Table of Contents

Types of statistical analysis, importance of statistical analysis, benefits of statistical analysis, statistical analysis process, statistical analysis methods, statistical analysis software, statistical analysis examples, career in statistical analysis, choose the right program, become proficient in statistics today, what is statistical analysis types, methods and examples.

What Is Statistical Analysis?

Statistical analysis is the process of collecting and analyzing data in order to discern patterns and trends. It is a method for removing bias from evaluating data by employing numerical analysis. This technique is useful for collecting the interpretations of research, developing statistical models, and planning surveys and studies.

Statistical analysis is a scientific tool in AI and ML that helps collect and analyze large amounts of data to identify common patterns and trends to convert them into meaningful information. In simple words, statistical analysis is a data analysis tool that helps draw meaningful conclusions from raw and unstructured data. 

The conclusions are drawn using statistical analysis facilitating decision-making and helping businesses make future predictions on the basis of past trends. It can be defined as a science of collecting and analyzing data to identify trends and patterns and presenting them. Statistical analysis involves working with numbers and is used by businesses and other institutions to make use of data to derive meaningful information. 

Given below are the 6 types of statistical analysis:

Descriptive Analysis

Descriptive statistical analysis involves collecting, interpreting, analyzing, and summarizing data to present them in the form of charts, graphs, and tables. Rather than drawing conclusions, it simply makes the complex data easy to read and understand.

Inferential Analysis

The inferential statistical analysis focuses on drawing meaningful conclusions on the basis of the data analyzed. It studies the relationship between different variables or makes predictions for the whole population.

Predictive Analysis

Predictive statistical analysis is a type of statistical analysis that analyzes data to derive past trends and predict future events on the basis of them. It uses machine learning algorithms, data mining , data modelling , and artificial intelligence to conduct the statistical analysis of data.

Prescriptive Analysis

The prescriptive analysis conducts the analysis of data and prescribes the best course of action based on the results. It is a type of statistical analysis that helps you make an informed decision. 

Exploratory Data Analysis

Exploratory analysis is similar to inferential analysis, but the difference is that it involves exploring the unknown data associations. It analyzes the potential relationships within the data. 

Causal Analysis

The causal statistical analysis focuses on determining the cause and effect relationship between different variables within the raw data. In simple words, it determines why something happens and its effect on other variables. This methodology can be used by businesses to determine the reason for failure. 

Statistical analysis eliminates unnecessary information and catalogs important data in an uncomplicated manner, making the monumental work of organizing inputs appear so serene. Once the data has been collected, statistical analysis may be utilized for a variety of purposes. Some of them are listed below:

  • The statistical analysis aids in summarizing enormous amounts of data into clearly digestible chunks.
  • The statistical analysis aids in the effective design of laboratory, field, and survey investigations.
  • Statistical analysis may help with solid and efficient planning in any subject of study.
  • Statistical analysis aid in establishing broad generalizations and forecasting how much of something will occur under particular conditions.
  • Statistical methods, which are effective tools for interpreting numerical data, are applied in practically every field of study. Statistical approaches have been created and are increasingly applied in physical and biological sciences, such as genetics.
  • Statistical approaches are used in the job of a businessman, a manufacturer, and a researcher. Statistics departments can be found in banks, insurance businesses, and government agencies.
  • A modern administrator, whether in the public or commercial sector, relies on statistical data to make correct decisions.
  • Politicians can utilize statistics to support and validate their claims while also explaining the issues they address.

Become a Data Science & Business Analytics Professional

  • 28% Annual Job Growth By 2026
  • 11.5 M Expected New Jobs For Data Science By 2026

Data Analyst

  • Industry-recognized Data Analyst Master’s certificate from Simplilearn
  • Dedicated live sessions by faculty of industry experts

Data Scientist

  • Add the IBM Advantage to your Learning
  • 25 Industry-relevant Projects and Integrated labs

Here's what learners are saying regarding our programs:

Gayathri Ramesh

Gayathri Ramesh

Associate data engineer , publicis sapient.

The course was well structured and curated. The live classes were extremely helpful. They made learning more productive and interactive. The program helped me change my domain from a data analyst to an Associate Data Engineer.

A.Anthony Davis

A.Anthony Davis

Simplilearn has one of the best programs available online to earn real-world skills that are in demand worldwide. I just completed the Machine Learning Advanced course, and the LMS was excellent.

Statistical analysis can be called a boon to mankind and has many benefits for both individuals and organizations. Given below are some of the reasons why you should consider investing in statistical analysis:

  • It can help you determine the monthly, quarterly, yearly figures of sales profits, and costs making it easier to make your decisions.
  • It can help you make informed and correct decisions.
  • It can help you identify the problem or cause of the failure and make corrections. For example, it can identify the reason for an increase in total costs and help you cut the wasteful expenses.
  • It can help you conduct market analysis and make an effective marketing and sales strategy.
  • It helps improve the efficiency of different processes.

Given below are the 5 steps to conduct a statistical analysis that you should follow:

  • Step 1: Identify and describe the nature of the data that you are supposed to analyze.
  • Step 2: The next step is to establish a relation between the data analyzed and the sample population to which the data belongs. 
  • Step 3: The third step is to create a model that clearly presents and summarizes the relationship between the population and the data.
  • Step 4: Prove if the model is valid or not.
  • Step 5: Use predictive analysis to predict future trends and events likely to happen. 

Although there are various methods used to perform data analysis, given below are the 5 most used and popular methods of statistical analysis:

Mean or average mean is one of the most popular methods of statistical analysis. Mean determines the overall trend of the data and is very simple to calculate. Mean is calculated by summing the numbers in the data set together and then dividing it by the number of data points. Despite the ease of calculation and its benefits, it is not advisable to resort to mean as the only statistical indicator as it can result in inaccurate decision making. 

Standard Deviation

Standard deviation is another very widely used statistical tool or method. It analyzes the deviation of different data points from the mean of the entire data set. It determines how data of the data set is spread around the mean. You can use it to decide whether the research outcomes can be generalized or not. 

Regression is a statistical tool that helps determine the cause and effect relationship between the variables. It determines the relationship between a dependent and an independent variable. It is generally used to predict future trends and events.

Hypothesis Testing

Hypothesis testing can be used to test the validity or trueness of a conclusion or argument against a data set. The hypothesis is an assumption made at the beginning of the research and can hold or be false based on the analysis results. 

Sample Size Determination

Sample size determination or data sampling is a technique used to derive a sample from the entire population, which is representative of the population. This method is used when the size of the population is very large. You can choose from among the various data sampling techniques such as snowball sampling, convenience sampling, and random sampling. 

Everyone can't perform very complex statistical calculations with accuracy making statistical analysis a time-consuming and costly process. Statistical software has become a very important tool for companies to perform their data analysis. The software uses Artificial Intelligence and Machine Learning to perform complex calculations, identify trends and patterns, and create charts, graphs, and tables accurately within minutes. 

Look at the standard deviation sample calculation given below to understand more about statistical analysis.

The weights of 5 pizza bases in cms are as follows:

Calculation of Mean = (9+2+5+4+12)/5 = 32/5 = 6.4

Calculation of mean of squared mean deviation = (6.76+19.36+1.96+5.76+31.36)/5 = 13.04

Sample Variance = 13.04

Standard deviation = √13.04 = 3.611

A Statistical Analyst's career path is determined by the industry in which they work. Anyone interested in becoming a Data Analyst may usually enter the profession and qualify for entry-level Data Analyst positions right out of high school or a certificate program — potentially with a Bachelor's degree in statistics, computer science, or mathematics. Some people go into data analysis from a similar sector such as business, economics, or even the social sciences, usually by updating their skills mid-career with a statistical analytics course.

Statistical Analyst is also a great way to get started in the normally more complex area of data science. A Data Scientist is generally a more senior role than a Data Analyst since it is more strategic in nature and necessitates a more highly developed set of technical abilities, such as knowledge of multiple statistical tools, programming languages, and predictive analytics models.

Aspiring Data Scientists and Statistical Analysts generally begin their careers by learning a programming language such as R or SQL. Following that, they must learn how to create databases, do basic analysis, and make visuals using applications such as Tableau. However, not every Statistical Analyst will need to know how to do all of these things, but if you want to advance in your profession, you should be able to do them all.

Based on your industry and the sort of work you do, you may opt to study Python or R, become an expert at data cleaning, or focus on developing complicated statistical models.

You could also learn a little bit of everything, which might help you take on a leadership role and advance to the position of Senior Data Analyst. A Senior Statistical Analyst with vast and deep knowledge might take on a leadership role leading a team of other Statistical Analysts. Statistical Analysts with extra skill training may be able to advance to Data Scientists or other more senior data analytics positions.

Supercharge your career in AI and ML with Simplilearn's comprehensive courses. Gain the skills and knowledge to transform industries and unleash your true potential. Enroll now and unlock limitless possibilities!

Program Name AI Engineer Post Graduate Program In Artificial Intelligence Post Graduate Program In Artificial Intelligence Geo All Geos All Geos IN/ROW University Simplilearn Purdue Caltech Course Duration 11 Months 11 Months 11 Months Coding Experience Required Basic Basic No Skills You Will Learn 10+ skills including data structure, data manipulation, NumPy, Scikit-Learn, Tableau and more. 16+ skills including chatbots, NLP, Python, Keras and more. 8+ skills including Supervised & Unsupervised Learning Deep Learning Data Visualization, and more. Additional Benefits Get access to exclusive Hackathons, Masterclasses and Ask-Me-Anything sessions by IBM Applied learning via 3 Capstone and 12 Industry-relevant Projects Purdue Alumni Association Membership Free IIMJobs Pro-Membership of 6 months Resume Building Assistance Upto 14 CEU Credits Caltech CTME Circle Membership Cost $$ $$$$ $$$$ Explore Program Explore Program Explore Program

Hope this article assisted you in understanding the importance of statistical analysis in every sphere of life. Artificial Intelligence (AI) can help you perform statistical analysis and data analysis very effectively and efficiently. 

If you are a science wizard and fascinated by the role of AI in statistical analysis, check out this amazing Caltech Post Graduate Program in AI & ML course in collaboration with Caltech. With a comprehensive syllabus and real-life projects, this course is one of the most popular courses and will help you with all that you need to know about Artificial Intelligence. 

Our AI & Machine Learning Courses Duration And Fees

AI & Machine Learning Courses typically range from a few weeks to several months, with fees varying based on program and institution.

Get Free Certifications with free video courses

Introduction to Data Analytics Course

Data Science & Business Analytics

Introduction to Data Analytics Course

Introduction to Data Science

Introduction to Data Science

Learn from Industry Experts with free Masterclasses

Ai & machine learning.

Career Masterclass: How to Build the Best Fantasy League Team Using Gen AI Tools

Unlock Your Career Potential: Land Your Dream Job with Gen AI Tools

Gain Gen AI expertise in Purdue's Applied Gen AI Specialization

Recommended Reads

Free eBook: Guide To The CCBA And CBAP Certifications

Understanding Statistical Process Control (SPC) and Top Applications

A Complete Guide on the Types of Statistical Studies

Digital Marketing Salary Guide 2021

What Is Data Analysis: A Comprehensive Guide

A Complete Guide to Get a Grasp of Time Series Analysis

Get Affiliated Certifications with Live Class programs

  • PMP, PMI, PMBOK, CAPM, PgMP, PfMP, ACP, PBA, RMP, SP, and OPM3 are registered marks of the Project Management Institute, Inc.

What Is Statistical Analysis?

statistical analysis research methodology

Statistical analysis is a technique we use to find patterns in data and make inferences about those patterns to describe variability in the results of a data set or an experiment. 

In its simplest form, statistical analysis answers questions about:

  • Quantification — how big/small/tall/wide is it?
  • Variability — growth, increase, decline
  • The confidence level of these variabilities

What Are the 2 Types of Statistical Analysis?

  • Descriptive Statistics:  Descriptive statistical analysis describes the quality of the data by summarizing large data sets into single measures. 
  • Inferential Statistics:  Inferential statistical analysis allows you to draw conclusions from your sample data set and make predictions about a population using statistical tests.

What’s the Purpose of Statistical Analysis?

Using statistical analysis, you can determine trends in the data by calculating your data set’s mean or median. You can also analyze the variation between different data points from the mean to get the standard deviation . Furthermore, to test the validity of your statistical analysis conclusions, you can use hypothesis testing techniques, like P-value, to determine the likelihood that the observed variability could have occurred by chance.

More From Abdishakur Hassan The 7 Best Thematic Map Types for Geospatial Data

Statistical Analysis Methods

There are two major types of statistical data analysis: descriptive and inferential. 

Descriptive Statistical Analysis

Descriptive statistical analysis describes the quality of the data by summarizing large data sets into single measures. 

Within the descriptive analysis branch, there are two main types: measures of central tendency (i.e. mean, median and mode) and measures of dispersion or variation (i.e. variance , standard deviation and range). 

For example, you can calculate the average exam results in a class using central tendency or, in particular, the mean. In that case, you’d sum all student results and divide by the number of tests. You can also calculate the data set’s spread by calculating the variance. To calculate the variance, subtract each exam result in the data set from the mean, square the answer, add everything together and divide by the number of tests.

Inferential Statistics

On the other hand, inferential statistical analysis allows you to draw conclusions from your sample data set and make predictions about a population using statistical tests. 

There are two main types of inferential statistical analysis: hypothesis testing and regression analysis. We use hypothesis testing to test and validate assumptions in order to draw conclusions about a population from the sample data. Popular tests include Z-test, F-Test, ANOVA test and confidence intervals . On the other hand, regression analysis primarily estimates the relationship between a dependent variable and one or more independent variables. There are numerous types of regression analysis but the most popular ones include linear and logistic regression .  

Statistical Analysis Steps  

In the era of big data and data science, there is a rising demand for a more problem-driven approach. As a result, we must approach statistical analysis holistically. We may divide the entire process into five different and significant stages by using the well-known PPDAC model of statistics: Problem, Plan, Data, Analysis and Conclusion.

statistical analysis chart of the statistical cycle. The chart is in the shape of a circle going clockwise starting with one and going up to five. Each number corresponds to a brief description of that step in the PPDAC cylce. The circle is gray with blue number. Step four is orange.

In the first stage, you define the problem you want to tackle and explore questions about the problem. 

Next is the planning phase. You can check whether data is available or if you need to collect data for your problem. You also determine what to measure and how to measure it. 

The third stage involves data collection, understanding the data and checking its quality. 

4. Analysis

Statistical data analysis is the fourth stage. Here you process and explore the data with the help of tables, graphs and other data visualizations.  You also develop and scrutinize your hypothesis in this stage of analysis. 

5. Conclusion

The final step involves interpretations and conclusions from your analysis. It also covers generating new ideas for the next iteration. Thus, statistical analysis is not a one-time event but an iterative process.

Statistical Analysis Uses

Statistical analysis is useful for research and decision making because it allows us to understand the world around us and draw conclusions by testing our assumptions. Statistical analysis is important for various applications, including:

  • Statistical quality control and analysis in product development 
  • Clinical trials
  • Customer satisfaction surveys and customer experience research 
  • Marketing operations management
  • Process improvement and optimization
  • Training needs 

More on Statistical Analysis From Built In Experts Intro to Descriptive Statistics for Machine Learning

Benefits of Statistical Analysis

Here are some of the reasons why statistical analysis is widespread in many applications and why it’s necessary:

Understand Data

Statistical analysis gives you a better understanding of the data and what they mean. These types of analyses provide information that would otherwise be difficult to obtain by merely looking at the numbers without considering their relationship.

Find Causal Relationships

Statistical analysis can help you investigate causation or establish the precise meaning of an experiment, like when you’re looking for a relationship between two variables.

Make Data-Informed Decisions

Businesses are constantly looking to find ways to improve their services and products . Statistical analysis allows you to make data-informed decisions about your business or future actions by helping you identify trends in your data, whether positive or negative. 

Determine Probability

Statistical analysis is an approach to understanding how the probability of certain events affects the outcome of an experiment. It helps scientists and engineers decide how much confidence they can have in the results of their research, how to interpret their data and what questions they can feasibly answer.

You’ve Got Questions. Our Experts Have Answers. Confidence Intervals, Explained!

What Are the Risks of Statistical Analysis?

Statistical analysis can be valuable and effective, but it’s an imperfect approach. Even if the analyst or researcher performs a thorough statistical analysis, there may still be known or unknown problems that can affect the results. Therefore, statistical analysis is not a one-size-fits-all process. If you want to get good results, you need to know what you’re doing. It can take a lot of time to figure out which type of statistical analysis will work best for your situation .

Thus, you should remember that our conclusions drawn from statistical analysis don’t always guarantee correct results. This can be dangerous when making business decisions. In marketing , for example, we may come to the wrong conclusion about a product . Therefore, the conclusions we draw from statistical data analysis are often approximated; testing for all factors affecting an observation is impossible.

Built In’s expert contributor network publishes thoughtful, solutions-oriented stories written by innovative tech professionals. It is the tech industry’s definitive destination for sharing compelling, first-person accounts of problem-solving on the road to innovation.

Great Companies Need Great People. That's Where We Come In.

Research Graduate

The Best PhD and Masters Consulting Company

graph, diagram, growth-3033203.jpg

Introduction to Statistical Analysis: A Beginner’s Guide.

Statistical analysis is a crucial component of research work across various disciplines, helping researchers derive meaningful insights from data. Whether you’re conducting scientific studies, social research, or data-driven investigations, having a solid understanding of statistical analysis is essential. In this beginner’s guide, we will explore the fundamental concepts and techniques of statistical analysis specifically tailored for research work, providing you with a strong foundation to enhance the quality and credibility of your research findings.

1. Importance of Statistical Analysis in Research:

Research aims to uncover knowledge and make informed conclusions. Statistical analysis plays a pivotal role in achieving this by providing tools and methods to analyze and interpret data accurately. It helps researchers identify patterns, test hypotheses, draw inferences, and quantify the strength of relationships between variables. Understanding the significance of statistical analysis empowers researchers to make evidence-based decisions.

2. Data Collection and Organization:

Before diving into statistical analysis, researchers must collect and organize their data effectively. We will discuss the importance of proper sampling techniques, data quality assurance, and data preprocessing. Additionally, we will explore methods to handle missing data and outliers, ensuring that your dataset is reliable and suitable for analysis.

3. Exploratory Data Analysis (EDA):

Exploratory Data Analysis is a preliminary step that involves visually exploring and summarizing the main characteristics of the data. We will cover techniques such as data visualization, descriptive statistics, and data transformations to gain insights into the distribution, central tendencies, and variability of the variables in your dataset. EDA helps researchers understand the underlying structure of the data and identify potential relationships for further investigation.

4. Statistical Inference and Hypothesis Testing:

Statistical inference allows researchers to make generalizations about a population based on a sample. We will delve into hypothesis testing, covering concepts such as null and alternative hypotheses, p-values, and significance levels. By understanding these concepts, you will be able to test your research hypotheses and determine if the observed results are statistically significant.

5. Parametric and Non-parametric Tests:

Parametric and non-parametric tests are statistical techniques used to analyze data based on different assumptions about the underlying population distribution. We will explore commonly used parametric tests, such as t-tests and analysis of variance (ANOVA), as well as non-parametric tests like the Mann-Whitney U test and Kruskal-Wallis test. Understanding when to use each type of test is crucial for selecting the appropriate analysis method for your research questions.

6. Correlation and Regression Analysis:

Correlation and regression analysis allow researchers to explore relationships between variables and make predictions. We will cover Pearson correlation coefficients, multiple regression analysis, and logistic regression. These techniques enable researchers to quantify the strength and direction of associations and identify predictive factors in their research.

7. Sample Size Determination and Power Analysis:

Sample size determination is a critical aspect of research design, as it affects the validity and reliability of your findings. We will discuss methods for estimating sample size based on statistical power analysis, ensuring that your study has sufficient statistical power to detect meaningful effects. Understanding sample size determination is essential for planning robust research studies.

Conclusion:

Statistical analysis is an indispensable tool for conducting high-quality research. This beginner’s guide has provided an overview of key concepts and techniques specifically tailored for research work, enabling you to enhance the credibility and reliability of your findings. By understanding the importance of statistical analysis, collecting and organizing data effectively, performing exploratory data analysis, conducting hypothesis testing, utilizing parametric and non-parametric tests, and considering sample size determination, you will be well-equipped to carry out rigorous research and contribute valuable insights to your field. Remember, continuous learning, practice, and seeking guidance from statistical experts will further enhance your skills in statistical analysis for research.

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Top Courses
  • Online Degrees
  • Find your New Career
  • Join for Free

What Is Statistical Analysis? Definition, Types, and Jobs

Statistical analytics is a high demand career with great benefits. Learn how you can apply your statistical and data science skills to this growing field.

[Featured image] Analysts study sheets of paper containing statistical harts and graphs

Statistical analysis is the process of collecting large volumes of data and then using statistics and other data analysis techniques to identify trends, patterns, and insights. If you're a whiz at data and statistics, statistical analysis could be a great career match for you. The rise of big data, machine learning, and technology in our society has created a high demand for statistical analysts, and it's an exciting time to develop these skills and find a job you love. In this article, you'll learn more about statistical analysis, including its definition, different types of it, how it's done, and jobs that use it. At the end, you'll also explore suggested cost-effective courses than can help you gain greater knowledge of both statistical and data analytics.

Statistical analysis definition

Statistical analysis is the process of collecting and analyzing large volumes of data in order to identify trends and develop valuable insights.

In the professional world, statistical analysts take raw data and find correlations between variables to reveal patterns and trends to relevant stakeholders. Working in a wide range of different fields, statistical analysts are responsible for new scientific discoveries, improving the health of our communities, and guiding business decisions.

Types of statistical analysis

There are two main types of statistical analysis: descriptive and inferential. As a statistical analyst, you'll likely use both types in your daily work to ensure that data is both clearly communicated to others and that it's used effectively to develop actionable insights. At a glance, here's what you need to know about both types of statistical analysis:

Descriptive statistical analysis

Descriptive statistics summarizes the information within a data set without drawing conclusions about its contents. For example, if a business gave you a book of its expenses and you summarized the percentage of money it spent on different categories of items, then you would be performing a form of descriptive statistics.

When performing descriptive statistics, you will often use data visualization to present information in the form of graphs, tables, and charts to clearly convey it to others in an understandable format. Typically, leaders in a company or organization will then use this data to guide their decision making going forward.

Inferential statistical analysis

Inferential statistics takes the results of descriptive statistics one step further by drawing conclusions from the data and then making recommendations. For example, instead of only summarizing the business's expenses, you might go on to recommend in which areas to reduce spending and suggest an alternative budget.

Inferential statistical analysis is often used by businesses to inform company decisions and in scientific research to find new relationships between variables. 

Statistical analyst duties

Statistical analysts focus on making large sets of data understandable to a more general audience. In effect, you'll use your math and data skills to translate big numbers into easily digestible graphs, charts, and summaries for key decision makers within businesses and other organizations. Typical job responsibilities of statistical analysts include:

Extracting and organizing large sets of raw data

Determining which data is relevant and which should be excluded

Developing new data collection strategies

Meeting with clients and professionals to review data analysis plans

Creating data reports and easily understandable representations of the data

Presenting data

Interpreting data results

Creating recommendations for a company or other organizations

Your job responsibilities will differ depending on whether you work for a federal agency, a private company, or another business sector. Many industries need statistical analysts, so exploring your passions and seeing how you can best apply your data skills can be exciting. 

Statistical analysis skills

Because most of your job responsibilities will likely focus on data and statistical analysis, mathematical skills are crucial. High-level math skills can help you fact-check your work and create strategies to analyze the data, even if you use software for many computations. When honing in on your mathematical skills, focusing on statistics—specifically statistics with large data sets—can help set you apart when searching for job opportunities. Competency with computer software and learning new platforms will also help you excel in more advanced positions and put you in high demand.

Data analytics , problem-solving, and critical thinking are vital skills to help you determine the data set’s true meaning and bigger picture. Often, large data sets may not represent what they appear on the surface. To get to the bottom of things, you'll need to think critically about factors that may influence the data set, create an informed analysis plan, and parse out bias to identify insightful trends. 

To excel in the workplace, you'll need to hone your database management skills, keep up to date on statistical methodology, and continually improve your research skills. These skills take time to build, so starting with introductory courses and having patience while you build skills is important.

Common software used in statistical analytics jobs

Statistical analysis often involves computations using big data that is too large to compute by hand. The good news is that many kinds of statistical software have been developed to help analyze data effectively and efficiently. Gaining mastery over this statistical software can make you look attractive to employers and allow you to work on more complex projects. 

Statistical software is beneficial for both descriptive and inferential statistics. You can use it to generate charts and graphs or perform computations to draw conclusions and inferences from the data. While the type of statistical software you will use will depend on your employer, common software used include:

Read more: The 7 Data Analysis Software You Need to Know

Pathways to a career in statistical analytics

Many paths to becoming a statistical analyst exist, but most jobs in this field require a bachelor’s degree. Employers will typically look for a degree in an area that focuses on math, computer science, statistics, or data science to ensure you have the skills needed for the job. If your bachelor’s degree is in another field, gaining experience through entry-level data entry jobs can help get your foot in the door. Many employers look for work experience in related careers such as being a research assistant, data manager, or intern in the field.

Earning a graduate degree in statistical analytics or a related field can also help you stand out on your resume and demonstrate a deep knowledge of the skills needed to perform the job successfully. Generally, employers focus more on making sure you have the mathematical and data analysis skills required to perform complex statistical analytics on its data. After all, you will be helping them to make decisions, so they want to feel confident in your ability to advise them in the right direction.

Read more: Your Guide to a Career as a Statistician—What to Expect

How much do statistical analytics professionals earn? 

Statistical analysts earn well above the national average and enjoy many benefits on the job. There are many careers utilizing statistical analytics, so comparing salaries can help determine if the job benefits align with your expectations.

Median annual salary: $113,990

Job outlook for 2022 to 2032: 23% [ 1 ]

Data scientist

Median annual salary: $103,500

Job outlook for 2022 to 2032: 35% [ 2 ]

Financial risk specialist

Median annual salary: $102,120

Job outlook for 2022 to 2032: 8% [ 3 ]

Investment analyst

Median annual salary: $95,080

Operational research analyst

Median annual salary: $85,720

Job outlook for 2022 to 2032: 23% [ 4 ]

Market research analyst

Median annual salary: $68,230

Job outlook for 2022 to 2032: 13% [ 5 ]

Statistician

Median annual salary: $99,960

Job outlook for 2022 to 2032: 30% [ 6 ]

Read more: How Much Do Statisticians Make? Your 2022 Statistician Salary Guide

Statistical analysis job outlook

Jobs that use statistical analysis have a positive outlook for the foreseeable future.

According to the US Bureau of Labor Statistics (BLS), the number of jobs for mathematicians and statisticians is projected to grow by 30 percent between 2022 and 2032, adding an average of 3,500 new jobs each year throughout the decade [ 6 ].

As we create more ways to collect data worldwide, there will be an increased need for people able to analyze and make sense of the data.

Ready to take the next step in your career?

Statistical analytics could be an excellent career match for those with an affinity for math, data, and problem-solving. Here are some popular courses to consider as you prepare for a career in statistical analysis:

Learn fundamental processes and tools with Google's Data Analytics Professional Certificate . You'll learn how to process and analyze data, use key analysis tools, apply R programming, and create visualizations that can inform key business decisions.

Grow your comfort using R with Duke University's Data Analysis with R Specialization . Statistical analysts commonly use R for testing, modeling, and analysis. Here, you'll learn and practice those processes.

Apply statistical analysis with Rice University's Business Statistics and Analysis Specialization . Contextualize your technical and analytical skills by using them to solve business problems and complete a hands-on Capstone Project to demonstrate your knowledge.

Article sources

US Bureau of Labor Statistics. " Occupational Outlook Handbook: Actuaries , https://www.bls.gov/ooh/math/actuaries.htm." Accessed November 21, 2023.

US Bureau of Labor Statistics. " Occupational Outlook Handbook: Data Scientists , https://www.bls.gov/ooh/math/data-scientists.htm." Accessed Accessed November 21, 2023.

US Bureau of Labor Statistics. " Occupational Outlook Handbook: Financial Analysts , https://www.bls.gov/ooh/business-and-financial/financial-analysts.htm." Accessed Accessed November 21, 2023.

US Bureau of Labor Statistics. " Occupational Outlook Handbook: Operations Research Analysts , https://www.bls.gov/ooh/math/operations-research-analysts.htm." Accessed Accessed November 21, 2023.

US Bureau of Labor Statistics. " Occupational Outlook Handbook: Market Research Analyst , https://www.bls.gov/ooh/business-and-financial/market-research-analysts.htm." Accessed Accessed November 21, 2023.

US Bureau of Labor Statistics. " Occupational Outlook Handbook: Mathematicians and Statisticians , https://www.bls.gov/ooh/math/mathematicians-and-statisticians.htm." Accessed Accessed November 21, 2023.

Keep reading

Coursera staff.

Editorial Team

Coursera’s editorial team is comprised of highly experienced professional editors, writers, and fact...

This content has been made available for informational purposes only. Learners are advised to conduct additional research to ensure that courses and other credentials pursued meet their personal, professional, and financial goals.

Enago Academy

Effective Use of Statistics in Research – Methods and Tools for Data Analysis

' src=

Remember that impending feeling you get when you are asked to analyze your data! Now that you have all the required raw data, you need to statistically prove your hypothesis. Representing your numerical data as part of statistics in research will also help in breaking the stereotype of being a biology student who can’t do math.

Statistical methods are essential for scientific research. In fact, statistical methods dominate the scientific research as they include planning, designing, collecting data, analyzing, drawing meaningful interpretation and reporting of research findings. Furthermore, the results acquired from research project are meaningless raw data unless analyzed with statistical tools. Therefore, determining statistics in research is of utmost necessity to justify research findings. In this article, we will discuss how using statistical methods for biology could help draw meaningful conclusion to analyze biological studies.

Table of Contents

Role of Statistics in Biological Research

Statistics is a branch of science that deals with collection, organization and analysis of data from the sample to the whole population. Moreover, it aids in designing a study more meticulously and also give a logical reasoning in concluding the hypothesis. Furthermore, biology study focuses on study of living organisms and their complex living pathways, which are very dynamic and cannot be explained with logical reasoning. However, statistics is more complex a field of study that defines and explains study patterns based on the sample sizes used. To be precise, statistics provides a trend in the conducted study.

Biological researchers often disregard the use of statistics in their research planning, and mainly use statistical tools at the end of their experiment. Therefore, giving rise to a complicated set of results which are not easily analyzed from statistical tools in research. Statistics in research can help a researcher approach the study in a stepwise manner, wherein the statistical analysis in research follows –

1. Establishing a Sample Size

Usually, a biological experiment starts with choosing samples and selecting the right number of repetitive experiments. Statistics in research deals with basics in statistics that provides statistical randomness and law of using large samples. Statistics teaches how choosing a sample size from a random large pool of sample helps extrapolate statistical findings and reduce experimental bias and errors.

2. Testing of Hypothesis

When conducting a statistical study with large sample pool, biological researchers must make sure that a conclusion is statistically significant. To achieve this, a researcher must create a hypothesis before examining the distribution of data. Furthermore, statistics in research helps interpret the data clustered near the mean of distributed data or spread across the distribution. These trends help analyze the sample and signify the hypothesis.

3. Data Interpretation Through Analysis

When dealing with large data, statistics in research assist in data analysis. This helps researchers to draw an effective conclusion from their experiment and observations. Concluding the study manually or from visual observation may give erroneous results; therefore, thorough statistical analysis will take into consideration all the other statistical measures and variance in the sample to provide a detailed interpretation of the data. Therefore, researchers produce a detailed and important data to support the conclusion.

Types of Statistical Research Methods That Aid in Data Analysis

statistics in research

Statistical analysis is the process of analyzing samples of data into patterns or trends that help researchers anticipate situations and make appropriate research conclusions. Based on the type of data, statistical analyses are of the following type:

1. Descriptive Analysis

The descriptive statistical analysis allows organizing and summarizing the large data into graphs and tables . Descriptive analysis involves various processes such as tabulation, measure of central tendency, measure of dispersion or variance, skewness measurements etc.

2. Inferential Analysis

The inferential statistical analysis allows to extrapolate the data acquired from a small sample size to the complete population. This analysis helps draw conclusions and make decisions about the whole population on the basis of sample data. It is a highly recommended statistical method for research projects that work with smaller sample size and meaning to extrapolate conclusion for large population.

3. Predictive Analysis

Predictive analysis is used to make a prediction of future events. This analysis is approached by marketing companies, insurance organizations, online service providers, data-driven marketing, and financial corporations.

4. Prescriptive Analysis

Prescriptive analysis examines data to find out what can be done next. It is widely used in business analysis for finding out the best possible outcome for a situation. It is nearly related to descriptive and predictive analysis. However, prescriptive analysis deals with giving appropriate suggestions among the available preferences.

5. Exploratory Data Analysis

EDA is generally the first step of the data analysis process that is conducted before performing any other statistical analysis technique. It completely focuses on analyzing patterns in the data to recognize potential relationships. EDA is used to discover unknown associations within data, inspect missing data from collected data and obtain maximum insights.

6. Causal Analysis

Causal analysis assists in understanding and determining the reasons behind “why” things happen in a certain way, as they appear. This analysis helps identify root cause of failures or simply find the basic reason why something could happen. For example, causal analysis is used to understand what will happen to the provided variable if another variable changes.

7. Mechanistic Analysis

This is a least common type of statistical analysis. The mechanistic analysis is used in the process of big data analytics and biological science. It uses the concept of understanding individual changes in variables that cause changes in other variables correspondingly while excluding external influences.

Important Statistical Tools In Research

Researchers in the biological field find statistical analysis in research as the scariest aspect of completing research. However, statistical tools in research can help researchers understand what to do with data and how to interpret the results, making this process as easy as possible.

1. Statistical Package for Social Science (SPSS)

It is a widely used software package for human behavior research. SPSS can compile descriptive statistics, as well as graphical depictions of result. Moreover, it includes the option to create scripts that automate analysis or carry out more advanced statistical processing.

2. R Foundation for Statistical Computing

This software package is used among human behavior research and other fields. R is a powerful tool and has a steep learning curve. However, it requires a certain level of coding. Furthermore, it comes with an active community that is engaged in building and enhancing the software and the associated plugins.

3. MATLAB (The Mathworks)

It is an analytical platform and a programming language. Researchers and engineers use this software and create their own code and help answer their research question. While MatLab can be a difficult tool to use for novices, it offers flexibility in terms of what the researcher needs.

4. Microsoft Excel

Not the best solution for statistical analysis in research, but MS Excel offers wide variety of tools for data visualization and simple statistics. It is easy to generate summary and customizable graphs and figures. MS Excel is the most accessible option for those wanting to start with statistics.

5. Statistical Analysis Software (SAS)

It is a statistical platform used in business, healthcare, and human behavior research alike. It can carry out advanced analyzes and produce publication-worthy figures, tables and charts .

6. GraphPad Prism

It is a premium software that is primarily used among biology researchers. But, it offers a range of variety to be used in various other fields. Similar to SPSS, GraphPad gives scripting option to automate analyses to carry out complex statistical calculations.

This software offers basic as well as advanced statistical tools for data analysis. However, similar to GraphPad and SPSS, minitab needs command over coding and can offer automated analyses.

Use of Statistical Tools In Research and Data Analysis

Statistical tools manage the large data. Many biological studies use large data to analyze the trends and patterns in studies. Therefore, using statistical tools becomes essential, as they manage the large data sets, making data processing more convenient.

Following these steps will help biological researchers to showcase the statistics in research in detail, and develop accurate hypothesis and use correct tools for it.

There are a range of statistical tools in research which can help researchers manage their research data and improve the outcome of their research by better interpretation of data. You could use statistics in research by understanding the research question, knowledge of statistics and your personal experience in coding.

Have you faced challenges while using statistics in research? How did you manage it? Did you use any of the statistical tools to help you with your research data? Do write to us or comment below!

Frequently Asked Questions

Statistics in research can help a researcher approach the study in a stepwise manner: 1. Establishing a sample size 2. Testing of hypothesis 3. Data interpretation through analysis

Statistical methods are essential for scientific research. In fact, statistical methods dominate the scientific research as they include planning, designing, collecting data, analyzing, drawing meaningful interpretation and reporting of research findings. Furthermore, the results acquired from research project are meaningless raw data unless analyzed with statistical tools. Therefore, determining statistics in research is of utmost necessity to justify research findings.

Statistical tools in research can help researchers understand what to do with data and how to interpret the results, making this process as easy as possible. They can manage large data sets, making data processing more convenient. A great number of tools are available to carry out statistical analysis of data like SPSS, SAS (Statistical Analysis Software), and Minitab.

' src=

nice article to read

Holistic but delineating. A very good read.

Rate this article Cancel Reply

Your email address will not be published.

statistical analysis research methodology

Enago Academy's Most Popular Articles

Research Interviews for Data Collection

  • Reporting Research

Research Interviews: An effective and insightful way of data collection

Research interviews play a pivotal role in collecting data for various academic, scientific, and professional…

Planning Your Data Collection

Planning Your Data Collection: Designing methods for effective research

Planning your research is very important to obtain desirable results. In research, the relevance of…

best plagiarism checker

  • Language & Grammar

Best Plagiarism Checker Tool for Researchers — Top 4 to choose from!

While common writing issues like language enhancement, punctuation errors, grammatical errors, etc. can be dealt…

Year

  • Industry News
  • Publishing News

2022 in a Nutshell — Reminiscing the year when opportunities were seized and feats were achieved!

It’s beginning to look a lot like success! Some of the greatest opportunities to research…

statistical analysis research methodology

  • Manuscript Preparation
  • Publishing Research

Qualitative Vs. Quantitative Research — A step-wise guide to conduct research

A research study includes the collection and analysis of data. In quantitative research, the data…

2022 in a Nutshell — Reminiscing the year when opportunities were seized and feats…

statistical analysis research methodology

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

statistical analysis research methodology

What should universities' stance be on AI tools in research and academic writing?

What is Statistical Analysis? Types, Methods, Software, Examples

Appinio Research · 29.02.2024 · 31min read

What Is Statistical Analysis Types Methods Software Examples

Ever wondered how we make sense of vast amounts of data to make informed decisions? Statistical analysis is the answer. In our data-driven world, statistical analysis serves as a powerful tool to uncover patterns, trends, and relationships hidden within data. From predicting sales trends to assessing the effectiveness of new treatments, statistical analysis empowers us to derive meaningful insights and drive evidence-based decision-making across various fields and industries. In this guide, we'll explore the fundamentals of statistical analysis, popular methods, software tools, practical examples, and best practices to help you harness the power of statistics effectively. Whether you're a novice or an experienced analyst, this guide will equip you with the knowledge and skills to navigate the world of statistical analysis with confidence.

What is Statistical Analysis?

Statistical analysis is a methodical process of collecting, analyzing, interpreting, and presenting data to uncover patterns, trends, and relationships. It involves applying statistical techniques and methodologies to make sense of complex data sets and draw meaningful conclusions.

Importance of Statistical Analysis

Statistical analysis plays a crucial role in various fields and industries due to its numerous benefits and applications:

  • Informed Decision Making : Statistical analysis provides valuable insights that inform decision-making processes in business, healthcare, government, and academia. By analyzing data, organizations can identify trends, assess risks, and optimize strategies for better outcomes.
  • Evidence-Based Research : Statistical analysis is fundamental to scientific research, enabling researchers to test hypotheses, draw conclusions, and validate theories using empirical evidence. It helps researchers quantify relationships, assess the significance of findings, and advance knowledge in their respective fields.
  • Quality Improvement : In manufacturing and quality management, statistical analysis helps identify defects, improve processes, and enhance product quality. Techniques such as Six Sigma and Statistical Process Control (SPC) are used to monitor performance, reduce variation, and achieve quality objectives.
  • Risk Assessment : In finance, insurance, and investment, statistical analysis is used for risk assessment and portfolio management. By analyzing historical data and market trends, analysts can quantify risks, forecast outcomes, and make informed decisions to mitigate financial risks.
  • Predictive Modeling : Statistical analysis enables predictive modeling and forecasting in various domains, including sales forecasting, demand planning, and weather prediction. By analyzing historical data patterns, predictive models can anticipate future trends and outcomes with reasonable accuracy.
  • Healthcare Decision Support : In healthcare, statistical analysis is integral to clinical research, epidemiology, and healthcare management. It helps healthcare professionals assess treatment effectiveness, analyze patient outcomes, and optimize resource allocation for improved patient care.

Statistical Analysis Applications

Statistical analysis finds applications across diverse domains and disciplines, including:

  • Business and Economics : Market research , financial analysis, econometrics, and business intelligence.
  • Healthcare and Medicine : Clinical trials, epidemiological studies, healthcare outcomes research, and disease surveillance.
  • Social Sciences : Survey research, demographic analysis, psychology experiments, and public opinion polls.
  • Engineering : Reliability analysis, quality control, process optimization, and product design.
  • Environmental Science : Environmental monitoring, climate modeling, and ecological research.
  • Education : Educational research, assessment, program evaluation, and learning analytics.
  • Government and Public Policy : Policy analysis, program evaluation, census data analysis, and public administration.
  • Technology and Data Science : Machine learning, artificial intelligence, data mining, and predictive analytics.

These applications demonstrate the versatility and significance of statistical analysis in addressing complex problems and informing decision-making across various sectors and disciplines.

Fundamentals of Statistics

Understanding the fundamentals of statistics is crucial for conducting meaningful analyses. Let's delve into some essential concepts that form the foundation of statistical analysis.

Basic Concepts

Statistics is the science of collecting, organizing, analyzing, and interpreting data to make informed decisions or conclusions. To embark on your statistical journey, familiarize yourself with these fundamental concepts:

  • Population vs. Sample : A population comprises all the individuals or objects of interest in a study, while a sample is a subset of the population selected for analysis. Understanding the distinction between these two entities is vital, as statistical analyses often rely on samples to draw conclusions about populations.
  • Independent Variables : Variables that are manipulated or controlled in an experiment.
  • Dependent Variables : Variables that are observed or measured in response to changes in independent variables.
  • Parameters vs. Statistics : Parameters are numerical measures that describe a population, whereas statistics are numerical measures that describe a sample. For instance, the population mean is denoted by μ (mu), while the sample mean is denoted by x̄ (x-bar).

Descriptive Statistics

Descriptive statistics involve methods for summarizing and describing the features of a dataset. These statistics provide insights into the central tendency, variability, and distribution of the data. Standard measures of descriptive statistics include:

  • Mean : The arithmetic average of a set of values, calculated by summing all values and dividing by the number of observations.
  • Median : The middle value in a sorted list of observations.
  • Mode : The value that appears most frequently in a dataset.
  • Range : The difference between the maximum and minimum values in a dataset.
  • Variance : The average of the squared differences from the mean.
  • Standard Deviation : The square root of the variance, providing a measure of the average distance of data points from the mean.
  • Graphical Techniques : Graphical representations, including histograms, box plots, and scatter plots, offer visual insights into the distribution and relationships within a dataset. These visualizations aid in identifying patterns, outliers, and trends.

Inferential Statistics

Inferential statistics enable researchers to draw conclusions or make predictions about populations based on sample data. These methods allow for generalizations beyond the observed data. Fundamental techniques in inferential statistics include:

  • Null Hypothesis (H0) : The hypothesis that there is no significant difference or relationship.
  • Alternative Hypothesis (H1) : The hypothesis that there is a significant difference or relationship.
  • Confidence Intervals : Confidence intervals provide a range of plausible values for a population parameter. They offer insights into the precision of sample estimates and the uncertainty associated with those estimates.
  • Regression Analysis : Regression analysis examines the relationship between one or more independent variables and a dependent variable. It allows for the prediction of the dependent variable based on the values of the independent variables.
  • Sampling Methods : Sampling methods, such as simple random sampling, stratified sampling, and cluster sampling , are employed to ensure that sample data are representative of the population of interest. These methods help mitigate biases and improve the generalizability of results.

Probability Distributions

Probability distributions describe the likelihood of different outcomes in a statistical experiment. Understanding these distributions is essential for modeling and analyzing random phenomena. Some common probability distributions include:

  • Normal Distribution : The normal distribution, also known as the Gaussian distribution, is characterized by a symmetric, bell-shaped curve. Many natural phenomena follow this distribution, making it widely applicable in statistical analysis.
  • Binomial Distribution : The binomial distribution describes the number of successes in a fixed number of independent Bernoulli trials. It is commonly used to model binary outcomes, such as success or failure, heads or tails.
  • Poisson Distribution : The Poisson distribution models the number of events occurring in a fixed interval of time or space. It is often used to analyze rare or discrete events, such as the number of customer arrivals in a queue within a given time period.

Types of Statistical Analysis

Statistical analysis encompasses a diverse range of methods and approaches, each suited to different types of data and research questions. Understanding the various types of statistical analysis is essential for selecting the most appropriate technique for your analysis. Let's explore some common distinctions in statistical analysis methods.

Parametric vs. Non-parametric Analysis

Parametric and non-parametric analyses represent two broad categories of statistical methods, each with its own assumptions and applications.

  • Parametric Analysis : Parametric methods assume that the data follow a specific probability distribution, often the normal distribution. These methods rely on estimating parameters (e.g., means, variances) from the data. Parametric tests typically provide more statistical power but require stricter assumptions. Examples of parametric tests include t-tests, ANOVA, and linear regression.
  • Non-parametric Analysis : Non-parametric methods make fewer assumptions about the underlying distribution of the data. Instead of estimating parameters, non-parametric tests rely on ranks or other distribution-free techniques. Non-parametric tests are often used when data do not meet the assumptions of parametric tests or when dealing with ordinal or non-normal data. Examples of non-parametric tests include the Wilcoxon rank-sum test, Kruskal-Wallis test, and Spearman correlation.

Descriptive vs. Inferential Analysis

Descriptive and inferential analyses serve distinct purposes in statistical analysis, focusing on summarizing data and making inferences about populations, respectively.

  • Descriptive Analysis : Descriptive statistics aim to describe and summarize the features of a dataset. These statistics provide insights into the central tendency, variability, and distribution of the data. Descriptive analysis techniques include measures of central tendency (e.g., mean, median, mode), measures of dispersion (e.g., variance, standard deviation), and graphical representations (e.g., histograms, box plots).
  • Inferential Analysis : Inferential statistics involve making inferences or predictions about populations based on sample data. These methods allow researchers to generalize findings from the sample to the larger population. Inferential analysis techniques include hypothesis testing, confidence intervals, regression analysis, and sampling methods. These methods help researchers draw conclusions about population parameters, such as means, proportions, or correlations, based on sample data.

Exploratory vs. Confirmatory Analysis

Exploratory and confirmatory analyses represent two different approaches to data analysis, each serving distinct purposes in the research process.

  • Exploratory Analysis : Exploratory data analysis (EDA) focuses on exploring data to discover patterns, relationships, and trends. EDA techniques involve visualizing data, identifying outliers, and generating hypotheses for further investigation. Exploratory analysis is particularly useful in the early stages of research when the goal is to gain insights and generate hypotheses rather than confirm specific hypotheses.
  • Confirmatory Analysis : Confirmatory data analysis involves testing predefined hypotheses or theories based on prior knowledge or assumptions. Confirmatory analysis follows a structured approach, where hypotheses are tested using appropriate statistical methods. Confirmatory analysis is common in hypothesis-driven research, where the goal is to validate or refute specific hypotheses using empirical evidence. Techniques such as hypothesis testing, regression analysis, and experimental design are often employed in confirmatory analysis.

Methods of Statistical Analysis

Statistical analysis employs various methods to extract insights from data and make informed decisions. Let's explore some of the key methods used in statistical analysis and their applications.

Hypothesis Testing

Hypothesis testing is a fundamental concept in statistics, allowing researchers to make decisions about population parameters based on sample data. The process involves formulating null and alternative hypotheses, selecting an appropriate test statistic, determining the significance level, and interpreting the results. Standard hypothesis tests include:

  • t-tests : Used to compare means between two groups.
  • ANOVA (Analysis of Variance) : Extends the t-test to compare means across multiple groups.
  • Chi-square test : Assessing the association between categorical variables.

Regression Analysis

Regression analysis explores the relationship between one or more independent variables and a dependent variable. It is widely used in predictive modeling and understanding the impact of variables on outcomes. Key types of regression analysis include:

  • Simple Linear Regression : Examines the linear relationship between one independent variable and a dependent variable.
  • Multiple Linear Regression : Extends simple linear regression to analyze the relationship between multiple independent variables and a dependent variable.
  • Logistic Regression : Used for predicting binary outcomes or modeling probabilities.

Analysis of Variance (ANOVA)

ANOVA is a statistical technique used to compare means across two or more groups. It partitions the total variability in the data into components attributable to different sources, such as between-group differences and within-group variability. ANOVA is commonly used in experimental design and hypothesis testing scenarios.

Time Series Analysis

Time series analysis deals with analyzing data collected or recorded at successive time intervals. It helps identify patterns, trends, and seasonality in the data. Time series analysis techniques include:

  • Trend Analysis : Identifying long-term trends or patterns in the data.
  • Seasonal Decomposition : Separating the data into seasonal, trend, and residual components.
  • Forecasting : Predicting future values based on historical data.

Survival Analysis

Survival analysis is used to analyze time-to-event data, such as time until death, failure, or occurrence of an event of interest. It is widely used in medical research, engineering, and social sciences to analyze survival probabilities and hazard rates over time.

Factor Analysis

Factor analysis is a statistical method used to identify underlying factors or latent variables that explain patterns of correlations among observed variables. It is commonly used in psychology, sociology, and market research to uncover underlying dimensions or constructs.

Cluster Analysis

Cluster analysis is a multivariate technique that groups similar objects or observations into clusters or segments based on their characteristics. It is widely used in market segmentation, image processing, and biological classification.

Principal Component Analysis (PCA)

PCA is a dimensionality reduction technique used to transform high-dimensional data into a lower-dimensional space while preserving most of the variability in the data. It identifies orthogonal axes (principal components) that capture the maximum variance in the data. PCA is useful for data visualization, feature selection, and data compression.

How to Choose the Right Statistical Analysis Method?

Selecting the appropriate statistical method is crucial for obtaining accurate and meaningful results from your data analysis.

Understanding Data Types and Distribution

Before choosing a statistical method, it's essential to understand the types of data you're working with and their distribution. Different statistical methods are suitable for different types of data:

  • Continuous vs. Categorical Data : Determine whether your data are continuous (e.g., height, weight) or categorical (e.g., gender, race). Parametric methods such as t-tests and regression are typically used for continuous data , while non-parametric methods like chi-square tests are suitable for categorical data.
  • Normality : Assess whether your data follows a normal distribution. Parametric methods often assume normality, so if your data are not normally distributed, non-parametric methods may be more appropriate.

Assessing Assumptions

Many statistical methods rely on certain assumptions about the data. Before applying a method, it's essential to assess whether these assumptions are met:

  • Independence : Ensure that observations are independent of each other. Violations of independence assumptions can lead to biased results.
  • Homogeneity of Variance : Verify that variances are approximately equal across groups, especially in ANOVA and regression analyses. Levene's test or Bartlett's test can be used to assess homogeneity of variance.
  • Linearity : Check for linear relationships between variables, particularly in regression analysis. Residual plots can help diagnose violations of linearity assumptions.

Considering Research Objectives

Your research objectives should guide the selection of the appropriate statistical method.

  • What are you trying to achieve with your analysis? : Determine whether you're interested in comparing groups, predicting outcomes, exploring relationships, or identifying patterns.
  • What type of data are you analyzing? : Choose methods that are suitable for your data type and research questions.
  • Are you testing specific hypotheses or exploring data for insights? : Confirmatory analyses involve testing predefined hypotheses, while exploratory analyses focus on discovering patterns or relationships in the data.

Consulting Statistical Experts

If you're unsure about the most appropriate statistical method for your analysis, don't hesitate to seek advice from statistical experts or consultants:

  • Collaborate with Statisticians : Statisticians can provide valuable insights into the strengths and limitations of different statistical methods and help you select the most appropriate approach.
  • Utilize Resources : Take advantage of online resources, forums, and statistical software documentation to learn about different methods and their applications.
  • Peer Review : Consider seeking feedback from colleagues or peers familiar with statistical analysis to validate your approach and ensure rigor in your analysis.

By carefully considering these factors and consulting with experts when needed, you can confidently choose the suitable statistical method to address your research questions and obtain reliable results.

Statistical Analysis Software

Choosing the right software for statistical analysis is crucial for efficiently processing and interpreting your data. In addition to statistical analysis software, it's essential to consider tools for data collection, which lay the foundation for meaningful analysis.

What is Statistical Analysis Software?

Statistical software provides a range of tools and functionalities for data analysis, visualization, and interpretation. These software packages offer user-friendly interfaces and robust analytical capabilities, making them indispensable tools for researchers, analysts, and data scientists.

  • Graphical User Interface (GUI) : Many statistical software packages offer intuitive GUIs that allow users to perform analyses using point-and-click interfaces. This makes statistical analysis accessible to users with varying levels of programming expertise.
  • Scripting and Programming : Advanced users can leverage scripting and programming capabilities within statistical software to automate analyses, customize functions, and extend the software's functionality.
  • Visualization : Statistical software often includes built-in visualization tools for creating charts, graphs, and plots to visualize data distributions, relationships, and trends.
  • Data Management : These software packages provide features for importing, cleaning, and manipulating datasets, ensuring data integrity and consistency throughout the analysis process.

Popular Statistical Analysis Software

Several statistical software packages are widely used in various industries and research domains. Some of the most popular options include:

  • R : R is a free, open-source programming language and software environment for statistical computing and graphics. It offers a vast ecosystem of packages for data manipulation, visualization, and analysis, making it a popular choice among statisticians and data scientists.
  • Python : Python is a versatile programming language with robust libraries like NumPy, SciPy, and pandas for data analysis and scientific computing. Python's simplicity and flexibility make it an attractive option for statistical analysis, particularly for users with programming experience.
  • SPSS : SPSS (Statistical Package for the Social Sciences) is a comprehensive statistical software package widely used in social science research, marketing, and healthcare. It offers a user-friendly interface and a wide range of statistical procedures for data analysis and reporting.
  • SAS : SAS (Statistical Analysis System) is a powerful statistical software suite used for data management, advanced analytics, and predictive modeling. SAS is commonly employed in industries such as healthcare, finance, and government for data-driven decision-making.
  • Stata : Stata is a statistical software package that provides tools for data analysis, manipulation, and visualization. It is popular in academic research, economics, and social sciences for its robust statistical capabilities and ease of use.
  • MATLAB : MATLAB is a high-level programming language and environment for numerical computing and visualization. It offers built-in functions and toolboxes for statistical analysis, machine learning, and signal processing.

Data Collection Software

In addition to statistical analysis software, data collection software plays a crucial role in the research process. These tools facilitate data collection, management, and organization from various sources, ensuring data quality and reliability.

When it comes to data collection, precision and efficiency are paramount. Appinio offers a seamless solution for gathering real-time consumer insights, empowering you to make informed decisions swiftly. With our intuitive platform, you can define your target audience with precision, launch surveys effortlessly, and access valuable data in minutes.   Experience the power of Appinio and elevate your data collection process today. Ready to see it in action? Book a demo now!

Book a Demo

How to Choose the Right Statistical Analysis Software?

When selecting software for statistical analysis and data collection, consider the following factors:

  • Compatibility : Ensure the software is compatible with your operating system, hardware, and data formats.
  • Usability : Choose software that aligns with your level of expertise and provides features that meet your analysis and data collection requirements.
  • Integration : Consider whether the software integrates with other tools and platforms in your workflow, such as data visualization software or data storage systems.
  • Cost and Licensing : Evaluate the cost of licensing or subscription fees, as well as any additional costs for training, support, or maintenance.

By carefully evaluating these factors and considering your specific analysis and data collection needs, you can select the right software tools to support your research objectives and drive meaningful insights from your data.

Statistical Analysis Examples

Understanding statistical analysis methods is best achieved through practical examples. Let's explore three examples that demonstrate the application of statistical techniques in real-world scenarios.

Example 1: Linear Regression

Scenario : A marketing analyst wants to understand the relationship between advertising spending and sales revenue for a product.

Data : The analyst collects data on monthly advertising expenditures (in dollars) and corresponding sales revenue (in dollars) over the past year.

Analysis : Using simple linear regression, the analyst fits a regression model to the data, where advertising spending is the independent variable (X) and sales revenue is the dependent variable (Y). The regression analysis estimates the linear relationship between advertising spending and sales revenue, allowing the analyst to predict sales based on advertising expenditures.

Result : The regression analysis reveals a statistically significant positive relationship between advertising spending and sales revenue. For every additional dollar spent on advertising, sales revenue increases by an estimated amount (slope coefficient). The analyst can use this information to optimize advertising budgets and forecast sales performance.

Example 2: Hypothesis Testing

Scenario : A pharmaceutical company develops a new drug intended to lower blood pressure. The company wants to determine whether the new drug is more effective than the existing standard treatment.

Data : The company conducts a randomized controlled trial (RCT) involving two groups of participants: one group receives the new drug, and the other receives the standard treatment. Blood pressure measurements are taken before and after the treatment period.

Analysis : The company uses hypothesis testing, specifically a two-sample t-test, to compare the mean reduction in blood pressure between the two groups. The null hypothesis (H0) states that there is no difference in the mean reduction in blood pressure between the two treatments, while the alternative hypothesis (H1) suggests that the new drug is more effective.

Result : The t-test results indicate a statistically significant difference in the mean reduction in blood pressure between the two groups. The company concludes that the new drug is more effective than the standard treatment in lowering blood pressure, based on the evidence from the RCT.

Example 3: ANOVA

Scenario : A researcher wants to compare the effectiveness of three different teaching methods on student performance in a mathematics course.

Data : The researcher conducts an experiment where students are randomly assigned to one of three groups: traditional lecture-based instruction, active learning, or flipped classroom. At the end of the semester, students' scores on a standardized math test are recorded.

Analysis : The researcher performs an analysis of variance (ANOVA) to compare the mean test scores across the three teaching methods. ANOVA assesses whether there are statistically significant differences in mean scores between the groups.

Result : The ANOVA results reveal a significant difference in mean test scores between the three teaching methods. Post-hoc tests, such as Tukey's HSD (Honestly Significant Difference), can be conducted to identify which specific teaching methods differ significantly from each other in terms of student performance.

These examples illustrate how statistical analysis techniques can be applied to address various research questions and make data-driven decisions in different fields. By understanding and applying these methods effectively, researchers and analysts can derive valuable insights from their data to inform decision-making and drive positive outcomes.

Statistical Analysis Best Practices

Statistical analysis is a powerful tool for extracting insights from data, but it's essential to follow best practices to ensure the validity, reliability, and interpretability of your results.

  • Clearly Define Research Questions : Before conducting any analysis, clearly define your research questions or objectives . This ensures that your analysis is focused and aligned with the goals of your study.
  • Choose Appropriate Methods : Select statistical methods suitable for your data type, research design , and objectives. Consider factors such as data distribution, sample size, and assumptions of the chosen method.
  • Preprocess Data : Clean and preprocess your data to remove errors, outliers, and missing values. Data preprocessing steps may include data cleaning, normalization, and transformation to ensure data quality and consistency.
  • Check Assumptions : Verify that the assumptions of the chosen statistical methods are met. Assumptions may include normality, homogeneity of variance, independence, and linearity. Conduct diagnostic tests or exploratory data analysis to assess assumptions.
  • Transparent Reporting : Document your analysis procedures, including data preprocessing steps, statistical methods used, and any assumptions made. Transparent reporting enhances reproducibility and allows others to evaluate the validity of your findings.
  • Consider Sample Size : Ensure that your sample size is sufficient to detect meaningful effects or relationships. Power analysis can help determine the minimum sample size required to achieve adequate statistical power.
  • Interpret Results Cautiously : Interpret statistical results with caution and consider the broader context of your research. Be mindful of effect sizes, confidence intervals, and practical significance when interpreting findings.
  • Validate Findings : Validate your findings through robustness checks, sensitivity analyses, or replication studies. Cross-validation and bootstrapping techniques can help assess the stability and generalizability of your results.
  • Avoid P-Hacking and Data Dredging : Guard against p-hacking and data dredging by pre-registering hypotheses, conducting planned analyses, and avoiding selective reporting of results. Maintain transparency and integrity in your analysis process.

By following these best practices, you can conduct rigorous and reliable statistical analyses that yield meaningful insights and contribute to evidence-based decision-making in your field.

Conclusion for Statistical Analysis

Statistical analysis is a vital tool for making sense of data and guiding decision-making across diverse fields. By understanding the fundamentals of statistical analysis, including concepts like hypothesis testing, regression analysis, and data visualization, you gain the ability to extract valuable insights from complex datasets. Moreover, selecting the appropriate statistical methods, choosing the right software, and following best practices ensure the validity and reliability of your analyses. In today's data-driven world, the ability to conduct rigorous statistical analysis is a valuable skill that empowers individuals and organizations to make informed decisions and drive positive outcomes. Whether you're a researcher, analyst, or decision-maker, mastering statistical analysis opens doors to new opportunities for understanding the world around us and unlocking the potential of data to solve real-world problems.

How to Collect Data for Statistical Analysis in Minutes?

Introducing Appinio , your gateway to effortless data collection for statistical analysis. As a real-time market research platform, Appinio specializes in delivering instant consumer insights, empowering businesses to make swift, data-driven decisions.

With Appinio, conducting your own market research is not only feasible but also exhilarating. Here's why:

  • Obtain insights in minutes, not days:  From posing questions to uncovering insights, Appinio accelerates the entire research process, ensuring rapid access to valuable data.
  • User-friendly interface:  No advanced degrees required! Our platform is designed to be intuitive and accessible to anyone, allowing you to dive into market research with confidence.
  • Targeted surveys, global reach:  Define your target audience with precision using our extensive array of demographic and psychographic characteristics, and reach respondents in over 90 countries effortlessly.

Register now EN

Get free access to the platform!

Join the loop 💌

Be the first to hear about new updates, product news, and data insights. We'll send it all straight to your inbox.

Get the latest market research news straight to your inbox! 💌

Wait, there's more

Targeted Advertising Definition Benefits Examples

25.04.2024 | 37min read

Targeted Advertising: Definition, Benefits, Examples

Quota Sampling Definition Types Methods Examples

17.04.2024 | 25min read

Quota Sampling: Definition, Types, Methods, Examples

What is Market Share? Definition, Formula, Examples

15.04.2024 | 34min read

What is Market Share? Definition, Formula, Examples

Have a thesis expert improve your writing

Check your thesis for plagiarism in 10 minutes, generate your apa citations for free.

  • Knowledge Base

The Beginner's Guide to Statistical Analysis | 5 Steps & Examples

Statistical analysis means investigating trends, patterns, and relationships using quantitative data . It is an important research tool used by scientists, governments, businesses, and other organisations.

To draw valid conclusions, statistical analysis requires careful planning from the very start of the research process . You need to specify your hypotheses and make decisions about your research design, sample size, and sampling procedure.

After collecting data from your sample, you can organise and summarise the data using descriptive statistics . Then, you can use inferential statistics to formally test hypotheses and make estimates about the population. Finally, you can interpret and generalise your findings.

This article is a practical introduction to statistical analysis for students and researchers. We’ll walk you through the steps using two research examples. The first investigates a potential cause-and-effect relationship, while the second investigates a potential correlation between variables.

Table of contents

Step 1: write your hypotheses and plan your research design, step 2: collect data from a sample, step 3: summarise your data with descriptive statistics, step 4: test hypotheses or make estimates with inferential statistics, step 5: interpret your results, frequently asked questions about statistics.

To collect valid data for statistical analysis, you first need to specify your hypotheses and plan out your research design.

Writing statistical hypotheses

The goal of research is often to investigate a relationship between variables within a population . You start with a prediction, and use statistical analysis to test that prediction.

A statistical hypothesis is a formal way of writing a prediction about a population. Every research prediction is rephrased into null and alternative hypotheses that can be tested using sample data.

While the null hypothesis always predicts no effect or no relationship between variables, the alternative hypothesis states your research prediction of an effect or relationship.

  • Null hypothesis: A 5-minute meditation exercise will have no effect on math test scores in teenagers.
  • Alternative hypothesis: A 5-minute meditation exercise will improve math test scores in teenagers.
  • Null hypothesis: Parental income and GPA have no relationship with each other in college students.
  • Alternative hypothesis: Parental income and GPA are positively correlated in college students.

Planning your research design

A research design is your overall strategy for data collection and analysis. It determines the statistical tests you can use to test your hypothesis later on.

First, decide whether your research will use a descriptive, correlational, or experimental design. Experiments directly influence variables, whereas descriptive and correlational studies only measure variables.

  • In an experimental design , you can assess a cause-and-effect relationship (e.g., the effect of meditation on test scores) using statistical tests of comparison or regression.
  • In a correlational design , you can explore relationships between variables (e.g., parental income and GPA) without any assumption of causality using correlation coefficients and significance tests.
  • In a descriptive design , you can study the characteristics of a population or phenomenon (e.g., the prevalence of anxiety in U.S. college students) using statistical tests to draw inferences from sample data.

Your research design also concerns whether you’ll compare participants at the group level or individual level, or both.

  • In a between-subjects design , you compare the group-level outcomes of participants who have been exposed to different treatments (e.g., those who performed a meditation exercise vs those who didn’t).
  • In a within-subjects design , you compare repeated measures from participants who have participated in all treatments of a study (e.g., scores from before and after performing a meditation exercise).
  • In a mixed (factorial) design , one variable is altered between subjects and another is altered within subjects (e.g., pretest and posttest scores from participants who either did or didn’t do a meditation exercise).
  • Experimental
  • Correlational

First, you’ll take baseline test scores from participants. Then, your participants will undergo a 5-minute meditation exercise. Finally, you’ll record participants’ scores from a second math test.

In this experiment, the independent variable is the 5-minute meditation exercise, and the dependent variable is the math test score from before and after the intervention. Example: Correlational research design In a correlational study, you test whether there is a relationship between parental income and GPA in graduating college students. To collect your data, you will ask participants to fill in a survey and self-report their parents’ incomes and their own GPA.

Measuring variables

When planning a research design, you should operationalise your variables and decide exactly how you will measure them.

For statistical analysis, it’s important to consider the level of measurement of your variables, which tells you what kind of data they contain:

  • Categorical data represents groupings. These may be nominal (e.g., gender) or ordinal (e.g. level of language ability).
  • Quantitative data represents amounts. These may be on an interval scale (e.g. test score) or a ratio scale (e.g. age).

Many variables can be measured at different levels of precision. For example, age data can be quantitative (8 years old) or categorical (young). If a variable is coded numerically (e.g., level of agreement from 1–5), it doesn’t automatically mean that it’s quantitative instead of categorical.

Identifying the measurement level is important for choosing appropriate statistics and hypothesis tests. For example, you can calculate a mean score with quantitative data, but not with categorical data.

In a research study, along with measures of your variables of interest, you’ll often collect data on relevant participant characteristics.

Population vs sample

In most cases, it’s too difficult or expensive to collect data from every member of the population you’re interested in studying. Instead, you’ll collect data from a sample.

Statistical analysis allows you to apply your findings beyond your own sample as long as you use appropriate sampling procedures . You should aim for a sample that is representative of the population.

Sampling for statistical analysis

There are two main approaches to selecting a sample.

  • Probability sampling: every member of the population has a chance of being selected for the study through random selection.
  • Non-probability sampling: some members of the population are more likely than others to be selected for the study because of criteria such as convenience or voluntary self-selection.

In theory, for highly generalisable findings, you should use a probability sampling method. Random selection reduces sampling bias and ensures that data from your sample is actually typical of the population. Parametric tests can be used to make strong statistical inferences when data are collected using probability sampling.

But in practice, it’s rarely possible to gather the ideal sample. While non-probability samples are more likely to be biased, they are much easier to recruit and collect data from. Non-parametric tests are more appropriate for non-probability samples, but they result in weaker inferences about the population.

If you want to use parametric tests for non-probability samples, you have to make the case that:

  • your sample is representative of the population you’re generalising your findings to.
  • your sample lacks systematic bias.

Keep in mind that external validity means that you can only generalise your conclusions to others who share the characteristics of your sample. For instance, results from Western, Educated, Industrialised, Rich and Democratic samples (e.g., college students in the US) aren’t automatically applicable to all non-WEIRD populations.

If you apply parametric tests to data from non-probability samples, be sure to elaborate on the limitations of how far your results can be generalised in your discussion section .

Create an appropriate sampling procedure

Based on the resources available for your research, decide on how you’ll recruit participants.

  • Will you have resources to advertise your study widely, including outside of your university setting?
  • Will you have the means to recruit a diverse sample that represents a broad population?
  • Do you have time to contact and follow up with members of hard-to-reach groups?

Your participants are self-selected by their schools. Although you’re using a non-probability sample, you aim for a diverse and representative sample. Example: Sampling (correlational study) Your main population of interest is male college students in the US. Using social media advertising, you recruit senior-year male college students from a smaller subpopulation: seven universities in the Boston area.

Calculate sufficient sample size

Before recruiting participants, decide on your sample size either by looking at other studies in your field or using statistics. A sample that’s too small may be unrepresentative of the sample, while a sample that’s too large will be more costly than necessary.

There are many sample size calculators online. Different formulas are used depending on whether you have subgroups or how rigorous your study should be (e.g., in clinical research). As a rule of thumb, a minimum of 30 units or more per subgroup is necessary.

To use these calculators, you have to understand and input these key components:

  • Significance level (alpha): the risk of rejecting a true null hypothesis that you are willing to take, usually set at 5%.
  • Statistical power : the probability of your study detecting an effect of a certain size if there is one, usually 80% or higher.
  • Expected effect size : a standardised indication of how large the expected result of your study will be, usually based on other similar studies.
  • Population standard deviation: an estimate of the population parameter based on a previous study or a pilot study of your own.

Once you’ve collected all of your data, you can inspect them and calculate descriptive statistics that summarise them.

Inspect your data

There are various ways to inspect your data, including the following:

  • Organising data from each variable in frequency distribution tables .
  • Displaying data from a key variable in a bar chart to view the distribution of responses.
  • Visualising the relationship between two variables using a scatter plot .

By visualising your data in tables and graphs, you can assess whether your data follow a skewed or normal distribution and whether there are any outliers or missing data.

A normal distribution means that your data are symmetrically distributed around a center where most values lie, with the values tapering off at the tail ends.

Mean, median, mode, and standard deviation in a normal distribution

In contrast, a skewed distribution is asymmetric and has more values on one end than the other. The shape of the distribution is important to keep in mind because only some descriptive statistics should be used with skewed distributions.

Extreme outliers can also produce misleading statistics, so you may need a systematic approach to dealing with these values.

Calculate measures of central tendency

Measures of central tendency describe where most of the values in a data set lie. Three main measures of central tendency are often reported:

  • Mode : the most popular response or value in the data set.
  • Median : the value in the exact middle of the data set when ordered from low to high.
  • Mean : the sum of all values divided by the number of values.

However, depending on the shape of the distribution and level of measurement, only one or two of these measures may be appropriate. For example, many demographic characteristics can only be described using the mode or proportions, while a variable like reaction time may not have a mode at all.

Calculate measures of variability

Measures of variability tell you how spread out the values in a data set are. Four main measures of variability are often reported:

  • Range : the highest value minus the lowest value of the data set.
  • Interquartile range : the range of the middle half of the data set.
  • Standard deviation : the average distance between each value in your data set and the mean.
  • Variance : the square of the standard deviation.

Once again, the shape of the distribution and level of measurement should guide your choice of variability statistics. The interquartile range is the best measure for skewed distributions, while standard deviation and variance provide the best information for normal distributions.

Using your table, you should check whether the units of the descriptive statistics are comparable for pretest and posttest scores. For example, are the variance levels similar across the groups? Are there any extreme values? If there are, you may need to identify and remove extreme outliers in your data set or transform your data before performing a statistical test.

From this table, we can see that the mean score increased after the meditation exercise, and the variances of the two scores are comparable. Next, we can perform a statistical test to find out if this improvement in test scores is statistically significant in the population. Example: Descriptive statistics (correlational study) After collecting data from 653 students, you tabulate descriptive statistics for annual parental income and GPA.

It’s important to check whether you have a broad range of data points. If you don’t, your data may be skewed towards some groups more than others (e.g., high academic achievers), and only limited inferences can be made about a relationship.

A number that describes a sample is called a statistic , while a number describing a population is called a parameter . Using inferential statistics , you can make conclusions about population parameters based on sample statistics.

Researchers often use two main methods (simultaneously) to make inferences in statistics.

  • Estimation: calculating population parameters based on sample statistics.
  • Hypothesis testing: a formal process for testing research predictions about the population using samples.

You can make two types of estimates of population parameters from sample statistics:

  • A point estimate : a value that represents your best guess of the exact parameter.
  • An interval estimate : a range of values that represent your best guess of where the parameter lies.

If your aim is to infer and report population characteristics from sample data, it’s best to use both point and interval estimates in your paper.

You can consider a sample statistic a point estimate for the population parameter when you have a representative sample (e.g., in a wide public opinion poll, the proportion of a sample that supports the current government is taken as the population proportion of government supporters).

There’s always error involved in estimation, so you should also provide a confidence interval as an interval estimate to show the variability around a point estimate.

A confidence interval uses the standard error and the z score from the standard normal distribution to convey where you’d generally expect to find the population parameter most of the time.

Hypothesis testing

Using data from a sample, you can test hypotheses about relationships between variables in the population. Hypothesis testing starts with the assumption that the null hypothesis is true in the population, and you use statistical tests to assess whether the null hypothesis can be rejected or not.

Statistical tests determine where your sample data would lie on an expected distribution of sample data if the null hypothesis were true. These tests give two main outputs:

  • A test statistic tells you how much your data differs from the null hypothesis of the test.
  • A p value tells you the likelihood of obtaining your results if the null hypothesis is actually true in the population.

Statistical tests come in three main varieties:

  • Comparison tests assess group differences in outcomes.
  • Regression tests assess cause-and-effect relationships between variables.
  • Correlation tests assess relationships between variables without assuming causation.

Your choice of statistical test depends on your research questions, research design, sampling method, and data characteristics.

Parametric tests

Parametric tests make powerful inferences about the population based on sample data. But to use them, some assumptions must be met, and only some types of variables can be used. If your data violate these assumptions, you can perform appropriate data transformations or use alternative non-parametric tests instead.

A regression models the extent to which changes in a predictor variable results in changes in outcome variable(s).

  • A simple linear regression includes one predictor variable and one outcome variable.
  • A multiple linear regression includes two or more predictor variables and one outcome variable.

Comparison tests usually compare the means of groups. These may be the means of different groups within a sample (e.g., a treatment and control group), the means of one sample group taken at different times (e.g., pretest and posttest scores), or a sample mean and a population mean.

  • A t test is for exactly 1 or 2 groups when the sample is small (30 or less).
  • A z test is for exactly 1 or 2 groups when the sample is large.
  • An ANOVA is for 3 or more groups.

The z and t tests have subtypes based on the number and types of samples and the hypotheses:

  • If you have only one sample that you want to compare to a population mean, use a one-sample test .
  • If you have paired measurements (within-subjects design), use a dependent (paired) samples test .
  • If you have completely separate measurements from two unmatched groups (between-subjects design), use an independent (unpaired) samples test .
  • If you expect a difference between groups in a specific direction, use a one-tailed test .
  • If you don’t have any expectations for the direction of a difference between groups, use a two-tailed test .

The only parametric correlation test is Pearson’s r . The correlation coefficient ( r ) tells you the strength of a linear relationship between two quantitative variables.

However, to test whether the correlation in the sample is strong enough to be important in the population, you also need to perform a significance test of the correlation coefficient, usually a t test, to obtain a p value. This test uses your sample size to calculate how much the correlation coefficient differs from zero in the population.

You use a dependent-samples, one-tailed t test to assess whether the meditation exercise significantly improved math test scores. The test gives you:

  • a t value (test statistic) of 3.00
  • a p value of 0.0028

Although Pearson’s r is a test statistic, it doesn’t tell you anything about how significant the correlation is in the population. You also need to test whether this sample correlation coefficient is large enough to demonstrate a correlation in the population.

A t test can also determine how significantly a correlation coefficient differs from zero based on sample size. Since you expect a positive correlation between parental income and GPA, you use a one-sample, one-tailed t test. The t test gives you:

  • a t value of 3.08
  • a p value of 0.001

The final step of statistical analysis is interpreting your results.

Statistical significance

In hypothesis testing, statistical significance is the main criterion for forming conclusions. You compare your p value to a set significance level (usually 0.05) to decide whether your results are statistically significant or non-significant.

Statistically significant results are considered unlikely to have arisen solely due to chance. There is only a very low chance of such a result occurring if the null hypothesis is true in the population.

This means that you believe the meditation intervention, rather than random factors, directly caused the increase in test scores. Example: Interpret your results (correlational study) You compare your p value of 0.001 to your significance threshold of 0.05. With a p value under this threshold, you can reject the null hypothesis. This indicates a statistically significant correlation between parental income and GPA in male college students.

Note that correlation doesn’t always mean causation, because there are often many underlying factors contributing to a complex variable like GPA. Even if one variable is related to another, this may be because of a third variable influencing both of them, or indirect links between the two variables.

Effect size

A statistically significant result doesn’t necessarily mean that there are important real life applications or clinical outcomes for a finding.

In contrast, the effect size indicates the practical significance of your results. It’s important to report effect sizes along with your inferential statistics for a complete picture of your results. You should also report interval estimates of effect sizes if you’re writing an APA style paper .

With a Cohen’s d of 0.72, there’s medium to high practical significance to your finding that the meditation exercise improved test scores. Example: Effect size (correlational study) To determine the effect size of the correlation coefficient, you compare your Pearson’s r value to Cohen’s effect size criteria.

Decision errors

Type I and Type II errors are mistakes made in research conclusions. A Type I error means rejecting the null hypothesis when it’s actually true, while a Type II error means failing to reject the null hypothesis when it’s false.

You can aim to minimise the risk of these errors by selecting an optimal significance level and ensuring high power . However, there’s a trade-off between the two errors, so a fine balance is necessary.

Frequentist versus Bayesian statistics

Traditionally, frequentist statistics emphasises null hypothesis significance testing and always starts with the assumption of a true null hypothesis.

However, Bayesian statistics has grown in popularity as an alternative approach in the last few decades. In this approach, you use previous research to continually update your hypotheses based on your expectations and observations.

Bayes factor compares the relative strength of evidence for the null versus the alternative hypothesis rather than making a conclusion about rejecting the null hypothesis or not.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Statistical analysis is the main method for analyzing quantitative research data . It uses probabilities and models to test predictions about a population from sample data.

Is this article helpful?

Other students also liked, a quick guide to experimental design | 5 steps & examples, controlled experiments | methods & examples of control, between-subjects design | examples, pros & cons, more interesting articles.

  • Central Limit Theorem | Formula, Definition & Examples
  • Central Tendency | Understanding the Mean, Median & Mode
  • Correlation Coefficient | Types, Formulas & Examples
  • Descriptive Statistics | Definitions, Types, Examples
  • How to Calculate Standard Deviation (Guide) | Calculator & Examples
  • How to Calculate Variance | Calculator, Analysis & Examples
  • How to Find Degrees of Freedom | Definition & Formula
  • How to Find Interquartile Range (IQR) | Calculator & Examples
  • How to Find Outliers | Meaning, Formula & Examples
  • How to Find the Geometric Mean | Calculator & Formula
  • How to Find the Mean | Definition, Examples & Calculator
  • How to Find the Median | Definition, Examples & Calculator
  • How to Find the Range of a Data Set | Calculator & Formula
  • Inferential Statistics | An Easy Introduction & Examples
  • Levels of measurement: Nominal, ordinal, interval, ratio
  • Missing Data | Types, Explanation, & Imputation
  • Normal Distribution | Examples, Formulas, & Uses
  • Null and Alternative Hypotheses | Definitions & Examples
  • Poisson Distributions | Definition, Formula & Examples
  • Skewness | Definition, Examples & Formula
  • T-Distribution | What It Is and How To Use It (With Examples)
  • The Standard Normal Distribution | Calculator, Examples & Uses
  • Type I & Type II Errors | Differences, Examples, Visualizations
  • Understanding Confidence Intervals | Easy Examples & Formulas
  • Variability | Calculating Range, IQR, Variance, Standard Deviation
  • What is Effect Size and Why Does It Matter? (Examples)
  • What Is Interval Data? | Examples & Definition
  • What Is Nominal Data? | Examples & Definition
  • What Is Ordinal Data? | Examples & Definition
  • What Is Ratio Data? | Examples & Definition
  • What Is the Mode in Statistics? | Definition, Examples & Calculator
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

statistical analysis research methodology

Home Market Research

Data Analysis in Research: Types & Methods

data-analysis-in-research

Content Index

Why analyze data in research?

Types of data in research, finding patterns in the qualitative data, methods used for data analysis in qualitative research, preparing data for analysis, methods used for data analysis in quantitative research, considerations in research data analysis, what is data analysis in research.

Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. 

Three essential things occur during the data analysis process — the first is data organization . Summarization and categorization together contribute to becoming the second known method used for data reduction. It helps find patterns and themes in the data for easy identification and linking. The third and last way is data analysis – researchers do it in both top-down and bottom-up fashion.

LEARN ABOUT: Research Process Steps

On the other hand, Marshall and Rossman describe data analysis as a messy, ambiguous, and time-consuming but creative and fascinating process through which a mass of collected data is brought to order, structure and meaning.

We can say that “the data analysis and data interpretation is a process representing the application of deductive and inductive logic to the research and data analysis.”

Researchers rely heavily on data as they have a story to tell or research problems to solve. It starts with a question, and data is nothing but an answer to that question. But, what if there is no question to ask? Well! It is possible to explore data even without a problem – we call it ‘Data Mining’, which often reveals some interesting patterns within the data that are worth exploring.

Irrelevant to the type of data researchers explore, their mission and audiences’ vision guide them to find the patterns to shape the story they want to tell. One of the essential things expected from researchers while analyzing data is to stay open and remain unbiased toward unexpected patterns, expressions, and results. Remember, sometimes, data analysis tells the most unforeseen yet exciting stories that were not expected when initiating data analysis. Therefore, rely on the data you have at hand and enjoy the journey of exploratory research. 

Create a Free Account

Every kind of data has a rare quality of describing things after assigning a specific value to it. For analysis, you need to organize these values, processed and presented in a given context, to make it useful. Data can be in different forms; here are the primary data types.

  • Qualitative data: When the data presented has words and descriptions, then we call it qualitative data . Although you can observe this data, it is subjective and harder to analyze data in research, especially for comparison. Example: Quality data represents everything describing taste, experience, texture, or an opinion that is considered quality data. This type of data is usually collected through focus groups, personal qualitative interviews , qualitative observation or using open-ended questions in surveys.
  • Quantitative data: Any data expressed in numbers of numerical figures are called quantitative data . This type of data can be distinguished into categories, grouped, measured, calculated, or ranked. Example: questions such as age, rank, cost, length, weight, scores, etc. everything comes under this type of data. You can present such data in graphical format, charts, or apply statistical analysis methods to this data. The (Outcomes Measurement Systems) OMS questionnaires in surveys are a significant source of collecting numeric data.
  • Categorical data: It is data presented in groups. However, an item included in the categorical data cannot belong to more than one group. Example: A person responding to a survey by telling his living style, marital status, smoking habit, or drinking habit comes under the categorical data. A chi-square test is a standard method used to analyze this data.

Learn More : Examples of Qualitative Data in Education

Data analysis in qualitative research

Data analysis and qualitative data research work a little differently from the numerical data as the quality data is made up of words, descriptions, images, objects, and sometimes symbols. Getting insight from such complicated information is a complicated process. Hence it is typically used for exploratory research and data analysis .

Although there are several ways to find patterns in the textual information, a word-based method is the most relied and widely used global technique for research and data analysis. Notably, the data analysis process in qualitative research is manual. Here the researchers usually read the available data and find repetitive or commonly used words. 

For example, while studying data collected from African countries to understand the most pressing issues people face, researchers might find  “food”  and  “hunger” are the most commonly used words and will highlight them for further analysis.

LEARN ABOUT: Level of Analysis

The keyword context is another widely used word-based technique. In this method, the researcher tries to understand the concept by analyzing the context in which the participants use a particular keyword.  

For example , researchers conducting research and data analysis for studying the concept of ‘diabetes’ amongst respondents might analyze the context of when and how the respondent has used or referred to the word ‘diabetes.’

The scrutiny-based technique is also one of the highly recommended  text analysis  methods used to identify a quality data pattern. Compare and contrast is the widely used method under this technique to differentiate how a specific text is similar or different from each other. 

For example: To find out the “importance of resident doctor in a company,” the collected data is divided into people who think it is necessary to hire a resident doctor and those who think it is unnecessary. Compare and contrast is the best method that can be used to analyze the polls having single-answer questions types .

Metaphors can be used to reduce the data pile and find patterns in it so that it becomes easier to connect data with theory.

Variable Partitioning is another technique used to split variables so that researchers can find more coherent descriptions and explanations from the enormous data.

LEARN ABOUT: Qualitative Research Questions and Questionnaires

There are several techniques to analyze the data in qualitative research, but here are some commonly used methods,

  • Content Analysis:  It is widely accepted and the most frequently employed technique for data analysis in research methodology. It can be used to analyze the documented information from text, images, and sometimes from the physical items. It depends on the research questions to predict when and where to use this method.
  • Narrative Analysis: This method is used to analyze content gathered from various sources such as personal interviews, field observation, and  surveys . The majority of times, stories, or opinions shared by people are focused on finding answers to the research questions.
  • Discourse Analysis:  Similar to narrative analysis, discourse analysis is used to analyze the interactions with people. Nevertheless, this particular method considers the social context under which or within which the communication between the researcher and respondent takes place. In addition to that, discourse analysis also focuses on the lifestyle and day-to-day environment while deriving any conclusion.
  • Grounded Theory:  When you want to explain why a particular phenomenon happened, then using grounded theory for analyzing quality data is the best resort. Grounded theory is applied to study data about the host of similar cases occurring in different settings. When researchers are using this method, they might alter explanations or produce new ones until they arrive at some conclusion.

LEARN ABOUT: 12 Best Tools for Researchers

Data analysis in quantitative research

The first stage in research and data analysis is to make it for the analysis so that the nominal data can be converted into something meaningful. Data preparation consists of the below phases.

Phase I: Data Validation

Data validation is done to understand if the collected data sample is per the pre-set standards, or it is a biased data sample again divided into four different stages

  • Fraud: To ensure an actual human being records each response to the survey or the questionnaire
  • Screening: To make sure each participant or respondent is selected or chosen in compliance with the research criteria
  • Procedure: To ensure ethical standards were maintained while collecting the data sample
  • Completeness: To ensure that the respondent has answered all the questions in an online survey. Else, the interviewer had asked all the questions devised in the questionnaire.

Phase II: Data Editing

More often, an extensive research data sample comes loaded with errors. Respondents sometimes fill in some fields incorrectly or sometimes skip them accidentally. Data editing is a process wherein the researchers have to confirm that the provided data is free of such errors. They need to conduct necessary checks and outlier checks to edit the raw edit and make it ready for analysis.

Phase III: Data Coding

Out of all three, this is the most critical phase of data preparation associated with grouping and assigning values to the survey responses . If a survey is completed with a 1000 sample size, the researcher will create an age bracket to distinguish the respondents based on their age. Thus, it becomes easier to analyze small data buckets rather than deal with the massive data pile.

LEARN ABOUT: Steps in Qualitative Research

After the data is prepared for analysis, researchers are open to using different research and data analysis methods to derive meaningful insights. For sure, statistical analysis plans are the most favored to analyze numerical data. In statistical analysis, distinguishing between categorical data and numerical data is essential, as categorical data involves distinct categories or labels, while numerical data consists of measurable quantities. The method is again classified into two groups. First, ‘Descriptive Statistics’ used to describe data. Second, ‘Inferential statistics’ that helps in comparing the data .

Descriptive statistics

This method is used to describe the basic features of versatile types of data in research. It presents the data in such a meaningful way that pattern in the data starts making sense. Nevertheless, the descriptive analysis does not go beyond making conclusions. The conclusions are again based on the hypothesis researchers have formulated so far. Here are a few major types of descriptive analysis methods.

Measures of Frequency

  • Count, Percent, Frequency
  • It is used to denote home often a particular event occurs.
  • Researchers use it when they want to showcase how often a response is given.

Measures of Central Tendency

  • Mean, Median, Mode
  • The method is widely used to demonstrate distribution by various points.
  • Researchers use this method when they want to showcase the most commonly or averagely indicated response.

Measures of Dispersion or Variation

  • Range, Variance, Standard deviation
  • Here the field equals high/low points.
  • Variance standard deviation = difference between the observed score and mean
  • It is used to identify the spread of scores by stating intervals.
  • Researchers use this method to showcase data spread out. It helps them identify the depth until which the data is spread out that it directly affects the mean.

Measures of Position

  • Percentile ranks, Quartile ranks
  • It relies on standardized scores helping researchers to identify the relationship between different scores.
  • It is often used when researchers want to compare scores with the average count.

For quantitative research use of descriptive analysis often give absolute numbers, but the in-depth analysis is never sufficient to demonstrate the rationale behind those numbers. Nevertheless, it is necessary to think of the best method for research and data analysis suiting your survey questionnaire and what story researchers want to tell. For example, the mean is the best way to demonstrate the students’ average scores in schools. It is better to rely on the descriptive statistics when the researchers intend to keep the research or outcome limited to the provided  sample  without generalizing it. For example, when you want to compare average voting done in two different cities, differential statistics are enough.

Descriptive analysis is also called a ‘univariate analysis’ since it is commonly used to analyze a single variable.

Inferential statistics

Inferential statistics are used to make predictions about a larger population after research and data analysis of the representing population’s collected sample. For example, you can ask some odd 100 audiences at a movie theater if they like the movie they are watching. Researchers then use inferential statistics on the collected  sample  to reason that about 80-90% of people like the movie. 

Here are two significant areas of inferential statistics.

  • Estimating parameters: It takes statistics from the sample research data and demonstrates something about the population parameter.
  • Hypothesis test: I t’s about sampling research data to answer the survey research questions. For example, researchers might be interested to understand if the new shade of lipstick recently launched is good or not, or if the multivitamin capsules help children to perform better at games.

These are sophisticated analysis methods used to showcase the relationship between different variables instead of describing a single variable. It is often used when researchers want something beyond absolute numbers to understand the relationship between variables.

Here are some of the commonly used methods for data analysis in research.

  • Correlation: When researchers are not conducting experimental research or quasi-experimental research wherein the researchers are interested to understand the relationship between two or more variables, they opt for correlational research methods.
  • Cross-tabulation: Also called contingency tables,  cross-tabulation  is used to analyze the relationship between multiple variables.  Suppose provided data has age and gender categories presented in rows and columns. A two-dimensional cross-tabulation helps for seamless data analysis and research by showing the number of males and females in each age category.
  • Regression analysis: For understanding the strong relationship between two variables, researchers do not look beyond the primary and commonly used regression analysis method, which is also a type of predictive analysis used. In this method, you have an essential factor called the dependent variable. You also have multiple independent variables in regression analysis. You undertake efforts to find out the impact of independent variables on the dependent variable. The values of both independent and dependent variables are assumed as being ascertained in an error-free random manner.
  • Frequency tables: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Analysis of variance: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Researchers must have the necessary research skills to analyze and manipulation the data , Getting trained to demonstrate a high standard of research practice. Ideally, researchers must possess more than a basic understanding of the rationale of selecting one statistical method over the other to obtain better data insights.
  • Usually, research and data analytics projects differ by scientific discipline; therefore, getting statistical advice at the beginning of analysis helps design a survey questionnaire, select data collection methods , and choose samples.

LEARN ABOUT: Best Data Collection Tools

  • The primary aim of data research and analysis is to derive ultimate insights that are unbiased. Any mistake in or keeping a biased mind to collect data, selecting an analysis method, or choosing  audience  sample il to draw a biased inference.
  • Irrelevant to the sophistication used in research data and analysis is enough to rectify the poorly defined objective outcome measurements. It does not matter if the design is at fault or intentions are not clear, but lack of clarity might mislead readers, so avoid the practice.
  • The motive behind data analysis in research is to present accurate and reliable data. As far as possible, avoid statistical errors, and find a way to deal with everyday challenges like outliers, missing data, data altering, data mining , or developing graphical representation.

LEARN MORE: Descriptive Research vs Correlational Research The sheer amount of data generated daily is frightening. Especially when data analysis has taken center stage. in 2018. In last year, the total data supply amounted to 2.8 trillion gigabytes. Hence, it is clear that the enterprises willing to survive in the hypercompetitive world must possess an excellent capability to analyze complex research data, derive actionable insights, and adapt to the new market needs.

LEARN ABOUT: Average Order Value

QuestionPro is an online survey platform that empowers organizations in data analysis and research and provides them a medium to collect data by creating appealing surveys.

MORE LIKE THIS

customer communication tool

Customer Communication Tool: Types, Methods, Uses, & Tools

Apr 23, 2024

sentiment analysis tools

Top 12 Sentiment Analysis Tools for Understanding Emotions

QuestionPro BI: From Research Data to Actionable Dashboards

QuestionPro BI: From research data to actionable dashboards within minutes

Apr 22, 2024

customer experience management software

21 Best Customer Experience Management Software in 2024

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Ann Card Anaesth
  • v.22(3); Jul-Sep 2019

Selection of Appropriate Statistical Methods for Data Analysis

Prabhaker mishra.

Department of Biostatistics and Health Informatics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India

Chandra Mani Pandey

Uttam singh, amit keshri.

1 Department of Neuro-otology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India

Mayilvaganan Sabaretnam

2 Department of Endocrine Surgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India

In biostatistics, for each of the specific situation, statistical methods are available for analysis and interpretation of the data. To select the appropriate statistical method, one need to know the assumption and conditions of the statistical methods, so that proper statistical method can be selected for data analysis. Two main statistical methods are used in data analysis: descriptive statistics, which summarizes data using indexes such as mean and median and another is inferential statistics, which draw conclusions from data using statistical tests such as student's t -test. Selection of appropriate statistical method depends on the following three things: Aim and objective of the study, Type and distribution of the data used, and Nature of the observations (paired/unpaired). All type of statistical methods that are used to compare the means are called parametric while statistical methods used to compare other than means (ex-median/mean ranks/proportions) are called nonparametric methods. In the present article, we have discussed the parametric and non-parametric methods, their assumptions, and how to select appropriate statistical methods for analysis and interpretation of the biomedical data.

Introduction

Selection of appropriate statistical method is very important step in analysis of biomedical data. A wrong selection of the statistical method not only creates some serious problem during the interpretation of the findings but also affects the conclusion of the study. In statistics, for each specific situation, statistical methods are available to analysis and interpretation of the data. To select the appropriate statistical method, one need to know the assumption and conditions of the statistical methods, so that proper statistical method can be selected for data analysis.[ 1 ] Other than knowledge of the statistical methods, another very important aspect is nature and type of the data collected and objective of the study because as per objective, corresponding statistical methods are selected which are suitable on given data. Practice of wrong or inappropriate statistical method is a common phenomenon in the published articles in biomedical research. Incorrect statistical methods can be seen in many conditions like use of unpaired t -test on paired data or use of parametric test for the data which does not follow the normal distribution, etc., At present, many statistical software like SPSS, R, Stata, and SAS are available and using these softwares, one can easily perform the statistical analysis but selection of appropriate statistical test is still a difficult task for the biomedical researchers especially those with nonstatistical background.[ 2 ] Two main statistical methods are used in data analysis: descriptive statistics, which summarizes data using indexes such as mean, median, standard deviation and another is inferential statistics, which draws conclusions from data using statistical tests such as student's t-test, ANOVA test, etc.[ 3 ]

Factors Influencing Selection of Statistical Methods

Selection of appropriate statistical method depends on the following three things: Aim and objective of the study, Type and distribution of the data used, and Nature of the observations (paired/unpaired).

Aim and objective of the study

Selection of statistical test depends upon our aim and objective of the study. Suppose our objective is to find out the predictors of the outcome variable, then regression analysis is used while to compare the means between two independent samples, unpaired samples t-test is used.

Type and distribution of the data used

For the same objective, selection of the statistical test is varying as per data types. For the nominal, ordinal, discrete data, we use nonparametric methods while for continuous data, parametric methods as well as nonparametric methods are used.[ 4 ] For example, in the regression analysis, when our outcome variable is categorical, logistic regression while for the continuous variable, linear regression model is used. The choice of the most appropriate representative measure for continuous variable is dependent on how the values are distributed. If continuous variable follows normal distribution, mean is the representative measure while for non-normal data, median is considered as the most appropriate representative measure of the data set. Similarly in the categorical data, proportion (percentage) while for the ranking/ordinal data, mean ranks are our representative measure. In the inferential statistics, hypothesis is constructed using these measures and further in the hypothesis testing, these measures are used to compare between/among the groups to calculate significance level. Suppose we want to compare the diastolic blood pressure (DBP) between three age groups (years) (<30, 30--50, >50). If our DBP variable is normally distributed, mean value is our representative measure and null hypothesis stated that mean DB P values of the three age groups are statistically equal. In case of non-normal DBP variable, median value is our representative measure and null hypothesis stated that distribution of the DB P values among three age groups are statistically equal. In above example, one-way ANOVA test is used to compare the means when DBP follows normal distribution while Kruskal--Wallis H tests/median tests are used to compare the distribution of DBP among three age groups when DBP follows non-normal distribution. Similarly, suppose we want to compare the mean arterial pressure (MAP) between treatment and control groups, if our MAP variable follows normal distribution, independent samples t-test while in case follow non-normal distribution, Mann--Whitney U test are used to compare the MAP between the treatment and control groups.

Observations are paired or unpaired

Another important point in selection of the statistical test is to assess whether data is paired (same subjects are measures at different time points or using different methods) or unpaired (each group have different subject). For example, to compare the means between two groups, when data is paired, paired samples t-test while for unpaired (independent) data, independent samples t-test is used.

Concept of Parametric and Nonparametric Methods

Inferential statistical methods fall into two possible categorizations: parametric and nonparametric. All type of statistical methods those are used to compare the means are called parametric while statistical methods used to compare other than means (ex-median/mean ranks/proportions) are called nonparametric methods. Parametric tests rely on the assumption that the variable is continuous and follow approximate normally distributed. When data is continuous with non-normal distribution or any other types of data other than continuous variable, nonparametric methods are used. Fortunately, the most frequently used parametric methods have nonparametric counterparts. This can be useful when the assumptions of a parametric test are violated and we can choose the nonparametric alternative as a backup analysis.[ 3 ]

Selection between Parametric and Nonparametric Methods

All type of the t -test, F test are considered parametric test. Student's t -test (one sample t -test, independent samples t -test, paired samples t -test) is used to compare the means between two groups while F test (one-way ANOVA, repeated measures ANOVA, etc.) which is the extension of the student's t -test are used to compare the means among three or more groups. Similarly, Pearson correlation coefficient, linear regression is also considered parametric methods, is used to calculate using mean and standard deviation of the data. For above parametric methods, counterpart nonparametric methods are also available. For example, Mann--Whitney U test and Wilcoxon test are used for student's t -test while Kruskal--Wallis H test, median test, and Friedman test are alternative methods of the F test (ANOVA). Similarly, Spearman rank correlation coefficient and log linear regression are used as nonparametric method of the Pearson correlation and linear regression, respectively.[ 3 , 5 , 6 , 7 , 8 ] Parametric and their counterpart nonparametric methods are given in Table 1 .

Parametric and their Alternative Nonparametric Methods

Statistical Methods to Compare the Proportions

The statistical methods used to compare the proportions are considered nonparametric methods and these methods have no alternative parametric methods. Pearson Chi-square test and Fisher exact test is used to compare the proportions between two or more independent groups. To test the change in proportions between two paired groups, McNemar test is used while Cochran Q test is used for the same objective among three or more paired groups. Z test for proportions is used to compare the proportions between two groups for independent as well as dependent groups.[ 6 , 7 , 8 ] [ Table 2 ].

Other Statistical Methods

Intraclass correlation coefficient is calculated when both pre-post data are in continuous scale. Unweighted and weighted Kappa statistics are used to test the absolute agreement between two methods measured on the same subjects (pre-post) for nominal and ordinal data, respectively. There are some methods those are either semiparametric or nonparametric and these methods, counterpart parametric methods, are not available. Methods are logistic regression analysis, survival analysis, and receiver operating characteristics curve.[ 9 ] Logistic regression analysis is used to predict the categorical outcome variable using independent variable(s). Survival analysis is used to calculate the survival time/survival probability, comparison of the survival time between the groups (Kaplan--Meier method) as well as to identify the predictors of the survival time of the subjects/patients (Cox regression analysis). Receiver operating characteristics (ROC) curve is used to calculate area under curve (AUC) and cutoff values for given continuous variable with corresponding diagnostic accuracy using categorical outcome variable. Diagnostic accuracy of the test method is calculated as compared with another method (usually as compared with gold standard method). Sensitivity (proportion of the detected disease cases from the actual disease cases), specificity (proportion of the detected non-disease subjects from the actual non-disease subjects), overall accuracy (proportion of agreement between test and gold standard methods to correctly detect the disease and non-disease subjects) are the key measures used to assess the diagnostic accuracy of the test method. Other measures like false negative rate (1-sensitivity), false-positive rate (1-specificity), likelihood ratio positive (sensitivity/false-positive rate), likelihood ratio negative (false-negative rate/Specificity), positive predictive value (proportion of correctly detected disease cases by the test variable out of total detected disease cases by the itself), and negative predictive value (proportion of correctly detected non-disease subjects by test variable out of total non-disease subjects detected by the itself) are also used to calculate the diagnostic accuracy of the test method.[ 3 , 6 , 10 ] [ Table 3 ].

Semi-parametric and non-parametric methods

Advantage and Disadvantages of Nonparametric Methods over Parametric Methods and Sample Size Issues

Parametric methods are stronger test to detect the difference between the groups as compared with its counterpart nonparametric methods, although due to some strict assumptions, including normality of the data and sample size, we cannot use parametric test in every situation and resultant its alternative nonparametric methods are used. As mean is used to compare parametric method, which is severally affected by the outliers while in nonparametric method, median/mean rank is our representative measures which do not affect from the outliers.[ 11 ]

In parametric methods like student's t-test and ANOVA test, significance level is calculated using mean and standard deviation, and to calculate standard deviation in each group, at least two observations are required. If every group did not have at least two observations, its alternative nonparametric method to be selected works through comparisons of the mean ranks of the data.

For small sample size (average ≤15 observations per group), normality testing methods are less sensitive about non-normality and there is chance to detect normality despite having non-normal data. It is recommended that when sample size is small, only on highly normally distributed data, parametric method should be used otherwise corresponding nonparametric methods should be preferred. Similarly on sufficient or large sample size (average >15 observations per group), most of the statistical methods are highly sensitive about non-normality and there is chance to wrongly detect non-normality, despite having normal data. It is recommended that when sample size is sufficient, only on highly non-normal data, nonparametric method should be used otherwise corresponding parametric methods should be preferred.[ 12 ]

Minimum Sample Size Required for Statistical Methods

To detect the significant difference between the means/medians/mean ranks/proportions, at minimum level of confidence (usually 95%) and power of the test (usually 80%), how many individuals/subjects (sample size) are required depends on the detected effect size. The effect size and corresponding required sample size are inversely proportional to each other, that is, on the same level of confidence and power of the test, when effect size is increasing, required sample size is decreasing. Summary is, no minimum or maximum sample size is fix for any particular statistical method and it is subject to estimate based on the given inputs including effect size, level of confidence, power of the study, etc., Only on the sufficient sample size, we can detect the difference significantly. In case lack of the sample size than actual required, our study will be under power to detect the given difference as well as result would be statistically insignificant.

Impact of Wrong Selection of the Statistical Methods

As for each and every situation, there are specific statistical methods. Failing to select appropriate statistical method, our significance level as well as their conclusion is affected.[ 13 ] For example in a study, systolic blood pressure (mean ± SD) of the control (126.45 ± 8.85, n 1 =20) and treatment (121.85 ± 5.96, n 2 =20) group was compared using Independent samples t -test (correct practice). Result showed that mean difference between two groups was statistically insignificant ( P = 0.061) while on the same data, paired samples t -test (incorrect practice) indicated that mean difference was statistically significant ( P = 0.011). Due to incorrect practice, we detected the statistically significant difference between the groups although actually difference did not exist.

Conclusions

Selection of the appropriate statistical methods is very important for the quality research. It is important that a researcher knows the basic concepts of the statistical methods used to conduct research study that produce a valid and reliable results. There are various statistical methods that can be used in different situations. Each test makes particular assumptions about the data. These assumptions should be taken into consideration when deciding which the most appropriate test is. Wrong or inappropriate use of statistical methods may lead to defective conclusions, finally would harm the evidence-based practices. Hence, an adequate knowledge of statistics and the appropriate use of statistical tests are important for improving and producing quality biomedical research. However, it is extremely difficult for a biomedical researchers or academician to learn the entire statistical methods. Therefore, at least basic knowledge is very important so that appropriate selection of the statistical methods can decide as well as correct/incorrect practices can be recognized in the published research. There are many softwares available online as well as offline for analyzing the data, although it is fact that which set of statistical tests are appropriate for the given data and study objective is still very difficult for the researchers to understand. Therefore, since planning of the study to data collection, analysis and finally in the review process, proper consultation from statistical experts may be an alternative option and can reduce the burden from the clinicians to go in depth of statistics which required lots of time and effort and ultimately affect their clinical works. These practices not only ensure the correct and appropriate use of the biostatistical methods in the research but also ensure the highest quality of statistical reporting in the research and journals.[ 14 ]

Financial support and sponsorship

Conflicts of interest.

There are no conflicts of interest.

Acknowledgements

Authors would like to express their deep and sincere gratitude to Dr. Prabhat Tiwari, Professor, Department of Anaesthesiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, for his encouragement to write this article. His critical reviews and suggestions were very useful for improvement in the article.

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

  • Wealth Surged in the Pandemic, but Debt Endures for Poorer Black and Hispanic Families

2. Wealth gaps across racial and ethnic groups

Table of contents.

  • The range of wealth within racial and ethnic groups
  • The share of racial or ethnic groups’ wealth held by richer households, not counting the top 1%
  • Households with no wealth or in debt
  • How wealth varies by race and ethnicity
  • The wealth of White households relative to the wealth of other households
  • Households in the lower, middle or upper tiers of wealth
  • The wealth of U.S. households by income tier
  • Racial and ethnic wealth gaps by income tier
  • Types of assets owned by U.S. households
  • The value of assets owned by households
  • The importance of home equity
  • The debt level of households
  • How high is household debt?
  • Acknowledgments
  • Data source
  • Race and ethnicity
  • Household head
  • Adjusting for inflation
  • Defining income tiers
  • Statistical testing

Household wealth or net worth is the value of assets owned by every member of the household minus their debt. The terms are used interchangeably in this report. Assets include owned homes, vehicles, financial accounts, retirement accounts, stocks, bonds and mutual funds, and more. Debt refers to home mortgage loans, education loans, credit card balances, and any other loan or credit extended to the household. Net worth is negative when debt levels are greater than asset values. ( Refer to the methodology for more details.)

“Poorer,” “more solvent,” “wealthier” and “richer” refer to a household’s wealth status relative to other households of the same race and ethnicity . Poorer households rank in the bottom 25% when compared with other households of the same race and ethnicity; more solvent households place from the 25th up to and including the 50th percentile; wealthier households from the 50th up to and including the 75th percentile; and the richer are in the top 25%. The bottom 1% and the top 1% are excluded prior to the ranking so extreme values do not affect estimates for poorer and richer households.

Lower, middle and upper wealth tiers refer to a household’s wealth status relative to all other households in the U.S. The middle wealth tier consists of households whose wealth lies between one-quarter to four times as much as the median wealth of U.S. households – between $41,700 and $667,500 in 2021. Households in the lower wealth tier had wealth less than $41,700, and households in the upper wealth tier had wealth more than $667,500. The wealth tier boundaries vary across years. (Dollar amounts are expressed in December 2021 prices.)

Middle-income households are those with an income that is two-thirds to double that of the U.S. median household income, after incomes have been adjusted for household size and difference in the cost of living across areas. This was about $4,800 to $14,300 monthly in December 2021, for a household of three. Lower-income households had incomes less than $4,800, and upper-income households had incomes greater than $14,300. The income tier boundaries vary across years. (Dollar amounts are expressed in December 2021 prices.)

Households are grouped by the race and ethnicity of the survey reference person, or the household head. White, Black and Asian include those who report being only one race and are not Hispanic. Multiracial includes non-Hispanics of two or more races. Hispanics are of any race. American Indian or Pacific Islander households are not covered in our analysis because of small sample sizes.

The increase in the wealth of U.S. households from 2019 to 2021 was spread widely across racial and ethnic groups. Despite improved fortunes, Black, Hispanic and multiracial households trailed White and Asian households by large margins from the following perspectives, both before and after the pandemic:

  • Their wealth relative to the wealth of White and Asian households.
  • The shares of households that are in the middle or upper tiers of wealth.

A bar chart showing the median wealth of U.S. households by race and ethnicity in 2019 and 2021. In 2021, median wealth ranged from about $27,000 for Black households to about $321,000 for Asian households.

Asian households overall had more wealth than other households two years since the start of the pandemic. In 2021, Asian households had a median net worth of $320,900, compared with $250,400 for White households. The median net worth of Hispanic households ($48,700) and Black households ($27,100) was much less.

In dollar amounts, the wealth gap between White households and Black and Hispanic households increased from 2019 to 2021. For example, in 2019, the typical White household had $168,800 more in wealth than the typical Hispanic household. This gap increased to $201,700 in 2021.

In percentage terms, Black (77%), Hispanic (42%), Asian (43%) and White (23%) households all experienced strong gains in median wealth from 2019 to 2021.

What factors might explain the large wealth gaps across racial and ethnic groups that have endured for decades, if not longer ?

With respect to Black households, evidence points to the role of slavery and post-slavery practices, such as segregation, that created disparate opportunities for wealth accumulation . For Hispanic households, the relative youth of the population and immigration status play a role. In turn, these factors likely contribute to the lower rates and sizes of inheritances received by Black and Hispanic households in comparison with White households.

Asian households overall have more wealth than other households partly because of the higher level of education among Asian adults . In 2021, 61% of Asians ages 25 and older had a bachelor’s degree or higher level of education, compared with 42% of White adults. As a result, the typical Asian household has a much higher income than other households, with more potential for building wealth. But the Asian American population is very diverse, and income varies widely across Asian origin groups . As shown in the following chapter , lower-income Asian households had less wealth than lower-income White households in 2021.

A bar chart showing the ratio of the median wealth of White households to the median wealth of other households. In 2021, White households had 9.2 times as much as Black households and 5.1 times as much as Hispanic households. But White households had about 20% less wealth than Asian households.

In 2021, the typical White household had 9.2 times as much wealth as the typical Black household – $250,400 vs. $27,100. This ratio stood at 13.3 in 2019, prior to the onset of the pandemic.

White households also had significantly more wealth than Hispanic households (5.1 times) and multiracial households (3.0 times) in 2021. But the median wealth of White households was about 20% less than that of Asian households.

The wealth gaps between White households and Black and Hispanic households in 2019 and 2021 are in line with recent history . But the apparent shrinking of racial and ethnic wealth gaps during the pandemic stands in contrast with what happened during the Great Recession of 2007-09 .

In the Great Recession, the median wealth of White households jumped to nearly 20 times the wealth of Black households and 15 times that of Hispanic households. The key factors then were a sharp decline in home prices and a steep rise in home foreclosures , non-events during the pandemic. Black and Hispanic households saw more harm from these developments during the Great Recession because housing is a more valuable part of their collection of assets .

How does the wealth of a household compare with all other U.S. households? What shares of households are in the middle tier of wealth, and what shares are in the lower or upper tiers?

To address these questions, we grouped U.S. households into three tiers of wealth. The middle tier consists of households whose wealth lies between one-quarter and four times the median wealth of U.S. households – between $41,700 and $667,500 in 2021. Households in the lower tier had wealth less than $41,700 in 2021, and households in the upper tier had wealth more than $667,500.

Fewer than half of U.S. households (44%, or 59 million) were in the middle tier in 2021. This was so despite the wide range of the middle tier – those near the top had 16 times as much wealth as those near the bottom. At the same time, about a third of households (32%, or 43 million) were in the lower wealth tier, and about a quarter (23%, or 31 million) were in the upper tier.

A stacked bar chart showing the distribution of U.S. households across lower, middle and upper tiers of wealth. In 2021, 32% of U.S. households were in the lower wealth tier, 44% in the middle and 23% in the upper tier. But only about 10% or fewer of Hispanic and Black households were in the upper tier and about half or more were in the lower wealth tier.

Only 45% of Black households were in either the middle or upper wealth tiers in 2021, the lowest share among the groups examined. The majority of Black households (55%) were in the lower wealth tier in 2021 – that is, they had less than $41,700 in wealth. A somewhat greater share of Hispanic households (52%) were in the middle or upper wealth tier, and 48% were in the lower wealth tier.

In contrast, more than 70% of White and Asian households were in either the middle or upper wealth tier. Roughly one-third of Asian households (36%) were in the upper tier alone, with a net worth of more than $667,500 in 2021. Slightly more than a quarter (28%) of White households were in the upper tier.

Increases in household wealth during the pandemic did lead to a more equal distribution of wealth. The share of households in the middle tier increased from 41% in 2019 to 44% in 2021. Meanwhile, the shares of households in the lower and upper wealth tiers edged down by 2 percentage points each.

A similar shift to the middle was seen in Hispanic and White households, whose shares in the middle wealth tier increased by 3 to 4 points from 2019 to 2021. However, no such change was experienced by Asian households, with their share in the middle wealth tier holding at 39%.

Sign up for our weekly newsletter

Fresh data delivery Saturday mornings

Sign up for The Briefing

Weekly updates on the world of news & information

  • Asian Americans
  • Black Americans
  • COVID-19 & the Economy
  • Economic Inequality
  • Hispanics/Latinos
  • Income & Wages
  • Income, Wealth & Poverty
  • Racial & Ethnic Groups

Key facts about Asian Americans living in poverty

Methodology: 2023 focus groups of asian americans, 1 in 10: redefining the asian american dream (short film), the hardships and dreams of asian americans living in poverty, key facts about asian american eligible voters in 2024, most popular, report materials.

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Age & Generations
  • Coronavirus (COVID-19)
  • Economy & Work
  • Family & Relationships
  • Gender & LGBTQ
  • Immigration & Migration
  • International Affairs
  • Internet & Technology
  • Methodological Research
  • News Habits & Media
  • Non-U.S. Governments
  • Other Topics
  • Politics & Policy
  • Race & Ethnicity
  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

Copyright 2024 Pew Research Center

Terms & Conditions

Privacy Policy

Cookie Settings

Reprints, Permissions & Use Policy

IMAGES

  1. Standard statistical tools in research and data analysis

    statistical analysis research methodology

  2. Statistical Analysis Methods: 6 Statistical Methods for Analysis Must

    statistical analysis research methodology

  3. Role of Statistics in Research

    statistical analysis research methodology

  4. Statistical Analysis Types

    statistical analysis research methodology

  5. 7 Types of Statistical Analysis: Definition and Explanation

    statistical analysis research methodology

  6. 15 Research Methodology Examples (2023)

    statistical analysis research methodology

VIDEO

  1. Assumptions and Evaluation of Logistic Regression Model

  2. Week 10

  3. Week 5

  4. Tools for statistical analysis /Research methodology /malayalam

  5. Data Analysis in Research Methodology

  6. R-Session 5

COMMENTS

  1. The Beginner's Guide to Statistical Analysis

    This article is a practical introduction to statistical analysis for students and researchers. We'll walk you through the steps using two research examples. The first investigates a potential cause-and-effect relationship, while the second investigates a potential correlation between variables. Example: Causal research question.

  2. What is Statistical Analysis? Types, Methods and Examples

    Statistical analysis is the process of collecting and analyzing data in order to discern patterns and trends. It is a method for removing bias from evaluating data by employing numerical analysis. This technique is useful for collecting the interpretations of research, developing statistical models, and planning surveys and studies.

  3. Introduction to Research Statistical Analysis: An Overview of the

    Introduction. Statistical analysis is necessary for any research project seeking to make quantitative conclusions. The following is a primer for research-based statistical analysis. It is intended to be a high-level overview of appropriate statistical testing, while not diving too deep into any specific methodology.

  4. What Is Statistical Analysis? (Definition, Methods)

    Statistical analysis is useful for research and decision making because it allows us to understand the world around us and draw conclusions by testing our assumptions. Statistical analysis is important for various applications, including: Statistical quality control and analysis in product development. Clinical trials.

  5. Statistical Analysis in Research: Meaning, Methods and Types

    The scientific method is an empirical approach to acquiring new knowledge by making skeptical observations and analyses to develop a meaningful interpretation. It is the basis of research and the primary pillar of modern science. Researchers seek to understand the relationships between factors associated with the phenomena of interest. In some cases, research works with … Statistical ...

  6. Basic statistical tools in research and data analysis

    Abstract. Statistical methods involved in carrying out a study include planning, designing, collecting data, analysing, drawing meaningful interpretation and reporting of the research findings. The statistical analysis gives meaning to the meaningless numbers, thereby breathing life into a lifeless data. The results and inferences are precise ...

  7. Introduction to Statistical Analysis: A Beginner's Guide.

    Statistical analysis plays a pivotal role in achieving this by providing tools and methods to analyze and interpret data accurately. It helps researchers identify patterns, test hypotheses, draw inferences, and quantify the strength of relationships between variables. Understanding the significance of statistical analysis empowers researchers ...

  8. What Is Statistical Analysis? Definition, Types, and Jobs

    Statistical analysis is the process of collecting large volumes of data and then using statistics and other data analysis techniques to identify trends, patterns, and insights. ... keep up to date on statistical methodology, and continually improve your research skills. These skills take time to build, so starting with introductory courses and ...

  9. Role of Statistics in Research

    Types of Statistical Research Methods. Statistical analysis is the process of analyzing samples of data into patterns or trends that help researchers anticipate situations and make appropriate research conclusions. Based on the type of data, statistical analyses are of the following type: 1. Descriptive Analysis. The descriptive statistical ...

  10. Statistical Methods for Data Analysis: a Comprehensive Guide

    Introduction to Statistical Methods. At its core, statistical methods are the backbone of data analysis, helping us make sense of numbers and patterns in the world around us. Whether you're looking at sales figures, medical research, or even your fitness tracker's data, statistical methods are what turn raw data into useful insights.

  11. Evidence‐based statistical analysis and methods in biomedical research

    The continuous growth in the development of advanced statistical methods suggests the use of evidence‐based state‐of‐the‐art statistical methods in data analysis. Superior statistical methods according to sample size and distributions of outcome and independent variables in the literature should be preferred for data analysis.

  12. What is Statistical Analysis? Types, Methods, Software, Examples

    Statistical analysis is a methodical process of collecting, analyzing, interpreting, and presenting data to uncover patterns, trends, and relationships. It involves applying statistical techniques and methodologies to make sense of complex data sets and draw meaningful conclusions.

  13. An Introduction to Statistical Analysis in Research

    An Introduction to Statistical Analysis in Research: With Applications in the Biological and Life Sciences is an ideal textbook for upper-undergraduate and graduate-level courses in research methods, biostatistics, statistics, biology, kinesiology, sports science and medicine, health and physical education, medicine, and nutrition. The book is ...

  14. The Beginner's Guide to Statistical Analysis

    Statistical analysis means investigating trends, patterns, and relationships using quantitative data. It is an important research tool used by scientists, governments, businesses, and other organisations. ... Your choice of statistical test depends on your research questions, research design, sampling method, and data characteristics ...

  15. 5 Statistical Analysis Methods for Research and Analysis

    The practice of gathering and analyzing data to identify patterns and trends is known as statistical analysis. It is a method for eliminating bias from data evaluation by using numerical analysis. Data analytics and data analysis are closely related processes that involve extracting insights from data to make informed decisions. And these ...

  16. Data Analysis in Research: Types & Methods

    Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. Three essential things occur during the data ...

  17. (PDF) Introduction to Research Methodology & Statistics: A Guide for

    This book by Muhammad Abdurrahman Sani with a fascinating title. "Introduction to Research Methodology and Statistics: A Guide for Students and. Supe rvis ors" is a guide for bridging the gaps ...

  18. Statistical Analysis Methodology

    A mixed-methods analysis of the extent of and reasons for racial disparities in the Allegheny County criminal justice system. RAND performed a statistical analysis of administrative data for all key decision points in the criminal justice system. Dec 15, 2023. Report.

  19. Selection of Appropriate Statistical Methods for Data Analysis

    Type and distribution of the data used. For the same objective, selection of the statistical test is varying as per data types. For the nominal, ordinal, discrete data, we use nonparametric methods while for continuous data, parametric methods as well as nonparametric methods are used.[] For example, in the regression analysis, when our outcome variable is categorical, logistic regression ...

  20. Statistical Methods in Sociology (QCR)

    Most research in sociology is quantitative, and it is important for students to be able to critically evaluate published quantitative research. Ideally, students should also be able to conduct empirical research involving statistical methods. This course provides the foundation for both goals. The course focuses specifically on how to determine,...

  21. Statistical Research

    Center for Statistical Research and Methodology (CSRM) conducts research on statistical design, modeling, and analysis methods for the Census Bureau's data collection, analysis, and dissemination programs. Data obtained by the Census Bureau report on people's behavior and condition: Who they are. How they live.

  22. Key facts about Asian Americans living in poverty

    ABOUT PEW RESEARCH CENTER Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions.