• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

what is research analysis of data

Home Market Research

Data Analysis in Research: Types & Methods

data-analysis-in-research

Content Index

Why analyze data in research?

Types of data in research, finding patterns in the qualitative data, methods used for data analysis in qualitative research, preparing data for analysis, methods used for data analysis in quantitative research, considerations in research data analysis, what is data analysis in research.

Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. 

Three essential things occur during the data analysis process — the first is data organization . Summarization and categorization together contribute to becoming the second known method used for data reduction. It helps find patterns and themes in the data for easy identification and linking. The third and last way is data analysis – researchers do it in both top-down and bottom-up fashion.

LEARN ABOUT: Research Process Steps

On the other hand, Marshall and Rossman describe data analysis as a messy, ambiguous, and time-consuming but creative and fascinating process through which a mass of collected data is brought to order, structure and meaning.

We can say that “the data analysis and data interpretation is a process representing the application of deductive and inductive logic to the research and data analysis.”

Researchers rely heavily on data as they have a story to tell or research problems to solve. It starts with a question, and data is nothing but an answer to that question. But, what if there is no question to ask? Well! It is possible to explore data even without a problem – we call it ‘Data Mining’, which often reveals some interesting patterns within the data that are worth exploring.

Irrelevant to the type of data researchers explore, their mission and audiences’ vision guide them to find the patterns to shape the story they want to tell. One of the essential things expected from researchers while analyzing data is to stay open and remain unbiased toward unexpected patterns, expressions, and results. Remember, sometimes, data analysis tells the most unforeseen yet exciting stories that were not expected when initiating data analysis. Therefore, rely on the data you have at hand and enjoy the journey of exploratory research. 

Create a Free Account

Every kind of data has a rare quality of describing things after assigning a specific value to it. For analysis, you need to organize these values, processed and presented in a given context, to make it useful. Data can be in different forms; here are the primary data types.

  • Qualitative data: When the data presented has words and descriptions, then we call it qualitative data . Although you can observe this data, it is subjective and harder to analyze data in research, especially for comparison. Example: Quality data represents everything describing taste, experience, texture, or an opinion that is considered quality data. This type of data is usually collected through focus groups, personal qualitative interviews , qualitative observation or using open-ended questions in surveys.
  • Quantitative data: Any data expressed in numbers of numerical figures are called quantitative data . This type of data can be distinguished into categories, grouped, measured, calculated, or ranked. Example: questions such as age, rank, cost, length, weight, scores, etc. everything comes under this type of data. You can present such data in graphical format, charts, or apply statistical analysis methods to this data. The (Outcomes Measurement Systems) OMS questionnaires in surveys are a significant source of collecting numeric data.
  • Categorical data: It is data presented in groups. However, an item included in the categorical data cannot belong to more than one group. Example: A person responding to a survey by telling his living style, marital status, smoking habit, or drinking habit comes under the categorical data. A chi-square test is a standard method used to analyze this data.

Learn More : Examples of Qualitative Data in Education

Data analysis in qualitative research

Data analysis and qualitative data research work a little differently from the numerical data as the quality data is made up of words, descriptions, images, objects, and sometimes symbols. Getting insight from such complicated information is a complicated process. Hence it is typically used for exploratory research and data analysis .

Although there are several ways to find patterns in the textual information, a word-based method is the most relied and widely used global technique for research and data analysis. Notably, the data analysis process in qualitative research is manual. Here the researchers usually read the available data and find repetitive or commonly used words. 

For example, while studying data collected from African countries to understand the most pressing issues people face, researchers might find  “food”  and  “hunger” are the most commonly used words and will highlight them for further analysis.

LEARN ABOUT: Level of Analysis

The keyword context is another widely used word-based technique. In this method, the researcher tries to understand the concept by analyzing the context in which the participants use a particular keyword.  

For example , researchers conducting research and data analysis for studying the concept of ‘diabetes’ amongst respondents might analyze the context of when and how the respondent has used or referred to the word ‘diabetes.’

The scrutiny-based technique is also one of the highly recommended  text analysis  methods used to identify a quality data pattern. Compare and contrast is the widely used method under this technique to differentiate how a specific text is similar or different from each other. 

For example: To find out the “importance of resident doctor in a company,” the collected data is divided into people who think it is necessary to hire a resident doctor and those who think it is unnecessary. Compare and contrast is the best method that can be used to analyze the polls having single-answer questions types .

Metaphors can be used to reduce the data pile and find patterns in it so that it becomes easier to connect data with theory.

Variable Partitioning is another technique used to split variables so that researchers can find more coherent descriptions and explanations from the enormous data.

LEARN ABOUT: Qualitative Research Questions and Questionnaires

There are several techniques to analyze the data in qualitative research, but here are some commonly used methods,

  • Content Analysis:  It is widely accepted and the most frequently employed technique for data analysis in research methodology. It can be used to analyze the documented information from text, images, and sometimes from the physical items. It depends on the research questions to predict when and where to use this method.
  • Narrative Analysis: This method is used to analyze content gathered from various sources such as personal interviews, field observation, and  surveys . The majority of times, stories, or opinions shared by people are focused on finding answers to the research questions.
  • Discourse Analysis:  Similar to narrative analysis, discourse analysis is used to analyze the interactions with people. Nevertheless, this particular method considers the social context under which or within which the communication between the researcher and respondent takes place. In addition to that, discourse analysis also focuses on the lifestyle and day-to-day environment while deriving any conclusion.
  • Grounded Theory:  When you want to explain why a particular phenomenon happened, then using grounded theory for analyzing quality data is the best resort. Grounded theory is applied to study data about the host of similar cases occurring in different settings. When researchers are using this method, they might alter explanations or produce new ones until they arrive at some conclusion.

LEARN ABOUT: 12 Best Tools for Researchers

Data analysis in quantitative research

The first stage in research and data analysis is to make it for the analysis so that the nominal data can be converted into something meaningful. Data preparation consists of the below phases.

Phase I: Data Validation

Data validation is done to understand if the collected data sample is per the pre-set standards, or it is a biased data sample again divided into four different stages

  • Fraud: To ensure an actual human being records each response to the survey or the questionnaire
  • Screening: To make sure each participant or respondent is selected or chosen in compliance with the research criteria
  • Procedure: To ensure ethical standards were maintained while collecting the data sample
  • Completeness: To ensure that the respondent has answered all the questions in an online survey. Else, the interviewer had asked all the questions devised in the questionnaire.

Phase II: Data Editing

More often, an extensive research data sample comes loaded with errors. Respondents sometimes fill in some fields incorrectly or sometimes skip them accidentally. Data editing is a process wherein the researchers have to confirm that the provided data is free of such errors. They need to conduct necessary checks and outlier checks to edit the raw edit and make it ready for analysis.

Phase III: Data Coding

Out of all three, this is the most critical phase of data preparation associated with grouping and assigning values to the survey responses . If a survey is completed with a 1000 sample size, the researcher will create an age bracket to distinguish the respondents based on their age. Thus, it becomes easier to analyze small data buckets rather than deal with the massive data pile.

LEARN ABOUT: Steps in Qualitative Research

After the data is prepared for analysis, researchers are open to using different research and data analysis methods to derive meaningful insights. For sure, statistical analysis plans are the most favored to analyze numerical data. In statistical analysis, distinguishing between categorical data and numerical data is essential, as categorical data involves distinct categories or labels, while numerical data consists of measurable quantities. The method is again classified into two groups. First, ‘Descriptive Statistics’ used to describe data. Second, ‘Inferential statistics’ that helps in comparing the data .

Descriptive statistics

This method is used to describe the basic features of versatile types of data in research. It presents the data in such a meaningful way that pattern in the data starts making sense. Nevertheless, the descriptive analysis does not go beyond making conclusions. The conclusions are again based on the hypothesis researchers have formulated so far. Here are a few major types of descriptive analysis methods.

Measures of Frequency

  • Count, Percent, Frequency
  • It is used to denote home often a particular event occurs.
  • Researchers use it when they want to showcase how often a response is given.

Measures of Central Tendency

  • Mean, Median, Mode
  • The method is widely used to demonstrate distribution by various points.
  • Researchers use this method when they want to showcase the most commonly or averagely indicated response.

Measures of Dispersion or Variation

  • Range, Variance, Standard deviation
  • Here the field equals high/low points.
  • Variance standard deviation = difference between the observed score and mean
  • It is used to identify the spread of scores by stating intervals.
  • Researchers use this method to showcase data spread out. It helps them identify the depth until which the data is spread out that it directly affects the mean.

Measures of Position

  • Percentile ranks, Quartile ranks
  • It relies on standardized scores helping researchers to identify the relationship between different scores.
  • It is often used when researchers want to compare scores with the average count.

For quantitative research use of descriptive analysis often give absolute numbers, but the in-depth analysis is never sufficient to demonstrate the rationale behind those numbers. Nevertheless, it is necessary to think of the best method for research and data analysis suiting your survey questionnaire and what story researchers want to tell. For example, the mean is the best way to demonstrate the students’ average scores in schools. It is better to rely on the descriptive statistics when the researchers intend to keep the research or outcome limited to the provided  sample  without generalizing it. For example, when you want to compare average voting done in two different cities, differential statistics are enough.

Descriptive analysis is also called a ‘univariate analysis’ since it is commonly used to analyze a single variable.

Inferential statistics

Inferential statistics are used to make predictions about a larger population after research and data analysis of the representing population’s collected sample. For example, you can ask some odd 100 audiences at a movie theater if they like the movie they are watching. Researchers then use inferential statistics on the collected  sample  to reason that about 80-90% of people like the movie. 

Here are two significant areas of inferential statistics.

  • Estimating parameters: It takes statistics from the sample research data and demonstrates something about the population parameter.
  • Hypothesis test: I t’s about sampling research data to answer the survey research questions. For example, researchers might be interested to understand if the new shade of lipstick recently launched is good or not, or if the multivitamin capsules help children to perform better at games.

These are sophisticated analysis methods used to showcase the relationship between different variables instead of describing a single variable. It is often used when researchers want something beyond absolute numbers to understand the relationship between variables.

Here are some of the commonly used methods for data analysis in research.

  • Correlation: When researchers are not conducting experimental research or quasi-experimental research wherein the researchers are interested to understand the relationship between two or more variables, they opt for correlational research methods.
  • Cross-tabulation: Also called contingency tables,  cross-tabulation  is used to analyze the relationship between multiple variables.  Suppose provided data has age and gender categories presented in rows and columns. A two-dimensional cross-tabulation helps for seamless data analysis and research by showing the number of males and females in each age category.
  • Regression analysis: For understanding the strong relationship between two variables, researchers do not look beyond the primary and commonly used regression analysis method, which is also a type of predictive analysis used. In this method, you have an essential factor called the dependent variable. You also have multiple independent variables in regression analysis. You undertake efforts to find out the impact of independent variables on the dependent variable. The values of both independent and dependent variables are assumed as being ascertained in an error-free random manner.
  • Frequency tables: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Analysis of variance: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Researchers must have the necessary research skills to analyze and manipulation the data , Getting trained to demonstrate a high standard of research practice. Ideally, researchers must possess more than a basic understanding of the rationale of selecting one statistical method over the other to obtain better data insights.
  • Usually, research and data analytics projects differ by scientific discipline; therefore, getting statistical advice at the beginning of analysis helps design a survey questionnaire, select data collection methods , and choose samples.

LEARN ABOUT: Best Data Collection Tools

  • The primary aim of data research and analysis is to derive ultimate insights that are unbiased. Any mistake in or keeping a biased mind to collect data, selecting an analysis method, or choosing  audience  sample il to draw a biased inference.
  • Irrelevant to the sophistication used in research data and analysis is enough to rectify the poorly defined objective outcome measurements. It does not matter if the design is at fault or intentions are not clear, but lack of clarity might mislead readers, so avoid the practice.
  • The motive behind data analysis in research is to present accurate and reliable data. As far as possible, avoid statistical errors, and find a way to deal with everyday challenges like outliers, missing data, data altering, data mining , or developing graphical representation.

LEARN MORE: Descriptive Research vs Correlational Research The sheer amount of data generated daily is frightening. Especially when data analysis has taken center stage. in 2018. In last year, the total data supply amounted to 2.8 trillion gigabytes. Hence, it is clear that the enterprises willing to survive in the hypercompetitive world must possess an excellent capability to analyze complex research data, derive actionable insights, and adapt to the new market needs.

LEARN ABOUT: Average Order Value

QuestionPro is an online survey platform that empowers organizations in data analysis and research and provides them a medium to collect data by creating appealing surveys.

MORE LIKE THIS

ai for customer experience

The Power of AI in Customer Experience — Tuesday CX Thoughts

Apr 16, 2024

employee lifecycle management software

Employee Lifecycle Management Software: Top of 2024

Apr 15, 2024

Sentiment analysis software

Top 15 Sentiment Analysis Software That Should Be on Your List

A/B testing software

Top 13 A/B Testing Software for Optimizing Your Website

Apr 12, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Your Modern Business Guide To Data Analysis Methods And Techniques

Data analysis methods and techniques blog post by datapine

Table of Contents

1) What Is Data Analysis?

2) Why Is Data Analysis Important?

3) What Is The Data Analysis Process?

4) Types Of Data Analysis Methods

5) Top Data Analysis Techniques To Apply

6) Quality Criteria For Data Analysis

7) Data Analysis Limitations & Barriers

8) Data Analysis Skills

9) Data Analysis In The Big Data Environment

In our data-rich age, understanding how to analyze and extract true meaning from our business’s digital insights is one of the primary drivers of success.

Despite the colossal volume of data we create every day, a mere 0.5% is actually analyzed and used for data discovery , improvement, and intelligence. While that may not seem like much, considering the amount of digital information we have at our fingertips, half a percent still accounts for a vast amount of data.

With so much data and so little time, knowing how to collect, curate, organize, and make sense of all of this potentially business-boosting information can be a minefield – but online data analysis is the solution.

In science, data analysis uses a more complex approach with advanced techniques to explore and experiment with data. On the other hand, in a business context, data is used to make data-driven decisions that will enable the company to improve its overall performance. In this post, we will cover the analysis of data from an organizational point of view while still going through the scientific and statistical foundations that are fundamental to understanding the basics of data analysis. 

To put all of that into perspective, we will answer a host of important analytical questions, explore analytical methods and techniques, while demonstrating how to perform analysis in the real world with a 17-step blueprint for success.

What Is Data Analysis?

Data analysis is the process of collecting, modeling, and analyzing data using various statistical and logical methods and techniques. Businesses rely on analytics processes and tools to extract insights that support strategic and operational decision-making.

All these various methods are largely based on two core areas: quantitative and qualitative research.

To explain the key differences between qualitative and quantitative research, here’s a video for your viewing pleasure:

Gaining a better understanding of different techniques and methods in quantitative research as well as qualitative insights will give your analyzing efforts a more clearly defined direction, so it’s worth taking the time to allow this particular knowledge to sink in. Additionally, you will be able to create a comprehensive analytical report that will skyrocket your analysis.

Apart from qualitative and quantitative categories, there are also other types of data that you should be aware of before dividing into complex data analysis processes. These categories include: 

  • Big data: Refers to massive data sets that need to be analyzed using advanced software to reveal patterns and trends. It is considered to be one of the best analytical assets as it provides larger volumes of data at a faster rate. 
  • Metadata: Putting it simply, metadata is data that provides insights about other data. It summarizes key information about specific data that makes it easier to find and reuse for later purposes. 
  • Real time data: As its name suggests, real time data is presented as soon as it is acquired. From an organizational perspective, this is the most valuable data as it can help you make important decisions based on the latest developments. Our guide on real time analytics will tell you more about the topic. 
  • Machine data: This is more complex data that is generated solely by a machine such as phones, computers, or even websites and embedded systems, without previous human interaction.

Why Is Data Analysis Important?

Before we go into detail about the categories of analysis along with its methods and techniques, you must understand the potential that analyzing data can bring to your organization.

  • Informed decision-making : From a management perspective, you can benefit from analyzing your data as it helps you make decisions based on facts and not simple intuition. For instance, you can understand where to invest your capital, detect growth opportunities, predict your income, or tackle uncommon situations before they become problems. Through this, you can extract relevant insights from all areas in your organization, and with the help of dashboard software , present the data in a professional and interactive way to different stakeholders.
  • Reduce costs : Another great benefit is to reduce costs. With the help of advanced technologies such as predictive analytics, businesses can spot improvement opportunities, trends, and patterns in their data and plan their strategies accordingly. In time, this will help you save money and resources on implementing the wrong strategies. And not just that, by predicting different scenarios such as sales and demand you can also anticipate production and supply. 
  • Target customers better : Customers are arguably the most crucial element in any business. By using analytics to get a 360° vision of all aspects related to your customers, you can understand which channels they use to communicate with you, their demographics, interests, habits, purchasing behaviors, and more. In the long run, it will drive success to your marketing strategies, allow you to identify new potential customers, and avoid wasting resources on targeting the wrong people or sending the wrong message. You can also track customer satisfaction by analyzing your client’s reviews or your customer service department’s performance.

What Is The Data Analysis Process?

Data analysis process graphic

When we talk about analyzing data there is an order to follow in order to extract the needed conclusions. The analysis process consists of 5 key stages. We will cover each of them more in detail later in the post, but to start providing the needed context to understand what is coming next, here is a rundown of the 5 essential steps of data analysis. 

  • Identify: Before you get your hands dirty with data, you first need to identify why you need it in the first place. The identification is the stage in which you establish the questions you will need to answer. For example, what is the customer's perception of our brand? Or what type of packaging is more engaging to our potential customers? Once the questions are outlined you are ready for the next step. 
  • Collect: As its name suggests, this is the stage where you start collecting the needed data. Here, you define which sources of data you will use and how you will use them. The collection of data can come in different forms such as internal or external sources, surveys, interviews, questionnaires, and focus groups, among others.  An important note here is that the way you collect the data will be different in a quantitative and qualitative scenario. 
  • Clean: Once you have the necessary data it is time to clean it and leave it ready for analysis. Not all the data you collect will be useful, when collecting big amounts of data in different formats it is very likely that you will find yourself with duplicate or badly formatted data. To avoid this, before you start working with your data you need to make sure to erase any white spaces, duplicate records, or formatting errors. This way you avoid hurting your analysis with bad-quality data. 
  • Analyze : With the help of various techniques such as statistical analysis, regressions, neural networks, text analysis, and more, you can start analyzing and manipulating your data to extract relevant conclusions. At this stage, you find trends, correlations, variations, and patterns that can help you answer the questions you first thought of in the identify stage. Various technologies in the market assist researchers and average users with the management of their data. Some of them include business intelligence and visualization software, predictive analytics, and data mining, among others. 
  • Interpret: Last but not least you have one of the most important steps: it is time to interpret your results. This stage is where the researcher comes up with courses of action based on the findings. For example, here you would understand if your clients prefer packaging that is red or green, plastic or paper, etc. Additionally, at this stage, you can also find some limitations and work on them. 

Now that you have a basic understanding of the key data analysis steps, let’s look at the top 17 essential methods.

17 Essential Types Of Data Analysis Methods

Before diving into the 17 essential types of methods, it is important that we go over really fast through the main analysis categories. Starting with the category of descriptive up to prescriptive analysis, the complexity and effort of data evaluation increases, but also the added value for the company.

a) Descriptive analysis - What happened.

The descriptive analysis method is the starting point for any analytic reflection, and it aims to answer the question of what happened? It does this by ordering, manipulating, and interpreting raw data from various sources to turn it into valuable insights for your organization.

Performing descriptive analysis is essential, as it enables us to present our insights in a meaningful way. Although it is relevant to mention that this analysis on its own will not allow you to predict future outcomes or tell you the answer to questions like why something happened, it will leave your data organized and ready to conduct further investigations.

b) Exploratory analysis - How to explore data relationships.

As its name suggests, the main aim of the exploratory analysis is to explore. Prior to it, there is still no notion of the relationship between the data and the variables. Once the data is investigated, exploratory analysis helps you to find connections and generate hypotheses and solutions for specific problems. A typical area of ​​application for it is data mining.

c) Diagnostic analysis - Why it happened.

Diagnostic data analytics empowers analysts and executives by helping them gain a firm contextual understanding of why something happened. If you know why something happened as well as how it happened, you will be able to pinpoint the exact ways of tackling the issue or challenge.

Designed to provide direct and actionable answers to specific questions, this is one of the world’s most important methods in research, among its other key organizational functions such as retail analytics , e.g.

c) Predictive analysis - What will happen.

The predictive method allows you to look into the future to answer the question: what will happen? In order to do this, it uses the results of the previously mentioned descriptive, exploratory, and diagnostic analysis, in addition to machine learning (ML) and artificial intelligence (AI). Through this, you can uncover future trends, potential problems or inefficiencies, connections, and casualties in your data.

With predictive analysis, you can unfold and develop initiatives that will not only enhance your various operational processes but also help you gain an all-important edge over the competition. If you understand why a trend, pattern, or event happened through data, you will be able to develop an informed projection of how things may unfold in particular areas of the business.

e) Prescriptive analysis - How will it happen.

Another of the most effective types of analysis methods in research. Prescriptive data techniques cross over from predictive analysis in the way that it revolves around using patterns or trends to develop responsive, practical business strategies.

By drilling down into prescriptive analysis, you will play an active role in the data consumption process by taking well-arranged sets of visual data and using it as a powerful fix to emerging issues in a number of key areas, including marketing, sales, customer experience, HR, fulfillment, finance, logistics analytics , and others.

Top 17 data analysis methods

As mentioned at the beginning of the post, data analysis methods can be divided into two big categories: quantitative and qualitative. Each of these categories holds a powerful analytical value that changes depending on the scenario and type of data you are working with. Below, we will discuss 17 methods that are divided into qualitative and quantitative approaches. 

Without further ado, here are the 17 essential types of data analysis methods with some use cases in the business world: 

A. Quantitative Methods 

To put it simply, quantitative analysis refers to all methods that use numerical data or data that can be turned into numbers (e.g. category variables like gender, age, etc.) to extract valuable insights. It is used to extract valuable conclusions about relationships, differences, and test hypotheses. Below we discuss some of the key quantitative methods. 

1. Cluster analysis

The action of grouping a set of data elements in a way that said elements are more similar (in a particular sense) to each other than to those in other groups – hence the term ‘cluster.’ Since there is no target variable when clustering, the method is often used to find hidden patterns in the data. The approach is also used to provide additional context to a trend or dataset.

Let's look at it from an organizational perspective. In a perfect world, marketers would be able to analyze each customer separately and give them the best-personalized service, but let's face it, with a large customer base, it is timely impossible to do that. That's where clustering comes in. By grouping customers into clusters based on demographics, purchasing behaviors, monetary value, or any other factor that might be relevant for your company, you will be able to immediately optimize your efforts and give your customers the best experience based on their needs.

2. Cohort analysis

This type of data analysis approach uses historical data to examine and compare a determined segment of users' behavior, which can then be grouped with others with similar characteristics. By using this methodology, it's possible to gain a wealth of insight into consumer needs or a firm understanding of a broader target group.

Cohort analysis can be really useful for performing analysis in marketing as it will allow you to understand the impact of your campaigns on specific groups of customers. To exemplify, imagine you send an email campaign encouraging customers to sign up for your site. For this, you create two versions of the campaign with different designs, CTAs, and ad content. Later on, you can use cohort analysis to track the performance of the campaign for a longer period of time and understand which type of content is driving your customers to sign up, repurchase, or engage in other ways.  

A useful tool to start performing cohort analysis method is Google Analytics. You can learn more about the benefits and limitations of using cohorts in GA in this useful guide . In the bottom image, you see an example of how you visualize a cohort in this tool. The segments (devices traffic) are divided into date cohorts (usage of devices) and then analyzed week by week to extract insights into performance.

Cohort analysis chart example from google analytics

3. Regression analysis

Regression uses historical data to understand how a dependent variable's value is affected when one (linear regression) or more independent variables (multiple regression) change or stay the same. By understanding each variable's relationship and how it developed in the past, you can anticipate possible outcomes and make better decisions in the future.

Let's bring it down with an example. Imagine you did a regression analysis of your sales in 2019 and discovered that variables like product quality, store design, customer service, marketing campaigns, and sales channels affected the overall result. Now you want to use regression to analyze which of these variables changed or if any new ones appeared during 2020. For example, you couldn’t sell as much in your physical store due to COVID lockdowns. Therefore, your sales could’ve either dropped in general or increased in your online channels. Through this, you can understand which independent variables affected the overall performance of your dependent variable, annual sales.

If you want to go deeper into this type of analysis, check out this article and learn more about how you can benefit from regression.

4. Neural networks

The neural network forms the basis for the intelligent algorithms of machine learning. It is a form of analytics that attempts, with minimal intervention, to understand how the human brain would generate insights and predict values. Neural networks learn from each and every data transaction, meaning that they evolve and advance over time.

A typical area of application for neural networks is predictive analytics. There are BI reporting tools that have this feature implemented within them, such as the Predictive Analytics Tool from datapine. This tool enables users to quickly and easily generate all kinds of predictions. All you have to do is select the data to be processed based on your KPIs, and the software automatically calculates forecasts based on historical and current data. Thanks to its user-friendly interface, anyone in your organization can manage it; there’s no need to be an advanced scientist. 

Here is an example of how you can use the predictive analysis tool from datapine:

Example on how to use predictive analytics tool from datapine

**click to enlarge**

5. Factor analysis

The factor analysis also called “dimension reduction” is a type of data analysis used to describe variability among observed, correlated variables in terms of a potentially lower number of unobserved variables called factors. The aim here is to uncover independent latent variables, an ideal method for streamlining specific segments.

A good way to understand this data analysis method is a customer evaluation of a product. The initial assessment is based on different variables like color, shape, wearability, current trends, materials, comfort, the place where they bought the product, and frequency of usage. Like this, the list can be endless, depending on what you want to track. In this case, factor analysis comes into the picture by summarizing all of these variables into homogenous groups, for example, by grouping the variables color, materials, quality, and trends into a brother latent variable of design.

If you want to start analyzing data using factor analysis we recommend you take a look at this practical guide from UCLA.

6. Data mining

A method of data analysis that is the umbrella term for engineering metrics and insights for additional value, direction, and context. By using exploratory statistical evaluation, data mining aims to identify dependencies, relations, patterns, and trends to generate advanced knowledge.  When considering how to analyze data, adopting a data mining mindset is essential to success - as such, it’s an area that is worth exploring in greater detail.

An excellent use case of data mining is datapine intelligent data alerts . With the help of artificial intelligence and machine learning, they provide automated signals based on particular commands or occurrences within a dataset. For example, if you’re monitoring supply chain KPIs , you could set an intelligent alarm to trigger when invalid or low-quality data appears. By doing so, you will be able to drill down deep into the issue and fix it swiftly and effectively.

In the following picture, you can see how the intelligent alarms from datapine work. By setting up ranges on daily orders, sessions, and revenues, the alarms will notify you if the goal was not completed or if it exceeded expectations.

Example on how to use intelligent alerts from datapine

7. Time series analysis

As its name suggests, time series analysis is used to analyze a set of data points collected over a specified period of time. Although analysts use this method to monitor the data points in a specific interval of time rather than just monitoring them intermittently, the time series analysis is not uniquely used for the purpose of collecting data over time. Instead, it allows researchers to understand if variables changed during the duration of the study, how the different variables are dependent, and how did it reach the end result. 

In a business context, this method is used to understand the causes of different trends and patterns to extract valuable insights. Another way of using this method is with the help of time series forecasting. Powered by predictive technologies, businesses can analyze various data sets over a period of time and forecast different future events. 

A great use case to put time series analysis into perspective is seasonality effects on sales. By using time series forecasting to analyze sales data of a specific product over time, you can understand if sales rise over a specific period of time (e.g. swimwear during summertime, or candy during Halloween). These insights allow you to predict demand and prepare production accordingly.  

8. Decision Trees 

The decision tree analysis aims to act as a support tool to make smart and strategic decisions. By visually displaying potential outcomes, consequences, and costs in a tree-like model, researchers and company users can easily evaluate all factors involved and choose the best course of action. Decision trees are helpful to analyze quantitative data and they allow for an improved decision-making process by helping you spot improvement opportunities, reduce costs, and enhance operational efficiency and production.

But how does a decision tree actually works? This method works like a flowchart that starts with the main decision that you need to make and branches out based on the different outcomes and consequences of each decision. Each outcome will outline its own consequences, costs, and gains and, at the end of the analysis, you can compare each of them and make the smartest decision. 

Businesses can use them to understand which project is more cost-effective and will bring more earnings in the long run. For example, imagine you need to decide if you want to update your software app or build a new app entirely.  Here you would compare the total costs, the time needed to be invested, potential revenue, and any other factor that might affect your decision.  In the end, you would be able to see which of these two options is more realistic and attainable for your company or research.

9. Conjoint analysis 

Last but not least, we have the conjoint analysis. This approach is usually used in surveys to understand how individuals value different attributes of a product or service and it is one of the most effective methods to extract consumer preferences. When it comes to purchasing, some clients might be more price-focused, others more features-focused, and others might have a sustainable focus. Whatever your customer's preferences are, you can find them with conjoint analysis. Through this, companies can define pricing strategies, packaging options, subscription packages, and more. 

A great example of conjoint analysis is in marketing and sales. For instance, a cupcake brand might use conjoint analysis and find that its clients prefer gluten-free options and cupcakes with healthier toppings over super sugary ones. Thus, the cupcake brand can turn these insights into advertisements and promotions to increase sales of this particular type of product. And not just that, conjoint analysis can also help businesses segment their customers based on their interests. This allows them to send different messaging that will bring value to each of the segments. 

10. Correspondence Analysis

Also known as reciprocal averaging, correspondence analysis is a method used to analyze the relationship between categorical variables presented within a contingency table. A contingency table is a table that displays two (simple correspondence analysis) or more (multiple correspondence analysis) categorical variables across rows and columns that show the distribution of the data, which is usually answers to a survey or questionnaire on a specific topic. 

This method starts by calculating an “expected value” which is done by multiplying row and column averages and dividing it by the overall original value of the specific table cell. The “expected value” is then subtracted from the original value resulting in a “residual number” which is what allows you to extract conclusions about relationships and distribution. The results of this analysis are later displayed using a map that represents the relationship between the different values. The closest two values are in the map, the bigger the relationship. Let’s put it into perspective with an example. 

Imagine you are carrying out a market research analysis about outdoor clothing brands and how they are perceived by the public. For this analysis, you ask a group of people to match each brand with a certain attribute which can be durability, innovation, quality materials, etc. When calculating the residual numbers, you can see that brand A has a positive residual for innovation but a negative one for durability. This means that brand A is not positioned as a durable brand in the market, something that competitors could take advantage of. 

11. Multidimensional Scaling (MDS)

MDS is a method used to observe the similarities or disparities between objects which can be colors, brands, people, geographical coordinates, and more. The objects are plotted using an “MDS map” that positions similar objects together and disparate ones far apart. The (dis) similarities between objects are represented using one or more dimensions that can be observed using a numerical scale. For example, if you want to know how people feel about the COVID-19 vaccine, you can use 1 for “don’t believe in the vaccine at all”  and 10 for “firmly believe in the vaccine” and a scale of 2 to 9 for in between responses.  When analyzing an MDS map the only thing that matters is the distance between the objects, the orientation of the dimensions is arbitrary and has no meaning at all. 

Multidimensional scaling is a valuable technique for market research, especially when it comes to evaluating product or brand positioning. For instance, if a cupcake brand wants to know how they are positioned compared to competitors, it can define 2-3 dimensions such as taste, ingredients, shopping experience, or more, and do a multidimensional scaling analysis to find improvement opportunities as well as areas in which competitors are currently leading. 

Another business example is in procurement when deciding on different suppliers. Decision makers can generate an MDS map to see how the different prices, delivery times, technical services, and more of the different suppliers differ and pick the one that suits their needs the best. 

A final example proposed by a research paper on "An Improved Study of Multilevel Semantic Network Visualization for Analyzing Sentiment Word of Movie Review Data". Researchers picked a two-dimensional MDS map to display the distances and relationships between different sentiments in movie reviews. They used 36 sentiment words and distributed them based on their emotional distance as we can see in the image below where the words "outraged" and "sweet" are on opposite sides of the map, marking the distance between the two emotions very clearly.

Example of multidimensional scaling analysis

Aside from being a valuable technique to analyze dissimilarities, MDS also serves as a dimension-reduction technique for large dimensional data. 

B. Qualitative Methods

Qualitative data analysis methods are defined as the observation of non-numerical data that is gathered and produced using methods of observation such as interviews, focus groups, questionnaires, and more. As opposed to quantitative methods, qualitative data is more subjective and highly valuable in analyzing customer retention and product development.

12. Text analysis

Text analysis, also known in the industry as text mining, works by taking large sets of textual data and arranging them in a way that makes it easier to manage. By working through this cleansing process in stringent detail, you will be able to extract the data that is truly relevant to your organization and use it to develop actionable insights that will propel you forward.

Modern software accelerate the application of text analytics. Thanks to the combination of machine learning and intelligent algorithms, you can perform advanced analytical processes such as sentiment analysis. This technique allows you to understand the intentions and emotions of a text, for example, if it's positive, negative, or neutral, and then give it a score depending on certain factors and categories that are relevant to your brand. Sentiment analysis is often used to monitor brand and product reputation and to understand how successful your customer experience is. To learn more about the topic check out this insightful article .

By analyzing data from various word-based sources, including product reviews, articles, social media communications, and survey responses, you will gain invaluable insights into your audience, as well as their needs, preferences, and pain points. This will allow you to create campaigns, services, and communications that meet your prospects’ needs on a personal level, growing your audience while boosting customer retention. There are various other “sub-methods” that are an extension of text analysis. Each of them serves a more specific purpose and we will look at them in detail next. 

13. Content Analysis

This is a straightforward and very popular method that examines the presence and frequency of certain words, concepts, and subjects in different content formats such as text, image, audio, or video. For example, the number of times the name of a celebrity is mentioned on social media or online tabloids. It does this by coding text data that is later categorized and tabulated in a way that can provide valuable insights, making it the perfect mix of quantitative and qualitative analysis.

There are two types of content analysis. The first one is the conceptual analysis which focuses on explicit data, for instance, the number of times a concept or word is mentioned in a piece of content. The second one is relational analysis, which focuses on the relationship between different concepts or words and how they are connected within a specific context. 

Content analysis is often used by marketers to measure brand reputation and customer behavior. For example, by analyzing customer reviews. It can also be used to analyze customer interviews and find directions for new product development. It is also important to note, that in order to extract the maximum potential out of this analysis method, it is necessary to have a clearly defined research question. 

14. Thematic Analysis

Very similar to content analysis, thematic analysis also helps in identifying and interpreting patterns in qualitative data with the main difference being that the first one can also be applied to quantitative analysis. The thematic method analyzes large pieces of text data such as focus group transcripts or interviews and groups them into themes or categories that come up frequently within the text. It is a great method when trying to figure out peoples view’s and opinions about a certain topic. For example, if you are a brand that cares about sustainability, you can do a survey of your customers to analyze their views and opinions about sustainability and how they apply it to their lives. You can also analyze customer service calls transcripts to find common issues and improve your service. 

Thematic analysis is a very subjective technique that relies on the researcher’s judgment. Therefore,  to avoid biases, it has 6 steps that include familiarization, coding, generating themes, reviewing themes, defining and naming themes, and writing up. It is also important to note that, because it is a flexible approach, the data can be interpreted in multiple ways and it can be hard to select what data is more important to emphasize. 

15. Narrative Analysis 

A bit more complex in nature than the two previous ones, narrative analysis is used to explore the meaning behind the stories that people tell and most importantly, how they tell them. By looking into the words that people use to describe a situation you can extract valuable conclusions about their perspective on a specific topic. Common sources for narrative data include autobiographies, family stories, opinion pieces, and testimonials, among others. 

From a business perspective, narrative analysis can be useful to analyze customer behaviors and feelings towards a specific product, service, feature, or others. It provides unique and deep insights that can be extremely valuable. However, it has some drawbacks.  

The biggest weakness of this method is that the sample sizes are usually very small due to the complexity and time-consuming nature of the collection of narrative data. Plus, the way a subject tells a story will be significantly influenced by his or her specific experiences, making it very hard to replicate in a subsequent study. 

16. Discourse Analysis

Discourse analysis is used to understand the meaning behind any type of written, verbal, or symbolic discourse based on its political, social, or cultural context. It mixes the analysis of languages and situations together. This means that the way the content is constructed and the meaning behind it is significantly influenced by the culture and society it takes place in. For example, if you are analyzing political speeches you need to consider different context elements such as the politician's background, the current political context of the country, the audience to which the speech is directed, and so on. 

From a business point of view, discourse analysis is a great market research tool. It allows marketers to understand how the norms and ideas of the specific market work and how their customers relate to those ideas. It can be very useful to build a brand mission or develop a unique tone of voice. 

17. Grounded Theory Analysis

Traditionally, researchers decide on a method and hypothesis and start to collect the data to prove that hypothesis. The grounded theory is the only method that doesn’t require an initial research question or hypothesis as its value lies in the generation of new theories. With the grounded theory method, you can go into the analysis process with an open mind and explore the data to generate new theories through tests and revisions. In fact, it is not necessary to collect the data and then start to analyze it. Researchers usually start to find valuable insights as they are gathering the data. 

All of these elements make grounded theory a very valuable method as theories are fully backed by data instead of initial assumptions. It is a great technique to analyze poorly researched topics or find the causes behind specific company outcomes. For example, product managers and marketers might use the grounded theory to find the causes of high levels of customer churn and look into customer surveys and reviews to develop new theories about the causes. 

How To Analyze Data? Top 17 Data Analysis Techniques To Apply

17 top data analysis techniques by datapine

Now that we’ve answered the questions “what is data analysis’”, why is it important, and covered the different data analysis types, it’s time to dig deeper into how to perform your analysis by working through these 17 essential techniques.

1. Collaborate your needs

Before you begin analyzing or drilling down into any techniques, it’s crucial to sit down collaboratively with all key stakeholders within your organization, decide on your primary campaign or strategic goals, and gain a fundamental understanding of the types of insights that will best benefit your progress or provide you with the level of vision you need to evolve your organization.

2. Establish your questions

Once you’ve outlined your core objectives, you should consider which questions will need answering to help you achieve your mission. This is one of the most important techniques as it will shape the very foundations of your success.

To help you ask the right things and ensure your data works for you, you have to ask the right data analysis questions .

3. Data democratization

After giving your data analytics methodology some real direction, and knowing which questions need answering to extract optimum value from the information available to your organization, you should continue with democratization.

Data democratization is an action that aims to connect data from various sources efficiently and quickly so that anyone in your organization can access it at any given moment. You can extract data in text, images, videos, numbers, or any other format. And then perform cross-database analysis to achieve more advanced insights to share with the rest of the company interactively.  

Once you have decided on your most valuable sources, you need to take all of this into a structured format to start collecting your insights. For this purpose, datapine offers an easy all-in-one data connectors feature to integrate all your internal and external sources and manage them at your will. Additionally, datapine’s end-to-end solution automatically updates your data, allowing you to save time and focus on performing the right analysis to grow your company.

data connectors from datapine

4. Think of governance 

When collecting data in a business or research context you always need to think about security and privacy. With data breaches becoming a topic of concern for businesses, the need to protect your client's or subject’s sensitive information becomes critical. 

To ensure that all this is taken care of, you need to think of a data governance strategy. According to Gartner , this concept refers to “ the specification of decision rights and an accountability framework to ensure the appropriate behavior in the valuation, creation, consumption, and control of data and analytics .” In simpler words, data governance is a collection of processes, roles, and policies, that ensure the efficient use of data while still achieving the main company goals. It ensures that clear roles are in place for who can access the information and how they can access it. In time, this not only ensures that sensitive information is protected but also allows for an efficient analysis as a whole. 

5. Clean your data

After harvesting from so many sources you will be left with a vast amount of information that can be overwhelming to deal with. At the same time, you can be faced with incorrect data that can be misleading to your analysis. The smartest thing you can do to avoid dealing with this in the future is to clean the data. This is fundamental before visualizing it, as it will ensure that the insights you extract from it are correct.

There are many things that you need to look for in the cleaning process. The most important one is to eliminate any duplicate observations; this usually appears when using multiple internal and external sources of information. You can also add any missing codes, fix empty fields, and eliminate incorrectly formatted data.

Another usual form of cleaning is done with text data. As we mentioned earlier, most companies today analyze customer reviews, social media comments, questionnaires, and several other text inputs. In order for algorithms to detect patterns, text data needs to be revised to avoid invalid characters or any syntax or spelling errors. 

Most importantly, the aim of cleaning is to prevent you from arriving at false conclusions that can damage your company in the long run. By using clean data, you will also help BI solutions to interact better with your information and create better reports for your organization.

6. Set your KPIs

Once you’ve set your sources, cleaned your data, and established clear-cut questions you want your insights to answer, you need to set a host of key performance indicators (KPIs) that will help you track, measure, and shape your progress in a number of key areas.

KPIs are critical to both qualitative and quantitative analysis research. This is one of the primary methods of data analysis you certainly shouldn’t overlook.

To help you set the best possible KPIs for your initiatives and activities, here is an example of a relevant logistics KPI : transportation-related costs. If you want to see more go explore our collection of key performance indicator examples .

Transportation costs logistics KPIs

7. Omit useless data

Having bestowed your data analysis tools and techniques with true purpose and defined your mission, you should explore the raw data you’ve collected from all sources and use your KPIs as a reference for chopping out any information you deem to be useless.

Trimming the informational fat is one of the most crucial methods of analysis as it will allow you to focus your analytical efforts and squeeze every drop of value from the remaining ‘lean’ information.

Any stats, facts, figures, or metrics that don’t align with your business goals or fit with your KPI management strategies should be eliminated from the equation.

8. Build a data management roadmap

While, at this point, this particular step is optional (you will have already gained a wealth of insight and formed a fairly sound strategy by now), creating a data governance roadmap will help your data analysis methods and techniques become successful on a more sustainable basis. These roadmaps, if developed properly, are also built so they can be tweaked and scaled over time.

Invest ample time in developing a roadmap that will help you store, manage, and handle your data internally, and you will make your analysis techniques all the more fluid and functional – one of the most powerful types of data analysis methods available today.

9. Integrate technology

There are many ways to analyze data, but one of the most vital aspects of analytical success in a business context is integrating the right decision support software and technology.

Robust analysis platforms will not only allow you to pull critical data from your most valuable sources while working with dynamic KPIs that will offer you actionable insights; it will also present them in a digestible, visual, interactive format from one central, live dashboard . A data methodology you can count on.

By integrating the right technology within your data analysis methodology, you’ll avoid fragmenting your insights, saving you time and effort while allowing you to enjoy the maximum value from your business’s most valuable insights.

For a look at the power of software for the purpose of analysis and to enhance your methods of analyzing, glance over our selection of dashboard examples .

10. Answer your questions

By considering each of the above efforts, working with the right technology, and fostering a cohesive internal culture where everyone buys into the different ways to analyze data as well as the power of digital intelligence, you will swiftly start to answer your most burning business questions. Arguably, the best way to make your data concepts accessible across the organization is through data visualization.

11. Visualize your data

Online data visualization is a powerful tool as it lets you tell a story with your metrics, allowing users across the organization to extract meaningful insights that aid business evolution – and it covers all the different ways to analyze data.

The purpose of analyzing is to make your entire organization more informed and intelligent, and with the right platform or dashboard, this is simpler than you think, as demonstrated by our marketing dashboard .

An executive dashboard example showcasing high-level marketing KPIs such as cost per lead, MQL, SQL, and cost per customer.

This visual, dynamic, and interactive online dashboard is a data analysis example designed to give Chief Marketing Officers (CMO) an overview of relevant metrics to help them understand if they achieved their monthly goals.

In detail, this example generated with a modern dashboard creator displays interactive charts for monthly revenues, costs, net income, and net income per customer; all of them are compared with the previous month so that you can understand how the data fluctuated. In addition, it shows a detailed summary of the number of users, customers, SQLs, and MQLs per month to visualize the whole picture and extract relevant insights or trends for your marketing reports .

The CMO dashboard is perfect for c-level management as it can help them monitor the strategic outcome of their marketing efforts and make data-driven decisions that can benefit the company exponentially.

12. Be careful with the interpretation

We already dedicated an entire post to data interpretation as it is a fundamental part of the process of data analysis. It gives meaning to the analytical information and aims to drive a concise conclusion from the analysis results. Since most of the time companies are dealing with data from many different sources, the interpretation stage needs to be done carefully and properly in order to avoid misinterpretations. 

To help you through the process, here we list three common practices that you need to avoid at all costs when looking at your data:

  • Correlation vs. causation: The human brain is formatted to find patterns. This behavior leads to one of the most common mistakes when performing interpretation: confusing correlation with causation. Although these two aspects can exist simultaneously, it is not correct to assume that because two things happened together, one provoked the other. A piece of advice to avoid falling into this mistake is never to trust just intuition, trust the data. If there is no objective evidence of causation, then always stick to correlation. 
  • Confirmation bias: This phenomenon describes the tendency to select and interpret only the data necessary to prove one hypothesis, often ignoring the elements that might disprove it. Even if it's not done on purpose, confirmation bias can represent a real problem, as excluding relevant information can lead to false conclusions and, therefore, bad business decisions. To avoid it, always try to disprove your hypothesis instead of proving it, share your analysis with other team members, and avoid drawing any conclusions before the entire analytical project is finalized.
  • Statistical significance: To put it in short words, statistical significance helps analysts understand if a result is actually accurate or if it happened because of a sampling error or pure chance. The level of statistical significance needed might depend on the sample size and the industry being analyzed. In any case, ignoring the significance of a result when it might influence decision-making can be a huge mistake.

13. Build a narrative

Now, we’re going to look at how you can bring all of these elements together in a way that will benefit your business - starting with a little something called data storytelling.

The human brain responds incredibly well to strong stories or narratives. Once you’ve cleansed, shaped, and visualized your most invaluable data using various BI dashboard tools , you should strive to tell a story - one with a clear-cut beginning, middle, and end.

By doing so, you will make your analytical efforts more accessible, digestible, and universal, empowering more people within your organization to use your discoveries to their actionable advantage.

14. Consider autonomous technology

Autonomous technologies, such as artificial intelligence (AI) and machine learning (ML), play a significant role in the advancement of understanding how to analyze data more effectively.

Gartner predicts that by the end of this year, 80% of emerging technologies will be developed with AI foundations. This is a testament to the ever-growing power and value of autonomous technologies.

At the moment, these technologies are revolutionizing the analysis industry. Some examples that we mentioned earlier are neural networks, intelligent alarms, and sentiment analysis.

15. Share the load

If you work with the right tools and dashboards, you will be able to present your metrics in a digestible, value-driven format, allowing almost everyone in the organization to connect with and use relevant data to their advantage.

Modern dashboards consolidate data from various sources, providing access to a wealth of insights in one centralized location, no matter if you need to monitor recruitment metrics or generate reports that need to be sent across numerous departments. Moreover, these cutting-edge tools offer access to dashboards from a multitude of devices, meaning that everyone within the business can connect with practical insights remotely - and share the load.

Once everyone is able to work with a data-driven mindset, you will catalyze the success of your business in ways you never thought possible. And when it comes to knowing how to analyze data, this kind of collaborative approach is essential.

16. Data analysis tools

In order to perform high-quality analysis of data, it is fundamental to use tools and software that will ensure the best results. Here we leave you a small summary of four fundamental categories of data analysis tools for your organization.

  • Business Intelligence: BI tools allow you to process significant amounts of data from several sources in any format. Through this, you can not only analyze and monitor your data to extract relevant insights but also create interactive reports and dashboards to visualize your KPIs and use them for your company's good. datapine is an amazing online BI software that is focused on delivering powerful online analysis features that are accessible to beginner and advanced users. Like this, it offers a full-service solution that includes cutting-edge analysis of data, KPIs visualization, live dashboards, reporting, and artificial intelligence technologies to predict trends and minimize risk.
  • Statistical analysis: These tools are usually designed for scientists, statisticians, market researchers, and mathematicians, as they allow them to perform complex statistical analyses with methods like regression analysis, predictive analysis, and statistical modeling. A good tool to perform this type of analysis is R-Studio as it offers a powerful data modeling and hypothesis testing feature that can cover both academic and general data analysis. This tool is one of the favorite ones in the industry, due to its capability for data cleaning, data reduction, and performing advanced analysis with several statistical methods. Another relevant tool to mention is SPSS from IBM. The software offers advanced statistical analysis for users of all skill levels. Thanks to a vast library of machine learning algorithms, text analysis, and a hypothesis testing approach it can help your company find relevant insights to drive better decisions. SPSS also works as a cloud service that enables you to run it anywhere.
  • SQL Consoles: SQL is a programming language often used to handle structured data in relational databases. Tools like these are popular among data scientists as they are extremely effective in unlocking these databases' value. Undoubtedly, one of the most used SQL software in the market is MySQL Workbench . This tool offers several features such as a visual tool for database modeling and monitoring, complete SQL optimization, administration tools, and visual performance dashboards to keep track of KPIs.
  • Data Visualization: These tools are used to represent your data through charts, graphs, and maps that allow you to find patterns and trends in the data. datapine's already mentioned BI platform also offers a wealth of powerful online data visualization tools with several benefits. Some of them include: delivering compelling data-driven presentations to share with your entire company, the ability to see your data online with any device wherever you are, an interactive dashboard design feature that enables you to showcase your results in an interactive and understandable way, and to perform online self-service reports that can be used simultaneously with several other people to enhance team productivity.

17. Refine your process constantly 

Last is a step that might seem obvious to some people, but it can be easily ignored if you think you are done. Once you have extracted the needed results, you should always take a retrospective look at your project and think about what you can improve. As you saw throughout this long list of techniques, data analysis is a complex process that requires constant refinement. For this reason, you should always go one step further and keep improving. 

Quality Criteria For Data Analysis

So far we’ve covered a list of methods and techniques that should help you perform efficient data analysis. But how do you measure the quality and validity of your results? This is done with the help of some science quality criteria. Here we will go into a more theoretical area that is critical to understanding the fundamentals of statistical analysis in science. However, you should also be aware of these steps in a business context, as they will allow you to assess the quality of your results in the correct way. Let’s dig in. 

  • Internal validity: The results of a survey are internally valid if they measure what they are supposed to measure and thus provide credible results. In other words , internal validity measures the trustworthiness of the results and how they can be affected by factors such as the research design, operational definitions, how the variables are measured, and more. For instance, imagine you are doing an interview to ask people if they brush their teeth two times a day. While most of them will answer yes, you can still notice that their answers correspond to what is socially acceptable, which is to brush your teeth at least twice a day. In this case, you can’t be 100% sure if respondents actually brush their teeth twice a day or if they just say that they do, therefore, the internal validity of this interview is very low. 
  • External validity: Essentially, external validity refers to the extent to which the results of your research can be applied to a broader context. It basically aims to prove that the findings of a study can be applied in the real world. If the research can be applied to other settings, individuals, and times, then the external validity is high. 
  • Reliability : If your research is reliable, it means that it can be reproduced. If your measurement were repeated under the same conditions, it would produce similar results. This means that your measuring instrument consistently produces reliable results. For example, imagine a doctor building a symptoms questionnaire to detect a specific disease in a patient. Then, various other doctors use this questionnaire but end up diagnosing the same patient with a different condition. This means the questionnaire is not reliable in detecting the initial disease. Another important note here is that in order for your research to be reliable, it also needs to be objective. If the results of a study are the same, independent of who assesses them or interprets them, the study can be considered reliable. Let’s see the objectivity criteria in more detail now. 
  • Objectivity: In data science, objectivity means that the researcher needs to stay fully objective when it comes to its analysis. The results of a study need to be affected by objective criteria and not by the beliefs, personality, or values of the researcher. Objectivity needs to be ensured when you are gathering the data, for example, when interviewing individuals, the questions need to be asked in a way that doesn't influence the results. Paired with this, objectivity also needs to be thought of when interpreting the data. If different researchers reach the same conclusions, then the study is objective. For this last point, you can set predefined criteria to interpret the results to ensure all researchers follow the same steps. 

The discussed quality criteria cover mostly potential influences in a quantitative context. Analysis in qualitative research has by default additional subjective influences that must be controlled in a different way. Therefore, there are other quality criteria for this kind of research such as credibility, transferability, dependability, and confirmability. You can see each of them more in detail on this resource . 

Data Analysis Limitations & Barriers

Analyzing data is not an easy task. As you’ve seen throughout this post, there are many steps and techniques that you need to apply in order to extract useful information from your research. While a well-performed analysis can bring various benefits to your organization it doesn't come without limitations. In this section, we will discuss some of the main barriers you might encounter when conducting an analysis. Let’s see them more in detail. 

  • Lack of clear goals: No matter how good your data or analysis might be if you don’t have clear goals or a hypothesis the process might be worthless. While we mentioned some methods that don’t require a predefined hypothesis, it is always better to enter the analytical process with some clear guidelines of what you are expecting to get out of it, especially in a business context in which data is utilized to support important strategic decisions. 
  • Objectivity: Arguably one of the biggest barriers when it comes to data analysis in research is to stay objective. When trying to prove a hypothesis, researchers might find themselves, intentionally or unintentionally, directing the results toward an outcome that they want. To avoid this, always question your assumptions and avoid confusing facts with opinions. You can also show your findings to a research partner or external person to confirm that your results are objective. 
  • Data representation: A fundamental part of the analytical procedure is the way you represent your data. You can use various graphs and charts to represent your findings, but not all of them will work for all purposes. Choosing the wrong visual can not only damage your analysis but can mislead your audience, therefore, it is important to understand when to use each type of data depending on your analytical goals. Our complete guide on the types of graphs and charts lists 20 different visuals with examples of when to use them. 
  • Flawed correlation : Misleading statistics can significantly damage your research. We’ve already pointed out a few interpretation issues previously in the post, but it is an important barrier that we can't avoid addressing here as well. Flawed correlations occur when two variables appear related to each other but they are not. Confusing correlations with causation can lead to a wrong interpretation of results which can lead to building wrong strategies and loss of resources, therefore, it is very important to identify the different interpretation mistakes and avoid them. 
  • Sample size: A very common barrier to a reliable and efficient analysis process is the sample size. In order for the results to be trustworthy, the sample size should be representative of what you are analyzing. For example, imagine you have a company of 1000 employees and you ask the question “do you like working here?” to 50 employees of which 49 say yes, which means 95%. Now, imagine you ask the same question to the 1000 employees and 950 say yes, which also means 95%. Saying that 95% of employees like working in the company when the sample size was only 50 is not a representative or trustworthy conclusion. The significance of the results is way more accurate when surveying a bigger sample size.   
  • Privacy concerns: In some cases, data collection can be subjected to privacy regulations. Businesses gather all kinds of information from their customers from purchasing behaviors to addresses and phone numbers. If this falls into the wrong hands due to a breach, it can affect the security and confidentiality of your clients. To avoid this issue, you need to collect only the data that is needed for your research and, if you are using sensitive facts, make it anonymous so customers are protected. The misuse of customer data can severely damage a business's reputation, so it is important to keep an eye on privacy. 
  • Lack of communication between teams : When it comes to performing data analysis on a business level, it is very likely that each department and team will have different goals and strategies. However, they are all working for the same common goal of helping the business run smoothly and keep growing. When teams are not connected and communicating with each other, it can directly affect the way general strategies are built. To avoid these issues, tools such as data dashboards enable teams to stay connected through data in a visually appealing way. 
  • Innumeracy : Businesses are working with data more and more every day. While there are many BI tools available to perform effective analysis, data literacy is still a constant barrier. Not all employees know how to apply analysis techniques or extract insights from them. To prevent this from happening, you can implement different training opportunities that will prepare every relevant user to deal with data. 

Key Data Analysis Skills

As you've learned throughout this lengthy guide, analyzing data is a complex task that requires a lot of knowledge and skills. That said, thanks to the rise of self-service tools the process is way more accessible and agile than it once was. Regardless, there are still some key skills that are valuable to have when working with data, we list the most important ones below.

  • Critical and statistical thinking: To successfully analyze data you need to be creative and think out of the box. Yes, that might sound like a weird statement considering that data is often tight to facts. However, a great level of critical thinking is required to uncover connections, come up with a valuable hypothesis, and extract conclusions that go a step further from the surface. This, of course, needs to be complemented by statistical thinking and an understanding of numbers. 
  • Data cleaning: Anyone who has ever worked with data before will tell you that the cleaning and preparation process accounts for 80% of a data analyst's work, therefore, the skill is fundamental. But not just that, not cleaning the data adequately can also significantly damage the analysis which can lead to poor decision-making in a business scenario. While there are multiple tools that automate the cleaning process and eliminate the possibility of human error, it is still a valuable skill to dominate. 
  • Data visualization: Visuals make the information easier to understand and analyze, not only for professional users but especially for non-technical ones. Having the necessary skills to not only choose the right chart type but know when to apply it correctly is key. This also means being able to design visually compelling charts that make the data exploration process more efficient. 
  • SQL: The Structured Query Language or SQL is a programming language used to communicate with databases. It is fundamental knowledge as it enables you to update, manipulate, and organize data from relational databases which are the most common databases used by companies. It is fairly easy to learn and one of the most valuable skills when it comes to data analysis. 
  • Communication skills: This is a skill that is especially valuable in a business environment. Being able to clearly communicate analytical outcomes to colleagues is incredibly important, especially when the information you are trying to convey is complex for non-technical people. This applies to in-person communication as well as written format, for example, when generating a dashboard or report. While this might be considered a “soft” skill compared to the other ones we mentioned, it should not be ignored as you most likely will need to share analytical findings with others no matter the context. 

Data Analysis In The Big Data Environment

Big data is invaluable to today’s businesses, and by using different methods for data analysis, it’s possible to view your data in a way that can help you turn insight into positive action.

To inspire your efforts and put the importance of big data into context, here are some insights that you should know:

  • By 2026 the industry of big data is expected to be worth approximately $273.4 billion.
  • 94% of enterprises say that analyzing data is important for their growth and digital transformation. 
  • Companies that exploit the full potential of their data can increase their operating margins by 60% .
  • We already told you the benefits of Artificial Intelligence through this article. This industry's financial impact is expected to grow up to $40 billion by 2025.

Data analysis concepts may come in many forms, but fundamentally, any solid methodology will help to make your business more streamlined, cohesive, insightful, and successful than ever before.

Key Takeaways From Data Analysis 

As we reach the end of our data analysis journey, we leave a small summary of the main methods and techniques to perform excellent analysis and grow your business.

17 Essential Types of Data Analysis Methods:

  • Cluster analysis
  • Cohort analysis
  • Regression analysis
  • Factor analysis
  • Neural Networks
  • Data Mining
  • Text analysis
  • Time series analysis
  • Decision trees
  • Conjoint analysis 
  • Correspondence Analysis
  • Multidimensional Scaling 
  • Content analysis 
  • Thematic analysis
  • Narrative analysis 
  • Grounded theory analysis
  • Discourse analysis 

Top 17 Data Analysis Techniques:

  • Collaborate your needs
  • Establish your questions
  • Data democratization
  • Think of data governance 
  • Clean your data
  • Set your KPIs
  • Omit useless data
  • Build a data management roadmap
  • Integrate technology
  • Answer your questions
  • Visualize your data
  • Interpretation of data
  • Consider autonomous technology
  • Build a narrative
  • Share the load
  • Data Analysis tools
  • Refine your process constantly 

We’ve pondered the data analysis definition and drilled down into the practical applications of data-centric analytics, and one thing is clear: by taking measures to arrange your data and making your metrics work for you, it’s possible to transform raw information into action - the kind of that will push your business to the next level.

Yes, good data analytics techniques result in enhanced business intelligence (BI). To help you understand this notion in more detail, read our exploration of business intelligence reporting .

And, if you’re ready to perform your own analysis, drill down into your facts and figures while interacting with your data on astonishing visuals, you can try our software for a free, 14-day trial .

Data Analysis

  • Introduction to Data Analysis
  • Quantitative Analysis Tools
  • Qualitative Analysis Tools
  • Mixed Methods Analysis
  • Geospatial Analysis
  • Further Reading

Profile Photo

What is Data Analysis?

According to the federal government, data analysis is "the process of systematically applying statistical and/or logical techniques to describe and illustrate, condense and recap, and evaluate data" ( Responsible Conduct in Data Management ). Important components of data analysis include searching for patterns, remaining unbiased in drawing inference from data, practicing responsible  data management , and maintaining "honest and accurate analysis" ( Responsible Conduct in Data Management ). 

In order to understand data analysis further, it can be helpful to take a step back and understand the question "What is data?". Many of us associate data with spreadsheets of numbers and values, however, data can encompass much more than that. According to the federal government, data is "The recorded factual material commonly accepted in the scientific community as necessary to validate research findings" ( OMB Circular 110 ). This broad definition can include information in many formats. 

Some examples of types of data are as follows:

  • Photographs 
  • Hand-written notes from field observation
  • Machine learning training data sets
  • Ethnographic interview transcripts
  • Sheet music
  • Scripts for plays and musicals 
  • Observations from laboratory experiments ( CMU Data 101 )

Thus, data analysis includes the processing and manipulation of these data sources in order to gain additional insight from data, answer a research question, or confirm a research hypothesis. 

Data analysis falls within the larger research data lifecycle, as seen below. 

( University of Virginia )

Why Analyze Data?

Through data analysis, a researcher can gain additional insight from data and draw conclusions to address the research question or hypothesis. Use of data analysis tools helps researchers understand and interpret data. 

What are the Types of Data Analysis?

Data analysis can be quantitative, qualitative, or mixed methods. 

Quantitative research typically involves numbers and "close-ended questions and responses" ( Creswell & Creswell, 2018 , p. 3). Quantitative research tests variables against objective theories, usually measured and collected on instruments and analyzed using statistical procedures ( Creswell & Creswell, 2018 , p. 4). Quantitative analysis usually uses deductive reasoning. 

Qualitative  research typically involves words and "open-ended questions and responses" ( Creswell & Creswell, 2018 , p. 3). According to Creswell & Creswell, "qualitative research is an approach for exploring and understanding the meaning individuals or groups ascribe to a social or human problem" ( 2018 , p. 4). Thus, qualitative analysis usually invokes inductive reasoning. 

Mixed methods  research uses methods from both quantitative and qualitative research approaches. Mixed methods research works under the "core assumption... that the integration of qualitative and quantitative data yields additional insight beyond the information provided by either the quantitative or qualitative data alone" ( Creswell & Creswell, 2018 , p. 4). 

  • Next: Planning >>
  • Last Updated: Apr 2, 2024 3:53 PM
  • URL: https://guides.library.georgetown.edu/data-analysis

Creative Commons

Grad Coach

Quantitative Data Analysis 101

The lingo, methods and techniques, explained simply.

By: Derek Jansen (MBA)  and Kerryn Warren (PhD) | December 2020

Quantitative data analysis is one of those things that often strikes fear in students. It’s totally understandable – quantitative analysis is a complex topic, full of daunting lingo , like medians, modes, correlation and regression. Suddenly we’re all wishing we’d paid a little more attention in math class…

The good news is that while quantitative data analysis is a mammoth topic, gaining a working understanding of the basics isn’t that hard , even for those of us who avoid numbers and math . In this post, we’ll break quantitative analysis down into simple , bite-sized chunks so you can approach your research with confidence.

Quantitative data analysis methods and techniques 101

Overview: Quantitative Data Analysis 101

  • What (exactly) is quantitative data analysis?
  • When to use quantitative analysis
  • How quantitative analysis works

The two “branches” of quantitative analysis

  • Descriptive statistics 101
  • Inferential statistics 101
  • How to choose the right quantitative methods
  • Recap & summary

What is quantitative data analysis?

Despite being a mouthful, quantitative data analysis simply means analysing data that is numbers-based – or data that can be easily “converted” into numbers without losing any meaning.

For example, category-based variables like gender, ethnicity, or native language could all be “converted” into numbers without losing meaning – for example, English could equal 1, French 2, etc.

This contrasts against qualitative data analysis, where the focus is on words, phrases and expressions that can’t be reduced to numbers. If you’re interested in learning about qualitative analysis, check out our post and video here .

What is quantitative analysis used for?

Quantitative analysis is generally used for three purposes.

  • Firstly, it’s used to measure differences between groups . For example, the popularity of different clothing colours or brands.
  • Secondly, it’s used to assess relationships between variables . For example, the relationship between weather temperature and voter turnout.
  • And third, it’s used to test hypotheses in a scientifically rigorous way. For example, a hypothesis about the impact of a certain vaccine.

Again, this contrasts with qualitative analysis , which can be used to analyse people’s perceptions and feelings about an event or situation. In other words, things that can’t be reduced to numbers.

How does quantitative analysis work?

Well, since quantitative data analysis is all about analysing numbers , it’s no surprise that it involves statistics . Statistical analysis methods form the engine that powers quantitative analysis, and these methods can vary from pretty basic calculations (for example, averages and medians) to more sophisticated analyses (for example, correlations and regressions).

Sounds like gibberish? Don’t worry. We’ll explain all of that in this post. Importantly, you don’t need to be a statistician or math wiz to pull off a good quantitative analysis. We’ll break down all the technical mumbo jumbo in this post.

Need a helping hand?

what is research analysis of data

As I mentioned, quantitative analysis is powered by statistical analysis methods . There are two main “branches” of statistical methods that are used – descriptive statistics and inferential statistics . In your research, you might only use descriptive statistics, or you might use a mix of both , depending on what you’re trying to figure out. In other words, depending on your research questions, aims and objectives . I’ll explain how to choose your methods later.

So, what are descriptive and inferential statistics?

Well, before I can explain that, we need to take a quick detour to explain some lingo. To understand the difference between these two branches of statistics, you need to understand two important words. These words are population and sample .

First up, population . In statistics, the population is the entire group of people (or animals or organisations or whatever) that you’re interested in researching. For example, if you were interested in researching Tesla owners in the US, then the population would be all Tesla owners in the US.

However, it’s extremely unlikely that you’re going to be able to interview or survey every single Tesla owner in the US. Realistically, you’ll likely only get access to a few hundred, or maybe a few thousand owners using an online survey. This smaller group of accessible people whose data you actually collect is called your sample .

So, to recap – the population is the entire group of people you’re interested in, and the sample is the subset of the population that you can actually get access to. In other words, the population is the full chocolate cake , whereas the sample is a slice of that cake.

So, why is this sample-population thing important?

Well, descriptive statistics focus on describing the sample , while inferential statistics aim to make predictions about the population, based on the findings within the sample. In other words, we use one group of statistical methods – descriptive statistics – to investigate the slice of cake, and another group of methods – inferential statistics – to draw conclusions about the entire cake. There I go with the cake analogy again…

With that out the way, let’s take a closer look at each of these branches in more detail.

Descriptive statistics vs inferential statistics

Branch 1: Descriptive Statistics

Descriptive statistics serve a simple but critically important role in your research – to describe your data set – hence the name. In other words, they help you understand the details of your sample . Unlike inferential statistics (which we’ll get to soon), descriptive statistics don’t aim to make inferences or predictions about the entire population – they’re purely interested in the details of your specific sample .

When you’re writing up your analysis, descriptive statistics are the first set of stats you’ll cover, before moving on to inferential statistics. But, that said, depending on your research objectives and research questions , they may be the only type of statistics you use. We’ll explore that a little later.

So, what kind of statistics are usually covered in this section?

Some common statistical tests used in this branch include the following:

  • Mean – this is simply the mathematical average of a range of numbers.
  • Median – this is the midpoint in a range of numbers when the numbers are arranged in numerical order. If the data set makes up an odd number, then the median is the number right in the middle of the set. If the data set makes up an even number, then the median is the midpoint between the two middle numbers.
  • Mode – this is simply the most commonly occurring number in the data set.
  • In cases where most of the numbers are quite close to the average, the standard deviation will be relatively low.
  • Conversely, in cases where the numbers are scattered all over the place, the standard deviation will be relatively high.
  • Skewness . As the name suggests, skewness indicates how symmetrical a range of numbers is. In other words, do they tend to cluster into a smooth bell curve shape in the middle of the graph, or do they skew to the left or right?

Feeling a bit confused? Let’s look at a practical example using a small data set.

Descriptive statistics example data

On the left-hand side is the data set. This details the bodyweight of a sample of 10 people. On the right-hand side, we have the descriptive statistics. Let’s take a look at each of them.

First, we can see that the mean weight is 72.4 kilograms. In other words, the average weight across the sample is 72.4 kilograms. Straightforward.

Next, we can see that the median is very similar to the mean (the average). This suggests that this data set has a reasonably symmetrical distribution (in other words, a relatively smooth, centred distribution of weights, clustered towards the centre).

In terms of the mode , there is no mode in this data set. This is because each number is present only once and so there cannot be a “most common number”. If there were two people who were both 65 kilograms, for example, then the mode would be 65.

Next up is the standard deviation . 10.6 indicates that there’s quite a wide spread of numbers. We can see this quite easily by looking at the numbers themselves, which range from 55 to 90, which is quite a stretch from the mean of 72.4.

And lastly, the skewness of -0.2 tells us that the data is very slightly negatively skewed. This makes sense since the mean and the median are slightly different.

As you can see, these descriptive statistics give us some useful insight into the data set. Of course, this is a very small data set (only 10 records), so we can’t read into these statistics too much. Also, keep in mind that this is not a list of all possible descriptive statistics – just the most common ones.

But why do all of these numbers matter?

While these descriptive statistics are all fairly basic, they’re important for a few reasons:

  • Firstly, they help you get both a macro and micro-level view of your data. In other words, they help you understand both the big picture and the finer details.
  • Secondly, they help you spot potential errors in the data – for example, if an average is way higher than you’d expect, or responses to a question are highly varied, this can act as a warning sign that you need to double-check the data.
  • And lastly, these descriptive statistics help inform which inferential statistical techniques you can use, as those techniques depend on the skewness (in other words, the symmetry and normality) of the data.

Simply put, descriptive statistics are really important , even though the statistical techniques used are fairly basic. All too often at Grad Coach, we see students skimming over the descriptives in their eagerness to get to the more exciting inferential methods, and then landing up with some very flawed results.

Don’t be a sucker – give your descriptive statistics the love and attention they deserve!

Examples of descriptive statistics

Branch 2: Inferential Statistics

As I mentioned, while descriptive statistics are all about the details of your specific data set – your sample – inferential statistics aim to make inferences about the population . In other words, you’ll use inferential statistics to make predictions about what you’d expect to find in the full population.

What kind of predictions, you ask? Well, there are two common types of predictions that researchers try to make using inferential stats:

  • Firstly, predictions about differences between groups – for example, height differences between children grouped by their favourite meal or gender.
  • And secondly, relationships between variables – for example, the relationship between body weight and the number of hours a week a person does yoga.

In other words, inferential statistics (when done correctly), allow you to connect the dots and make predictions about what you expect to see in the real world population, based on what you observe in your sample data. For this reason, inferential statistics are used for hypothesis testing – in other words, to test hypotheses that predict changes or differences.

Inferential statistics are used to make predictions about what you’d expect to find in the full population, based on the sample.

Of course, when you’re working with inferential statistics, the composition of your sample is really important. In other words, if your sample doesn’t accurately represent the population you’re researching, then your findings won’t necessarily be very useful.

For example, if your population of interest is a mix of 50% male and 50% female , but your sample is 80% male , you can’t make inferences about the population based on your sample, since it’s not representative. This area of statistics is called sampling, but we won’t go down that rabbit hole here (it’s a deep one!) – we’ll save that for another post .

What statistics are usually used in this branch?

There are many, many different statistical analysis methods within the inferential branch and it’d be impossible for us to discuss them all here. So we’ll just take a look at some of the most common inferential statistical methods so that you have a solid starting point.

First up are T-Tests . T-tests compare the means (the averages) of two groups of data to assess whether they’re statistically significantly different. In other words, do they have significantly different means, standard deviations and skewness.

This type of testing is very useful for understanding just how similar or different two groups of data are. For example, you might want to compare the mean blood pressure between two groups of people – one that has taken a new medication and one that hasn’t – to assess whether they are significantly different.

Kicking things up a level, we have ANOVA, which stands for “analysis of variance”. This test is similar to a T-test in that it compares the means of various groups, but ANOVA allows you to analyse multiple groups , not just two groups So it’s basically a t-test on steroids…

Next, we have correlation analysis . This type of analysis assesses the relationship between two variables. In other words, if one variable increases, does the other variable also increase, decrease or stay the same. For example, if the average temperature goes up, do average ice creams sales increase too? We’d expect some sort of relationship between these two variables intuitively , but correlation analysis allows us to measure that relationship scientifically .

Lastly, we have regression analysis – this is quite similar to correlation in that it assesses the relationship between variables, but it goes a step further to understand cause and effect between variables, not just whether they move together. In other words, does the one variable actually cause the other one to move, or do they just happen to move together naturally thanks to another force? Just because two variables correlate doesn’t necessarily mean that one causes the other.

Stats overload…

I hear you. To make this all a little more tangible, let’s take a look at an example of a correlation in action.

Here’s a scatter plot demonstrating the correlation (relationship) between weight and height. Intuitively, we’d expect there to be some relationship between these two variables, which is what we see in this scatter plot. In other words, the results tend to cluster together in a diagonal line from bottom left to top right.

Sample correlation

As I mentioned, these are are just a handful of inferential techniques – there are many, many more. Importantly, each statistical method has its own assumptions and limitations.

For example, some methods only work with normally distributed (parametric) data, while other methods are designed specifically for non-parametric data. And that’s exactly why descriptive statistics are so important – they’re the first step to knowing which inferential techniques you can and can’t use.

Remember that every statistical method has its own assumptions and limitations,  so you need to be aware of these.

How to choose the right analysis method

To choose the right statistical methods, you need to think about two important factors :

  • The type of quantitative data you have (specifically, level of measurement and the shape of the data). And,
  • Your research questions and hypotheses

Let’s take a closer look at each of these.

Factor 1 – Data type

The first thing you need to consider is the type of data you’ve collected (or the type of data you will collect). By data types, I’m referring to the four levels of measurement – namely, nominal, ordinal, interval and ratio. If you’re not familiar with this lingo, check out the video below.

Why does this matter?

Well, because different statistical methods and techniques require different types of data. This is one of the “assumptions” I mentioned earlier – every method has its assumptions regarding the type of data.

For example, some techniques work with categorical data (for example, yes/no type questions, or gender or ethnicity), while others work with continuous numerical data (for example, age, weight or income) – and, of course, some work with multiple data types.

If you try to use a statistical method that doesn’t support the data type you have, your results will be largely meaningless . So, make sure that you have a clear understanding of what types of data you’ve collected (or will collect). Once you have this, you can then check which statistical methods would support your data types here .

If you haven’t collected your data yet, you can work in reverse and look at which statistical method would give you the most useful insights, and then design your data collection strategy to collect the correct data types.

Another important factor to consider is the shape of your data . Specifically, does it have a normal distribution (in other words, is it a bell-shaped curve, centred in the middle) or is it very skewed to the left or the right? Again, different statistical techniques work for different shapes of data – some are designed for symmetrical data while others are designed for skewed data.

This is another reminder of why descriptive statistics are so important – they tell you all about the shape of your data.

Factor 2: Your research questions

The next thing you need to consider is your specific research questions, as well as your hypotheses (if you have some). The nature of your research questions and research hypotheses will heavily influence which statistical methods and techniques you should use.

If you’re just interested in understanding the attributes of your sample (as opposed to the entire population), then descriptive statistics are probably all you need. For example, if you just want to assess the means (averages) and medians (centre points) of variables in a group of people.

On the other hand, if you aim to understand differences between groups or relationships between variables and to infer or predict outcomes in the population, then you’ll likely need both descriptive statistics and inferential statistics.

So, it’s really important to get very clear about your research aims and research questions, as well your hypotheses – before you start looking at which statistical techniques to use.

Never shoehorn a specific statistical technique into your research just because you like it or have some experience with it. Your choice of methods must align with all the factors we’ve covered here.

Time to recap…

You’re still with me? That’s impressive. We’ve covered a lot of ground here, so let’s recap on the key points:

  • Quantitative data analysis is all about  analysing number-based data  (which includes categorical and numerical data) using various statistical techniques.
  • The two main  branches  of statistics are  descriptive statistics  and  inferential statistics . Descriptives describe your sample, whereas inferentials make predictions about what you’ll find in the population.
  • Common  descriptive statistical methods include  mean  (average),  median , standard  deviation  and  skewness .
  • Common  inferential statistical methods include  t-tests ,  ANOVA ,  correlation  and  regression  analysis.
  • To choose the right statistical methods and techniques, you need to consider the  type of data you’re working with , as well as your  research questions  and hypotheses.

what is research analysis of data

Psst… there’s more (for free)

This post is part of our dissertation mini-course, which covers everything you need to get started with your dissertation, thesis or research project. 

You Might Also Like:

Narrative analysis explainer

74 Comments

Oddy Labs

Hi, I have read your article. Such a brilliant post you have created.

Derek Jansen

Thank you for the feedback. Good luck with your quantitative analysis.

Abdullahi Ramat

Thank you so much.

Obi Eric Onyedikachi

Thank you so much. I learnt much well. I love your summaries of the concepts. I had love you to explain how to input data using SPSS

Lumbuka Kaunda

Amazing and simple way of breaking down quantitative methods.

Charles Lwanga

This is beautiful….especially for non-statisticians. I have skimmed through but I wish to read again. and please include me in other articles of the same nature when you do post. I am interested. I am sure, I could easily learn from you and get off the fear that I have had in the past. Thank you sincerely.

Essau Sefolo

Send me every new information you might have.

fatime

i need every new information

Dr Peter

Thank you for the blog. It is quite informative. Dr Peter Nemaenzhe PhD

Mvogo Mvogo Ephrem

It is wonderful. l’ve understood some of the concepts in a more compréhensive manner

Maya

Your article is so good! However, I am still a bit lost. I am doing a secondary research on Gun control in the US and increase in crime rates and I am not sure which analysis method I should use?

Joy

Based on the given learning points, this is inferential analysis, thus, use ‘t-tests, ANOVA, correlation and regression analysis’

Peter

Well explained notes. Am an MPH student and currently working on my thesis proposal, this has really helped me understand some of the things I didn’t know.

Jejamaije Mujoro

I like your page..helpful

prashant pandey

wonderful i got my concept crystal clear. thankyou!!

Dailess Banda

This is really helpful , thank you

Lulu

Thank you so much this helped

wossen

Wonderfully explained

Niamatullah zaheer

thank u so much, it was so informative

mona

THANKYOU, this was very informative and very helpful

Thaddeus Ogwoka

This is great GRADACOACH I am not a statistician but I require more of this in my thesis

Include me in your posts.

Alem Teshome

This is so great and fully useful. I would like to thank you again and again.

Mrinal

Glad to read this article. I’ve read lot of articles but this article is clear on all concepts. Thanks for sharing.

Emiola Adesina

Thank you so much. This is a very good foundation and intro into quantitative data analysis. Appreciate!

Josyl Hey Aquilam

You have a very impressive, simple but concise explanation of data analysis for Quantitative Research here. This is a God-send link for me to appreciate research more. Thank you so much!

Lynnet Chikwaikwai

Avery good presentation followed by the write up. yes you simplified statistics to make sense even to a layman like me. Thank so much keep it up. The presenter did ell too. i would like more of this for Qualitative and exhaust more of the test example like the Anova.

Adewole Ikeoluwa

This is a very helpful article, couldn’t have been clearer. Thank you.

Samih Soud ALBusaidi

Awesome and phenomenal information.Well done

Nūr

The video with the accompanying article is super helpful to demystify this topic. Very well done. Thank you so much.

Lalah

thank you so much, your presentation helped me a lot

Anjali

I don’t know how should I express that ur article is saviour for me 🥺😍

Saiqa Aftab Tunio

It is well defined information and thanks for sharing. It helps me a lot in understanding the statistical data.

Funeka Mvandaba

I gain a lot and thanks for sharing brilliant ideas, so wish to be linked on your email update.

Rita Kathomi Gikonyo

Very helpful and clear .Thank you Gradcoach.

Hilaria Barsabal

Thank for sharing this article, well organized and information presented are very clear.

AMON TAYEBWA

VERY INTERESTING AND SUPPORTIVE TO NEW RESEARCHERS LIKE ME. AT LEAST SOME BASICS ABOUT QUANTITATIVE.

Tariq

An outstanding, well explained and helpful article. This will help me so much with my data analysis for my research project. Thank you!

chikumbutso

wow this has just simplified everything i was scared of how i am gonna analyse my data but thanks to you i will be able to do so

Idris Haruna

simple and constant direction to research. thanks

Mbunda Castro

This is helpful

AshikB

Great writing!! Comprehensive and very helpful.

himalaya ravi

Do you provide any assistance for other steps of research methodology like making research problem testing hypothesis report and thesis writing?

Sarah chiwamba

Thank you so much for such useful article!

Lopamudra

Amazing article. So nicely explained. Wow

Thisali Liyanage

Very insightfull. Thanks

Melissa

I am doing a quality improvement project to determine if the implementation of a protocol will change prescribing habits. Would this be a t-test?

Aliyah

The is a very helpful blog, however, I’m still not sure how to analyze my data collected. I’m doing a research on “Free Education at the University of Guyana”

Belayneh Kassahun

tnx. fruitful blog!

Suzanne

So I am writing exams and would like to know how do establish which method of data analysis to use from the below research questions: I am a bit lost as to how I determine the data analysis method from the research questions.

Do female employees report higher job satisfaction than male employees with similar job descriptions across the South African telecommunications sector? – I though that maybe Chi Square could be used here. – Is there a gender difference in talented employees’ actual turnover decisions across the South African telecommunications sector? T-tests or Correlation in this one. – Is there a gender difference in the cost of actual turnover decisions across the South African telecommunications sector? T-tests or Correlation in this one. – What practical recommendations can be made to the management of South African telecommunications companies on leveraging gender to mitigate employee turnover decisions?

Your assistance will be appreciated if I could get a response as early as possible tomorrow

Like

This was quite helpful. Thank you so much.

kidane Getachew

wow I got a lot from this article, thank you very much, keep it up

FAROUK AHMAD NKENGA

Thanks for yhe guidance. Can you send me this guidance on my email? To enable offline reading?

Nosi Ruth Xabendlini

Thank you very much, this service is very helpful.

George William Kiyingi

Every novice researcher needs to read this article as it puts things so clear and easy to follow. Its been very helpful.

Adebisi

Wonderful!!!! you explained everything in a way that anyone can learn. Thank you!!

Miss Annah

I really enjoyed reading though this. Very easy to follow. Thank you

Reza Kia

Many thanks for your useful lecture, I would be really appreciated if you could possibly share with me the PPT of presentation related to Data type?

Protasia Tairo

Thank you very much for sharing, I got much from this article

Fatuma Chobo

This is a very informative write-up. Kindly include me in your latest posts.

naphtal

Very interesting mostly for social scientists

Boy M. Bachtiar

Thank you so much, very helpfull

You’re welcome 🙂

Dr Mafaza Mansoor

woow, its great, its very informative and well understood because of your way of writing like teaching in front of me in simple languages.

Opio Len

I have been struggling to understand a lot of these concepts. Thank you for the informative piece which is written with outstanding clarity.

Eric

very informative article. Easy to understand

Leena Fukey

Beautiful read, much needed.

didin

Always greet intro and summary. I learn so much from GradCoach

Mmusyoka

Quite informative. Simple and clear summary.

Jewel Faver

I thoroughly enjoyed reading your informative and inspiring piece. Your profound insights into this topic truly provide a better understanding of its complexity. I agree with the points you raised, especially when you delved into the specifics of the article. In my opinion, that aspect is often overlooked and deserves further attention.

Shantae

Absolutely!!! Thank you

Thazika Chitimera

Thank you very much for this post. It made me to understand how to do my data analysis.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Medcomms Academy

What Is Data Analysis in Research? Why It Matters & What Data Analysts Do

what is data analysis in research

Data analysis in research is the process of uncovering insights from data sets. Data analysts can use their knowledge of statistical techniques, research theories and methods, and research practices to analyze data. They take data and uncover what it’s trying to tell us, whether that’s through charts, graphs, or other visual representations. To analyze data effectively you need a strong background in mathematics and statistics, excellent communication skills, and the ability to identify relevant information.

Read on for more information about data analysis roles in research and what it takes to become one.

In this article – What is data analysis in research?

what is data analysis in research

What is data analysis in research?

Why data analysis matters, what is data science, data analysis for quantitative research, data analysis for qualitative research, what are data analysis techniques in research, what do data analysts do, in related articles.

  • How to Prepare for Job Interviews: Steps to Nail it!
  • Finding Topics for Literature Review: The Pragmatic Guide
  • How to Write a Conference Abstract: 4 Key Steps to Set Your Submission Apart
  • The Ultimate Guide to White Papers: What, Why and How
  • What is an Investigator’s Brochure in Pharma?

Data analysis is looking at existing data and attempting to draw conclusions from it. It is the process of asking “what does this data show us?” There are many different types of data analysis and a range of methods and tools for analyzing data. You may hear some of these terms as you explore data analysis roles in research – data exploration, data visualization, and data modelling. Data exploration involves exploring and reviewing the data, asking questions like “Does the data exist?” and “Is it valid?”.

Data visualization is the process of creating charts, graphs, and other visual representations of data. The goal of visualization is to help us see and understand data more quickly and easily. Visualizations are powerful and can help us uncover insights from the data that we may have missed without the visual aid. Data modelling involves taking the data and creating a model out of it. Data modelling organises and visualises data to help us understand it better and make sense of it. This will often include creating an equation for the data or creating a statistical model.

Data analysis is important for all research areas, from quantitative surveys to qualitative projects. While researchers often conduct a data analysis at the end of the project, they should be analyzing data alongside their data collection. This allows researchers to monitor their progress and adjust their approach when needed.

The analysis is also important for verifying the quality of the data. What you discover through your analysis can also help you decide whether or not to continue with your project. If you find that your data isn’t consistent with your research questions, you might decide to end your research before collecting enough data to generalize your results.

Data science is the intersection between computer science and statistics. It’s been defined as the “conceptual basis for systematic operations on data”. This means that data scientists use their knowledge of statistics and research methods to find insights in data. They use data to find solutions to complex problems, from medical research to business intelligence. Data science involves collecting and exploring data, creating models and algorithms from that data, and using those models to make predictions and find other insights.

Data scientists might focus on the visual representation of data, exploring the data, or creating models and algorithms from the data. Many people in data science roles also work with artificial intelligence and machine learning. They feed the algorithms with data and the algorithms find patterns and make predictions. Data scientists often work with data engineers. These engineers build the systems that the data scientists use to collect and analyze data.

Data analysis techniques can be divided into two categories:

  • Quantitative approach
  • Qualitative approach

Note that, when discussing this subject, the term “data analysis” often refers to statistical techniques.

Qualitative research uses unquantifiable data like unstructured interviews, observations, and case studies. Quantitative research usually relies on generalizable data and statistical modelling, while qualitative research is more focused on finding the “why” behind the data. This means that qualitative data analysis is useful in exploring and making sense of the unstructured data that researchers collect.

Data analysts will take their data and explore it, asking questions like “what’s going on here?” and “what patterns can we see?” They will use data visualization to help readers understand the data and identify patterns. They might create maps, timelines, or other representations of the data. They will use their understanding of the data to create conclusions that help readers understand the data better.

Quantitative research relies on data that can be measured, like survey responses or test results. Quantitative data analysis is useful in drawing conclusions from this data. To do this, data analysts will explore the data, looking at the validity of the data and making sure that it’s reliable. They will then visualize the data, making charts and graphs to make the data more accessible to readers. Finally, they will create an equation or use statistical modelling to understand the data.

A common type of research where you’ll see these three steps is market research. Market researchers will collect data from surveys, focus groups, and other methods. They will then analyze that data and make conclusions from it, like how much consumers are willing to spend on a product or what factors make one product more desirable than another.

Quantitative methods

These are useful in quantitatively analyzing data. These methods use a quantitative approach to analyzing data and their application includes in science and engineering, as well as in traditional business. This method is also useful for qualitative research.

Statistical methods are used to analyze data in a statistical manner. Data analysis is not limited only to statistics or probability. Still, it can also be applied in other areas, such as engineering, business, economics, marketing, and all parts of any field that seeks knowledge about something or someone.

If you are an entrepreneur or an investor who wants to develop your business or your company’s value proposition into a reality, you will need data analysis techniques. But if you want to understand how your company works, what you have done right so far, and what might happen next in terms of growth or profitability—you don’t need those kinds of experiences. Data analysis is most applicable when it comes to understanding information from external sources like research papers that aren’t necessarily objective.

A brief intro to statistics

Statistics is a field of study that analyzes data to determine the number of people, firms, and companies in a population and their relative positions on a particular economic level. The application of statistics can be to any group or entity that has any kind of data or information (even if it’s only numbers), so you can use statistics to make an educated guess about your company, your customers, your competitors, your competitors’ customers, your peers, and so on. You can also use statistics to help you develop a business strategy.

Data analysis methods can help you understand how different groups are performing in a given area—and how they might perform differently from one another in the future—but they can also be used as an indicator for areas where there is better or worse performance than expected.

In addition to being able to see what trends are occurring within an industry or population within that industry or population—and why some companies may be doing better than others—you will also be able to see what changes have been made over time within that industry or population by comparing it with others and analyzing those differences over time.

Data mining

Data mining is the use of mathematical techniques to analyze data with the goal of finding patterns and trends. A great example of this would be analyzing the sales patterns for a certain product line. In this case, a data mining technique would involve using statistical techniques to find patterns in the data and then analyzing them using mathematical techniques to identify relationships between variables and factors.

Note that these are different from each other and much more advanced than traditional statistics or probability.

As a data analyst, you’ll be responsible for analyzing data from different sources. You’ll work with multiple stakeholders and your job will vary depending on what projects you’re working on. You’ll likely work closely with data scientists and researchers on a daily basis, as you’re all analyzing the same data.

Communication is key, so being able to work with others is important. You’ll also likely work with researchers or principal investigators (PIs) to collect and organize data. Your data will be from various sources, from structured to unstructured data like interviews and observations. You’ll take that data and make sense of it, organizing it and visualizing it so readers can understand it better. You’ll use this data to create models and algorithms that make predictions and find other insights. This can include creating equations or mathematical models from the data or taking data and creating a statistical model.

Data analysis is an important part of all types of research. Quantitative researchers analyze the data they collect through surveys and experiments, while qualitative researchers collect unstructured data like interviews and observations. Data analysts take all of this data and turn it into something that other researchers and readers can understand and make use of.

With proper data analysis, researchers can make better decisions, understand their data better, and get a better picture of what’s going on in the world around them. Data analysis is a valuable skill, and many companies hire data analysts and data scientists to help them understand their customers and make better decisions.

Similar Posts

5 Steps to Crafting the Perfect White Paper: A Comprehensive Guide with Examples

5 Steps to Crafting the Perfect White Paper: A Comprehensive Guide with Examples

Are you looking to create a white paper that effectively communicates your ideas and engages your audience? Look no further! In this blog article, we’ll provide you with a comprehensive guide on how to craft the perfect white paper. From defining your purpose and audience to formatting and design, we’ll cover all the essential steps…

How to Write a Clinical Evaluation Report in Pharma

How to Write a Clinical Evaluation Report in Pharma

A clinical evaluation report (CER) is an essential document that records the findings of a clinical trial. It plays an important role in determining the safety and efficacy of a drug. A CER is prepared by a medical researcher after concluding the evaluation process of participants from clinical trials. The function of a CER is…

PowerPoint with Animation: Going Beyond Just Bullets

PowerPoint with Animation: Going Beyond Just Bullets

PowerPoint presentations are a staple of modern business and education, but they can also be dull and unengaging. One way to liven up your presentations and keep your audience’s attention is by using PowerPoint animation. When used effectively, animation can help you emphasize key points. They can also guide your audience’s focus and make your…

How To Reference A Website

How To Reference A Website

Reference websites are an indispensable tool for researchers and writers. It is not uncommon for writers to struggle with how to reference a website. When you can’t find the information you need, a reference website is the first place your search should start. Whether you’re writing a blog post or preparing a report for your…

Literature Review Purpose

Literature Review Purpose

A literature review is an organized analysis and evaluation of a topic or group of related topics. It is often part of a research paper but can also be used to support an article, thesis, or dissertation. Readers understand a literature review as a summary of the relevant secondary sources on a topic. It aims…

How To Record Audio on PowerPoint: A Guide to Make the Most of Your Presentation

How To Record Audio on PowerPoint: A Guide to Make the Most of Your Presentation

Do you find yourself making the same PPT presentation over and over again? Are you tired of giving the same old presentations? If this sounds like you, it’s time to take your PPT game up. But, how do you record audio on Powerpoint? Instead of using the same old presentation which can get monotonous for…

Privacy Overview

what is research analysis of data

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

Research Methods | Definitions, Types, Examples

Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design . When planning your methods, there are two key decisions you will make.

First, decide how you will collect data . Your methods depend on what type of data you need to answer your research question :

  • Qualitative vs. quantitative : Will your data take the form of words or numbers?
  • Primary vs. secondary : Will you collect original data yourself, or will you use data that has already been collected by someone else?
  • Descriptive vs. experimental : Will you take measurements of something as it is, or will you perform an experiment?

Second, decide how you will analyze the data .

  • For quantitative data, you can use statistical analysis methods to test relationships between variables.
  • For qualitative data, you can use methods such as thematic analysis to interpret patterns and meanings in the data.

Table of contents

Methods for collecting data, examples of data collection methods, methods for analyzing data, examples of data analysis methods, other interesting articles, frequently asked questions about research methods.

Data is the information that you collect for the purposes of answering your research question . The type of data you need depends on the aims of your research.

Qualitative vs. quantitative data

Your choice of qualitative or quantitative data collection depends on the type of knowledge you want to develop.

For questions about ideas, experiences and meanings, or to study something that can’t be described numerically, collect qualitative data .

If you want to develop a more mechanistic understanding of a topic, or your research involves hypothesis testing , collect quantitative data .

You can also take a mixed methods approach , where you use both qualitative and quantitative research methods.

Primary vs. secondary research

Primary research is any original data that you collect yourself for the purposes of answering your research question (e.g. through surveys , observations and experiments ). Secondary research is data that has already been collected by other researchers (e.g. in a government census or previous scientific studies).

If you are exploring a novel research question, you’ll probably need to collect primary data . But if you want to synthesize existing knowledge, analyze historical trends, or identify patterns on a large scale, secondary data might be a better choice.

Descriptive vs. experimental data

In descriptive research , you collect data about your study subject without intervening. The validity of your research will depend on your sampling method .

In experimental research , you systematically intervene in a process and measure the outcome. The validity of your research will depend on your experimental design .

To conduct an experiment, you need to be able to vary your independent variable , precisely measure your dependent variable, and control for confounding variables . If it’s practically and ethically possible, this method is the best choice for answering questions about cause and effect.

Prevent plagiarism. Run a free check.

Your data analysis methods will depend on the type of data you collect and how you prepare it for analysis.

Data can often be analyzed both quantitatively and qualitatively. For example, survey responses could be analyzed qualitatively by studying the meanings of responses or quantitatively by studying the frequencies of responses.

Qualitative analysis methods

Qualitative analysis is used to understand words, ideas, and experiences. You can use it to interpret data that was collected:

  • From open-ended surveys and interviews , literature reviews , case studies , ethnographies , and other sources that use text rather than numbers.
  • Using non-probability sampling methods .

Qualitative analysis tends to be quite flexible and relies on the researcher’s judgement, so you have to reflect carefully on your choices and assumptions and be careful to avoid research bias .

Quantitative analysis methods

Quantitative analysis uses numbers and statistics to understand frequencies, averages and correlations (in descriptive studies) or cause-and-effect relationships (in experiments).

You can use quantitative analysis to interpret data that was collected either:

  • During an experiment .
  • Using probability sampling methods .

Because the data is collected and analyzed in a statistically valid way, the results of quantitative analysis can be easily standardized and shared among researchers.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Chi square test of independence
  • Statistical power
  • Descriptive statistics
  • Degrees of freedom
  • Pearson correlation
  • Null hypothesis
  • Double-blind study
  • Case-control study
  • Research ethics
  • Data collection
  • Hypothesis testing
  • Structured interviews

Research bias

  • Hawthorne effect
  • Unconscious bias
  • Recall bias
  • Halo effect
  • Self-serving bias
  • Information bias

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts and meanings, use qualitative methods .
  • If you want to analyze a large amount of readily-available data, use secondary data. If you want data specific to your purposes with control over how it is generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyze data (for example, experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

Is this article helpful?

Other students also liked, writing strong research questions | criteria & examples.

  • What Is a Research Design | Types, Guide & Examples
  • Data Collection | Definition, Methods & Examples

More interesting articles

  • Between-Subjects Design | Examples, Pros, & Cons
  • Cluster Sampling | A Simple Step-by-Step Guide with Examples
  • Confounding Variables | Definition, Examples & Controls
  • Construct Validity | Definition, Types, & Examples
  • Content Analysis | Guide, Methods & Examples
  • Control Groups and Treatment Groups | Uses & Examples
  • Control Variables | What Are They & Why Do They Matter?
  • Correlation vs. Causation | Difference, Designs & Examples
  • Correlational Research | When & How to Use
  • Critical Discourse Analysis | Definition, Guide & Examples
  • Cross-Sectional Study | Definition, Uses & Examples
  • Descriptive Research | Definition, Types, Methods & Examples
  • Ethical Considerations in Research | Types & Examples
  • Explanatory and Response Variables | Definitions & Examples
  • Explanatory Research | Definition, Guide, & Examples
  • Exploratory Research | Definition, Guide, & Examples
  • External Validity | Definition, Types, Threats & Examples
  • Extraneous Variables | Examples, Types & Controls
  • Guide to Experimental Design | Overview, Steps, & Examples
  • How Do You Incorporate an Interview into a Dissertation? | Tips
  • How to Do Thematic Analysis | Step-by-Step Guide & Examples
  • How to Write a Literature Review | Guide, Examples, & Templates
  • How to Write a Strong Hypothesis | Steps & Examples
  • Inclusion and Exclusion Criteria | Examples & Definition
  • Independent vs. Dependent Variables | Definition & Examples
  • Inductive Reasoning | Types, Examples, Explanation
  • Inductive vs. Deductive Research Approach | Steps & Examples
  • Internal Validity in Research | Definition, Threats, & Examples
  • Internal vs. External Validity | Understanding Differences & Threats
  • Longitudinal Study | Definition, Approaches & Examples
  • Mediator vs. Moderator Variables | Differences & Examples
  • Mixed Methods Research | Definition, Guide & Examples
  • Multistage Sampling | Introductory Guide & Examples
  • Naturalistic Observation | Definition, Guide & Examples
  • Operationalization | A Guide with Examples, Pros & Cons
  • Population vs. Sample | Definitions, Differences & Examples
  • Primary Research | Definition, Types, & Examples
  • Qualitative vs. Quantitative Research | Differences, Examples & Methods
  • Quasi-Experimental Design | Definition, Types & Examples
  • Questionnaire Design | Methods, Question Types & Examples
  • Random Assignment in Experiments | Introduction & Examples
  • Random vs. Systematic Error | Definition & Examples
  • Reliability vs. Validity in Research | Difference, Types and Examples
  • Reproducibility vs Replicability | Difference & Examples
  • Reproducibility vs. Replicability | Difference & Examples
  • Sampling Methods | Types, Techniques & Examples
  • Semi-Structured Interview | Definition, Guide & Examples
  • Simple Random Sampling | Definition, Steps & Examples
  • Single, Double, & Triple Blind Study | Definition & Examples
  • Stratified Sampling | Definition, Guide & Examples
  • Structured Interview | Definition, Guide & Examples
  • Survey Research | Definition, Examples & Methods
  • Systematic Review | Definition, Example, & Guide
  • Systematic Sampling | A Step-by-Step Guide with Examples
  • Textual Analysis | Guide, 3 Approaches & Examples
  • The 4 Types of Reliability in Research | Definitions & Examples
  • The 4 Types of Validity in Research | Definitions & Examples
  • Transcribing an Interview | 5 Steps & Transcription Software
  • Triangulation in Research | Guide, Types, Examples
  • Types of Interviews in Research | Guide & Examples
  • Types of Research Designs Compared | Guide & Examples
  • Types of Variables in Research & Statistics | Examples
  • Unstructured Interview | Definition, Guide & Examples
  • What Is a Case Study? | Definition, Examples & Methods
  • What Is a Case-Control Study? | Definition & Examples
  • What Is a Cohort Study? | Definition & Examples
  • What Is a Conceptual Framework? | Tips & Examples
  • What Is a Controlled Experiment? | Definitions & Examples
  • What Is a Double-Barreled Question?
  • What Is a Focus Group? | Step-by-Step Guide & Examples
  • What Is a Likert Scale? | Guide & Examples
  • What Is a Prospective Cohort Study? | Definition & Examples
  • What Is a Retrospective Cohort Study? | Definition & Examples
  • What Is Action Research? | Definition & Examples
  • What Is an Observational Study? | Guide & Examples
  • What Is Concurrent Validity? | Definition & Examples
  • What Is Content Validity? | Definition & Examples
  • What Is Convenience Sampling? | Definition & Examples
  • What Is Convergent Validity? | Definition & Examples
  • What Is Criterion Validity? | Definition & Examples
  • What Is Data Cleansing? | Definition, Guide & Examples
  • What Is Deductive Reasoning? | Explanation & Examples
  • What Is Discriminant Validity? | Definition & Example
  • What Is Ecological Validity? | Definition & Examples
  • What Is Ethnography? | Definition, Guide & Examples
  • What Is Face Validity? | Guide, Definition & Examples
  • What Is Non-Probability Sampling? | Types & Examples
  • What Is Participant Observation? | Definition & Examples
  • What Is Peer Review? | Types & Examples
  • What Is Predictive Validity? | Examples & Definition
  • What Is Probability Sampling? | Types & Examples
  • What Is Purposive Sampling? | Definition & Examples
  • What Is Qualitative Observation? | Definition & Examples
  • What Is Qualitative Research? | Methods & Examples
  • What Is Quantitative Observation? | Definition & Examples
  • What Is Quantitative Research? | Definition, Uses & Methods

"I thought AI Proofreading was useless but.."

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

Table of Contents

What is data analysis, why is data analysis important, what is the data analysis process, data analysis methods, applications of data analysis, top data analysis techniques to analyze data, what is the importance of data analysis in research, future trends in data analysis, choose the right program, what is data analysis: a comprehensive guide.

What Is Data Analysis: A Comprehensive Guide

In the contemporary business landscape, gaining a competitive edge is imperative, given the challenges such as rapidly evolving markets, economic unpredictability, fluctuating political environments, capricious consumer sentiments, and even global health crises. These challenges have reduced the room for error in business operations. For companies striving not only to survive but also to thrive in this demanding environment, the key lies in embracing the concept of data analysis . This involves strategically accumulating valuable, actionable information, which is leveraged to enhance decision-making processes.

If you're interested in forging a career in data analysis and wish to discover the top data analysis courses in 2024, we invite you to explore our informative video. It will provide insights into the opportunities to develop your expertise in this crucial field.

Data analysis inspects, cleans, transforms, and models data to extract insights and support decision-making. As a data analyst , your role involves dissecting vast datasets, unearthing hidden patterns, and translating numbers into actionable information.

Data analysis plays a pivotal role in today's data-driven world. It helps organizations harness the power of data, enabling them to make decisions, optimize processes, and gain a competitive edge. By turning raw data into meaningful insights, data analysis empowers businesses to identify opportunities, mitigate risks, and enhance their overall performance.

1. Informed Decision-Making

Data analysis is the compass that guides decision-makers through a sea of information. It enables organizations to base their choices on concrete evidence rather than intuition or guesswork. In business, this means making decisions more likely to lead to success, whether choosing the right marketing strategy, optimizing supply chains, or launching new products. By analyzing data, decision-makers can assess various options' potential risks and rewards, leading to better choices.

2. Improved Understanding

Data analysis provides a deeper understanding of processes, behaviors, and trends. It allows organizations to gain insights into customer preferences, market dynamics, and operational efficiency .

3. Competitive Advantage

Organizations can identify opportunities and threats by analyzing market trends, consumer behavior , and competitor performance. They can pivot their strategies to respond effectively, staying one step ahead of the competition. This ability to adapt and innovate based on data insights can lead to a significant competitive advantage.

Become a Data Science & Business Analytics Professional

  • 11.5 M Expected New Jobs For Data Science And Analytics
  • 28% Annual Job Growth By 2026
  • $46K-$100K Average Annual Salary

Post Graduate Program in Data Analytics

  • Post Graduate Program certificate and Alumni Association membership
  • Exclusive hackathons and Ask me Anything sessions by IBM

Data Analyst

  • Industry-recognized Data Analyst Master’s certificate from Simplilearn
  • Dedicated live sessions by faculty of industry experts

Here's what learners are saying regarding our programs:

Felix Chong

Felix Chong

Project manage , codethink.

After completing this course, I landed a new job & a salary hike of 30%. I now work with Zuhlke Group as a Project Manager.

Gayathri Ramesh

Gayathri Ramesh

Associate data engineer , publicis sapient.

The course was well structured and curated. The live classes were extremely helpful. They made learning more productive and interactive. The program helped me change my domain from a data analyst to an Associate Data Engineer.

4. Risk Mitigation

Data analysis is a valuable tool for risk assessment and management. Organizations can assess potential issues and take preventive measures by analyzing historical data. For instance, data analysis detects fraudulent activities in the finance industry by identifying unusual transaction patterns. This not only helps minimize financial losses but also safeguards the reputation and trust of customers.

5. Efficient Resource Allocation

Data analysis helps organizations optimize resource allocation. Whether it's allocating budgets, human resources, or manufacturing capacities, data-driven insights can ensure that resources are utilized efficiently. For example, data analysis can help hospitals allocate staff and resources to the areas with the highest patient demand, ensuring that patient care remains efficient and effective.

6. Continuous Improvement

Data analysis is a catalyst for continuous improvement. It allows organizations to monitor performance metrics, track progress, and identify areas for enhancement. This iterative process of analyzing data, implementing changes, and analyzing again leads to ongoing refinement and excellence in processes and products.

The data analysis process is a structured sequence of steps that lead from raw data to actionable insights. Here are the answers to what is data analysis:

  • Data Collection: Gather relevant data from various sources, ensuring data quality and integrity.
  • Data Cleaning: Identify and rectify errors, missing values, and inconsistencies in the dataset. Clean data is crucial for accurate analysis.
  • Exploratory Data Analysis (EDA): Conduct preliminary analysis to understand the data's characteristics, distributions, and relationships. Visualization techniques are often used here.
  • Data Transformation: Prepare the data for analysis by encoding categorical variables, scaling features, and handling outliers, if necessary.
  • Model Building: Depending on the objectives, apply appropriate data analysis methods, such as regression, clustering, or deep learning.
  • Model Evaluation: Depending on the problem type, assess the models' performance using metrics like Mean Absolute Error, Root Mean Squared Error , or others.
  • Interpretation and Visualization: Translate the model's results into actionable insights. Visualizations, tables, and summary statistics help in conveying findings effectively.
  • Deployment: Implement the insights into real-world solutions or strategies, ensuring that the data-driven recommendations are implemented.

1. Regression Analysis

Regression analysis is a powerful method for understanding the relationship between a dependent and one or more independent variables. It is applied in economics, finance, and social sciences. By fitting a regression model, you can make predictions, analyze cause-and-effect relationships, and uncover trends within your data.

2. Statistical Analysis

Statistical analysis encompasses a broad range of techniques for summarizing and interpreting data. It involves descriptive statistics (mean, median, standard deviation), inferential statistics (hypothesis testing, confidence intervals), and multivariate analysis. Statistical methods help make inferences about populations from sample data, draw conclusions, and assess the significance of results.

3. Cohort Analysis

Cohort analysis focuses on understanding the behavior of specific groups or cohorts over time. It can reveal patterns, retention rates, and customer lifetime value, helping businesses tailor their strategies.

4. Content Analysis

It is a qualitative data analysis method used to study the content of textual, visual, or multimedia data. Social sciences, journalism, and marketing often employ it to analyze themes, sentiments, or patterns within documents or media. Content analysis can help researchers gain insights from large volumes of unstructured data.

5. Factor Analysis

Factor analysis is a technique for uncovering underlying latent factors that explain the variance in observed variables. It is commonly used in psychology and the social sciences to reduce the dimensionality of data and identify underlying constructs. Factor analysis can simplify complex datasets, making them easier to interpret and analyze.

6. Monte Carlo Method

This method is a simulation technique that uses random sampling to solve complex problems and make probabilistic predictions. Monte Carlo simulations allow analysts to model uncertainty and risk, making it a valuable tool for decision-making.

7. Text Analysis

Also known as text mining , this method involves extracting insights from textual data. It analyzes large volumes of text, such as social media posts, customer reviews, or documents. Text analysis can uncover sentiment, topics, and trends, enabling organizations to understand public opinion, customer feedback, and emerging issues.

8. Time Series Analysis

Time series analysis deals with data collected at regular intervals over time. It is essential for forecasting, trend analysis, and understanding temporal patterns. Time series methods include moving averages, exponential smoothing, and autoregressive integrated moving average (ARIMA) models. They are widely used in finance for stock price prediction, meteorology for weather forecasting, and economics for economic modeling.

9. Descriptive Analysis

Descriptive analysis   involves summarizing and describing the main features of a dataset. It focuses on organizing and presenting the data in a meaningful way, often using measures such as mean, median, mode, and standard deviation. It provides an overview of the data and helps identify patterns or trends.

10. Inferential Analysis

Inferential analysis   aims to make inferences or predictions about a larger population based on sample data. It involves applying statistical techniques such as hypothesis testing, confidence intervals, and regression analysis. It helps generalize findings from a sample to a larger population.

11. Exploratory Data Analysis (EDA)

EDA   focuses on exploring and understanding the data without preconceived hypotheses. It involves visualizations, summary statistics, and data profiling techniques to uncover patterns, relationships, and interesting features. It helps generate hypotheses for further analysis.

12. Diagnostic Analysis

Diagnostic analysis aims to understand the cause-and-effect relationships within the data. It investigates the factors or variables that contribute to specific outcomes or behaviors. Techniques such as regression analysis, ANOVA (Analysis of Variance), or correlation analysis are commonly used in diagnostic analysis.

13. Predictive Analysis

Predictive analysis   involves using historical data to make predictions or forecasts about future outcomes. It utilizes statistical modeling techniques, machine learning algorithms, and time series analysis to identify patterns and build predictive models. It is often used for forecasting sales, predicting customer behavior, or estimating risk.

14. Prescriptive Analysis

Prescriptive analysis goes beyond predictive analysis by recommending actions or decisions based on the predictions. It combines historical data, optimization algorithms, and business rules to provide actionable insights and optimize outcomes. It helps in decision-making and resource allocation.

Our Data Analyst Master's Program will help you learn analytics tools and techniques to become a Data Analyst expert! It's the pefect course for you to jumpstart your career. Enroll now!

Data analysis is a versatile and indispensable tool that finds applications across various industries and domains. Its ability to extract actionable insights from data has made it a fundamental component of decision-making and problem-solving. Let's explore some of the key applications of data analysis:

1. Business and Marketing

  • Market Research: Data analysis helps businesses understand market trends, consumer preferences, and competitive landscapes. It aids in identifying opportunities for product development, pricing strategies, and market expansion.
  • Sales Forecasting: Data analysis models can predict future sales based on historical data, seasonality, and external factors. This helps businesses optimize inventory management and resource allocation.

2. Healthcare and Life Sciences

  • Disease Diagnosis: Data analysis is vital in medical diagnostics, from interpreting medical images (e.g., MRI, X-rays) to analyzing patient records. Machine learning models can assist in early disease detection.
  • Drug Discovery: Pharmaceutical companies use data analysis to identify potential drug candidates, predict their efficacy, and optimize clinical trials.
  • Genomics and Personalized Medicine: Genomic data analysis enables personalized treatment plans by identifying genetic markers that influence disease susceptibility and response to therapies.
  • Risk Management: Financial institutions use data analysis to assess credit risk, detect fraudulent activities, and model market risks.
  • Algorithmic Trading: Data analysis is integral to developing trading algorithms that analyze market data and execute trades automatically based on predefined strategies.
  • Fraud Detection: Credit card companies and banks employ data analysis to identify unusual transaction patterns and detect fraudulent activities in real time.

4. Manufacturing and Supply Chain

  • Quality Control: Data analysis monitors and controls product quality on manufacturing lines. It helps detect defects and ensure consistency in production processes.
  • Inventory Optimization: By analyzing demand patterns and supply chain data, businesses can optimize inventory levels, reduce carrying costs, and ensure timely deliveries.

5. Social Sciences and Academia

  • Social Research: Researchers in social sciences analyze survey data, interviews, and textual data to study human behavior, attitudes, and trends. It helps in policy development and understanding societal issues.
  • Academic Research: Data analysis is crucial to scientific physics, biology, and environmental science research. It assists in interpreting experimental results and drawing conclusions.

6. Internet and Technology

  • Search Engines: Google uses complex data analysis algorithms to retrieve and rank search results based on user behavior and relevance.
  • Recommendation Systems: Services like Netflix and Amazon leverage data analysis to recommend content and products to users based on their past preferences and behaviors.

7. Environmental Science

  • Climate Modeling: Data analysis is essential in climate science. It analyzes temperature, precipitation, and other environmental data. It helps in understanding climate patterns and predicting future trends.
  • Environmental Monitoring: Remote sensing data analysis monitors ecological changes, including deforestation, water quality, and air pollution.

1. Descriptive Statistics

Descriptive statistics provide a snapshot of a dataset's central tendencies and variability. These techniques help summarize and understand the data's basic characteristics.

2. Inferential Statistics

Inferential statistics involve making predictions or inferences based on a sample of data. Techniques include hypothesis testing, confidence intervals, and regression analysis. These methods are crucial for drawing conclusions from data and assessing the significance of findings.

3. Regression Analysis

It explores the relationship between one or more independent variables and a dependent variable. It is widely used for prediction and understanding causal links. Linear, logistic, and multiple regression are common in various fields.

4. Clustering Analysis

It is an unsupervised learning method that groups similar data points. K-means clustering and hierarchical clustering are examples. This technique is used for customer segmentation, anomaly detection, and pattern recognition.

5. Classification Analysis

Classification analysis assigns data points to predefined categories or classes. It's often used in applications like spam email detection, image recognition, and sentiment analysis. Popular algorithms include decision trees, support vector machines, and neural networks.

6. Time Series Analysis

Time series analysis deals with data collected over time, making it suitable for forecasting and trend analysis. Techniques like moving averages, autoregressive integrated moving averages (ARIMA), and exponential smoothing are applied in fields like finance, economics, and weather forecasting.

7. Text Analysis (Natural Language Processing - NLP)

Text analysis techniques, part of NLP , enable extracting insights from textual data. These methods include sentiment analysis, topic modeling, and named entity recognition. Text analysis is widely used for analyzing customer reviews, social media content, and news articles.

8. Principal Component Analysis

It is a dimensionality reduction technique that simplifies complex datasets while retaining important information. It transforms correlated variables into a set of linearly uncorrelated variables, making it easier to analyze and visualize high-dimensional data.

9. Anomaly Detection

Anomaly detection identifies unusual patterns or outliers in data. It's critical in fraud detection, network security, and quality control. Techniques like statistical methods, clustering-based approaches, and machine learning algorithms are employed for anomaly detection.

10. Data Mining

Data mining involves the automated discovery of patterns, associations, and relationships within large datasets. Techniques like association rule mining, frequent pattern analysis, and decision tree mining extract valuable knowledge from data.

11. Machine Learning and Deep Learning

ML and deep learning algorithms are applied for predictive modeling, classification, and regression tasks. Techniques like random forests, support vector machines, and convolutional neural networks (CNNs) have revolutionized various industries, including healthcare, finance, and image recognition.

12. Geographic Information Systems (GIS) Analysis

GIS analysis combines geographical data with spatial analysis techniques to solve location-based problems. It's widely used in urban planning, environmental management, and disaster response.

  • Uncovering Patterns and Trends: Data analysis allows researchers to identify patterns, trends, and relationships within the data. By examining these patterns, researchers can better understand the phenomena under investigation. For example, in epidemiological research, data analysis can reveal the trends and patterns of disease outbreaks, helping public health officials take proactive measures.
  • Testing Hypotheses: Research often involves formulating hypotheses and testing them. Data analysis provides the means to evaluate hypotheses rigorously. Through statistical tests and inferential analysis, researchers can determine whether the observed patterns in the data are statistically significant or simply due to chance.
  • Making Informed Conclusions: Data analysis helps researchers draw meaningful and evidence-based conclusions from their research findings. It provides a quantitative basis for making claims and recommendations. In academic research, these conclusions form the basis for scholarly publications and contribute to the body of knowledge in a particular field.
  • Enhancing Data Quality: Data analysis includes data cleaning and validation processes that improve the quality and reliability of the dataset. Identifying and addressing errors, missing values, and outliers ensures that the research results accurately reflect the phenomena being studied.
  • Supporting Decision-Making: In applied research, data analysis assists decision-makers in various sectors, such as business, government, and healthcare. Policy decisions, marketing strategies, and resource allocations are often based on research findings.
  • Identifying Outliers and Anomalies: Outliers and anomalies in data can hold valuable information or indicate errors. Data analysis techniques can help identify these exceptional cases, whether medical diagnoses, financial fraud detection, or product quality control.
  • Revealing Insights: Research data often contain hidden insights that are not immediately apparent. Data analysis techniques, such as clustering or text analysis, can uncover these insights. For example, social media data sentiment analysis can reveal public sentiment and trends on various topics in social sciences.
  • Forecasting and Prediction: Data analysis allows for the development of predictive models. Researchers can use historical data to build models forecasting future trends or outcomes. This is valuable in fields like finance for stock price predictions, meteorology for weather forecasting, and epidemiology for disease spread projections.
  • Optimizing Resources: Research often involves resource allocation. Data analysis helps researchers and organizations optimize resource use by identifying areas where improvements can be made, or costs can be reduced.
  • Continuous Improvement: Data analysis supports the iterative nature of research. Researchers can analyze data, draw conclusions, and refine their hypotheses or research designs based on their findings. This cycle of analysis and refinement leads to continuous improvement in research methods and understanding.

Data analysis is an ever-evolving field driven by technological advancements. The future of data analysis promises exciting developments that will reshape how data is collected, processed, and utilized. Here are some of the key trends of data analysis:

1. Artificial Intelligence and Machine Learning Integration

Artificial intelligence (AI) and machine learning (ML) are expected to play a central role in data analysis. These technologies can automate complex data processing tasks, identify patterns at scale, and make highly accurate predictions. AI-driven analytics tools will become more accessible, enabling organizations to harness the power of ML without requiring extensive expertise.

2. Augmented Analytics

Augmented analytics combines AI and natural language processing (NLP) to assist data analysts in finding insights. These tools can automatically generate narratives, suggest visualizations, and highlight important trends within data. They enhance the speed and efficiency of data analysis, making it more accessible to a broader audience.

3. Data Privacy and Ethical Considerations

As data collection becomes more pervasive, privacy concerns and ethical considerations will gain prominence. Future data analysis trends will prioritize responsible data handling, transparency, and compliance with regulations like GDPR . Differential privacy techniques and data anonymization will be crucial in balancing data utility with privacy protection.

4. Real-time and Streaming Data Analysis

The demand for real-time insights will drive the adoption of real-time and streaming data analysis. Organizations will leverage technologies like Apache Kafka and Apache Flink to process and analyze data as it is generated. This trend is essential for fraud detection, IoT analytics, and monitoring systems.

5. Quantum Computing

It can potentially revolutionize data analysis by solving complex problems exponentially faster than classical computers. Although quantum computing is in its infancy, its impact on optimization, cryptography , and simulations will be significant once practical quantum computers become available.

6. Edge Analytics

With the proliferation of edge devices in the Internet of Things (IoT), data analysis is moving closer to the data source. Edge analytics allows for real-time processing and decision-making at the network's edge, reducing latency and bandwidth requirements.

7. Explainable AI (XAI)

Interpretable and explainable AI models will become crucial, especially in applications where trust and transparency are paramount. XAI techniques aim to make AI decisions more understandable and accountable, which is critical in healthcare and finance.

8. Data Democratization

The future of data analysis will see more democratization of data access and analysis tools. Non-technical users will have easier access to data and analytics through intuitive interfaces and self-service BI tools , reducing the reliance on data specialists.

9. Advanced Data Visualization

Data visualization tools will continue to evolve, offering more interactivity, 3D visualization, and augmented reality (AR) capabilities. Advanced visualizations will help users explore data in new and immersive ways.

10. Ethnographic Data Analysis

Ethnographic data analysis will gain importance as organizations seek to understand human behavior, cultural dynamics, and social trends. This qualitative data analysis approach and quantitative methods will provide a holistic understanding of complex issues.

11. Data Analytics Ethics and Bias Mitigation

Ethical considerations in data analysis will remain a key trend. Efforts to identify and mitigate bias in algorithms and models will become standard practice, ensuring fair and equitable outcomes.

Our Data Analytics courses have been meticulously crafted to equip you with the necessary skills and knowledge to thrive in this swiftly expanding industry. Our instructors will lead you through immersive, hands-on projects, real-world simulations, and illuminating case studies, ensuring you gain the practical expertise necessary for success. Through our courses, you will acquire the ability to dissect data, craft enlightening reports, and make data-driven choices that have the potential to steer businesses toward prosperity.

Having addressed the question of what is data analysis, if you're considering a career in data analytics, it's advisable to begin by researching the prerequisites for becoming a data analyst. You may also want to explore the Post Graduate Program in Data Analytics offered in collaboration with Purdue University. This program offers a practical learning experience through real-world case studies and projects aligned with industry needs. It provides comprehensive exposure to the essential technologies and skills currently employed in the field of data analytics.

Program Name Data Analyst Post Graduate Program In Data Analytics Data Analytics Bootcamp Geo All Geos All Geos US University Simplilearn Purdue Caltech Course Duration 11 Months 8 Months 6 Months Coding Experience Required No Basic No Skills You Will Learn 10+ skills including Python, MySQL, Tableau, NumPy and more Data Analytics, Statistical Analysis using Excel, Data Analysis Python and R, and more Data Visualization with Tableau, Linear and Logistic Regression, Data Manipulation and more Additional Benefits Applied Learning via Capstone and 20+ industry-relevant Data Analytics projects Purdue Alumni Association Membership Free IIMJobs Pro-Membership of 6 months Access to Integrated Practical Labs Caltech CTME Circle Membership Cost $$ $$$$ $$$$ Explore Program Explore Program Explore Program

1. What is the difference between data analysis and data science? 

Data analysis primarily involves extracting meaningful insights from existing data using statistical techniques and visualization tools. Whereas, data science encompasses a broader spectrum, incorporating data analysis as a subset while involving machine learning, deep learning, and predictive modeling to build data-driven solutions and algorithms.

2. What are the common mistakes to avoid in data analysis?

Common mistakes to avoid in data analysis include neglecting data quality issues, failing to define clear objectives, overcomplicating visualizations, not considering algorithmic biases, and disregarding the importance of proper data preprocessing and cleaning. Additionally, avoiding making unwarranted assumptions and misinterpreting correlation as causation in your analysis is crucial.

Data Science & Business Analytics Courses Duration and Fees

Data Science & Business Analytics programs typically range from a few weeks to several months, with fees varying based on program and institution.

Learn from Industry Experts with free Masterclasses

Data science & business analytics.

How Can You Master the Art of Data Analysis: Uncover the Path to Career Advancement

Develop Your Career in Data Analytics with Purdue University Professional Certificate

Career Masterclass: How to Get Qualified for a Data Analytics Career

Recommended Reads

Big Data Career Guide: A Comprehensive Playbook to Becoming a Big Data Engineer

Why Python Is Essential for Data Analysis and Data Science?

The Best Spotify Data Analysis Project You Need to Know

The Rise of the Data-Driven Professional: 6 Non-Data Roles That Need Data Analytics Skills

Exploratory Data Analysis [EDA]: Techniques, Best Practices and Popular Applications

All the Ins and Outs of Exploratory Data Analysis

Get Affiliated Certifications with Live Class programs

  • PMP, PMI, PMBOK, CAPM, PgMP, PfMP, ACP, PBA, RMP, SP, and OPM3 are registered marks of the Project Management Institute, Inc.

PW Skills | Blog

Data Analysis Techniques in Research – Methods, Tools & Examples

' src=

Varun Saharawat is a seasoned professional in the fields of SEO and content writing. With a profound knowledge of the intricate aspects of these disciplines, Varun has established himself as a valuable asset in the world of digital marketing and online content creation.

data analysis techniques in research

Data analysis techniques in research are essential because they allow researchers to derive meaningful insights from data sets to support their hypotheses or research objectives.

Data Analysis Techniques in Research : While various groups, institutions, and professionals may have diverse approaches to data analysis, a universal definition captures its essence. Data analysis involves refining, transforming, and interpreting raw data to derive actionable insights that guide informed decision-making for businesses.

Data Analytics Course

A straightforward illustration of data analysis emerges when we make everyday decisions, basing our choices on past experiences or predictions of potential outcomes.

If you want to learn more about this topic and acquire valuable skills that will set you apart in today’s data-driven world, we highly recommend enrolling in the Data Analytics Course by Physics Wallah . And as a special offer for our readers, use the coupon code “READER” to get a discount on this course.

Table of Contents

What is Data Analysis?

Data analysis is the systematic process of inspecting, cleaning, transforming, and interpreting data with the objective of discovering valuable insights and drawing meaningful conclusions. This process involves several steps:

  • Inspecting : Initial examination of data to understand its structure, quality, and completeness.
  • Cleaning : Removing errors, inconsistencies, or irrelevant information to ensure accurate analysis.
  • Transforming : Converting data into a format suitable for analysis, such as normalization or aggregation.
  • Interpreting : Analyzing the transformed data to identify patterns, trends, and relationships.

Types of Data Analysis Techniques in Research

Data analysis techniques in research are categorized into qualitative and quantitative methods, each with its specific approaches and tools. These techniques are instrumental in extracting meaningful insights, patterns, and relationships from data to support informed decision-making, validate hypotheses, and derive actionable recommendations. Below is an in-depth exploration of the various types of data analysis techniques commonly employed in research:

1) Qualitative Analysis:

Definition: Qualitative analysis focuses on understanding non-numerical data, such as opinions, concepts, or experiences, to derive insights into human behavior, attitudes, and perceptions.

  • Content Analysis: Examines textual data, such as interview transcripts, articles, or open-ended survey responses, to identify themes, patterns, or trends.
  • Narrative Analysis: Analyzes personal stories or narratives to understand individuals’ experiences, emotions, or perspectives.
  • Ethnographic Studies: Involves observing and analyzing cultural practices, behaviors, and norms within specific communities or settings.

2) Quantitative Analysis:

Quantitative analysis emphasizes numerical data and employs statistical methods to explore relationships, patterns, and trends. It encompasses several approaches:

Descriptive Analysis:

  • Frequency Distribution: Represents the number of occurrences of distinct values within a dataset.
  • Central Tendency: Measures such as mean, median, and mode provide insights into the central values of a dataset.
  • Dispersion: Techniques like variance and standard deviation indicate the spread or variability of data.

Diagnostic Analysis:

  • Regression Analysis: Assesses the relationship between dependent and independent variables, enabling prediction or understanding causality.
  • ANOVA (Analysis of Variance): Examines differences between groups to identify significant variations or effects.

Predictive Analysis:

  • Time Series Forecasting: Uses historical data points to predict future trends or outcomes.
  • Machine Learning Algorithms: Techniques like decision trees, random forests, and neural networks predict outcomes based on patterns in data.

Prescriptive Analysis:

  • Optimization Models: Utilizes linear programming, integer programming, or other optimization techniques to identify the best solutions or strategies.
  • Simulation: Mimics real-world scenarios to evaluate various strategies or decisions and determine optimal outcomes.

Specific Techniques:

  • Monte Carlo Simulation: Models probabilistic outcomes to assess risk and uncertainty.
  • Factor Analysis: Reduces the dimensionality of data by identifying underlying factors or components.
  • Cohort Analysis: Studies specific groups or cohorts over time to understand trends, behaviors, or patterns within these groups.
  • Cluster Analysis: Classifies objects or individuals into homogeneous groups or clusters based on similarities or attributes.
  • Sentiment Analysis: Uses natural language processing and machine learning techniques to determine sentiment, emotions, or opinions from textual data.

Also Read: AI and Predictive Analytics: Examples, Tools, Uses, Ai Vs Predictive Analytics

Data Analysis Techniques in Research Examples

To provide a clearer understanding of how data analysis techniques are applied in research, let’s consider a hypothetical research study focused on evaluating the impact of online learning platforms on students’ academic performance.

Research Objective:

Determine if students using online learning platforms achieve higher academic performance compared to those relying solely on traditional classroom instruction.

Data Collection:

  • Quantitative Data: Academic scores (grades) of students using online platforms and those using traditional classroom methods.
  • Qualitative Data: Feedback from students regarding their learning experiences, challenges faced, and preferences.

Data Analysis Techniques Applied:

1) Descriptive Analysis:

  • Calculate the mean, median, and mode of academic scores for both groups.
  • Create frequency distributions to represent the distribution of grades in each group.

2) Diagnostic Analysis:

  • Conduct an Analysis of Variance (ANOVA) to determine if there’s a statistically significant difference in academic scores between the two groups.
  • Perform Regression Analysis to assess the relationship between the time spent on online platforms and academic performance.

3) Predictive Analysis:

  • Utilize Time Series Forecasting to predict future academic performance trends based on historical data.
  • Implement Machine Learning algorithms to develop a predictive model that identifies factors contributing to academic success on online platforms.

4) Prescriptive Analysis:

  • Apply Optimization Models to identify the optimal combination of online learning resources (e.g., video lectures, interactive quizzes) that maximize academic performance.
  • Use Simulation Techniques to evaluate different scenarios, such as varying student engagement levels with online resources, to determine the most effective strategies for improving learning outcomes.

5) Specific Techniques:

  • Conduct Factor Analysis on qualitative feedback to identify common themes or factors influencing students’ perceptions and experiences with online learning.
  • Perform Cluster Analysis to segment students based on their engagement levels, preferences, or academic outcomes, enabling targeted interventions or personalized learning strategies.
  • Apply Sentiment Analysis on textual feedback to categorize students’ sentiments as positive, negative, or neutral regarding online learning experiences.

By applying a combination of qualitative and quantitative data analysis techniques, this research example aims to provide comprehensive insights into the effectiveness of online learning platforms.

Also Read: Learning Path to Become a Data Analyst in 2024

Data Analysis Techniques in Quantitative Research

Quantitative research involves collecting numerical data to examine relationships, test hypotheses, and make predictions. Various data analysis techniques are employed to interpret and draw conclusions from quantitative data. Here are some key data analysis techniques commonly used in quantitative research:

1) Descriptive Statistics:

  • Description: Descriptive statistics are used to summarize and describe the main aspects of a dataset, such as central tendency (mean, median, mode), variability (range, variance, standard deviation), and distribution (skewness, kurtosis).
  • Applications: Summarizing data, identifying patterns, and providing initial insights into the dataset.

2) Inferential Statistics:

  • Description: Inferential statistics involve making predictions or inferences about a population based on a sample of data. This technique includes hypothesis testing, confidence intervals, t-tests, chi-square tests, analysis of variance (ANOVA), regression analysis, and correlation analysis.
  • Applications: Testing hypotheses, making predictions, and generalizing findings from a sample to a larger population.

3) Regression Analysis:

  • Description: Regression analysis is a statistical technique used to model and examine the relationship between a dependent variable and one or more independent variables. Linear regression, multiple regression, logistic regression, and nonlinear regression are common types of regression analysis .
  • Applications: Predicting outcomes, identifying relationships between variables, and understanding the impact of independent variables on the dependent variable.

4) Correlation Analysis:

  • Description: Correlation analysis is used to measure and assess the strength and direction of the relationship between two or more variables. The Pearson correlation coefficient, Spearman rank correlation coefficient, and Kendall’s tau are commonly used measures of correlation.
  • Applications: Identifying associations between variables and assessing the degree and nature of the relationship.

5) Factor Analysis:

  • Description: Factor analysis is a multivariate statistical technique used to identify and analyze underlying relationships or factors among a set of observed variables. It helps in reducing the dimensionality of data and identifying latent variables or constructs.
  • Applications: Identifying underlying factors or constructs, simplifying data structures, and understanding the underlying relationships among variables.

6) Time Series Analysis:

  • Description: Time series analysis involves analyzing data collected or recorded over a specific period at regular intervals to identify patterns, trends, and seasonality. Techniques such as moving averages, exponential smoothing, autoregressive integrated moving average (ARIMA), and Fourier analysis are used.
  • Applications: Forecasting future trends, analyzing seasonal patterns, and understanding time-dependent relationships in data.

7) ANOVA (Analysis of Variance):

  • Description: Analysis of variance (ANOVA) is a statistical technique used to analyze and compare the means of two or more groups or treatments to determine if they are statistically different from each other. One-way ANOVA, two-way ANOVA, and MANOVA (Multivariate Analysis of Variance) are common types of ANOVA.
  • Applications: Comparing group means, testing hypotheses, and determining the effects of categorical independent variables on a continuous dependent variable.

8) Chi-Square Tests:

  • Description: Chi-square tests are non-parametric statistical tests used to assess the association between categorical variables in a contingency table. The Chi-square test of independence, goodness-of-fit test, and test of homogeneity are common chi-square tests.
  • Applications: Testing relationships between categorical variables, assessing goodness-of-fit, and evaluating independence.

These quantitative data analysis techniques provide researchers with valuable tools and methods to analyze, interpret, and derive meaningful insights from numerical data. The selection of a specific technique often depends on the research objectives, the nature of the data, and the underlying assumptions of the statistical methods being used.

Also Read: Analysis vs. Analytics: How Are They Different?

Data Analysis Methods

Data analysis methods refer to the techniques and procedures used to analyze, interpret, and draw conclusions from data. These methods are essential for transforming raw data into meaningful insights, facilitating decision-making processes, and driving strategies across various fields. Here are some common data analysis methods:

  • Description: Descriptive statistics summarize and organize data to provide a clear and concise overview of the dataset. Measures such as mean, median, mode, range, variance, and standard deviation are commonly used.
  • Description: Inferential statistics involve making predictions or inferences about a population based on a sample of data. Techniques such as hypothesis testing, confidence intervals, and regression analysis are used.

3) Exploratory Data Analysis (EDA):

  • Description: EDA techniques involve visually exploring and analyzing data to discover patterns, relationships, anomalies, and insights. Methods such as scatter plots, histograms, box plots, and correlation matrices are utilized.
  • Applications: Identifying trends, patterns, outliers, and relationships within the dataset.

4) Predictive Analytics:

  • Description: Predictive analytics use statistical algorithms and machine learning techniques to analyze historical data and make predictions about future events or outcomes. Techniques such as regression analysis, time series forecasting, and machine learning algorithms (e.g., decision trees, random forests, neural networks) are employed.
  • Applications: Forecasting future trends, predicting outcomes, and identifying potential risks or opportunities.

5) Prescriptive Analytics:

  • Description: Prescriptive analytics involve analyzing data to recommend actions or strategies that optimize specific objectives or outcomes. Optimization techniques, simulation models, and decision-making algorithms are utilized.
  • Applications: Recommending optimal strategies, decision-making support, and resource allocation.

6) Qualitative Data Analysis:

  • Description: Qualitative data analysis involves analyzing non-numerical data, such as text, images, videos, or audio, to identify themes, patterns, and insights. Methods such as content analysis, thematic analysis, and narrative analysis are used.
  • Applications: Understanding human behavior, attitudes, perceptions, and experiences.

7) Big Data Analytics:

  • Description: Big data analytics methods are designed to analyze large volumes of structured and unstructured data to extract valuable insights. Technologies such as Hadoop, Spark, and NoSQL databases are used to process and analyze big data.
  • Applications: Analyzing large datasets, identifying trends, patterns, and insights from big data sources.

8) Text Analytics:

  • Description: Text analytics methods involve analyzing textual data, such as customer reviews, social media posts, emails, and documents, to extract meaningful information and insights. Techniques such as sentiment analysis, text mining, and natural language processing (NLP) are used.
  • Applications: Analyzing customer feedback, monitoring brand reputation, and extracting insights from textual data sources.

These data analysis methods are instrumental in transforming data into actionable insights, informing decision-making processes, and driving organizational success across various sectors, including business, healthcare, finance, marketing, and research. The selection of a specific method often depends on the nature of the data, the research objectives, and the analytical requirements of the project or organization.

Also Read: Quantitative Data Analysis: Types, Analysis & Examples

Data Analysis Tools

Data analysis tools are essential instruments that facilitate the process of examining, cleaning, transforming, and modeling data to uncover useful information, make informed decisions, and drive strategies. Here are some prominent data analysis tools widely used across various industries:

1) Microsoft Excel:

  • Description: A spreadsheet software that offers basic to advanced data analysis features, including pivot tables, data visualization tools, and statistical functions.
  • Applications: Data cleaning, basic statistical analysis, visualization, and reporting.

2) R Programming Language:

  • Description: An open-source programming language specifically designed for statistical computing and data visualization.
  • Applications: Advanced statistical analysis, data manipulation, visualization, and machine learning.

3) Python (with Libraries like Pandas, NumPy, Matplotlib, and Seaborn):

  • Description: A versatile programming language with libraries that support data manipulation, analysis, and visualization.
  • Applications: Data cleaning, statistical analysis, machine learning, and data visualization.

4) SPSS (Statistical Package for the Social Sciences):

  • Description: A comprehensive statistical software suite used for data analysis, data mining, and predictive analytics.
  • Applications: Descriptive statistics, hypothesis testing, regression analysis, and advanced analytics.

5) SAS (Statistical Analysis System):

  • Description: A software suite used for advanced analytics, multivariate analysis, and predictive modeling.
  • Applications: Data management, statistical analysis, predictive modeling, and business intelligence.

6) Tableau:

  • Description: A data visualization tool that allows users to create interactive and shareable dashboards and reports.
  • Applications: Data visualization , business intelligence , and interactive dashboard creation.

7) Power BI:

  • Description: A business analytics tool developed by Microsoft that provides interactive visualizations and business intelligence capabilities.
  • Applications: Data visualization, business intelligence, reporting, and dashboard creation.

8) SQL (Structured Query Language) Databases (e.g., MySQL, PostgreSQL, Microsoft SQL Server):

  • Description: Database management systems that support data storage, retrieval, and manipulation using SQL queries.
  • Applications: Data retrieval, data cleaning, data transformation, and database management.

9) Apache Spark:

  • Description: A fast and general-purpose distributed computing system designed for big data processing and analytics.
  • Applications: Big data processing, machine learning, data streaming, and real-time analytics.

10) IBM SPSS Modeler:

  • Description: A data mining software application used for building predictive models and conducting advanced analytics.
  • Applications: Predictive modeling, data mining, statistical analysis, and decision optimization.

These tools serve various purposes and cater to different data analysis needs, from basic statistical analysis and data visualization to advanced analytics, machine learning, and big data processing. The choice of a specific tool often depends on the nature of the data, the complexity of the analysis, and the specific requirements of the project or organization.

Also Read: How to Analyze Survey Data: Methods & Examples

Importance of Data Analysis in Research

The importance of data analysis in research cannot be overstated; it serves as the backbone of any scientific investigation or study. Here are several key reasons why data analysis is crucial in the research process:

  • Data analysis helps ensure that the results obtained are valid and reliable. By systematically examining the data, researchers can identify any inconsistencies or anomalies that may affect the credibility of the findings.
  • Effective data analysis provides researchers with the necessary information to make informed decisions. By interpreting the collected data, researchers can draw conclusions, make predictions, or formulate recommendations based on evidence rather than intuition or guesswork.
  • Data analysis allows researchers to identify patterns, trends, and relationships within the data. This can lead to a deeper understanding of the research topic, enabling researchers to uncover insights that may not be immediately apparent.
  • In empirical research, data analysis plays a critical role in testing hypotheses. Researchers collect data to either support or refute their hypotheses, and data analysis provides the tools and techniques to evaluate these hypotheses rigorously.
  • Transparent and well-executed data analysis enhances the credibility of research findings. By clearly documenting the data analysis methods and procedures, researchers allow others to replicate the study, thereby contributing to the reproducibility of research findings.
  • In fields such as business or healthcare, data analysis helps organizations allocate resources more efficiently. By analyzing data on consumer behavior, market trends, or patient outcomes, organizations can make strategic decisions about resource allocation, budgeting, and planning.
  • In public policy and social sciences, data analysis is instrumental in developing and evaluating policies and interventions. By analyzing data on social, economic, or environmental factors, policymakers can assess the effectiveness of existing policies and inform the development of new ones.
  • Data analysis allows for continuous improvement in research methods and practices. By analyzing past research projects, identifying areas for improvement, and implementing changes based on data-driven insights, researchers can refine their approaches and enhance the quality of future research endeavors.

However, it is important to remember that mastering these techniques requires practice and continuous learning. That’s why we highly recommend the Data Analytics Course by Physics Wallah . Not only does it cover all the fundamentals of data analysis, but it also provides hands-on experience with various tools such as Excel, Python, and Tableau. Plus, if you use the “ READER ” coupon code at checkout, you can get a special discount on the course.

For Latest Tech Related Information, Join Our Official Free Telegram Group : PW Skills Telegram Group

Data Analysis Techniques in Research FAQs

What are the 5 techniques for data analysis.

The five techniques for data analysis include: Descriptive Analysis Diagnostic Analysis Predictive Analysis Prescriptive Analysis Qualitative Analysis

What are techniques of data analysis in research?

Techniques of data analysis in research encompass both qualitative and quantitative methods. These techniques involve processes like summarizing raw data, investigating causes of events, forecasting future outcomes, offering recommendations based on predictions, and examining non-numerical data to understand concepts or experiences.

What are the 3 methods of data analysis?

The three primary methods of data analysis are: Qualitative Analysis Quantitative Analysis Mixed-Methods Analysis

What are the four types of data analysis techniques?

The four types of data analysis techniques are: Descriptive Analysis Diagnostic Analysis Predictive Analysis Prescriptive Analysis

  • Finance Data Analysis: What is a Financial Data Analysis?

finance data analysis

Finance data analysis is used increasingly by many companies worldwide. Data analysis in finance helps to collect various financial-related raw…

  • What are Data Analysis Tools?

analytical tools for data analysis

Data Analytical tools help to extract important insights from raw and unstructured data. Read this article to get a list…

  • Which Course is Best for Business Analyst? (Business Analysts Online Courses)

business analysts online courses

Many reputed platforms and institutions offer online certification courses which can help you land job offers in relevant companies. In…

right adv

Related Articles

  • What is Data Analytics in Database?
  • Why is Data Analytics Skills Important?
  • Best Courses For Data Analytics: Top 10 Courses For Your Career in Trend
  • Big Data: What Do You Mean By Big Data?
  • Top 20 Big Data Tools Used By Professionals
  • 10 Most Popular Big Data Analytics Tools
  • Top Best Big Data Analytics Classes 2024

bottom banner

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Malays Fam Physician
  • v.3(1); 2008

Data Analysis in Qualitative Research: A Brief Guide to Using Nvivo

MSc, PhD, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia

Qualitative data is often subjective, rich, and consists of in-depth information normally presented in the form of words. Analysing qualitative data entails reading a large amount of transcripts looking for similarities or differences, and subsequently finding themes and developing categories. Traditionally, researchers ‘cut and paste’ and use coloured pens to categorise data. Recently, the use of software specifically designed for qualitative data management greatly reduces technical sophistication and eases the laborious task, thus making the process relatively easier. A number of computer software packages has been developed to mechanise this ‘coding’ process as well as to search and retrieve data. This paper illustrates the ways in which NVivo can be used in the qualitative data analysis process. The basic features and primary tools of NVivo which assist qualitative researchers in managing and analysing their data are described.

QUALITATIVE RESEARCH IN MEDICINE

Qualitative research has seen an increased popularity in the last two decades and is becoming widely accepted across a wide range of medical and health disciplines, including health services research, health technology assessment, nursing, and allied health. 1 There has also been a corresponding rise in the reporting of qualitative research studies in medical and health related journals. 2

The increasing popularity of qualitative methods is a result of failure of quantitative methods to provide insight into in-depth information about the attitudes, beliefs, motives, or behaviours of people, for example in understanding the emotions, perceptions and actions of people who suffer from a medical condition. Qualitative methods explore the perspective and meaning of experiences, seek insight and identify the social structures or processes that explain people”s behavioural meaning. 1 , 3 Most importantly, qualitative research relies on extensive interaction with the people being studied, and often allows researchers to uncover unexpected or unanticipated information, which is not possible in the quantitative methods. In medical research, it is particularly useful, for example, in a health behaviour study whereby health or education policies can be effectively developed if reasons for behaviours are clearly understood when observed or investigated using qualitative methods. 4

ANALYSING QUALITATIVE DATA

Qualitative research yields mainly unstructured text-based data. These textual data could be interview transcripts, observation notes, diary entries, or medical and nursing records. In some cases, qualitative data can also include pictorial display, audio or video clips (e.g. audio and visual recordings of patients, radiology film, and surgery videos), or other multimedia materials. Data analysis is the part of qualitative research that most distinctively differentiates from quantitative research methods. It is not a technical exercise as in quantitative methods, but more of a dynamic, intuitive and creative process of inductive reasoning, thinking and theorising. 5 In contrast to quantitative research, which uses statistical methods, qualitative research focuses on the exploration of values, meanings, beliefs, thoughts, experiences, and feelings characteristic of the phenomenon under investigation. 6

Data analysis in qualitative research is defined as the process of systematically searching and arranging the interview transcripts, observation notes, or other non-textual materials that the researcher accumulates to increase the understanding of the phenomenon. 7 The process of analysing qualitative data predominantly involves coding or categorising the data. Basically it involves making sense of huge amounts of data by reducing the volume of raw information, followed by identifying significant patterns, and finally drawing meaning from data and subsequently building a logical chain of evidence. 8

Coding or categorising the data is the most important stage in the qualitative data analysis process. Coding and data analysis are not synonymous, though coding is a crucial aspect of the qualitative data analysis process. Coding merely involves subdividing the huge amount of raw information or data, and subsequently assigning them into categories. 9 In simple terms, codes are tags or labels for allocating identified themes or topics from the data compiled in the study. Traditionally, coding was done manually, with the use of coloured pens to categorise data, and subsequently cutting and sorting the data. Given the advancement of software technology, electronic methods of coding data are increasingly used by qualitative researchers.

Nevertheless, the computer does not do the analysis for the researchers. Users still have to create the categories, code, decide what to collate, identify the patterns and draw meaning from the data. The use of computer software in qualitative data analysis is limited due to the nature of qualitative research itself in terms of the complexity of its unstructured data, the richness of the data and the way in which findings and theories emerge from the data. 10 The programme merely takes over the marking, cutting, and sorting tasks that qualitative researchers used to do with a pair of scissors, paper and note cards. It helps to maximise efficiency and speed up the process of grouping data according to categories and retrieving coded themes. Ultimately, the researcher still has to synthesise the data and interpret the meanings that were extracted from the data. Therefore, the use of computers in qualitative analysis merely made organisation, reduction and storage of data more efficient and manageable. The qualitative data analysis process is illustrated in Figure 1 .

An external file that holds a picture, illustration, etc.
Object name is MFP-03-14-g001.jpg

Qualitative data analysis flowchart

USING NVIVO IN QUALITATIVE DATA ANALYSIS

NVivo is one of the computer-assisted qualitative data analysis softwares (CAQDAS) developed by QSR International (Melbourne, Australia), the world’s largest qualitative research software developer. This software allows for qualitative inquiry beyond coding, sorting and retrieval of data. It was also designed to integrate coding with qualitative linking, shaping and modelling. The following sections discuss the fundamentals of the NVivo software (version 2.0) and illustrates the primary tools in NVivo which assist qualitative researchers in managing their data.

Key features of NVivo

To work with NVivo, first and foremost, the researcher has to create a Project to hold the data or study information. Once a project is created, the Project pad appears ( Figure 2 ). The project pad of NVivo has two main menus: Document browser and Node browser . In any project in NVivo, the researcher can create and explore documents and nodes, when the data is browsed, linked and coded. Both document and node browsers have an Attribute feature, which helps researchers to refer the characteristics of the data such as age, gender, marital status, ethnicity, etc.

An external file that holds a picture, illustration, etc.
Object name is MFP-03-14-g002.jpg

Project pad with documents tab selected

The document browser is the main work space for coding documents ( Figure 3 ). Documents in NVivo can be created inside the NVivo project or imported from MS Word or WordPad in a rich text (.rtf) format into the project. It can also be imported as a plain text file (.txt) from any word processor. Transcripts of interview data and observation notes are examples of documents that can be saved as individual documents in NVivo. In the document browser all the documents can be viewed in a database with short descriptions of each document.

An external file that holds a picture, illustration, etc.
Object name is MFP-03-14-g003.jpg

Document browser with coder and coding stripe activated

NVivo is also designed to allow the researcher to place a Hyperlink to other files (for example audio, video and image files, web pages, etc.) in the documents to capture conceptual links which are observed during the analysis. The readers can click on it and be taken to another part of the same document, or a separate file. A hyperlink is very much like a footnote.

The second menu is Node explorer ( Figure 4 ), which represents categories throughout the data. The codes are saved within the NVivo database as nodes. Nodes created in NVivo are equivalent to sticky notes that the researcher places on the document to indicate that a particular passage belongs to a certain theme or topic. Unlike sticky notes, the nodes in NVivo are retrievable, easily organised, and give flexibility to the researcher to either create, delete, alter or merge at any stage. There are two most common types of node: tree nodes (codes that are organised in a hierarchical structure) and free nodes (free standing and not associated with a structured framework of themes or concepts). Once the coding process is complete, the researcher can browse the nodes. To view all the quotes on a particular Node, select the particular node on the Node Explorer and click the Browse button ( Figure 5 ).

An external file that holds a picture, illustration, etc.
Object name is MFP-03-14-g004.jpg

Node explorer with a tree node highlighted

An external file that holds a picture, illustration, etc.
Object name is MFP-03-14-g005.jpg

Browsing a node

Coding in NVivo using Coder

Coding is done in the document browser. Coding involves the desegregation of textual data into segments, examining the data similarities and differences, and grouping together conceptually similar data in the respective nodes. 11 The organised list of nodes will appear with a click on the Coder button at the bottom of document browser window.

To code a segment of the text in a project document under a particular node, highlight the particular segment and drag the highlighted text to the desired node in the coder window ( Figure 3 ). The segments that have been coded to a particular node are highlighted in colours and nodes that have attached to a document turns bold. Multiple codes can be assigned to the same segment of text using the same process. Coding Stripes can be activated to view the quotes that are associated with the particular nodes. With the guide of highlighted text and coding stripes, the researcher can return to the data to do further coding or refine the coding.

Coding can be done with pre-constructed coding schemes where the nodes are first created using the Node explorer followed by coding using the coder. Alternatively, a bottom-up approach can be used where the researcher reads the documents and creates nodes when themes arise from the data as he or she codes.

Making and using memos

In analysing qualitative data, pieces of reflective thinking, ideas, theories, and concepts often emerge as the researcher reads through the data. NVivo allows the user the flexibility to record ideas about the research as they emerge in the Memos . Memos can be seen as add-on documents, treated as full status data and coded like any other documents. 12 Memos can be placed in a document or at a node. A memo itself can have memos (e.g. documents or nodes) linked to it, using DocLinks and NodeLinks .

Creating attributes

Attributes are characteristics (e.g. age, marital status, ethnicity, educational level, etc.) that the researcher associates with a document or node. Attributes have different values (for example, the values of the attribute for ethnicity are ‘Malay’, ‘Chinese’ and ‘Indian’). NVivo makes it possible to assign attributes to either document or node. Items in attributes can be added, removed or rearranged to help the researcher in making comparisons. Attributes are also integrated with the searching process; for example, linking the attributes to documents will enable the researcher to conduct searches pertaining to documents with specified characteristics ( Figure 6 ).

An external file that holds a picture, illustration, etc.
Object name is MFP-03-14-g006.jpg

Document attribute explorer

Search operation

The three most useful types of searches in NVivo are Single item (text, node, or attribute value), Boolean and Proximity searches. Single item search is particularly important, for example, if researchers want to ensure that every mention of the word ‘cure’ has been coded under the ‘Curability of cervical cancer’ tree node. Every paragraph in which this word is used can be viewed. The results of the search can also be compiled into a single document in the node browser and by viewing the coding stripe. The researcher can check whether each of the resulting passages has been coded under a particular node. This is particularly useful for the researcher to further determine whether conducting further coding is necessary.

Boolean searches combine codes using the logical terms like ‘and’, ‘or’ and ‘not’. Common Boolean searches are ‘or’ (also referred to as ‘combination’ or ‘union’) and ‘and’ (also called ‘intersection’). For example, the researcher may wish to search for a node and an attributed value, such as ‘ever screened for cervical cancer’ and ‘primary educated’. Search results can be displayed in matrix form and it is possible for the researcher to perform quantitative interpretations or simple counts to provide useful summaries of some aspects of the analysis. 13 Proximity searches are used to find places where two items (e.g. text patterns, attribute values, nodes) appear near each other in the text.

Using models to show relationships

Models or visualisations are an essential way to describe and explore relationships in qualitative research. NVivo provides a Modeler designated for visual exploration and explanation of relationships between various nodes and documents. In Model Explorer, the researcher can create, label and connect ideas or concepts. NVivo allows the user to create a model over time and have any number of layers to track the progress of theory development to enable the researcher to examine the stages in the model-building over time ( Figure 7 ). Any documents, nodes or attributes can be placed in a model and clicking on the item will enable the researcher to inspect its properties.

An external file that holds a picture, illustration, etc.
Object name is MFP-03-14-g007.jpg

Model explorer showing the perceived risk factors of cervical cancer

NVivo has clear advantages and can greatly enhance research quality as outlined above. It can ease the laborious task of data analysis which would otherwise be performed manually. The software certainly removes the tremendous amount of manual tasks and allows more time for the researcher to explore trends, identify themes, and make conclusions. Ultimately, analysis of qualitative data is now more systematic and much easier. In addition, NVivo is ideal for researchers working in a team as the software has a Merge tool that enables researchers that work in separate teams to bring their work together into one project.

The NVivo software has been revolutionised and enhanced recently. The newly released NVivo 7 (released March 2006) and NVivo 8 (released March 2008) are even more sophisticated, flexible, and enable more fluid analysis. These new softwares come with a more user-friendly interface that resembles the Microsoft Windows XP applications. Furthermore, they have new data handling capacities such as to enable tables or images embedded in rich text files to be imported and coded as well. In addition, the user can also import and work on rich text files in character based languages such as Chinese or Arabic.

To sum up, qualitative research undoubtedly has been advanced greatly by the development of CAQDAS. The use of qualitative methods in medical and health care research is postulated to grow exponentially in years to come with the further development of CAQDAS.

More information about the NVivo software

Detailed information about NVivo’s functionality is available at http://www.qsrinternational.com . The website also carries information about the latest versions of NVivo. Free demonstrations and tutorials are available for download.

ACKNOWLEDGEMENT

The examples in this paper were adapted from the data of the study funded by the Ministry of Science, Technology and Environment, Malaysia under the Intensification of Research in Priority Areas (IRPA) 06-02-1032 PR0024/09-06.

TERMINOLOGY

Attributes : An attribute is a property of a node, case or document. It is equivalent to a variable in quantitative analysis. An attribute (e.g. ethnicity) may have several values (e.g. Malay, Chinese, Indian, etc.). Any particular node, case or document may be assigned one value for each attribute. Similarities within or differences between groups can be identified using attributes. Attribute Explorer displays a table of all attributes assigned to a document, node or set.

CAQDAS : Computer Aided Qualitative Data Analysis. The CAQDAS programme assists data management and supports coding processes. The software does not really analyse data, but rather supports the qualitative analysis process. NVivo is one of the CAQDAS programmes; others include NUDIST, ATLAS-ti, AQUAD, ETHNOGRAPH and MAXQDA.

Code : A term that represents an idea, theme, theory, dimension, characteristic, etc., of the data.

Coder : A tool used to code a passage of text in a document under a particular node. The coder can be accessed from the Document or Node Browser .

Coding : The action of identifying a passage of text in a document that exemplifies ideas or concepts and connecting it to a node that represents that idea or concept. Multiple codes can be assigned to the same segment of text in a document.

Coding stripes : Coloured vertical lines displayed at the right-hand pane of a Document ; each is named with title of the node at which the text is coded.

DataLinks : A tool for linking the information in a document or node to the information outside the project, or between project documents. DocLinks , NodeLinks and DataBite Links are all forms of DataLink .

Document : A document in an NVivo project is an editable rich text or plain text file. It may be a transcription of project data or it may be a summary of such data or memos, notes or passages written by the researcher. The text in a document can be coded, may be given values of document attributes and may be linked (via DataLinks ) to other related documents, annotations, or external computer files. The Document Explorer shows the list of all project documents.

Memo : A document containing the researcher”s commentary flagged (linked) on any text in a Document or Node. Any files (text, audio or video, or picture data) can be linked via MemoLink .

Model : NVivo models are made up of symbols, usually representing items in the project, which are joined by lines or arrows, designed to represent the relationship between key elements in a field of study. Models are constructed in the Modeller .

Node : Relevant passages in the project”s documents are coded at nodes. A Node represents a code, theme, or idea about the data in a project. Nodes can be kept as Free Nodes (without organisation) or may be organised hierarchically in Trees (of categories and subcategories). Free nodes are free-standing and are not associated to themes or concepts. Early on in the project, tentative ideas may be stored in the Free Nodes area. Free nodes can be kept in a simple list and can be moved to a logical place in the Tree Node when higher levels of categories are discovered. Nodes can be given values of attributes according to the features of what they represent, and can be grouped in sets. Nodes can be organised (created, edited) in Node Explorer (a window listing all the project nodes and node sets). The Node Browser displays the node”s coding and allow the researcher to change the coding.

Project : Collection of all the files, documents, codes, nodes, attributes, etc. associated with a research project. The Project pad is a window in NVivo when a project is open which gives access to all the main functions of the programme.

Sets : Sets in NVivo hold shortcuts to any nodes or documents, as a way of holding those items together without actually combining them. Sets are used primarily as a way of indicating items that in some way are related conceptually or theoretically. It provides different ways of sorting and managing data.

Tree Node : Nodes organised hierarchically into trees to catalogue categories and subcategories.

  • Privacy Policy

Buy Me a Coffee

Research Method

Home » Research Data – Types Methods and Examples

Research Data – Types Methods and Examples

Table of Contents

Research Data

Research Data

Research data refers to any information or evidence gathered through systematic investigation or experimentation to support or refute a hypothesis or answer a research question.

It includes both primary and secondary data, and can be in various formats such as numerical, textual, audiovisual, or visual. Research data plays a critical role in scientific inquiry and is often subject to rigorous analysis, interpretation, and dissemination to advance knowledge and inform decision-making.

Types of Research Data

There are generally four types of research data:

Quantitative Data

This type of data involves the collection and analysis of numerical data. It is often gathered through surveys, experiments, or other types of structured data collection methods. Quantitative data can be analyzed using statistical techniques to identify patterns or relationships in the data.

Qualitative Data

This type of data is non-numerical and often involves the collection and analysis of words, images, or sounds. It is often gathered through methods such as interviews, focus groups, or observation. Qualitative data can be analyzed using techniques such as content analysis, thematic analysis, or discourse analysis.

Primary Data

This type of data is collected by the researcher directly from the source. It can include data gathered through surveys, experiments, interviews, or observation. Primary data is often used to answer specific research questions or to test hypotheses.

Secondary Data

This type of data is collected by someone other than the researcher. It can include data from sources such as government reports, academic journals, or industry publications. Secondary data is often used to supplement or support primary data or to provide context for a research project.

Research Data Formates

There are several formats in which research data can be collected and stored. Some common formats include:

  • Text : This format includes any type of written data, such as interview transcripts, survey responses, or open-ended questionnaire answers.
  • Numeric : This format includes any data that can be expressed as numerical values, such as measurements or counts.
  • Audio : This format includes any recorded data in an audio form, such as interviews or focus group discussions.
  • Video : This format includes any recorded data in a video form, such as observations of behavior or experimental procedures.
  • Images : This format includes any visual data, such as photographs, drawings, or scans of documents.
  • Mixed media: This format includes any combination of the above formats, such as a survey response that includes both text and numeric data, or an observation study that includes both video and audio recordings.
  • Sensor Data: This format includes data collected from various sensors or devices, such as GPS, accelerometers, or heart rate monitors.
  • Social Media Data: This format includes data collected from social media platforms, such as tweets, posts, or comments.
  • Geographic Information System (GIS) Data: This format includes data with a spatial component, such as maps or satellite imagery.
  • Machine-Readable Data : This format includes data that can be read and processed by machines, such as data in XML or JSON format.
  • Metadata: This format includes data that describes other data, such as information about the source, format, or content of a dataset.

Data Collection Methods

Some common research data collection methods include:

  • Surveys : Surveys involve asking participants to answer a series of questions about a particular topic. Surveys can be conducted online, over the phone, or in person.
  • Interviews : Interviews involve asking participants a series of open-ended questions in order to gather detailed information about their experiences or perspectives. Interviews can be conducted in person, over the phone, or via video conferencing.
  • Focus groups: Focus groups involve bringing together a small group of participants to discuss a particular topic or issue in depth. The group is typically led by a moderator who asks questions and encourages discussion among the participants.
  • Observations : Observations involve watching and recording behaviors or events as they naturally occur. Observations can be conducted in person or through the use of video or audio recordings.
  • Experiments : Experiments involve manipulating one or more variables in order to measure the effect on an outcome of interest. Experiments can be conducted in a laboratory or in the field.
  • Case studies: Case studies involve conducting an in-depth analysis of a particular individual, group, or organization. Case studies typically involve gathering data from multiple sources, including interviews, observations, and document analysis.
  • Secondary data analysis: Secondary data analysis involves analyzing existing data that was collected for another purpose. Examples of secondary data sources include government records, academic research studies, and market research reports.

Analysis Methods

Some common research data analysis methods include:

  • Descriptive statistics: Descriptive statistics involve summarizing and describing the main features of a dataset, such as the mean, median, and standard deviation. Descriptive statistics are often used to provide an initial overview of the data.
  • Inferential statistics: Inferential statistics involve using statistical techniques to draw conclusions about a population based on a sample of data. Inferential statistics are often used to test hypotheses and determine the statistical significance of relationships between variables.
  • Content analysis : Content analysis involves analyzing the content of text, audio, or video data to identify patterns, themes, or other meaningful features. Content analysis is often used in qualitative research to analyze open-ended survey responses, interviews, or other types of text data.
  • Discourse analysis: Discourse analysis involves analyzing the language used in text, audio, or video data to understand how meaning is constructed and communicated. Discourse analysis is often used in qualitative research to analyze interviews, focus group discussions, or other types of text data.
  • Grounded theory : Grounded theory involves developing a theory or model based on an analysis of qualitative data. Grounded theory is often used in exploratory research to generate new insights and hypotheses.
  • Network analysis: Network analysis involves analyzing the relationships between entities, such as individuals or organizations, in a network. Network analysis is often used in social network analysis to understand the structure and dynamics of social networks.
  • Structural equation modeling: Structural equation modeling involves using statistical techniques to test complex models that include multiple variables and relationships. Structural equation modeling is often used in social science research to test theories about the relationships between variables.

Purpose of Research Data

Research data serves several important purposes, including:

  • Supporting scientific discoveries : Research data provides the basis for scientific discoveries and innovations. Researchers use data to test hypotheses, develop new theories, and advance scientific knowledge in their field.
  • Validating research findings: Research data provides the evidence necessary to validate research findings. By analyzing and interpreting data, researchers can determine the statistical significance of relationships between variables and draw conclusions about the research question.
  • Informing policy decisions: Research data can be used to inform policy decisions by providing evidence about the effectiveness of different policies or interventions. Policymakers can use data to make informed decisions about how to allocate resources and address social or economic challenges.
  • Promoting transparency and accountability: Research data promotes transparency and accountability by allowing other researchers to verify and replicate research findings. Data sharing also promotes transparency by allowing others to examine the methods used to collect and analyze data.
  • Supporting education and training: Research data can be used to support education and training by providing examples of research methods, data analysis techniques, and research findings. Students and researchers can use data to learn new research skills and to develop their own research projects.

Applications of Research Data

Research data has numerous applications across various fields, including social sciences, natural sciences, engineering, and health sciences. The applications of research data can be broadly classified into the following categories:

  • Academic research: Research data is widely used in academic research to test hypotheses, develop new theories, and advance scientific knowledge. Researchers use data to explore complex relationships between variables, identify patterns, and make predictions.
  • Business and industry: Research data is used in business and industry to make informed decisions about product development, marketing, and customer engagement. Data analysis techniques such as market research, customer analytics, and financial analysis are widely used to gain insights and inform strategic decision-making.
  • Healthcare: Research data is used in healthcare to improve patient outcomes, develop new treatments, and identify health risks. Researchers use data to analyze health trends, track disease outbreaks, and develop evidence-based treatment protocols.
  • Education : Research data is used in education to improve teaching and learning outcomes. Data analysis techniques such as assessments, surveys, and evaluations are used to measure student progress, evaluate program effectiveness, and inform policy decisions.
  • Government and public policy: Research data is used in government and public policy to inform decision-making and policy development. Data analysis techniques such as demographic analysis, cost-benefit analysis, and impact evaluation are widely used to evaluate policy effectiveness, identify social or economic challenges, and develop evidence-based policy solutions.
  • Environmental management: Research data is used in environmental management to monitor environmental conditions, track changes, and identify emerging threats. Data analysis techniques such as spatial analysis, remote sensing, and modeling are used to map environmental features, monitor ecosystem health, and inform policy decisions.

Advantages of Research Data

Research data has numerous advantages, including:

  • Empirical evidence: Research data provides empirical evidence that can be used to support or refute theories, test hypotheses, and inform decision-making. This evidence-based approach helps to ensure that decisions are based on objective, measurable data rather than subjective opinions or assumptions.
  • Accuracy and reliability : Research data is typically collected using rigorous scientific methods and protocols, which helps to ensure its accuracy and reliability. Data can be validated and verified using statistical methods, which further enhances its credibility.
  • Replicability: Research data can be replicated and validated by other researchers, which helps to promote transparency and accountability in research. By making data available for others to analyze and interpret, researchers can ensure that their findings are robust and reliable.
  • Insights and discoveries : Research data can provide insights into complex relationships between variables, identify patterns and trends, and reveal new discoveries. These insights can lead to the development of new theories, treatments, and interventions that can improve outcomes in various fields.
  • Informed decision-making: Research data can inform decision-making in a range of fields, including healthcare, business, education, and public policy. Data analysis techniques can be used to identify trends, evaluate the effectiveness of interventions, and inform policy decisions.
  • Efficiency and cost-effectiveness: Research data can help to improve efficiency and cost-effectiveness by identifying areas where resources can be directed most effectively. By using data to identify the most promising approaches or interventions, researchers can optimize the use of resources and improve outcomes.

Limitations of Research Data

Research data has several limitations that researchers should be aware of, including:

  • Bias and subjectivity: Research data can be influenced by biases and subjectivity, which can affect the accuracy and reliability of the data. Researchers must take steps to minimize bias and subjectivity in data collection and analysis.
  • Incomplete data : Research data can be incomplete or missing, which can affect the validity of the findings. Researchers must ensure that data is complete and representative to ensure that their findings are reliable.
  • Limited scope: Research data may be limited in scope, which can limit the generalizability of the findings. Researchers must carefully consider the scope of their research and ensure that their findings are applicable to the broader population.
  • Data quality: Research data can be affected by issues such as measurement error, data entry errors, and missing data, which can affect the quality of the data. Researchers must ensure that data is collected and analyzed using rigorous methods to minimize these issues.
  • Ethical concerns: Research data can raise ethical concerns, particularly when it involves human subjects. Researchers must ensure that their research complies with ethical standards and protects the rights and privacy of human subjects.
  • Data security: Research data must be protected to prevent unauthorized access or use. Researchers must ensure that data is stored and transmitted securely to protect the confidentiality and integrity of the data.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Primary Data

Primary Data – Types, Methods and Examples

Qualitative Data

Qualitative Data – Types, Methods and Examples

Quantitative Data

Quantitative Data – Types, Methods and Examples

Secondary Data

Secondary Data – Types, Methods and Examples

Research Information

Information in Research – Types and Examples

Banner

Research Guide: Data analysis and reporting findings

  • Postgraduate Online Training subject guide This link opens in a new window
  • Open Educational Resources (OERs)
  • Library support
  • Research ideas
  • You and your supervisor
  • Researcher skills
  • Research Data Management This link opens in a new window
  • Literature review
  • Plagiarism This link opens in a new window
  • Research Methods
  • Data analysis and reporting findings
  • Statistical support
  • Writing support
  • Researcher visibility
  • Conferences and Presentations
  • Postgraduate Forums
  • Soft skills development
  • Emotional support
  • The Commons Informer (blog)
  • Research Tip Archives
  • RC Newsletter Archives
  • Evaluation Forms

Data analysis and findings

Data analysis is the most crucial part of any research. Data analysis summarizes collected data. It involves the interpretation of data gathered through the use of analytical and logical reasoning to determine patterns, relationships or trends. 

Data Analysis Checklist

Cleaning  data

* Did you capture and code your data in the right manner?

*Do you have all data or missing data?

* Do you have enough observations?

* Do you have any outliers? If yes, what is the remedy for outlier?

* Does your data have the potential to answer your questions?

Analyzing data

* Visualize your data, e.g. charts, tables, and graphs, to mention a few.

*  Identify patterns, correlations, and trends

* Test your hypotheses

* Let your data tell a story

Reports the results

* Communicate and interpret the results

* Conclude and recommend

* Your targeted audience must understand your results

* Use more datasets and samples

* Use accessible and understandable data analytical tool

* Do not delegate your data analysis

* Clean data to confirm that they are complete and free from errors

* Analyze cleaned data

* Understand your results

* Keep in mind who will be reading your results and present it in a way that they will understand it

* Share the results with the supervisor oftentimes

Past presentations

  • PhD Writing Retreat - Analysing_Fieldwork_Data by Cori Wielenga A clear and concise presentation on the ‘now what’ and ‘so what’ of data collection and analysis - compiled and originally presented by Cori Wielenga.

Online Resources

what is research analysis of data

  • Qualitative analysis of interview data: A step-by-step guide
  • Qualitative Data Analysis - Coding & Developing Themes

Recommended Quantitative Data Analysis books

what is research analysis of data

Recommended Qualitative Data Analysis books

what is research analysis of data

  • << Previous: Data collection techniques
  • Next: Statistical support >>
  • Last Updated: Apr 3, 2024 9:53 AM
  • URL: https://library.up.ac.za/c.php?g=485435

Banner

Data Module #1: What is Research Data?

Defining research data.

  • Qualitative vs. Quantitative
  • Types of Research Data
  • Data and Statistics
  • Let's Review...

Data Module Quick Navigation

Data Modules Table of Contents

#1 - What is Research Data? #2 - Planning for Your Data Use #3 - Finding & Collecting Data #4 -  Keeping Your Data Organized #5 -  Intellectual Property & Ethics #6 -  Storage, Backup, & Security #7 - Documentation

Library Resources

library building png

Module created by Aaron Albertson, Beth Hillemann, & Ron Joslin.

Creative Commons License

Many people think of data-driven research as something that primarily happens in the sciences. It is often thought of as involving a spreadsheet filled with numbers. Both of these beliefs are incorrect. Research data are collected and used in scholarship across all academic disciplines and, while it can consist of numbers in a spreadsheet, it also takes many different formats, including videos, images, artifacts, and diaries. Whether a psychologist collecting survey data to better understand human behavior, an artist using data to generate images and sounds, or an anthropologist using audio files to document observations about different cultures, scholarly research across all academic fields is increasingly data-driven.

In our Data Literacy Modules, we will demonstrate the ways in which research data are gathered and used across various academic disciplines by discussing it in a very broad sense. We define research data as: any information collected, stored, and processed to produce and validate original research results. Data might be used to prove or disprove a theory, bolster claims made in research, or to further the knowledge around a specific topic or problem.

Other Definitions of Research Data

There are many different definitions of research data available. Here are just a few examples of other definitions. We share these examples to illustrate there is not universal consensus on a definition, although many similarities are apparent.

  • U.S. Office of Management & Budget

“research data, unlike other types of information, is collected, observed, or created, for purposes of analysis to produce original research results”  

  • University of Edinburgh

"...recorded factual material commonly accepted in the scientific community as necessary to validate research findings..."  

  • National Endowment for the Humanities

"...materials generated or collected during the course of conducting research..."

Research Data Formats

Research data takes many different forms.  Data may be intangible as in measured numerical values found in a spreadsheet or an object as in physical research materials such samples of rocks, plants, or insects. Here are some examples of the formats that data can take:

  • Next: Qualitative vs. Quantitative >>
  • Last Updated: Feb 2, 2024 1:41 PM
  • URL: https://libguides.macalester.edu/data1

Read our research on: Gun Policy | International Conflict | Election 2024

Regions & Countries

Changing partisan coalitions in a politically divided nation, party identification among registered voters, 1994-2023.

Pew Research Center conducted this analysis to explore partisan identification among U.S. registered voters across major demographic groups and how voters’ partisan affiliation has shifted over time. It also explores the changing composition of voters overall and the partisan coalitions.

For this analysis, we used annual totals of data from Pew Research Center telephone surveys (1994-2018) and online surveys (2019-2023) among registered voters. All telephone survey data was adjusted to account for differences in how people respond to surveys on the telephone compared with online surveys (refer to Appendix A for details).

All online survey data is from the Center’s nationally representative American Trends Panel . The surveys were conducted in both English and Spanish. Each survey is weighted to be representative of the U.S. adult population by gender, age, education, race and ethnicity and other categories. Read more about the ATP’s methodology , as well as how Pew Research Center measures many of the demographic categories used in this report .

The contours of the 2024 political landscape are the result of long-standing patterns of partisanship, combined with the profound demographic changes that have reshaped the United States over the past three decades.

Many of the factors long associated with voters’ partisanship remain firmly in place. For decades, gender, race and ethnicity, and religious affiliation have been important dividing lines in politics. This continues to be the case today.

Pie chart showing that in 2023, 49% of registered voters identify as Democrats or lean toward the Democratic Party, while 48% identify as Republicans or lean Republican.

Yet there also have been profound changes – in some cases as a result of demographic change, in others because of dramatic shifts in the partisan allegiances of key groups.

The combined effects of change and continuity have left the country’s two major parties at virtual parity: About half of registered voters (49%) identify as Democrats or lean toward the Democratic Party, while 48% identify as Republicans or lean Republican.

In recent decades, neither party has had a sizable advantage, but the Democratic Party has lost the edge it maintained from 2017 to 2021. (Explore this further in Chapter 1 . )

Pew Research Center’s comprehensive analysis of party identification among registered voters – based on hundreds of thousands of interviews conducted over the past three decades – tracks the changes in the country and the parties since 1994. Among the major findings:

Bar chart showing that growing racial and ethnic diversity among voters has had a far greater impact on the composition of the Democratic Party than the Republican Party.

The partisan coalitions are increasingly different. Both parties are more racially and ethnically diverse than in the past. However, this has had a far greater impact on the composition of the Democratic Party than the Republican Party.

The share of voters who are Hispanic has roughly tripled since the mid-1990s; the share who are Asian has increased sixfold over the same period. Today, 44% of Democratic and Democratic-leaning voters are Hispanic, Black, Asian, another race or multiracial, compared with 20% of Republicans and Republican leaners. However, the Democratic Party’s advantages among Black and Hispanic voters, in particular, have narrowed somewhat in recent years. (Explore this further in Chapter 8 .)

Trend chart comparing voters in 1996 and 2023, showing that since 1996, voters without a college degree have declined as a share of all voters, and they have shifted toward the Republican Party. It’s the opposite for college graduate voters.

Education and partisanship: The share of voters with a four-year bachelor’s degree keeps increasing, reaching 40% in 2023. And the gap in partisanship between voters with and without a college degree continues to grow, especially among White voters. More than six-in-ten White voters who do not have a four-year degree (63%) associate with the Republican Party, which is up substantially over the past 15 years. White college graduates are closely divided; this was not the case in the 1990s and early 2000s, when they mostly aligned with the GOP. (Explore this further in Chapter 2 .)

Beyond the gender gap: By a modest margin, women voters continue to align with the Democratic Party (by 51% to 44%), while nearly the reverse is true among men (52% align with the Republican Party, 46% with the Democratic Party). The gender gap is about as wide among married men and women. The gap is wider among men and women who have never married; while both groups are majority Democratic, 37% of never-married men identify as Republicans or lean toward the GOP, compared with 24% of never-married women. (Explore this further in Chapter 3 .)

A divide between old and young: Today, each younger age cohort is somewhat more Democratic-oriented than the one before it. The youngest voters (those ages 18 to 24) align with the Democrats by nearly two-to-one (66% to 34% Republican or lean GOP); majorities of older voters (those in their mid-60s and older) identify as Republicans or lean Republican. While there have been wide age divides in American politics over the last two decades, this wasn’t always the case; in the 1990s there were only very modest age differences in partisanship. (Explore this further in Chapter 4 .)

Dot plot chart by income tier showing that registered voters without a college degree differ substantially by income in their party affiliation. Non-college voters with middle, upper-middle and upper family incomes tend to align with the GOP. A majority with lower and lower-middle incomes identify as Democrats or lean Democratic.

Education and family income: Voters without a college degree differ substantially by income in their party affiliation. Those with middle, upper-middle and upper family incomes tend to align with the GOP. A majority with lower and lower-middle incomes identify as Democrats or lean Democratic. There are no meaningful differences in partisanship among voters with at least a four-year bachelor’s degree; across income categories, majorities of college graduate voters align with the Democratic Party. (Explore this further in Chapter 6 .)

Rural voters move toward the GOP, while the suburbs remain divided: In 2008, when Barack Obama sought his first term as president, voters in rural counties were evenly split in their partisan loyalties. Today, Republicans hold a 25 percentage point advantage among rural residents (60% to 35%). There has been less change among voters in urban counties, who are mostly Democratic by a nearly identical margin (60% to 37%). The suburbs – perennially a political battleground – remain about evenly divided. (Explore this further in Chapter 7 . )

Growing differences among religious groups: Mirroring movement in the population overall, the share of voters who are religiously unaffiliated has grown dramatically over the past 15 years. These voters, who have long aligned with the Democratic Party, have become even more Democratic over time: Today 70% identify as Democrats or lean Democratic. In contrast, Republicans have made gains among several groups of religiously affiliated voters, particularly White Catholics and White evangelical Protestants. White evangelical Protestants now align with the Republican Party by about a 70-point margin (85% to 14%). (Explore this further in Chapter 5 .)

What this report tells us – and what it doesn’t

In most cases, the partisan allegiances of voters do not change a great deal from year to year. Yet as this study shows, the long-term shifts in party identification are substantial and say a great deal about how the country – and its political parties – have changed since the 1990s.

Bar chart showing that certain demographic groups are strengths and weaknesses for the Republican and Democratic coalitions of registered voters. For example, White evangelical Protestands, White non-college voters and veterans tend to associate with the GOP, while Black voters and religiously unaffiliated voters favor the Democrats

The steadily growing alignment between demographics and partisanship reveals an important aspect of steadily growing partisan polarization. Republicans and Democrats do not just hold different beliefs and opinions about major issues , they are much more different racially, ethnically, geographically and in educational attainment than they used to be.

Yet over this period, there have been only modest shifts in overall partisan identification. Voters remain evenly divided, even as the two parties have grown further apart. The continuing close division in partisan identification among voters is consistent with the relatively narrow margins in the popular votes in most national elections over the past three decades.

Partisan identification provides a broad portrait of voters’ affinities and loyalties. But while it is indicative of voters’ preferences, it does not perfectly predict how people intend to vote in elections, or whether they will vote. In the coming months, Pew Research Center will release reports analyzing voters’ preferences in the presidential election, their engagement with the election and the factors behind candidate support.

Next year, we will release a detailed study of the 2024 election, based on validated voters from the Center’s American Trends Panel. It will examine the demographic composition and vote choices of the 2024 electorate and will provide comparisons to the 2020 and 2016 validated voter studies.

The partisan identification study is based on annual totals from surveys conducted on the Center’s American Trends Panel from 2019 to 2023 and telephone surveys conducted from 1994 to 2018. The survey data was adjusted to account for differences in how the surveys were conducted. For more information, refer to Appendix A .

Previous Pew Research Center analyses of voters’ party identification relied on telephone survey data. This report, for the first time, combines data collected in telephone surveys with data from online surveys conducted on the Center’s nationally representative American Trends Panel.

Directly comparing answers from online and telephone surveys is complex because there are differences in how questions are asked of respondents and in how respondents answer those questions. Together these differences are known as “mode effects.”

As a result of mode effects, it was necessary to adjust telephone trends for leaned party identification in order to allow for direct comparisons over time.

In this report, telephone survey data from 1994 to 2018 is adjusted to align it with online survey responses. In 2014, Pew Research Center randomly assigned respondents to answer a survey by telephone or online. The party identification data from this survey was used to calculate an adjustment for differences between survey mode, which is applied to all telephone survey data in this report.

Please refer to Appendix A for more details.

Sign up for our Politics newsletter

Sent weekly on Wednesday

Report Materials

Table of contents, behind biden’s 2020 victory, a voter data resource: detailed demographic tables about verified voters in 2016, 2018, what the 2020 electorate looks like by party, race and ethnicity, age, education and religion, interactive map: the changing racial and ethnic makeup of the u.s. electorate, in changing u.s. electorate, race and education remain stark dividing lines, most popular.

About Pew Research Center Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of The Pew Charitable Trusts .

AI Index Report

Welcome to the seventh edition of the AI Index report. The 2024 Index is our most comprehensive to date and arrives at an important moment when AI’s influence on society has never been more pronounced. This year, we have broadened our scope to more extensively cover essential trends such as technical advancements in AI, public perceptions of the technology, and the geopolitical dynamics surrounding its development. Featuring more original data than ever before, this edition introduces new estimates on AI training costs, detailed analyses of the responsible AI landscape, and an entirely new chapter dedicated to AI’s impact on science and medicine.

Read the 2024 AI Index Report

The AI Index report tracks, collates, distills, and visualizes data related to artificial intelligence (AI). Our mission is to provide unbiased, rigorously vetted, broadly sourced data in order for policymakers, researchers, executives, journalists, and the general public to develop a more thorough and nuanced understanding of the complex field of AI.

The AI Index is recognized globally as one of the most credible and authoritative sources for data and insights on artificial intelligence. Previous editions have been cited in major newspapers, including the The New York Times, Bloomberg, and The Guardian, have amassed hundreds of academic citations, and been referenced by high-level policymakers in the United States, the United Kingdom, and the European Union, among other places. This year’s edition surpasses all previous ones in size, scale, and scope, reflecting the growing significance that AI is coming to hold in all of our lives.

Steering Committee Co-Directors

Jack Clark

Ray Perrault

Steering committee members.

Erik Brynjolfsson

Erik Brynjolfsson

John Etchemendy

John Etchemendy

Katrina light

Katrina Ligett

Terah Lyons

Terah Lyons

James Manyika

James Manyika

Juan Carlos Niebles

Juan Carlos Niebles

Vanessa Parli

Vanessa Parli

Yoav Shoham

Yoav Shoham

Russell Wald

Russell Wald

Staff members.

Loredana Fattorini

Loredana Fattorini

Nestor Maslej

Nestor Maslej

Letter from the co-directors.

A decade ago, the best AI systems in the world were unable to classify objects in images at a human level. AI struggled with language comprehension and could not solve math problems. Today, AI systems routinely exceed human performance on standard benchmarks.

Progress accelerated in 2023. New state-of-the-art systems like GPT-4, Gemini, and Claude 3 are impressively multimodal: They can generate fluent text in dozens of languages, process audio, and even explain memes. As AI has improved, it has increasingly forced its way into our lives. Companies are racing to build AI-based products, and AI is increasingly being used by the general public. But current AI technology still has significant problems. It cannot reliably deal with facts, perform complex reasoning, or explain its conclusions.

AI faces two interrelated futures. First, technology continues to improve and is increasingly used, having major consequences for productivity and employment. It can be put to both good and bad uses. In the second future, the adoption of AI is constrained by the limitations of the technology. Regardless of which future unfolds, governments are increasingly concerned. They are stepping in to encourage the upside, such as funding university R&D and incentivizing private investment. Governments are also aiming to manage the potential downsides, such as impacts on employment, privacy concerns, misinformation, and intellectual property rights.

As AI rapidly evolves, the AI Index aims to help the AI community, policymakers, business leaders, journalists, and the general public navigate this complex landscape. It provides ongoing, objective snapshots tracking several key areas: technical progress in AI capabilities, the community and investments driving AI development and deployment, public opinion on current and potential future impacts, and policy measures taken to stimulate AI innovation while managing its risks and challenges. By comprehensively monitoring the AI ecosystem, the Index serves as an important resource for understanding this transformative technological force.

On the technical front, this year’s AI Index reports that the number of new large language models released worldwide in 2023 doubled over the previous year. Two-thirds were open-source, but the highest-performing models came from industry players with closed systems. Gemini Ultra became the first LLM to reach human-level performance on the Massive Multitask Language Understanding (MMLU) benchmark; performance on the benchmark has improved by 15 percentage points since last year. Additionally, GPT-4 achieved an impressive 0.97 mean win rate score on the comprehensive Holistic Evaluation of Language Models (HELM) benchmark, which includes MMLU among other evaluations.

Although global private investment in AI decreased for the second consecutive year, investment in generative AI skyrocketed. More Fortune 500 earnings calls mentioned AI than ever before, and new studies show that AI tangibly boosts worker productivity. On the policymaking front, global mentions of AI in legislative proceedings have never been higher. U.S. regulators passed more AI-related regulations in 2023 than ever before. Still, many expressed concerns about AI’s ability to generate deepfakes and impact elections. The public became more aware of AI, and studies suggest that they responded with nervousness.

Ray Perrault Co-director, AI Index

Our Supporting Partners

Supporting Partner Logos

Analytics & Research Partners

what is research analysis of data

Stay up to date on the AI Index by subscribing to the  Stanford HAI newsletter.

Ignore the sticker price: How have college prices really changed?

Subscribe to the center for economic security and opportunity newsletter, phillip levine phillip levine nonresident senior fellow - economic studies , center for economic security and opportunity @phil_wellesley.

April 12, 2024

  • 20 min read

Public discussions regarding rising college costs typically focus on the listed cost of attendance (COA), or “sticker price.” Sticker prices  for four-year colleges and universities are in the tens of thousands of dollars per year and have risen substantially over the past several decades. High and rising college sticker prices are the subject of considerable attention .   

But what matters to students and their families is not the sticker price but rather the amount they actually have to pay. Because of the availability of financial aid, most pay less than the sticker price . The average amount students actually pay (the “net price”) has evolved quite differently over time from the sticker price: it has recently stabilized and even fallen in the last few years . But the average net price is only relevant for families with average finances. What about everyone else?  

This report shows how the actual price of college for families in different economic circumstances has changed since the mid-1990s. I focus on dependent students attending four-year institutions living away from their parents because those are the students who face the highest sticker prices that typically receive the most attention. They represent around 40% of the roughly 9 million dependent college students and two-thirds of those enrolled full time. These institutions often provide financial aid, using their own resources in addition to aid available from the federal and state governments. I separately examine public (for state residents) and private, nonprofit institutions because of the substantial differences in prices between them.   

Several conclusions emerge from this analysis:   

  • The sticker price is an increasingly poor indicator of college prices for all students, regardless of family income.   
  • The net price paid by students attending public institutions has risen for families at all income levels, but the increases have been larger for higher-income students.  
  • At private institutions, the net price is consistently higher than at public institutions, but for more than a decade it has only increased for higher-income students.   
  • Adjusted for inflation, net prices paid by students today at public institutions across the income distribution are similar to the prices they would have paid at private institutions in the mid-1990s.  

How are actual college prices determined?

The full “cost of attendance” is defined by law to include tuition and fees, food and housing, and all other educational and living expenses (books, travel, and other personal expenses). Colleges and universities are required to publicly report that amount. It is often colloquially labeled the sticker price. But financial aid drives a wedge between the COA and what students really pay. The amount students actually pay is labeled the “net price,” and it equals COA less any form of “grant-based” financial aid (i.e., not a loan or subsidized work).   

That aid can come in two forms: need-based and merit-based. Eligibility for need-based aid is determined based on the financial information students provide when they complete the Free Application for Federal Student Aid (FAFSA). 1 That information is used to calculate the “Expected Family Contribution” (EFC). 2 A student’s “financial need” is the difference between the COA and the EFC (need = COA – EFC). Students receiving federal financial aid cannot receive aid in excess of financial need. Institutions are not required to provide the full amount of aid that students are eligible for, and most do not. Those that do are said to “ meet full need.”  

Many institutions also award financial aid that lowers the net price for other reasons. It is typically labeled as merit aid because students with stronger academic records receive larger awards. For students with no financial need, merit aid directly reduces what students pay.   

For students with financial need, though, merit-based aid often substitutes, at least partially, for need-based aid. That is, the need-based award is reduced when a student receives merit aid. This means that merit aid mostly benefits higher-income students who otherwise would pay the full sticker price.   

At many institutions, this form of aid is awarded to a large fraction, and in some cases even all, of its students. Such universal merit aid has the same impact as reducing the sticker price. Colleges choose to offer it for marketing purposes, setting a high sticker price to signal institutional quality while awarding “merit aid” to signal support for admitted students. 3  

The sticker price is the wrong way to track college costs

Most students do not pay the full sticker price. In 2019-2020, 26% of in-state public college students and 16% of students enrolled in private, nonprofit institutions paid the sticker price. 4 Those percentages have dropped from 53% and 29%, respectively, since 1995-1996. More students receive financial aid now, highlighting the importance of relying on net price rather than the sticker price when tracking college costs over time.   

The sticker price is even becoming an increasingly poor indicator of college costs for higher-income students who are not eligible for need-based financial aid. The growing use of merit-based aid at both public and private institutions accounts for this. At public institutions, the vast majority (79%) of those higher-income students paid the full sticker price in 1995-1996. That share dropped to 47% in 2019-2020. At private institutions, the decline was even greater, falling from 64% to 28% over that period.   

The bottom line is that few students now pay the full sticker price, including, perhaps unexpectedly, those from higher-income families. Sticker price is therefore becoming increasingly disconnected from the amount that students actually pay. The practice of tracking it should be exercised with extreme caution.   

A better way to track college costs

If students do not pay the sticker price, how much do they pay? And, critically, how does that amount change as family finances change? To answer this question, I examine the relationship between a family’s financial situation, captured by their EFC, and how much they pay to attend college. This relationship between EFC and net price is a fundamental element of the process colleges use to determine financial aid awards. Other factors matter, but the EFC is critical in determining the amount that students pay. All else equal, the net price rises with EFC. At some point, though, the net price hits a ceiling. That maximum net price is often lower than the sticker price because of the extensive use of merit awards, as I described earlier.  

To better understand how net prices have changed over time for families with different financial circumstances, I use available data to mimic the underlying system that institutions use to determine students’ net price. 5 Separately for each year of data, I estimate the linear relationship between net prices and EFC among students who are eligible for need-based financial aid. I also impose a “maximum net price,” defined as the average amount paid by students who are not eligible for need-based aid. It is not precisely a maximum because some students will pay more, but it represents the typical amount paid by higher-income students whose net price is unrelated to financial need.   

Throughout this analysis, I distinguish state residents attending 4-year public institutions from those attending 4-year private, nonprofit institutions (referred to simply as 4-year public and private institutions going forward). Data for this exercise are available every four years from 1995-1996 through 2019-2020 from the National Postsecondary Student Aid Study (NPSAS). 6 All dollar values are inflation adjusted and represent the price level in 2023.  

To facilitate interpretation, all reported results are distinguished by family income. I converted levels of the EFC to approximate levels of family income, assuming that families’ asset holdings are typical of that income level.   

For a variety of reasons, a literal interpretation of the results of this exercise is inappropriate. The exact amount that any particular student pays will depend on their specific characteristics and those of the institutions they attend. Among students with similar family incomes, other details of their financial situation will affect their net price. Even among students with similar financial circumstances, the net price they pay can vary considerably across institutions and within institutions. But the results presented still provide a useful characterization of the system of college pricing facing students over time.  

Figures 1A and 1B show the key findings. Figure 1A provides the results for students at public institutions. In the 1995-1996 academic year (all years on the graph are labeled by the end of the academic year), students with family incomes under $50,000 typically faced a net price of about $12,500. The typical net price increases with income. Every additional dollar of income translates to around a 16-cent increase in net price. Families with family incomes of roughly $75,000 typically faced a net price of around $16,000. Once income reaches the vicinity of $100,000, the net price hits the maximum of around $19,000.  

In each subsequent year, that relationship has shifted up. 7 By 2019-2020, students from families with incomes below $50,000 faced a typical net price of $18,000. A family with an income of around $125,000 paid the maximum net price of $29,000. The maximum net price increased between 1995-1996 and 2019-2020, so higher-income families became eligible for need-based financial aid.   

This upward drift in net prices at public 4-year institutions indicates that they are becoming increasingly more expensive over time for students at all levels of the income distribution. The increase for higher-income families was larger in dollar terms but roughly similar in percentage terms.    

Figure 1B shows the same relationships for 4-year private institutions. Prices at private institutions were higher than at public institutions for students at all income levels each year. Net prices also increased with incomes at a slightly higher rate (18 cents per dollar of income).  

Pricing patterns over time, though, observed at these institutions are not quite the same as those at public institutions. The fundamental difference is that net prices for lower- and middle-income students stopped rising in 2007-2008. The prices those students pay have remained roughly constant in real terms since then.   

One should not interpret this finding as indicating private colleges are becoming more affordable for low- and middle-income students. Students with incomes under $50,000 are still being asked to pay around $25,000 to attend a typical private institution. But that amount is no longer rising faster than the rate of inflation.  

Net prices charged to higher-income students at these institutions have risen consistently over time. In 1995-1996, the maximum net price at private institutions was $37,000. Students hit that threshold at a family income of around $150,000. By 2019-2020, the maximum net price jumped to $53,000 and it corresponded to income of around $200,000.   

Net prices paid by students enrolled in the small set of private, highly-endowed private colleges and universities that meet full need are unlikely to follow these patterns. Students pay their EFC at these institutions, perhaps along with loan and work expectations. As I have shown elsewhere, their net prices are lower than at other private institutions for all but higher-income students. They are even lower than at public institutions for lower-income students. For students with the same EFC at different points in time, there is no reason their net price would have changed much. But only a small number of institutions fall in this category, making it difficult to analyze them separately. 8  

Note that the scales on the graphs for public and private institutions are different to best illustrate the pricing patterns at each type of institution. Figure 2 is designed to overcome that problem, including data for both sets of institutions for a subset of years on the same scale. It shows that private institutions are clearly more expensive than public institutions, as one might expect. We also see that public institutions in 2019-2020 charge prices that are not unlike those charged at private institutions almost 25 years earlier, particularly for lower- and middle-income families and after factoring in financial aid.  

An important contribution of this analysis is track ing the net price that lower-income students pay over time . I am not aware of any other source that provides this information. Figure 3 focuses specifically on that group, presenting t ypical net price s paid by students from families with incomes below $50,000 over time in the two different types of institutions.

These statistics identify an obvious affordability problem for this group. At public institutions the net price that these students pay has risen from $12,500 to $18,000 between 1995-1996 and 2019-2020. The lower amount would have been difficult for these families to pay then, but these institutions have become even less affordable over time. The cost of a private institution for these students may have stopped rising, but it started and ended the period at a higher level (roughly $20,000 to $25,000, respectively).   

Although net prices have risen for students across the income distribution at both public and private institutions, these increases are considerably smaller than increases in sticker prices. 9 Sticker prices have risen roughly 70% at both types of institutions between 1995-1996 and 2019-2020 ($20,500 to $35,000 at public institutions and $42,000 to $72,000 at private institutions). For lower-income students (defined here as those with incomes below $50,000), net prices have increased by 44% and 24% at public and private institutions, respectively. Those increases are still substantial, but they are considerably smaller than the increase in the sticker price.  

Where do we go from here?

This analysis yields several implications for policy discussions regarding college pricing. First, the nearly universal focus on the sticker price in public discourse is detrimental to our understanding of college costs. It is the easiest measure to track, but it is a misleading statistic that a small and declining number of students pay. Even many higher-income families do not pay the full sticker price.   

Second, we need much better information about how much students in different financial circumstances would have to pay for college and how those prices have changed over time. Understanding how much lower- and middle-income students pay is particularly important if we are seeking to improve college access. That information is limited now. One recent survey found that only 19% of Americans know that lower-income students pay less for college than higher-income students.   

Third, college costs are still too high, and increasingly so over time. College is indeed expensive for higher-income students, but the affordability problem is much greater—and more consequential—for lower- and middle-income students. If they can’t afford it, they can’t go.   

Our current system of setting and communicating college prices simply does not work. We cannot expect students to make sound decisions regarding educational investments if they do not understand how much college will actually cost them. Public officials make strategic decisions affecting the higher education system facing similar blind spots. The media routinely reports on college pricing based on inadequate information. And, ultimately, college costs are too high, particularly for lower- and middle-income students. We cannot expect improvements in the market for higher education if we do not know the facts. This report is a step in that direction.  

Technical Appendix: Data and Methodology

All the analyses reported in this report are based on data from the 1995-1996 through 2019-2020 waves (available every fourth year) of the National Postsecondary Student Aid Study (NPSAS). In each wave, I have restricted the data to dependent students enrolled full-time at a single institution living away from their parents (on or off campus). 10  These seven waves of the NPSAS were conducted during a period when the formula for determining a student’s EFC was largely unchanged. All NPSAS data used in this report is restricted and accessed under a licensing agreement with the Institute for Education Science/National Center for Education Statistics (IES/NCES).  

There are 86,000 students included in these seven waves of NPSAS data that satisfy the sample restrictions. In 2019-2020, over 3 million students satisfy these conditions. I have replicated all the analyses included in this report further restricting the sample to those living on campus (around 2 million students in 2019-2020) and obtained similar results.   

Students are divided into two categories, based on whether they have “financial need” depending on whether their expected family contribution (EFC) is greater than the cost of attendance (COA) at the institution they attend (COA – EFC > 0). For those who have no financial need, I calculate the average net price separately for students attending 4-year public institutions and those attending 4-year private institutions. These statistics are generated separately using data from each NPSAS wave. The results set the upper bound of net prices in each wave in each type of institution in this analysis.  

For students with financial need (EFC < COA), I estimate linear quantile regression models at the 50 th percentile (i.e., the median) relating the net price paid to their EFC. I extended this approach in a preliminary analysis, allowing the year/institution type slope to be non-linear (quadratic). The results indicated some non-nonlinearity exists (increasing at a decreasing rate), but it is minor and I chose to maintain the simplicity of restricting the slope to be linear.  

In the analysis reported in Figures 1A and 1B, a single regression is estimated for each type of institution across all NPSAS waves, restricting the slope coefficient relating net price to EFC to be constant, but the intercept is allowed to change by wave. I tested the sensitivity of this restriction relative to models that estimate this relationship separately by type of institution and academic year. This approach allows for the linear slope to differ in different years. Although there is some variability in slopes of the net price/EFC profile by academic year, they are not dramatic. I therefore impose the constant slope restriction for ease of interpretation, without much loss of detail.  

The results from the regression analysis that imposes a constant slope over time generate the sloped portions of the relationship between approximate family income (EFC) and the net price, as displayed in Figures 1A and 1B. The sloped portion is allowed to increase until it intersects with the average net price paid by students with no financial need in each sector and NPSAS wave. 11    

Separately, I also estimate a linear regression relating family income, measured as the adjusted gross income (AGI) that parents report on their child’s FAFSA form, and the resulting FAFSA EFC. This analysis is also restricted to those students who have financial need. I use the results from this analysis to predict family income for alternative values of EFC. It is those predictions of family income based on EFC that are provided in Figures 1A, 1B, and 2.  

Related Content

Gabriela Goodman

December 13, 2023

Phillip Levine

September 6, 2023

Elizabeth Gellman, Katharine Meyer

May 4, 2023

The Brookings Institution is financed through the support of a diverse array of foundations, corporations, governments, individuals, as well as an endowment. A list of donors can be found in our annual reports published online  here . The findings, interpretations, and conclusions in this report are solely those of its author(s) and are not influenced by any donation.

  • A relatively small share of students attends colleges and universities that also require students to complete the CSS Profile. That form asks more detailed questions, and it is  used largely at private institutions with high sticker prices . For this analysis, I do not have access to financial aid data based on the CSS Profile. 
  • The  EFC has been relabeled  as the Student Aid Index (SAI) beginning with the 2024-2025 FAFSA. I continue to use the historical EFC label because that is what it was called in all of the data used in this analysis.
  • Students would benefit and institutions would not be harmed if all institutions using this pricing policy simply cut their sticker price. They do not do so because they face a “prisoners’ dilemma.” If any one school changed their policy on its own, it would lose students. If all agreed to so simultaneously, that would overcome the problem, but it also likely would be seen as a violation of anti-trust laws. 
  • I use data from the 1995-1996 through 2019-2020 waves (available every fourth year) of the National Postsecondary Student Aid Study (NPSAS) to calculate these statistics and in all other analysis in this report. The technical appendix provides greater details regarding the data and methods used. 
  • A more traditional approach for providing this information would be to establish categories of EFC or income and compute mean or median net prices within those categories. I conducted such an analysis, but opted for the regression-based approach instead. That approach has the advantage of providing results that are less dependent on having sufficient data within relatively narrow EFC bands. It also provides a better method of determining a typical EFC level at which point net prices stop rising. All the analysis is conducted with the same NPSAS data referenced earlier. 
  • Note that the 2019-2020 NPSAS was just released in the fall of 2023. A new wave will not be available for a few more years.
  • The slopes in these lines are forced to be the same over time, but a more flexible specification allowing them to change indicates that those changes are minimal. More detail is provided in the appendix.
  • At these institutions, a student’s financial need is likely to be determined by information provided on the CSS Profile, not FAFSA, which includes more financial detail and places a heavier emphasis on assets. This information is not available in the NPSAS, further hindering an analysis of their pricing systems.
  • This finding is consistent with the analysis conducted by  Cooke and Turner (2022) . 
  • The results of this analysis are similar, albeit noisier, when I repeat the exercise separately for those who live on or off campus. A similar pattern is observed for students who live with their parents, albeit at lower levels. Lower-income students who live with their parents are generally able to cover the stated tuition ( ignoring other cost factors  incorporated into the full cost of attendance) throughout this time period at public institutions. 
  • Replacing this average with a median generates similar results. 

Education Access & Equity Education Policy Higher Education

Economic Studies

North America

Center for Economic Security and Opportunity

Election ’24: Issues at Stake

Harry J. Holzer

December 21, 2023

Pam Harder, Greg Wright

February 1, 2023

Adam Looney

January 14, 2022

How to close the Black tech talent gap

While the number and variety of tech jobs have grown steadily over two decades, the technology workforce has not evolved to reflect the makeup of the American workforce. Organizations have worked to improve representation among Black employees and executives in technology-related jobs across industries, but there is more work to be done.

The Black technology workforce

Black people make up 12 percent of the US workforce but only 8 percent of employees in tech jobs. 1 State of the tech workforce , CompTIA, March 2022. That percentage is even smaller further up the corporate ladder; just 3 percent of technology executives in the C-suite are Black, according to a McKinsey analysis of Fortune 500 executives. 2 Based on an analysis of Fortune 500 tech executives in chief information officer or chief technology officer roles who identify as Black. That gap is likely to widen over the next decade. Across all industries, technology jobs—those in data science, engineering, cybersecurity, and software development—are expected to grow 14 percent by 2032. Black tech talent in those roles is expected to grow only 8 percent over the same period (Exhibit 1).

Developing inclusive technologies and bridging a gap worth billions

Black households stand to lose out on more than a cumulative $350 billion in tech job wages by 2030, an amount equal to one-tenth the total wealth held by those households, according to a McKinsey Institute for Black Economic Mobility analysis.

The wage gap in tech roles is expected to grow nearly 37 percent, from $37.5 billion in 2023 to $51.3 billion in annual lost wages by 2030, according to our analysis (Exhibit 2).

Increasing Black representation in technology jobs isn’t just about bridging wage gaps. It means improving the lives of those who are regularly othered, diminished, and discounted in workplaces where they may be the only Black person. It’s also about developing inclusive technologies  that have transformative potential for Black communities. For example, digital banking platforms designed to be inclusive of Black consumers provide financial services that can improve the living standards in communities underserved by traditional banks.

Businesses, nonprofit organizations, and public-sector agencies must take coordinated action to increase Black representation in tech jobs. Specifically, they should reexamine their approach at five critical junctures throughout the career journey for Black tech talent, by improving STEM education at the K–12 level, strengthening HBCU partnerships, expanding opportunities for alternatively skilled talent, replacing mentorship with sponsorship, and empowering Black leaders to thrive. Doing so will support the Black technology workforce for generations to come.

Meet STEM students where they are

Education programs focused on science, technology, engineering, and math (STEM) fields in K–12 schools have long been seen as potential feeders into the technology workforce. Programs focused on helping subsets of students began to proliferate from both the public sector and nonprofits in the 2010s; Girls Who Code and NASA’s Next Gen STEM are just two examples.

Such programs are a promising start, but there’s a lot of opportunity to do more. According to the Pew Research Center, Black students earned only 7 percent of STEM bachelor’s degrees in 2018, compared with 10 percent of all bachelor’s degrees. 3 Rick Fry, Cary Funk, and Brian Kennedy, “STEM jobs see uneven progress in increasing gender, racial and ethnic diversity,” Pew Research Center, April 1, 2021. The COVID-19 pandemic may have further shrunk the pipeline: Black and Hispanic students experienced sharper declines in fourth-grade math test scores during the pandemic compared with their White and Asian peers, wiping out decades of progress. 4 Sarah Mervosh and Ashley Wu, “Math scores fell in nearly every state, and reading dipped on national exam,” New York Times , October 24, 2022. Without intervention, it’s possible the lagging test scores will lead to a decrease in the number of Black students who eventually pursue STEM careers.

While much of the nonprofit sector’s work has increased diversity in STEM, there could be more targeted efforts from businesses specifically designed to encourage Black student participation. Only 20 percent of Fortune 100 companies have a K–12 STEM partnership focused on students in underserved communities, according to a McKinsey analysis.

Businesses can meet students where they are by underwriting technology courses or offering information sessions in predominantly Black communities. Numerous studies have documented the positive effect that a sense of belonging in education has on academic retention: K–12 students and first-year college students who feel a sense of belonging among their peers are likelier to participate in classroom discussions, believe they will succeed in a subject area, and are more motivated. 5 Lynley H. Anderman, Tierra M. Freeman, and Jane M. Jensen, “Sense of belonging in college freshmen at the classroom and campus levels,” Journal of Experimental Education , 2010, Volume 75, Number 3. STEM programs that target schools with a high population of Black students are likely to help plug future talent gaps in tech.

A Pew Research survey published in April 2022 found that the percentage of Black adults who say “Black people have reached the highest levels of success” in a range of careers was highest for professional athletes and musicians, at more than double the rate of engineers and scientists, indicating that survey respondents don’t perceive STEM fields to be welcoming to Black talent (Exhibit 3). For students who may not have a role model in tech, community-focused approaches help increase exposure to both companies and role models.

Nonprofits have often led the charge in bringing greater STEM awareness to Black communities. One example is MITRE, an organization that provides tech expertise to the US government. MITRE gives its employees 40 paid hours of “civic duty” to participate in in-classroom and after-school programs at K–12 schools in Black and Hispanic communities; it also reimburses employees for expenses (like travel and parking) related to their participation in these programs. MITRE’s initiatives have exposed thousands of students and their parents to opportunities in STEM.

Even as companies encourage employees to participate in volunteer programs, they should be mindful to not add to Black employees’ workload or to make participation a requirement for promotion. They should encourage employees of all races—not just Black employees—to engage in racial-equity efforts.

Create stronger corporate HBCU partnerships

Historically Black colleges and universities (HBCUs) are a significant driver of economic mobility for Black people and produce many of the country’s Black technologists. Companies have been working with HBCUs to provide resources and create a talent pipeline  for STEM students for more than two decades. Boeing, IBM, and Netflix are just three of the many companies that have partnered with HBCUs.

Still, there’s room to improve the effectiveness of these partnerships.

The experience of one technology company might provide useful lessons. The company launched a lauded program that relied on volunteer employees to mentor HBCU students and teach courses but did not provide employees with incentives to participate. The program created internships for HBCU students, but there was no follow-through when the internships ended (and many of the HBCU interns did not go on to work at the company upon graduation). Also, the company partnered with only a small fraction of HBCUs across the country. Finally, while the company helped develop technology courses for HBCUs, it did not underwrite the costs of those programs or offer scholarships to students, some of whom took out additional student loans to participate in the program.

Organizations with money to invest in their future workforce can direct funds toward HBCU curriculum development, career offices, and faculty training. For instance, Harvard University runs a free data science pedagogy workshop for educators at HBCUs and other minority-serving institutions, to broaden the pipeline of future graduate students in the field. IBM is partnering with 13 HBCUs to build a new Quantum Center that gives students access to IBM quantum computers , as well as educational support and research opportunities. Ideally, businesses would be able to underwrite the cost of internships or related programs so that they are free or affordable for Black students.

Not all businesses will be able to afford national HBCU outreach or cost-subsidized internship programs, however. But even those with less cash on hand can better work with HBCUs and their students: those with internship programs can offer more professional development during internships to increase the chances a student is hired after graduation and expand partnerships beyond the universe of well-known HBCUs. They should also increase partnerships with non-HBCUs that have high Black and Hispanic student populations.

Expand opportunities for alternatively skilled talent

People without college degrees are likely to be overlooked by employers that still hire according to traditional standards. Of the 17 million Black workers in the United States, 65 percent developed their skills through alternative routes —meaning they have a high school diploma and may have military or workforce experience but do not have a bachelor’s degree. 6 “Spotlight on Black STARs: Insights for employers to access the skilled and diverse talent they’ve been missing,” Opportunity at Work, November 2, 2022. By this measure, jobs that require a bachelor’s degree are out of reach for most Black workers.

By removing the requirement for a bachelor’s degree, businesses immediately expand the applicant pool. Additionally, they can partner with platforms that help train “ready to learn” talent—people who have experience in other fields with transferable skills  but may require additional development—to find qualified candidates with nontraditional backgrounds.

Some businesses are already investing in such programs. Nasdaq and Oracle partner with Kura Labs, an online academy that offers free training and job placement for engineers in underserved communities. The organization says its efforts have resulted in $12 million in new wages in less than 18 months. Meanwhile, other companies including Pandora and Twitch have partnered with the platform OnRamp Technology, which works with more than 100 boot camps, online communities, and education and training providers. Three out of four people hired through OnRamp are people of color.

About the research

The results of a new McKinsey Black Tech Talent Survey help illustrate where problems persist. In July 2022, McKinsey surveyed 82 Black professionals in the United States across entry-level, mid-level, and C-suite technology roles, both within and outside technology companies. The survey aimed to understand the impact of increasing Black representation in tech roles across industries and opportunities to elevate Black tech talent into executive roles. While the findings may not be definitive, they are directionally representative. This research builds upon previous “Race in the workplace” studies  as well as existing work from the McKinsey Institute for Black Economic Mobility , which seeks to provide independent research to offer guidance on how to improve racial inequities around the world.

But recruiting ready-to-learn talent helps improve representation only if a company also reexamines its interview processes. Résumés that indicate a candidate is Black—either because of the candidate’s name, school, or work history, for example—have been found to generate fewer interview requests than résumés reflecting characteristics of White candidates. 7 Marianne Bertrand and Sendhil Mullainathan, Are Emily and Greg more employable than Lakisha and Jamal? A field experiment on labor market discrimination , National Bureau of Economic Research, working paper, July 2003. In our survey of Black tech talent, respondents say their companies “do not do enough outreach” and “have not yet incorporated procedures like blind résumés” (stripping a résumé of any indicators of gender identity or race) to broaden talent pools (see sidebar, “About the research”).

Replace mentorship with sponsorship

Black tech professionals change companies every three and a half years on average, compared with every five or more years for their non-Black counterparts. This pattern continues over the course of a career: Black professionals with 21 years or more of tech experience have changed companies more than seven times on average, compared with six times for their non-Black peers. 8 Cecyl Hobbs, “Shaping the future of leadership for Black tech talent,” Russell Reynolds Associates, January 27, 2022. The higher attrition rate means Black talent is less likely to stay at a company long enough to be promoted.

In efforts to retain Black employees, some companies have created mentorship programs—but the programs aren’t always effective: across industries, only 13 percent of Black management-level employees and only 20 percent of Black entry-level employees strongly agree that their sponsors are effective at creating opportunities for them (Exhibit 4).

Mentorship programs may fail for a variety of reasons. A business may mandate mentor pairing for new hires, but often these relationships are transactional and lack the kind of connection that allows the relationship to last. (Employees who choose their mentees may do so according to familiar networks, like a shared school, or other factors that exclude Black employees.) Mentorship programs may also lack processes that guide mentors and mentees through the relationship and may only measure intangible or difficult-to-quantify metrics, like satisfaction in your mentor.

Ultimately, mentorship is not enough to keep Black tech employees from leaving companies. Sponsorship —the idea that senior leaders are tasked with creating apprenticeship and networking opportunities, as well as helping talent navigate transitions at work like a promotion—is more impactful. These relationships require both parties to create a development strategy with specific goals that are measurable.

Enabling Black leaders to thrive

When asked what they believe are the top three most important initiatives for advancing Black talent in tech, 83 percent of Black tech employees we surveyed said advancement opportunities were among the top three most important components of growth for Black tech talent, more than inclusion seminars or external advocacy and investment. More than a third said advancement opportunities were the most important factor. There are additional ways companies can support Black tech talent beyond advancement opportunities, particularly when it comes to fostering an inclusive workplace (Exhibit 5).

Even when Black employees in tech successfully complete corporate leadership and executive training programs, a promotion may remain elusive. This may happen for two reasons: an existing Black tech leader might be skilled in one area (for example, IT project management) but lack the skills required in another (for example, data science) to grow into a C-suite-level executive role. Upskilling these employees in tech’s fastest-growing areas is one way they can be supported.

Additionally, businesses that are too focused on training Black tech talent without adopting organizational change are setting those employees up for failure. Partnering with organizations that create leadership training programs for aspiring leaders as well as existing leaders creates two streams of parallel growth at a company. It’s also important that these organizations are specifically focused on elevating Black tech talent, as general executive leadership programs may overlook some of the nuances of the Black experience in technology that shape someone’s career journey.

The Information Technology Senior Management Forum (ITSMF), a charitable organization that counts Amazon Web Services and PepsiCo among its partners, serves as an example of how to do this successfully. ITSMF offers a leadership academy for future Black tech talent, in addition to a management academy tailored for existing executives. Businesses that partner with ITSMF also engage in unconscious bias or cultural intelligence workshops and cohost networking events for prospective executive talent. Up to 80 percent of ITSMF leadership academy graduates received promotions within 18 months of completing the program, according to the group.

Seizing these five opportunities—at the K–12 level, in higher education, with alternatively skilled talent, in sponsorship, and in leadership training—will help to close the Black tech talent gap. Many businesses today are undertaking resiliency measures to prepare for tough times ahead and help curb losses. It is during such times of economic uncertainty when it’s both easiest for businesses to cut critical investments in Black tech talent, and when it’s most important not to.

Jan Shelly Brown is a partner in McKinsey’s New Jersey office, where Chris Perkins is an associate partner; Matthew Finney is a consultant in the Bay Area office; and Mark McMillan is a senior partner in the Washington, DC, office.

The authors wish to thank Tanguy Catlin, Tiffany Chen, Rob Levin, Roger Roberts, and Sonia Shah for their contributions to this article.

This article was edited by Alexandra Mondalek, an editor in the New York office.

Explore a career with us

Related articles.

what is research analysis of data

Closing the digital divide in Black America

Annie Jean-Baptiste photo

Making product inclusion and equity a core part of tech

Shot of a young woman using a laptop in a server room - stock photo

Mining for tech-talent gold: Seven ways to find and keep diverse talent

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Research: How to Close the Gender Gap in Startup Financing

  • Malin Malmström,
  • Barbara Burkhard,
  • Charlotta Sirén,
  • Dean Shepherd,
  • Joakim Wincent

what is research analysis of data

Three ways policymakers, financiers, and other stakeholders can mitigate gender bias in entrepreneurial funding.

A global analysis of previous research over the last three decades shows that women entrepreneurs face a higher rate of business loan denials and increased interest rates in loan decisions made by commercial bankers. Interestingly, the data also reveals that the formal and informal standing of women in a particular society can provide clues to some of the true hurdles to positive change. This article reviews these hurdles, and offers three recommendations for change.

Gender disparities persist in entrepreneurship and statistics reveal the severity of the issue. Globally, only one in three businesses is owned by women . In 2019, the share of startups with at least one female founding member was a mere 20% .

  • MM Malin Malmström is a professor of entrepreneurship and innovation at Luleå University of Technology, and a director of the research center Sustainable Finance Lab in Sweden.
  • BB Barbara Burkhard is a postdoctoral researcher of entrepreneurship at the Institute of Responsible Innovation at the University of St.Gallen.
  • CS Charlotta Sirén is an associate professor of management at the Institute of Responsible Innovation at the University of St.Gallen.
  • DS Dean Shepherd is a professor of entrepreneurship, management, and organization at The Mendoza College of Business, University of Notre Dame.
  • JW Joakim Wincent is a professor of entrepreneurship and management at the Hanken School of Economics and the Global Center for Entrepreneurship and Innovation at the University of St.Gallen.

Partner Center

COMMENTS

  1. Data analysis

    data analysis, the process of systematically collecting, cleaning, transforming, describing, modeling, and interpreting data, generally employing statistical techniques. Data analysis is an important part of both scientific research and business, where demand has grown in recent years for data-driven decision making.

  2. Data Analysis in Research: Types & Methods

    Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. Three essential things occur during the data ...

  3. What is data analysis? Methods, techniques, types & how-to

    A method of data analysis that is the umbrella term for engineering metrics and insights for additional value, direction, and context. By using exploratory statistical evaluation, data mining aims to identify dependencies, relations, patterns, and trends to generate advanced knowledge.

  4. Introduction to Data Analysis

    Data analysis can be quantitative, qualitative, or mixed methods. Quantitative research typically involves numbers and "close-ended questions and responses" (Creswell & Creswell, 2018, p. 3).Quantitative research tests variables against objective theories, usually measured and collected on instruments and analyzed using statistical procedures (Creswell & Creswell, 2018, p. 4).

  5. Data Analysis

    Data Analysis. Definition: Data analysis refers to the process of inspecting, cleaning, transforming, and modeling data with the goal of discovering useful information, drawing conclusions, and supporting decision-making. It involves applying various statistical and computational techniques to interpret and derive insights from large datasets.

  6. What Is Data Analysis? (With Examples)

    What Is Data Analysis? (With Examples) Data analysis is the practice of working with data to glean useful information, which can then be used to make informed decisions. "It is a capital mistake to theorize before one has data. Insensibly one begins to twist facts to suit theories, instead of theories to suit facts," Sherlock Holme's proclaims ...

  7. Data analysis

    Data analysis is the process of inspecting, cleansing, transforming, and modeling data with the goal of discovering useful information, informing conclusions, and supporting decision-making. Data analysis has multiple facets and approaches, encompassing diverse techniques under a variety of names, and is used in different business, science, and social science domains.

  8. The Beginner's Guide to Statistical Analysis

    Statistical analysis means investigating trends, patterns, and relationships using quantitative data. It is an important research tool used by scientists, governments, businesses, and other organizations. To draw valid conclusions, statistical analysis requires careful planning from the very start of the research process. You need to specify ...

  9. Quantitative Data Analysis Methods & Techniques 101

    Quantitative data analysis is one of those things that often strikes fear in students. It's totally understandable - quantitative analysis is a complex topic, full of daunting lingo, like medians, modes, correlation and regression.Suddenly we're all wishing we'd paid a little more attention in math class…. The good news is that while quantitative data analysis is a mammoth topic ...

  10. What Is Data Analysis in Research? Why It Matters & What Data Analysts

    Data analysis in research is the process of uncovering insights from data sets. Data analysts can use their knowledge of statistical techniques, research theories and methods, and research practices to analyze data. They take data and uncover what it's trying to tell us, whether that's through charts, graphs, or other visual representations.

  11. Research Methods

    To analyze data collected in a statistically valid manner (e.g. from experiments, surveys, and observations). Meta-analysis. Quantitative. To statistically analyze the results of a large collection of studies. Can only be applied to studies that collected data in a statistically valid manner. Thematic analysis.

  12. A practical guide to data analysis in general literature reviews

    This article is a practical guide to conducting data analysis in general literature reviews. The general literature review is a synthesis and analysis of published research on a relevant clinical issue, and is a common format for academic theses at the bachelor's and master's levels in nursing, physiotherapy, occupational therapy, public health and other related fields.

  13. Learning to Do Qualitative Data Analysis: A Starting Point

    For many researchers unfamiliar with qualitative research, determining how to conduct qualitative analyses is often quite challenging. Part of this challenge is due to the seemingly limitless approaches that a qualitative researcher might leverage, as well as simply learning to think like a qualitative researcher when analyzing data. From framework analysis (Ritchie & Spencer, 1994) to content ...

  14. What Is Data Analysis: A Comprehensive Guide

    Data analysis is a catalyst for continuous improvement. It allows organizations to monitor performance metrics, track progress, and identify areas for enhancement. This iterative process of analyzing data, implementing changes, and analyzing again leads to ongoing refinement and excellence in processes and products.

  15. Data Analysis Techniques In Research

    Data analysis techniques in research are essential because they allow researchers to derive meaningful insights from data sets to support their hypotheses or research objectives. Data Analysis Techniques in Research: While various groups, institutions, and professionals may have diverse approaches to data analysis, a universal definition ...

  16. Basic statistical tools in research and data analysis

    Abstract. Statistical methods involved in carrying out a study include planning, designing, collecting data, analysing, drawing meaningful interpretation and reporting of the research findings. The statistical analysis gives meaning to the meaningless numbers, thereby breathing life into a lifeless data. The results and inferences are precise ...

  17. A Practical Guide to Writing Quantitative and Qualitative Research

    A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. ... (contextual research questions); 2) describe a phenomenon (descriptive research questions); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ...

  18. Data Analysis in Qualitative Research: A Brief Guide to Using Nvivo

    Data analysis in qualitative research is defined as the process of systematically searching and arranging the interview transcripts, observation notes, or other non-textual materials that the researcher accumulates to increase the understanding of the phenomenon.7 The process of analysing qualitative data predominantly involves coding or ...

  19. Research Data

    Analysis Methods. Some common research data analysis methods include: Descriptive statistics: Descriptive statistics involve summarizing and describing the main features of a dataset, such as the mean, median, and standard deviation. Descriptive statistics are often used to provide an initial overview of the data.

  20. Research Guide: Data analysis and reporting findings

    Data analysis is the most crucial part of any research. Data analysis summarizes collected data. It involves the interpretation of data gathered through the use of analytical and logical reasoning to determine patterns, relationships or trends.

  21. Data Module #1: What is Research Data?

    Research data comes in many different formats and is gathered using a wide variety of methodologies. In this module, we will provide you with a basic definition and understanding of what research data are. We'll also explore how data fits into the scholarly research process. ... or created, for purposes of analysis to produce original research ...

  22. What is Data Analysis? Research, Types & Example

    Data Analysis Tools. Data analysis tools make it easier for users to process and manipulate data, analyze the relationships and correlations between data sets, and it also helps to identify patterns and trends for interpretation. Here is a complete list of tools used for data analysis in research. Types of Data Analysis: Techniques and Methods

  23. Changing Partisan Coalitions in a Politically Divided Nation

    For this analysis, we used annual totals of data from Pew Research Center telephone surveys (1994-2018) and online surveys (2019-2023) among registered voters. All telephone survey data was adjusted to account for differences in how people respond to surveys on the telephone compared with online surveys (refer to Appendix A for details).

  24. AI Index Report

    Mission. The AI Index report tracks, collates, distills, and visualizes data related to artificial intelligence (AI). Our mission is to provide unbiased, rigorously vetted, broadly sourced data in order for policymakers, researchers, executives, journalists, and the general public to develop a more thorough and nuanced understanding of the ...

  25. Mexico Cement Industry Research Report 2024-2033, Featuring

    Analysis on Market Status of Mexico Cement Industry ... ResearchAndMarkets.com is the world's leading source for international market research reports and market data. We provide you with the ...

  26. Ignore the sticker price: How have college prices really changed?

    All the analysis is conducted with the same NPSAS data referenced earlier. Note that the 2019-2020 NPSAS was just released in the fall of 2023. A new wave will not be available for a few more years.

  27. How to close the Black tech talent gap

    The Black technology workforce. Black people make up 12 percent of the US workforce but only 8 percent of employees in tech jobs. 1 That percentage is even smaller further up the corporate ladder; just 3 percent of technology executives in the C-suite are Black, according to a McKinsey analysis of Fortune 500 executives. 2 That gap is likely to ...

  28. Research: How to Close the Gender Gap in Startup Financing

    A global analysis of previous research over the last three decades shows that women entrepreneurs face a higher rate of business loan denials and increased interest rates in loan decisions made by ...