COVID-19 differ by age for hospitalized adults

Introduction.

Following the possible patient zero of coronavirus infection identified in early December 2019 1 , the Coronavirus Disease 2019 (COVID-19) has been recognized as a pandemic in mid-March 2020 2 , after the increasing global attention to the exponential growth of confirmed cases 3 . As on 29th March, 2020, around 690 thousand persons were confirmed infected, affecting 199 countries and territories around the world, in addition to 2 international conveyances: the Diamond Princess cruise ship harbored in Yokohama, Japan, and the Holland America's MS Zaandam cruise ship. Overall, more than 32 thousand died and about 146 thousand have recovered 4 .

A novel bat-origin virus, 2019 novel coronavirus, was identified by means of deep sequencing analysis. SARS-CoV-2 was closely related (with 88% identity) to two bat-derived severe acute respiratory syndrome (SARS)-like coronaviruses, bat-SL-CoVZC45 and bat-SL-CoVZXC21, but were more distant from SARS-CoV (about 79%) and MERS-CoV (about 50%) 5 , both of which were respectively responsible for two zoonotic human coronavirus epidemics in the early twenty-first century. Following a few initial human infections 6 , the disease could easily be transmitted to a substantial number of individuals with increased social gathering 7 and population mobility during holidays in December and January 8 . An early report has described its high infectivity 9 even before the infected becomes symptomatic 10 . These natural and social factors have potentially influenced the general progression and trajectory of the COVID-19 epidemiology.

By the end of March 2020, there have been approximately 3000 reports about COVID-19 11 . The number of COVID-19-related reports keeps growing everyday, yet it is still far from a clear picture on the spectrum of clinical conditions, transmissibility and mortality, alongside the limitation of medical reports associated with reporting in real time the evolution of an emerging pathogen in its early phase. Previous reports covered mostly the COVID-19 patients in China. With the spread of the virus to other continents, there is an imminent need to review the current knowledge on the clinical features and outcomes of the early patients, so that further research and measures on epidemic control could be developed in this epoch of the pandemic.

Search strategy and selection criteria

The systematic review was conducted according to the protocol registered in the PROSPERO database (CRD42020176589). Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guideline throughout this review, data were identified by searches of MEDLINE, Embase and references from relevant articles using the search terms "COVID", “SARS-CoV-2”, and “novel coronavirus” (Supplementary material 1 ). Articles published in English up to 27th March, 2020 were included. National containment measures have been implemented at many countries, irrespective of lockdown, curfew, or stay-at-home orders, since the mid of March 2020 12 , except for China where imposed Hubei province lockdown at 23th January 2020, Studies with original data including original articles, short and brief communication, letters, correspondences were included. Editorials, viewpoints, infographics, commentaries, reviews, or studies without original data were excluded. Studies were also excluded if they were animal studies, modelling studies, or did not measure symptoms presentation, laboratory findings, treatment and therapeutics during hospitalization.

After the removal of duplicate records, two reviewers (CW and CHA) independently screened the eligibility criteria of study titles, abstracts and full-texts, and reference lists of the studies retrieved by the literature search. Disagreements regarding the procedures of database search, study selection and eligibility were resolved by discussion. The second and the last authors (JW and AW) verified the eligibility of included studies.

Outcomes definitions

Signs and symptoms were defined as the presentation of fever, cough, sore throat, headache, dyspnea, muscle pain, diarrhea, rhinorrhea, anosmia, and ageusia at the hospital admission 13 .

Laboratory findings included a complete blood count (white blood count, neutrophil, lymphocyte, platelet count), procalcitonin, prothrombin time, urea, and serum biochemical measurements (including electrolytes, renal-function and liver-function values, creatine kinase, lactate dehydrogenase, C-reactive protein, Erythrocyte sedimentation rate), and treatment measures (i.e. antiviral therapy, antibiotics, corticosteroid therapy, mechanical ventilation, intubation, respiratory support, and renal replacement therapy). Radiological outcomes included bilateral involvement identified and pneumonia identified by chest radiograph.

Comorbidities of patients evaluated in this study were hypertension, diabetes, chronic obstructive pulmonary disease (COPD), cardiovascular disease, chronic kidney disease, liver disease and cancer.

In-patient treatment included intensive care unit admission, oxygen therapy, non-invasive ventilation, mechanical ventilation, Extracorporeal membrane oxygenation (ECMO), renal replacement therapy, and pharmacological treatment. Use of antiviral and interferon drugs (Lopinavir/ritonavir, Ribavirin, Umifenovir, Interferon-alpha, or Interferon-beta), antibiotic drugs, corticosteroid, and inotropes (Nor-adrenaline, Adrenaline, Vasopressin, Phenylephrine, Dopamine, or Dobutamine) were considered.

Data analysis

Three authors (CW, EHMT and CHA) extracted data using a standardized spreadsheet to record the article type, country of origin, surname of first author, year of publications, sample size, demographics, comorbidities, symptoms, laboratory and radiology results, pharmacological and non-pharmacological treatments.

We aggregated estimates across 90 eligible studies to produce meta-analytic estimates using a random-effects model. For dichotomous outcomes, we estimated the proportion and its respective 95% confidence interval. For laboratory parameters as continuous outcomes, we estimated the mean and standard deviation from the median and interquartile range if the mean and standard deviation were not available from the study 14 , and calculated the mean and its respective 95% confidence intervals. Random-effect models on DerSimonian and Laird method were adopted due to the significant heterogeneity, checked by the I 2 statistics and the p values. I 2 statistic of < 25%, 25–75% and ≥ 75% is considered as low, moderate, high likelihood of heterogeneity. Pooled estimates were calculated and presented by using forest plots. Publication bias was estimated by Egger’s regression test. Funnel plots of outcomes were also presented to assess publication bias.

All statistical analyses were conducted using the STATA Version 13.0 (Statacorp, College Station, TX). The random effects model was generated by the Stata packages ‘Metaprop’ for proportions 15 and ‘Metan’ for continuous variables 16 .

The selection and screen process are presented in Fig.  1 . A total of 241 studies were found by our searching strategy (71 in PubMed and 170 in Embase). 46 records were excluded due to duplication. After screening the abstracts and titles, 100 English studies were with original data and included in full-text screening. By further excluding 10 studies with not reporting symptoms presentation, laboratory findings, treatment and therapeutics, 90 studies 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 69 , 70 , 71 , 72 , 73 , 74 , 75 , 76 , 77 , 78 , 79 , 80 , 81 , 82 , 83 , 84 , 85 , 86 , 87 , 88 , 89 , 90 , 91 , 92 , 93 , 94 , 95 , 96 , 97 , 98 , 99 , 100 , 101 , 102 , 103 , 104 , 105 , 106 and 76 studies with more than one COVID-19 case 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 34 , 35 , 36 , 37 , 38 , 39 , 42 , 43 , 44 , 45 , 49 , 50 , 51 , 53 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64 , 67 , 69 , 70 , 72 , 73 , 74 , 75 , 76 , 77 , 78 , 79 , 81 , 82 , 83 , 84 , 85 , 86 , 87 , 88 , 89 , 90 , 91 , 92 , 93 , 94 , 95 , 96 , 98 , 100 , 101 , 102 , 103 , 104 , 105 were included in the current systematic review and meta-analysis respectively. 73.3% 66 studies were conducted in China. Newcastle–Ottawa Quality Assessment Scale has been used to assess study quality of each included cohort study 107 . 30% (27/90) of included studies had satisfactory or good quality. The summary of the included study is shown in Table 1 .

figure 1

PRISMA flowchart reporting identification, searching and selection processes.

Of those 90 eligible studies, 11,028 COVID-19 patients were identified and included in the systematic review. More than half of patients (6336, 57.5%) were from mainland China. The pooled mean age was 45.8 (95% CI 38.6–52.5) years and 49.3% (pooled 95% CI 45.6–53.0%) of them were male.

For specific comorbidity status, the most prevalent comorbidity was hypertension (18.1%, 95% CI 15.4–20.8%), followed by cardiovascular disease (11.8%, 95% CI 9.4–14.2%) and diabetes (10.4%, 95% CI 8.7–12.1%). The pooled prevalence (95% CI) of COPD, chronic kidney disease, liver disease and cancer were 2.0% (1.3–2.7%), 5.2% (1.7–8.8%), 2.5% (1.7–3.4%) and 2.1% (1.3–2.8%) respectively. Moderate to substantial heterogeneity between reviewed studies were found, with I 2 statistics ranging from 39.4 to 95.9% ( p values between < 0.001–0.041), except for liver disease (I 2 statistics: 1.7%, p  = 0.433). Detailed results for comorbidity status are displayed in Fig.  2 .

figure 2

Random-effects meta-analytic estimates for comorbidities. ( A ) Diabetes mellitus, ( B ) Hypertension, ( C ) Cardiovascular disease, ( D ) Chronic obstructive pulmonary disease, ( E ) Chronic kidney disease, ( F ) Cancer.

Regarding the symptoms presented at hospital admission, the most frequent symptoms were fever (pooled prevalence: 72.4%, 95% CI 67.2–77.7%) and cough (pooled prevalence: 55.5%, 95% CI 50.7–60.3%). Sore throat (pooled prevalence: 16.2%, 95% CI 12.7–19.7%), dyspnoea (pooled prevalence: 18.8%, 95% CI 14.7–22.8%) and muscle pain (pooled prevalence: 22.1%, 95% CI 18.6–25.5%) were also common symptoms found in COVID-19 patients, but headache (pooled prevalence: 10.5%, 95% CI 8.7–12.4%), diarrhoea (pooled prevalence: 7.9%, 95% CI 6.3–9.6%), rhinorrhoea (pooled prevalence: 9.2%, 95% CI 5.6–12.8%) were less common. However, none of the included papers reported prevalence of anosmia and ageusia. The I 2 statistics varied from 68.5 to 97.1% (all p values < 0.001), indicating a high heterogeneity exists across studies. Figure  3 shows the pooled proportion of symptoms of patients presented at hospital.

figure 3

Random-effects meta-analytic estimates for presenting symptoms. ( A ) Fever, ( B ) Cough, ( C ) Dyspnoea, ( D ) Sore throat, ( E ) Muscle pain, ( F ) Headache.

For laboratory parameters, white blood cell (pooled mean: 5.31 × 10 9 /L, 95% CI 5.03–5.58 × 10 9 /L), neutrophil (pooled mean: 3.60 × 10 9 /L, 95% CI 3.31–3.89 × 10 9 /L), lymphocyte (pooled mean: 1.11 × 10 9 /L, 95% CI 1.04–1.17 × 10 9 /L), platelet count (pooled mean: 179.5 U/L, 95% CI 172.6–186.3 U/L), aspartate aminotransferase (pooled mean: 30.3 U/L, 95% CI 27.9–32.7 U/L), alanine aminotransferase (pooled mean: 27.0 U/L, 95% CI 24.4–29.6 U/L) and C-reactive protein (CRP) (pooled mean: 22.0 mg/L, 95% CI 18.3–25.8 mg/L) and D-dimer (0.93 mg/L, 95% CI 0.68–1.18 mg/L) were the common laboratory test taken for COVID-19 patients. Above results and other clinical factors are depicted in Fig.  4 . Same with the comorbidity status and symptoms, high likelihood of heterogeneity was detected by I 2 statistics for a majority of clinical parameters.

figure 4

Random-effects meta-analytic estimates for laboratory parameters. ( A ) White blood cell, ( B ) Lymphocyte, ( C ) Neutrophil, ( D ) C-creative protein, ( E ) D-dimer, ( F ) Lactate dehydrogenase.

Figure  5 presents the distribution of the pharmacological treatments received for COVID-19 patients. 10.6% of patients admitted to intensive care units (pooled 95% CI 8.1–13.2%). For drug treatment, 63.9% (pooled 95% CI 52.5–75.3%), 62.4% (pooled 95% CI 47.9–76.8%) and 29.7% (pooled 95% CI 21.8–37.6%) patients used antibiotics, antiviral, and corticosteroid, respectively. 41.3% (pooled 95% CI 14.3–68.3%) and 50.7% (pooled 95% CI 9.2–92.3%) reported using Lopinavir/Ritonavir and interferon-alpha as antiviral drug treatment, respectively. Among 14 studies reporting proportion of corticosteroid used, 7 studies (50%) specified the formulation of corticosteroid as systemic corticosteroid. The remaining one specified the use of methylprednisolone. No reviewed studies reported the proportion of patients receiving Ribavirin, Interferon-beta, or inotropes.

figure 5

Random-effects meta-analytic estimates for pharmacological treatments and intensive unit care at hospital. ( A ) Antiviral or interferon drugs, ( B ) Lopinavir/Ritonavir, ( C ) Interferon alpha (IFN-α), ( D ) Antibiotic drugs, ( E ) Corticosteroid, ( F ) Admission to Intensive care unit.

The prevalence of radiological outcomes and non-pharmacological treatments were presented in Fig.  6 . Radiology findings detected chest X-ray abnormalities, with 74.4% (95% CI 67.6–81.1%) of patients with bilateral involvement and 74.9% (95% CI 68.0–81.8%) of patients with viral pneumonia. 62.6% (pooled 95% CI 39.9–85.4%), 20.2% (pooled 95% CI 14.6–25.9%), 15.3% (pooled 95% CI 11.0–19.7%), 1.1% (pooled 95% CI 0.4–1.8%) and 4.7% (pooled 95% CI 2.1–7.4%) took oxygen therapy, non-invasive ventilation, mechanical ventilation, ECMO and dialysis respectively.

figure 6

Random-effects meta-analytic estimates for radiological findings and non-pharmacological treatments at hospital. ( A ) Bilateral involvement, ( B ) Pneumonia, ( C ) Oxygen therapy, ( D ) Non-invasive ventilation, ( E ) Extracorporeal membrane oxygenation (ECMO), ( F ) Dialysis.

The funnel plots and results Egger’s test of comorbidity status, symptoms presented, laboratory test and treatment were presented in eFigure 1 – S5 in the Supplement. 63% (19/30) of the funnel plots (eFigure 1 – S5 ) showed significance in the Egger’s test for asymmetry, suggesting the possibility of publication bias or small-study effects caused by clinical heterogeneity.

This meta-analysis reveals the condition of global medical community responding to COVID-19 in the early phase. During the past 4 months, a new major epidemic focus of COVID-19, some without traceable origin, has been identified. Following its first identification in Wuhan, China, the virus has been rapidly spreading to Europe, North America, Asia, and the Middle East, in addition to African and Latin American countries. Three months since Wuhan CDC admitted that there was a cluster of unknown pneumonia cases related to Huanan Seafood Market and a new coronavirus was identified as the cause of the pneumonia 108 , as on 1 April, 2020, there have been 858,371 persons confirmed infected with COVID-19, affecting 202 countries and territories around the world. Although this rapid review is limited by the domination of reports from patients in China, and the patient population is of relative male dominance reflecting the gender imbalance of the Chinese population 109 , it provides essential information.

In this review, the pooled mean age was 45.8 years. Similar to the MERS-CoV pandemic 110 , middle-aged adults were the at-risk group for COVID-19 infections in the initial phase, which was different from the H1N1 influenza pandemic where children and adolescents were more frequently affected 111 . Biological differences may affect the clinical presentations of infections; however, in this review, studies examining the asymptomatic COVID-19 infections or reporting any previous infections were not included. It is suggested that another systematic review should be conducted to compare the age-specific incidence rates between the pre-pandemic and post-pandemic periods, so as to understand the pattern and spread of the disease, and tailor specific strategies in infection control.

Both sexes exhibited clinical presentations similar in symptomatology and frequency to those noted in other severe acute respiratory infections, namely influenza A H1N1 112 and SARS 113 , 114 . These generally included fever, new onset or exacerbation of cough, breathing difficulty, sore throat and muscle pain. Among critically ill patients usually presented with dyspnoea and chest tightness 22 , 29 , 39 , 72 , 141 (4.6%) of them with persistent or progressive hypoxia resulted in the requirement of intubation and mechanical ventilation 115 , while 194 (6.4%) of them required non-invasive ventilation, yielding a total of 11% of patients requiring ventilatory support, which was similar to SARS 116 .

The major comorbidities identified in this review included hypertension, cardiovascular diseases and diabetes mellitus. Meanwhile, the percentages of patients with chronic renal diseases and cancer were relatively low. These chronic conditions influencing the severity of COVID-19 had also been noted to have similar effects in other respiratory illnesses such as SARS, MERS-CoV and influenza 117 , 118 . Higher mortality had been observed among older patients and those with comorbidities.

Early diagnosis of COVID-19 was based on recognition of epidemiological linkages; the presence of typical clinical, laboratory, and radiographic features; and the exclusion of other respiratory pathogens. The case definition had initially been narrow, but was gradually broadened to allow for the detection of more cases, as milder cases and those without epidemiological links to Wuhan or other known cases had been identified 119 , 120 . Laboratory investigations among COVID-19 patients did not reveal specific characteristics—lymphopenia and elevated inflammatory markers such as CRP are some of the most common haematological and biochemical abnormalities, which had also been noticed in SARS 121 . None of these features were specific to COVID-19. Therefore, diagnosis should be confirmed by SARS-CoV–2 specific microbiological and serological studies, although initial management will continue to be based on a clinical and epidemiological assessment of the likelihood of a COVID-19 infection.

Radiology imaging often plays an important role in evaluating patients with acute respiratory distress; however, in this review, radiological findings of SARS-CoV-2 pneumonia were non-specific. Despite chest radiograph usually revealed bilateral involvement and Computed Tomography usually showed bilateral multiple ground-glass opacities or consolidation, there were also patients with normal chest radiograph, implying that chest radiograph might not have high specificity to rule out pneumonia in COVID-19.

Limited clinical data were available for asymptomatic COVID-19 infected persons. Nevertheless, asymptomatic infection could be unknowingly contagious 122 . From some of the official figures, 6.4% of 150 non-travel-related COVID-19 infections in Singapore 123 , 39.9% of cases from the Diamond Princess cruise ship in Japan 124 , and up to 78% of cases in China as extracted on April 1st, 2020, were found to be asymptomatic 122 . 76% (68/90) studies based on hospital setting which provided care and disease management to symptomatic patients had limited number of asymptomatic cases of COVID-19 infection. This review calls for further studies about clinical data of asymptomatic cases. Asymptomatic infection intensifies the challenges of isolation measures. More global reports are crucially needed to give a better picture of the spectrum of presentations among all COVID-19 infected persons. Also, public health policies including social and physical distancing, monitoring and surveillance, as well as contact tracing, are necessary to reduce the spread of COVID-19.

Concerning potential treatment regime, 62.4% of patients received antivirals or interferons (including oseltamivir, lopinavir-ritonavir, interferon alfa), while 63.9% received antibiotics (such as moxifloxacin, and ceftriaxone). In this review, around one-third of patients were given steroid, suggestive as an adjunct to IFN, or sepsis management. Interferon and antiviral agents such as ribavirin, and lopinavir-ritonavir were used during SARS, and the initial uncontrolled reports then noted resolution of fever and improvement in oxygenation and radiographic appearance 113 , 125 , 126 , without further evidence on its effectiveness. At the time of manuscript preparation, there has been no clear evidence guiding the use of antivirals 127 . Further research is needed to inform clinicians of the appropriate use of antivirals for specific groups of infected patients.

Limitations of this meta-analysis should be considered. First, a high statistical heterogeneity was found, which could be related to the highly varied sample sizes (9 to 4226 patients) and study designs. Second, variations of follow-up period may miss the event leading to heterogeneity. In fact, some patients were still hospitalized in the included studies. Third, since only a few studies had compared the comorbidities of severe and non-severe patients, sensitivity analysis and subgroup analysis were not conducted. Fourthly, the frequency and severity of signs and symptoms reported in included studies, primarily based on hospitalized COVID-19 patients were over-estimated. Moreover, different cutoffs for abnormal laboratory findings were applied across countries, and counties within the same countries. Lastly, this meta-analysis reviewed only a limited number of reports written in English, with a predominant patient population from China. This review is expected to inform clinicians of the epidemiology of COVID-19 at this early stage. A recent report estimated the number of confirmed cases in China could reach as high as 232,000 (95% CI 161,000, 359,000) with the case definition adopted in 5th Edition. In this connection, further evidence on the epidemiology is in imminent need.

Oliveira N. Shrimp vendor identified as possible coronavirus ‘patient zero,’ leaked document says. 27 March 2020. New York Daily News. 2020.

World Health Organization. Basic protective measures against the new coronavirus (2020). https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public . Accessed 7 Oct 2020.

Google Trend. When will coronavirus end (2020). https://trends.google.com/trends/explore?date=today%203-m&q=when%20will%20coronavirus%20end,%2Fm%2F01cpyy . Accessed 10 Oct 2020.

Worldometer. COVID-19 Coronavirus Pandemic (2020). https://www.worldometers.info/coronavirus/ . Accessed 13 Oct 2020.

Lu, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395 (10224), 565–574 (2020).

Article   CAS   PubMed   PubMed Central   Google Scholar  

Ralph, R. et al. 2019-nCoV (Wuhan virus), a novel Coronavirus: human-to-human transmission, travel-related cases, and vaccine readiness. J. Infect. Dev. Ctries. 14 (1), 3–17 (2020).

Article   CAS   PubMed   Google Scholar  

Sun, Z., Thilakavathy, K., Kumar, S. S., He, G. & Liu, S. V. Potential factors influencing repeated SARS outbreaks in China. Int. J. Environ. Res. Public Health 17 (5), 1633 (2020).

Article   CAS   PubMed Central   Google Scholar  

Zhao, S. et al. The association between domestic train transportation and novel coronavirus (2019-nCoV) outbreak in China from 2019 to 2020: a data-driven correlational report. Travel Med. Infect. Dis. 33 , 101568 (2020).

Article   PubMed   PubMed Central   Google Scholar  

Li, Q. et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. 382 (13), 1199–1207 (2020).

Chen, J. Pathogenicity and transmissibility of 2019-nCoV-A quick overview and comparison with other emerging viruses. Microbes Infect. 22 (2), 69–71 (2020).

World Health Organization. Database of publications on coronavirus disease (COVID-19) (2020). https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov . Accessed 30 Mar 2020.

Wong, C. K. H. et al. Impact of national containment measures on decelerating the increase in daily new cases of COVID-19 in 54 countries and 4 epicenters of the pandemic: comparative observational study. J. Med. Internet Res. 22 (7), e19904 (2020).

Centers for Disease Control and Prevention. Coronavirus Disease 2019 (COVID-19). Symptoms of Coronavirus (2020).

Wan, X., Wang, W., Liu, J. & Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 14 (1), 135 (2014).

Nyaga, V. N., Arbyn, M. & Aerts, M. Metaprop: a Stata command to perform meta-analysis of binomial data. Arch. Public Health 72 (1), 39 (2014).

Harris, R. J. et al. metan: fixed- and random-effects meta-analysis. Stata J. 8 (1), 3–28 (2008).

Article   Google Scholar  

Xu, X. et al. Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2. Eur. J. Nucl. Med. Mol. Imaging 47 (5), 1275–1280 (2020).

Cao, J. et al. Clinical features and short-term outcomes of 18 patients with corona virus disease 2019 in intensive care unit. Intensive Care Med. 46 (5), 851–853 (2020).

Xiong, Y. et al. Clinical and high-resolution CT features of the COVID-19 infection: comparison of the initial and follow-up changes. Invest. Radiol. 55 (6), 332–339 (2020).

Arentz, M. et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington state. JAMA 323 (16), 1612–1614 (2020).

Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395 (10223), 497–506 (2020).

Guan, W. J. et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 382 (18), 1708–1720 (2020).

Zhao, D. et al. A comparative study on the clinical features of coronavirus 2019 (COVID-19) pneumonia with other pneumonias. Clin. Infect. Dis. 71 (15), 756–761 (2020).

Xu, X. W. et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. BMJ 19 (368), m606 (2020).

Chan, J. F. et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 395 (10223), 514–523 (2020).

Chen, N. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395 (10223), 507–513 (2020).

Pung, R. et al. Investigation of three clusters of COVID-19 in Singapore: implications for surveillance and response measures. Lancet 395 (10229), 1039–1046 (2020).

Wang, D. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 323 (11), 1061–1069 (2020).

Young, B. E. et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA 323 (15), 1488–1494 (2020).

Chen, H. et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet 395 (10226), 809–815 (2020).

Huang, W. H. et al. 2019 novel coronavirus disease (COVID-19) in Taiwan: reports of two cases from Wuhan, China. J. Microbiol. Immunol. Infect. 53 (3), 481–484 (2020).

Cheng, S. C. et al. First case of coronavirus disease 2019 (COVID-19) pneumonia in Taiwan. J. Formos. Med. Assoc. 119 (3), 747–751 (2020).

Holshue, M. L. et al. First case of 2019 novel coronavirus in the United States. N. Engl. J. Med. 382 (10), 929–936 (2020).

Wei, M. et al. Novel coronavirus infection in hospitalized infants under 1 year of age in China. JAMA 323 (13), 1313–1314 (2020).

Bernard Stoecklin, S. et al. First cases of coronavirus disease 2019 (COVID-19) in France: surveillance, investigations and control measures, January 2020. Euro Surveill. 25 (6), 20–26 (2020).

Shi, H. et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect. Dis. 20 (4), 425–434 (2020).

Zhu, N. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382 (8), 727–733 (2020).

Ghinai, I. et al. First known person-to-person transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the USA. Lancet 395 (10230), 1137–1144 (2020).

Zhou, F. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395 (10229), 1054–1062 (2020).

Yang, X. et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir. Med. 8 (5), 475–481 (2020).

Kim, J. Y. et al. The first case of 2019 novel coronavirus pneumonia imported into Korea from Wuhan, China: implication for infection prevention and control measures. J. Korean Med. Sci. 35 (5), e61 (2020).

Okada, P. et al . Early transmission patterns of coronavirus disease 2019 (COVID-19) in travellers from Wuhan to Thailand, January 2020. Euro Surveill . 25 (8), 6–10 (2020).

Arashiro, T., Furukawa, K. & Nakamura, A. COVID-19 in 2 persons with mild upper respiratory tract symptoms on a cruise ship, Japan. Emerg. Infect. Dis. 26 (6), 1345–1348 (2020).

Lillie, P. J. et al. Novel coronavirus disease (Covid-19): the first two patients in the UK with person to person transmission. J. Infect. 80 (5), 578–606 (2020).

Tian, S. et al. Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J. Thorac. Oncol. 15 (5), 700–704 (2020).

Haveri, A. et al . Serological and molecular findings during SARS-CoV-2 infection: the first case study in Finland, January to February 2020. Euro Surveill . 25 (11), 16–21 (2020).

Nicastri, E. et al . Coronavirus disease (COVID-19) in a paucisymptomatic patient: epidemiological and clinical challenge in settings with limited community transmission, Italy, February 2020. Euro Surveill . 25 (11) (2020).

Van Cuong, L. et al. The first Vietnamese case of COVID-19 acquired from China. Lancet Infect Dis. 20 (4), 408–409 (2020).

Spiteri, G. et al . First cases of coronavirus disease 2019 (COVID-19) in the WHO European Region, 24 January to 21 February 2020. Euro Surveill . 25 (9), 2–7 (2020).

Rothe, C. et al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N. Engl. J. Med. 382 (10), 970–971 (2020).

Tong, Z. D. et al. Potential presymptomatic transmission of SARS-CoV-2, Zhejiang Province, China, 2020. Emerg. Infect. Dis. 26 (5), 1052–1054 (2020).

Bai, Y. et al. Presumed asymptomatic carrier transmission of COVID-19. JAMA 323 (14), 1406–1407 (2020).

Yu, P., Zhu, J., Zhang, Z. & Han, Y. A familial cluster of infection associated with the 2019 novel coronavirus indicating possible person-to-person transmission during the incubation period. J. Infect. Dis. 221 (11), 1757–1761 (2020).

Li, P. et al. Transmission of COVID-19 in the terminal stages of the incubation period: a familial cluster. Int. J. Infect. Dis. 96 , 452–453 (2020).

Tang, A. et al. Detection of novel coronavirus by RT-PCR in stool specimen from asymptomatic child, China. Emerg. Infect. Dis. 26 (6), 1337–1339 (2020).

Kam, K. Q. et al. A well infant with coronavirus disease 2019 with high viral load. Clin. Infect. Dis. 71 (15), 847–849 (2020).

Zhou, S., Wang, Y., Zhu, T. & Xia, L. CT Features of Coronavirus Disease 2019 (COVID-19) Pneumonia in 62 Patients in Wuhan. China. AJR Am J Roentgenol. 214 (6), 1287–1294 (2020).

Article   PubMed   Google Scholar  

Zhao, W., Zhong, Z., Xie, X., Yu, Q. & Liu, J. Relation between chest CT findings and clinical conditions of coronavirus disease (COVID-19) pneumonia: a multicenter study. AJR Am. J. Roentgenol. 214 (5), 1072–1077 (2020).

Cheng, Z. et al. Clinical features and chest CT manifestations of coronavirus disease 2019 (COVID-19) in a single-center study in Shanghai, China. AJR Am. J. Roentgenol. 215 (1), 121–126 (2020).

Chung, M. et al. CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology 295 (1), 202–207 (2020).

Liu, K. et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J (Engl). 133 (9), 1025–1031 (2020).

Chang, L. M. et al. Epidemiologic and clinical characteristics of novel coronavirus infections involving 13 patients outside Wuhan, China. JAMA 323 (11), 1092–1093 (2020).

Team C-NIRS. COVID-19, Australia: Epidemiology Report 7 (Reporting week ending 19:00 AEDT 14 March 2020). Commun. Dis. Intell. 44 (2018).

Pan, F. et al. Time course of lung changes at chest CT during recovery from coronavirus disease 2019 (COVID-19). Radiology 295 (3), 715–721 (2020).

Wang, S. et al. A case report of neonatal 2019 coronavirus disease in China. Clin. Infect. Dis. 71 (15), 853–857 (2020).

Bastola, A. et al. The first 2019 novel coronavirus case in Nepal. Lancet Infect. Dis. 20 (3), 279–280 (2020).

Qiu, H. et al. Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study. Lancet Infect. Dis. 20 (6), 689–696 (2020).

Zhang, J. J. et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy 75 (7), 1730–1741 (2020).

Ye, G. et al. Clinical characteristics of severe acute respiratory syndrome coronavirus 2 reactivation. J. Infect. 80 (5), e14–e17 (2020).

Liu, Y. et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci. China Life Sci. 63 (3), 364–374 (2020).

Chen, T. et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ 26 (368), m1091 (2020).

Guan, W. J. et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J. 55 (5), 2000547 (2020).

Wong, H. Y. F. et al. Frequency and Distribution of Chest Radiographic Findings in Patients Positive for COVID-19. Radiology 296 (2), E72–E78 (2020).

Xu, T. et al. Clinical features and dynamics of viral load in imported and non-imported patients with COVID-19. Int J Infect Dis. 94 , 68–71 (2020).

Shen, C. et al. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA 323 (16), 1582–1589 (2020).

Kimball, A. et al. Asymptomatic and presymptomatic SARS-CoV-2 infections in residents of a long-term care skilled nursing facility—King County, Washington, March 2020. Morb. Mortal. Wkly. Rep. 69 (13), 377–381 (2020).

Article   CAS   Google Scholar  

Team CC-R. Severe outcomes among patients with coronavirus disease 2019 (COVID-19)—United States, February 12-March 16, 2020. Morb. Mortal. Wkly. Rep. 69 (12), 343–346 (2020).

Wu, J. et al. Clinical characteristics of imported cases of coronavirus disease 2019 (COVID-19) in Jiangsu Province: a multicenter descriptive study. Clin. Infect. Dis. 71 (15), 706–712 (2020).

Yang, W. et al. Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19): a multi-center study in Wenzhou city, Zhejiang, China. J. Infect. 80 (4), 388–393 (2020).

Zhu, L. et al. Successful recovery of COVID-19 pneumonia in a renal transplant recipient with long-term immunosuppression. Am. J. Transplant. 20 (7), 1859–1863 (2020).

Zhu, W. et al. Initial clinical features of suspected coronavirus disease in two emergency departments outside of Hubei, China. J. Med. Virol. 92 , 1525–1532 (2019).

Wu, C. et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med. 180 (7), 934–943 (2020).

Wang, Z., Chen, X., Lu, Y., Chen, F. & Zhang, W. Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment. Biosci. Trends 14 (1), 64–68 (2020).

Wang, Y. et al. Clinical outcomes in 55 patients with severe acute respiratory syndrome coronavirus 2 who were asymptomatic at hospital admission in Shenzhen, China. J. Infect. Dis. 221 (11), 1770–1774 (2020).

Wan, S. et al. Clinical features and treatment of COVID-19 patients in northeast Chongqing. J. Med.. Virol. 92 (7), 797–806 (2020).

Tian, S. et al. Characteristics of COVID-19 infection in Beijing. J. Infect. 80 (4), 401–406 (2020).

Sun, D. et al. Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: a single center’s observational study. World J. Pediatr. 16 (3), 251–259 (2020).

Song, F. et al. Emerging 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology 295 (1), 210–217 (2020).

Hu, Z. et al. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Sci. China Life Sci. 63 (5), 706–711 (2020).

Qu, R. et al. Platelet-to-lymphocyte ratio is associated with prognosis in patients with coronavirus disease-19. J. Med. Virol. 92 , 1533–1541 (2020).

Qian, G. Q. et al. Epidemiologic and clinical characteristics of 91 hospitalized patients with COVID-19 in Zhejiang, China: a retrospective, multi-centre case series. QJM 113 (7), 474–481 (2020).

Mo, P. et al. Clinical characteristics of refractory COVID-19 pneumonia in Wuhan, China. Clin. Infect. Dis . (2020).

Liu, W. et al. Analysis of factors associated with disease outcomes in hospitalized patients with 2019 novel coronavirus disease. Chin Med. J. (Engl) 133 (9), 1032–1038 (2020).

Liu, K., Chen, Y., Lin, R. & Han, K. Clinical features of COVID-19 in elderly patients: A comparison with young and middle-aged patients. J. Infect. 80 (6), e14–e18 (2020).

Liu, F. et al. Patients of COVID-19 may benefit from sustained Lopinavir-combined regimen and the increase of Eosinophil may predict the outcome of COVID-19 progression. Int. J. Infect. Dis. 95 , 183–191 (2020).

Liu, D. et al. Pregnancy and perinatal outcomes of women with coronavirus disease (COVID-19) pneumonia: a preliminary analysis. AJR Am. J. Roentgenol. 215 (1), 127–132 (2020).

Guillen, E. et al. Case report of COVID-19 in a kidney transplant recipient: does immunosuppression alter the clinical presentation?. Am. J. Transplant. 20 (7), 1875–1878 (2020).

Dong, X. et al. Eleven faces of coronavirus disease 2019. Allergy 75 (7), 1699–1709 (2020).

Fan, C. et al . Perinatal transmission of COVID-19 associated SARS-CoV-2: should we worry? Clin. Infect. Dis. (2020).

Chen, R. et al. Safety and efficacy of different anesthetic regimens for parturients with COVID-19 undergoing Cesarean delivery: a case series of 17 patients. Can. J. Anaesth. 67 (6), 655–663 (2020).

Chen, L. et al. RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak. Emerg. Microbes Infect. 9 (1), 313–319 (2020).

Chen, J. et al. Clinical progression of patients with COVID-19 in Shanghai, China. J. Infect. 80 (5), e1–e6 (2020).

Ding, Q., Lu, P., Fan, Y., Xia, Y. & Liu, M. The clinical characteristics of pneumonia patients coinfected with 2019 novel coronavirus and influenza virus in Wuhan, China. J. Med. Virol. 92 , 1549–1555 (2020).

Covid-19 National Emergency Response Center E & Case Management Team KCfDC, Prevention. Early epidemiological and clinical characteristics of 28 cases of coronavirus disease in South Korea. Osong Public Health Res. Perspect. 11 (1), 8–14 (2020).

Li, Y., Guo, F., Cao, Y., Li, L. & Guo, Y. Insight into COVID-2019 for pediatricians. Pediatr. Pulmonol. 55 (5), E1–E4 (2020).

Ai, J. W., Zhang, Y., Zhang, H. C., Xu, T. & Zhang, W. H. Era of molecular diagnosis for pathogen identification of unexplained pneumonia, lessons to be learned. Emerg Microbes Infect. 9 (1), 597–600 (2020).

Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 25 (9), 603–605 (2010).

Khan N. New virus discovered by Chinese scientists investigating pneumonia outbreak. Wall Street J . (2020).

国家统计局 (National Bureau of Statistics). 2019 年国民经济运行总体平稳 发展主要预期目标较好实现 (In 2019, the overall stable development of the national economic operation is expected to achieve the main goals (2020). http://www.stats.gov.cn/tjsj/zxfb/202001/t20200117_1723383.html . Accessed 30 Mar 2020.

Park, J. E., Jung, S., Kim, A. & Park, J. E. MERS transmission and risk factors: a systematic review. BMC Public Health 18 (1), 574 (2018).

Van Kerkhove, M. D. et al. Risk factors for severe outcomes following 2009 influenza A (H1N1) infection: a global pooled analysis. PLoS Med. 8 (7), e1001053 (2011).

Wang, C. et al. Epidemiological and clinical characteristics of the outbreak of 2009 pandemic influenza A (H1N1) at a middle school in Luoyang, China. Public Health 126 (4), 289–294 (2012).

Lee, N. et al. A major outbreak of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 348 (20), 1986–1994 (2003).

Booth, C. M. et al. Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. JAMA 289 (21), 2801–2809 (2003).

Fowler, R. A. et al. Critically ill patients with severe acute respiratory syndrome. JAMA 290 (3), 367–373 (2003).

Christian, M. D., Poutanen, S. M., Loutfy, M. R., Muller, M. P. & Low, D. E. Severe acute respiratory syndrome. Clin Infect Dis. 38 (10), 1420–1427 (2004).

Mertz, D. et al. Populations at risk for severe or complicated influenza illness: systematic review and meta-analysis. BMJ 23 (347), f5061 (2013).

Badawi, A. & Ryoo, S. G. Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): a systematic review and meta-analysis. Int. J. Infect. Dis. 49 , 129–133 (2016).

Tsang, T. K. et al. Effect of changing case definitions for COVID-19 on the epidemic curve and transmission parameters in mainland China: a modelling study. Lancet Public Health. 5 (5), e289–e296 (2020).

国家卫生健康委办公厅 (Office of National Health Comission). 新型冠状病毒肺炎诊疗方案 (试行第七版) (Clinical Guideline for Novel Coronavirus Pneumonia—Interim 7th Edition) (2020).

File, T. M. Jr. & Tsang, K. W. Severe acute respiratory syndrome: pertinent clinical characteristics and therapy. Treat. Respir. Med. 4 (2), 95–106 (2005).

Day, M. Covid-19: four fifths of cases are asymptomatic, China figures indicate. BMJ 2 (369), m1375 (2020).

Wei, W. E. et al. Presymptomatic transmission of SARS-CoV-2—Singapore, January 23–March 16, 2020. Morb. Mortal. Wkly. Rep. 69 (14), 411–415 (2020).

Mizumoto, K., Kagaya, K., Zarebski, A. & Chowell, G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill. 25 (10), 2000180 (2020).

Article   PubMed Central   Google Scholar  

Poutanen, S. M. et al. Identification of severe acute respiratory syndrome in Canada. N. Engl. J .Med. 348 (20), 1995–2005 (2003).

Tsang, K. W. et al. A cluster of cases of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 348 (20), 1977–1985 (2003).

Cao, B. et al. A trial of Lopinavir–Ritonavir in adults hospitalized with severe covid-19. N. Engl. J. Med. 382 (19), 1787–1799 (2020).

Download references

Acknowledgements

There was no funding source for this study.

Author information

These authors contributed equally: Carlos K. H. Wong and Janet Y. H. Wong.

Authors and Affiliations

Department of Family Medicine and Primary Care, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China

Carlos K. H. Wong, Eric H. M. Tang & C. H. Au

Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China

Carlos K. H. Wong

School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China

Janet Y. H. Wong

Emergency Medicine Unit, Li Ka Shing, Faculty of Medicine, The University of Hong Kong, Hong Kong, China

Abraham K. C. Wai

You can also search for this author in PubMed   Google Scholar

Contributions

C.W., J.W. and A.W. contributed equally to all aspects of study design, conduct, data interpretation, and the writing of the manuscript. C.W., E.T. and C.H.A. contributed to eligibility screening, data extraction from eligible studies, and data analysis and interpretation.

Corresponding author

Correspondence to Abraham K. C. Wai .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary figure 1., supplementary figure 2., supplementary figure 3., supplementary figure 4., supplementary figure 5., supplementary material 6., rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Wong, C.K.H., Wong, J.Y., Tang, E.H.M. et al. Clinical presentations, laboratory and radiological findings, and treatments for 11,028 COVID-19 patients: a systematic review and meta-analysis. Sci Rep 10 , 19765 (2020). https://doi.org/10.1038/s41598-020-74988-9

Download citation

Received : 04 May 2020

Accepted : 25 September 2020

Published : 13 November 2020

DOI : https://doi.org/10.1038/s41598-020-74988-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Comorbidity genetic risk and pathways impact sars-cov-2 infection outcomes.

  • Rachel K. Jaros
  • Tayaza Fadason
  • Justin M. O’Sullivan

Scientific Reports (2023)

Adrenal function in relation to cytokines and outcome in non-critically ill patients with COVID-19

  • N. Athanasiou
  • A. Diamantopoulos
  • D. A. Vassiliadi

Journal of Endocrinological Investigation (2023)

The Role of Multidimensional Prognostic Index to Identify Hospitalized Older Adults with COVID-19 Who Can Benefit from Remdesivir Treatment: An Observational, Prospective, Multicenter Study

  • Carlo Custodero
  • Nicola Veronese
  • Julia Schlotmann

Drugs & Aging (2023)

Prevalence of hypertension and associated risks in hospitalized patients with COVID-19: a meta-analysis of meta-analyses with 1468 studies and 1,281,510 patients

  • Yousof Khairy
  • Deniz Naghibi
  • Saber Azami-Aghdash

Systematic Reviews (2022)

An alternative approach to determination of Covid-19 personal risk index by using fuzzy logic

  • Hakan Şimşek
  • Elifnaz Yangın

Health and Technology (2022)

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

in clinical presentation meaning

Tools for the Patient Presentation

The formal patient presentation.

  • Posing the Clinical Question
  • Searching the Medical Literature for EBM

Sources & Further Reading

First Aid for the Wards

Lingard L, Haber RJ.  Teaching and learning communications in medicine: a rhetorical approach .  Academic Medicine. 74(5):507-510 1999 May.

Lingard L, Haber RJ.  What do we mean by "relevance"? A clinical and rhetorical definition with implications for teaching and learning the case-presentation format . Academic Medicine. 74(10):S124-S127.

The Oral Presentation (A Practical Guide to Clinical Medicine, UCSD School of Medicine)  http://meded.ucsd.edu/clinicalmed/oral.htm

"Classically, the formal oral presentation is given in 7 minutes or less. Although it follows the same format as a written report, it is not simply regurgitation. A great presentation requires style as much as substance; your delivery must be succinct and smooth. No time should be wasted on superfluous information; one can read about such matters later in your admit note. Ideally, your presentation should be formulated so that your audience can anticipate your assessment and plan; that is, each piece of information should clue the listener into your thinking process and your most likely diagnosis."  [ Le, et al, p. 15 ]

Types of Patient Presentations

New Patient

New patients get the traditional H&P with assessment and plan.  Give the chief complaint and a brief and pertinent HPI.  Next give important PMH, PSH, etc.  The ROS is often left out, as anything important was in the HPI.  The PE is reviewed.  Only give pertinent positives and negatives.  The assessment and plan should include what you think is wrong and, briefly, why.  Then, state what you plan to do for the patient, including labs.  Be sure to know why things are being done: you will be asked.

The follow-up presentation differs from the presentation of a new patient.  It is an abridged presentation, perhaps referencing major patient issues that have been previously presented, but focusing on new information about these issues and/or what has changed. Give the patient’s name, age, date of admission, briefly review the present illness, physical examination and admitting diagnosis.  Then report any new finding, laboratory tests, diagnostic procedures and changes in medications.

The attending physician will ask the patient’s permission to have the medical student present their case.  After making the proper introductions the attending will let the patient know they may offer input or ask questions at any point.  When presenting at bedside the student should try to involve the patient.

Preparing for the Presentation

There are four things you must consider before you do your oral presentation

  • Occasion (setting and circumstances)

Ask yourself what do you want the presentation to do

  • Present a new patient to your preceptor : the amount of detail will be determined by your preceptor.  It is also likely to reflect your development and experience, with less detail being required as you progress.
  • Present your patient at working or teaching rounds : the amount of detail will be determined by the customs of the group. The focus of the presentation will be influenced by the learning objectives of working responsibilities of the group.
  • Request a consultant’s advice on a clinical problem : the presentation will be focused on the clinical question being posed to the consultant.
  • Persuade others about a diagnosis and plan : a shorter presentation which highlights the pertinent positives and negatives that are germane to the diagnosis and/or plan being suggested.
  • Enlist cooperation required for patient care : a short presentation focusing on the impact your audience can have in addressing the patient’s issues.

Preparation

  • Patient evaluation : history, physical examination, review of tests, studies, procedures, and consultants’ recommendations.
  • Selected reading : reference texts; to build a foundational understanding.
  • Literature search : for further elucidation of any key references from selected reading, and to bring your understanding up to date, since reference text information is typically three to seven years old.
  • Write-up : for oral presentation, just succinct notes to serve as a reminder or reference, since you’re not going to be reading your presentation.

Knowledge (Be prepared to answer questions about the following)

  • Pathophysiology
  • Complications
  • Differential diagnosis
  • Course of conditions
  • Diagnostic tests
  • Medications
  • Essential Evidence Plus

Template for Oral Presentations

Chief Complaint (CC)

The opening statement should give an overview of the patient, age, sex, reason for visit and the duration of the complaint. Give marital status, race, or occupation if relevant.  If your patient has a history of a major medical problem that bears strongly on the understanding of the present illness, include it.  For ongoing care, give a one sentence recap of the history.

History of Present Illness (HPI)

This will be very similar to your written HPI. Present the most important problem first. If there is more than one problem, treat each separately. Present the information chronologically.  Cover one system before going onto the next. Characterize the chief complaint – quality, severity, location, duration, progression, and include pertinent negatives. Items from the ROS that are unrelated to the present problem may be mentioned in passing unless you are doing a very formal presentation. When you do your first patient presentation you may be expected to go into detail.  For ongoing care, present any new complaints.

Review of Systems (ROS)

Most of the ROS is incorporated at the end of the HPI. Items that are unrelated to the present problem may be briefly mentioned.  For ongoing care, present only if new complaints.  

Past Medical History (PMH)

Discuss other past medical history that bears directly on the current medical problem.  For ongoing care, have the information available to respond to questions.

Past Surgical History

Provide names of procedures, approximate dates, indications, any relevant findings or complications, and pathology reports, if applicable.  For ongoing care, have the information available to respond to questions.

Allergies/Medications

Present all current medications along with dosage, route and frequency. For the follow-up presentation just give any changes in medication.  For ongoing care, note any changes.

Smoking and Alcohol (and any other substance abuse)

Note frequency and duration. For ongoing care, have the information available to respond to questions.

Social/Work History

Home, environment, work status and sexual history.  For ongoing care, have the information available to respond to questions.

Family History Note particular family history of genetically based diseases.  For ongoing care, have the information available to respond to questions.

Physical Exam/Labs/Other Tests

Include all significant abnormal findings and any normal findings that contribute to the diagnosis. Give a brief, general description of the patient including physical appearance. Then describe vital signs touching on each major system. Try to find out in advance how thorough you need to be for your presentation. There are times when you will be expected to give more detail on each physical finding, labs and other test results.  For ongoing care, mention only further positive findings and relevant negative findings.

Assessment and Plan

Give a summary of the important aspects of the history, physical exam and formulate the differential diagnosis. Make sure to read up on the patient’s case by doing a search of the literature. 

  • Include only the most essential facts; but be ready to answer ANY questions about all aspects of your patient.
  • Keep your presentation lively.
  • Do not read the presentation!
  • Expect your listeners to ask questions.
  • Follow the order of the written case report.
  • Keep in mind the limitation of your listeners.
  • Beware of jumping back and forth between descriptions of separate problems.
  • Use the presentation to build your case.
  • Your reasoning process should help the listener consider a differential diagnosis.
  • Present the patient as well as the illness .
  • << Previous: Home
  • Next: Posing the Clinical Question >>
  • Last Updated: Jul 19, 2023 10:52 AM
  • URL: https://rowanmed.libguides.com/tools
  • - Google Chrome

Intended for healthcare professionals

  • Access provided by Google Indexer
  • My email alerts
  • BMA member login
  • Username * Password * Forgot your log in details? Need to activate BMA Member Log In Log in via OpenAthens Log in via your institution

Home

Search form

  • Advanced search
  • Search responses
  • Search blogs
  • Presentation skills:...

Presentation skills: plan, prepare, phrase, and project

  • Related content
  • Peer review
  • Laura Brammar , careers adviser, C2 Careers
  • laura.brammar{at}careers.lon.ac.uk

In the third of her series on getting the dream job, Laura Brammar looks at giving an interview presentation

Many doctors have extensive experience of delivering presentations at conferences, during research projects, or to medical students during their training. Nevertheless, for many medical professionals having to deliver a presentation is still something they dread rather than relish. Equally, candidate presentations are becoming an established feature of selection and assessment for many roles within medicine.

Applicants may be asked to prepare and deliver a presentation as part of the interview process for anything from a salaried general practitioner post to a senior consultant post. For that reason alone, it’s vital to grasp the nettle and strengthen those presentation skills, which you can draw on throughout your medical career.

Break it down to just four P’s

To prepare most effectively for your presentation, you might find considering four main areas particularly useful: planning, preparation, phrasing, and projection.

Planning —A good presentation begins with the early stage of planning. Common complaints about ineffectual and dull presentations revolve around the apparent lack of structure shown by the presenter.

You will generally be given the topic of your presentation in advance. Topics vary, but they usually relate to your specialty—for example, “What do you see as the main current issues/future direction of this specialty?”—or link to contextual factors related to the role—“How, in your opinion, could the current system of X work more effectively?”

Think of the title as your research question or hypothesis and structure your presentation so that you answer that question directly. A simple but effective framework for any presentation is: tell them what you’re going to say, say it, and tell them what you’ve just said. Whether your presentation relates to the latest National Institute for Health and Clinical Excellence (NICE) guidelines for your specialty or a business plan in response to a proposed polyclinic, this structure will help keep your audience engaged and your presentation within the time limit.

Indeed, timing is crucial when giving a presentation. Most candidates are overambitious about what can be squeezed into just five to ten minutes. Be realistic about what you can achieve in the time limit and plan your presentation accordingly. As a rule of thumb, less is almost always more and remember to build in time for questions at the end.

Preparation —Having a clear structure can give you a useful framework that underpins your presentation. In a similar way, using particular resources to support your point can be a good method to employ during a presentation.

While the use of PowerPoint is becoming increasingly popular, in these circumstances you need to check before slaving over your slides. Remember that you are the focus of the presentation, not the screen; avoid distracting animations and excessive detail. Even if PowerPoint is an option you still need to plan for technological meltdowns; bring hard copies and overhead slides as a back-up.

You may consider it worth while to produce a brief summarising handout of the main points. Aim to distribute this before you begin so that you can create a clear and confident start, rather than compete with the rustle of paper as you try to introduce yourself.

Phrasing —Many candidates get anxious about the fact that they may “um” and “er” during a presentation. The vast majority of people feel nervous when they are presenting. Accept that and remember that, to an extent, it is what your audience will expect; from the selectors’ perspective, a completely laidback candidate might appear unmotivated and flippant. So while you want to aim for a fluid and articulate delivery, it’s not the end of the world if you occasionally need to pause between sentences. Indeed pauses can be an excellent way of emphasising your points and retaining your audience’s attention.

Essentially, use your structure to help you—for example, “First, I’d like to talk about . . .; next, let’s look at . . . ; and, finally, in summary . . ..”Also, be aware of your pace and volume.

Projection —Many people associate the term “presentation skills” with aspects of non-verbal communication, such as gestures and facial expression. Even when you feel nervous there are ways successfully to convey confidence to your audience. The following suggestions will help you to show a positive and calm attitude, which in turn will help you to maintain control over your presentation.

Breathe—If you are particularly nervous before you start, take a few moments to slow down your breathing; it may help to think about balancing the length of your inhalation and exhalation and breathe deeply and evenly.

Share your eye contact—If feasible, make eye contact with all your audience throughout your presentation; if you are presenting to a large group, make sure you address both sides of the room during your session.

Take time to pause—Use pauses to illustrate the structure of your session. Brief pauses can also help you to slow down your delivery and maintain the focus of your audience.

Project your voice—Check that those at the back can hear you before you start. Maintain your volume throughout and aim at projecting your voice to the back of the room.

Own the space—If possible, try not to stay stuck to one spot for the duration of the presentation. Clearly, now isn’t the time to try out gestures that feel unnatural or forced. However, convey your confidence through the way you stand and emphasise your message through your body language.

Smile—Despite feeling anxious, displaying a smile can make you feel more relaxed. Even better, it also gives your audience confidence in you and in your message.

Awkward audience moments

While you may have organised thoroughly your planning, preparation, phrasing, and projection, the one area you cannot control or necessarily predict is your audience’s reactions. Many people find the thought of their audience’s responses, especially during the question and answer session, far more terrifying than the presentation itself.

Here are a few suggestions for how to deal with some common difficult situations.

Random interruptions —If someone asks a question in the middle of your presentation, make a decision whether it would be appropriate to deal with it now or later. Don’t be forced to change your structure unless you believe it is really necessary. Acknowledge the question and reassure the person that there will be opportunities to discuss that later. Equally, if it is an unrelated or irrelevant question remember to acknowledge it but make it clear that such a topic isn’t going to be dealt with explicitly on this occasion. You can always offer to research that question for them at a later opportunity.

Audience looks bored —Many people feel they are poor presenters because their audiences can look distracted or even bored. The key thing here is to ask yourself if they are actually bored or whether they are just presenting you with a professional and impartial expression. In your clinical work you need to be able to focus on a task and not be distracted by personal emotional considerations or anxieties; this is no different. Treat the presentation as a professional exercise and move on.

Someone isn’t listening and is talking to someone nearby —Depending on your audience (senior consultants or medical students, for example) you may want to vary your specific response to this. However, a good technique with any audience is to pause in your delivery, look at the culprits while smiling, and wait for their attention before you start again. This is an effective (and non-aggressive) way of acknowledging that they are distracting both you and the rest of the group. That is usually all it takes to get their full attention. However, if they are persistent offenders maintain your professionalism and carry on regardless.

Questions you can’t answer —Sometimes the dread of the questions at the end of a presentation can overshadow the whole experience. Avoid this by framing your question and answer session with a reassurance that you’ll do your best to deal with any questions now and will guarantee to follow up any additional questions after the session. If you are asked a reasonable question which you genuinely can’t answer you may want to try the following:

Acknowledge that it’s a valid question

Invite any suggestions from the audience first

Admit that you can’t give a full answer at this moment; don’t bluff an answer

Offer to follow up a response and email the person later.

Remember that part of good medical practice is to know your limits and work within the parameters of your knowledge; it sounds far more confident and impressive to admit you can’t answer a question fully at this moment, rather than try to cobble together a poor answer and pretend you know.

Want to practise in a supportive environment?

The BMA Careers Service works with many individual medics who wish to improve their presentation skills through a tailormade practice presentation service. A bespoke practice presentation session, based on your actual material, can be excellent preparation for the real thing. During the session you can rehearse your presentation fully, practise answering focused questions, and gain immediate and constructive one to one feedback on your overall performance ( www.bma.org.uk/ap.nsf/Content/Hubcareersadvicefordoctors ).

Competing interests : None declared.

in clinical presentation meaning

Cambridge Dictionary

  • Cambridge Dictionary +Plus

clinical presentation

Meanings of clinical and presentation.

Your browser doesn't support HTML5 audio

(Definition of clinical and presentation from the Cambridge English Dictionary © Cambridge University Press)

  • Examples of clinical presentation

{{randomImageQuizHook.quizId}}

Word of the Day

call centre

a large office in which a company's employees provide information to its customers, or sell or advertise its goods or services, by phone

Varied and diverse (Talking about differences, Part 1)

Varied and diverse (Talking about differences, Part 1)

in clinical presentation meaning

Learn more with +Plus

  • Recent and Recommended {{#preferredDictionaries}} {{name}} {{/preferredDictionaries}}
  • Definitions Clear explanations of natural written and spoken English English Learner’s Dictionary Essential British English Essential American English
  • Grammar and thesaurus Usage explanations of natural written and spoken English Grammar Thesaurus
  • Pronunciation British and American pronunciations with audio English Pronunciation
  • English–Chinese (Simplified) Chinese (Simplified)–English
  • English–Chinese (Traditional) Chinese (Traditional)–English
  • English–Dutch Dutch–English
  • English–French French–English
  • English–German German–English
  • English–Indonesian Indonesian–English
  • English–Italian Italian–English
  • English–Japanese Japanese–English
  • English–Norwegian Norwegian–English
  • English–Polish Polish–English
  • English–Portuguese Portuguese–English
  • English–Spanish Spanish–English
  • English–Swedish Swedish–English
  • Dictionary +Plus Word Lists

{{message}}

There was a problem sending your report.

  • Definition of clinical
  • Definition of presentation
  • Other collocations with presentation

Insights into systemic lupus erythematosus: a retrospective observational study of clinical features, autoantibodies, and gender-related differences

  • Cohort Studies
  • Published: 08 May 2024

Cite this article

in clinical presentation meaning

  • Marwan H. Adwan   ORCID: orcid.org/0000-0003-4160-0371 1 ,
  • Ula Qasem   ORCID: orcid.org/0000-0001-6063-2323 1 ,
  • Saed. Y. Atawnah   ORCID: orcid.org/0000-0002-2769-137X 1 ,
  • Muath Itmeizeh   ORCID: orcid.org/0000-0002-8513-7967 1 ,
  • Rifaat Hanbali   ORCID: orcid.org/0000-0003-2440-5574 2 ,
  • Najla Ali Alsoofi   ORCID: orcid.org/0000-0002-1171-3992 2 ,
  • Mohammed Abu Jbara   ORCID: orcid.org/0000-0002-3116-0109 2 ,
  • Ayman AbuHelal   ORCID: orcid.org/0009-0008-2294-2695 1 &
  • Fatima Alnaimat   ORCID: orcid.org/0000-0002-5574-2939 1  

37 Accesses

3 Altmetric

Explore all metrics

This study aims to analyze the clinical and immunologic features of SLE in Jordan, while also investigating the impact of age and gender on disease presentation. The study included 275 patients diagnosed with SLE. Data were collected through meticulous patient interviews and thorough examination of patient hospital records. The cohort exhibited a mean age of 36.8 ± 12.9 years, with an average disease duration of 7.0 ± 7.8 years. The mean age at diagnosis was 29.9 ± 12.1 years, and the female to male ratio was 7.8:1. The most frequently observed symptoms were arthralgia (90.2%), fatigue (80.7%), hematologic manifestations (62%), photosensitivity (60.7%), Raynaud's phenomenon (53.5%), and malar rash (50.9%). The frequencies of various autoantibodies were as follows: ANA (96.7%), anti-dsDNA (39.6%), anti-SSA/Ro (32.8%), anti-Sm (21.8%), anti-U1-RNP (20.6%), and anti-SSB/La (15.5%). Male patients tended to receive a diagnosis at a younger age and exhibited a higher likelihood of experiencing severe manifestations compared to females. Additionally, juvenile onset patients demonstrated an increased likelihood of fever, photosensitivity, myositis, and anti-dsDNA autoantibodies, while adult onset patients were more predisposed to having anti-Ro, anti-La, and RF autoantibodies. This study reveals that the most prevalent manifestations of SLE in the Jordanian cohort encompassed arthralgia, fatigue, and hematologic manifestations. The prevalence of alopecia and Raynaud's phenomenon exceeded that observed in other published cohorts, while arthritis and discoid rash were less frequently encountered. The study highlights that males are more susceptible to developing severe manifestations of SLE compared to females.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

in clinical presentation meaning

Similar content being viewed by others

in clinical presentation meaning

Sex differences in clinical presentation of systemic lupus erythematosus

in clinical presentation meaning

A Contemporary Update on the Diagnosis of Systemic Lupus Erythematosus

in clinical presentation meaning

  • Systemic Lupus Erythematosus

Data availability

The data available with the author upon request.

Borchers AT, Naguwa SM, Shoenfeld Y, Gershwin ME (2010) The geoepidemiology of systemic lupus erythematosus. Autoimmun Rev 9(5):A277–A287

Article   CAS   PubMed   Google Scholar  

Stojan G, Petri M (2018) Epidemiology of systemic lupus erythematosus: an update. Curr Opin Rheumatol 30(2):144–150

Article   PubMed   PubMed Central   Google Scholar  

Fatoye F, Gebrye T, Mbada C (2022) Global and regional prevalence and incidence of systemic lupus erythematosus in low-and-middle income countries: a systematic review and meta-analysis. Rheumatol Int 42(12):2097–2107

Alarcon G, McGwin G Jr, Petri M, Reveille J, Ramsey-Goldman R, Kimberly R et al (2002) Baseline characteristics of a multiethnic lupus cohort: PROFILE. Lupus 11(2):95–101

Lau C, Yin G, Mok M (2006) Ethnic and geographical differences in systemic lupus erythematosus: an overview. Lupus 15(11):715–719

Al Arfaj A, Khalil N (2009) Clinical and immunological manifestations in 624 SLE patients in Saudi Arabia. Lupus 18(5):465–473

Al Dhanhani A, Agarwal M, Othman Y, Bakoush O (2017) Incidence and prevalence of systemic lupus erythematosus among the native Arab population in UAE. Lupus 26(6):664–669

Housey M, DeGuire P, Lyon-Callo S, Wang L, Marder W, McCune WJ et al (2015) Incidence and prevalence of systemic lupus erythematosus among Arab and Chaldean Americans in southeastern Michigan: the Michigan Lupus Epidemiology and Surveillance Program. Am J Public Health 105(5):e74–e79

Adwan M (2018) Clinical and serologic characteristics of systemic lupus erythematosus in the arab world: a pooled analysis of 3,273 patients. Arch Rheumatol 33(4):455

Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis rheum 40(9):1725

Harley IT, Sawalha AH (2022) Systemic lupus erythematosus as a genetic disease. Clin Immunol 236:108953

Article   CAS   PubMed   PubMed Central   Google Scholar  

Pons-Estel GJ, Ugarte-Gil MF, Alarcón GS (2017) Epidemiology of systemic lupus erythematosus. Expert Rev Clin Immunol 13(8):799–814

Tan EM, Cohen AS, Fries JF, Masi AT, Mcshane DJ, Rothfield NF et al (1982) The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 25(11):1271–1277

Feng J-B, Ni J-D, Yao X, Pan H-F, Li X-P, Xu J-H et al (2010) Gender and age influence on clinical and laboratory features in Chinese patients with systemic lupus erythematosus: 1,790 cases. Rheumatol Int 30:1017–1023

Article   PubMed   Google Scholar  

Garcia MA, Marcos J, Marcos A, Pons-Estel B, Wojdyla D, Arturi A et al (2005) Male systemic lupus erythematosus in a Latin-American inception cohort of 1214 patients. Lupus 14(12):938–946

Cervera R, Khamashta MA, Font J, Sebastiani GD, Gil A, Lavilla P, et al (1993) Systemic lupus erythematosus: clinical and immunologic patterns of disease expression in a cohort of 1,000 patients. The European Working Party on Systemic Lupus Erythematosus. Medicine 72(2):113–124

Borba E, Araujo D, Bonfá E, Shinjo S (2013) Clinical and immunological features of 888 Brazilian systemic lupus patients from a monocentric cohort: comparison with other populations. Lupus 22(7):744–749

El Hadidi K, Medhat B, Abdel Baki N, Abdel Kafy H, Abdelrahaman W, Yousri A et al (2018) Characteristics of systemic lupus erythematosus in a sample of the Egyptian population: a retrospective cohort of 1109 patients from a single center. Lupus 27(6):1030–1038

Joo YB, Bae SC (2015) Assessment of clinical manifestations, disease activity and organ damage in 996 Korean patients with systemic lupus erythematosus: comparison with other Asian populations. Int J Rheum 18(2):117–128

Article   Google Scholar  

Khanfir MS, Houman MH, Cherif E, Hamzaoui A, Souissi S, Ghorbel IB et al (2013) TULUP (TU nisian LUP us): a multicentric study of systemic lupus erythematosus in Tunisia. Int J Rheum 16(5):539–546

Rúa-Figueroa Í, Richi P, López-Longo FJ, Galindo M, Calvo-Alén J, Olivé-Marqués A et al (2015) Comprehensive description of clinical characteristics of a large systemic lupus erythematosus cohort from the Spanish Rheumatology Society Lupus Registry (RELESSER) with emphasis on complete versus incomplete lupus differences. Medicine 94(1):e267

Nazarinia M, Ghaffarpasand F, Shamsdin A, Karimi A, Abbasi N, Amiri A (2008) Systemic lupus erythematosus in the Fars Province of Iran. Lupus 17(3):221–227

Lu L-J, Wallace DJ, Ishimori ML, Scofield R, Weisman MH (2010) Male systemic lupus erythematosus: a review of sex disparities in this disease. Lupus 19(2):119–129

Lao C, Van Dantzig P, White D, Rabindranath K, Foxall D, Lawrenson R (2023) Prevalence and outcomes of end-stage kidney disease in patients with systemic lupus erythematous: a population-based study. Rheumatol Int 44(3):469–475

Stefanidou S, Benos A, Galanopoulou V, Chatziyannis I, Kanakoudi F, Aslanidis S et al (2011) Clinical expression and morbidity of systemic lupus erythematosus during a post-diagnostic 5-year follow-up: a male: female comparison. Lupus 20(10):1090–1094

Mok C, Lau C, Chan T, Wong RW (1999) Clinical characteristics and outcome of southern Chinese males with systemic lupus erythematosus. Lupus 8(3):188–196

Livingston B, Bonner A, Pope J (2011) Differences in clinical manifestations between childhood-onset lupus and adult-onset lupus: a meta-analysis. Lupus 20(13):1345–1355

Sharma H, Kaul A, Mohakuda SS, Behera MR, Bhadauria D, Agrawal V et al (2023) Clinicopathologic characteristics and outcomes of late onset lupus nephritis: a single centre experience. Rheumatol Int 43(10):1849–1858

Download references

No specific funding was received from public, commercial or not-for-profit bodies to carry out the work described in this article.

Author information

Authors and affiliations.

Department of Internal Medicine, Division of Rheumatology, University of Jordan, Amman, Jordan

Marwan H. Adwan, Ula Qasem, Saed. Y. Atawnah, Muath Itmeizeh, Ayman AbuHelal & Fatima Alnaimat

Department of Rheumatology, AlBashir Hospital, Amman, Jordan

Rifaat Hanbali, Najla Ali Alsoofi & Mohammed Abu Jbara

You can also search for this author in PubMed   Google Scholar

Contributions

All co-authors collectively bear full responsibility for the integrity and accuracy of every aspect of the work. MHA: Conceived and oversaw the study, formulated the initial manuscript, and critically reviewed and completed the final version. S YA, MI, RH, UQ, NA, MAJ and AAH: Contributed to data collection and drafting of the initial manuscript. FA: Manuscript writing and editing and evaluating research integrity.

Corresponding author

Correspondence to Fatima Alnaimat .

Ethics declarations

Conflict of interest.

Authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Jordan University Hospital Institutional Review Board (protocol number 10/2024/6174), and all the procedures performed were in accordance with the ethical standards of the institutional and/or national research committee and with the World Medical Association Declaration of Helsinki principles for this type of study.

Congress abstract publication

This work has not been presented at any congress either in abstract or full form.

Informed consent

Informed consent was obtained from patients who participated in this study.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Adwan, M.H., Qasem, U., Atawnah, S.Y. et al. Insights into systemic lupus erythematosus: a retrospective observational study of clinical features, autoantibodies, and gender-related differences. Rheumatol Int (2024). https://doi.org/10.1007/s00296-024-05592-7

Download citation

Received : 20 January 2024

Accepted : 06 April 2024

Published : 08 May 2024

DOI : https://doi.org/10.1007/s00296-024-05592-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Arab countries
  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. Clinical Presentation, Definition and Diagnostic Criteria of Coronary

    in clinical presentation meaning

  2. Clinical Presentation Model

    in clinical presentation meaning

  3. Clinical Presentation

    in clinical presentation meaning

  4. Clinical Presentation 101

    in clinical presentation meaning

  5. (PDF) Five steps for clinical presentation

    in clinical presentation meaning

  6. Clinical presentation timeline.

    in clinical presentation meaning

VIDEO

  1. Understanding Clinical Trials: What you need to know to be a part of the latest research

  2. What_is_Business_Plan_Presentation____Types_of_Business_Plan_Presentation___meaning_of_Business_Plan

  3. What is Business Plan Presentation || Types of Business Plan Presentation

  4. What is Business Plan Presentation || Types of Business Plan Presentation

  5. What is Business Plan Presentation || Types of Business Plan Presentation

  6. Acute Appendicitis||Clinical Presentation||Management||Port Positioning||Incisions||Bedside Clinics

COMMENTS

  1. How to Create and Deliver an Effective Presentation

    To create a presentation, start with a focused topic. Too broad of a topic results in a distracted message. After choosing the topic, research the literature and the sources of the primary literature to fully understand the origin of guidelines, techniques, and clinical practices.

  2. How to present patient cases

    Presenting patient cases is a key part of everyday clinical practice. A well delivered presentation has the potential to facilitate patient care and improve efficiency on ward rounds, as well as a means of teaching and assessing clinical competence. 1 The purpose of a case presentation is to communicate your diagnostic reasoning to the listener, so that he or she has a clear picture of the ...

  3. How to present clinical cases

    Clinical presenting is the language that doctors use to communicate with each other every day of their working lives. Effective communication between doctors is crucial, considering the collaborative nature of medicine. As a medical student and later as a doctor you will be expected to present cases to peers and senior colleagues.

  4. Effectiveness of Clinical Presentation (CP) Curriculum in teaching

    2 A well-organized comprehensive knowledge domain has practical implications in clinical problem solving, and appropriate teaching and learning methods play an important role in achieving the educational goals. 3. Clinical presentation (CP) is a relatively new and innovative approach to teaching medicine.

  5. How to prepare and deliver an effective oral presentation

    Delivery. It is important to dress appropriately, stand up straight, and project your voice towards the back of the room. Practise using a microphone, or any other presentation aids, in advance. If you don't have your own presenting style, think of the style of inspirational scientific speakers you have seen and imitate it.

  6. Clinical Presentation Model

    A clinical presentation is the mode by which a patient presents to a physician and represents the clinical problem a physician is expected to manage. Big picture: The curriculum begins and ends with a focus on the patient, specifically the patient's clinical presentation. Deconstruct and independent learning: Each clinical presentation is ...

  7. Epidemiology, pathogenesis, clinical presentations, diagnosis and

    Areas covered. Direct person-to-person respiratory transmission has rapidly amplified the spread of coronavirus. In the absence of any clinically proven treatment options, the current clinical management of COVID-19 includes symptom management, infection prevention and control measures, optimized supportive care, and intensive care support in severe or critical illness.

  8. Acute medical presentations

    12.4 Disorders of purine and pyrimidine metabolism. Notes. Notes. 12.5 The porphyrias. Notes. Notes. AbstractThis chapter provides concise details of the clinical features, immediate management, key investigations, and further management of all of the comm.

  9. The Clinical Presentation

    There are a multitude of presentation formats for sharing and discussing clinical cases, diagnostic formulations or dilemmas, treatment approaches, and ethical issues. These presentation formats vary in terms of the number and type of participants, the use of multimedia , the availability of continuing medical education credits, etc. (Hull et ...

  10. CLINICAL PRESENTATION definition and meaning

    CLINICAL PRESENTATION definition | Meaning, pronunciation, translations and examples

  11. The art of presenting

    The clinical clerk. The case presentation can be the most exciting part of the day for the clinical clerk and the most dreaded for the attending physician, or vice-versa. The key feature of a clerk's presentation is his or her lack of confidence. Overinclusive and unconvincing, the presentation often showcases verbal diarrhea at its finest.

  12. (PDF) Five steps for clinical presentation

    Clinical presentation is a skill that is needed for doctors to share the medical problem for a patient with other physicians. It is also used to evaluate resident in training and for other purposes.

  13. Clinical Presentation

    The clinical presentation of COVID-19 ranges from asymptomatic to critical illness. An infected person can transmit SARS-CoV-2, the virus that causes COVID-19, before the onset of symptoms. Symptoms can change over the course of illness and can progress in severity. Uncommon presentations of COVID-19 can occur, might vary by the age of the ...

  14. Clinical presentations, laboratory and radiological findings, and

    Epidemiological studies published in 2020 (from January-March) on the clinical presentation, laboratory findings and treatments of COVID-19 patients were identified from PubMed/MEDLINE and ...

  15. The Formal Patient Presentation

    What do we mean by "relevance"? A clinical and rhetorical definition with implications for teaching and learning the case-presentation format. Academic Medicine. 74(10):S124-S127. ... Request a consultant's advice on a clinical problem: the presentation will be focused on the clinical question being posed to the consultant.

  16. CLINICAL PRESENTATION definition in American English

    CLINICAL PRESENTATION meaning | Definition, pronunciation, translations and examples in American English. TRANSLATOR. LANGUAGE. GAMES. SCHOOLS. BLOG. RESOURCES. More . English. ... This case raises the possibility of such a clinical presentation being caused by haematogenous dissemination of distant site visceral tumours.

  17. Presentation skills: plan, prepare, phrase, and project

    Whether your presentation relates to the latest National Institute for Health and Clinical Excellence (NICE) guidelines for your specialty or a business plan in response to a proposed polyclinic, this structure will help keep your audience engaged and your presentation within the time limit. Indeed, timing is crucial when giving a presentation.

  18. CLINICAL PRESENTATION collocation

    Examples of CLINICAL PRESENTATION in a sentence, how to use it. 16 examples: This review describes the causative organisms, pathogenesis, clinical presentation, epidemiology…

  19. Clinical presentation and management of COVID‐19

    Clinical presentation. Similar to other coronaviruses, SARS‐CoV‐2 is predominantly spread by respiratory droplets, although spread by contact with contaminated fomites also occurs, as does transmission by aerosols in certain circumstances.1 Based on the experience in China, the typical incubation period of COVID‐19 infection has been estimated to be a median of 5.1 days (95% CI, 4.5-5. ...

  20. Presentation (medical)

    This definition of medical jargon appears to be a dictionary definition. Please rewrite it to present the subject from an encyclopedic point of view. (May 2023) In medicine, a presentation is the appearance in a patient of illness or disease—or signs or symptoms thereof—before a medical professional.

  21. PDF Focus on Clinical Presentation (00177519)

    A therapist cannot assume that an auditor, insurer or anyone else will correctly determine the clinical presentation based on the other evaluation components. Clinical presentation must be documented. 2. To support the chosen complexity level, all requirements for that level must be met. If not, the "correct" coded choice defaults to the ...

  22. Insights into systemic lupus erythematosus: a retrospective ...

    This study aims to analyze the clinical and immunologic features of SLE in Jordan, while also investigating the impact of age and gender on disease presentation. The study included 275 patients diagnosed with SLE. Data were collected through meticulous patient interviews and thorough examination of patient hospital records. The cohort exhibited a mean age of 36.8 ± 12.9 years, with an average ...

  23. Animals

    Non-healing claw horn disorders are a serious problem in dairy herds because of the long duration of the disorder and the chronic pain derived from it, seriously affecting animal welfare and causing decreased production and premature culling from the herd. In a clinical trial, 40 cows in 13 herds (12 dairy herds and 1 herd with cow-calf operations) with toe necrosis (TN, 27x) or a non ...

  24. Clinical presentation and diagnosis of multiple sclerosis

    Clinical presentation. MS is a CNS disease characterised by demyelinating lesions in regions including the optic nerves, brainstem, cerebellum, periventricular and spinal cord. Histopathology also shows widespread involvement of the cerebral grey matter, although this is not well appreciated on conventional MRI.