are small zooplankton found in freshwater inland lakes and are thought to switch their mode of reproduction from asexual to sexual in response to extreme temperatures (Mitchell 1999). Lakes containing have an average summer surface temperature of 20°C (Harper 1995) but may increase by more than 15% when expose to warm water effluent from power plants, paper mills, and chemical industry (Baker et al. 2000). Could an increase in lake temperature caused by industrial thermal pollution affect the survivorship and reproduction of ?
The sex of is mediated by the environment rather than genetics. Under optimal environmental conditions, populations consist of asexually reproducing females. When the environment shifts may be queued to reproduce sexually resulting in the production of male offspring and females carrying haploid eggs in sacs called ephippia (Mitchell 1999).
The purpose of this laboratory study is to examine the effects of increased water temperature on survivorship and reproduction. This study will help us characterize the magnitude of environmental change required to induce the onset of the sexual life cycle in . Because are known to be a sensitive environmental indicator species (Baker et al. 2000) and share similar structural and physiological features with many aquatic species, they serve as a good model for examining the effects of increasing water temperature on reproduction in a variety of aquatic invertebrates.
We hypothesized that populations reared in water temperatures ranging from 24-26 °C would have lower survivorship, higher male/female ratio among the offspring, and more female offspring carrying ephippia as compared with grown in water temperatures of 20-22°C. To test this hypothesis we reared populations in tanks containing water at either 24 +/- 2°C or 20 +/- 2°C. Over 10 days, we monitored survivorship, determined the sex of the offspring, and counted the number of female offspring containing ephippia.
Comments:
Background information
· Opening paragraph provides good focus immediately. The study organism, gender switching response, and temperature influence are mentioned in the first sentence. Although it does a good job documenting average lake water temperature and changes due to industrial run-off, it fails to make an argument that the 15% increase in lake temperature could be considered “extreme” temperature change.
· The study question is nicely embedded within relevant, well-cited background information. Alternatively, it could be stated as the first sentence in the introduction, or after all background information has been discussed before the hypothesis.
Rationale
· Good. Well-defined purpose for study; to examine the degree of environmental change necessary to induce the Daphnia sexual life
cycle.
How will introductions be evaluated? The following is part of the rubric we will be using to evaluate your papers.
0 = inadequate (C, D or F) | 1 = adequate (BC) | 2 = good (B) | 3 = very good (AB) | 4 = excellent (A) | |
Introduction BIG PICTURE: Did the Intro convey why experiment was performed and what it was designed to test?
| Introduction provides little to no relevant information. (This often results in a hypothesis that “comes out of nowhere.”) | Many key components are very weak or missing; those stated are unclear and/or are not stated concisely. Weak/missing components make it difficult to follow the rest of the paper. e.g., background information is not focused on a specific question and minimal biological rationale is presented such that hypothesis isn’t entirely logical
| Covers most key components but could be done much more logically, clearly, and/or concisely. e.g., biological rationale not fully developed but still supports hypothesis. Remaining components are done reasonably well, though there is still room for improvement. | Concisely & clearly covers all but one key component (w/ exception of rationale; see left) clearly covers all key components but could be a little more concise and/or clear. e.g., has done a reasonably nice job with the Intro but fails to state the approach OR has done a nice job with Intro but has also included some irrelevant background information
| Clearly, concisely, & logically presents all key components: relevant & correctly cited background information, question, biological rationale, hypothesis, approach. |
Run a free plagiarism check in 10 minutes, automatically generate references for free.
Published on 6 May 2022 by Shona McCombes .
A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.
What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.
A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.
A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).
Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.
In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .
Step 1: ask a question.
Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.
Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.
At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.
Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.
You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:
To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.
In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.
If you are comparing two groups, the hypothesis can state what difference you expect to find between them.
If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .
Research question | Hypothesis | Null hypothesis |
---|---|---|
What are the health benefits of eating an apple a day? | Increasing apple consumption in over-60s will result in decreasing frequency of doctor’s visits. | Increasing apple consumption in over-60s will have no effect on frequency of doctor’s visits. |
Which airlines have the most delays? | Low-cost airlines are more likely to have delays than premium airlines. | Low-cost and premium airlines are equally likely to have delays. |
Can flexible work arrangements improve job satisfaction? | Employees who have flexible working hours will report greater job satisfaction than employees who work fixed hours. | There is no relationship between working hour flexibility and job satisfaction. |
How effective is secondary school sex education at reducing teen pregnancies? | Teenagers who received sex education lessons throughout secondary school will have lower rates of unplanned pregnancy than teenagers who did not receive any sex education. | Secondary school sex education has no effect on teen pregnancy rates. |
What effect does daily use of social media have on the attention span of under-16s? | There is a negative correlation between time spent on social media and attention span in under-16s. | There is no relationship between social media use and attention span in under-16s. |
Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.
A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).
A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).
A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.
If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.
McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 21 October 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/
Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.
Hypotheses and predictions are different components of the scientific method. The scientific method is a systematic process that helps minimize bias in research and begins by developing good research questions.
Descriptive research questions are based on observations made in previous research or in passing. This type of research question often quantifies these observations. For example, while out bird watching, you notice that a certain species of sparrow made all its nests with the same material: grasses. A descriptive research question would be “On average, how much grass is used to build sparrow nests?”
Descriptive research questions lead to causal questions. This type of research question seeks to understand why we observe certain trends or patterns. If we return to our observation about sparrow nests, a causal question would be “Why are the nests of sparrows made with grasses rather than twigs?”
In simple terms, a hypothesis is the answer to your causal question. A hypothesis should be based on a strong rationale that is usually supported by background research. From the question about sparrow nests, you might hypothesize, “Sparrows use grasses in their nests rather than twigs because grasses are the more abundant material in their habitat.” This abundance hypothesis might be supported by your prior knowledge about the availability of nest building materials (i.e. grasses are more abundant than twigs).
On the other hand, a prediction is the outcome you would observe if your hypothesis were correct. Predictions are often written in the form of “if, and, then” statements, as in, “if my hypothesis is true, and I were to do this test, then this is what I will observe.” Following our sparrow example, you could predict that, “If sparrows use grass because it is more abundant, and I compare areas that have more twigs than grasses available, then, in those areas, nests should be made out of twigs.” A more refined prediction might alter the wording so as not to repeat the hypothesis verbatim: “If sparrows choose nesting materials based on their abundance, then when twigs are more abundant, sparrows will use those in their nests.”
As you can see, the terms hypothesis and prediction are different and distinct even though, sometimes, they are incorrectly used interchangeably.
Let us take a look at another example:
Causal Question: Why are there fewer asparagus beetles when asparagus is grown next to marigolds?
Hypothesis: Marigolds deter asparagus beetles.
Prediction: If marigolds deter asparagus beetles, and we grow asparagus next to marigolds, then we should find fewer asparagus beetles when asparagus plants are planted with marigolds.
It is exciting when the outcome of your study or experiment supports your hypothesis. However, it can be equally exciting if this does not happen. There are many reasons why you can have an unexpected result, and you need to think why this occurred. Maybe you had a potential problem with your methods, but on the flip side, maybe you have just discovered a new line of evidence that can be used to develop another experiment or study.
Educational resources and simple solutions for your research journey
Any research begins with a research question and a research hypothesis . A research question alone may not suffice to design the experiment(s) needed to answer it. A hypothesis is central to the scientific method. But what is a hypothesis ? A hypothesis is a testable statement that proposes a possible explanation to a phenomenon, and it may include a prediction. Next, you may ask what is a research hypothesis ? Simply put, a research hypothesis is a prediction or educated guess about the relationship between the variables that you want to investigate.
It is important to be thorough when developing your research hypothesis. Shortcomings in the framing of a hypothesis can affect the study design and the results. A better understanding of the research hypothesis definition and characteristics of a good hypothesis will make it easier for you to develop your own hypothesis for your research. Let’s dive in to know more about the types of research hypothesis , how to write a research hypothesis , and some research hypothesis examples .
Table of Contents
A hypothesis is based on the existing body of knowledge in a study area. Framed before the data are collected, a hypothesis states the tentative relationship between independent and dependent variables, along with a prediction of the outcome.
Young researchers starting out their journey are usually brimming with questions like “ What is a hypothesis ?” “ What is a research hypothesis ?” “How can I write a good research hypothesis ?”
A research hypothesis is a statement that proposes a possible explanation for an observable phenomenon or pattern. It guides the direction of a study and predicts the outcome of the investigation. A research hypothesis is testable, i.e., it can be supported or disproven through experimentation or observation.
Here are the characteristics of a good hypothesis :
A study begins with the formulation of a research question. A researcher then performs background research. This background information forms the basis for building a good research hypothesis . The researcher then performs experiments, collects, and analyzes the data, interprets the findings, and ultimately, determines if the findings support or negate the original hypothesis.
Let’s look at each step for creating an effective, testable, and good research hypothesis :
Remember that creating a research hypothesis is an iterative process, i.e., you might have to revise it based on the data you collect. You may need to test and reject several hypotheses before answering the research problem.
When you start writing a research hypothesis , you use an “if–then” statement format, which states the predicted relationship between two or more variables. Clearly identify the independent variables (the variables being changed) and the dependent variables (the variables being measured), as well as the population you are studying. Review and revise your hypothesis as needed.
An example of a research hypothesis in this format is as follows:
“ If [athletes] follow [cold water showers daily], then their [endurance] increases.”
Population: athletes
Independent variable: daily cold water showers
Dependent variable: endurance
You may have understood the characteristics of a good hypothesis . But note that a research hypothesis is not always confirmed; a researcher should be prepared to accept or reject the hypothesis based on the study findings.
Following from above, here is a 10-point checklist for a good research hypothesis :
By following this research hypothesis checklist , you will be able to create a research hypothesis that is strong, well-constructed, and more likely to yield meaningful results.
Different types of research hypothesis are used in scientific research:
A null hypothesis states that there is no change in the dependent variable due to changes to the independent variable. This means that the results are due to chance and are not significant. A null hypothesis is denoted as H0 and is stated as the opposite of what the alternative hypothesis states.
Example: “ The newly identified virus is not zoonotic .”
This states that there is a significant difference or relationship between the variables being studied. It is denoted as H1 or Ha and is usually accepted or rejected in favor of the null hypothesis.
Example: “ The newly identified virus is zoonotic .”
This specifies the direction of the relationship or difference between variables; therefore, it tends to use terms like increase, decrease, positive, negative, more, or less.
Example: “ The inclusion of intervention X decreases infant mortality compared to the original treatment .”
While it does not predict the exact direction or nature of the relationship between the two variables, a non-directional hypothesis states the existence of a relationship or difference between variables but not the direction, nature, or magnitude of the relationship. A non-directional hypothesis may be used when there is no underlying theory or when findings contradict previous research.
Example, “ Cats and dogs differ in the amount of affection they express .”
A simple hypothesis only predicts the relationship between one independent and another independent variable.
Example: “ Applying sunscreen every day slows skin aging .”
A complex hypothesis states the relationship or difference between two or more independent and dependent variables.
Example: “ Applying sunscreen every day slows skin aging, reduces sun burn, and reduces the chances of skin cancer .” (Here, the three dependent variables are slowing skin aging, reducing sun burn, and reducing the chances of skin cancer.)
An associative hypothesis states that a change in one variable results in the change of the other variable. The associative hypothesis defines interdependency between variables.
Example: “ There is a positive association between physical activity levels and overall health .”
A causal hypothesis proposes a cause-and-effect interaction between variables.
Example: “ Long-term alcohol use causes liver damage .”
Note that some of the types of research hypothesis mentioned above might overlap. The types of hypothesis chosen will depend on the research question and the objective of the study.
Here are some good research hypothesis examples :
“The use of a specific type of therapy will lead to a reduction in symptoms of depression in individuals with a history of major depressive disorder.”
“Providing educational interventions on healthy eating habits will result in weight loss in overweight individuals.”
“Plants that are exposed to certain types of music will grow taller than those that are not exposed to music.”
“The use of the plant growth regulator X will lead to an increase in the number of flowers produced by plants.”
Characteristics that make a research hypothesis weak are unclear variables, unoriginality, being too general or too vague, and being untestable. A weak hypothesis leads to weak research and improper methods.
Some bad research hypothesis examples (and the reasons why they are “bad”) are as follows:
“This study will show that treatment X is better than any other treatment . ” (This statement is not testable, too broad, and does not consider other treatments that may be effective.)
“This study will prove that this type of therapy is effective for all mental disorders . ” (This statement is too broad and not testable as mental disorders are complex and different disorders may respond differently to different types of therapy.)
“Plants can communicate with each other through telepathy . ” (This statement is not testable and lacks a scientific basis.)
If a research hypothesis is not testable, the results will not prove or disprove anything meaningful. The conclusions will be vague at best. A testable hypothesis helps a researcher focus on the study outcome and understand the implication of the question and the different variables involved. A testable hypothesis helps a researcher make precise predictions based on prior research.
To be considered testable, there must be a way to prove that the hypothesis is true or false; further, the results of the hypothesis must be reproducible.
1. What is the difference between research question and research hypothesis ?
A research question defines the problem and helps outline the study objective(s). It is an open-ended statement that is exploratory or probing in nature. Therefore, it does not make predictions or assumptions. It helps a researcher identify what information to collect. A research hypothesis , however, is a specific, testable prediction about the relationship between variables. Accordingly, it guides the study design and data analysis approach.
2. When to reject null hypothesis ?
A null hypothesis should be rejected when the evidence from a statistical test shows that it is unlikely to be true. This happens when the test statistic (e.g., p -value) is less than the defined significance level (e.g., 0.05). Rejecting the null hypothesis does not necessarily mean that the alternative hypothesis is true; it simply means that the evidence found is not compatible with the null hypothesis.
3. How can I be sure my hypothesis is testable?
A testable hypothesis should be specific and measurable, and it should state a clear relationship between variables that can be tested with data. To ensure that your hypothesis is testable, consider the following:
4. How do I revise my research hypothesis if my data does not support it?
If your data does not support your research hypothesis , you will need to revise it or develop a new one. You should examine your data carefully and identify any patterns or anomalies, re-examine your research question, and/or revisit your theory to look for any alternative explanations for your results. Based on your review of the data, literature, and theories, modify your research hypothesis to better align it with the results you obtained. Use your revised hypothesis to guide your research design and data collection. It is important to remain objective throughout the process.
5. I am performing exploratory research. Do I need to formulate a research hypothesis?
As opposed to “confirmatory” research, where a researcher has some idea about the relationship between the variables under investigation, exploratory research (or hypothesis-generating research) looks into a completely new topic about which limited information is available. Therefore, the researcher will not have any prior hypotheses. In such cases, a researcher will need to develop a post-hoc hypothesis. A post-hoc research hypothesis is generated after these results are known.
6. How is a research hypothesis different from a research question?
A research question is an inquiry about a specific topic or phenomenon, typically expressed as a question. It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis.
7. Can a research hypothesis change during the research process?
Yes, research hypotheses can change during the research process. As researchers collect and analyze data, new insights and information may emerge that require modification or refinement of the initial hypotheses. This can be due to unexpected findings, limitations in the original hypotheses, or the need to explore additional dimensions of the research topic. Flexibility is crucial in research, allowing for adaptation and adjustment of hypotheses to align with the evolving understanding of the subject matter.
8. How many hypotheses should be included in a research study?
The number of research hypotheses in a research study varies depending on the nature and scope of the research. It is not necessary to have multiple hypotheses in every study. Some studies may have only one primary hypothesis, while others may have several related hypotheses. The number of hypotheses should be determined based on the research objectives, research questions, and the complexity of the research topic. It is important to ensure that the hypotheses are focused, testable, and directly related to the research aims.
9. Can research hypotheses be used in qualitative research?
Yes, research hypotheses can be used in qualitative research, although they are more commonly associated with quantitative research. In qualitative research, hypotheses may be formulated as tentative or exploratory statements that guide the investigation. Instead of testing hypotheses through statistical analysis, qualitative researchers may use the hypotheses to guide data collection and analysis, seeking to uncover patterns, themes, or relationships within the qualitative data. The emphasis in qualitative research is often on generating insights and understanding rather than confirming or rejecting specific research hypotheses through statistical testing.
Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.
Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place – Get All Access now starting at just $14 a month !
Keep up-to-date on postgraduate related issues with our quick reads written by students, postdocs, professors and industry leaders.
The term rationale of research means the reason for performing the research study in question. In writing your rational you should able to convey why there was a need for your study to be carried out. It’s an important part of your research paper that should explain how your research was novel and explain why it was significant; this helps the reader understand why your research question needed to be addressed in your research paper, term paper or other research report.
The rationale for research is also sometimes referred to as the justification for the study. When writing your rational, first begin by introducing and explaining what other researchers have published on within your research field.
Having explained the work of previous literature and prior research, include discussion about where the gaps in knowledge are in your field. Use these to define potential research questions that need answering and explain the importance of addressing these unanswered questions.
The rationale conveys to the reader of your publication exactly why your research topic was needed and why it was significant . Having defined your research rationale, you would then go on to define your hypothesis and your research objectives.
Defining the rationale research, is a key part of the research process and academic writing in any research project. You use this in your research paper to firstly explain the research problem within your dissertation topic. This gives you the research justification you need to define your research question and what the expected outcomes may be.
Reference management software solutions offer a powerful way for you to track and manage your academic references. Read our blog post to learn more about what they are and how to use them.
The scope and delimitations of a thesis, dissertation or paper define the topic and boundaries of a research problem – learn how to form them.
An abstract and introduction are the first two sections of your paper or thesis. This guide explains the differences between them and how to write them.
Join thousands of other students and stay up to date with the latest PhD programmes, funding opportunities and advice.
Learn more about using cloud storage effectively, video conferencing calling, good note-taking solutions and online calendar and task management options.
This article will answer common questions about the PhD synopsis, give guidance on how to write one, and provide my thoughts on samples.
Dr Tuohilampi gained her PhD in Mathematics Education from the University of Helsinki in 2016. She is now a lecturer at the University of Helsinki, a Research Fellow at the University of New South Wales, Sydney and has also founded the company Math Hunger.
Dr Clarence gained her PhD in Higher Education Studies from Rhodes University, South Africa in 2013. She is now an honorary research associate at the University and also runs her own blog about working as a researcher/parent in academia.
COMMENTS
The rationale of the study explains why your study was conducted in this way. See study rationale examples and writing tips.
A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.
A compelling research rationale increases the chances of your paper being published or your grant proposal being funded. In this article, we look at: the purpose of a research rationale. its components and key characteristics. how to create an effective research rationale.
1) What is the hypothesis for the main effect of Authority on State Self Esteem? 2) What is the hypothesis for the main effect of Type of Feedback on State Self Esteem? 3) What is the hypothesis for the interaction between Authority and Type of Feedback on Self
A research hypothesis is an assumption or a tentative explanation for a specific process observed during research. Unlike a guess, research hypothesis is a calculated, educated guess proven or disproven through research methods.
This section provides guidelines on how to construct a solid introduction to a scientific paper including background information, study question, biological rationale, hypothesis, and general approach. If the Introduction is done well, there should be no question in the reader’s mind why and on what basis you have posed a specific hypothesis.
A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection. Example: Hypothesis Daily apple consumption leads to fewer doctor’s visits.
A hypothesis should be based on a strong rationale that is usually supported by background research. From the question about sparrow nests, you might hypothesize, “Sparrows use grasses in their nests rather than twigs because grasses are the more abundant material in their habitat.”
A hypothesis is a testable statement that proposes a possible explanation to a phenomenon, and it may include a prediction. Next, you may ask what is a research hypothesis? Simply put, a research hypothesis is a prediction or educated guess about the relationship between the variables that you want to investigate.
The rationale conveys to the reader of your publication exactly why your research topic was needed and why it was significant. Having defined your research rationale, you would then go on to define your hypothesis and your research objectives. Final Comments.