• Our Mission

Helping Students Hone Their Critical Thinking Skills

Used consistently, these strategies can help middle and high school teachers guide students to improve much-needed skills.

Middle school students involved in a classroom discussion

Critical thinking skills are important in every discipline, at and beyond school. From managing money to choosing which candidates to vote for in elections to making difficult career choices, students need to be prepared to take in, synthesize, and act on new information in a world that is constantly changing.

While critical thinking might seem like an abstract idea that is tough to directly instruct, there are many engaging ways to help students strengthen these skills through active learning.

Make Time for Metacognitive Reflection

Create space for students to both reflect on their ideas and discuss the power of doing so. Show students how they can push back on their own thinking to analyze and question their assumptions. Students might ask themselves, “Why is this the best answer? What information supports my answer? What might someone with a counterargument say?”

Through this reflection, students and teachers (who can model reflecting on their own thinking) gain deeper understandings of their ideas and do a better job articulating their beliefs. In a world that is go-go-go, it is important to help students understand that it is OK to take a breath and think about their ideas before putting them out into the world. And taking time for reflection helps us more thoughtfully consider others’ ideas, too.

Teach Reasoning Skills 

Reasoning skills are another key component of critical thinking, involving the abilities to think logically, evaluate evidence, identify assumptions, and analyze arguments. Students who learn how to use reasoning skills will be better equipped to make informed decisions, form and defend opinions, and solve problems. 

One way to teach reasoning is to use problem-solving activities that require students to apply their skills to practical contexts. For example, give students a real problem to solve, and ask them to use reasoning skills to develop a solution. They can then present their solution and defend their reasoning to the class and engage in discussion about whether and how their thinking changed when listening to peers’ perspectives. 

A great example I have seen involved students identifying an underutilized part of their school and creating a presentation about one way to redesign it. This project allowed students to feel a sense of connection to the problem and come up with creative solutions that could help others at school. For more examples, you might visit PBS’s Design Squad , a resource that brings to life real-world problem-solving.

Ask Open-Ended Questions 

Moving beyond the repetition of facts, critical thinking requires students to take positions and explain their beliefs through research, evidence, and explanations of credibility. 

When we pose open-ended questions, we create space for classroom discourse inclusive of diverse, perhaps opposing, ideas—grounds for rich exchanges that support deep thinking and analysis. 

For example, “How would you approach the problem?” and “Where might you look to find resources to address this issue?” are two open-ended questions that position students to think less about the “right” answer and more about the variety of solutions that might already exist. 

Journaling, whether digitally or physically in a notebook, is another great way to have students answer these open-ended prompts—giving them time to think and organize their thoughts before contributing to a conversation, which can ensure that more voices are heard. 

Once students process in their journal, small group or whole class conversations help bring their ideas to life. Discovering similarities between answers helps reveal to students that they are not alone, which can encourage future participation in constructive civil discourse.

Teach Information Literacy 

Education has moved far past the idea of “Be careful of what is on Wikipedia, because it might not be true.” With AI innovations making their way into classrooms, teachers know that informed readers must question everything. 

Understanding what is and is not a reliable source and knowing how to vet information are important skills for students to build and utilize when making informed decisions. You might start by introducing the idea of bias: Articles, ads, memes, videos, and every other form of media can push an agenda that students may not see on the surface. Discuss credibility, subjectivity, and objectivity, and look at examples and nonexamples of trusted information to prepare students to be well-informed members of a democracy.

One of my favorite lessons is about the Pacific Northwest tree octopus . This project asks students to explore what appears to be a very real website that provides information on this supposedly endangered animal. It is a wonderful, albeit over-the-top, example of how something might look official even when untrue, revealing that we need critical thinking to break down “facts” and determine the validity of the information we consume. 

A fun extension is to have students come up with their own website or newsletter about something going on in school that is untrue. Perhaps a change in dress code that requires everyone to wear their clothes inside out or a change to the lunch menu that will require students to eat brussels sprouts every day. 

Giving students the ability to create their own falsified information can help them better identify it in other contexts. Understanding that information can be “too good to be true” can help them identify future falsehoods. 

Provide Diverse Perspectives 

Consider how to keep the classroom from becoming an echo chamber. If students come from the same community, they may have similar perspectives. And those who have differing perspectives may not feel comfortable sharing them in the face of an opposing majority. 

To support varying viewpoints, bring diverse voices into the classroom as much as possible, especially when discussing current events. Use primary sources: videos from YouTube, essays and articles written by people who experienced current events firsthand, documentaries that dive deeply into topics that require some nuance, and any other resources that provide a varied look at topics. 

I like to use the Smithsonian “OurStory” page , which shares a wide variety of stories from people in the United States. The page on Japanese American internment camps is very powerful because of its first-person perspectives. 

Practice Makes Perfect 

To make the above strategies and thinking routines a consistent part of your classroom, spread them out—and build upon them—over the course of the school year. You might challenge students with information and/or examples that require them to use their critical thinking skills; work these skills explicitly into lessons, projects, rubrics, and self-assessments; or have students practice identifying misinformation or unsupported arguments.

Critical thinking is not learned in isolation. It needs to be explored in English language arts, social studies, science, physical education, math. Every discipline requires students to take a careful look at something and find the best solution. Often, these skills are taken for granted, viewed as a by-product of a good education, but true critical thinking doesn’t just happen. It requires consistency and commitment.

In a moment when information and misinformation abound, and students must parse reams of information, it is imperative that we support and model critical thinking in the classroom to support the development of well-informed citizens.

Developing Critical Thinking

  • Posted January 10, 2018
  • By Iman Rastegari

Critical Thinking

In a time where deliberately false information is continually introduced into public discourse, and quickly spread through social media shares and likes, it is more important than ever for young people to develop their critical thinking. That skill, says Georgetown professor William T. Gormley, consists of three elements: a capacity to spot weakness in other arguments, a passion for good evidence, and a capacity to reflect on your own views and values with an eye to possibly change them. But are educators making the development of these skills a priority?

"Some teachers embrace critical thinking pedagogy with enthusiasm and they make it a high priority in their classrooms; other teachers do not," says Gormley, author of the recent Harvard Education Press release The Critical Advantage: Developing Critical Thinking Skills in School . "So if you are to assess the extent of critical-thinking instruction in U.S. classrooms, you’d find some very wide variations." Which is unfortunate, he says, since developing critical-thinking skills is vital not only to students' readiness for college and career, but to their civic readiness, as well.

"It's important to recognize that critical thinking is not just something that takes place in the classroom or in the workplace, it's something that takes place — and should take place — in our daily lives," says Gormley.

In this edition of the Harvard EdCast, Gormley looks at the value of teaching critical thinking, and explores how it can be an important solution to some of the problems that we face, including "fake news."

About the Harvard EdCast

The Harvard EdCast is a weekly series of podcasts, available on the Harvard University iT unes U page, that features a 15-20 minute conversation with thought leaders in the field of education from across the country and around the world. Hosted by Matt Weber and co-produced by Jill Anderson, the Harvard EdCast is a space for educational discourse and openness, focusing on the myriad issues and current events related to the field.

EdCast logo

An education podcast that keeps the focus simple: what makes a difference for learners, educators, parents, and communities

Related Articles

HGSE shield on blue background

The Wisdom of Data

Notes from ferguson, the case for homework.

Southern New Hampshire University

Online Students

For All Online Programs

International Students

On Campus, need or have Visa

Campus Students

For All Campus Programs

The Importance of Critical Thinking, For Students and Ourselves

A group of students sit at a table discussing the importance of critical thinking

Critical thinking is a vital skill, yet it’s often neglected. In higher education, we know the importance of learning objectives that let us measure learner success. Starting with a clear definition of critical thinking allows us to identify the associated skills that we want to imbue in our students and ourselves.

Defining Critical Thinking

According to the Oxford Languages dictionary , critical thinking is “the objective analysis and evaluation of an issue in order to form a judgment.” It sounds relatively simple, yet we often form judgments without that all-important objective analysis/evaluation piece.

Employers on the Southern New Hampshire University (SNHU) Social Sciences Advisory Board tell us that they want to hire people with critical thinking skills, but applicants often lack this ability. According to Professor of Science Dr. Norman Herr , critical thinking skills can be boiled down to the following key sequential elements:

  • Identification of premises and conclusions — Break arguments down into logical statements
  • Clarification of arguments — Identify ambiguity in these stated assertions
  • Establishment of facts — Search for contradictions to determine if an argument or theory is complete and reasonable
  • Evaluation of logic — Use inductive or deductive reasoning to decide if conclusions drawn are adequately supported
  • Final evaluation — Weigh the arguments against the evidence presented

As educators, we must teach our students those critical thinking skills and practice them ourselves to objectively analyze an onslaught of information. Ideas, especially plausible-sounding philosophies, should be challenged and pass the credibility litmus test.

Red Flag Alert

The School Library Journal lists four types of information that should raise red flags when we’re watching the news, reading social media, or at any point in our everyday lives when we are confronted with something purported to be “fact:”

  • Fake news, which refers to purported news that is demonstrably untrue.
  • Misinformation, which is spread by those who don’t realize that it’s false or only partially true.
  • Disinformation, which is deliberately spread by people who know that it’s not accurate and who want to spread a false message.
  • Propaganda, which is information that is spread with a specific agenda. It may or may not be false, but it’s intended to get an emotional reaction.

Get With the Times

SNHU, and other colleges and universities across the U.S., must use updated tools to help their students think critically about the information they consume. Currently, many institutions of higher learning fail to teach students how to identify misinformation sources. Sam Wineburg and Nadiv Ziv , professors of education at Stanford University, argue that many colleges offer guides to evaluating website trustworthiness, but far too many of them base their advice on a 1998 report on assessing websites. They warn that it makes no sense for colleges to share 20-year-old advice on dealing with the rapidly-changing online landscape, where two decades feels like a century.

Further, as educators in institutions of higher education, we must afford learners as many opportunities as possible to hone their critical thinking skills when interacting with instructors and fellow students. Greg Lukianoff and Johnathan Haidt , authors of The Coddling of the American Mind , contend that “one of the most brilliant features of universities is that, when they are working properly, they are communities of scholars who cancel out one another’s confirmation biases .” Without exploring opposing viewpoints, students may fall prey to confirmation bias, further cementing ideas that they already believe to be true. Being inclusive when it comes to viewpoint diversity is indispensable for avoiding these echo chambers that circumvent having one’s ideas challenged.

Separating Wheat from Chaff: Critical Thinking Examples

As we teach our students the importance of critical thinking, how do we equip them to sift through the onslaught of information they encounter every day, both personally and in their educational pursuits? And how do we do the same for ourselves?

Here are four critical thinking examples that anyone can apply when evaluating information:

  • Consider whether the person who wrote or is sharing the information has any vested interest in doing so. For example, a writer may have a degree and professional experience that gives them expertise to write an article on specific communication techniques. Be aware that the writer’s credibility can be affected by outside interests. These include being paid to write a book with a certain viewpoint, giving paid seminars, affiliation with certain organizations or anything else that creates a financial or personal interest in promoting a specific perspective.
  • Consider the venue in which the person is sharing the information. Newscasts and newspapers once were slanted more toward neutrality, although there was never an era when bias was completely absent. The 19th century even had its own version of “clickbait” in the form of yellow journalism . Today, it’s getting more difficult for those with critical thinking skills to find unbiased sources. Websites like Towards Data Science publish lists rating major sites on their leanings; check these lists to view content on biased sites through a more skeptical lens, verifying their claims for yourself.
  • Read beyond clickbait headlines. Websites create headlines to generate traffic and ad revenue, not to support critical thinking or give accurate information. Too many people go by what the headline says without reading more deeply, even though media misrepresentation of studies is rampant . Often, the information contained within the article is not accurately represented in the headline. Sometimes there’s even a direct contradiction, or the publication is focusing on one single study that may mean nothing because other studies have contradictory results.
  • Use Snopes , Fact Check , and other fact-checking websites. Ironically, Snopes itself has been the victim of misinformation campaigns designed to discredit its efforts to promote the importance of critical thinking.

Anyone in a teaching position should point their students toward reliable references. For example, at SNHU, instructors can point their students towards the Shapiro Library for their assignments. No matter where you teach, the main objective is to give them opportunities to apply critical thinking skills by evaluating material that they encounter in everyday life. Another way to do this at SNHU or in any online classroom is by incorporating elements of the four points into your announcements, discussion posts and feedback. For example, you might post two articles with differing viewpoints on the week’s material. For each, break down the publication’s possible slant, the way in which any research-based material is presented and the author’s credentials. Hypothetically, ask students whether those factors might be playing into the opinions expressed.

Misinformation Morphs into Disinformation

Misinformation, if not addressed, easily turns into disinformation when it is readily shared by students, individuals and groups that may know it is wrong. They may continue to intentionally spread it to cast doubt or stir divisiveness. Students listen to their peers, and the more critical thinking is addressed in a course, the more we prepare students not to fall into the misinformation trap.

Courtney Brown and Sherrish Holland , of the Center for the Professional Education of Teachers, argue that for educators, the challenge is now far more about how they need to inform their students to interpret and assess the information they come across and not simply how to gain access to it. The term “fake news” is used to discredit anyone trying to clarify fact from fiction. Fake news is a cover for some people when they are being deliberately deceptive. As educators become clearer about the distinction, it can be better communicated to students.

Anyone Can Promote Critical Thinking

Even if you don’t teach, use those points in conversations to help others hone their critical thinking skills, along with a dose of emotional intelligence. If someone shares misinformation with you, don’t be combative. Instead, use probing statements and questions designed to spark their critical thinking.

Here are some examples:

“That’s very interesting. Do you think the person they’re quoting might be letting his business interests color what he’s saying?”

“I know that sometimes the media oversimplifies research. I wonder who funded that study and if that’s influencing what they’re saying.”

Of course, you need to adapt to the situation and to make what you say sound organic and conversational, but the core idea remains the same. Inspire the other person to use critical thinking skills. Give them reasons to look more deeply into the topic instead of blindly accepting information. Course activities that stimulate interaction and a deep dive into course-related ideas will encourage perspective-taking and foster new avenues of thought along the path to life-long learning. As American cultural anthropologist Margaret Mead said, “Children must be taught how to think, not what to think.” While Mead was referring to younger children, this statement is apropos for learners in higher education who are tasked with dissecting volumes of information.

It’s crucial to teach our students to question what they read and hear. Jerry Baldasty , provost at the University of Washington, believes that democracies live and die by the ability of their people to access information and engage in robust discussions based upon facts. It is the facts that are being attacked by misinformation. The result is a growing distrust of our core societal institution. People have lost confidence in religious organizations, higher education, government and the media as they believe deliberately deceptive information they come across.

Baldasty argues, “this is why it is crucial that we educate our students how to think critically, access and analyze data, and, above all, question the answers.” Students need critical thinking skills for much more than their self-enlightenment. They will become our leaders, politicians, teachers, researchers, advocates, authors, business owners and perhaps most importantly, voters. The more we can imbue them with critical thinking skills, the better.

Dr Nickolas Dominello

Explore more content like this article

A master’s student sitting on the couch with a laptop and books, considering how long it will take her to finish her degree program.

How Long Does it Take to Get a Master's Degree?

Three first-year college students sitting around a table and doing homework.

How to Survive High School and Prepare for College

A woman sitting at a table on her laptop working towards her associate degree

How Long Does it Take to Get an Associate Degree?

About southern new hampshire university.

Two students walking in front of Monadnock Hall

SNHU is a nonprofit, accredited university with a mission to make high-quality education more accessible and affordable for everyone.

Founded in 1932, and online since 1995, we’ve helped countless students reach their goals with flexible, career-focused programs . Our 300-acre campus in Manchester, NH is home to over 3,000 students, and we serve over 135,000 students online. Visit our about SNHU  page to learn more about our mission, accreditations, leadership team, national recognitions and awards.

Classroom Q&A

With larry ferlazzo.

In this EdWeek blog, an experiment in knowledge-gathering, Ferlazzo will address readers’ questions on classroom management, ELL instruction, lesson planning, and other issues facing teachers. Send your questions to [email protected]. Read more from this blog.

Eight Instructional Strategies for Promoting Critical Thinking

critical thinking important for students

  • Share article

(This is the first post in a three-part series.)

The new question-of-the-week is:

What is critical thinking and how can we integrate it into the classroom?

This three-part series will explore what critical thinking is, if it can be specifically taught and, if so, how can teachers do so in their classrooms.

Today’s guests are Dara Laws Savage, Patrick Brown, Meg Riordan, Ph.D., and Dr. PJ Caposey. Dara, Patrick, and Meg were also guests on my 10-minute BAM! Radio Show . You can also find a list of, and links to, previous shows here.

You might also be interested in The Best Resources On Teaching & Learning Critical Thinking In The Classroom .

Current Events

Dara Laws Savage is an English teacher at the Early College High School at Delaware State University, where she serves as a teacher and instructional coach and lead mentor. Dara has been teaching for 25 years (career preparation, English, photography, yearbook, newspaper, and graphic design) and has presented nationally on project-based learning and technology integration:

There is so much going on right now and there is an overload of information for us to process. Did you ever stop to think how our students are processing current events? They see news feeds, hear news reports, and scan photos and posts, but are they truly thinking about what they are hearing and seeing?

I tell my students that my job is not to give them answers but to teach them how to think about what they read and hear. So what is critical thinking and how can we integrate it into the classroom? There are just as many definitions of critical thinking as there are people trying to define it. However, the Critical Think Consortium focuses on the tools to create a thinking-based classroom rather than a definition: “Shape the climate to support thinking, create opportunities for thinking, build capacity to think, provide guidance to inform thinking.” Using these four criteria and pairing them with current events, teachers easily create learning spaces that thrive on thinking and keep students engaged.

One successful technique I use is the FIRE Write. Students are given a quote, a paragraph, an excerpt, or a photo from the headlines. Students are asked to F ocus and respond to the selection for three minutes. Next, students are asked to I dentify a phrase or section of the photo and write for two minutes. Third, students are asked to R eframe their response around a specific word, phrase, or section within their previous selection. Finally, students E xchange their thoughts with a classmate. Within the exchange, students also talk about how the selection connects to what we are covering in class.

There was a controversial Pepsi ad in 2017 involving Kylie Jenner and a protest with a police presence. The imagery in the photo was strikingly similar to a photo that went viral with a young lady standing opposite a police line. Using that image from a current event engaged my students and gave them the opportunity to critically think about events of the time.

Here are the two photos and a student response:

F - Focus on both photos and respond for three minutes

In the first picture, you see a strong and courageous black female, bravely standing in front of two officers in protest. She is risking her life to do so. Iesha Evans is simply proving to the world she does NOT mean less because she is black … and yet officers are there to stop her. She did not step down. In the picture below, you see Kendall Jenner handing a police officer a Pepsi. Maybe this wouldn’t be a big deal, except this was Pepsi’s weak, pathetic, and outrageous excuse of a commercial that belittles the whole movement of people fighting for their lives.

I - Identify a word or phrase, underline it, then write about it for two minutes

A white, privileged female in place of a fighting black woman was asking for trouble. A struggle we are continuously fighting every day, and they make a mockery of it. “I know what will work! Here Mr. Police Officer! Drink some Pepsi!” As if. Pepsi made a fool of themselves, and now their already dwindling fan base continues to ever shrink smaller.

R - Reframe your thoughts by choosing a different word, then write about that for one minute

You don’t know privilege until it’s gone. You don’t know privilege while it’s there—but you can and will be made accountable and aware. Don’t use it for evil. You are not stupid. Use it to do something. Kendall could’ve NOT done the commercial. Kendall could’ve released another commercial standing behind a black woman. Anything!

Exchange - Remember to discuss how this connects to our school song project and our previous discussions?

This connects two ways - 1) We want to convey a strong message. Be powerful. Show who we are. And Pepsi definitely tried. … Which leads to the second connection. 2) Not mess up and offend anyone, as had the one alma mater had been linked to black minstrels. We want to be amazing, but we have to be smart and careful and make sure we include everyone who goes to our school and everyone who may go to our school.

As a final step, students read and annotate the full article and compare it to their initial response.

Using current events and critical-thinking strategies like FIRE writing helps create a learning space where thinking is the goal rather than a score on a multiple-choice assessment. Critical-thinking skills can cross over to any of students’ other courses and into life outside the classroom. After all, we as teachers want to help the whole student be successful, and critical thinking is an important part of navigating life after they leave our classrooms.

usingdaratwo

‘Before-Explore-Explain’

Patrick Brown is the executive director of STEM and CTE for the Fort Zumwalt school district in Missouri and an experienced educator and author :

Planning for critical thinking focuses on teaching the most crucial science concepts, practices, and logical-thinking skills as well as the best use of instructional time. One way to ensure that lessons maintain a focus on critical thinking is to focus on the instructional sequence used to teach.

Explore-before-explain teaching is all about promoting critical thinking for learners to better prepare students for the reality of their world. What having an explore-before-explain mindset means is that in our planning, we prioritize giving students firsthand experiences with data, allow students to construct evidence-based claims that focus on conceptual understanding, and challenge students to discuss and think about the why behind phenomena.

Just think of the critical thinking that has to occur for students to construct a scientific claim. 1) They need the opportunity to collect data, analyze it, and determine how to make sense of what the data may mean. 2) With data in hand, students can begin thinking about the validity and reliability of their experience and information collected. 3) They can consider what differences, if any, they might have if they completed the investigation again. 4) They can scrutinize outlying data points for they may be an artifact of a true difference that merits further exploration of a misstep in the procedure, measuring device, or measurement. All of these intellectual activities help them form more robust understanding and are evidence of their critical thinking.

In explore-before-explain teaching, all of these hard critical-thinking tasks come before teacher explanations of content. Whether we use discovery experiences, problem-based learning, and or inquiry-based activities, strategies that are geared toward helping students construct understanding promote critical thinking because students learn content by doing the practices valued in the field to generate knowledge.

explorebeforeexplain

An Issue of Equity

Meg Riordan, Ph.D., is the chief learning officer at The Possible Project, an out-of-school program that collaborates with youth to build entrepreneurial skills and mindsets and provides pathways to careers and long-term economic prosperity. She has been in the field of education for over 25 years as a middle and high school teacher, school coach, college professor, regional director of N.Y.C. Outward Bound Schools, and director of external research with EL Education:

Although critical thinking often defies straightforward definition, most in the education field agree it consists of several components: reasoning, problem-solving, and decisionmaking, plus analysis and evaluation of information, such that multiple sides of an issue can be explored. It also includes dispositions and “the willingness to apply critical-thinking principles, rather than fall back on existing unexamined beliefs, or simply believe what you’re told by authority figures.”

Despite variation in definitions, critical thinking is nonetheless promoted as an essential outcome of students’ learning—we want to see students and adults demonstrate it across all fields, professions, and in their personal lives. Yet there is simultaneously a rationing of opportunities in schools for students of color, students from under-resourced communities, and other historically marginalized groups to deeply learn and practice critical thinking.

For example, many of our most underserved students often spend class time filling out worksheets, promoting high compliance but low engagement, inquiry, critical thinking, or creation of new ideas. At a time in our world when college and careers are critical for participation in society and the global, knowledge-based economy, far too many students struggle within classrooms and schools that reinforce low-expectations and inequity.

If educators aim to prepare all students for an ever-evolving marketplace and develop skills that will be valued no matter what tomorrow’s jobs are, then we must move critical thinking to the forefront of classroom experiences. And educators must design learning to cultivate it.

So, what does that really look like?

Unpack and define critical thinking

To understand critical thinking, educators need to first unpack and define its components. What exactly are we looking for when we speak about reasoning or exploring multiple perspectives on an issue? How does problem-solving show up in English, math, science, art, or other disciplines—and how is it assessed? At Two Rivers, an EL Education school, the faculty identified five constructs of critical thinking, defined each, and created rubrics to generate a shared picture of quality for teachers and students. The rubrics were then adapted across grade levels to indicate students’ learning progressions.

At Avenues World School, critical thinking is one of the Avenues World Elements and is an enduring outcome embedded in students’ early experiences through 12th grade. For instance, a kindergarten student may be expected to “identify cause and effect in familiar contexts,” while an 8th grader should demonstrate the ability to “seek out sufficient evidence before accepting a claim as true,” “identify bias in claims and evidence,” and “reconsider strongly held points of view in light of new evidence.”

When faculty and students embrace a common vision of what critical thinking looks and sounds like and how it is assessed, educators can then explicitly design learning experiences that call for students to employ critical-thinking skills. This kind of work must occur across all schools and programs, especially those serving large numbers of students of color. As Linda Darling-Hammond asserts , “Schools that serve large numbers of students of color are least likely to offer the kind of curriculum needed to ... help students attain the [critical-thinking] skills needed in a knowledge work economy. ”

So, what can it look like to create those kinds of learning experiences?

Designing experiences for critical thinking

After defining a shared understanding of “what” critical thinking is and “how” it shows up across multiple disciplines and grade levels, it is essential to create learning experiences that impel students to cultivate, practice, and apply these skills. There are several levers that offer pathways for teachers to promote critical thinking in lessons:

1.Choose Compelling Topics: Keep it relevant

A key Common Core State Standard asks for students to “write arguments to support claims in an analysis of substantive topics or texts using valid reasoning and relevant and sufficient evidence.” That might not sound exciting or culturally relevant. But a learning experience designed for a 12th grade humanities class engaged learners in a compelling topic— policing in America —to analyze and evaluate multiple texts (including primary sources) and share the reasoning for their perspectives through discussion and writing. Students grappled with ideas and their beliefs and employed deep critical-thinking skills to develop arguments for their claims. Embedding critical-thinking skills in curriculum that students care about and connect with can ignite powerful learning experiences.

2. Make Local Connections: Keep it real

At The Possible Project , an out-of-school-time program designed to promote entrepreneurial skills and mindsets, students in a recent summer online program (modified from in-person due to COVID-19) explored the impact of COVID-19 on their communities and local BIPOC-owned businesses. They learned interviewing skills through a partnership with Everyday Boston , conducted virtual interviews with entrepreneurs, evaluated information from their interviews and local data, and examined their previously held beliefs. They created blog posts and videos to reflect on their learning and consider how their mindsets had changed as a result of the experience. In this way, we can design powerful community-based learning and invite students into productive struggle with multiple perspectives.

3. Create Authentic Projects: Keep it rigorous

At Big Picture Learning schools, students engage in internship-based learning experiences as a central part of their schooling. Their school-based adviser and internship-based mentor support them in developing real-world projects that promote deeper learning and critical-thinking skills. Such authentic experiences teach “young people to be thinkers, to be curious, to get from curiosity to creation … and it helps students design a learning experience that answers their questions, [providing an] opportunity to communicate it to a larger audience—a major indicator of postsecondary success.” Even in a remote environment, we can design projects that ask more of students than rote memorization and that spark critical thinking.

Our call to action is this: As educators, we need to make opportunities for critical thinking available not only to the affluent or those fortunate enough to be placed in advanced courses. The tools are available, let’s use them. Let’s interrogate our current curriculum and design learning experiences that engage all students in real, relevant, and rigorous experiences that require critical thinking and prepare them for promising postsecondary pathways.

letsinterrogate

Critical Thinking & Student Engagement

Dr. PJ Caposey is an award-winning educator, keynote speaker, consultant, and author of seven books who currently serves as the superintendent of schools for the award-winning Meridian CUSD 223 in northwest Illinois. You can find PJ on most social-media platforms as MCUSDSupe:

When I start my keynote on student engagement, I invite two people up on stage and give them each five paper balls to shoot at a garbage can also conveniently placed on stage. Contestant One shoots their shot, and the audience gives approval. Four out of 5 is a heckuva score. Then just before Contestant Two shoots, I blindfold them and start moving the garbage can back and forth. I usually try to ensure that they can at least make one of their shots. Nobody is successful in this unfair environment.

I thank them and send them back to their seats and then explain that this little activity was akin to student engagement. While we all know we want student engagement, we are shooting at different targets. More importantly, for teachers, it is near impossible for them to hit a target that is moving and that they cannot see.

Within the world of education and particularly as educational leaders, we have failed to simplify what student engagement looks like, and it is impossible to define or articulate what student engagement looks like if we cannot clearly articulate what critical thinking is and looks like in a classroom. Because, simply, without critical thought, there is no engagement.

The good news here is that critical thought has been defined and placed into taxonomies for decades already. This is not something new and not something that needs to be redefined. I am a Bloom’s person, but there is nothing wrong with DOK or some of the other taxonomies, either. To be precise, I am a huge fan of Daggett’s Rigor and Relevance Framework. I have used that as a core element of my practice for years, and it has shaped who I am as an instructional leader.

So, in order to explain critical thought, a teacher or a leader must familiarize themselves with these tried and true taxonomies. Easy, right? Yes, sort of. The issue is not understanding what critical thought is; it is the ability to integrate it into the classrooms. In order to do so, there are a four key steps every educator must take.

  • Integrating critical thought/rigor into a lesson does not happen by chance, it happens by design. Planning for critical thought and engagement is much different from planning for a traditional lesson. In order to plan for kids to think critically, you have to provide a base of knowledge and excellent prompts to allow them to explore their own thinking in order to analyze, evaluate, or synthesize information.
  • SIDE NOTE – Bloom’s verbs are a great way to start when writing objectives, but true planning will take you deeper than this.

QUESTIONING

  • If the questions and prompts given in a classroom have correct answers or if the teacher ends up answering their own questions, the lesson will lack critical thought and rigor.
  • Script five questions forcing higher-order thought prior to every lesson. Experienced teachers may not feel they need this, but it helps to create an effective habit.
  • If lessons are rigorous and assessments are not, students will do well on their assessments, and that may not be an accurate representation of the knowledge and skills they have mastered. If lessons are easy and assessments are rigorous, the exact opposite will happen. When deciding to increase critical thought, it must happen in all three phases of the game: planning, instruction, and assessment.

TALK TIME / CONTROL

  • To increase rigor, the teacher must DO LESS. This feels counterintuitive but is accurate. Rigorous lessons involving tons of critical thought must allow for students to work on their own, collaborate with peers, and connect their ideas. This cannot happen in a silent room except for the teacher talking. In order to increase rigor, decrease talk time and become comfortable with less control. Asking questions and giving prompts that lead to no true correct answer also means less control. This is a tough ask for some teachers. Explained differently, if you assign one assignment and get 30 very similar products, you have most likely assigned a low-rigor recipe. If you assign one assignment and get multiple varied products, then the students have had a chance to think deeply, and you have successfully integrated critical thought into your classroom.

integratingcaposey

Thanks to Dara, Patrick, Meg, and PJ for their contributions!

Please feel free to leave a comment with your reactions to the topic or directly to anything that has been said in this post.

Consider contributing a question to be answered in a future post. You can send one to me at [email protected] . When you send it in, let me know if I can use your real name if it’s selected or if you’d prefer remaining anonymous and have a pseudonym in mind.

You can also contact me on Twitter at @Larryferlazzo .

Education Week has published a collection of posts from this blog, along with new material, in an e-book form. It’s titled Classroom Management Q&As: Expert Strategies for Teaching .

Just a reminder; you can subscribe and receive updates from this blog via email (The RSS feed for this blog, and for all Ed Week articles, has been changed by the new redesign—new ones won’t be available until February). And if you missed any of the highlights from the first nine years of this blog, you can see a categorized list below.

  • This Year’s Most Popular Q&A Posts
  • Race & Racism in Schools
  • School Closures & the Coronavirus Crisis
  • Classroom-Management Advice
  • Best Ways to Begin the School Year
  • Best Ways to End the School Year
  • Student Motivation & Social-Emotional Learning
  • Implementing the Common Core
  • Facing Gender Challenges in Education
  • Teaching Social Studies
  • Cooperative & Collaborative Learning
  • Using Tech in the Classroom
  • Student Voices
  • Parent Engagement in Schools
  • Teaching English-Language Learners
  • Reading Instruction
  • Writing Instruction
  • Education Policy Issues
  • Differentiating Instruction
  • Math Instruction
  • Science Instruction
  • Advice for New Teachers
  • Author Interviews
  • Entering the Teaching Profession
  • The Inclusive Classroom
  • Learning & the Brain
  • Administrator Leadership
  • Teacher Leadership
  • Relationships in Schools
  • Professional Development
  • Instructional Strategies
  • Best of Classroom Q&A
  • Professional Collaboration
  • Classroom Organization
  • Mistakes in Education
  • Project-Based Learning

I am also creating a Twitter list including all contributors to this column .

The opinions expressed in Classroom Q&A With Larry Ferlazzo are strictly those of the author(s) and do not reflect the opinions or endorsement of Editorial Projects in Education, or any of its publications.

Sign Up for EdWeek Update

Edweek top school jobs.

Vector illustration group of students feeling bored at lecture, demotivated young people.

Sign Up & Sign In

module image 9

SkillsYouNeed

  • LEARNING SKILLS
  • Study Skills
  • Critical Thinking

Search SkillsYouNeed:

Learning Skills:

  • A - Z List of Learning Skills
  • What is Learning?
  • Learning Approaches
  • Learning Styles
  • 8 Types of Learning Styles
  • Understanding Your Preferences to Aid Learning
  • Lifelong Learning
  • Decisions to Make Before Applying to University
  • Top Tips for Surviving Student Life
  • Living Online: Education and Learning
  • 8 Ways to Embrace Technology-Based Learning Approaches

Critical Thinking Skills

  • Critical Thinking and Fake News
  • Understanding and Addressing Conspiracy Theories
  • Critical Analysis
  • Top Tips for Study
  • Staying Motivated When Studying
  • Student Budgeting and Economic Skills
  • Getting Organised for Study
  • Finding Time to Study
  • Sources of Information
  • Assessing Internet Information
  • Using Apps to Support Study
  • What is Theory?
  • Styles of Writing
  • Effective Reading
  • Critical Reading
  • Note-Taking from Reading
  • Note-Taking for Verbal Exchanges
  • Planning an Essay
  • How to Write an Essay
  • The Do’s and Don’ts of Essay Writing
  • How to Write a Report
  • Academic Referencing
  • Assignment Finishing Touches
  • Reflecting on Marked Work
  • 6 Skills You Learn in School That You Use in Real Life
  • Top 10 Tips on How to Study While Working
  • Exam Skills
  • Writing a Dissertation or Thesis
  • Research Methods
  • Teaching, Coaching, Mentoring and Counselling
  • Employability Skills for Graduates

Subscribe to our FREE newsletter and start improving your life in just 5 minutes a day.

You'll get our 5 free 'One Minute Life Skills' and our weekly newsletter.

We'll never share your email address and you can unsubscribe at any time.

What is Critical Thinking?

Critical thinking is the ability to think clearly and rationally, understanding the logical connection between ideas.  Critical thinking has been the subject of much debate and thought since the time of early Greek philosophers such as Plato and Socrates and has continued to be a subject of discussion into the modern age, for example the ability to recognise fake news .

Critical thinking might be described as the ability to engage in reflective and independent thinking.

In essence, critical thinking requires you to use your ability to reason. It is about being an active learner rather than a passive recipient of information.

Critical thinkers rigorously question ideas and assumptions rather than accepting them at face value. They will always seek to determine whether the ideas, arguments and findings represent the entire picture and are open to finding that they do not.

Critical thinkers will identify, analyse and solve problems systematically rather than by intuition or instinct.

Someone with critical thinking skills can:

Understand the links between ideas.

Determine the importance and relevance of arguments and ideas.

Recognise, build and appraise arguments.

Identify inconsistencies and errors in reasoning.

Approach problems in a consistent and systematic way.

Reflect on the justification of their own assumptions, beliefs and values.

Critical thinking is thinking about things in certain ways so as to arrive at the best possible solution in the circumstances that the thinker is aware of. In more everyday language, it is a way of thinking about whatever is presently occupying your mind so that you come to the best possible conclusion.

Critical Thinking is:

A way of thinking about particular things at a particular time; it is not the accumulation of facts and knowledge or something that you can learn once and then use in that form forever, such as the nine times table you learn and use in school.

The Skills We Need for Critical Thinking

The skills that we need in order to be able to think critically are varied and include observation, analysis, interpretation, reflection, evaluation, inference, explanation, problem solving, and decision making.

Specifically we need to be able to:

Think about a topic or issue in an objective and critical way.

Identify the different arguments there are in relation to a particular issue.

Evaluate a point of view to determine how strong or valid it is.

Recognise any weaknesses or negative points that there are in the evidence or argument.

Notice what implications there might be behind a statement or argument.

Provide structured reasoning and support for an argument that we wish to make.

The Critical Thinking Process

You should be aware that none of us think critically all the time.

Sometimes we think in almost any way but critically, for example when our self-control is affected by anger, grief or joy or when we are feeling just plain ‘bloody minded’.

On the other hand, the good news is that, since our critical thinking ability varies according to our current mindset, most of the time we can learn to improve our critical thinking ability by developing certain routine activities and applying them to all problems that present themselves.

Once you understand the theory of critical thinking, improving your critical thinking skills takes persistence and practice.

Try this simple exercise to help you to start thinking critically.

Think of something that someone has recently told you. Then ask yourself the following questions:

Who said it?

Someone you know? Someone in a position of authority or power? Does it matter who told you this?

What did they say?

Did they give facts or opinions? Did they provide all the facts? Did they leave anything out?

Where did they say it?

Was it in public or in private? Did other people have a chance to respond an provide an alternative account?

When did they say it?

Was it before, during or after an important event? Is timing important?

Why did they say it?

Did they explain the reasoning behind their opinion? Were they trying to make someone look good or bad?

How did they say it?

Were they happy or sad, angry or indifferent? Did they write it or say it? Could you understand what was said?

What are you Aiming to Achieve?

One of the most important aspects of critical thinking is to decide what you are aiming to achieve and then make a decision based on a range of possibilities.

Once you have clarified that aim for yourself you should use it as the starting point in all future situations requiring thought and, possibly, further decision making. Where needed, make your workmates, family or those around you aware of your intention to pursue this goal. You must then discipline yourself to keep on track until changing circumstances mean you have to revisit the start of the decision making process.

However, there are things that get in the way of simple decision making. We all carry with us a range of likes and dislikes, learnt behaviours and personal preferences developed throughout our lives; they are the hallmarks of being human. A major contribution to ensuring we think critically is to be aware of these personal characteristics, preferences and biases and make allowance for them when considering possible next steps, whether they are at the pre-action consideration stage or as part of a rethink caused by unexpected or unforeseen impediments to continued progress.

The more clearly we are aware of ourselves, our strengths and weaknesses, the more likely our critical thinking will be productive.

The Benefit of Foresight

Perhaps the most important element of thinking critically is foresight.

Almost all decisions we make and implement don’t prove disastrous if we find reasons to abandon them. However, our decision making will be infinitely better and more likely to lead to success if, when we reach a tentative conclusion, we pause and consider the impact on the people and activities around us.

The elements needing consideration are generally numerous and varied. In many cases, consideration of one element from a different perspective will reveal potential dangers in pursuing our decision.

For instance, moving a business activity to a new location may improve potential output considerably but it may also lead to the loss of skilled workers if the distance moved is too great. Which of these is the more important consideration? Is there some way of lessening the conflict?

These are the sort of problems that may arise from incomplete critical thinking, a demonstration perhaps of the critical importance of good critical thinking.

Further Reading from Skills You Need

The Skills You Need Guide for Students

The Skills You Need Guide for Students

Skills You Need

Develop the skills you need to make the most of your time as a student.

Our eBooks are ideal for students at all stages of education, school, college and university. They are full of easy-to-follow practical information that will help you to learn more effectively and get better grades.

In Summary:

Critical thinking is aimed at achieving the best possible outcomes in any situation. In order to achieve this it must involve gathering and evaluating information from as many different sources possible.

Critical thinking requires a clear, often uncomfortable, assessment of your personal strengths, weaknesses and preferences and their possible impact on decisions you may make.

Critical thinking requires the development and use of foresight as far as this is possible. As Doris Day sang, “the future’s not ours to see”.

Implementing the decisions made arising from critical thinking must take into account an assessment of possible outcomes and ways of avoiding potentially negative outcomes, or at least lessening their impact.

  • Critical thinking involves reviewing the results of the application of decisions made and implementing change where possible.

It might be thought that we are overextending our demands on critical thinking in expecting that it can help to construct focused meaning rather than examining the information given and the knowledge we have acquired to see if we can, if necessary, construct a meaning that will be acceptable and useful.

After all, almost no information we have available to us, either externally or internally, carries any guarantee of its life or appropriateness.  Neat step-by-step instructions may provide some sort of trellis on which our basic understanding of critical thinking can blossom but it doesn’t and cannot provide any assurance of certainty, utility or longevity.

Continue to: Critical Thinking and Fake News Critical Reading

See also: Analytical Skills Understanding and Addressing Conspiracy Theories Introduction to Neuro-Linguistic Programming (NLP)

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o’clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68–69; 1933: 91–92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot’s position, it must appear to project far out in front of the boat. Moreover, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69–70; 1933: 92–93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond lane from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses. As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009, 2021), others on the resulting judgment (Facione 1990a), and still others on responsiveness to reasons (Siegel 1988). Kuhn (2019) takes critical thinking to be more a dialogic practice of advancing and responding to arguments than an individual ability.

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in spacing in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the spacing of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016a) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Facione (1990a: 25) divides “affective dispositions” of critical thinking into approaches to life and living in general and approaches to specific issues, questions or problems. Adapting this distinction, one can usefully divide critical thinking dispositions into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking. In three studies, Haran, Ritov, & Mellers (2013) found that actively open-minded thinking, including “the tendency to weigh new evidence against a favored belief, to spend sufficient time on a problem before giving up, and to consider carefully the opinions of others in forming one’s own”, led study participants to acquire information and thus to make accurate estimations.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), Black (2012), and Blair (2021).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work. It is also helpful to be aware of the prevalence of “noise” (unwanted unsystematic variability of judgments), of how to detect noise (through a noise audit), and of how to reduce noise: make accuracy the goal, think statistically, break a process of arriving at a judgment into independent tasks, resist premature intuitions, in a group get independent judgments first, favour comparative judgments and scales (Kahneman, Sibony, & Sunstein 2021). It is helpful as well to be aware of the concept of “bounded rationality” in decision-making and of the related distinction between “satisficing” and optimizing (Simon 1956; Gigerenzer 2001).

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? In a comprehensive meta-analysis of experimental and quasi-experimental studies of strategies for teaching students to think critically, Abrami et al. (2015) found that dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), Bailin et al. (1999b), and Willingham (2019).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016a, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • –––, 2016b, Reason in the Balance: An Inquiry Approach to Critical Thinking , Indianapolis: Hackett, 2nd edition.
  • –––, 2021, “Inquiry: Teaching for Reasoned Judgment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 31–46. doi: 10.1163/9789004444591_003
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Blair, J. Anthony, 2021, Studies in Critical Thinking , Windsor, ON: Windsor Studies in Argumentation, 2nd edition. [Available online at https://windsor.scholarsportal.info/omp/index.php/wsia/catalog/book/106]
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Boardman, Frank, Nancy M. Cavender, and Howard Kahane, 2018, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Boston: Cengage, 13th edition.
  • Browne, M. Neil and Stuart M. Keeley, 2018, Asking the Right Questions: A Guide to Critical Thinking , Hoboken, NJ: Pearson, 12th edition.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cleghorn, Paul. 2021. “Critical Thinking in the Elementary School: Practical Guidance for Building a Culture of Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessmen t, Leiden: Brill, pp. 150–167. doi: 10.1163/9789004444591_010
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; last accessed 2022 07 16.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; last accessed 2022 07 16.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; last accessed 2022 07 16.
  • ––– (coord.), 2018c, The CRITHINKEDU European Course on Critical Thinking Education for University Teachers: From Conception to Delivery , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU03; last accessed 2022 07 16.
  • Dominguez Caroline and Rita Payan-Carreira (eds.), 2019, Promoting Critical Thinking in European Higher Education Institutions: Towards an Educational Protocol , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU04; last accessed 2022 07 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”, Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; last accessed 2022 07 16.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Gigerenzer, Gerd, 2001, “The Adaptive Toolbox”, in Gerd Gigerenzer and Reinhard Selten (eds.), Bounded Rationality: The Adaptive Toolbox , Cambridge, MA: MIT Press, pp. 37–50.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Groarke, Leo A. and Christopher W. Tindale, 2012, Good Reasoning Matters! A Constructive Approach to Critical Thinking , Don Mills, ON: Oxford University Press, 5th edition.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://pdfcoffee.com/hcta-test-manual-pdf-free.html; last accessed 2022 07 16.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haran, Uriel, Ilana Ritov, and Barbara A. Mellers, 2013, “The Role of Actively Open-minded Thinking in Information Acquisition, Accuracy, and Calibration”, Judgment and Decision Making , 8(3): 188–201.
  • Hatcher, Donald and Kevin Possin, 2021, “Commentary: Thinking Critically about Critical Thinking Assessment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 298–322. doi: 10.1163/9789004444591_017
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Haynes, Ada and Barry Stein, 2021, “Observations from a Long-Term Effort to Assess and Improve Critical Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 231–254. doi: 10.1163/9789004444591_014
  • Hiner, Amanda L. 2021. “Equipping Students for Success in College and Beyond: Placing Critical Thinking Instruction at the Heart of a General Education Program”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 188–208. doi: 10.1163/9789004444591_012
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • –––, 2021, “Seven Philosophical Implications of Critical Thinking: Themes, Variations, Implications”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 9–30. doi: 10.1163/9789004444591_002
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kahneman, Daniel, Olivier Sibony, & Cass R. Sunstein, 2021, Noise: A Flaw in Human Judgment , New York: Little, Brown Spark.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • –––, 2019, “Critical Thinking as Discourse”, Human Development, 62 (3): 146–164. doi:10.1159/000500171
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • –––, 2003, Thinking in Education , Cambridge: Cambridge University Press, 2nd edition.
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Makaiau, Amber Strong, 2021, “The Good Thinker’s Tool Kit: How to Engage Critical Thinking and Reasoning in Secondary Education”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 168–187. doi: 10.1163/9789004444591_011
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Moore, Brooke Noel and Richard Parker, 2020, Critical Thinking , New York: McGraw-Hill, 13th edition.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Past papers available at https://pastpapers.co/ocr/?dir=A-Level/Critical-Thinking-H052-H452; last accessed 2022 07 16.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; last accessed 2022 07 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2013c, “A Fatal Flaw in the Collegiate Learning Assessment Test”, Assessment Update , 25 (1): 8–12.
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • –––, 2020, “CAT Scan: A Critical Review of the Critical-Thinking Assessment Test”, Informal Logic , 40 (3): 489–508. [Available online at https://informallogic.ca/index.php/informal_logic/article/view/6243]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rear, David, 2019, “One Size Fits All? The Limitations of Standardised Assessment in Critical Thinking”, Assessment & Evaluation in Higher Education , 44(5): 664–675. doi: 10.1080/02602938.2018.1526255
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; last accessed 2022 07 16.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simon, Herbert A., 1956, “Rational Choice and the Structure of the Environment”, Psychological Review , 63(2): 129–138. doi: 10.1037/h0042769
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2018, Curriculum for the Compulsory School, Preschool Class and School-age Educare , Stockholm: Skolverket, revised 2018. Available at https://www.skolverket.se/download/18.31c292d516e7445866a218f/1576654682907/pdf3984.pdf; last accessed 2022 07 15.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Vincent-Lancrin, Stéphan, Carlos González-Sancho, Mathias Bouckaert, Federico de Luca, Meritxell Fernández-Barrerra, Gwénaël Jacotin, Joaquin Urgel, and Quentin Vidal, 2019, Fostering Students’ Creativity and Critical Thinking: What It Means in School. Educational Research and Innovation , Paris: OECD Publishing.
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Willingham, Daniel T., 2019, “How to Teach Critical Thinking”, Education: Future Frontiers , 1: 1–17. [Available online at https://prod65.education.nsw.gov.au/content/dam/main-education/teaching-and-learning/education-for-a-changing-world/media/documents/How-to-teach-critical-thinking-Willingham.pdf.]
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2022 by David Hitchcock < hitchckd @ mcmaster . ca >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2024 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

logo (1)

Tips for Online Students , Tips for Students

Why Is Critical Thinking Important? A Survival Guide

Updated: December 7, 2023

Published: April 2, 2020

Why-Is-Critical-Thinking-Important-a-Survival-Guide

Why is critical thinking important? The decisions that you make affect your quality of life. And if you want to ensure that you live your best, most successful and happy life, you’re going to want to make conscious choices. That can be done with a simple thing known as critical thinking. Here’s how to improve your critical thinking skills and make decisions that you won’t regret.

What Is Critical Thinking?

You’ve surely heard of critical thinking, but you might not be entirely sure what it really means, and that’s because there are many definitions. For the most part, however, we think of critical thinking as the process of analyzing facts in order to form a judgment. Basically, it’s thinking about thinking.

How Has The Definition Evolved Over Time?

The first time critical thinking was documented is believed to be in the teachings of Socrates , recorded by Plato. But throughout history, the definition has changed.

Today it is best understood by philosophers and psychologists and it’s believed to be a highly complex concept. Some insightful modern-day critical thinking definitions include :

  • “Reasonable, reflective thinking that is focused on deciding what to believe or do.”
  • “Deciding what’s true and what you should do.”

The Importance Of Critical Thinking

Why is critical thinking important? Good question! Here are a few undeniable reasons why it’s crucial to have these skills.

1. Critical Thinking Is Universal

Critical thinking is a domain-general thinking skill. What does this mean? It means that no matter what path or profession you pursue, these skills will always be relevant and will always be beneficial to your success. They are not specific to any field.

2. Crucial For The Economy

Our future depends on technology, information, and innovation. Critical thinking is needed for our fast-growing economies, to solve problems as quickly and as effectively as possible.

3. Improves Language & Presentation Skills

In order to best express ourselves, we need to know how to think clearly and systematically — meaning practice critical thinking! Critical thinking also means knowing how to break down texts, and in turn, improve our ability to comprehend.

4. Promotes Creativity

By practicing critical thinking, we are allowing ourselves not only to solve problems but also to come up with new and creative ideas to do so. Critical thinking allows us to analyze these ideas and adjust them accordingly.

5. Important For Self-Reflection

Without critical thinking, how can we really live a meaningful life? We need this skill to self-reflect and justify our ways of life and opinions. Critical thinking provides us with the tools to evaluate ourselves in the way that we need to.

Woman deep into thought as she looks out the window, using her critical thinking skills to do some self-reflection.

6. The Basis Of Science & Democracy

In order to have a democracy and to prove scientific facts, we need critical thinking in the world. Theories must be backed up with knowledge. In order for a society to effectively function, its citizens need to establish opinions about what’s right and wrong (by using critical thinking!).

Benefits Of Critical Thinking

We know that critical thinking is good for society as a whole, but what are some benefits of critical thinking on an individual level? Why is critical thinking important for us?

1. Key For Career Success

Critical thinking is crucial for many career paths. Not just for scientists, but lawyers , doctors, reporters, engineers , accountants, and analysts (among many others) all have to use critical thinking in their positions. In fact, according to the World Economic Forum, critical thinking is one of the most desirable skills to have in the workforce, as it helps analyze information, think outside the box, solve problems with innovative solutions, and plan systematically.

2. Better Decision Making

There’s no doubt about it — critical thinkers make the best choices. Critical thinking helps us deal with everyday problems as they come our way, and very often this thought process is even done subconsciously. It helps us think independently and trust our gut feeling.

3. Can Make You Happier!

While this often goes unnoticed, being in touch with yourself and having a deep understanding of why you think the way you think can really make you happier. Critical thinking can help you better understand yourself, and in turn, help you avoid any kind of negative or limiting beliefs, and focus more on your strengths. Being able to share your thoughts can increase your quality of life.

4. Form Well-Informed Opinions

There is no shortage of information coming at us from all angles. And that’s exactly why we need to use our critical thinking skills and decide for ourselves what to believe. Critical thinking allows us to ensure that our opinions are based on the facts, and help us sort through all that extra noise.

5. Better Citizens

One of the most inspiring critical thinking quotes is by former US president Thomas Jefferson: “An educated citizenry is a vital requisite for our survival as a free people.” What Jefferson is stressing to us here is that critical thinkers make better citizens, as they are able to see the entire picture without getting sucked into biases and propaganda.

6. Improves Relationships

While you may be convinced that being a critical thinker is bound to cause you problems in relationships, this really couldn’t be less true! Being a critical thinker can allow you to better understand the perspective of others, and can help you become more open-minded towards different views.

7. Promotes Curiosity

Critical thinkers are constantly curious about all kinds of things in life, and tend to have a wide range of interests. Critical thinking means constantly asking questions and wanting to know more, about why, what, who, where, when, and everything else that can help them make sense of a situation or concept, never taking anything at face value.

8. Allows For Creativity

Critical thinkers are also highly creative thinkers, and see themselves as limitless when it comes to possibilities. They are constantly looking to take things further, which is crucial in the workforce.

9. Enhances Problem Solving Skills

Those with critical thinking skills tend to solve problems as part of their natural instinct. Critical thinkers are patient and committed to solving the problem, similar to Albert Einstein, one of the best critical thinking examples, who said “It’s not that I’m so smart; it’s just that I stay with problems longer.” Critical thinkers’ enhanced problem-solving skills makes them better at their jobs and better at solving the world’s biggest problems. Like Einstein, they have the potential to literally change the world.

10. An Activity For The Mind

Just like our muscles, in order for them to be strong, our mind also needs to be exercised and challenged. It’s safe to say that critical thinking is almost like an activity for the mind — and it needs to be practiced. Critical thinking encourages the development of many crucial skills such as logical thinking, decision making, and open-mindness.

11. Creates Independence

When we think critically, we think on our own as we trust ourselves more. Critical thinking is key to creating independence, and encouraging students to make their own decisions and form their own opinions.

12. Crucial Life Skill

Critical thinking is crucial not just for learning, but for life overall! Education isn’t just a way to prepare ourselves for life, but it’s pretty much life itself. Learning is a lifelong process that we go through each and every day.

How to Think Critically

Now that you know the benefits of thinking critically, how do you actually do it?

How To Improve Your Critical Thinking

  • Define Your Question: When it comes to critical thinking, it’s important to always keep your goal in mind. Know what you’re trying to achieve, and then figure out how to best get there.
  • Gather Reliable Information: Make sure that you’re using sources you can trust — biases aside. That’s how a real critical thinker operates!
  • Ask The Right Questions: We all know the importance of questions, but be sure that you’re asking the right questions that are going to get you to your answer.
  • Look Short & Long Term: When coming up with solutions, think about both the short- and long-term consequences. Both of them are significant in the equation.
  • Explore All Sides: There is never just one simple answer, and nothing is black or white. Explore all options and think outside of the box before you come to any conclusions.

How Is Critical Thinking Developed At School?

Critical thinking is developed in nearly everything we do. However, much of this important skill is encouraged to be practiced at school, and rightfully so! Critical thinking goes beyond just thinking clearly — it’s also about thinking for yourself.

When a teacher asks a question in class, students are given the chance to answer for themselves and think critically about what they learned and what they believe to be accurate. When students work in groups and are forced to engage in discussion, this is also a great chance to expand their thinking and use their critical thinking skills.

How Does Critical Thinking Apply To Your Career?

Once you’ve finished school and entered the workforce, your critical thinking journey only expands and grows from here!

Impress Your Employer

Employers value employees who are critical thinkers, ask questions, offer creative ideas, and are always ready to offer innovation against the competition. No matter what your position or role in a company may be, critical thinking will always give you the power to stand out and make a difference.

Careers That Require Critical Thinking

Some of many examples of careers that require critical thinking include:

  • Human resources specialist
  • Marketing associate
  • Business analyst

Truth be told however, it’s probably harder to come up with a professional field that doesn’t require any critical thinking!

Photo by  Oladimeji Ajegbile  from  Pexels

What is someone with critical thinking skills capable of doing.

Someone with critical thinking skills is able to think rationally and clearly about what they should or not believe. They are capable of engaging in their own thoughts, and doing some reflection in order to come to a well-informed conclusion.

A critical thinker understands the connections between ideas, and is able to construct arguments based on facts, as well as find mistakes in reasoning.

The Process Of Critical Thinking

The process of critical thinking is highly systematic.

What Are Your Goals?

Critical thinking starts by defining your goals, and knowing what you are ultimately trying to achieve.

Once you know what you are trying to conclude, you can foresee your solution to the problem and play it out in your head from all perspectives.

What Does The Future Of Critical Thinking Hold?

The future of critical thinking is the equivalent of the future of jobs. In 2020, critical thinking was ranked as the 2nd top skill (following complex problem solving) by the World Economic Forum .

We are dealing with constant unprecedented changes, and what success is today, might not be considered success tomorrow — making critical thinking a key skill for the future workforce.

Why Is Critical Thinking So Important?

Why is critical thinking important? Critical thinking is more than just important! It’s one of the most crucial cognitive skills one can develop.

By practicing well-thought-out thinking, both your thoughts and decisions can make a positive change in your life, on both a professional and personal level. You can hugely improve your life by working on your critical thinking skills as often as you can.

Related Articles

The Importance of Critical Thinking Skills for Students

Link Copied

Share on Facebook

Share on Twitter

Share on LinkedIn

The Importance of Critical Thinking Skills for Students

Brains at Work!

If you’re moving toward the end of your high school career, you’ve likely heard a lot about college life and how different it is from high school. Classes are more intense, professors are stricter, and the curriculum is more complicated. All in all, it’s very different compared to high school.

Different doesn’t have to mean scary, though. If you’re nervous about beginning college and you’re worried about how you’ll learn in a place so different from high school, there are steps you can take to help you thrive in your college career.

If you’re wondering how to get accepted into college and how to succeed as a freshman in such a new environment, the answer is simple: harness the power of critical thinking skills for students.

What is critical thinking?

Critical thinking entails using reasoning and the questioning of assumptions to address problems, assess information, identify biases, and more. It's a skillset crucial for students navigating their academic journey and beyond, including how to get accepted into college . At its crux, critical thinking for students has everything to do with self-discipline and making active decisions to 'think outside the box,' allowing individuals to think beyond a concept alone in order to understand it better.

Critical thinking skills for students is a concept highly encouraged in any and every educational setting, and with good reason. Possessing strong critical thinking skills will make you a better student and, frankly, help you gain valuable life skills. Not only will you be more efficient in gathering knowledge and processing information, but you will also enhance your ability to analyse and comprehend it.

Importance of critical thinking for students

Developing critical thinking skills for students is essential for success at all academic levels, particularly in college. It introduces reflection and perspective while encouraging you to question what you’re learning! Even if you’ve seen solid facts. Asking questions, considering other perspectives, and self-reflection cultivate resilient students with endless potential for learning, retention, and personal growth.A well-developed set of critical thinking skills for students will help them excel in many areas. Here are some critical thinking examples for students:

1. Decision-making

If you’re thinking critically, you’re not making impulse decisions or snap judgments; you’re taking the time to weigh the pros and cons. You’re making informed decisions. Critical thinking skills for students can make all the difference.

2. Problem-solving

Students with critical thinking skills are more effective in problem-solving. This reflective thinking process helps you use your own experiences to ideate innovations, solutions, and decisions.

3. Communication

Strong communication skills are a vital aspect of critical thinking for students, helping with their overall critical thinking abilities. How can you learn without asking questions? Critical thinking for students is what helps them produce the questions they may not have ever thought to ask. As a critical thinker, you’ll get better at expressing your ideas concisely and logically, facilitating thoughtful discussion, and learning from your teachers and peers.

4. Analytical skills

Developing analytical skills is a key component of strong critical thinking skills for students. It goes beyond study tips on reviewing data or learning a concept. It’s about the “Who? What? Where? Why? When? How?” When you’re thinking critically, these questions will come naturally, and you’ll be an expert learner because of it.

How can students develop critical thinking skills

Although critical thinking skills for students is an important and necessary process, it isn’t necessarily difficult to develop these observational skills. All it takes is a conscious effort and a little bit of practice. Here are a few tips to get you started:

1. Never stop asking questions

This is the best way to learn critical thinking skills for students. As stated earlier, ask questions—even if you’re presented with facts to begin with. When you’re examining a problem or learning a concept, ask as many questions as you can. Not only will you be better acquainted with what you’re learning, but it’ll soon become second nature to follow this process in every class you take and help you improve your GPA .

2. Practice active listening

As important as asking questions is, it is equally vital to be a good listener to your peers. It is astounding how much we can learn from each other in a collaborative environment! Diverse perspectives are key to fostering critical thinking skills for students. Keep an open mind and view every discussion as an opportunity to learn.

3. Dive into your creativity

Although a college environment is vastly different from high school classrooms, one thing remains constant through all levels of education: the importance of creativity. Creativity is a guiding factor through all facets of critical thinking skills for students. It fosters collaborative discussion, innovative solutions, and thoughtful analyses.

4. Engage in debates and discussions

Participating in debates and discussions helps you articulate your thoughts clearly and consider opposing viewpoints. It challenges the critical thinking skills of students about the evidence presented, decoding arguments, and constructing logical reasoning. Look for debates and discussion opportunities in class, online forums, or extracurricular activities.

5. Look out for diverse sources of information 

In today's digital age, information is easily available from a variety of sources. Make it a habit to explore different opinions, perspectives, and sources of information. This not only broadens one's understanding of a subject but also helps in distinguishing between reliable and biased sources, honing the critical thinking skills of students.

Unlock the power of critical thinking skills while enjoying a seamless student living experience!

Book through amber today!

6. Practice problem-solving

Try engaging in challenging problems, riddles or puzzles that require critical thinking skills for students to solve. Whether it's solving mathematical equations, tackling complex scenarios in literature, or analysing data in science experiments, regular practice of problem-solving tasks sharpens your analytical skills. It enhances your ability to think critically under pressure.

Nurturing critical thinking skills helps students with the tools to navigate the complexities of academia and beyond. By learning active listening, curiosity, creativity, and problem-solving, students can create a sturdy foundation for lifelong learning. By building upon all these skills, you’ll be an expert critical thinker in no time—and you’ll be ready to conquer all that college has to offer! 

Frequently Asked Questions

What questions should i ask to be a better critical thinker, how can i sharpen critical thinking skills for students, how do i avoid bias, can i use my critical thinking skills outside of school, will critical thinking skills help students in their future careers.

Your ideal student home & a flight ticket awaits

Follow us on :

cta

Related Posts

critical thinking important for students

Digital Detox Guide: Live Life Beyond The Screen!

critical thinking important for students

10 Best Libraries In London To Study & Work

critical thinking important for students

10 Benefits of Smart Watches You Can't Ignore As A Student

critical thinking important for students

Planning to Study Abroad ?

critical thinking important for students

Your ideal student accommodation is a few steps away! Please fill in your details below so we can find you a new home!

We have got your response

Thanksgiving Decor Ideas

amber © 2024. All rights reserved.

4.8/5 on Trustpilot

Rated as "Excellent" • 4800+ Reviews by students

Rated as "Excellent" • 4800+ Reviews by Students

play store

  • Departments, units, and programs
  • College leadership
  • Diversity, equity, and inclusion
  • Faculty and staff resources
  • LAS Strategic Plan

Facebook

  • Apply to LAS
  • Liberal arts & sciences majors
  • LAS Insider blog
  • Admissions FAQs
  • Parent resources
  • Pre-college summer programs

Quick Links

Request info

  • Academic policies and standing
  • Advising and support
  • College distinctions
  • Dates and deadlines
  • Intercollegiate transfers
  • LAS Lineup student newsletter
  • Programs of study
  • Scholarships
  • Certificates
  • Student emergencies

Student resources

  • Access and Achievement Program
  • Career services
  • First-Year Experience
  • Honors program
  • International programs
  • Internship opportunities
  • Paul M. Lisnek LAS Hub
  • Student research opportunities
  • Expertise in LAS
  • Research facilities and centers
  • Dean's Distinguished Lecture series
  • Alumni advice
  • Alumni award programs
  • Get involved
  • LAS Alumni Council
  • LAS@Work: Alumni careers
  • Study Abroad Alumni Networks
  • Update your information
  • Nominate an alumnus for an LAS award
  • Faculty honors
  • The Quadrangle Online
  • LAS News email newsletter archive
  • LAS social media
  • Media contact in the College of LAS
  • LAS Landmark Day of Giving
  • About giving to LAS
  • Building projects
  • Corporate engagement
  • Faculty support
  • Lincoln Scholars Initiative
  • Impact of giving

Why is critical thinking important?

What do lawyers, accountants, teachers, and doctors all have in common?

Students in the School of Literatures, Languages, Cultures, and Linguistics give a presentation in a classroom in front of a screen

What is critical thinking?

The Oxford English Dictionary defines critical thinking as “The objective, systematic, and rational analysis and evaluation of factual evidence in order to form a judgment on a subject, issue, etc.” Critical thinking involves the use of logic and reasoning to evaluate available facts and/or evidence to come to a conclusion about a certain subject or topic. We use critical thinking every day, from decision-making to problem-solving, in addition to thinking critically in an academic context!

Why is critical thinking important for academic success?

You may be asking “why is critical thinking important for students?” Critical thinking appears in a diverse set of disciplines and impacts students’ learning every day, regardless of major.

Critical thinking skills are often associated with the value of studying the humanities. In majors such as English, students will be presented with a certain text—whether it’s a novel, short story, essay, or even film—and will have to use textual evidence to make an argument and then defend their argument about what they’ve read. However, the importance of critical thinking does not only apply to the humanities. In the social sciences, an economics major , for example, will use what they’ve learned to figure out solutions to issues as varied as land and other natural resource use, to how much people should work, to how to develop human capital through education. Problem-solving and critical thinking go hand in hand. Biology is a popular major within LAS, and graduates of the biology program often pursue careers in the medical sciences. Doctors use critical thinking every day, tapping into the knowledge they acquired from studying the biological sciences to diagnose and treat different diseases and ailments.

Students in the College of LAS take many courses that require critical thinking before they graduate. You may be asked in an Economics class to use statistical data analysis to evaluate the impact on home improvement spending when the Fed increases interest rates (read more about real-world experience with Datathon ). If you’ve ever been asked “How often do you think about the Roman Empire?”, you may find yourself thinking about the Roman Empire more than you thought—maybe in an English course, where you’ll use text from Shakespeare’s Antony and Cleopatra to make an argument about Roman imperial desire.  No matter what the context is, critical thinking will be involved in your academic life and can take form in many different ways.

The benefits of critical thinking in everyday life

Building better communication.

One of the most important life skills that students learn as early as elementary school is how to give a presentation. Many classes require students to give presentations, because being well-spoken is a key skill in effective communication. This is where critical thinking benefits come into play: using the skills you’ve learned, you’ll be able to gather the information needed for your presentation, narrow down what information is most relevant, and communicate it in an engaging way. 

Typically, the first step in creating a presentation is choosing a topic. For example, your professor might assign a presentation on the Gilded Age and provide a list of figures from the 1870s—1890s to choose from. You’ll use your critical thinking skills to narrow down your choices. You may ask yourself:

  • What figure am I most familiar with?
  • Who am I most interested in? 
  • Will I have to do additional research? 

After choosing your topic, your professor will usually ask a guiding question to help you form a thesis: an argument that is backed up with evidence. Critical thinking benefits this process by allowing you to focus on the information that is most relevant in support of your argument. By focusing on the strongest evidence, you will communicate your thesis clearly.

Finally, once you’ve finished gathering information, you will begin putting your presentation together. Creating a presentation requires a balance of text and visuals. Graphs and tables are popular visuals in STEM-based projects, but digital images and graphics are effective as well. Critical thinking benefits this process because the right images and visuals create a more dynamic experience for the audience, giving them the opportunity to engage with the material.

Presentation skills go beyond the classroom. Students at the University of Illinois will often participate in summer internships to get professional experience before graduation. Many summer interns are required to present about their experience and what they learned at the end of the internship. Jobs frequently also require employees to create presentations of some kind—whether it’s an advertising pitch to win an account from a potential client, or quarterly reporting, giving a presentation is a life skill that directly relates to critical thinking. 

Fostering independence and confidence

An important life skill many people start learning as college students and then finessing once they enter the “adult world” is how to budget. There will be many different expenses to keep track of, including rent, bills, car payments, and groceries, just to name a few! After developing your critical thinking skills, you’ll put them to use to consider your salary and budget your expenses accordingly. Here’s an example:

  • You earn a salary of $75,000 a year. Assume all amounts are before taxes.
  • 1,800 x 12 = 21,600
  • 75,000 – 21,600 = 53,400
  • This leaves you with $53,400
  • 320 x 12 = 3,840 a year
  • 53,400-3,840= 49,560
  • 726 x 12 = 8,712
  • 49,560 – 8,712= 40,848
  • You’re left with $40,848 for miscellaneous expenses. You use your critical thinking skills to decide what to do with your $40,848. You think ahead towards your retirement and decide to put $500 a month into a Roth IRA, leaving $34,848. Since you love coffee, you try to figure out if you can afford a daily coffee run. On average, a cup of coffee will cost you $7. 7 x 365 = $2,555 a year for coffee. 34,848 – 2,555 = 32,293
  • You have $32,293 left. You will use your critical thinking skills to figure out how much you would want to put into savings, how much you want to save to treat yourself from time to time, and how much you want to put aside for emergency funds. With the benefits of critical thinking, you will be well-equipped to budget your lifestyle once you enter the working world.

Enhancing decision-making skills

Choosing the right university for you.

One of the biggest decisions you’ll make in your life is what college or university to go to. There are many factors to consider when making this decision, and critical thinking importance will come into play when determining these factors.

Many high school seniors apply to colleges with the hope of being accepted into a certain program, whether it’s biology, psychology, political science, English, or something else entirely. Some students apply with certain schools in mind due to overall rankings. Students also consider the campus a school is set in. While some universities such as the University of Illinois are nestled within college towns, New York University is right in Manhattan, in a big city setting. Some students dream of going to large universities, and other students prefer smaller schools. The diversity of a university’s student body is also a key consideration. For many 17- and 18-year-olds, college is a time to meet peers from diverse racial and socio-economic backgrounds and learn about life experiences different than one’s own.

With all these factors in mind, you’ll use critical thinking to decide which are most important to you—and which school is the right fit for you.

Develop your critical thinking skills at the University of Illinois

At the University of Illinois, not only will you learn how to think critically, but you will put critical thinking into practice. In the College of LAS, you can choose from 70+ majors where you will learn the importance and benefits of critical thinking skills. The College of Liberal Arts & Sciences at U of I offers a wide range of undergraduate and graduate programs in life, physical, and mathematical sciences; humanities; and social and behavioral sciences. No matter which program you choose, you will develop critical thinking skills as you go through your courses in the major of your choice. And in those courses, the first question your professors may ask you is, “What is the goal of critical thinking?” You will be able to respond with confidence that the goal of critical thinking is to help shape people into more informed, more thoughtful members of society.

With such a vast representation of disciplines, an education in the College of LAS will prepare you for a career where you will apply critical thinking skills to real life, both in and outside of the classroom, from your undergraduate experience to your professional career. If you’re interested in becoming a part of a diverse set of students and developing skills for lifelong success, apply to LAS today!

Read more first-hand stories from our amazing students at the LAS Insider blog .

  • Privacy Notice
  • Accessibility

How to teach critical thinking, a vital 21st-century skill

critical thinking important for students

A well-rounded education doesn’t just impart academic knowledge to students — it gives them transferable skills they can apply throughout their lives. Critical thinking is widely hailed as one such essential “ 21st-century skill ,” helping people critically assess information, make informed decisions, and come up with creative approaches to solving problems.

This means that individuals with developed critical thinking skills benefit both themselves and the wider society. Despite the widespread recognition of critical thinking’s importance for future success, there can be some ambiguity about both what it is and how to teach it . 1 Let’s take a look at each of those questions in turn.

What is critical thinking?

Throughout history, humanity has attempted to use reason to understand and interpret the world. From the philosophers of Ancient Greece to the key thinkers of the Enlightenment, people have sought to challenge their preconceived notions and draw logical conclusions from the available evidence — key elements that gave rise to today’s definition of “critical thinking.”

At its core, critical thinking is the use of reason to analyze the available evidence and reach logical conclusions. Educational scholars have defined critical thinking as “reasonable reflective thinking focused on deciding what to believe or do,” 2 and “interpretation or analysis, followed by evaluation or judgment.” 3 Some have pared their definition down to simply “good” or “skillful thinking.”

At the same time, being a good critical thinker relies on certain values like open-mindedness, persistence, and intellectual humility. 4 The ideal critical thinker isn’t just skilled in analysis — they are also curious, open to other points of view, and creative in the path they take towards tackling a given problem.

Alongside teaching students how to analyze information, build arguments, and draw conclusions, educators play a key role in fostering the values conducive to critical thinking and intellectual inquiry. Students who develop both skills and values are well-placed to handle challenges both academically and in their personal lives.

Let’s examine some strategies to develop critical thinking skills and values in the classroom.

How to teach students to think critically — strategies

1. build a classroom climate that encourages open-mindedness.

critical thinking important for students

Fostering a classroom culture that allows students the time and space to think independently, experiment with new ideas, and have their views challenged lays a strong foundation for developing skills and values central to critical thinking.

Whatever your subject area, encourage students to contribute their own ideas and theories when addressing common curricular questions. Promote open-mindedness by underscoring the importance of the initial “brainstorming” phase in problem-solving — this is the necessary first step towards understanding! Strive to create a classroom climate where students are comfortable thinking out loud.

Emphasize to students the importance of understanding different perspectives on issues, and that it’s okay for people to disagree. Establish guidelines for class discussions — especially when covering controversial issues — and stress that changing your mind on an issue is a sign of intellectual strength, not weakness. Model positive behaviors by being flexible in your own opinions when engaging with ideas from students.

2. Teach students to make clear and effective arguments

Training students’ argumentation skills is central to turning them into adept critical thinkers. Expose students to a wide range of arguments, guiding them to distinguish between examples of good and bad reasoning.

When guiding students to form their own arguments, emphasize the value of clarity and precision in language. In oral discussions, encourage students to order their thoughts on paper before contributing.

critical thinking important for students

In the case of argumentative essays , give students plenty of opportunities to revise their work, implementing feedback from you or peers. Assist students in refining their arguments by encouraging them to challenge their own positions. 

They can do so by creating robust “steel man” counterarguments to identify potential flaws in their own reasoning. For example, if a student is passionate about animal rights and wants to argue for a ban on animal testing , encourage them to also come up with points in favor of animal testing. If they can rebut those counterarguments, their own position will be much stronger!

Additionally, knowing how to evaluate and provide evidence is essential for developing argumentation skills. Teach students how to properly cite sources , and encourage them to investigate the veracity of claims made by others — particularly when dealing with online media .

3. Encourage metacognition — guide students to think about their own and others’ thinking

Critical thinkers are self-reflective. Guide students time to think about their own learning process by utilizing metacognitive strategies, like learning journals or having reflective periods at the end of activities. Reflecting on how they came to understand a topic can help students cultivate a growth mindset and an openness to explore alternative problem-solving approaches during challenging moments.

You can also create an awareness of common errors in human thinking by teaching about them explicitly. Identify arguments based on logical fallacies and have students come up with examples from their own experience. Help students recognize the role of cognitive bias in our thinking, and design activities to help counter it.

Students who develop self-awareness regarding their own thinking are not just better at problem-solving, but also managing their emotions .

4. Assign open-ended and varied activities to practice different kinds of thinking

Critical thinkers are capable of approaching problems from a variety of angles. Train this vital habit by switching up the kinds of activities you assign to students, and try prioritizing open-ended assignments that allow for varied approaches.

A project-based learning approach can reap huge rewards. Have students identify real-world problems, conduct research, and investigate potential solutions. Following that process will give them varied intellectual challenges, while the real-world applicability of their work can motivate students to consider the potential impact their thinking can have on the world around them.

critical thinking important for students

Classroom discussions and debates are fantastic activities for building critical thinking skills. As open-ended activities, they encourage student autonomy by requiring them to think for themselves.

They also expose students to a diversity of perspectives , inviting them to critically appraise these different positions in a respectful context. Class discussions are applicable across disciplines and come in many flavors — experiment with different forms like fishbowl discussions or online, asynchronous discussions to keep students engaged.

5. Use argument-mapping tools such as Kialo Edu to train students in the use of reasoning

One of the most effective methods of improving students’ critical thinking skills is to train them in argument mapping .

Argument mapping involves breaking an argument down into its constituent parts, and displaying them visually so that students can see how different points are connected. Research has shown that university students who were trained in argument mapping significantly out-performed their peers on critical thinking assessments. 5

While it’s possible — and useful — to map out arguments by hand, there are clear benefits to using digital argument maps like Kialo Edu. Students can contribute simultaneously to a Kialo discussion to collaboratively build out complex discussions as an argument map. 

Using argument maps to teach critical thinking has improved results for students.

Individual students can plan essays as argument maps before writing. This helps them to stay focused on the line of argument and encourages them to preempt counterarguments. Kialo discussions can even be assigned as an essay alternative when teachers want to focus on argumentation as the key learning goal. Unlike traditional essays, they defy the use of AI chatbots like ChatGPT!

Kialo discussions prompt students to use their reasoning skills to create clear, structured arguments. Moreover, students have a visual, engaging way to respond to the content of the arguments being made, promoting interpretive charity towards differing opinions. 

Best of all, Kialo Edu offers a way to track and assess your students’ progress on their critical thinking journey. Educators can assign specific tasks — like citing sources or responding to others’ claims — to evaluate specific skills. Students can also receive grades and feedback on their contributions without leaving the platform, making it easy to deliver constructive, ongoing guidance to help students develop their reasoning skills.

Improving students’ critical thinking abilities is something that motivates our work here at Kialo Edu. If you’ve used our platform and have feedback, thoughts, or suggestions, we’d love to hear from you. Reach out to us on social media or contact us directly at [email protected] .

  •  Lloyd, M., & Bahr, N. (2010). Thinking Critically about Critical Thinking in Higher Education. International Journal for the Scholarship of Teaching and Learning, 4 (2), Article 9. https://doi.org/10.20429/ijsotl.2010.040209
  •  Ennis, R. H. (2015). Critical Thinking: A Streamlined Conception. In: Davies, M., Barnett, R. (eds) The Palgrave Handbook of Critical Thinking in Higher Education. Palgrave Macmillan, New York.
  • Lang-Raad, N. D. (2023). Never Stop Asking: Teaching Students to be Better Critical Thinkers . Jossey-Bass.
  •  Ellerton, Peter (2019). Teaching for thinking: Explaining pedagogical expertise in the development of the skills, values and virtues of inquiry . Dissertation, The University of Queensland. Available here .
  • van Gelder, T. (2015). Using argument mapping to improve critical thinking skills. In The Palgrave Handbook of Critical Thinking in Higher Education (pp. 183–192). doi:10.1057/9781137378057_12.

Want to try Kialo Edu with your class?

Sign up for free and use Kialo Edu to have thoughtful classroom discussions and train students’ argumentation and critical thinking skills.

The Importance of Critical Thinking in Students & How To Improve It

The Importance of Critical Thinking in Students & How To Improve It

Providing a well-rounded education to our students involves not only academic subjects but also the development of critical thinking skills. In today's world, critical thinking is an essential skill for success, not just in academics but in all aspects of life. In this blog, we'll discuss why critical thinking is important and how parents and carers can help improve their child's critical thinking skills.

What is Critical Thinking?

Critical thinking is the ability to analyse information, evaluate it and draw conclusions. It involves the use of skills such as reasoning, problem-solving and decision-making to examine and understand complex ideas and concepts. Critical thinking is not just about being able to memorise information, but about being able to think critically about it and apply it to real-life situations.

Why is Critical Thinking Important?

There are many reasons why critical thinking is important for students. It helps them to:

  • Analyse & evaluate information effectively
  • Make informed decisions based on evidence
  • Develop innovative & creative ideas
  • Solve complex problems
  • Understand & evaluate arguments
  • Communicate effectively

In short, critical thinking is a fundamental skill that helps students become independent and analytical thinkers who can adapt to changing situations and contribute positively to society.

Critical Thinkers Make Great Leaders

Critical thinking is an essential ingredient in the recipe for effective leadership. Leaders are often faced with complex challenges that require them to make difficult decisions and solve intricate problems.

The ability to think critically enables leaders to analyse information, evaluate evidence and draw logical conclusions. Critical thinking also allows leaders to approach problems creatively and consider alternative viewpoints, paving the way for innovative solutions. Additionally, ethical leadership requires informed decision-making based on evidence and critical thinking plays a critical role in this process.

Developing strong critical thinking skills is a must for anyone seeking to become a successful leader in today's dynamic world. It provides leaders with the tools to navigate the complexities of the modern landscape and make ethical decisions that positively impact their organisations and communities.

How to Improve Critical Thinking Skills in Students?

As parents and carers, you can play a vital role in improving your child's critical thinking skills. Here are some tips that can help:

Encourage Curiosity: Encourage your child to ask questions, explore ideas and seek answers. This will help them to develop an inquisitive mindset and a thirst for knowledge.

Challenge Assumptions: Encourage your child to challenge assumptions and think outside the box. This will help them to develop a critical mindset and consider alternative perspectives.

Analyse Information: Teach your child how to analyse information, evaluate evidence and draw logical conclusions. This helps develop strong analytical and problem-solving skills.

Encourage Creativity: Encourage your child to use their imagination and come up with innovative ideas. This will help them to develop a unique perspective and approach problems in a novel way.

Practice Reflection: Encourage your child to reflect on their thoughts and actions and to consider alternative viewpoints. This helps them to develop self-awareness and to understand the impact of their decisions.

A Critical Thinking Mindset

As parents and carers, you have a crucial role to play in helping your child develop their critical thinking skills. By encouraging curiosity, challenging assumptions, analysing information, encouraging creativity and practicing reflection, you can help your child to become independent and analytical thinkers, who can adapt to changing situations and contribute positively to society.

At Medowie Christian School, we believe critical thinking is a fundamental part of a well-rounded education. We are committed to helping our students develop this essential skill, not only in their academic pursuits but also in their personal and professional lives.

To learn more about critical thinking and other ways to support your child in their learning and personal lives, please get in touch with us via our contact form. For prospective students, fill in our application form or book a private tour with our principal . For further information, speak with one of our staff during school hours by calling (02) 4052 3300 .

APS

  • Teaching Tips

On Critical Thinking

Several years ago some teaching colleagues were talking about the real value of teaching psychology students to think critically. After some heated discussion, the last word was had by a colleague from North Carolina. “The real value of being a good critical thinker in psychology is so you won’t be a jerk,” he said with a smile. That observation remains one of my favorites in justifying why teaching critical thinking skills should be an important goal in psychology. However, I believe it captures only a fraction of the real value of teaching students to think critically about behavior.

What I s Critical Thinking?

Although there is little agreement about what it means to think critically in psychology, I like the following broad definition: The propensity and skills to engage in activity with reflec tive skepticism focused on deciding what to believe or do

Students often arrive at their first introductory course with what they believe is a thorough grasp of how life works. After all, they have been alive for at least 18 years, have witnessed their fair shares of crisis, joy, and tragedy, and have successfully navigated their way in to your classroom.

These students have had a lot of time to develop their own personal theories about how the world works and most are quite satisfied with the results. They often pride themselves on how good they are with people as well as how astute they are in understanding and explaining the motives of others. And they think they know what psychology is. Many are surprised- and sometimes disappointed- to discover that psychology is a science, and the rigor of psychological research is a shock. The breadth and depth of psychology feel daunting. Regardless of their sophistication in the discipline, students often are armed with a single strategy to survive the experience: Memorize the book and hope it works out on the exam. In many cases, this strategy will serve them well. Unfortunately, student exposure to critical thinking skill development may be more accidental than planful on the part of most teachers. Collaboration in my department and with other colleagues over the years has persuaded me that we need to approach critical thinking skills in a purposeful, systematic, and developmental manner from the introductory course through the capstone experience, propose that we need to teach critical thinking skills in three domains of psychology: practical (the “jerk avoidance” function), theoretical (developing scientific explanations for behavior), and methodological (testing scientific ideas). I will explore each of these areas and then offer some general suggestions about how psychology teachers can improve their purposeful pursuit of critical thinking objectives.

Practical Domain

Practical critical thinking is often expressed as a long-term, implicit goal of teachers of psychology, even though they may not spend much academic time teaching how to transfer critical thinking skills to make students wise consumers, more careful judges of character, or more cautious interpreters of behavior. Accurate appraisal of behavior is essential, yet few teachers invest time in helping students understand how vulnerable their own interpretations are to error.

Encourage practice in accurate description and interpretation of behavior by presenting students with ambiguous behavior samples. Ask them to distinguish what they observe (What is the behavior?) from the inferences they draw from the behavior (What is the meaning of the behavior?). I have found that cartoons, such as Simon Bond’s Uns p eakable Acts, can be a good resource for refining observation skills. Students quickly recognize that crisp behavioral descriptions are typically consistent from observer to observer, but inferences vary wildly. They recognize that their interpretations are highly personal and sometimes biased by their own values and preferences. As a result of experiencing such strong individual differences in interpretation, students may learn to be appropriately less confident of their immediate conclusions, more tolerant of ambiguity, and more likely to propose alternative explanations. As they acquire a good understanding of scientific procedures, effective control techniques, and legitimate forms of evidence, they may be less likely to fall victim to the multitude of off-base claims about behavior that confront us all. (How many Elvis sightings can be valid in one year?)

Theoretical Domain

Theoretical critical thinking involves helping the student develop an appreciation for scientific explanations of behavior. This means learning not just the content of psychology but how and why psychology is organized into concepts, principles, laws, and theories. Developing theoretical skills begins in the introductory course where the primary critical thinking objective is understanding and applying concepts appropriately. For example, when you introduce students to the principles of reinforcement, you can ask them to find examples of the principles in the news or to make up stories that illustrate the principles.

Mid-level courses in the major require more sophistication, moving students beyond application of concepts and principles to learning and applying theories. For instance, you can provide a rich case study in abnormal psychology and ask students to make sense of the case from different perspectives, emphasizing theoretical flexibility or accurate use of existing and accepted frameworks in psychology to explain patterns of behavior. In advanced courses we can justifiably ask students to evaluate theory, selecting the most useful or rejecting the least helpful. For example, students can contrast different models to explain drug addiction in physiological psychology. By examining the strengths and weaknesses of existing frameworks, they can select which theories serve best as they learn to justify their criticisms based on evidence and reason.

Capstone, honors, and graduate courses go beyond theory evaluation to encourage students to create theory. Students select a complex question about behavior (for example, identifying mechanisms that underlie autism or language acquisition) and develop their own theory-based explanations for the behavior. This challenge requires them to synthesize and integrate existing theory as well as devise new insights into the behavior.

Methodological Domain

Most departments offer many opportunities for students to develop their methodological critical thinking abilities by applying different research methods in psychology. Beginning students must first learn what the scientific method entails. The next step is to apply their understanding of scientific method by identifying design elements in existing research. For example, any detailed description of an experimental design can help students practice distinguishing the independent from the dependent variable and identifying how researchers controlled for alternative explanations. The next methodological critical thinking goals include evaluating the quality of existing research design and challenging the conclusions of research findings. Students may need to feel empowered by the teacher to overcome the reverence they sometimes demonstrate for anything in print, including their textbooks. Asking students to do a critical analysis on a fairly sophisticated design may simply be too big a leap for them to make. They are likely to fare better if given examples of bad design so they can build their critical abilities and confidence in order to tackle more sophisticated designs. (Examples of bad design can be found in The Critical Thinking Companion for Introductory Psychology or they can be easily constructed with a little time and imagination). Students will develop and execute their own research designs in their capstone methodology courses. Asking students to conduct their own independent research, whether a comprehensive survey on parental attitudes, a naturalistic study of museum patrons’ behavior, or a well-designed experiment on paired associate learning, prompts students to integrate their critical thinking skills and gives them practice with conventional writing forms in psychology. In evaluating their work I have found it helpful to ask students to identify the strengths and weaknesses of their own work- as an additional opportunity to think critically-before giving them my feedback.

Additional Suggestions

Adopting explicit critical thinking objectives, regardless of the domain of critical thinking, may entail some strategy changes on the part of the teacher.

• Introduce psychology as an ope n-end ed, growing enterprise . Students often think that their entry into the discipline represents an end-point where everything good and true has already been discovered. That conclusion encourages passivity rather than criticality. Point out that research is psychology’ s way of growing and developing. Each new discovery in psychology represents a potentially elegant act of critical thinking. A lot of room for discovery remains. New ideas will be developed and old conceptions discarded.

• Require student performance that goes beyond memorization . Group work, essays, debates, themes, letters to famous psychologists, journals, current event examples- all of these and more can be used as a means of developing the higher skills involved in critical thinking in psychology. Find faulty cause-effect conclusions in the tabloids (e.g., “Eating broccoli increases your IQ!”) and have students design studies to confirm or discredit the headline’s claims. Ask students to identify what kinds of evidence would warrant belief in commercial claims. Although it is difficult, even well designed objective test items can capture critical thinking skills so that students are challenged beyond mere repetition and recall.

• Clarify your expectations about performance with explicit, public criteria. Devising clear performance criteria for psychology projects will enhance student success. Students often complain that they don’t understand “what you want” when you assign work. Performance criteria specify the standards that you will use to evaluate their work. For example, perfonnance criteria for the observation exercise described earlier might include the following: The student describes behavior accurately; offers i nference that is reasonable for the context; and identifies personal factors that might influence infer ence. Perfonnance criteria facilitate giving detailed feedback easily and can also promote student self-assessment.

• Label good examples of critical thinking when these occur spontaneously. Students may not recognize when they are thinking critically. When you identify examples of good thinking or exploit examples that could be improved, it enhances students’ ability to understand. One of my students made this vivid for me when she commented on the good connection she had made between a course concept and an insight from her literature class, “That is what you mean by critical thinking?” There after I have been careful to label a good critical thinking insight.

• Endorse a questioning attitude. Students often assume that if they have questions about their reading, then they are somehow being dishonorable, rude, or stupid. Having  discussions early in the course about the role of good questions in enhancing the quality of the subject and expanding the sharpness of the mind may set a more critical stage on which students can play. Model critical thinking from some insights you have had about behavior or from some research you have conducted in the past. Congratulate students who offer good examples of the principles under study. Thank students who ask concept-related questions and describe why you think their questions are good. Leave time and space for more. Your own excitement about critical thinking can be a great incentive for students to seek that excitement.

• Brace yourself . When you include more opportunity for student critical thinking in class, there is much more opportunity for the class to go astray. Stepping away from the podium and engaging the students to perform what they know necessitates some loss of control, or at least some enhanced risk. However, the advantage is that no class will ever feel completely predictable, and this can be a source of stimulation for students and the professor as well.

' src=

As far back as I can remember over 50 yrs. ago. I have been talking psychology to friends, or helping them to solve problems. I never thought about psy. back then, but now I realize I really love helping people. How can I become a critical thinker without condemning people?

' src=

using a case study explain use of critical thinking in counseling process.

' src=

Do you have any current readings with Critical Thinking Skills in Psychology, besides John Russcio’s work?

APS regularly opens certain online articles for discussion on our website. Effective February 2021, you must be a logged-in APS member to post comments. By posting a comment, you agree to our Community Guidelines and the display of your profile information, including your name and affiliation. Any opinions, findings, conclusions, or recommendations present in article comments are those of the writers and do not necessarily reflect the views of APS or the article’s author. For more information, please see our Community Guidelines .

Please login with your APS account to comment.

About the Author

Jane Halonen received her PhD from the University of Wisconsin-Milwaukee in 1980. She is Professor of Psychology at Alverno College in Milwaukee, Wisconsin, where she has served as Chair of Psychology and Dean of the Behavior Sciences Department. Halonen is past president of the Council for Teachers of Undergraduate Psychology. A fellow of APA's Division 2 (Teaching), she has been active on the Committee of Undergraduate Education, helped design the 1991 APA Conference on Undergraduate Educational Quality, and currently serves as a committee member to develop standards for the teaching of high school psychology.

critical thinking important for students

Student Notebook: Five Tips for Working with Teaching Assistants in Online Classes

Sarah C. Turner suggests it’s best to follow the golden rule: Treat your TA’s time as you would your own.

Teaching Current Directions in Psychological Science

Aimed at integrating cutting-edge psychological science into the classroom, Teaching Current Directions in Psychological Science offers advice and how-to guidance about teaching a particular area of research or topic in psychological science that has been

European Psychology Learning and Teaching Conference

The School of Education of the Paris Lodron University of Salzburg is hosting the next European Psychology Learning and Teaching (EUROPLAT) Conference on September 18–20, 2017 in Salzburg, Austria. The main theme of the conference

Privacy Overview

Advertisement

Advertisement

Developing Students’ Critical Thinking Skills and Argumentation Abilities Through Augmented Reality–Based Argumentation Activities in Science Classes

  • Published: 22 August 2022
  • Volume 32 , pages 1165–1195, ( 2023 )

Cite this article

critical thinking important for students

  • Tuba Demircioglu   ORCID: orcid.org/0000-0003-3567-1739 1 ,
  • Memet Karakus   ORCID: orcid.org/0000-0002-6099-5420 2 &
  • Sedat Ucar   ORCID: orcid.org/0000-0002-4158-1038 1  

6742 Accesses

5 Citations

Explore all metrics

Due to the COVID-19 pandemic and adapting the classes urgently to distance learning, directing students’ interest in the course content became challenging. The solution to this challenge emerges through creative pedagogies that integrate the instructional methods with new technologies like augmented reality (AR). Although the use of AR in science education is increasing, the integration of AR into science classes is still naive. The lack of the ability to identify misinformation in the COVID-19 pandemic process has revealed the importance of developing students’ critical thinking skills and argumentation abilities. The purpose of this study was to examine the change in critical thinking skills and argumentation abilities through augmented reality–based argumentation activities in teaching astronomy content. The participants were 79 seventh grade students from a private school. In this case study, the examination of the verbal arguments of students showed that all groups engaged in the argumentation and produced quality arguments. The critical thinking skills of the students developed until the middle of the intervention, and the frequency of using critical thinking skills varied after the middle of the intervention. The findings highlight the role of AR-based argumentation activities in students’ critical thinking skills and argumentation in science education.

Similar content being viewed by others

critical thinking important for students

Students’ voices on generative AI: perceptions, benefits, and challenges in higher education

critical thinking important for students

Teachers’ AI digital competencies and twenty-first century skills in the post-pandemic world

The ai generation gap: are gen z students more interested in adopting generative ai such as chatgpt in teaching and learning than their gen x and millennial generation teachers.

Avoid common mistakes on your manuscript.

1 Introduction

With rapidly developing technology, the number of children using mobile handheld devices has increased drastically (Rideout et al., 2010 ; Squire, 2006 ). Technologies and digital enhancements that use the internet have become a part of the daily life of school-age children (Kennedy et al., 2008 ), and education evolves in line with the changing technology. Rapidly changing innovation technologies have changed the characteristics of learners in the fields of knowledge, skills, and expertise that are valuable for society, and circumstances for teachers and students have changed over time (Yuen et al., 2011 ). Almost every school subject incorporates technological devices into the pedagogy to different extents, but science teachers are the most eager to use technological devices in science classes because of the nature of the content they are expected to teach.

The COVID-19 pandemic has had an important impact on educational systems worldwide. Due to the fast-spreading of that disease, the educators had to adapt their classes urgently to technology and distance learning (Dietrich et al., 2020 ), and schools have had to put more effort into adapting new technologies to teaching. Z generation was born into a time of information technology, but they did not choose distance courses that were not created for them so they are not motivated during the classes (Dietrich et al., 2020 ). Directing students’ interest in the course content is challenging, while their interest has changed by this technological development. The solution to this challenge emerges through creative pedagogies that integrate the instructional methods with new striking technology. Augmented reality has demonstrated high potential as part of many teaching methods.

2 Literature Review

2.1 augmented reality, education, and science education.

AR applications have important potential for many areas where rapid transfer of information is important. This is especially effective for education. Science education is among the disciplines where rapid information transfer is important. Taylor ( 1987 , p. 1) stated that “the transfer of scientific and technological information to children and to the general public is as important as the search for information.” With the rapid change in science and technology and outdating of knowledge, learning needs rapid changes in transfer of information (Ploman, 1987 ). Technology provides new and innovative methods for science education and could be an effective media in promoting students’ learning (Virata & Castro, 2019 ). AR technology could be a promising teaching tool for science teaching in which AR technology is especially applicable (Arici et al., 2019 ).

Research shows that AR has great potential and benefits for learning and teaching (Yuen et al., 2011 ). The AR applications used in teaching and learning present many objects, practices, and experiments that students cannot obtain from the first-hand experience into many different dimensions because of the impossibilities in the real world, and it is an approach that can be applied to many science contents that are unreachable, unobtrusive, and unable to travel (Cai et al., 2013 ; Huang et al., 2019 ; Pellas et al., 2019 ). For example, physically unreachable phenomena such as solar systems, moon phases, and magnetic fields become accessible for learners through AR (Fleck & Simon, 2013 ; Kerawalla et al., 2006 ; Shelton & Hedley, 2002 ; Sin & Zaman, 2010 ; Yen et al., 2013 ). Through AR, learners can obtain instant access to location-specific information provided by a wide range of sources (Yuen et al., 2011 ). Location-based information, when used in particular contextual learning activities, is essential for assisting students’ outdoor learning. This interaction develops comprehension, understanding, imagination, and retention, which are the learning and cognitive skills of learners (Chiang et al., 2014 ). For example, an AR-based mobile learning system was used in the study conducted by Chiang et al. ( 2014 ) on aquatic animals and plants. The location module can identify the students’ GPS location, direct them to discover the target ecological regions, and provide the appropriate learning tasks or additional resources. When students explore various characteristics of learning objects, the camera and image editing modules can take the image from the real environment and make comment on the image of the observed things.

Research reveals that the use of AR technology as part of teaching a subject has the features of being constructivist, problem solving-based, student-centered, authentic, participative, creative, personalized, meaningful, challenging, collaborative, interactive, entertaining, cognitively rich, contextual, and motivational (Dunleavy et al., 2009 ). Despite its advantages and although the use of AR in science education is increasing, the integration of AR into science classes is still naive, and teachers still do not consider themselves as ready for use of AR in their class (Oleksiuk & Oleksiuk, 2020 ; Romano et al., 2020 ) and choose not to use AR technology (Alalwan et al., 2020 ; Garzón et al., 2019 ), because most of them do not have the abilities and motivation to design AR learning practices (Garzón et al., 2019 ; Romano et al., 2020 ). It is thought that the current study will contribute to the use of AR in science lessons and how science teachers will include AR technology in their lessons.

2.2 Argumentation, Critical Thinking, and Augmented Reality

New trends in information technologies have contributed to the development of new skills in which people have to struggle with a range of information and evaluate this information. An important point of these skills is the ability to argue with evidence (Jiménez -Aleixandre & Erduran, 2007 ) in which young people create appropriate results from the information and evidence given to them to criticize the claims of others in the direction of the evidence and to distinguish an idea from evidence-based situations (OECD, 2003 , p. 132).

Learning with technologies could produce information and misinformation simultaneously (Chai et al., 2015 ). Misinformation has spread very quickly in public in COVID-19 pandemic, so the lack of the ability to interpret and evaluate the validity and credibility of them arose again (Saribas & Çetinkaya, 2021 ). This process revealed the importance of developing students’ critical thinking skills and argumentation abilities (Erduran, 2020 ) to make decisions and adequate judgments when they encountered contradicting information (Chai et al., 2015 ).

Thinking about different subjects, evaluating the validity of scientific claims, and interpreting and evaluating evidence are important elements of science courses and play important roles in the construction of scientific knowledge (Driver et al., 2000 ). The use of scientific knowledge in everyday life ensures that critical thinking skills come to the forefront. Ennis ( 2011 , p. 1) defined critical thinking as “Critical thinking is reasonable and reflective thinking focused on deciding what to believe”. Jiménez-Aleixandre and Puig ( 2012 ) found this definition very broad, and they proposed a comprehensive definition of critical thinking that combines the components of social emancipation and evidence evaluation. It contains the competence to form autonomous ideas as well as the ability to participate in and reflect on the world around us. Figure  1 summarizes this comprehensive definition.

figure 1

Argumentation levels by groups

Critical thinking skills that include the ability to evaluate arguments and counterarguments in a variety of contexts are very important, and effective argumentation is the focal point of criticism and the informed decision (Nussbaum, 2008 ). Argumentation is defined as the process of making claims about a scientific subject, supporting them with data, using warrants, and criticizing, refuting, and evaluating an idea (Toulmin, 1990 ). Argumentation as an instructional method is an important research area in science education and has received enduring interest from science educators for more than a decade (Erduran et al., 2015 ). Researchers concluded that learners mostly made only claims in the argumentation process and had difficulty producing well-justified and high-quality arguments (Demircioglu & Ucar, 2014 ; Demircioglu & Ucar, 2015 ; Cavagnetto et al., 2010 ; Erdogan et al., 2017 ; Erduran et al., 2004 ; Novak & Treagust, 2017 ). To improve the quality of arguments, students should be given supportive elements to produce more consistent arguments during argumentation. One of these supportive elements is the visual representations of the phenomena.

Visual representations could make it easier to see the structure of the arguments of learners (Akpınar et al., 2014 ) and improve students’ awareness. For example, the number of words and comments used by students or meaningful links in conversations increases with visually enriched arguments (Erkens & Janssen, 2006 ). Sandoval & Millwood ( 2005 ) stated that students should be able to evaluate different kinds of evidence such as digital data and graphic photography to defend their claims. Appropriate data can directly support a claim and allow an argument to be accepted or rejected by students (Lin & Mintzes, 2010 ). Enriched visual representations provide students with detailed and meaningful information about the subject (Clark et al., 2007 ). Students collect evidence for argumentation by observing enriched representations (Clark et al., 2007 ), and these representations help to construct higher-quality arguments (Buckingham Shum et al., 1997 ; Jermann & Dillenbourg, 2003 ). Visualization techniques enable students to observe how objects behave and interact and provide an easy-to-understand presentation of scientific facts that are difficult to understand with textual or oral explanations (Cadmus, 1990 ). In short, technological opportunities to create visually enriched representations increase students’ access to rich data to support their arguments.

Among the many technological opportunities to promote argumentation, AR seems to be the most promising application for instructing school subjects. AR applications are concerned with the combination of computer-generated data (virtual reality) and the real world, where computer graphics are projected onto real-time video images (Dias, 2009 ). In addition, augmented reality provides users with the ability to see a real-world environment enriched with 3D images and to interact in real time by combining virtual objects with the real environment in 3D and showing the spatial relations (Kerawalla et al., 2006 ). AR applications are thus important tools for students’ arguments with the help of detailed and meaningful information and enriched representations. Research studies using AR technology revealed that all students in the study engaged in argumentation and produced arguments (Jan, 2009 ; Squire & Jan, 2007 ).

Many studies focusing on using AR in science education have been published in recent decades. Research studies related to AR in science education have focused on the use of game-based AR in science education (Atwood-Blaine & Huffman, 2017 ; Bressler & Bodzin, 2013 ; Dunleavy et al., 2009 ; López-Faican & Jaen, 2020 ; Squire, 2006 ), academic achievement (Hsiao et al., 2016 ; Faridi et al., 2020 ; Hwang et al., 2016 ; Lu et al., 2020 ; Sahin & Yilmaz, 2020 ;, Yildirim & Seckin-Kapucu, 2020 ), understanding science content and its conceptual understanding (Cai et al., 2021 ; Chang et al., 2013 ; Chen & Liu, 2020 ; Ibáñez et al., 2014 ), attitude (Sahin & Yilmaz, 2020 0; Hwang et al., 2016 ), self-efficacy (Cai et al., 2021 ), motivation (Bressler & Bodzin, 2013 ; Chen & Liu, 2020 ; Kirikkaya & Başgül, 2019 ; Lu et al., 2020 ; Zhang et al., 2014 ), and critical thinking skills (Faridi et al., 2020 ; Syawaludin et al., 2019 ). The general trend in these research studies based on the content of “learning/academic achievement,” “understanding science content and its conceptual understanding,” “motivation,” “attitude,” and methodologically quantitative studies was mostly used in articles in science education. Therefore, qualitative and quantitative data to be obtained from studies investigating the use of augmented reality technology in education and focusing on cognitive issues, interaction, and collaborative activities are needed (Arici et al., 2019 ; Cheng & Tsai, 2013 ).

Instructional strategies using AR technology ensure interactions between students and additionally between students and teachers (Hanid et al., 2020 ). Both the technological features of AR and learning strategies should be regarded by the teachers, the curriculum, and AR technology developers to acquire the complete advantage of AR in student learning (Garzón & Acevedo, 2019 ; Garzón et al., 2020 ). Researchers investigated the learning outcomes with AR-integrated learning strategies such as collaborative learning (Baran et al., 2020 ; Chen & Liu, 2020 ; Ke & Carafano, 2016 ), socioscientific reasoning (Chang et al., 2020 ), student-centered hands-on learning activities (Chen & Liu, 2020 ), inquiry-based learning (Radu & Schneider, 2019 ), concept-map learning system (Chen et al., 2019 ), problem-based learning (Fidan & Tuncel, 2019 ), and argumentation (Jan, 2009 ; Squire & Jan, 2007 ) in science learning.

The only two existing studies using both AR and argumentation (Jan, 2009 ; Squire & Jan, 2007 ) focus on environmental education and use location-based augmented reality games through mobile devices to engage students in scientific argumentation. Studies combining AR and argumentation in astronomy education have not been found in the literature. In the current study, AR was integrated with argumentation in teaching astronomy content.

Studies have revealed that many topics in astronomy are very difficult to learn and that students have incorrect and naive concepts (Yu & Sahami, 2007 ). Many topics include three-dimensional (3D) spatial relationships between astronomical objects (Aktamış & Arıcı, 2013 ; Yu & Sahami, 2007 ). However, most of the traditional teaching materials used in astronomy education are two-dimensional (Aktamış & Arıcı, 2013 ). Teaching astronomy through photographs and 2D animations is not sufficient to understand the difficult and complex concepts of astronomy (Chen et al., 2007 ). Static visualization tools such as texts, photographs, and 3D models do not change over time and do not have continuous movement, while dynamic visualization tools such as videos or animations show continuous movement and change over time (Schnotz & Lowe, 2008 ). However, animation is the presentation of images on a computer screen (Rieber & Kini, 1991 ), not in the real world, and the users do not have a chance to manipulate the images (Setozaki et al., 2017 ). As a solution to this shortcoming, using 3D technology in science classes, especially AR technology for abstract concepts, has become a necessity (Sahin & Yilmaz, 2020 ). By facilitating interaction with real and virtual environment and supporting object manipulation, AR is possible to enhance educational benefits (Billinghurst, 2002 ). The students are not passive participants while using AR technology. For example, the animated 3D sun and Earth models are moved on a handheld platform that adjusts its orientation in accordance with the student’s point of view in Shelton’s study ( 2002 ). They found that the ability of students to manage “how” and “when” they are allowed to manipulate virtual 3D objects has a direct impact on learning complex spatial phenomena. Experimental results show that compared with traditional video teaching, AR multimedia video teaching method significantly improves students’ learning (Chen et al., 2022 ).

This study, which integrates argumentation with new striking technology “AR” in astronomy education, clarifies the relationship between them and examines variables such as critical thinking skills and argumentation abilities that are essential in the era we live, making this research important.

2.3 Research Questions

The purpose of this study was to identify the change in critical thinking skills and argumentation abilities through augmented reality–based argumentation activities in teaching astronomy content. The following research questions guided this study:

RQ1: How do the critical thinking skills of students who participated in both augmented reality and argumentation activities on astronomy change during the study?

RQ2: How do the argumentation abilities of students who participated in both augmented reality and argumentation activities on astronomy change during the study?

In this case study, we investigated the change of critical thinking skills and argumentation abilities of middle school students. Before the main intervention, a pilot study was conducted to observe the effectiveness of the prepared lesson plans in practice and to identify the problems in the implementation process. The pilot study was recorded with a camera. The camera recordings were watched by the researcher, and the difficulties in the implementation process were identified. In the main intervention, preventions were taken to overcome these difficulties. Table 1 illustrates that the problems encountered during the pilot study and the preventions taken to eliminate these problems.

During the main intervention, qualitative data were collected through observations and audio recordings to determine the change in the critical thinking skills and argumentation abilities of students who participated in both augmented reality and argumentation activities on astronomy.

3.1 Context and Participants

The participants consisted of 79 7th middle school students aged between 12 and 13 from a private school in Southern Turkey. The participants were determined as students in a private school where tablet computers are available for each student and the school willing to participate in the study. Twenty-six students, including 17 females and 9 males, participated in the study. The students’ parents signed the consent forms (whether participating or refusing participation in the study). The researcher informed them about the purpose of the study, instructional process, and ethical principles that directed the study. The teachers and school principals were informed that the preliminary and detailed conclusions of the study will be shared with them. The first researcher conducted the lessons in all groups because when the study was conducted, the use of augmented reality technology in education was very new. Also, the science teachers had inadequate knowledge and experience about augmented reality applications. Before the study, the researcher attended the classes with the teacher and made observations to help students become accustomed to the presence of the researcher in the classroom. This prolonged engagement increased the reliability of the implementation of instructions and data collection (Guba & Lincoln, 1989 ).

3.2 Instructional Activities

The 3-week, 19-h intervention process, which was based on the prepared lesson plan, was conducted. The students participated in the learning process that included both augmented reality and argumentation activities about astronomy.

3.2.1 Augmented Reality Activities

Free applications such as Star Chart, Sky View Free, Aurasma, Junaio, Augment, and i Solar System were used with students’ tablet computers in augmented reality instructions. Tablet computers were provided by the school administration from their stock. Videos, simulations, and 3D visuals generated by applications were used as “overlays.” In addition, pictures, photographs, colored areas in the worksheets, and students’ textbooks were used as “trigger images.” Students had the opportunity to interact with and manipulate these videos, simulations, and 3D visuals while using the applications. With applications such as Sky View Free and Star Chart, students were provided with the resources to make sky observations.

A detailed description of the activities used in augmented reality is given in Appendix Table 8 .

3.2.2 Argumentation Activities

Before the instruction, the students were divided into six groups by the teacher, paying attention to heterogeneity in terms of gender and academic achievement. After small group discussions, the students participated in whole-class discussions. Competing theories cartoons, tables of statements, constructing an argument, and argument-driven inquiry (ADI) frameworks were used to support argumentation in the learning process. Argument-driven inquiry consists of eight steps including the following: identification of the task, the generation and analysis of data, the production of a tentative argument, an argumentation session, an investigation report, a double-blind peer review, revision of the report, and explicit and reflective discussion (Sampson & Gleim, 2009 ; Sampson et al., 2011 ).

A detailed description of the activities used in argumentation is given in Appendix Table 9 .

4 Data Collection

The data were collected through unstructured and participant observations (Maykut & Morehouse, 1994 ; Patton, 2002 ). The instructional intervention was recorded with a video camera, and the students’ argumentation processes were also recorded with a voice recorder.

Since all students spoke at the same time during group discussions, the observation records were insufficient to understand the student talks. To determine what each student in the group said during the argumentation process, a voice recorder was placed in the middle of the group table, and a voice recording was taken throughout the lesson. A total of 2653.99 min of voice recordings were taken in the six groups.

4.1 Data Analysis

The analysis of the data was conducted with inductive and deductive approaches. Before coding, the data were arranged. The critical thinking data were organized by day. The argumentation skills were organized by day and also on the basis of the groups. After generating codes during the inductive analysis of the development of critical thinking skills, a deductive approach was adopted (Patton, 2002 ). The critical thinking skills dimensions discussed by Ennis ( 2011 ) and Ennis ( 1991 ) were used to determine the relationship between codes. Ennis ( 2011 ) prepared an outline to distinguish critical thinking dispositions and skills by synthesizing of many years of studies. These critical skills that contain abilities that ideal critical thinkers have were used to generate codes from students’ talks. This skills and abilities were given in Appendix Table 10 . Then “clarification skills, decision making-supporting skills, inference skills, advanced clarification skills, and other/strategy and techniques skills” discussed by Ennis ( 1991 ) and Ennis ( 2011 ) were used to determine the categories. The change in the argumentation abilities of the students was analyzed descriptively based on the Toulmin argument model (Toulmin, 1990 ) using the data obtained from the students’ voice recordings. The argument structures of each group during verbal argumentation were determined by dividing them into components according to the Toulmin model (Toulmin, 1990 ). The first three items (data, claim, and warrant) in the Toulmin model form the basis of an argument, and the other three items (rebuttal, backing, and qualifier) are subsidiary elements of the argument (Toulmin, 1990 ).

Some quotations regarding the analysis of the arguments according to the items are given in Appendix Table 11 .

Arguments from the whole group were put into stages based on the argumentation-level model developed by Erduran et al. ( 2004 ) to examine the changes in each lesson and to make comparisons between the small groups of students. By considering the argument model developed by Toulmin, Erduran et al. ( 2004 ) created a five-level framework for the assessment of the quality of argumentation supposing that the quality of the arguments including rebuttals was high. The framework is given in Table 2 .

4.2 Validity and Reliability

To confirm the accuracy and validity of the analysis, method triangulation, triangulation of data sources, and analyst triangulation were used (Patton, 2002 ).

For analyst triangulation, the qualitative findings were also analyzed independently by a researcher studying in the field of critical thinking and argumentation, and then these evaluations made by the researchers were compared.

Video and audio recordings of intervention and documents from the activities were used for the triangulation of data sources. In addition, the data were described in detail without interpretation. Additionally, within the reliability and validity efforts, direct quotations were given in the findings. In this sense, for students, codes such as S1, S2, and S3 were used, and the source of data, group number, and relevant date of the conversation were included at the end of the quotations.

In addition, experts studying in the field of critical thinking and argumentation were asked to verify all data and findings. After the process of reflection and discussion with experts, the codes, subcategories, and categories were revised.

For reliability, some of the data randomly selected from the written transcripts of the students’ audio recordings were also coded by a second encoder, and the interrater agreement between the two coders, determined by Cohen’s kappa (Cohen, 1960 ), was κ = 0.86, which is considered high reliability.

5.1 Development of Critical Thinking Ability

The development of critical thinking skills was given separately for the trend drastically changed on the day when the first skills were used by the students. All six dimensions of critical thinking skills were included in students’ dialogs or when there was a decrease in the number of categories of critical thinking skills.

The codes, subcategories, and categories of critical thinking skills that occurred on the first day (dated 11.05) are given in Table 3 .

Clarification skills, inference skills, other/strategy and technical skills, advanced clarification skills, and decision-making/supporting skills occurred on the first day. The students mostly used decision-making/supporting skills ( f  = 55). Under the decision-making/supporting skills category, students mostly explained observation data ( f  = 37). S7, S1, and S20 stated the data they presented about their observations with the Star Chart and Sky View applications as follows:

S7: Venus is such a yellowish reddish colour.

S1: What was the colour? Red and big. The moon’s color is white.

S20: Not white here.

S20: It’s not white here. (Audio Recordings (AuR), Group 2 / 11.05).

Additionally, S19 mentioned the observation data with the words “I searched Saturn. It is bright. It does not vibrate. It is yellow and it’s large.” (AuR, Group 2 / 11.05).

Decision-making/supporting skills were followed by inference ( f  = 17), clarification ( f  = 13), advanced clarification ( f  = 5), and skills and other/strategy technical skills ( f  = 1).

In Table 4 , the categories, subcategories, and codes for critical thinking skills that occurred on the fifth day (dated 18.05) are presented.

It was observed for the first time on the fifth day that all six dimensions of critical thinking skills were included in students’ dialogs. These are, according to the frequency of use, inference ( f  = 152), decision-making/support ( f  = 116), clarification ( f  = 43), advanced clarification ( f  = 8), other/strategy and technique ( f  = 3), and suppositional thinking and integrational ( f  = 2) skills.

On this date, judging the credibility of the source from decision-making/supporting skills ( f  = 1) was the skill used for the first time.

Unlike other days, for the first time, a student tried to prove his thoughts with an analogy in advanced clarification skills. An exemplary dialogue to this finding is as follows:

S19: Even the Moon remains constant, we will see different faces of the moon because the Earth revolves around its axis.

S6: I also say that it turns at the same speed. So, for example, when this house turns like this while we return in the same way, we always see the same face. (AuR, 18.05, Group 2).

Here, S6 tried to explain to his friend that they always see the same face of the moon by comparing how they see the same face of the house.

In Table 5 , the categories, subcategories, and codes for critical thinking skills that occurred on the sixth day (dated 21.05) are included.

There is a decrease in the number of categories of critical thinking skills. It was determined that the students used mostly inference skills in three categories ( f  = 38). Additionally, students used decision-making/support ( f  = 34) and clarification ( f  = 9) skills. In inference skills, it is seen that students often make claims ( f  = 33) and rarely infer from the available data ( f  = 4).

Among the decision-making/support skills, students mostly used the skill to give reasons ( f  = 28). S24 accepted herself as Uranus during the activity, and she gave reason to make Saturn as an enemy like that: “No, Saturn would be my enemy too. Its ring is more distinctive, it can be seen from the Earth, its ring is more beautiful than me.” (AuR, 21.05, Group 3/).

The categories, subcategories, and codes for critical thinking skills that occurred on the ninth day (dated 28.05) are presented in Table 6 .

In the course of the day dated 28.05, six categories of critical thinking skills were observed: clarification, inference, other/strategy and technique, advanced clarification, decision-making/support, suppositional thinking and integration skills. Furthermore, the subcategories under these categories are also very diverse.

There are 10 subcategories under clarification skills ( f  = 57), which are the most commonly used skills. The frequency of using these skills is as follows: asking his friend about his opinion ( f  = 15), asking questions to clarify the situation ( f  = 12), explaining his statement ( f  = 10), summarizing the solutions of other groups ( f  = 7), asking for a detailed explanation ( f  = 4), summarizing the idea ( f  = 3), explaining the solution proposal ( f  = 2), asking for a reason ( f  = 2), focusing on the question ( f  = 1), and asking what the tools used in experiment do ( f  = 1) skills. Explaining the solution proposal, asking what the tools used in the experiment do, and focusing on the question are the first skills used by the students.

When the qualitative findings regarding the critical thinking skills of the students were examined as a whole, it was determined that there was an improvement in the students’ critical thinking skills dimensions in the lessons held in the first 5 days (between 11.05 and 18.05). There was a decrease in the number of critical thinking skills dimensions in the middle of the intervention (21.05). However, after this date, there was an increase again in the number of critical thinking skills dimensions; and on the last day of the intervention, all the critical thinking skills dimensions were used by the students. In addition, it was determined that the skills found under these dimensions showed great variety at this date. Only in the middle (18.05) and on the last day (28.05) of the intervention did students use the skills in the six dimensions of critical thinking.

It was determined that students used mostly decision-making/support, inference, and clarification skills. According to the days, it was determined that the students mostly used inference skills (12.05, 15.05, 18.05, and 21.05) among these skills.

5.2 The Argumentation Abilities of the Students

5.2.1 argument structures in students’ verbal argumentation activities.

Instead of the argument structures of all groups, only an example of one group is presented because of including both basic and subsidiary items in the Toulmin argument model. In Table 7 , the argument structures in the verbal argumentation activities of the fourth group of students are presented due to the use of the “rebuttal” item.

When the argument structures in the verbal argumentation process of the six groups were examined, it was found that all groups engaged in the argumentation and produced arguments. In the activities, students mostly made claims. This was followed by data and warrant items. In the “the phases of the moon” activity, it was determined that only the second and fourth groups used rebuttal and the other groups did not.

The number of rebuttals used by the groups is lower in “the planets-table of statements” activity than in other activities. The rebuttals used are also weak. The use of rebuttals differs in the “who is right?” and “urgent solution to space pollution” activities. The number of rebuttal students used in these activities is higher than that in the other activities. The quality rebuttals are also higher.

When the structure of the warrants is examined, there are more unscientific warrants in the “urgent solution to space pollution” and “who is right” activities, while the correct scientific and partially correct scientific warrants were more frequently used in the “the phases of the moon” and “the planets table of statements” activities.

When the models related to the argument structures are examined in general, it was found that there is a decrease in the type of items used and the number of uses in the “the phases of the moon” and “the planets-table of statements” activities rather than the “urgent solution to space pollution” and “who is right” activities.

When the results were analyzed in terms of groups, it was determined that the argument structures of the second and fourth groups showed more variety than those of the other groups.

5.2.2 The Change of Argumentation Levels

The argumentation levels achieved by six groups created in the “who is right,” “ the planets-table of statements,” “phases of the moon,” and “urgent solution to space pollution” activities are shown in Fig.  2 .

figure 2

A characterization of the components of critical thinking (Jiménez-Aleixandre & Puig, 2012 , p. 6)

In the first verbal argumentation activity, “who is right?,” the arguments achieved by the five of the six groups were at level 5. Additionally, the arguments achieved by one group, which was group 6, were at level 4.

In the second verbal argumentation activity “table of statements,” a decrease was determined at the levels of the argumentation of the other groups except group 1 and group 3. In the “the phases of the moon” activity, there was a decrease at the level of argumentation achieved by the other groups except for group 2 and group 4. In the last argumentation activity, “urgent solution to space pollution,” it was found that the arguments of all groups were at level 5.

6 Conclusions and Discussion

The critical thinking skills of the students developed until the middle of the intervention, and the frequency of using critical thinking skills varied after the middle of the intervention. When the activities in the lessons were examined, on the days when critical thinking skills were frequently used, activities including argumentation methods were performed. Based on this situation, it could be revealed that the frequency of using critical thinking skills by students varies according to the use of the argumentation method.

Argumentation is defined as the process of making claims about a scientific subject, supporting them with data, providing reasons for proof, and criticizing, rebutting, and evaluating an idea (Toulmin, 1990 ). According to the definition of argumentation, these processes are also in the subdimensions of critical thinking skills. The ability to provide reasons for critical thinking skills in decision-making/supporting skills is the equivalent of providing reasons for proof in the argumentation process using warrants in the Toulmin argument model. Different types of claims under inference skills are related to making claims in the argumentation process, and rejecting a judgment is related to rebutting an idea in the argumentation process. In this context, the argumentation method is thought to contribute to the development of critical thinking skills within AR.

Another qualitative finding reached in the study is that the skills most used in the subdimensions differ according to the days. This can be explained by the different types of activities performed in each lesson. For example, on the day when the ability to explain observation data was used the most, students observed the sky, constellations, and galaxies with the Star Chart or Sky View applications or observed the planets with the i-Solar System application, and they presented the data they obtained during these observations.

Regarding the verbal argumentation structure of the groups, the findings imply that all groups engaged in argumentation and produced arguments. This finding presented evidence with qualitative data to further verify Squire & Jan’s ( 2007 ) research conducted with primary, middle, and high school students to investigate the potential of a location-based AR game in environmental science concluding that all groups engaged in argumentation. Similarly, Jan ( 2009 ) investigated the experience of three middle school students and their argumentative discourse on environmental education using a location-based AR game, and it was found that all students participated in argumentation and produced arguments.

Another finding in the current study was that students mostly made claims in the activities. This situation can be interpreted as students being strong in expressing their opinions. Similar findings are found in the literature (Author, 20xxa; Cavagnetto et al., 2010 ; Erduran et al., 2004 ; Novak & Treagust, 2017 ). In addition, it was concluded that the students failed to use warrants and data, they could not support their claims with the data, and they did not use “rebuttal” in these studies. However, in this study in which both augmented reality applications and argumentation methods were used, students mostly made contradictory claims and used data and warrants in their arguments. This situation can be interpreted as students being strong in defending their opinions. Additionally, although it was stated in many of the studies that students’ argumentation levels were generally at level 1 or level 2 (Erdogan et al., 2017 ; Erduran et al., 2004 ; Venville & Dawson, 2010 ; Zohar & Nemet, 2002 ), it was found that most of the students’ arguments were at level 4 and level 5 in the current study. Arguments are considered to be high quality in line with the existence of rebuttals, and discussions involving rebuttals are characterized as having a high level of argumentation (Aufschnaiter et al., 2008 ; Erduran et al., 2004 ). Students used rebuttals in their arguments, and their arguments were at high levels, which indicates that students could produce quality arguments. The reason for these findings to differ from those of other studies may be due to the augmented reality technology used in the current study. Enriched representations make it easier to see the structure of arguments (Akpınar et al., 2014 ), helping students to improve their awareness, increase the number of words they use and comments they make (Erkens & Janssen, 2006 ), and provide important information about the subject (Clark et al., 2007 ). By observing enriched representations, students collect evidence for argumentation (Clark & Sampson, 2008 ) and explore different points of view to support their claim (Oestermeier & Hesse, 2000 ). AR technology, which includes enriched representations, may have increased the accessibility of rich data to support students’ arguments; and using these data has helped them to support their arguments and enabled them to discover different perspectives. For example, S4 explained that the statement in the table is incorrect because she observed Uranus, Jupiter, and Neptune having rings around them in the application “I-solar system” as Uranus. She used the data obtained in the AR application to support her claim.

When the models related to the argument structures are examined in general, it was concluded that the type of items, the number of items, and the rebuttals used in scientific activities were less than those in the activities involving socioscientific issues. The rebuttals used were also weak. There are also findings in the literature that producing arguments on scientific issues is more difficult than producing arguments on socioscientific issues (Osborne et al., 2004 ).

When the structure of the warrants in the students’ arguments was examined, it was seen that there are more nonscientific warrants in socioscientific activities, and the scientific and partially scientific warrants are more in the activities that contain scientific subjects. This shows that students were unable to combine what they have learned in science with socioscientific issues. Albe ( 2008 ) and Kolsto ( 2001 ) stated that scientific knowledge is very low in students’ arguments on socioscientific issues. Similarly, the results of the studies conducted in the related literature support this view (Demircioglu & Ucar, 2014 ; Sadler & Donnelly, 2006 ; Wu & Tsai, 2007 ).

When the argument structures in the activities are analyzed by groups, the argument structures of the two groups vary more than the other groups, and the argumentation levels of these groups are at level 4 and level 5. This might be because some students have different prior knowledge about subjects. Different studies have also indicated that content knowledge plays an important role in the quality of students’ arguments (Acar, 2008 ; Aufschnaiter et al., 2008 ; Clark & Sampson, 2008 ; Cross et al., 2008 ; Sampson & Clark, 2011 ). In many studies, it has been emphasized that the most important thing affecting the choice and process of knowledge is previous information (Stark et al., 2009 ). To better understand how previous information affects argumentation quality in astronomy education, investigating the relationship between middle school students’ content knowledge and argumentation quality could be a direction of future research.

7 Limitations and Future Research

There are some limitations in this study. First, this study was implemented in a private school. Therefore, the results are true for these students. Future research is necessary to be performed with the students in public schools. Second, the researcher conducted the lessons because the science teacher had no ability to design AR learning practices. Teachers and students creating their own AR experiences is an important way to bring the learning outcomes of AR available to a wider audience (Romano et al., 2020 ). Further research can be conducted in which the science teacher of the class is the instructor. Another limitation of the study is that the instruction with AR-based argumentation was time-consuming, and the time allocated for the “Solar System and Beyond” unit in the curriculum was not sufficient for the implementation, because students tried to understand to use AR applications, and they needed time to reflect on the activities despite prior training on AR before the instructional process. This situation may cause cognitive overload (Alalwan et al., 2020 ). The adoption and implementation of educational technologies are more difficult and time-consuming than other methods (Parker & Heywood, 1998 ). A longer period is needed to prepare student-centered and technology-supported activities.

Acar, O. (2008).  Argumentation skills and conceptual knowledge of undergraduate students in a physics by inquiry class . (Doctoral dissertation, The Ohio State University). https://etd.ohiolink.edu/apexprod/rws_etd/send_file/send?accession=osu1228972473&disposition=inline

Akpınar, Y., Ardaç, D., & Er-Amuce, N. (2014). Development and validation of an argumentation based multimedia science learning environment: Preliminary findings. Procedia-Social and Behavioral Sciences, 116 , 3848–3853.

Article   Google Scholar  

Aktamış, H., & Arıcı, V. A. (2013). The effects of using virtual reality software in teaching astronomy subjects on academic achievement and retention. Mersin University Journal of the Faculty of Education, 9 (2), 58–70.

Google Scholar  

Alalwan, N., Cheng, L., Al-Samarraie, H., Yousef, R., Alzahrani, A. I., & Sarsam, S. M. (2020). Challenges and prospects of virtual reality and augmented reality utilization among primary school teachers: A developing country perspective. Studies in Educational Evaluation, 66 , 100876.

Albe, V. (2008). When scientific knowledge, daily life experience, epistemological and social considerations intersect: Students’ argumentation in group discussions on a socio-scientific issue. Research in Science Education, 38 (1), 67–90.

Arici, F., Yildirim, P., Caliklar, Ş, & Yilmaz, R. M. (2019). Research trends in the use of augmented reality in science education: Content and bibliometric mapping analysis. Computers & Education, 142 , 103647.

Atwood-Blaine, D., & Huffman, D. (2017). Mobile gaming and student interactions in a science center: The future of gaming in science education. International Journal of Science and Mathematics Education, 15 (1), 45–65.

Baran, B., Yecan, E., Kaptan, B., & Paşayiğit, O. (2020). Using augmented reality to teach fifth grade students about electrical circuits. Education and Information Technologies, 25 (2), 1371–1385.

Billinghurst, M. (2002). Augmented reality in education. New Horizons for Learning, 12 (5), 1–5.

Bressler, D. M., & Bodzin, A. M. (2013). A mixed methods assessment of students’ flow experiences during a mobile augmented reality science game. Journal of Computer Assisted Learning, 29 (6), 505–517.

Buckingham Shum, S. J., MacLean, A., Bellotti, V. M., & Hammond, N. V. (1997). Graphical argumentation and design cognition. Human-Computer Interaction, 12 (3), 267–300.

Cadmus, R. R., Jr. (1990). A video technique to facilitate the visualization of physical phenomena. American Journal of Physics, 58 (4), 397–399.

Cai, S., Chiang, F. K., & Wang, X. (2013). Using the augmented reality 3D technique for a convex imaging experiment in a physics course. International Journal of Engineering Education, 29 (4), 856–865.

Chai, C. S., Deng, F., Tsai, P. S., Koh, J. H. L., & Tsai, C. C. (2015). Assessing multidimensional students’ perceptions of twenty-first-century learning practices. Asia Pacific Education Review, 16 (3), 389–398.

Cai, S., Liu, C., Wang, T., Liu, E., & Liang, J. C. (2021). Effects of learning physics using augmented reality on students’ self-efficacy and conceptions of learning. British Journal of Educational Technology, 52 (1), 235–251.

Cavagnetto, A., Hand, B. M., & Norton-Meier, L. (2010). The nature of elementary student science discourse in the context of the science writing heuristic approach. International Journal of Science Education, 32 (4), 427–449.

Chang, H. Y., Wu, H. K., & Hsu, Y. S. (2013). Integrating a mobile augmented reality activity to contextualize student learning of a socioscientific issue. British Journal of Educational Technology, 44 (3), 95–99.

Chang, H. Y., Liang, J. C., & Tsai, C. C. (2020). Students’ context-specific epistemic justifications, prior knowledge, engagement, and socioscientific reasoning in a mobile augmented reality learning environment. Journal of Science Education and Technology, 29 (3), 399–408.

Chen, S. Y., & Liu, S. Y. (2020). Using augmented reality to experiment with elements in a chemistry course. Computers in Human Behavior, 111 (2020), 106418.

Chen, C. H., Yang, J. C., Shen, S., & Jeng, M. C. (2007). A desktop virtual reality earth motion system in astronomy education. Educational Technology & Society, 10 (3), 289–304.

Chen, C. H., Huang, C. Y., & Chou, Y. Y. (2019). Effects of augmented reality-based multidimensional concept maps on students’ learning achievement, motivation and acceptance. Universal Access in the Information Society, 18 (2), 257–268.

Chen, C. C., Chen, H. R., & Wang, T. Y. (2022). Creative situated augmented reality learning for astronomy curricula. Educational Technology & Society, 25 (2), 148–162.

Cheng, K. H., & Tsai, C. C. (2013). Affordances of augmented reality in science learning: Suggestions for future research. Journal of Science Education and Technology, 22 (4), 449–462.

Chiang, T. H. C., Yang, S. J. H., & Hwang, G. J. (2014). An augmented reality-based mobile learning system to improve students’ learning achievements and motivations in natural science inquiry activities. Journal of Educational Technology & Society, 17 (4), 352–365.

Clark, D. B., & Sampson, V. (2008). Assessing dialogic argumentation in online environments to relate structure, grounds, and conceptual quality. Journal of Research in Science Teaching, 45 (3), 293–321.

Clark, D. B., Stegmann, K., Weinberger, A., Menekse, M., & Erkens, G. (2007). Technology-enhanced learning environments to support students’ argumentation. In S. Erduran & M. P. Jimenez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 217–243). Springer.

Chapter   Google Scholar  

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20 (1), 37–46.

Cross, D., Taasoobshirazi, G., Hendricks, S., & Hickey, D. T. (2008). Argumentation: A strategy for improving achievement and revealing scientific identities. International Journal of Science Education, 30 (6), 837–861.

Demircioglu, T., & Ucar, S. (2014). Investigation of written arguments about Akkuyu nuclear power plant. Elementary Education Online, 13 (4), 1373–1386.

Demircioglu, T., & Ucar, S. (2015). Investigation the effect of argument-driven inquiry in laboratory instruction. Educational Sciences: Theory and Practice, 15 (1), 267–283.

Dias, A. (2009). Technology enhanced learning and augmented reality: An application on multimedia interactive books. International Business & Economics Review, 1 (1), 69–79.

Dietrich, N., Kentheswaran, K., Ahmadi, A., Teychené, J., Bessière, Y., Alfenore, S., Laborie, S., & Hébrard, G. (2020). Attempts, successes, and failures of distance learning in the time of COVID-19. Journal of Chemical Education, 97 (9), 2448–2457.

Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84 , 287–312.

Dunleavy, M., Dede, C., & Mitchell, R. (2009). Affordances and limitations of immersive participatory augmented reality simulations for teaching and learning. Journal of Science Education and Technology, 18 (1), 7–22.

Ennis, R. H. (1991). Goals for a critical thinking curriculum. In A. Costa (Ed.), Developing minds: A resource book for teaching thinking (pp. 68–71). The Association of Supervision and Curriculum Development.

Ennis, R. H. (2011). The nature of critical thinking: An outline of critical thinking dispositions and abilities. Illinois College of Education. https://education.illinois.edu/docs/default-source/faculty-documents/robert-ennis/thenatureofcriticalthinking_51711_000.pdf

Erdogan, I., Ciftci, A., & Topcu, M. S. (2017). Examination of the questions used in science lessons and argumentation levels of students. Journal of Baltic Science Education, 16 (6), 980–993.

Erduran, S. (2020). Science education in the era of a pandemic: How can history, philosophy and sociology of science contribute to education for understanding and solving the Covid-19 crisis? Science & Education, 29 , 233–235.

Erduran, S., Simon, S., & Osborne, J. (2004). TAPping into argumentation: Developments in the application of Toulmin’s argument pattern for studying science discourse. Science Education, 88 (6), 915–933.

Erduran, S., Özdem, Y., & Park, J. Y. (2015). Research trends on argumentation in science education: A journal content analysis from 1998–2014. International Journal of STEM Education, 2 (1), 1–12.

Erkens, G., & Janssen, J. (2006). Automatic coding of communication in collaboration protocols. In S. Barab, K. Hay, & D. Hickey (Eds.), Proceedings of the 7th International Conference on Learning Sciences (ICLS) , (pp. 1063–1064). International Society of the Learning Sciences. https://doi.org/10.5555/1150034

Faridi, H., Tuli, N., Mantri, A., Singh, G., & Gargrish, S. (2020). A framework utilizing augmented reality to improve critical thinking ability and learning gain of the students in Physics. Computer Applications in Engineering Education, 29 , 258–273.

Fidan, M., & Tuncel, M. (2019). Integrating augmented reality into problem based learning: The effects on learning achievement and attitude in physics education. Computers & Education, 142 , 103635.

Fleck, S., & Simon, G. (2013, November). An augmented reality environment for astronomy learning in elementary grades: An exploratory study. In  Proceedings of the 25th Conference on l ’ Interaction Homme-Machine  (pp. 14–22). ACM.

Garzón, J., & Acevedo, J. (2019). Meta-analysis of the impact of augmented reality on students’ learning gains. Educational Research Review, 27 , 244–260.

Garzón, J., Pavón, J., & Baldiris, S. (2019). Systematic review and meta-analysis of augmented reality in educational settings. Virtual Reality , 1–13

Garzón, J., Baldiris, S., Gutiérrez, J., & Pavón, J. (2020). How do pedagogical approaches affect the impact of augmented reality on education? A meta-analysis and research synthesis.  Educational Research Review , 100334.

Guba, E.G. & Lincoln, Y.S. (1989). Fourth generation evaluation . Sage Publications.

Hanid, M. F. A., Said, M. N. H. M., & Yahaya, N. (2020). Learning strategies using augmented reality technology in education: Meta-analysis. Universal Journal of Educational Research, 8 (5A), 51–56.

Hsiao, H. S., Chang, C. S., Lin, C. Y., & Wang, Y. Z. (2016). Weather observers: A manipulative augmented reality system for weather simulations at home, in the classroom, and at a museum. Interactive Learning Environments, 24 (1), 205–223.

Huang, K. T., Ball, C., Francis, J., Ratan, R., Boumis, J., & Fordham, J. (2019). Augmented versus virtual reality in education: An exploratory study examining science knowledge retention when using augmented reality/virtual reality mobile applications. Cyberpsychology, Behavior, and Social Networking, 22 (2), 105–110.

Hwang, G. J., Wu, P. H., Chen, C. C., & Tu, N. T. (2016). Effects of an augmented reality-based educational game on students’ learning achievements and attitudes in real-world observations. Interactive Learning Environments, 24 (8), 1895–1906.

Ibáñez, M. B., Di Serio, Á., Villarán, D., & Kloos, C. D. (2014). Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness. Computers & Education, 71 , 1–13.

Jan, M. (2009). Designing an augmented reality game-based curriculum for argumentation . (Unpublished doctoral dissertation). University of Wisconsin-Madison.

Jermann, P., & Dillenbourg, P. (2003). Elaborating new arguments through a CSCL script. In J. Andriessen, M. Baker, & D. Suthers (Eds.), Arguing to learn: Confronting cognitions in computer-supported collaborative learning environments (pp. 205–226). Springer.

Jiménez –Aleixandre, M. P., & Erduran, S. (2007). Argumentation in science education: An overview. In S. Erduran & M. P. Jimenez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 3–27). Springer.

Jiménez-Aleixandre, M. P., & Puig, B. (2012). Argumentation, evidence evaluation and critical thinking. In  Second international handbook of science education  (pp. 1001–1015). Springer, Dordrecht.

Ke, F., & Carafano, P. (2016). Collaborative science learning in an immersive flight simulation. Computers & Education, 103 , 114–123.

Kennedy, G., Dalgarno, B., Bennett, S., Judd, T., Gray, K., & Chang, R. (2008). Immigrants and natives: Investigating differences between staff and students’ use of technology. In Hello! Where are you in the landscape of educational technology? . Proceedings Ascilite Melbourne, 2008 , 484–492.

Kerawalla, L., Luckin, R., Seljeflot, S., & Woolard, A. (2006). “Making it real”: Exploring the potential of augmented reality for teaching primary school science. Virtual Reality, 10 (3–4), 163–174.

Kirikkaya, E. B., & Başgül, M. Ş. (2019). The effect of the use of augmented reality applications on the academic success and motivation of 7th grade students. Journal of Baltic Science Education, 18 (3), 362.

Kolsto, S. D. (2001). ‘To trust or not to trust,…’-pupils’ ways of judging information encountered in a socio-scientific issue. International Journal of Science Education, 23 (9), 877–901.

Lin, S. S., & Mintzes, J. J. (2010). Learning argumentation skills through instruction in socioscientific issues: The effect of ability level. International Journal of Science and Mathematics Education, 8 (6), 993–1017.

López-Faican, L., & Jaen, J. (2020). Emofindar: Evaluation of a mobile multiplayer augmented reality game for primary school children. Computers & Education, 149 (2020), 103814.

Lu, S. J., Liu, Y. C., Chen, P. J., & Hsieh, M. R. (2020). Evaluation of AR embedded physical puzzle game on students’ learning achievement and motivation on elementary natural science. Interactive Learning Environments, 28 (4), 451–463.

Maykut, P., & Morehouse, R. (1994). Beginning qualitative research: A philosophic and practical guide. The Falmer Press.

Novak, A. M., & Treagust, D. F. (2017). Adjusting claims as new evidence emerges: Do students incorporate new evidence into their scientific explanations? Journal of Research in Science Teaching, 55 (4), 526–549.

Nussbaum, E. M. (2008). Collaborative discourse, argumentation, and learning: Preface and literature review. Contemporary Educational Psychology, 33 (3), 345–359.

OECD. (2003). Literacy skills for the world of tomorrow: Further results from PISA 2003 . OECD Publishing.

Book   Google Scholar  

Oestermeier, U., & Hesse, F. W. (2000). Verbal and visual causal arguments. Cognition, 75 (1), 65–104.

Oleksiuk, V.P., Oleksiuk, O.R. (2020). Exploring the potential of augmented reality for teaching school computer science. In Burov, O.Yu., Kiv, A.E. (Eds.) Proceedings of the 3rd International Workshop on Augmented Reality in Education (AREdu 2020) (pp. 91–107).

Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argument in school science. Journal of Research in Science Teaching, 41 (10), 994–1020.

Parker, J., & Heywood, D. (1998). The earth and beyond: Developing primary teachers’ understanding of basic astronomical events. International Journal of Science Education, 20 , 503–520.

Patton, M. Q. (2002). Qualitative research and evaluation methods (3rd ed.). Sage.

Pellas, N., Fotaris, P., Kazanidis, I., & Wells, D. (2019). Augmenting the learning experience in primary and secondary school education: A systematic review of recent trends in augmented reality game-based learning. Virtual Reality, 23 (4), 329–346.

Ploman, E. W. (1987), Global learning: A challenge. In C. A., Taylor (Ed.) Science education and information transfer (pp. 75–80). Oxford: Pergamon (for ICSU Press).

Radu, I., & Schneider, B. (2019). What can we learn from augmented reality (AR)? Benefits and drawbacks of AR for inquiry-based learning of physics. In  Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems  (pp. 1–12).

Rideout, V. J., Foehr, U. G., & Roberts, D. F. (2010). Generation M [superscript 2]: Media in the lives of 8-to 18-year-olds . Kaiser Family Foundation.

Rieber, L. P., & Kini, A. S. (1991). Theoretical foundations of instructional applications of computer-generated animated visuals. Journal of Computer-Based Instruction, 18 , 83e88.

Romano, M., Díaz, P., & Aedo, I. (2020). Empowering teachers to create augmented reality experiences: The effects on the educational experience.  Interactive Learning Environments , 1–18.

Sadler, T. D., & Donnelly, L. A. (2006). Socioscientific argumentation: The effects of content knowledge and morality. International Journal of Science Education, 28 (12), 1463–1488.

Sahin, D., & Yilmaz, R. M. (2020). The effect of augmented reality technology on middle school students’ achievements and attitudes towards science education. Computers & Education, 144 (2020), 103710.

Sampson, V., & Clark, D. B. (2011). A comparison of the collaborative scientific argumentation practices of two high and two low performing groups. Research in Science Education, 41 (1), 63–97.

Sampson, V., & Gleim, L. (2009). Argument-driven ınquiry to promote the understanding of important concepts & practices in biology. The American Biology Teacher, 71 (8), 465–472.

Sampson, V., Grooms, J., & Walker, J. P. (2011). Argument-driven ınquiry as a way to help students learn how to participate in scientific argumentation and craft written arguments: An exploratory study. Science Education, 95 (2), 217–257.

Sandoval, W. A., & Millwood, K. A. (2005). The quality of students’ use of evidence in written scientific explanations. Cognition and Instruction, 23 (1), 23–55.

Saribas, D., & Çetinkaya, E. (2021). Pre-service teachers’ analysis of claims about COVID-19 in an online course. Science & Education, 30 (2), 235–266.

Schnotz, W., & Lowe, R. K. (2008). A unified view of learning from animated and static graphics. In R. K. Lowe & W. Schnotz (Eds.), Learning with animation: Research implications for design (pp. 304–357). Cambridge University Press.

Setozaki, N., Suzuki, K., Iwasaki, T., & Morita, Y. (2017). Development and evaluation of the usefulness of collaborative learning on the tangible AR learning equipment for astronomy education. Educational Technology Research, 40 (1), 71–83.

Shelton, B. E. & Hedley, N. R. (2002). Using augmented reality for teaching earth-sun relationships to undergraduate geography students. In Augmented Reality Toolkit, The First IEEE International Workshop (8).

Sin, A. K., & Zaman, H. B. (2010). Live solar system (LSS): Evaluation of an augmented reality book-based educational tool. In Proceedings of 2010 International Symposium on Information Technology, 1 , 1–6.

Squire, K. (2006). From content to context: Videogames as designed experience. Educational Researcher, 35 (8), 19–29.

Squire, K. D., & Jan, M. (2007). Mad City Mystery: Developing scientific argumentation skills with a place-based augmented reality game on handheld computers. Journal of Science Education and Technology, 16 (1), 5–29.

Stark, R., Puhl, T., & Krause, U. M. (2009). Improving scientific argumentation skills by a problem-based learning environment: Effects of an elaboration tool and relevance of student characteristics. Evaluation & Research in Education, 22 (1), 51–68.

Syawaludin, A., Gunarhadi, R., & P. (2019). Development of augmented reality-based interactive multimedia to improve critical thinking skills in science learning. International Journal of Instruction, 12 (4), 331–344.

Taylor, C. A. (1987). Science education and information transfer (pp.1–15). Oxford: Pergamon (for ICSU Press)

Toulmin, S. E. (1990). The uses of argument (10th ed.). Cambridge University Press.

Venville, G. J., & Dawson, V. M. (2010). The impact of a classroom intervention on grade 10 students’ argumentation skills, informal reasoning, and conceptual understanding of science. Journal of Research in Science Teaching, 47 (8), 952–977.

Virata, R. O., & Castro, J. D. L. (2019). Augmented reality in science classroom: Perceived effects in education, visualization and information processing. In  Proceedings of the 10th International Conference on E-Education, E-Business, E-Management and E-Learning  (pp. 85–92).

Von Aufschnaiter, C., Erduran, S., Osborne, J., & Simon, S. (2008). Arguing to learn and learning to argue: Case studies of how students’ argumentation relates to their scientific knowledge. Journal of Research in Science Teaching, 45 (1), 101–131.

Wu, Y. T., & Tsai, C. C. (2007). High school students’ informal reasoning on a socio-scientific issue: Qualitative and quantitative analyses. International Journal of Science Education, 29 (9), 1163–1187.

Yen, J. C., Tsai, C. H., & Wu, M. (2013). Augmented reality in the higher education: Students’ science concept learning and academic achievement in astronomy. Procedia-Social and Behavioral Sciences, 103 , 165–173.

Yildirim, I., & Seckin-Kapucu, M. (2020). The effect of augmented reality applications in science education on academic achievement and retention of 6th grade students. Journal of Education in Science Environment and Health, 7 (1), 56–71.

Yu, K. C., & Sahami, K. (2007). Visuospatial astronomy education in immersive digital planetariums.  Communicating Astronomy with the Public , 242–245.

Yuen, S., Yaoyuneyong, G., & Johnson, E. (2011). Augmented reality: An overview and five directions for AR in education. Journal of Educational Technology Development and Exchange, 4 (1), 119–140.

Zhang, J., Sung, Y.-T., Hou, H.-T., & Chang, K.-E. (2014). The development and evaluation of an augmented reality-based armillary sphere for astronomical observation instruction. Computers & Education, 73 , 178–188.

Zohar, A., & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39 (1), 35–62.

Download references

This study is a part of Tuba Demircioğlu’s dissertation supported by the Cukurova University Scientific Research Projects (grant number: SDK20153929).

The manuscript is part of first author’s PhD dissertation. The study was reviewed and approved by the PhD committee in the Cukurova University Faculty of Education, as well as by the committee of Ministry of National Education. The parents of students were provided with written informed consent.

Author information

Authors and affiliations.

Faculty of Education, Department of Mathematics and Science Education/Elementary Science Education, Cukurova University, 01330, Saricam-Adana, Turkey

Tuba Demircioglu & Sedat Ucar

Department of Educational Sciences, Cukurova University, Adana, Turkey

Memet Karakus

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Tuba Demircioglu .

Ethics declarations

Conflict of interest.

The authors declare that they have no conflict of interest.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Tables 8 , 9 , 10 and 11

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Demircioglu, T., Karakus, M. & Ucar, S. Developing Students’ Critical Thinking Skills and Argumentation Abilities Through Augmented Reality–Based Argumentation Activities in Science Classes. Sci & Educ 32 , 1165–1195 (2023). https://doi.org/10.1007/s11191-022-00369-5

Download citation

Accepted : 15 July 2022

Published : 22 August 2022

Issue Date : August 2023

DOI : https://doi.org/10.1007/s11191-022-00369-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Find a journal
  • Publish with us
  • Track your research

Journal on Excellence in College Teaching Logo

Professors’ Assumptions About Students’ Critical Thinking Dispositions and Epistemological Beliefs

  • Geoffrey Scheurman Author

Research dealing with the epistemological development of young adults has helped college professors better understand how their students reason about and resolve ill-structured problems. To date, however, researchers have largely overlooked two important variables: epistemic beliefs held by college faculty members themselves and faculty members' assumptions about college students' reasoning. In this paper, I review highlights from adult developmental theories, including a discussion of the nature of problems commonly confronted by college students. Next, I share the results of an investigation into the epistemic orientations of general education faculty, focusing in particular on their assumptions about typical undergraduates' approaches to reasoning. I conclude by discussing implications for translating theories of adult intellectual development into effective methods of college teaching.

Journal on Excellence in College Teaching Cover

  • Requires Subscription PDF

Access Agreement Journal on Excellence in College Teaching

Before proceeding you must agree to the terms and conditions of usage as outlined below by clicking on the Accept button and/or by both parties’ signatures below. You will have to do this only once. After agreement, you will be redirected back to the main Journal page. A pdf copy of the terms is available for download.

This Access Agreement (the "Agreement") is effective upon processing of payment ("Effective Date") and is entered into by and between the Journal on Excellence in College Teaching (“JECT”) and the Customer (“Customer").

This Agreement constitutes the entire agreement and supersedes and voids all prior communications, understandings, and agreements relating to the Product(s), including any terms of use displayed to Authorized Users via the online site of the Product(s). Alterations to the Agreement and to any Addendum to the Agreement are only valid and binding if they are recorded in writing and signed by both parties

. I. Definitions

"Authorized Users" shall mean individuals who are authorized by the Customer (which shall include those individuals authorized by the Institutions hereunder) to access the Customer's information services whether on-site or off-site via secure authentication and who are affiliated with the Customer as a student (undergraduates and postgraduates), employee (whether on a permanent or temporary basis), or a contractor of the Customer. Individuals who are not a current student, employee, or a contractor of the Customer, but who are permitted to access the Customer's information services from computer terminals within the physical premises of the Customer ("Walk-In Users"), are also deemed to be Authorized Users, but only for the time they are within the physical premises of the Customer. Walk-In Users may not be given means to access the Product(s) when they are not within the physical premises of the Customer.

"Commercial Use" shall mean use for the purpose of monetary reward (whether by or for the Customer or an Authorized User) by means of the sale, resale, loan, transfer, hire, or other form of exploitation of the Product(s). For the avoidance of doubt, neither recovery of direct cost by the Customer from Authorized Users, nor use by the Customer or Authorized Users of the Product(s) in the course of research funded by a commercial organization, shall be deemed to constitute Commercial Use.

"Educational Purposes" shall mean for the purpose of education, teaching, distance learning, private study and/or research as described in Section II below.

"Institutions" shall mean the Customer's participating institutions, if applicable.

"License" shall mean the non-exclusive, non-transferable right to access and use the Product(s) pursuant to the specific terms and conditions set forth in this Agreement.

"Product(s)" shall mean the products, materials and/or information contained therein that are subject to this Agreement. Product(s) include the Journal on Excellence in College Teaching and the archive of the Learning Communities Journal.

"Reasonable Amount" shall be determined based on guidelines set forth by 17 U.S. Code § 107 (Limitations on exclusive rights, Fair use).

"Secure Authentication" shall mean access to the Product(s) by Internet Protocol ("IP") ranges or by another means of authentication agreed between the Publisher and Customer or Institutions (if applicable) from time to time.

II. Authorized Use of Product(s)

Customer, the Institutions (if applicable), and Authorized Users may use the Product(s) for Educational Purposes as follows:

Analysis . Authorized Users shall be permitted to extract or use information contained in the Product(s) for Educational Purposes, including, but not limited to, text and data mining, extraction and manipulation of information for the purposes of illustration, explanation, example, comment, criticism, teaching, research, or analysis.

Course Packs . Customer, the Institutions, and Authorized Users may use a Reasonable Amount of the Product(s) in the preparation of course packs or other educational materials.

Digital Copy . Customer, the Institutions, and Authorized Users may download and digitally copy a Reasonable Amount of the Product(s).

Display . Customer, the Institutions, and Authorized Users shall have the right to electronically display the Product(s) to the extent necessary to further the intent and purpose of this Agreement.

Electronic Reserve . Customer, the Institutions, and Authorized Users may use a Reasonable Amount of each of the Product(s) in connection with specific courses of instruction offered by Customer.

Interlibrary Loan . The Customer and the Institutions shall be permitted to use Reasonable Amounts of the Content to fulfill occasional requests from other, non-participating institutions, a practice commonly called Interlibrary Loan ("ILL"). Customer and the Institutions shall fulfill such requests in compliance with Section 108 of the United States Copyright Law (17 USC S108, "Limitations on exclusive rights: Reproduction by libraries and archives") and the Guidelines for the Proviso of Subsection 108(2g)(2) prepared by the National Commission on New Technological Uses of Copyrighted Works (CONTU).

The electronic form of the Product(s) may be used as a source for ILL. Customer and the Institutions shall include copyright notices on all ILL transmissions. Notwithstanding anything herein to the contrary, in no event shall any non-secure electronic transmission of files be permitted.

Print Copy . Customer, the Institutions, and Authorized Users may print a Reasonable Amount of the Product(s).

Recover Copying Costs . Customer and the Institutions may charge a reasonable fee to cover costs of copying or printing portions of Product(s) for Authorized Users.

Scholarly Sharing . Authorized Users may transmit to a third party colleague in hard copy or electronically, Reasonable Amounts of the Product(s) for personal use, professional use, or Educational Purposes but in no event for Commercial Use. In addition, Authorized Users have the right to use, with appropriate credit, figures, tables, and brief excerpts from the Product(s) in the Authorized User's own scientific, scholarly, and educational works.

Text Mining . Authorized Users may use the licensed material to perform and engage in text mining/data mining activities for legitimate academic research and other Educational Purposes. Those uses beyond educational use shall require permission from the Publisher.

III. Restrictions

Except as provided herein, the institution shall make reasonable efforts to inform its authorized users not to use, alter, decompile, modify, display, or distribute the Product(s) as follows:

Alter Identification . Remove, obscure, or modify copyright notices, text acknowledging, attributions, or other means of identification or disclaimers as they appear. Alter Product(s).

Alter, decompile, adapt, or modify the Product(s), except to the extent necessary to make it perceptible on a computer screen, or as otherwise permitted in this Agreement. Alteration of words or their order is strictly prohibited.

Commercial Use . No Commercial Use of the Product(s) shall be permitted unless the Customer or an Authorized User has been granted prior written consent by an authorized representative of the Product(s). Use of all or any part of the Product(s) for any Commercial Use or for any purpose other than Educational Purposes.

Distribution . Display or distribute any part of the Product(s) on any electronic network, including without limitation, the Internet, and any other distribution medium now in existence or hereinafter created, other than by a Secure Authentication; print and distribute any portion(s) of the Product(s)s to persons or entities other than the Customer or Authorized Users, except as provided in Section II.

JECT acknowledges that the Customer cannot police or control the actions of its students, faculty, and other Authorized Users with respect to their use of the Product(s). In the event of abuse, the institution shall make prompt and reasonable efforts to heal the breach and notify the publisher.

IV. Term and Termination

This agreement shall commence on the Effective Date and shall remain in effect unless and until terminated as permitted herein (the "Term"). There is no perpetual electronic access to content made available during the term of the agreement.

JECT may terminate this Agreement if Customer violates any of the terms and conditions set forth herein. In the event of any termination of access, JECT will promptly notify the Customer of the basis for termination.

The Customer may terminate this Agreement if sufficient funds are not provided or allotted in future government-approved budgets of the Customer (or reasonably available or expected to become available from other sources at the time the Customer’s payment obligation attaches) to permit the Subscriber, in the exercise of its reasonable administrative discretion, to continue this Agreement.

In the event of any unauthorized use of the Product(s) by an Authorized User, Customer shall cooperate with JECT in the investigation of any unauthorized use of the Product(s) of which it is made aware and shall use reasonable efforts to remedy such unauthorized use and prevent its recurrence. JECT may terminate such Authorized User's access to the Product(s) after first providing reasonable notice to the Customer (in no event less than two (2) weeks) and cooperating with the Customer to avoid recurrence of any unauthorized use. In the event of any termination of access, JECT will promptly notify the Customer

. V. Refunds

In the event that a subscription is canceled by the Customer prior to the subscription end date, the following will be used as guidelines for refunds.

Electronic subscriptions . The Customer shall be entitled to a full refund within 14 days of the start of the most recent subscription term. Refunds requested after 14 days but no later than 60 days from the start of the most recent subscription term will be allowed, minus a 30% processing fee. Refunds will not be granted if requested more than 60 days after the start of the most recent subscription term.

Journal on Excellence in College Teaching Center for Teaching Excellence Miami University 317 Laws Hall Oxford, Ohio 45056

All rights reserved | Miami University | The Journal on Excellence in College Teaching

More information about the publishing system, Platform and Workflow by OJS/PKP.

critical thinking important for students

Explained: Importance of critical thinking, problem-solving skills in curriculum

F uture careers are no longer about domain expertise or technical skills. Rather, critical thinking and problem-solving skills in employees are on the wish list of every big organization today. Even curriculums and pedagogies across the globe and within India are now requiring skilled workers who are able to think critically and are analytical.

The reason for this shift in perspective is very simple.

These skills provide a staunch foundation for comprehensive learning that extends beyond books or the four walls of the classroom. In a nutshell, critical thinking and problem-solving skills are a part of '21st Century Skills' that can help unlock valuable learning for life.

Over the years, the education system has been moving away from the system of rote and other conventional teaching and learning parameters.

They are aligning their curriculums to the changing scenario which is becoming more tech-driven and demands a fusion of critical skills, life skills, values, and domain expertise. There's no set formula for success.

Rather, there's a defined need for humans to be more creative, innovative, adaptive, agile, risk-taking, and have a problem-solving mindset.

In today's scenario, critical thinking and problem-solving skills have become more important because they open the human mind to multiple possibilities, solutions, and a mindset that is interdisciplinary in nature.

Therefore, many schools and educational institutions are deploying AI and immersive learning experiences via gaming, and AR-VR technologies to give a more realistic and hands-on learning experience to their students that hone these abilities and help them overcome any doubt or fear.

ADVANTAGES OF CRITICAL THINKING AND PROBLEM-SOLVING IN CURRICULUM

Ability to relate to the real world:  Instead of theoretical knowledge, critical thinking, and problem-solving skills encourage students to look at their immediate and extended environment through a spirit of questioning, curiosity, and learning. When the curriculum presents students with real-world problems, the learning is immense.

Confidence, agility & collaboration : Critical thinking and problem-solving skills boost self-belief and confidence as students examine, re-examine, and sometimes fail or succeed while attempting to do something.

They are able to understand where they may have gone wrong, attempt new approaches, ask their peers for feedback and even seek their opinion, work together as a team, and learn to face any challenge by responding to it.

Willingness to try new things: When problem-solving skills and critical thinking are encouraged by teachers, they set a robust foundation for young learners to experiment, think out of the box, and be more innovative and creative besides looking for new ways to upskill.

It's important to understand that merely introducing these skills into the curriculum is not enough. Schools and educational institutions must have upskilling workshops and conduct special training for teachers so as to ensure that they are skilled and familiarized with new teaching and learning techniques and new-age concepts that can be used in the classrooms via assignments and projects.

Critical thinking and problem-solving skills are two of the most sought-after skills. Hence, schools should emphasise the upskilling of students as a part of the academic curriculum.

The article is authored by Dr Tassos Anastasiades, Principal- IB, Genesis Global School, Noida. 

Watch Live TV in English

Watch Live TV in Hindi

Explained: Importance of critical thinking, problem-solving skills in curriculum

IMAGES

  1. The benefits of critical thinking for students and how to develop it

    critical thinking important for students

  2. The benefits of critical thinking for students and how to develop it

    critical thinking important for students

  3. 10 Essential Critical Thinking Skills (And How to Improve Them

    critical thinking important for students

  4. The benefits of Critical Thinking for Students

    critical thinking important for students

  5. Importance of Critical Thinking Ability in Students

    critical thinking important for students

  6. What Education in Critical Thinking Implies Infographic

    critical thinking important for students

VIDEO

  1. Inculcating Critical Thinking at School Level

  2. Empowering Future Leaders: Developing Critical Thinking at Wisdom High Group of School" #bestschool

  3. Critical Thinking and Problem Solving

  4. Teacher De-Wokefies Student By Teaching Critical Thinking

  5. Critical Thinking is All You Need To Build Business and Life (How To Think Critically)

  6. Discussion- Surveillance Detection Routes

COMMENTS

  1. Helping Students Hone Their Critical Thinking Skills

    Critical thinking skills are important in every discipline, at and beyond school. From managing money to choosing which candidates to vote for in elections to making difficult career choices, students need to be prepared to take in, synthesize, and act on new information in a world that is constantly changing.

  2. Developing Critical Thinking

    In a time where deliberately false information is continually introduced into public discourse, and quickly spread through social media shares and likes, it is more important than ever for young people to develop their critical thinking. That skill, says Georgetown professor William T. Gormley, consists of three elements: a capacity to spot ...

  3. The Importance of Critical Thinking

    Critical thinking is a vital skill, yet it's often neglected. In higher education, we know the importance of learning objectives that let us measure learner success. Starting with a clear definition of critical thinking allows us to identify the associated skills that we want to imbue in our students and ourselves.

  4. Integrating Critical Thinking Into the Classroom (Opinion)

    Critical thinking has the power to launch students on unforgettable learning experiences while helping them develop new habits of thought, reflection, and inquiry. Developing these skills prepares ...

  5. Eight Instructional Strategies for Promoting Critical Thinking

    Students grappled with ideas and their beliefs and employed deep critical-thinking skills to develop arguments for their claims. Embedding critical-thinking skills in curriculum that students care ...

  6. What Are Critical Thinking Skills and Why Are They Important?

    According to the University of the People in California, having critical thinking skills is important because they are [ 1 ]: Universal. Crucial for the economy. Essential for improving language and presentation skills. Very helpful in promoting creativity. Important for self-reflection.

  7. Why critical thinking skills are (urgently) important for students

    Studying effectively has always required the skills that tend to be bundled together under the heading of "critical thinking": constructing and evaluating arguments; assessing and deploying evidence; seeking reasonable explanations; learning to skewer common fallacies; seeing beyond the seductions of rhetoric; subjecting both your own and ...

  8. What is critical thinking?

    Critical thinking is a kind of thinking in which you question, analyse, interpret , evaluate and make a judgement about what you read, hear, say, or write. The term critical comes from the Greek word kritikos meaning "able to judge or discern". Good critical thinking is about making reliable judgements based on reliable information.

  9. Critical Thinking in the Classroom: A Guide for Teachers

    Critical thinking is a key skill that goes far beyond the four walls of a classroom. It equips students to better understand and interact with the world around them. Here are some reasons why fostering critical thinking is important: Making Informed Decisions: Critical thinking enables students to evaluate the pros and cons of a situation ...

  10. Critical Thinking

    One of the most important aspects of critical thinking is to decide what you are aiming to achieve and then make a decision based on a range of possibilities. ... Develop the skills you need to make the most of your time as a student. Our eBooks are ideal for students at all stages of education, school, college and university. ...

  11. Critical Thinking

    Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). ... Both are Important for ...

  12. The Importance Of Critical Thinking, and how to improve it

    Critical thinking can help you better understand yourself, and in turn, help you avoid any kind of negative or limiting beliefs, and focus more on your strengths. Being able to share your thoughts can increase your quality of life. 4. Form Well-Informed Opinions.

  13. The Importance of Critical Thinking Skills for Students

    How can students develop critical thinking skills. Although critical thinking skills for students is an important and necessary process, it isn't necessarily difficult to develop these observational skills. All it takes is a conscious effort and a little bit of practice. Here are a few tips to get you started: 1. Never stop asking questions

  14. Why do learners need critical thinking skills?

    4 reasons why critical thinking skills are important. 1. Learners with better critical thinking are more prepared for the workforce. ... Just as with the first brainteaser, explain to your students that we use critical thinking whenever we use logic to connect ideas or information in order to make a decision, draw a conclusion, evaluate a ...

  15. Why is critical thinking important?

    You may be asking "why is critical thinking important for students?" Critical thinking appears in a diverse set of disciplines and impacts students' learning every day, regardless of major. Critical thinking skills are often associated with the value of studying the humanities. In majors such as English, students will be presented with a ...

  16. How to teach critical thinking, a vital 21st-century skill

    1. Build a classroom climate that encourages open-mindedness. 2. Teach students to make clear and effective arguments. 3. Encourage metacognition — guide students to think about their own and others' thinking. 4. Assign open-ended and varied activities to practice different kinds of thinking. 5.

  17. The Importance of Critical Thinking in Students & How To Improve It

    There are many reasons why critical thinking is important for students. It helps them to: Analyse & evaluate information effectively. Make informed decisions based on evidence. Develop innovative & creative ideas. Solve complex problems. Understand & evaluate arguments. Communicate effectively. In short, critical thinking is a fundamental skill ...

  18. On Critical Thinking

    Theoretical critical thinking involves helping the student develop an appreciation for scientific explanations of behavior. This means learning not just the content of psychology but how and why psychology is organized into concepts, principles, laws, and theories. Developing theoretical skills begins in the introductory course where the ...

  19. Why is critical thinking important for Psychology students?

    Critical thinking is objective and requires you to analyse and evaluate information to form a sound judgement. It is a cornerstone of evidence-based arguments and forming an evidence-based argument is essential in Psychology. That is why we, your tutors, as well as your future employers, want you to develop this skill effectively.

  20. What Is Critical Thinking?

    Critical thinking is the ability to effectively analyze information and form a judgment. To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources. Critical thinking skills help you to: Identify credible sources. Evaluate and respond to arguments.

  21. Developing Students' Critical Thinking Skills and Argumentation

    Critical thinking skills that include the ability to evaluate arguments and counterarguments in a variety of contexts are very important, and effective argumentation is the focal point of criticism and the informed decision (Nussbaum, 2008).Argumentation is defined as the process of making claims about a scientific subject, supporting them with data, using warrants, and criticizing, refuting ...

  22. Professors' Assumptions About Students' Critical Thinking Dispositions

    Research dealing with the epistemological development of young adults has helped college professors better understand how their students reason about and resolve ill-structured problems. To date, however, researchers have largely overlooked two important variables: epistemic beliefs held by college faculty members themselves and faculty members' assumptions about college students' reasoning.

  23. Explained: Importance of critical thinking, problem-solving skills in

    When the curriculum presents students with real-world problems, the learning is immense. Confidence, agility & collaboration: Critical thinking and problem-solving skills boost self-belief and ...