Start Preparation for UGC NET Exam 2024 at Just ₹2999

Scholarify.in

Research | Meaning, Types, Characteristics, Positivism

Research Meaning, Types

Research: Meaning, Types and Characteristics

When you say that you are undertaking a research study to find answers to a question, you are implying that the process;

  • is being undertaken within a framework of a set of philosophies (approaches);
  • uses procedures, methods, and techniques that have been tested for their validity and reliability ;
  • is designed to be unbiased and objective .

Philosophies mean approaches, e.g., qualitative, quantitative, and the academic discipline in which you have been trained.

Validity means that correct procedures have been applied to find answers to a question.

Reliability refers to the quality of a measurement procedure that provides repeatability and accuracy.

Unbiased and objective means that you have taken each step in an unbiased manner and drawn each conclusion to the best of your ability and without introducing your own vested interest.

(Bias is a deliberate attempt to either conceal or highlight something).

Adherence to the three criteria mentioned above enables the process to be called ‘research’.

However, the degree to which these criteria are expected to be fulfilled varies from discipline to discipline and so the meaning of ‘research’ differs from one academic discipline to another.

The difference between research and non-research activity is, in the way we find answers: the process must meet certain requirements to be called research. We can identify these requirements by examining some definitions of research.

The word research is composed of two syllables, “ re” and “ search.” “ re” is a prefix meaning again, a new or over again and “ search” is a verb meaning to examine closely and carefully, to test and try, or to probe. Together they form a noun describing a careful, systematic, patient study and investigation in some field of knowledge, undertaken to establish facts or principles.

Research is a structured enquiry that utilizes acceptable scientific methodology to solve problems and create new knowledge that is generally applicable.

Scientific methods consist of systematic observation, classification and interpretation of data.

Characteristics of Research

Research is a process of collecting, analyzing and interpreting information to answer questions. But to qualify as research, the process must have certain characteristics: it must, as far as possible, be controlled, rigorous, systematic, valid and verifiable, empirical and critical.

Controlled – in real life there are many factors that affect an outcome. The concept of control implies that, in exploring causality in relation to two variables (factors), you set up your study in a way that minimizes the effects of other factors affecting the relationship. This can be achieved to a large extent in the physical sciences (cookery, bakery), as most of the research is done in a laboratory. However, in the social sciences (Hospitality and Tourism) it is extremely difficult as research is carried out on issues related to human beings living in society, where such controls are not possible. Therefore, in Hospitality and Tourism, as you cannot control external factors, you attempt to quantify their impact.

Rigorous -you must be scrupulous in ensuring that the procedures followed to find answers to questions are relevant, appropriate and justified. Again, the degree of rigour varies markedly between the physical and social sciences and within the social sciences.

Systematic -this implies that the procedure adopted to undertake an investigation follow a certain logical sequence. The different steps cannot be taken in a haphazard way. Some procedures must follow others.

Valid and verifiable -this concept implies that whatever you conclude on the basis of your findings is correct and can be verified by you and others.

Empirical -this means that any conclusion drawn are based upon hard evidence gathered from information collected from real-life experiences or observations.

Critical -critical scrutiny of the procedures used and the methods employed is crucial to a research enquiry . The process of investigation must be foolproof and free from drawbacks. The process adopted and the procedures used must be able to withstand critical scrutiny.

For a process to be called research, it is imperative that it has the above characteristics.

Types of Research

Research can be classified from three perspectives:

  • Application of research study
  • Objectives in undertaking the research
  • Inquiry Mode employed

Based on Application:

From the point of view of the application, there are two broad categories of research:

  • Pure Research
  • Applied Research,

Pure research (Fundamental) involves developing and testing theories and hypotheses that are intellectually challenging to the researcher but may or may not have a practical application at the present time or in the future. The knowledge produced through pure research is sought in order to add to the existing body of research methods.

Applied research (Action Research) is done to solve specific, practical questions; for policy formulation, administration and understanding of a phenomenon. It can be exploratory but is usually descriptive . It is almost always done on the basis of basic research.

Applied research can be carried out by academic or industrial institutions. Often, an academic institution such as a university will have a specific applied research program funded by an industrial partner interested in that program.

Based on Objectives:

From the viewpoint of objectives, research can be classified as

  • Descriptive
  • Correlational
  • Explanatory
  • Exploratory

Descriptive research attempts to describe systematically a situation, problem, phenomenon, service or programme, or provides information about, say, the living condition of a community, or describes attitudes towards an issue.

Correlational research attempts to discover or establish the existence of a relationship/ interdependence between two or more aspects of a situation.

Explanatory research attempts to clarify why and how there is a relationship between two or more aspects of a situation or phenomenon.

Exploratory research is undertaken to explore an area where little is known or to investigate the possibilities of undertaking a particular research study ( feasibility study pilot study).

In practice, most studies are a combination of the first three categories.

Based on Inquiry Mode:

From the process adopted to find the answer to re search questions; the two approaches are:

  • Structured approach
  • Unstructured approach

Structured approach: The structured approach to inquiry is usually classified as quantitative research . Everything that forms the research process- objectives, design, sample, and the questions that you plan to ask of respondents- is predetermined. It is more appropriate to determine the extent of a problem, issue or phenomenon by quantifying the variation.

e.g . how many people have a particular problem? How many people hold a particular attitude?

Unstructured approach: The unstructured approach to inquiry is usually classified as qualitative research . This approach allows flexibility in all aspects of the research process.

It is more appropriate to explore the nature of a problem, issue or phenomenon without quantifying it. The main objective is to describe the variation in a phenomenon, situation or attitude.

e,g, description of an observed situation, the historical enumeration of events, an account of different opinions different people have about an issue, description of working condition in a particular industry.

Both approaches have their place in research. Both have their strengths and weaknesses.

In many studies, there is a combination of both qualitative and quantitative approaches.

For example, suppose you have to find the types of cuisine/accommodation available in a city and the extent of their popularity.

Types of cuisine are the qualitative aspect of the study as finding out about them entails a description of the culture and cuisine

The extent of their popularity is the quantitative aspect as it involves estimating the number of people who visit a restaurant serving such cuisine and calculating the other indicators that reflect the extent of popularity.

Positivism and Post-Positivism Approach

Positivism:.

Positivism argues for the existence of a true and objective reality that can be studied by applying the methods and principles of natural sciences and scientific inquiry. It maintains that “the object of study is independent of researchers; knowledge is discovered and verified through direct observations or measurements of phenomena; facts are established by taking apart a phenomenon to examine its component parts.” According to this paradigm, the role of the researcher is to provide material for the development of laws by testing theories.

Positivists believe in five principles which include

  • Phenomenalism (knowledge confirmed by the senses can be regarded as knowledge),
  • Deductivism (the purpose of theory is to generate hypotheses that can be tested to make laws),
  • Inductivism (the gathering of facts provides the basis for laws and knowledge),
  • Objectivism (science should be value-free) and
  • Scientific statements

Post positivism:

Post Positivism is considered a contemporary paradigm that developed as a result of the criticism of positivism. Like positivists, post positivists also believe in the existence of a single reality, however, they acknowledge that reality can never be fully known and efforts to understand reality are limited owing to the human beings’ sensory and intellectual limitations.

The aim of post positivist research is also a prediction and explanation. Like positivists, post positivists also strive to be objective, neutral and ensure that the findings fit with the existing knowledge base. However, unlike positivists, they acknowledge and spell out any predispositions that may affect the objectivity

Positivism and post positivism was precluded from use in this study for several reasons. Firstly, research conducted under both of these paradigms is usually quantitative where a hypothesis is tested while the researcher remains objective and separate from the area of investigation.

Ref – Kumar, R. (2019). Resarch methodology: A step-by-step guide for beginners . Sage Publications Limited. https://www.ukessays.com/essays/psychology/rsearch-on-positivism-and-post-positivism-psychology-essay.php

Related Topics: UGC NET Syllabus (Updated): Paper 1 and 2 (Download) Solved Question Papers of UGC NET Paper 1 UGC NET Study Materials for Paper 1 (Download PDF) MPhil and PhD Fellowship

Related Posts

Pramanas | meaning, types | logical reasoning | ugc net.

Pramanas: Pramana (“sources of knowledge” or “measure”) is an epistemological term in Indian and Buddhist philosophies referring to the means by which a person obtains…

Read More »

Basics of Internet, Intranet, email, Audio and Video Conferencing

The basics of internet, intranet, email or audio and video conferencing can be better understood if we understand first the computer network. A computer network…

Evaluation Systems | Meaning, Types and Elements | UGC NET Paper 1

Evaluation Systems: Evaluation is a process through which we can get an exact idea of what students actually achieve from their teaching-learning experiences. Evaluation Systems…

Computer Based Test (CBT) in Higher Education | UGC NET Paper 1

Computer Based Test (CBT) simply refers to tests and assessments conducted through the use of the organised systems on computers. Computer Based tests have the…

Start typing and press enter to search

research types and characteristics

Community Blog

Keep up-to-date on postgraduate related issues with our quick reads written by students, postdocs, professors and industry leaders.

Types of Research – Explained with Examples

DiscoverPhDs

  • By DiscoverPhDs
  • October 2, 2020

Types of Research Design

Types of Research

Research is about using established methods to investigate a problem or question in detail with the aim of generating new knowledge about it.

It is a vital tool for scientific advancement because it allows researchers to prove or refute hypotheses based on clearly defined parameters, environments and assumptions. Due to this, it enables us to confidently contribute to knowledge as it allows research to be verified and replicated.

Knowing the types of research and what each of them focuses on will allow you to better plan your project, utilises the most appropriate methodologies and techniques and better communicate your findings to other researchers and supervisors.

Classification of Types of Research

There are various types of research that are classified according to their objective, depth of study, analysed data, time required to study the phenomenon and other factors. It’s important to note that a research project will not be limited to one type of research, but will likely use several.

According to its Purpose

Theoretical research.

Theoretical research, also referred to as pure or basic research, focuses on generating knowledge , regardless of its practical application. Here, data collection is used to generate new general concepts for a better understanding of a particular field or to answer a theoretical research question.

Results of this kind are usually oriented towards the formulation of theories and are usually based on documentary analysis, the development of mathematical formulas and the reflection of high-level researchers.

Applied Research

Here, the goal is to find strategies that can be used to address a specific research problem. Applied research draws on theory to generate practical scientific knowledge, and its use is very common in STEM fields such as engineering, computer science and medicine.

This type of research is subdivided into two types:

  • Technological applied research : looks towards improving efficiency in a particular productive sector through the improvement of processes or machinery related to said productive processes.
  • Scientific applied research : has predictive purposes. Through this type of research design, we can measure certain variables to predict behaviours useful to the goods and services sector, such as consumption patterns and viability of commercial projects.

Methodology Research

According to your Depth of Scope

Exploratory research.

Exploratory research is used for the preliminary investigation of a subject that is not yet well understood or sufficiently researched. It serves to establish a frame of reference and a hypothesis from which an in-depth study can be developed that will enable conclusive results to be generated.

Because exploratory research is based on the study of little-studied phenomena, it relies less on theory and more on the collection of data to identify patterns that explain these phenomena.

Descriptive Research

The primary objective of descriptive research is to define the characteristics of a particular phenomenon without necessarily investigating the causes that produce it.

In this type of research, the researcher must take particular care not to intervene in the observed object or phenomenon, as its behaviour may change if an external factor is involved.

Explanatory Research

Explanatory research is the most common type of research method and is responsible for establishing cause-and-effect relationships that allow generalisations to be extended to similar realities. It is closely related to descriptive research, although it provides additional information about the observed object and its interactions with the environment.

Correlational Research

The purpose of this type of scientific research is to identify the relationship between two or more variables. A correlational study aims to determine whether a variable changes, how much the other elements of the observed system change.

According to the Type of Data Used

Qualitative research.

Qualitative methods are often used in the social sciences to collect, compare and interpret information, has a linguistic-semiotic basis and is used in techniques such as discourse analysis, interviews, surveys, records and participant observations.

In order to use statistical methods to validate their results, the observations collected must be evaluated numerically. Qualitative research, however, tends to be subjective, since not all data can be fully controlled. Therefore, this type of research design is better suited to extracting meaning from an event or phenomenon (the ‘why’) than its cause (the ‘how’).

Quantitative Research

Quantitative research study delves into a phenomena through quantitative data collection and using mathematical, statistical and computer-aided tools to measure them . This allows generalised conclusions to be projected over time.

Types of Research Methodology

According to the Degree of Manipulation of Variables

Experimental research.

It is about designing or replicating a phenomenon whose variables are manipulated under strictly controlled conditions in order to identify or discover its effect on another independent variable or object. The phenomenon to be studied is measured through study and control groups, and according to the guidelines of the scientific method.

Non-Experimental Research

Also known as an observational study, it focuses on the analysis of a phenomenon in its natural context. As such, the researcher does not intervene directly, but limits their involvement to measuring the variables required for the study. Due to its observational nature, it is often used in descriptive research.

Quasi-Experimental Research

It controls only some variables of the phenomenon under investigation and is therefore not entirely experimental. In this case, the study and the focus group cannot be randomly selected, but are chosen from existing groups or populations . This is to ensure the collected data is relevant and that the knowledge, perspectives and opinions of the population can be incorporated into the study.

According to the Type of Inference

Deductive investigation.

In this type of research, reality is explained by general laws that point to certain conclusions; conclusions are expected to be part of the premise of the research problem and considered correct if the premise is valid and the inductive method is applied correctly.

Inductive Research

In this type of research, knowledge is generated from an observation to achieve a generalisation. It is based on the collection of specific data to develop new theories.

Hypothetical-Deductive Investigation

It is based on observing reality to make a hypothesis, then use deduction to obtain a conclusion and finally verify or reject it through experience.

Descriptive Research Design

According to the Time in Which it is Carried Out

Longitudinal study (also referred to as diachronic research).

It is the monitoring of the same event, individual or group over a defined period of time. It aims to track changes in a number of variables and see how they evolve over time. It is often used in medical, psychological and social areas .

Cross-Sectional Study (also referred to as Synchronous Research)

Cross-sectional research design is used to observe phenomena, an individual or a group of research subjects at a given time.

According to The Sources of Information

Primary research.

This fundamental research type is defined by the fact that the data is collected directly from the source, that is, it consists of primary, first-hand information.

Secondary research

Unlike primary research, secondary research is developed with information from secondary sources, which are generally based on scientific literature and other documents compiled by another researcher.

Action Research Methods

According to How the Data is Obtained

Documentary (cabinet).

Documentary research, or secondary sources, is based on a systematic review of existing sources of information on a particular subject. This type of scientific research is commonly used when undertaking literature reviews or producing a case study.

Field research study involves the direct collection of information at the location where the observed phenomenon occurs.

From Laboratory

Laboratory research is carried out in a controlled environment in order to isolate a dependent variable and establish its relationship with other variables through scientific methods.

Mixed-Method: Documentary, Field and/or Laboratory

Mixed research methodologies combine results from both secondary (documentary) sources and primary sources through field or laboratory research.

A Guide to Your First Week as a PhD Student

How should you spend your first week as a PhD student? Here’s are 7 steps to help you get started on your journey.

Dissertation Title Page

The title page of your dissertation or thesis conveys all the essential details about your project. This guide helps you format it in the correct way.

DiscoverPhDs procrastination trap

Are you always finding yourself working on sections of your research tasks right up until your deadlines? Are you still finding yourself distracted the moment

Join thousands of other students and stay up to date with the latest PhD programmes, funding opportunities and advice.

research types and characteristics

Browse PhDs Now

Dissertation versus Thesis

In the UK, a dissertation, usually around 20,000 words is written by undergraduate and Master’s students, whilst a thesis, around 80,000 words, is written as part of a PhD.

Reference Manager

Reference management software solutions offer a powerful way for you to track and manage your academic references. Read our blog post to learn more about what they are and how to use them.

research types and characteristics

Dr Pathak gained her PhD in Molecular Genetics from the University of North Texas Health Science Center in 2019. She is now a Postdoctoral Associate training in psychiatric genetics at the Yale School of Medicine.

research types and characteristics

Dr Griffith gained her PhD in Neuroscience from Northwestern University in 2015. She is now a neuroscientist and children’s book author and will be opening her own lab in the Department of Physiology and Membrane Biology at the University of California Davis later this year (2020).

Join Thousands of Students

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

research types and characteristics

Home Market Research

What is Research: Definition, Methods, Types & Examples

What is Research

The search for knowledge is closely linked to the object of study; that is, to the reconstruction of the facts that will provide an explanation to an observed event and that at first sight can be considered as a problem. It is very human to seek answers and satisfy our curiosity. Let’s talk about research.

Content Index

What is Research?

What are the characteristics of research.

  • Comparative analysis chart

Qualitative methods

Quantitative methods, 8 tips for conducting accurate research.

Research is the careful consideration of study regarding a particular concern or research problem using scientific methods. According to the American sociologist Earl Robert Babbie, “research is a systematic inquiry to describe, explain, predict, and control the observed phenomenon. It involves inductive and deductive methods.”

Inductive methods analyze an observed event, while deductive methods verify the observed event. Inductive approaches are associated with qualitative research , and deductive methods are more commonly associated with quantitative analysis .

Research is conducted with a purpose to:

  • Identify potential and new customers
  • Understand existing customers
  • Set pragmatic goals
  • Develop productive market strategies
  • Address business challenges
  • Put together a business expansion plan
  • Identify new business opportunities
  • Good research follows a systematic approach to capture accurate data. Researchers need to practice ethics and a code of conduct while making observations or drawing conclusions.
  • The analysis is based on logical reasoning and involves both inductive and deductive methods.
  • Real-time data and knowledge is derived from actual observations in natural settings.
  • There is an in-depth analysis of all data collected so that there are no anomalies associated with it.
  • It creates a path for generating new questions. Existing data helps create more research opportunities.
  • It is analytical and uses all the available data so that there is no ambiguity in inference.
  • Accuracy is one of the most critical aspects of research. The information must be accurate and correct. For example, laboratories provide a controlled environment to collect data. Accuracy is measured in the instruments used, the calibrations of instruments or tools, and the experiment’s final result.

What is the purpose of research?

There are three main purposes:

  • Exploratory: As the name suggests, researchers conduct exploratory studies to explore a group of questions. The answers and analytics may not offer a conclusion to the perceived problem. It is undertaken to handle new problem areas that haven’t been explored before. This exploratory data analysis process lays the foundation for more conclusive data collection and analysis.

LEARN ABOUT: Descriptive Analysis

  • Descriptive: It focuses on expanding knowledge on current issues through a process of data collection. Descriptive research describe the behavior of a sample population. Only one variable is required to conduct the study. The three primary purposes of descriptive studies are describing, explaining, and validating the findings. For example, a study conducted to know if top-level management leaders in the 21st century possess the moral right to receive a considerable sum of money from the company profit.

LEARN ABOUT: Best Data Collection Tools

  • Explanatory: Causal research or explanatory research is conducted to understand the impact of specific changes in existing standard procedures. Running experiments is the most popular form. For example, a study that is conducted to understand the effect of rebranding on customer loyalty.

Here is a comparative analysis chart for a better understanding:

It begins by asking the right questions and choosing an appropriate method to investigate the problem. After collecting answers to your questions, you can analyze the findings or observations to draw reasonable conclusions.

When it comes to customers and market studies, the more thorough your questions, the better the analysis. You get essential insights into brand perception and product needs by thoroughly collecting customer data through surveys and questionnaires . You can use this data to make smart decisions about your marketing strategies to position your business effectively.

To make sense of your study and get insights faster, it helps to use a research repository as a single source of truth in your organization and manage your research data in one centralized data repository .

Types of research methods and Examples

what is research

Research methods are broadly classified as Qualitative and Quantitative .

Both methods have distinctive properties and data collection methods .

Qualitative research is a method that collects data using conversational methods, usually open-ended questions . The responses collected are essentially non-numerical. This method helps a researcher understand what participants think and why they think in a particular way.

Types of qualitative methods include:

  • One-to-one Interview
  • Focus Groups
  • Ethnographic studies
  • Text Analysis

Quantitative methods deal with numbers and measurable forms . It uses a systematic way of investigating events or data. It answers questions to justify relationships with measurable variables to either explain, predict, or control a phenomenon.

Types of quantitative methods include:

  • Survey research
  • Descriptive research
  • Correlational research

LEARN MORE: Descriptive Research vs Correlational Research

Remember, it is only valuable and useful when it is valid, accurate, and reliable. Incorrect results can lead to customer churn and a decrease in sales.

It is essential to ensure that your data is:

  • Valid – founded, logical, rigorous, and impartial.
  • Accurate – free of errors and including required details.
  • Reliable – other people who investigate in the same way can produce similar results.
  • Timely – current and collected within an appropriate time frame.
  • Complete – includes all the data you need to support your business decisions.

Gather insights

What is a research - tips

  • Identify the main trends and issues, opportunities, and problems you observe. Write a sentence describing each one.
  • Keep track of the frequency with which each of the main findings appears.
  • Make a list of your findings from the most common to the least common.
  • Evaluate a list of the strengths, weaknesses, opportunities, and threats identified in a SWOT analysis .
  • Prepare conclusions and recommendations about your study.
  • Act on your strategies
  • Look for gaps in the information, and consider doing additional inquiry if necessary
  • Plan to review the results and consider efficient methods to analyze and interpret results.

Review your goals before making any conclusions about your study. Remember how the process you have completed and the data you have gathered help answer your questions. Ask yourself if what your analysis revealed facilitates the identification of your conclusions and recommendations.

LEARN MORE ABOUT OUR SOFTWARE         FREE TRIAL

MORE LIKE THIS

email survey tool

The Best Email Survey Tool to Boost Your Feedback Game

May 7, 2024

Employee Engagement Survey Tools

Top 10 Employee Engagement Survey Tools

employee engagement software

Top 20 Employee Engagement Software Solutions

May 3, 2024

customer experience software

15 Best Customer Experience Software of 2024

May 2, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology

Research Methods | Definition, Types, Examples

Research methods are specific procedures for collecting and analysing data. Developing your research methods is an integral part of your research design . When planning your methods, there are two key decisions you will make.

First, decide how you will collect data . Your methods depend on what type of data you need to answer your research question :

  • Qualitative vs quantitative : Will your data take the form of words or numbers?
  • Primary vs secondary : Will you collect original data yourself, or will you use data that have already been collected by someone else?
  • Descriptive vs experimental : Will you take measurements of something as it is, or will you perform an experiment?

Second, decide how you will analyse the data .

  • For quantitative data, you can use statistical analysis methods to test relationships between variables.
  • For qualitative data, you can use methods such as thematic analysis to interpret patterns and meanings in the data.

Table of contents

Methods for collecting data, examples of data collection methods, methods for analysing data, examples of data analysis methods, frequently asked questions about methodology.

Data are the information that you collect for the purposes of answering your research question . The type of data you need depends on the aims of your research.

Qualitative vs quantitative data

Your choice of qualitative or quantitative data collection depends on the type of knowledge you want to develop.

For questions about ideas, experiences and meanings, or to study something that can’t be described numerically, collect qualitative data .

If you want to develop a more mechanistic understanding of a topic, or your research involves hypothesis testing , collect quantitative data .

You can also take a mixed methods approach, where you use both qualitative and quantitative research methods.

Primary vs secondary data

Primary data are any original information that you collect for the purposes of answering your research question (e.g. through surveys , observations and experiments ). Secondary data are information that has already been collected by other researchers (e.g. in a government census or previous scientific studies).

If you are exploring a novel research question, you’ll probably need to collect primary data. But if you want to synthesise existing knowledge, analyse historical trends, or identify patterns on a large scale, secondary data might be a better choice.

Descriptive vs experimental data

In descriptive research , you collect data about your study subject without intervening. The validity of your research will depend on your sampling method .

In experimental research , you systematically intervene in a process and measure the outcome. The validity of your research will depend on your experimental design .

To conduct an experiment, you need to be able to vary your independent variable , precisely measure your dependent variable, and control for confounding variables . If it’s practically and ethically possible, this method is the best choice for answering questions about cause and effect.

Prevent plagiarism, run a free check.

Your data analysis methods will depend on the type of data you collect and how you prepare them for analysis.

Data can often be analysed both quantitatively and qualitatively. For example, survey responses could be analysed qualitatively by studying the meanings of responses or quantitatively by studying the frequencies of responses.

Qualitative analysis methods

Qualitative analysis is used to understand words, ideas, and experiences. You can use it to interpret data that were collected:

  • From open-ended survey and interview questions, literature reviews, case studies, and other sources that use text rather than numbers.
  • Using non-probability sampling methods .

Qualitative analysis tends to be quite flexible and relies on the researcher’s judgement, so you have to reflect carefully on your choices and assumptions.

Quantitative analysis methods

Quantitative analysis uses numbers and statistics to understand frequencies, averages and correlations (in descriptive studies) or cause-and-effect relationships (in experiments).

You can use quantitative analysis to interpret data that were collected either:

  • During an experiment.
  • Using probability sampling methods .

Because the data are collected and analysed in a statistically valid way, the results of quantitative analysis can be easily standardised and shared among researchers.

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to test a hypothesis by systematically collecting and analysing data, while qualitative methods allow you to explore ideas and experiences in depth.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

A sample is a subset of individuals from a larger population. Sampling means selecting the group that you will actually collect data from in your research.

For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

Statistical sampling allows you to test a hypothesis about the characteristics of a population. There are various sampling methods you can use to ensure that your sample is representative of the population as a whole.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyse data (e.g. experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

Is this article helpful?

More interesting articles.

  • A Quick Guide to Experimental Design | 5 Steps & Examples
  • Between-Subjects Design | Examples, Pros & Cons
  • Case Study | Definition, Examples & Methods
  • Cluster Sampling | A Simple Step-by-Step Guide with Examples
  • Confounding Variables | Definition, Examples & Controls
  • Construct Validity | Definition, Types, & Examples
  • Content Analysis | A Step-by-Step Guide with Examples
  • Control Groups and Treatment Groups | Uses & Examples
  • Controlled Experiments | Methods & Examples of Control
  • Correlation vs Causation | Differences, Designs & Examples
  • Correlational Research | Guide, Design & Examples
  • Critical Discourse Analysis | Definition, Guide & Examples
  • Cross-Sectional Study | Definitions, Uses & Examples
  • Data Cleaning | A Guide with Examples & Steps
  • Data Collection Methods | Step-by-Step Guide & Examples
  • Descriptive Research Design | Definition, Methods & Examples
  • Doing Survey Research | A Step-by-Step Guide & Examples
  • Ethical Considerations in Research | Types & Examples
  • Explanatory Research | Definition, Guide, & Examples
  • Explanatory vs Response Variables | Definitions & Examples
  • Exploratory Research | Definition, Guide, & Examples
  • External Validity | Types, Threats & Examples
  • Extraneous Variables | Examples, Types, Controls
  • Face Validity | Guide with Definition & Examples
  • How to Do Thematic Analysis | Guide & Examples
  • How to Write a Strong Hypothesis | Guide & Examples
  • Inclusion and Exclusion Criteria | Examples & Definition
  • Independent vs Dependent Variables | Definition & Examples
  • Inductive Reasoning | Types, Examples, Explanation
  • Inductive vs Deductive Research Approach (with Examples)
  • Internal Validity | Definition, Threats & Examples
  • Internal vs External Validity | Understanding Differences & Examples
  • Longitudinal Study | Definition, Approaches & Examples
  • Mediator vs Moderator Variables | Differences & Examples
  • Mixed Methods Research | Definition, Guide, & Examples
  • Multistage Sampling | An Introductory Guide with Examples
  • Naturalistic Observation | Definition, Guide & Examples
  • Operationalisation | A Guide with Examples, Pros & Cons
  • Population vs Sample | Definitions, Differences & Examples
  • Primary Research | Definition, Types, & Examples
  • Qualitative vs Quantitative Research | Examples & Methods
  • Quasi-Experimental Design | Definition, Types & Examples
  • Questionnaire Design | Methods, Question Types & Examples
  • Random Assignment in Experiments | Introduction & Examples
  • Reliability vs Validity in Research | Differences, Types & Examples
  • Reproducibility vs Replicability | Difference & Examples
  • Research Design | Step-by-Step Guide with Examples
  • Sampling Methods | Types, Techniques, & Examples
  • Semi-Structured Interview | Definition, Guide & Examples
  • Simple Random Sampling | Definition, Steps & Examples
  • Stratified Sampling | A Step-by-Step Guide with Examples
  • Structured Interview | Definition, Guide & Examples
  • Systematic Review | Definition, Examples & Guide
  • Systematic Sampling | A Step-by-Step Guide with Examples
  • Textual Analysis | Guide, 3 Approaches & Examples
  • The 4 Types of Reliability in Research | Definitions & Examples
  • The 4 Types of Validity | Types, Definitions & Examples
  • Transcribing an Interview | 5 Steps & Transcription Software
  • Triangulation in Research | Guide, Types, Examples
  • Types of Interviews in Research | Guide & Examples
  • Types of Research Designs Compared | Examples
  • Types of Variables in Research | Definitions & Examples
  • Unstructured Interview | Definition, Guide & Examples
  • What Are Control Variables | Definition & Examples
  • What Is a Case-Control Study? | Definition & Examples
  • What Is a Cohort Study? | Definition & Examples
  • What Is a Conceptual Framework? | Tips & Examples
  • What Is a Double-Barrelled Question?
  • What Is a Double-Blind Study? | Introduction & Examples
  • What Is a Focus Group? | Step-by-Step Guide & Examples
  • What Is a Likert Scale? | Guide & Examples
  • What is a Literature Review? | Guide, Template, & Examples
  • What Is a Prospective Cohort Study? | Definition & Examples
  • What Is a Retrospective Cohort Study? | Definition & Examples
  • What Is Action Research? | Definition & Examples
  • What Is an Observational Study? | Guide & Examples
  • What Is Concurrent Validity? | Definition & Examples
  • What Is Content Validity? | Definition & Examples
  • What Is Convenience Sampling? | Definition & Examples
  • What Is Convergent Validity? | Definition & Examples
  • What Is Criterion Validity? | Definition & Examples
  • What Is Deductive Reasoning? | Explanation & Examples
  • What Is Discriminant Validity? | Definition & Example
  • What Is Ecological Validity? | Definition & Examples
  • What Is Ethnography? | Meaning, Guide & Examples
  • What Is Non-Probability Sampling? | Types & Examples
  • What Is Participant Observation? | Definition & Examples
  • What Is Peer Review? | Types & Examples
  • What Is Predictive Validity? | Examples & Definition
  • What Is Probability Sampling? | Types & Examples
  • What Is Purposive Sampling? | Definition & Examples
  • What Is Qualitative Observation? | Definition & Examples
  • What Is Qualitative Research? | Methods & Examples
  • What Is Quantitative Observation? | Definition & Examples
  • What Is Quantitative Research? | Definition & Methods
  • What Is Quota Sampling? | Definition & Examples
  • What is Secondary Research? | Definition, Types, & Examples
  • What Is Snowball Sampling? | Definition & Examples
  • Within-Subjects Design | Explanation, Approaches, Examples

Research: Definition, Characteristics, Goals, Approaches

research definition

Research is an original and systematic investigation undertaken to increase existing knowledge and understanding of the unknown to establish facts and principles.

Let’s understand research:

What is Research?

Research is a voyage of discovery of new knowledge. It comprises creating ideas and generating new knowledge that leads to new and improved insights and the development of new materials, devices, products, and processes.

It should have the potential to produce sufficiently relevant results to increase and synthesize existing knowledge or correct and integrate previous knowledge.

Good reflective research produces theories and hypotheses and benefits any intellectual attempt to analyze facts and phenomena.

Where did the word Research Come from?

The word ‘research’ perhaps originates from the old French word “recerchier” which meant to ‘ search again.’ It implicitly assumes that the earlier search was not exhaustive and complete; hence, a repeated search is called for.

In practice, ‘research’ refers to a scientific process of generating an unexplored horizon of knowledge, aiming at discovering or establishing facts, solving a problem, and reaching a decision. Keeping the above points in view, we arrive at the following definition of research:

Research Definition

Research is a scientific approach to answering a research question, solving a research problem, or generating new knowledge through a systematic and orderly collection, organization, and analysis of data to make research findings useful in decision-making.

When do we call research scientific? Any research endeavor is said to be scientific if

  • It is based on empirical and measurable evidence subject to specific principles of reasoning;
  • It consists of systematic observations, measurement, and experimentation;
  • It relies on the application of scientific methods and harnessing of curiosity;
  • It provides scientific information and theories for the explanation of nature;
  • It makes practical applications possible, and
  • It ensures adequate analysis of data employing rigorous statistical techniques.

The chief characteristic that distinguishes the scientific method from other methods of acquiring knowledge is that scientists seek to let reality speak for itself, supporting a theory when a theory’s predictions are confirmed and challenging a theory when its predictions prove false.

Scientific research has multidimensional functions, characteristics, and objectives.

Keeping these issues in view, we assert that research in any field or discipline:

  • Attempts to solve a research problem;
  • Involves gathering new data from primary or first-hand sources or using existing data for a new purpose;
  • is based upon observable experiences or empirical evidence;
  • Demands accurate observation and description;
  • Employs carefully designed procedures and rigorous analysis;
  • attempts to find an objective, unbiased solution to the problem and takes great pains to validate the methods employed;
  • is a deliberate and unhurried activity that is directional but often refines the problem or questions as the research progresses.

Characteristics of Research

Keeping this in mind that research in any field of inquiry is undertaken to provide information to support decision-making in its respective area, we summarize some desirable characteristics of research:

  • The research should focus on priority problems.
  • The research should be systematic. It emphasizes that a researcher should employ a structured procedure.
  • The research should be logical. Without manipulating ideas logically, the scientific researcher cannot make much progress in any investigation.
  • The research should be reductive. This means that one researcher’s findings should be made available to other researchers to prevent them from repeating the same research.
  • The research should be replicable. This asserts that there should be scope to confirm previous research findings in a new environment and different settings with a new group of subjects or at a different point in time.
  • The research should be generative. This is one of the valuable characteristics of research because answering one question leads to generating many other new questions.
  • The research should be action-oriented. In other words, it should be aimed at solving to implement its findings.
  • The research should follow an integrated multidisciplinary approach, i.e., research approaches from more than one discipline are needed.
  • The research should be participatory, involving all parties concerned (from policymakers down to community members) at all stages of the study.
  • The research must be relatively simple, timely, and time-bound, employing a comparatively simple design.
  • The research must be as much cost-effective as possible.
  • The research results should be presented in formats most useful for administrators, decision-makers, business managers, or community members.

3 Basic Operations of Research

Scientific research in any field of inquiry involves three basic operations:

  • Data collection;
  • Data analysis;
  • Report writing .

3 basic operations of research

  • Data collection refers to observing, measuring, and recording data or information.
  • Data analysis, on the other hand, refers to arranging and organizing the collected data so that we may be able to find out what their significance is and generalize about them.
  • Report writing is the ultimate step of the study . Its purpose is to convey the information contained in it to the readers or audience.

If you note down, for example, the reading habit of newspapers of a group of residents in a community, that would be your data collection.

If you then divide these residents into three categories, ‘regular,’ ‘occasional,’ and ‘never,’ you have performed a simple data analysis. Your findings may now be presented in a report form.

A reader of your report knows what percentage of the community people never read any newspaper and so on.

Here are some examples that demonstrate what research is:

  • A farmer is planting two varieties of jute side by side to compare yields;
  • A sociologist examines the causes and consequences of divorce;
  • An economist is looking at the interdependence of inflation and foreign direct investment;
  • A physician is experimenting with the effects of multiple uses of disposable insulin syringes in a hospital;
  • A business enterprise is examining the effects of advertisement of their products on the volume of sales;
  • An economist is doing a cost-benefit analysis of reducing the sales tax on essential commodities;
  • The Bangladesh Bank is closely observing and monitoring the performance of nationalized and private banks;
  • Based on some prior information, Bank Management plans to open new counters for female customers.
  • Supermarket Management is assessing the satisfaction level of the customers with their products.

The above examples are all researching whether the instrument is an electronic microscope, hospital records, a microcomputer, a questionnaire, or a checklist.

Research Motivation – What makes one motivated to do research?

A person may be motivated to undertake research activities because

  • He might have genuine interest and curiosity in the existing body of knowledge and understanding of the problem;
  • He is looking for answers to questions that have remained unanswered so far and trying to unfold the truth;
  • The existing tools and techniques are accessible to him, and others may need modification and change to suit the current needs.

One might research ensuring.

  • Better livelihood;
  • Better career development;
  • Higher position, prestige, and dignity in society;
  • Academic achievement leading to higher degrees;
  • Self-gratification.

At the individual level, the results of the research are used by many:

  • A villager is drinking water from an arsenic-free tube well;
  • A rural woman is giving more green vegetables to her child than before;
  • A cigarette smoker is actively considering quitting smoking;
  • An old man is jogging for cardiovascular fitness;
  • A sociologist is using newly suggested tools and techniques in poverty measurement.

The above activities are all outcomes of the research.

All involved in the above processes will benefit from the research results. There is hardly any action in everyday life that does not depend upon previous research.

Research in any field of inquiry provides us with the knowledge and skills to solve problems and meet the challenges of a fast-paced decision-making environment.

9 Qualities of Research

Good research generates dependable data. It is conducted by professionals and can be used reliably for decision-making. It is thus of crucial importance that research should be made acceptable to the audience for which research should possess some desirable qualities in terms of.

9 qualities of research are;

Purpose clearly defined

Research process detailed, research design planner, ethical issues considered, limitations revealed, adequate analysis ensured, findings unambiguously presented, conclusions and recommendations justified..

We enumerate below a few qualities that good research should possess.

Good research must have its purposes clearly and unambiguously defined.

The problem involved or the decision to be made should be sharply delineated as clearly as possible to demonstrate the credibility of the research.

The research procedures should be described in sufficient detail to permit other researchers to repeat the research later.

Failure to do so makes it difficult or impossible to estimate the validity and reliability of the results. This weakens the confidence of the readers.

Any recommendations from such research justifiably get little attention from the policymakers and implementation.

The procedural design of the research should be carefully planned to yield results that are as objective as possible.

In doing so, care must be taken so that the sample’s representativeness is ensured, relevant literature has been thoroughly searched, experimental controls, whenever necessary, have been followed, and the personal bias in selecting and recording data has been minimized.

A research design should always safeguard against causing mental and physical harm not only to the participants but also those who belong to their organizations.

Careful consideration must also be given to research situations when there is a possibility for exploitation, invasion of privacy, and loss of dignity of all those involved in the study.

The researcher should report with complete honesty and frankness any flaws in procedural design; he followed and provided estimates of their effects on the findings.

This enhances the readers’ confidence and makes the report acceptable to the audience. One can legitimately question the value of research where no limitations are reported.

Adequate analysis reveals the significance of the data and helps the researcher to check the reliability and validity of his estimates.

Data should, therefore, be analyzed with proper statistical rigor to assist the researcher in reaching firm conclusions.

When statistical methods have been employed, the probability of error should be estimated, and criteria of statistical significance applied.

The presentation of the results should be comprehensive, easily understood by the readers, and organized so that the readers can readily locate the critical and central findings.

Proper research always specifies the conditions under which the research conclusions seem valid.

Therefore, it is important that any conclusions drawn and recommendations made should be solely based on the findings of the study.

No inferences or generalizations should be made beyond the data. If this were not followed, the objectivity of the research would tend to decrease, resulting in confidence in the findings.

The researcher’s experiences were reflected.

The research report should contain information about the qualifications of the researchers .

If the researcher is experienced, has a good reputation in research, and is a person of integrity, his report is likely to be highly valued. The policymakers feel confident in implementing the recommendations made in such reports.

4 Goals of Research

goals of research

The primary goal or purpose of research in any field of inquiry; is to add to what is known about the phenomenon under investigation by applying scientific methods. Though each research has its own specific goals, we may enumerate the following 4 broad goals of scientific research:

Exploration and Explorative Research

Description and descriptive research, causal explanation and causal research, prediction and predictive research.

The link between the 4 goals of research and the questions raised in reaching these goals.

Let’s try to understand the 4 goals of the research.

Exploration is finding out about some previously unexamined phenomenon. In other words, an explorative study structures and identifies new problems.

The explorative study aims to gain familiarity with a phenomenon or gain new insights into it.

Exploration is particularly useful when researchers lack a clear idea of the problems they meet during their study.

Through exploration, researchers attempt to

  • Develop concepts more clearly;
  • Establish priorities among several alternatives;
  • Develop operational definitions of variables;
  • Formulate research hypotheses and sharpen research objectives;
  • Improve the methodology and modify (if needed) the research design .

Exploration is achieved through what we call exploratory research.

The end of an explorative study comes when the researchers are convinced that they have established the major dimensions of the research task.

Many research activities consist of gathering information on some topic of interest. The description refers to these data-based information-gathering activities. Descriptive studies portray precisely the characteristics of a particular individual, situation, or group.

Here, we attempt to describe situations and events through studies, which we refer to as descriptive research.

Such research is undertaken when much is known about the problem under investigation.

Descriptive studies try to discover answers to the questions of who, what, when, where, and sometimes how.

Such research studies may involve the collection of data and the creation of distribution of the number of times the researcher observes a single event or characteristic, known as a research variable.

A descriptive study may also involve the interaction of two or more variables and attempts to observe if there is any relationship between the variables under investigation .

Research that examines such a relationship is sometimes called a correlational study. It is correlational because it attempts to relate (i.e., co-relate) two or more variables.

A descriptive study may be feasible to answer the questions of the following types:

  • What are the characteristics of the people who are involved in city crime? Are they young? Middle-aged? Poor? Muslim? Educated?
  • Who are the potential buyers of the new product? Men or women? Urban people or rural people?
  • Are rural women more likely to marry earlier than their urban counterparts?
  • Does previous experience help an employee to get a higher initial salary?

Although the data description in descriptive research is factual, accurate, and systematic, the research cannot describe what caused a situation.

Thus, descriptive research cannot be used to create a causal relationship where one variable affects another.

In other words, descriptive research can be said to have a low requirement for internal validity. In sum, descriptive research deals with everything that can be counted and studied.

But there are always restrictions on that. All research must impact the lives of the people around us.

For example, finding the most frequent disease that affects the people of a community falls under descriptive research.

But the research readers will have the hunch to know why this has happened and what to do to prevent that disease so that more people will live healthy lives.

It dictates that we need a causal explanation of the situation under reference and a causal study vis-a-vis causal research .

Explanation reveals why and how something happens.

An explanatory study goes beyond description and attempts to establish a cause-and-effect relationship between variables. It explains the reason for the phenomenon that the descriptive study observed.

Thus, if a researcher finds that communities with larger family sizes have higher child deaths or that smoking correlates with lung cancer, he is performing a descriptive study.

If he explains why it is so and tries to establish a cause-and-effect relationship, he is performing explanatory or causal research . The researcher uses theories or at-least hypotheses to account for the factors that caused a certain phenomenon.

Look at the following examples that fit causal studies:

  • Why are people involved in crime? Can we explain this as a consequence of the present job market crisis or lack of parental care?
  • Will the buyers be motivated to purchase the new product in a new container ? Can an attractive advertisement motivate them to buy a new product?
  • Why has the share market shown the steepest-ever fall in stock prices? Is it because of the IMF’s warnings and prescriptions on the commercial banks’ exposure to the stock market or because of an abundant increase in the supply of new shares?

Prediction seeks to answer when and in what situations will occur if we can provide a plausible explanation for the event in question.

However, the precise nature of the relationship between explanation and prediction has been a subject of debate.

One view is that explanation and prediction are the same phenomena, except that prediction precedes the event while the explanation takes place after the event has occurred.

Another view is that explanation and prediction are fundamentally different processes.

We need not be concerned with this debate here but can simply state that in addition to being able to explain an event after it has occurred, we would also be able to predict when it will occur.

Research Approaches

4 research approaches

There are two main approaches to doing research.

The first is the basic approach, which mostly pertains to academic research. Many people view this as pure research or fundamental research.

The research implemented through the second approach is variously known as applied research, action research, operations research, or contract research.

Also, the third category of research, evaluative research, is important in many applications. All these approaches have different purposes influencing the nature of the respective research.

Lastly, precautions in research are required for thorough research.

So, 4 research approaches are;

  • Basic Research .
  • Applied Research .
  • Evaluative Research .
  • Precautions in Research.

Areas of Research

The most important fields or areas of research, among others, are;

  • Social Research .
  • Health Research .
  • Population Research .
  • Business Research .
  • Marketing Research .
  • Agricultural Research .
  • Biomedical Research.
  • Clinical Research .
  • Outcomes Research.
  • Internet Research.
  • Archival Research.
  • Empirical Research.
  • Legal Research .
  • Education Research .
  • Engineering Research .
  • Historical Research.

Check out our article describing all 16 areas of research .

Precautions in Research

Whether a researcher is doing applied or basic research or research of any other form, he or she must take necessary precautions to ensure that the research he or she is doing is relevant, timely, efficient, accurate, and ethical .

The research is considered relevant if it anticipates the kinds of information that decision-makers, scientists, or policymakers will require.

Timely research is completed in time to influence decisions.

  • Research is efficient when it is of the best quality for the minimum expenditure and the study is appropriate to the research context.
  • Research is considered accurate or valid when the interpretation can account for both consistencies and inconsistencies in the data.
  • Research is ethical when it can promote trust, exercise care, ensure standards, and protect the rights of the participants in the research process.

What is the definition of research?

What are the characteristics of good research, what are the three basic operations involved in scientific research, what are the four broad goals of scientific research, what distinguishes the scientific method from other methods of acquiring knowledge, what is the origin of the word ‘research’, how is “research methodology” defined, how does research methodology ensure the appropriateness of a research method.

After discussing the research definition and knowing the characteristics, goals, and approaches, it’s time to delve into the research fundamentals. For a comprehensive understanding, refer to our detailed research and methodology concepts guide .

Research should be relevant, timely, efficient, accurate, and ethical. It should anticipate the information required by decision-makers, be completed in time to influence decisions, be of the best quality for the minimum expenditure, and protect the rights of participants in the research process.

The two main approaches to research are the basic approach, often viewed as pure or fundamental research, and the applied approach, which includes action research, operations research, and contract research.

30 Accounting Research Paper Topics and Ideas for Writing

Geektonight

What is Research? Types, Purpose, Characteristics, Process

  • Post last modified: 26 August 2021
  • Reading time: 13 mins read
  • Post category: Research Methodology

Coursera 7-Day Trail offer

  • What is Research?

Research means a systematic and objective study to find facts which can be answers to questions and solutions to problems.

Social sciences Encyclopedia defines research as the manipulation of things, concepts or symbols for the purpose of generalizing to extend, correct as to verify knowledge, whether that knowledge aid in the construction of a theory or in the practice of art.

Table of Content

  • 1 What is Research?
  • 2.1 Basic or pure research
  • 2.2 Applied or practical research
  • 3 What is Social Research?
  • 4 Purpose of Research
  • 5 Characteristics of Research
  • 6 Research process

In a different way effort to reach definiteness or certainty, to collect facts and ascertain truth constitute research. In research, we examine facts for truth. When facts are repeatedly examined and tested, truth is established. This leads to certainty and incorporates a generalization which is unique.

Types of Research

Basically, research is classified in two types.

Basic or pure research

Applied or practical research.

Basic or pure research explores broad, inclusive laws, rules, theories and tendencies with precise causation. Pure research is an intellectual response to great questions and seemingly difficult causal complexities.

Theory of gravity (Newton), a theory of relativity (Einstein), and birth of the universe theory (Hoyle and Naralikar theory) are examples of pure research. Such pure research may or may not be practical and socially useful immediately.

Applied or practical research aims at making existing, available knowledge useful in solving present problems of the society and individuals vis-a-vis production, distribution, consumption, and minimization of pain.

What is Social Research?

According to Pauline Young, social research is defined in the following words. “We may define social research as the systematic method of discovering new facts or verifying old facts, through sequence, interrelationship, causal explanations and the natural laws which cover them.

Prof. M. H. Copal, a senior Indian social scientist defined social research as the study of phenomena resulting from an interaction between different human groups in the process of their living together.

This study helps us in generalizing, theorizing and policy planning.

Social research is intrinsically dynamic and involves a large number of variables, some controllable some not so controllable.

As a result, social research involves a process of continuous revision of existing laws, theories, periodic refutation and/or modification of the same laws and theories. Freshly generated or collected data i.e. primary data give us new insights and evidence to arrive at new conclusions.

Purpose of Research

Purpose and functions of social research can be enumerated as below

  • Search for truth
  • Application of knowledge for better human life.
  • Examining phenomena or events for identifying causes and establishing generalizations, and theories about human behaviour.
  • Predicting the future on the basis of existing knowledge and study methods.
  • Verifying, correlating or modifying existing generalizations or theories, differences of opinion and settling debates if any.

Characteristics of Research

Following are the essential characteristics of an ideal researcher.

  • An unquenchable and strong desire to find out the truth
  • Ability to identify similarity in diverse situations and diversity in similar Situations
  • Curiosity, quest, doubt, patient, slow thinking, willingness to reexamine, discipline, no dogmatism are according to Francis Beacon, essential attributes of a researcher
  • insistence for data
  • caution in statements
  • clear right/understanding
  • awareness about multiplicity in varied social interrelations
  • According to Carl Pearson, disciplined imagination is the distinguishable characteristics of an ideal researcher
  • According to Sidney and Beatrice Web, a researcher must always avoid the influence of his personal biases
  • A researcher, according to C. Luther Fry, must possess intellectual honesty and integrity
  • According to Spaher and Swanson, a researcher must love his work, have abundant patience and perseverance, insist on authority and correctness of data, posses equity of consideration, thoughtfulness, and broadly responsible and always focused

Research process

To make your research efforts successful and socially meaningful, the whole approach has to be carefully planned and executed step by step in a scientific and logical way. It is, therefore, necessary to explain and present steps and design of any research work carefully.

Following are the steps in research process:

  • Explain the objectives of research, present the problem and state the hypothesis/es.
  • Elaborate on the research design mainly with reference to methodology of data collection and analysis.
  • System of data collection with clear understanding of sampling techniques and/or census approach.
  • Description, tabulation, coding, analysis of data and statement of analytical results/findings.
  • Interpretation of these findings/results and reaching objective conclusions.
  • Attempting reliable prediction.

Selection of the research topic/question is the first critically important step. Practical problems, emerging needs, scientific curiosity, intellectual quest values of life, life experiences are the main sources of research topics or questions.

Secondly, formation of the hypothesis is the next step. Before we start collecting, tabulating and analyzing data, it is necessary to have ‘a priori’ causal relationship which may explain the phenomenon under study, this is known as hypothesis/es.

A hypothesis/es explain the cause-effect relationship at a logical level. The hypothesis gives us basic concepts on the basis of which we collect data generate data, for empirical evidence.

In formulation of hypothesis, we in a way, organize our research question in a scientific way. The words hypothesis and concepts are explained elaborately in subsequent units.

In formulating research question and research design it is necessary that

  • the researcher has advanced in-depth reading in related literature,
  • he is fully aware of the current theories and research in related area
  • he has close interaction with peers in the field and
  • he must possess an inquisitive imaginative scientific mindset.

Thirdly, it is necessary to have a well planned research design. It helps in focussing work, precise explanation of events / questions and most importantly a research design helps in minimization of variance in the research system.

According to R. L. Ackoff there are two types of research design- Ideal Research Design – a design without practical limitation, the other research design is practical / feasible research design. In this, we consider limitations like time, resources availability of data and intellectual skills of the researcher.

Normally a practical research design has four important constituents.

  • Sampling Design
  • Statistical design
  • Observational Design
  • Operational Design

In preparing a practical research design, the researcher has to consider following aspects,

i. What is the primary research focus? ii. What is the data required for the research? iii. What are the exact objectives of the research? iv. Sources of data? v. Places to be visited for research vi. Time limits vii. A number of entities to be involved in the research viii. Criteria of sampling ix. Methods of data collection x. Methods of data coding classification and tabulation. xi. Material / financial resources available for research.

Broadly, there are five types of research design, according to Mac-Grant.

i. Controlled experiment ii. Study / case study iii. Survey sample / census iv. Investigation v. Action research

According to Seltiz and others, there are basically three types of research design,

i. Exploratory or formulative ii. Descriptive or diagnostic iii. Studies testing causal hypothesis.

Exploratory research relies heavily on review of literature, review of experience and entities/cases encouraging intuitions or inspiration. This depends heavily on the attitude of scientist, intensity of/or depth of his study/integrative powers of the researcher normally, reaction of indifferent individuals, behaviour of marginal individuals/groups, developmental transition, isolates, deviants and pathological cases and pure cases constitute factors which induce a researcher to explore.

In the case of many social sciences, majority of researchers collect and describe information regarding various groups, communities and sets of experiences consumption patterns, saving habits, investment, likes and dislikes, work culture, price responses, management decisions and practices, entrepreneurial behaviours, business leadership etc are such areas of research.

In the case of studies testing causal hypothesis the main objective of research is to verify an assumed causation, either positively or negatively. In such researches, experimental method is more frequently used.

However, with the passage of time and revolutionary changes in technology of analysis, experimental method is now used, as in natural sciences, in social sciences also. In a very formal way experiment is a way of organizing evidence so as to reach inference about the appropriateness of a hypothesis which essentially is a statement of relationship between a cause (set of causes) and a result (set of results).

In the case of experimental design two approaches are mainly practiced

  • after only experiment
  • before after experiment.

Business Ethics

( Click on Topic to Read )

  • What is Ethics?
  • What is Business Ethics?
  • Values, Norms, Beliefs and Standards in Business Ethics
  • Indian Ethos in Management
  • Ethical Issues in Marketing
  • Ethical Issues in HRM
  • Ethical Issues in IT
  • Ethical Issues in Production and Operations Management
  • Ethical Issues in Finance and Accounting
  • What is Corporate Governance?
  • What is Ownership Concentration?
  • What is Ownership Composition?
  • Types of Companies in India
  • Internal Corporate Governance
  • External Corporate Governance
  • Corporate Governance in India
  • What is Enterprise Risk Management (ERM)?
  • What is Assessment of Risk?
  • What is Risk Register?
  • Risk Management Committee

Corporate social responsibility (CSR)

  • Theories of CSR
  • Arguments Against CSR
  • Business Case for CSR
  • Importance of CSR in India
  • Drivers of Corporate Social Responsibility
  • Developing a CSR Strategy
  • Implement CSR Commitments
  • CSR Marketplace
  • CSR at Workplace
  • Environmental CSR
  • CSR with Communities and in Supply Chain
  • Community Interventions
  • CSR Monitoring
  • CSR Reporting
  • Voluntary Codes in CSR
  • What is Corporate Ethics?

Lean Six Sigma

  • What is Six Sigma?
  • What is Lean Six Sigma?
  • Value and Waste in Lean Six Sigma
  • Six Sigma Team
  • MAIC Six Sigma
  • Six Sigma in Supply Chains
  • What is Binomial, Poisson, Normal Distribution?
  • What is Sigma Level?
  • What is DMAIC in Six Sigma?
  • What is DMADV in Six Sigma?
  • Six Sigma Project Charter
  • Project Decomposition in Six Sigma
  • Critical to Quality (CTQ) Six Sigma
  • Process Mapping Six Sigma
  • Flowchart and SIPOC
  • Gage Repeatability and Reproducibility
  • Statistical Diagram
  • Lean Techniques for Optimisation Flow
  • Failure Modes and Effects Analysis (FMEA)
  • What is Process Audits?
  • Six Sigma Implementation at Ford
  • IBM Uses Six Sigma to Drive Behaviour Change
  • Research Methodology

What is Hypothesis?

  • Sampling Method

Research Methods

  • Data Collection in Research
  • Methods of Collecting Data
  • Application of Business Research
  • Levels of Measurement
  • What is Sampling?
  • Hypothesis Testing
  • Research Report
  • What is Management?
  • Planning in Management
  • Decision Making in Management
  • What is Controlling?
  • What is Coordination?
  • What is Staffing?
  • Organization Structure
  • What is Departmentation?
  • Span of Control
  • What is Authority?
  • Centralization vs Decentralization
  • Organizing in Management
  • Schools of Management Thought
  • Classical Management Approach
  • Is Management an Art or Science?
  • Who is a Manager?

Operations Research

  • What is Operations Research?
  • Operation Research Models
  • Linear Programming
  • Linear Programming Graphic Solution
  • Linear Programming Simplex Method
  • Linear Programming Artificial Variable Technique
  • Duality in Linear Programming
  • Transportation Problem Initial Basic Feasible Solution
  • Transportation Problem Finding Optimal Solution
  • Project Network Analysis with Critical Path Method
  • Project Network Analysis Methods
  • Project Evaluation and Review Technique (PERT)
  • Simulation in Operation Research
  • Replacement Models in Operation Research

Operation Management

  • What is Strategy?
  • What is Operations Strategy?
  • Operations Competitive Dimensions
  • Operations Strategy Formulation Process
  • What is Strategic Fit?
  • Strategic Design Process
  • Focused Operations Strategy
  • Corporate Level Strategy
  • Expansion Strategies
  • Stability Strategies
  • Retrenchment Strategies
  • Competitive Advantage
  • Strategic Choice and Strategic Alternatives
  • What is Production Process?
  • What is Process Technology?
  • What is Process Improvement?
  • Strategic Capacity Management
  • Production and Logistics Strategy
  • Taxonomy of Supply Chain Strategies
  • Factors Considered in Supply Chain Planning
  • Operational and Strategic Issues in Global Logistics
  • Logistics Outsourcing Strategy
  • What is Supply Chain Mapping?
  • Supply Chain Process Restructuring
  • Points of Differentiation
  • Re-engineering Improvement in SCM
  • What is Supply Chain Drivers?
  • Supply Chain Operations Reference (SCOR) Model
  • Customer Service and Cost Trade Off
  • Internal and External Performance Measures
  • Linking Supply Chain and Business Performance
  • Netflix’s Niche Focused Strategy
  • Disney and Pixar Merger
  • Process Planning at Mcdonald’s

Service Operations Management

  • What is Service?
  • What is Service Operations Management?
  • What is Service Design?
  • Service Design Process
  • Service Delivery
  • What is Service Quality?
  • Gap Model of Service Quality
  • Juran Trilogy
  • Service Performance Measurement
  • Service Decoupling
  • IT Service Operation
  • Service Operations Management in Different Sector

Procurement Management

  • What is Procurement Management?
  • Procurement Negotiation
  • Types of Requisition
  • RFX in Procurement
  • What is Purchasing Cycle?
  • Vendor Managed Inventory
  • Internal Conflict During Purchasing Operation
  • Spend Analysis in Procurement
  • Sourcing in Procurement
  • Supplier Evaluation and Selection in Procurement
  • Blacklisting of Suppliers in Procurement
  • Total Cost of Ownership in Procurement
  • Incoterms in Procurement
  • Documents Used in International Procurement
  • Transportation and Logistics Strategy
  • What is Capital Equipment?
  • Procurement Process of Capital Equipment
  • Acquisition of Technology in Procurement
  • What is E-Procurement?
  • E-marketplace and Online Catalogues
  • Fixed Price and Cost Reimbursement Contracts
  • Contract Cancellation in Procurement
  • Ethics in Procurement
  • Legal Aspects of Procurement
  • Global Sourcing in Procurement
  • Intermediaries and Countertrade in Procurement

Strategic Management

  • What is Strategic Management?
  • What is Value Chain Analysis?
  • Mission Statement
  • Business Level Strategy
  • What is SWOT Analysis?
  • What is Competitive Advantage?
  • What is Vision?
  • What is Ansoff Matrix?
  • Prahalad and Gary Hammel
  • Strategic Management In Global Environment
  • Competitor Analysis Framework
  • Competitive Rivalry Analysis
  • Competitive Dynamics
  • What is Competitive Rivalry?
  • Five Competitive Forces That Shape Strategy
  • What is PESTLE Analysis?
  • Fragmentation and Consolidation Of Industries
  • What is Technology Life Cycle?
  • What is Diversification Strategy?
  • What is Corporate Restructuring Strategy?
  • Resources and Capabilities of Organization
  • Role of Leaders In Functional-Level Strategic Management
  • Functional Structure In Functional Level Strategy Formulation
  • Information And Control System
  • What is Strategy Gap Analysis?
  • Issues In Strategy Implementation
  • Matrix Organizational Structure
  • What is Strategic Management Process?

Supply Chain

  • What is Supply Chain Management?
  • Supply Chain Planning and Measuring Strategy Performance
  • What is Warehousing?
  • What is Packaging?
  • What is Inventory Management?
  • What is Material Handling?
  • What is Order Picking?
  • Receiving and Dispatch, Processes
  • What is Warehouse Design?
  • What is Warehousing Costs?

You Might Also Like

What is hypothesis testing procedure, sampling process and characteristics of good sample design, what is measure of skewness, what is measurement scales, types, criteria and developing measurement tools, what is research design types, what is research design features, components, what is parametric tests types: z-test, t-test, f-test, what is hypothesis definition, meaning, characteristics, sources, what is experiments variables, types, lab, field, data analysis in research, leave a reply cancel reply.

You must be logged in to post a comment.

World's Best Online Courses at One Place

We’ve spent the time in finding, so you can spend your time in learning

Digital Marketing

Personal growth.

research types and characteristics

Development

research types and characteristics

  • (855) 776-7763

Training Maker

All Products

Qualaroo Insights

ProProfs.com

  • Sign Up Free

Do you want a free Survey Software?

We have the #1 Online Survey Maker Software to get actionable user insights.

A Comprehensive Guide to Quantitative Research: Types, Characteristics, Methods & Examples

research types and characteristics

Step into the fascinating world of quantitative research, where numbers reveal extraordinary insights!

By gathering and studying data in a systematic way, quantitative research empowers us to understand our ever-changing world better. It helps understand a problem or an already-formed hypothesis by generating numerical data. The results don’t end here, as you can process these numbers to get actionable insights that aid decision-making.

You can use quantitative research to quantify opinions, behaviors, attitudes, and other definitive variables related to the market, customers, competitors, etc. The research is conducted on a larger sample population to draw predictive, average, and pattern-based insights.

Here, we delve into the intricacies of this research methodology, exploring various quantitative methods, their advantages, and real-life examples that showcase their impact and relevance.

Ready to embark on a journey of discovery and knowledge? Let’s go!

What Is Quantitative Research?

Quantitative research is a method that uses numbers and statistics to test theories about customer attitudes and behaviors. It helps researchers gather and analyze data systematically to gain valuable insights and draw evidence-based conclusions about customer preferences and trends.

Researchers use online surveys , questionnaires , polls , and quizzes to question a large number of people to obtain measurable and bias-free data.

In technical terms, quantitative research is mainly concerned with discovering facts about social phenomena while assuming a fixed and measurable reality.

Offering numbers and stats-based insights, this research methodology is a crucial part of primary research and helps understand how well an organizational decision is going to work out.

Let’s consider an example.

Suppose your qualitative analysis shows that your customers are looking for social media-based customer support . In that case, quantitative analysis will help you see how many of your customers are looking for this support.

If 10% of your customers are looking for such a service, you might or might not consider offering this feature. But, if 40% of your regular customers are seeking support via social media, then it is something you just cannot overlook.

Characteristics of Quantitative Research

Quantitative research clarifies the fuzziness of research data from qualitative research analysis. With numerical insights, you can formulate a better and more profitable business decision.

Hence, quantitative research is more readily contestable, sharpens intelligent discussion, helps you see the rival hypotheses, and dynamically contributes to the research process.

Let us have a quick look at some of its characteristics.

  • Measurable Variables

The data collection methods in quantitative research are structured and contain items requiring measurable variables, such as age, number of family members, salary range, highest education, etc.

These structured data collection methods comprise polls, surveys, questionnaires, etc., and may have questions like the ones shown in the following image:

research types and characteristics

As you can see, all the variables are measurable. This ensures that the research is in-depth and provides less erroneous data for reliable, actionable insights.

  • Sample Size

No matter what data analysis methods for quantitative research are being used, the sample size is kept such that it represents the target market.

As the main aim of the research methodology is to get numerical insights, the sample size should be fairly large. Depending on the survey objective and scope, it might span hundreds of thousands of people.

  • Normal Population Distribution

To maintain the reliability of a quantitative research methodology, we assume that the population distribution curve is normal.

research types and characteristics

This type of population distribution curve is preferred over a non-normal distribution as the sample size is large, and the characteristics of the sample vary with its size.

This requires adhering to the random sampling principle to avoid the researcher’s bias in result interpretation. Any bias can ruin the fairness of the entire process and defeats the purpose of research.

  • Well-Structured Data Representation

Data analysis in quantitative research produces highly structured results and can form well-defined graphical representations. Some common examples include tables, figures, graphs, etc., that combine large blocks of data.

research types and characteristics

This way, you can discover hidden data trends, relationships, and differences among various measurable variables. This can help researchers understand the survey data and formulate actionable insights for decision-making.

  • Predictive Outcomes

Quantitative analysis of data can also be used for estimations and prediction outcomes. You can construct if-then scenarios and analyze the data for the identification of any upcoming trends or events.

However, this requires advanced analytics and involves complex mathematical computations. So, it is mostly done via quantitative research tools that come with advanced analytics capabilities.

8 Best Practices to Conduct Quantitative Research

Here are some best practices to keep in mind while conducting quantitative research:

1. Define Research Objectives

There can be many ways to collect data via quantitative research methods that are chosen as per the research objective and scope. These methods allow you to build your own observations regarding any hypotheses – unknown, entirely new, or unexplained. 

You can hypothesize a proof and build a prediction of outcomes supporting the same. You can also create a detailed stepwise plan for data collection, analysis, and testing. 

Below, we explore quantitative research methods and discuss some examples to enhance your understanding of them.

2. Keep Your Questions Simple

The surveys are meant to reach people en-masse, and that includes a wide demographic range with recipients from all walks of life. Asking simple questions will ensure that they grasp what’s being asked easily.

Read More: Proven Tips to Avoid Leading and Loaded Questions in Your Survey

3. Develop a Solid Research Design

Choose an appropriate research design that aligns with your objectives, whether it’s experimental, quasi-experimental, or correlational. You also need to pay attention to the sample size and sampling technique such that it represents the target population accurately.

4. Use Reliable & Valid Instruments

It’s crucial to select or develop measurement instruments such as questionnaires, scales, or tests that have been validated and are reliable. Before proceeding with the main study, pilot-test these instruments on a small sample to assess their effectiveness and make any necessary improvements.

5. Ensure Data Quality

Implement data collection protocols to minimize errors and bias during data gathering. Double-check data entries and cleaning procedures to eliminate any inconsistencies or missing values that may affect the accuracy of your results. For instance, you might regularly cross-verify data entries to identify and correct any discrepancies.

6. Employ Appropriate Data Analysis Techniques

Select statistical methods that match the nature of your data and research questions. Whether it’s regression analysis, t-tests, ANOVA, or other techniques, using the right approach is important for drawing meaningful conclusions. Utilize software tools like SPSS or R for data analysis to ensure the accuracy and reproducibility of your findings.

7. Interpret Results Objectively

Present your findings in a clear and unbiased manner. Avoid making unwarranted causal claims, especially in correlational studies. Instead, focus on describing the relationships and patterns observed in your data.

8. Address Ethical Considerations

Prioritize ethical considerations throughout your research process. Obtain informed consent from participants, ensuring their voluntary participation and confidentiality of data. Comply with ethical guidelines and gain approval from a governing body if necessary.

Read More: How to Find Survey Participants & Respondents

Types of Quantitative Research Methods

Quantitative research is usually conducted using two methods. They are-

  • Primary quantitative research methods
  • Secondary quantitative research methods

1. Primary Methods

Primary quantitative research is the most popular way of conducting market research. The differentiating factor of this method is that the researcher relies on collecting data firsthand instead of relying on data collected from previous research.

There are multiple types of primary quantitative research. They can be distinguished based on three distinctive aspects, which are:

A. Techniques & Types of Studies:

  • Survey Research

Surveys are the easiest, most common, and one of the most sought-after quantitative research techniques. The main aim of a survey is to widely gather and describe the characteristics of a target population or customers. Surveys are the foremost quantitative method preferred by both small and large organizations.

They help them understand their customers, products, and other brand offerings in a proper manner.

Surveys can be conducted using various methods, such as online polls, web-based surveys, paper questionnaires, phone calls, or face-to-face interviews. Survey research allows organizations to understand customer opinions, preferences, and behavior, making it crucial for market research and decision-making.

You can watch this quick video to learn more about creating surveys.

Surveys are of two types:

  • Cross-Sectional Surveys Cross-sectional surveys are used to collect data from a sample of the target population at a specific point in time. Researchers evaluate various variables simultaneously to understand the relationships and patterns within the data.
  • Cross-sectional surveys are popular in retail, small and medium-sized enterprises (SMEs), and healthcare industries, where they assess customer satisfaction, market trends, and product feedback.
  • Longitudinal Surveys Longitudinal surveys are conducted over an extended period, observing changes in respondent behavior and thought processes.
  • Researchers gather data from the same sample multiple times, enabling them to study trends and developments over time. These surveys are valuable in fields such as medicine, applied sciences, and market trend analysis.

Surveys can be distributed via various channels. Some of the most popular ones are listed below:

  • Email: Sending surveys via email is a popular and effective method. People recognize your brand, leading to a higher response rate. With ProProfs Survey Maker’s in-mail survey-filling feature, you can easily send out and collect survey responses.
  • Embed on a website: Boost your response rate by embedding the survey on your website. When visitors are already engaged with your brand, they are more likely to take the survey.
  • Social media: Take advantage of social media platforms to distribute your survey. People familiar with your brand are likely to respond, increasing your response numbers.
  • QR codes: QR codes store your survey’s URL, and you can print or publish these codes in magazines, signs, business cards, or any object to make it easy for people to access your survey.
  • SMS survey: Collect a high number of responses quickly with SMS surveys. It’s a time-effective way to reach your target audience.

Read More: 24 Different Types of Survey Methods With Examples

2. Correlational Research:

Correlational research aims to establish relationships between two or more variables.

Researchers use statistical analysis to identify patterns and trends in the data, but it does not determine causality between the variables. This method helps understand how changes in one variable may impact another.

Examples of correlational research questions include studying the relationship between stress and depression, fame and money, or classroom activities and student performance.

3. Causal-Comparative Research:

Causal-comparative research, also known as quasi-experimental research, seeks to determine cause-and-effect relationships between variables.

Researchers analyze how an independent variable influences a dependent variable, but they do not manipulate the independent variable. Instead, they observe and compare different groups to draw conclusions.

Causal-comparative research is useful in situations where it’s not ethical or feasible to conduct true experiments.

Examples of questions for this type of research include analyzing the effect of training programs on employee performance, studying the influence of customer support on client retention, investigating the impact of supply chain efficiency on cost reduction, etc.

4. Experimental Research:

Experimental research is based on testing theories to validate or disprove them. Researchers conduct experiments and manipulate variables to observe their impact on the outcomes.

This type of research is prevalent in natural and social sciences, and it is a powerful method to establish cause-and-effect relationships. By randomly assigning participants to experimental and control groups, researchers can draw more confident conclusions.

Examples of experimental research include studying the effectiveness of a new drug, the impact of teaching methods on student performance, or the outcomes of a marketing campaign.

B. Data collection methodologies

After defining research objectives, the next significant step in primary quantitative research is data collection. This involves using two main methods: sampling and conducting surveys or polls.

Sampling methods:

In quantitative research, there are two primary sampling methods: Probability and Non-probability sampling.

Probability Sampling

In probability sampling, researchers use the concept of probability to create samples from a population. This method ensures that every individual in the target audience has an equal chance of being selected for the sample.

There are four main types of probability sampling:

  • Simple random sampling: Here, the elements or participants of a sample are selected randomly, and this technique is used in studies that are conducted over considerably large audiences. It works well for large target populations.
  • Stratified random sampling: In this method, the entire population is divided into strata or groups, and the sample members get chosen randomly from these strata only. It is always ensured that different segregated strata do not overlap with each other.
  • Cluster sampling: Here, researchers divide the population into clusters, often based on geography or demographics. Then, random clusters are selected for the sample.
  • Systematic sampling: In this method, only the starting point of the sample is randomly chosen. All the other participants are chosen using a fixed interval. Researchers calculate this interval by dividing the size of the study population by the target sample size.

Non-probability Sampling

Non-probability sampling is a method where the researcher’s knowledge and experience guide the selection of samples. This approach doesn’t give all members of the target population an equal chance of being included in the sample.

There are five non-probability sampling models:

  • Convenience sampling: The elements or participants are chosen on the basis of their nearness to the researcher. The people in close proximity can be studied and analyzed easily and quickly, as there is no other selection criterion involved. Researchers simply choose samples based on what is most convenient for them.
  • Consecutive sampling: Similar to convenience sampling, researchers select samples one after another over a significant period. They can opt for a single participant or a group of samples to conduct quantitative research in a consecutive manner for a significant period of time. Once this is over, they can conduct the research from the start.
  • Quota sampling: With quota sampling, researchers use their understanding of target traits and personalities to form groups (strata). They then choose samples from each stratum based on their own judgment.
  • Snowball sampling: This method is used where the target audiences are difficult to contact and interviewed for data collection. Researchers start with a few participants and then ask them to refer others, creating a snowball effect.
  • Judgmental sampling: In judgmental sampling, researchers rely solely on their experience and research skills to handpick samples that they believe will be most relevant to the study.

Read More: Data Collection Methods: Definition, Types & Examples

C. Data analysis techniques

To analyze the quantitative data accurately, you’ll need to use specific statistical methods such as:

  • SWOT Analysis: This stands for Strengths, Weaknesses, Opportunities, and Threats analysis. Organizations use SWOT analysis to evaluate their performance internally and externally. It helps develop effective improvement strategies.
  • Conjoint Analysis: This market research method uncovers how individuals make complex purchasing decisions. It involves considering trade-offs in their daily activities when choosing from a list of product/service options.
  • Cross-tabulation: A preliminary statistical market analysis method that reveals relationships, patterns, and trends within various research study parameters.
  • TURF Analysis: Short for Totally Unduplicated Reach and Frequency Analysis, this method helps analyze the reach and frequency of favorable communication sources. It provides insights into the potential of a target market.
  • By using these statistical techniques and inferential statistics methods like confidence intervals and margin of error, you can draw meaningful insights from your primary quantitative research that you can use in making informed decisions.

II. Secondary Quantitative Research Methods

  • Secondary quantitative research, also known as desk research, is a valuable method that uses existing data, called secondary data.
  • Instead of collecting new data, researchers analyze and combine already available information to enhance their research. This approach involves gathering quantitative data from various sources such as the internet, government databases, libraries, and research reports.
  • Secondary quantitative research plays a crucial role in validating data collected through primary quantitative research. It helps reinforce or challenge existing findings.

Here are five commonly used secondary quantitative research methods:

A. Data Available on the Internet:

The Internet has become a vast repository of data, making it easier for researchers to access a wealth of information. Online databases, websites, and research repositories provide valuable quantitative data for researchers to analyze and validate their primary research findings.

B. Government and Non-Government Sources:

Government agencies and non-government organizations often conduct extensive research and publish reports. These reports cover a wide range of topics, providing researchers with reliable and comprehensive data for quantitative analysis.

C. Public Libraries:

While less commonly used in the digital age, public libraries still hold valuable research reports, historical data, and publications that can contribute to quantitative research.

D. Educational Institutions:

Educational institutions frequently conduct research on various subjects. Their research reports and publications can serve as valuable sources of information for researchers, validating and supporting primary quantitative research outcomes.

E. Commercial Information Sources:

Commercial sources such as local newspapers, journals, magazines, and media outlets often publish relevant data on economic trends, market research, and demographic analyses. Researchers can access this data to supplement their own findings and draw better conclusions.

Advantages of Quantitative Research Methods

Quantitative research data is often standardized and can be easily used to generalize findings for making crucial business decisions and uncover insights to supplement the qualitative research findings.

Here are some core benefits this research methodology offers.

Direct Result Comparison

As the studies can be replicated for different cultural settings and different times, even with different groups of participants, they tend to be extremely useful. Researchers can compare the results of different studies in a statistical manner and arrive at comprehensive conclusions for a broader understanding.

Replication

Researchers can repeat the study by using standardized data collection protocols over well-structured data sets. They can also apply tangible definitions of abstract concepts to arrive at different conclusions for similar research objectives with minor variations.

Large Samples

As the research data comes from large samples, the researchers can process and analyze the data via highly reliable and consistent analysis procedures. They can arrive at well-defined conclusions that can be used to make the primary research more thorough and reliable.

Hypothesis Testing

This research methodology follows standardized and established hypothesis testing procedures. So, you have to be careful while reporting and analyzing your research data , and the overall quality of results gets improved.

Proven Examples of Quantitative Research Methods

Below, we discuss two excellent examples of quantitative research methods that were used by highly distinguished business and consulting organizations. Both examples show how different types of analysis can be performed with qualitative approaches and how the analysis is done once the data is collected.

1. STEP Project Global Consortium / KPMG 2019 Global Family Business survey

This research utilized quantitative methods to identify ways that kept the family businesses sustainably profitable with time.

The study also identified the ways in which the family business behavior changed with demographic changes and had “why” and “how” questions. Their qualitative research methods allowed the KPMG team to dig deeper into the mindsets and perspectives of the business owners and uncover unexpected research avenues as well.

It was a joint effort in which STEP Project Global Consortium collected 26 cases, and KPMG collected 11 cases.

The research reached the stage of data analysis in 2020, and the analysis process spanned over 4 stages.

The results, which were also the reasons why family businesses tend to lose their strength with time, were found to be:

  • Family governance
  • Family business legacy

2. EY Seren Teams Research 2020

This is yet another commendable example of qualitative research where the EY Seren Team digs into the unexplored depths of human behavior and how it affected their brand or service expectations.

The research was done across 200+ sources and involved in-depth virtual interviews with people in their homes, exploring their current needs and wishes. It also involved diary studies across the entire UK customer base to analyze human behavior changes and patterns.

The study also included interviews with professionals and design leaders from a wide range of industries to explore how COVID-19 transformed their industries. Finally, quantitative surveys were conducted to gain insights into the EY community after every 15 days.

The insights and results were:

  • A culture of fear, daily resilience, and hopes for a better world and a better life – these were the macro trends.
  • People felt massive digitization to be a resourceful yet demanding aspect as they have to adapt every day.
  • Some people wished to have a new world with lots of possibilities, and some were looking for a new purpose.

Enhance Your Quantitative Research With Cutting-Edge Software

While no single research methodology can produce 100% reliable results, you can always opt for a hybrid research method by opting for the methods that are most relevant to your objective.

This understanding comes gradually as you learn how to implement the correct combination of qualitative and quantitative research methods for your research projects. For the best results, we recommend investing in smart, efficient, and scalable research tools that come with delightful reporting and advanced analytics to make every research initiative a success.

These software tools, such as ProProfs Survey Maker, come with pre-built survey templates and question libraries and allow you to create a high-converting survey in just a few minutes.

So, choose the best research partner, create the right research plan, and gather insights that drive sustainable growth for your business.

Emma David

About the author

Emma David is a seasoned market research professional with 8+ years of experience. Having kick-started her journey in research, she has developed rich expertise in employee engagement, survey creation and administration, and data management. Emma believes in the power of data to shape business performance positively. She continues to help brands and businesses make strategic decisions and improve their market standing through her understanding of research methodologies.

Popular Posts in This Category

research types and characteristics

Checklist for Creating an Effective Customer Survey

research types and characteristics

How to Write Good Customer Survey Questions

research types and characteristics

Event Surveys: Survey Questions, Examples & Best Practices

research types and characteristics

8 Best Cognito Forms Alternatives in 2024

research types and characteristics

20 Best Voice of the Customer (VoC) Tools (2024)

research types and characteristics

Market Segmentation: Types and Benefits

Pollution characteristics and risk assessment of organophosphate esters (OPEs) in typical industrial parks in Southwest China

  • Research Article
  • Published: 09 May 2024

Cite this article

research types and characteristics

  • Hongling Yin 1 ,
  • Liya Liu 1 ,
  • Yuanming Xiong 1 &
  • Yang Qiao 1  

As alternative substances of PBDEs, organophosphate esters (OPEs), an emerging organic pollutant, were increasingly produced and used in many kinds of industries and consumer products. However, OPEs also have various adverse toxic effects. Information on the pollution levels and exposure to OPEs in related industries is still limited. This study presented data on OPE contamination in the soil, leaf, and river water samples from seven typical industrial parks in Southwest China. Total concentration of seven OPEs (Σ 7 OPE) including tri-n-butyl phosphate (TnBP), tris-(2-ethylhexyl) phosphate (TEHP), tris-(2-butoxyethyl) phosphate (TBEP), tris-(2-carboxyethyl) phosphine (TCEP), triphenyl phosphate (TPhP), tris-(1,3-dichloro-2-propyl) ester (TDCPP), and tris-(chlorisopropyl) phosphate (TCPP) in the soil samples (36.2 ~ 219.7 ng/g) and the surrounding river water samples (118.9 ~ 287.7 ng/L) were mostly lower than those in other studies, while the Σ 7 OPE level in the leaves (2053.3 ~ 8152.7 ng/g) was relatively high. There were significant differences in the concentration and distribution of OPEs in the surrounding environment of different industrial parks. TDCPP, TnBP, and TCPP could be used as the characteristic compound in soil samples from auto industrial park, river samples from shoe making industrial park, and leaf samples from logistics park, respectively. The parameter m (the content ratio of chlorinated OPEs to alkyl OPEs) was suggested to distinguish the types of industrial park preliminary. When m ≥ 1, it mainly refers to heavy industries sources such as automobiles, electronics, and machinery, etc. When m <1, it mainly for the light industrial sources such as textile industry, transportation services, and resources processing, etc. For logistics park, furniture park and Wuhou comprehensive industrial park, the volatilization of materials was the main sources of OPEs in the surrounding environment, while more effort was required to strengthen the pollution control and management of the waste water and soil in the pharmacy industrial park, shoe making industrial park and auto industrial park. Risk assessment showed that there was a negligible non-cancer and carcinogenic risk in the soil, while high attention should be paid to the non-cancer risk for children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

research types and characteristics

Ali N, Ali L, Mehdi T et al (2013) Levels and profiles of organochlorines and flame retardants in car and house dust from Kuwait and Pakistan: implication for human exposure via dust ingestion. Environ Int 55:62–70. https://doi.org/10.1016/j.envint.2013.02.001

Article   CAS   Google Scholar  

Bacaloni A, Cavaliere C, Foglia P et al (2010) Liquid chromatography/tandem mass spectrometry determination of organophosphorus flame retardants and plasticizers in drinking and surface waters. Rapid Commun Mass Sp 21(7):1123–1130. https://doi.org/10.1002/rcm.2937

Brommer S, Harrad S, Eede NVD et al (2012) Concentrations of organophosphate esters and brominated flame retardants in German indoor dust samples. J Environ Monitor 14(9):2482–2487. https://doi.org/10.1039/c2em30303e

Chen Y, Yin HL, Wu D et al (2019) Distribution and sources of OPEs in plants and snow in Hailuogou. Environment. Science 40(09):4295–4302. https://doi.org/10.13227/j.hjkx.201901175

Article   Google Scholar  

Choi W, Lee S, Lee HK et al (2020) Organophosphate flame retardants and plasticizers in sediment and bivalves along the Korean coast: occurrence, geographical distribution, and a potential for bioaccumulation. Mar Pollut Bull 156:111275. https://doi.org/10.1016/j.marpolbul.2020.111275

Cristale J, Katsoyiannis A, Sweetman AJ et al (2013) Occurrence and risk assessment of organophosphorus and brominated flame retardants in the River Aire (UK). Environ Pollut 179:194–200. https://doi.org/10.1016/j.envpol.2013.04.001

Cui K, Wen J, Zeng F et al (2017) Occurrence and distribution of organophosphate esters in urban soils of the subtropical city, Guangzhou, China. Chemosphere 175:514–520. https://doi.org/10.1016/j.chemosphere.2017.02.070

David MD, Seiber JN (1999) Analysis of organophosphate hydraulic fluids in U.S. Air Force Base Soils. Arch Environ Con Tox 36(3):235–241. https://doi.org/10.1007/s002449900466

Ding J, Shen X, Liu W et al (2015) Occurrence and risk assessment of organophosphate esters in drinking water from Eastern China. Sci Total Environ 538:959–965. https://doi.org/10.1016/j.scitotenv.2015.08.101

Dou MS, Wang LJ (2022) A review on organophosphate esters: physiochemical properties, applications, and toxicities as well as occurrence and human exposure in dust environment. J Environ Manage 325:116601. https://doi.org/10.1016/j.jenvman.2022.116601

Eede NVD, Dirtu AC, Neels H et al (2010) Analytical developments and preliminary assessment of human exposure to organophosphate flame retardants from indoor dust. Environ Int 37(2):454–461. https://doi.org/10.1016/j.envint.2010.11.010

Fu J, Fu K, Hu B et al (2023) Source identification of organophosphate esters through the profiles in proglacial and ocean sediments from Ny-Ålesund, the Arctic. Environ Sci Technol 57(5):1919–1929. https://doi.org/10.1021/acs.est.2c06747

Gong S, Ren KF, Ye LJ et al (2022) Suspect and nontarget screening of known and unknown organophosphate esters (OPEs) in soil samples. J Haz Mat 436:129273. https://doi.org/10.1016/j.jhazmat.2022.129273

Green N, Schlabach M, Bakke T et al (2008) Mapping selected metals and new organic contaminants 2007 (TA-2367/2008). Norwegian Pollution Control Agency

He CT, Zheng J, Qiao L et al (2015) Occurrence of organophosphorus flame retardants in indoor dust in multiple microenvironments of southern China and implications for human exposure. Chemosphere 133:47–52. https://doi.org/10.1016/j.chemosphere.2015.03.043

He JH, Li JF, Ma LY et al (2019) Large-scale distribution of organophosphate esters (flame retardants and plasticizers) in soil from residential area across China: Implications for current level. Sci Total Environ 697:133997.1–133997.11. https://doi.org/10.1016/j.scitotenv.2019.133997

He MJ, Yang T, Yang ZH et al (2017) Occurrence and distribution of organophosphate esters in surface soil and street dust from Chongqing, China: implications for human exposure. Arch Environ Con Tox 73(3):1–13. https://doi.org/10.1007/s00244-017-0432-7

Hou MM, Shi YL, Cai YQ (2021) Determination of 16 organophosphate esters in human blood by high performance liquid chromatography-tandem mass spectrometry combined with liquid-liquid extraction and solid phase extraction. Chinese J Chromatogr 39(01):69–76. https://doi.org/10.3724/SP.J.1123.2020.07033

Huang JA, Gao ZQ, Hu GJ et al (2022) Non-target screening and risk assessment of organophosphate esters (OPEs) in drinking water resource water, surface water, groundwater, and seawater. Environ Int 168:107443. https://doi.org/10.1016/j.envint.2022.107443

Jie F, Kehan F, Boyuan H et al (2023) Source identification of organophosphate esters through the profiles in proglacial and ocean sediments from Ny-Ålesund, the Arctic. Environ Sci Technol 57(5):1919–1929. https://doi.org/10.1021/acs.est.2c06747

Kang H, Lee J, Lee JP et al (2019) Urinary metabolites of organophosphate esters (OPEs) are associated with chronic kidney disease in the general US population, NHANES 2013–2014. Environ Int 131:105034. https://doi.org/10.1016/j.envint.2019.105034

Li WH, Wang Y, Kannan K (2019) Occurrence, distribution and human exposure to 20 organophosphate esters in air, soil, pine needles, river water, and dust samples collected around an airport in New York state, United States. Environ Int 131:105054. https://doi.org/10.1016/j.envint.2019.105054

Li WT, Yuan Y, Wang SL et al (2023) Occurrence, spatiotemporal variation, and ecological risks of organophosphate esters in the water and sediment of the middle and lower streams of the Yellow River and its important tributaries. J Haz Mat 443:130153. https://doi.org/10.1016/j.jhazmat.2022.130153

Liu LY, Yin HL, Jian LJ et al (2021) Pollution characteristics of organophosphate esters in frozen soil on the Eastern Edge of Qinghai-Tibet Plateau. Environ Sci 42:3549–3554. https://doi.org/10.13227/j.hjkx.202011196

Liu YL (2022) Environmental exposure to organophosphate esters in typical industrial areas and their effects on zebrafish embryo metabolism. China Univ Geosci. https://doi.org/10.27492/d.cnki.gzdzu.2022.000070

Luo XJ, Zhang XL, Liu J et al (2009) Persistent halogenated compounds in waterbirds from an e-waste recycling region in South China. Environ Sci Technol 43(2):306–311. https://doi.org/10.1021/es8018644

Ma YX, Xie ZY, Lohmann R et al (2017) Organophosphate ester flame retardants and plasticizers in ocean sediments from the North Pacific to the Arctic Ocean. Environ Sci Technol 51(7):3809–3815. https://doi.org/10.1021/acs.est.7b00755

Matsukami H, Tue NM, Suzuki G et al (2015) Flame retardant emission from e-waste recycling operation in northern Vietnam: environmental occurrence of emerging organophosphorus esters used as alternatives for PBDEs. Sci Total Environ 514:492–499. https://doi.org/10.1016/j.scitotenv.2015.02.008

Muideen RG, Layla SAO, Mohamed AEA et al (2023) Concentrations of organophosphate esters in drinking water from the United Kingdom: Implications for human exposure. Emerg Contam 9(1):100203. https://doi.org/10.1016/j.emcon.2023.100203

Perihan KK, Henry A, Askin B et al (2018) Organophosphate ester (OPEs) flame retardants and plasticizers in air and soil from a highly industrialized city in Turkey. Sci Total Environ 625:555–565. https://doi.org/10.1016/j.scitotenv.2017.12.307

Qing L, Yue S, Adeel M et al (2018) Levels, distribution, and sources of organophosphate flame retardants and plasticizers in urban soils of Shenyang, China. Environ Sci Pollut R 25:31752–31761. https://doi.org/10.1007/s11356-018-3156-y

Ren GF, Chu XD, Zhang J et al (2018) Organophosphate esters in the water, sediments, surface soils, and tree bark surrounding a manufacturing plant in north China. Environ Pollut 246:374–380. https://doi.org/10.1016/j.envpol.2018.12.020

Salah A, Mohammad HD, Kazem N et al (2022) Occurrence of organophosphorus esters in outdoor air fine particulate matter and comprehensive assessment of human exposure: a global systematic review. Environ Pollut 318:120895. https://doi.org/10.1016/j.envpol.2022.120895

Santos JL, Malvar JL, Abril C et al (2020) Selective pressurized extraction as single-step extraction and clean-up for the determination of organophosphate ester flame retardant in Citrus aurantium leaves by gas chromatography-tandem mass spectrometry. Anal Bioanal Chem 412(11):2665–2674. https://doi.org/10.1007/s00216-020-02499-7

Shi YL, Gao LH, Li WH et al (2016) Occurrence, distribution and seasonal variation of organophosphate flame retardants and plasticizers in urban surface water in Beijing, China. Environ Pollut 209:1–10. https://doi.org/10.1016/j.envpol.2015.11.008

Sonego E, Simonetti G, Di Filippo P et al (2022) Characterization of organophosphate esters (OPEs) and polyfluoralkyl substances (PFASs) in settled dust in specific workplaces. Environ Sci Pollut R 29(34):52302–52316. https://doi.org/10.1007/s11356-022-19486-3

USEPA (2017) Mid Atlantic risk assessment, regional screening levels (RSLs) - Generic Tables.

Veen IVD, Boer JD (2012) Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere 88(10):1119–1153. https://doi.org/10.1016/j.chemosphere.2012.03.067

Wan WN, Zhang SZ, Huang HL et al (2016) Occurrence and distribution of organophosphorus esters in soils and wheat plants in a plastic waste treatment area in China. Environ Pollut 214:349–353. https://doi.org/10.1016/j.envpol.2016.04.038

Wang T, Ding N, Wang T et al (2018a) Organophosphorus esters (OPEs) in PM 2.5 in urban and e-waste recycling regions in southern China: concentrations, sources, and emissions. Environ Res 167:437–444. https://doi.org/10.1016/j.envres.2018.08.015

Wang XL, Zhu LY, Zhong WJ et al (2018b) Partition and source identification of organophosphate esters in the water and sediment of Taihu Lake, China. J Haz Mat 360:43–50. https://doi.org/10.1016/j.jhazmat.2018.07.082

Wang XQ, Li F, Teng YF et al (2022) Potential adverse outcome pathways with hazard identification of organophosphate esters. Sci Total Environ 851(1):158093. https://doi.org/10.1016/j.scitotenv.2022.158093

Wang XW, He YQ, Lin L et al (2014) Application of fully automatic hollow fiber liquid phase microextraction to assess the distribution of organophosphate esters in the Pearl River Estuaries. Sci Total Environ 470-471:263–269. https://doi.org/10.1016/j.scitotenv.2013.09.069

Wang Y, Sun HW, Zhu HK et al (2018c) Occurrence and distribution of organophosphate flame retardants (OPFRs) in soil and outdoor settled dust from a multi-waste recycling area in China. Sci Total Environ 625:1056–1064. https://doi.org/10.1016/j.scitotenv.2018.01.013

Wang Y, Yao YM, Li WH et al (2019) A nationwide survey of 19 organophosphate esters in soils from China: spatial distribution and hazard assessment. Sci Total Environ 671:528–535. https://doi.org/10.1016/j.scitotenv.2019.03.335

Wei GL, Li DQ, Zhuo MN et al (2015) Organophosphorus flame retardants and plasticizers: sources, occurrence, toxicity and human exposure. Environ Pollut 196:29–46. https://doi.org/10.1016/j.envpol.2014.09.012

Wu JP, Luo XJ, Zhang Y et al (2008) Bioaccumulation of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in wild aquatic species from an electronic waste (e-waste) recycling site in South China. Environ Int 34(8):1109–1113. https://doi.org/10.1016/j.envint.2008.04.001

Yadav IC, Devi NL, Li J et al (2018a) Organophosphate ester flame retardants in Nepalese soil: spatial distribution, source apportionment and air-soil exchange assessment. Chemosphere 190:114–123. https://doi.org/10.1016/j.chemosphere.2017.09.112

Yadav IC, Devi NL, Li J et al (2018b) Concentration and spatial distribution of organophosphate esters in the soil-sediment profile of Kathmandu Valley, Nepal: Implication for risk assessment. Sci Total Environ 613-614:502–512. https://doi.org/10.1016/j.scitotenv.2017.09.039

Yang T, He MJ, Yang ZH et al (2018a) Simulation of the migration and release characteristics of organophosphate esters in fluctuation zone soil of the Three Gorges Reservoir during flooding. Environ Sci 39(12):5487–5493. https://doi.org/10.13227/j.hjkx.201804052

Yang W, Braun JM, Vuong AM et al (2022) Associations of gestational exposure to organophosphate esters with gestational age and neonatal anthropometric measures: the HOME study. Environ Pollut 316:120516. https://doi.org/10.1016/j.envpol.2022.120516

Yang ZH, He MJ, Yang T et al (2018b) Distribution characteristics and sources of organic phosphates in different urban functional areas of Chongqing. Environment. Science 39:5135–5141. https://doi.org/10.13227/j.hjkx.201803191

Yin HL, Li SP, Ye ZX et al (2016) Pollution characteristics and sources of organophosphorus flame retardants in soil of Chengdu. Acta Sci Circumst 36:606–613. https://doi.org/10.13671/j.hjkxxb.2015.0489

Yin HL, Liang JF, Wu D et al (2020) Measurement report: seasonality, distribution and sources of organophosphate esters in PM2.5 from an inland urban city in Southwest China. Atmos. Chem Phys 20(23):14933–14945. https://doi.org/10.5194/acp-20-14933-2020

Yin HL, Liu Q, Deng X et al (2021) Organophosphate esters in water, suspended particulate matter (SPM) and sediments of the Minjiang River, China. Chinese Chem Lett 32(09):2812–2818. https://doi.org/10.1016/j.cclet.2021.02.023

Zhang L, Ni LF, Wang H et al (2023) Higher ecological risks and lower bioremediation potentials identified for emerging OPEs than legacy PCBs in the Beibu Gulf, China. Environ Res 231(3):116244. https://doi.org/10.1016/j.envres.2023.116244

Zhao A, Wei C, Xin Y et al (2023) Pollution profiles, influencing factors, and source apportionment of target and suspect organophosphate esters in ambient air: a case study in a typical city of Northern China. J Haz Mat 444:130373. https://doi.org/10.1016/j.jhazmat.2022.130373

Zheng J, Chen SJ, Tian M et al (2014) Elevated levels of polychlorinated biphenyls in plants, air, and soils at an e-waste site in Southern China and enantioselective biotransformation of chiral PCBs in plants. Environ Sci Technol 48(7):3847–3855. https://doi.org/10.1021/es405632v

Zheng J, Wang J, Luo XJ et al (2010) Dechlorane Plus in human hair from an e-waste recycling area in South China: comparison with dust. Environ Sci Technol 44(24):9298–9303. https://doi.org/10.1021/es103105x

Download references

We acknowledge financial support from Sichuan Natural Science Foundation Project (No. 23NSFSC0969, 23NSFSC1019) and Project CPUME04 supported by Chengdu Plain Urban Meteorology and Environment Observation and Research Station of Sichuan Province.

Author information

Authors and affiliations.

College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610025, Sichuan, China

Hongling Yin, Liya Liu, Yuanming Xiong & Yang Qiao

You can also search for this author in PubMed   Google Scholar

Contributions

Hongling Yin: introduction section and writing—original draft and supervision; Liya Liu: interpretation of findings and writing—original draft and supervision; Yuanming Xiong: writing—literature review and methodology and data curation; Yang Qiao: conceptualization framework, writing original draft, and data analysis.

Corresponding author

Correspondence to Hongling Yin .

Ethics declarations

Ethics approval.

This original work has not been submitted anywhere else for publication.

Consent to participate

Not applicable

Consent for publication

The paper submitted with the mutual consent of authors for publication in Environmental Science and Pollution Research.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Roland Peter Kallenborn

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Yin, H., Liu, L., Xiong, Y. et al. Pollution characteristics and risk assessment of organophosphate esters (OPEs) in typical industrial parks in Southwest China. Environ Sci Pollut Res (2024). https://doi.org/10.1007/s11356-024-33160-w

Download citation

Received : 03 September 2023

Accepted : 27 March 2024

Published : 09 May 2024

DOI : https://doi.org/10.1007/s11356-024-33160-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Industrial park
  • Risk assessment
  • Find a journal
  • Publish with us
  • Track your research
  • Privacy Policy

Research Method

Home » Basic Research – Types, Methods and Examples

Basic Research – Types, Methods and Examples

Table of Contents

Basic Research

Basic Research

Definition:

Basic Research, also known as Fundamental or Pure Research , is scientific research that aims to increase knowledge and understanding about the natural world without necessarily having any practical or immediate applications. It is driven by curiosity and the desire to explore new frontiers of knowledge rather than by the need to solve a specific problem or to develop a new product.

Types of Basic Research

Types of Basic Research are as follows:

Experimental Research

This type of research involves manipulating one or more variables to observe their effect on a particular phenomenon. It aims to test hypotheses and establish cause-and-effect relationships.

Observational Research

This type of research involves observing and documenting natural phenomena without manipulating any variables. It aims to describe and understand the behavior of the observed system.

Theoretical Research

This type of research involves developing and testing theories and models to explain natural phenomena. It aims to provide a framework for understanding and predicting observations and experiments.

Descriptive Research

This type of research involves describing and cataloging natural phenomena without attempting to explain or understand them. It aims to provide a comprehensive and accurate picture of the observed system.

Comparative Research

This type of research involves comparing different systems or phenomena to identify similarities and differences. It aims to understand the underlying principles that govern different natural phenomena.

Historical Research

This type of research involves studying past events, developments, and discoveries to understand how science has evolved over time. It aims to provide insights into the factors that have influenced scientific progress and the role of basic research in shaping our understanding of the world.

Data Collection Methods

Some common data collection methods used in basic research include:

  • Observation : This involves watching and recording natural phenomena in a systematic and structured way. Observations can be made in a laboratory setting or in the field and can be qualitative or quantitative.
  • Surveys and questionnaires: These are tools for collecting data from a large number of individuals about their attitudes, beliefs, behaviors, and experiences. Surveys and questionnaires can be administered in person, by mail, or online.
  • Interviews : Interviews involve asking questions to a person or a group of people to gather information about their experiences, opinions, and perspectives. Interviews can be structured, semi-structured, or unstructured.
  • Experiments : Experiments involve manipulating one or more variables and observing their effect on a particular phenomenon. Experiments can be conducted in a laboratory or in the field and can be controlled or naturalistic.
  • Case studies : Case studies involve in-depth analysis of a particular individual, group, or phenomenon. Case studies can provide rich and detailed information about complex phenomena.
  • Archival research : Archival research involves analyzing existing data, documents, and records to answer research questions. Archival research can be used to study historical events, trends, and developments.
  • Simulation : Simulation involves creating a computer model of a particular phenomenon to study its behavior and predict its future outcomes. Simulation can be used to study complex systems that are difficult to study in the real world.

Data Analysis Methods

Some common data analysis methods used in basic research include:

  • Descriptive statistics: This involves summarizing and describing data using measures such as mean, median, mode, and standard deviation. Descriptive statistics provide a simple and easy way to understand the basic properties of the data.
  • Inferential statistics : This involves making inferences about a population based on data collected from a sample. Inferential statistics can be used to test hypotheses, estimate parameters, and quantify uncertainty.
  • Qualitative analysis : This involves analyzing data that are not numerical in nature, such as text, images, or audio recordings. Qualitative analysis can involve coding, categorizing, and interpreting data to identify themes, patterns, and relationships.
  • Content analysis: This involves analyzing the content of text, images, or audio recordings to identify specific words, phrases, or themes. Content analysis can be used to study communication, media, and discourse.
  • Multivariate analysis: This involves analyzing data that have multiple variables or factors. Multivariate analysis can be used to identify patterns and relationships among variables, cluster similar observations, and reduce the dimensionality of the data.
  • Network analysis: This involves analyzing the structure and dynamics of networks, such as social networks, communication networks, or ecological networks. Network analysis can be used to study the relationships and interactions among individuals, groups, or entities.
  • Machine learning : This involves using algorithms and models to analyze and make predictions based on data. Machine learning can be used to identify patterns, classify observations, and make predictions based on complex data sets.

Basic Research Methodology

Basic research methodology refers to the approach, techniques, and procedures used to conduct basic research. The following are some common steps involved in basic research methodology:

  • Formulating research questions or hypotheses : This involves identifying the research problem and formulating specific questions or hypotheses that can guide the research.
  • Reviewing the literature: This involves reviewing and synthesizing existing research on the topic of interest to identify gaps, controversies, and areas for further investigation.
  • Designing the study: This involves designing a study that is appropriate for the research question or hypothesis. The study design can involve experiments, observations, surveys, case studies, or other methods.
  • Collecting data: This involves collecting data using appropriate methods and instruments, such as observation, surveys, experiments, or interviews.
  • Analyzing data: This involves analyzing the collected data using appropriate methods, such as descriptive or inferential statistics, qualitative analysis, or content analysis.
  • Interpreting results : This involves interpreting the results of the data analysis in light of the research question or hypothesis and the existing literature.
  • Drawing conclusions: This involves drawing conclusions based on the interpretation of the results and assessing their implications for the research question or hypothesis.
  • Communicating findings : This involves communicating the research findings in the form of research reports, journal articles, conference presentations, or other forms of dissemination.

Applications of Basic Research

Some applications of basic research include:

  • Medical breakthroughs : Basic research in fields such as biology, chemistry, and physics has led to important medical breakthroughs, including the discovery of antibiotics, vaccines, and new drugs.
  • Technology advancements: Basic research in fields such as computer science, physics, and engineering has led to advancements in technology, such as the development of the internet, smartphones, and other electronic devices.
  • Environmental solutions: Basic research in fields such as ecology, geology, and meteorology has led to the development of solutions to environmental problems, such as climate change, air pollution, and water contamination.
  • Economic growth: Basic research can stimulate economic growth by creating new industries and markets based on scientific discoveries and technological advancements.
  • National security: Basic research in fields such as physics, chemistry, and biology has led to the development of new technologies for national security, including encryption, radar, and stealth technology.

Examples of Basic Research

Here are some examples of basic research:

  • Astronomy : Astronomers conduct basic research to understand the fundamental principles that govern the universe, such as the laws of gravity, the behavior of stars and galaxies, and the origins of the universe.
  • Genetics : Geneticists conduct basic research to understand the genetic basis of various traits, diseases, and disorders. This research can lead to the development of new treatments and therapies for genetic diseases.
  • Physics : Physicists conduct basic research to understand the fundamental principles of matter and energy, such as quantum mechanics, particle physics, and cosmology. This research can lead to new technologies and advancements in fields such as medicine and engineering.
  • Neuroscience: Neuroscientists conduct basic research to understand the structure and function of the brain, including how it processes information and controls behavior. This research can lead to new treatments and therapies for neurological disorders and brain injuries.
  • Mathematics : Mathematicians conduct basic research to develop and explore new mathematical theories, such as number theory, topology, and geometry. This research can lead to new applications in fields such as computer science, physics, and engineering.
  • Chemistry : Chemists conduct basic research to understand the fundamental properties of matter and how it interacts with other substances. This research can lead to the development of new materials, drugs, and technologies.

Purpose of Basic Research

The purpose of basic research, also known as fundamental or pure research, is to expand knowledge in a particular field or discipline without any specific practical application in mind. The primary goal of basic research is to advance our understanding of the natural world and to uncover fundamental principles and relationships that underlie complex phenomena.

Basic research is often exploratory in nature, with researchers seeking to answer fundamental questions about how the world works. The research may involve conducting experiments, collecting and analyzing data, or developing new theories and hypotheses. Basic research often requires a high degree of creativity, innovation, and intellectual curiosity, as well as a willingness to take risks and pursue unconventional lines of inquiry.

Although basic research is not conducted with a specific practical outcome in mind, it can lead to significant practical applications in various fields. Many of the major scientific discoveries and technological advancements of the past century have been rooted in basic research, from the discovery of antibiotics to the development of the internet.

In summary, the purpose of basic research is to expand knowledge and understanding in a particular field or discipline, with the goal of uncovering fundamental principles and relationships that can help us better understand the natural world. While the practical applications of basic research may not always be immediately apparent, it has led to significant scientific and technological advancements that have benefited society in numerous ways.

When to use Basic Research

Basic research is generally conducted when scientists and researchers are seeking to expand knowledge and understanding in a particular field or discipline. It is particularly useful when there are gaps in our understanding of fundamental principles and relationships that underlie complex phenomena. Here are some situations where basic research might be particularly useful:

  • Exploring new fields: Basic research can be particularly valuable when researchers are exploring new fields or areas of inquiry where little is known. By conducting basic research, scientists can establish a foundation of knowledge that can be built upon in future studies.
  • Testing new theories: Basic research can be useful when researchers are testing new theories or hypotheses that have not been tested before. This can help scientists to gain a better understanding of how the world works and to identify areas where further research is needed.
  • Developing new technologies : Basic research can be important for developing new technologies and innovations. By conducting basic research, scientists can uncover new materials, properties, and relationships that can be used to develop new products or technologies.
  • Investigating complex phenomena : Basic research can be particularly valuable when investigating complex phenomena that are not yet well understood. By conducting basic research, scientists can gain a better understanding of the underlying principles and relationships that govern complex systems.
  • Advancing scientific knowledge: Basic research is important for advancing scientific knowledge in general. By conducting basic research, scientists can uncover new principles and relationships that can be applied across multiple fields of study.

Characteristics of Basic Research

Here are some of the main characteristics of basic research:

  • Focus on fundamental knowledge : Basic research is focused on expanding our understanding of the natural world and uncovering fundamental principles and relationships that underlie complex phenomena. The primary goal of basic research is to advance knowledge without any specific practical application in mind.
  • Exploratory in nature: Basic research is often exploratory in nature, with researchers seeking to answer fundamental questions about how the world works. The research may involve conducting experiments, collecting and analyzing data, or developing new theories and hypotheses.
  • Long-term focus: Basic research is often focused on long-term outcomes rather than immediate practical applications. The insights and discoveries generated by basic research may take years or even decades to translate into practical applications.
  • High degree of creativity and innovation : Basic research often requires a high degree of creativity, innovation, and intellectual curiosity. Researchers must be willing to take risks and pursue unconventional lines of inquiry.
  • Emphasis on scientific rigor: Basic research is conducted using the scientific method, which emphasizes the importance of rigorous experimental design, data collection and analysis, and peer review.
  • Interdisciplinary: Basic research is often interdisciplinary, drawing on multiple fields of study to address complex research questions. Basic research can be conducted in fields ranging from physics and chemistry to biology and psychology.
  • Open-ended : Basic research is open-ended, meaning that it does not have a specific end goal in mind. Researchers may follow unexpected paths or uncover new lines of inquiry that they had not anticipated.

Advantages of Basic Research

Here are some of the main advantages of basic research:

  • Advancing scientific knowledge: Basic research is essential for expanding our understanding of the natural world and uncovering fundamental principles and relationships that underlie complex phenomena. This knowledge can be applied across multiple fields of study and can lead to significant scientific and technological advancements.
  • Fostering innovation: Basic research often requires a high degree of creativity, innovation, and intellectual curiosity. By encouraging scientists to pursue unconventional lines of inquiry and take risks, basic research can lead to breakthrough discoveries and innovations.
  • Stimulating economic growth : Basic research can lead to the development of new technologies and products that can stimulate economic growth and create new industries. Many of the major scientific and technological advancements of the past century have been rooted in basic research.
  • Improving health and well-being: Basic research can lead to the development of new drugs, therapies, and medical treatments that can improve health and well-being. For example, many of the major advances in medical science, such as the development of antibiotics and vaccines, were rooted in basic research.
  • Training the next generation of scientists : Basic research is essential for training the next generation of scientists and researchers. By providing opportunities for young scientists to engage in research and gain hands-on experience, basic research helps to develop the skills and expertise needed to advance scientific knowledge in the future.
  • Encouraging interdisciplinary collaboration : Basic research often requires collaboration between scientists from different fields of study. By fostering interdisciplinary collaboration, basic research can lead to new insights and discoveries that would not be possible through single-discipline research alone.

Limitations of Basic Research

Here are some of the main limitations of basic research:

  • Lack of immediate practical applications : Basic research is often focused on long-term outcomes rather than immediate practical applications. The insights and discoveries generated by basic research may take years or even decades to translate into practical applications.
  • High cost and time requirements: Basic research can be expensive and time-consuming, as it often requires sophisticated equipment, specialized facilities, and large research teams. Funding for basic research can be limited, making it difficult to sustain long-term projects.
  • Ethical concerns : Basic research may involve working with animal models or human subjects, raising ethical concerns around the use of animals or the safety and well-being of human participants.
  • Uncertainty around outcomes: Basic research is often open-ended, meaning that it does not have a specific end goal in mind. This uncertainty can make it difficult to justify funding for basic research, as it is difficult to predict what outcomes the research will produce.
  • Difficulty in communicating results : Basic research can produce complex and technical findings that may be difficult to communicate to the general public or policymakers. This can make it challenging to generate public support for basic research or to translate basic research findings into policy or practical applications.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Questionnaire

Questionnaire – Definition, Types, and Examples

Case Study Research

Case Study – Methods, Examples and Guide

Observational Research

Observational Research – Methods and Guide

Quantitative Research

Quantitative Research – Methods, Types and...

Explanatory Research

Explanatory Research – Types, Methods, Guide

Survey Research

Survey Research – Types, Methods, Examples

IMAGES

  1. Different Types of Research

    research types and characteristics

  2. What is Research

    research types and characteristics

  3. What are the Characteristics of Research?

    research types and characteristics

  4. Qualitative Research: Definition, Types, Methods and Examples

    research types and characteristics

  5. Types of Research by Method

    research types and characteristics

  6. Types of Research

    research types and characteristics

VIDEO

  1. Basic and Applied Research

  2. Lecture 01: Basics of Research

  3. Kinds and Classification of Research

  4. Metho 4: Good Research Qualities / Research Process / Research Methods Vs Research Methodology

  5. Types of Research

  6. What is a Research ? Types of Research? What is a Research Proposal and it's components?

COMMENTS

  1. Research

    Research: Meaning, Types, and Characteristics, Positivism and Post- positivistic approach to research (You are reading this) Methods of Research: Experimental, Descriptive, Historical, Qualitative and Quantitative methods. Steps of Research. Thesis and Article writing: Format and styles of referencing. Application of ICT in research (New Topic)

  2. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  3. Types of Research Designs Compared

    Types of Research Designs Compared | Guide & Examples. Published on June 20, 2019 by Shona McCombes.Revised on June 22, 2023. When you start planning a research project, developing research questions and creating a research design, you will have to make various decisions about the type of research you want to do.. There are many ways to categorize different types of research.

  4. Types of Research

    The primary objective of descriptive research is to define the characteristics of a particular phenomenon without necessarily investigating the causes that produce it. ... In this type of research, reality is explained by general laws that point to certain conclusions; conclusions are expected to be part of the premise of the research problem ...

  5. What is Research

    Research is the careful consideration of study regarding a particular concern or research problem using scientific methods. According to the American sociologist Earl Robert Babbie, "research is a systematic inquiry to describe, explain, predict, and control the observed phenomenon. It involves inductive and deductive methods.".

  6. What Is a Research Design

    Step 2: Choose a type of research design. Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research. ... Type of design Purpose and characteristics; Case study: Detailed study of a specific subject (e.g., a place, event ...

  7. Research

    Types of Research. Types of Research are as follows: Applied Research: This type of research aims to solve practical problems or answer specific questions, ... The following are some of the characteristics of research: Purpose: Research is conducted to address a specific problem or question and to generate new knowledge or insights.

  8. What is Research? Definition, Types, Methods and Process

    Here are the key characteristics of research: Systematic Approach: Research follows a well-structured and organized approach, with clearly defined steps and methodologies. It is conducted in a systematic manner to ensure that data is collected, analyzed, and interpreted in a logical and coherent way. ... There are various types of research ...

  9. Research Methods

    Research Methods | Definition, Types, Examples. Research methods are specific procedures for collecting and analysing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. ... If you want to understand the characteristics of a research subject, ...

  10. Research: Meaning and Purpose

    This type of research is usually carried out to acquire knowledge to control natural phenomena ... (1986 in Gebremedhin and Tweeten, 1994) summarized the characteristics of research as follows: 1. Research is carried out aiming to find solutions to a problem or the search for answers to unsolved questions. 2. Research paves the way to develop ...

  11. 19 Types of Research (With Definitions and Examples)

    Example: A researcher examines if and how employee satisfaction changes in the same employees after one year, three years and five years with the same company. 16. Mixed research. Mixed research includes both qualitative and quantitative data. The results are often presented as a mix of graphs, words and images.

  12. Research: Definition, Characteristics, Goals, Approaches

    The primary goal or purpose of research in any field of inquiry; is to add to what is known about the phenomenon under investigation by applying scientific methods. Though each research has its own specific goals, we may enumerate the following 4 broad goals of scientific research: Exploration and Explorative Research.

  13. Research Methodology

    Qualitative Research Methodology. This is a research methodology that involves the collection and analysis of non-numerical data such as words, images, and observations. This type of research is often used to explore complex phenomena, to gain an in-depth understanding of a particular topic, and to generate hypotheses.

  14. Scientific Research

    Scientific research is the systematic and empirical investigation of phenomena, theories, or hypotheses, using various methods and techniques in order to acquire new knowledge or to validate existing knowledge. It involves the collection, analysis, interpretation, and presentation of data, as well as the formulation and testing of hypotheses.

  15. Social Research: Definitions, Types, Nature, and Characteristics

    The types and characteristics of social research are further analysed in this chapter. Social research plays a substantial role in investigating knowledge and theories relevant to social problems. Additionally, social research is important for its contribution to national and international policymaking, which explains the importance of social ...

  16. PDF Unit: 01 Research: Meaning, Types, Scope and Significance

    After reading this unit the learner will be able to: Understand the meaning of sampling Understand sampling Design Understand characteristics of Sampling Design Understand aims in selection a sample Understand the various types of sample design. Understand role of data in research Understand Types of data. Researching for Hospitality and ...

  17. What Is Research? Types, Purpose, Characteristics, Process

    Basic or pure research explores broad, inclusive laws, rules, theories and tendencies with precise causation. Pure research is an intellectual response to great questions and seemingly difficult causal complexities. Theory of gravity (Newton), a theory of relativity (Einstein), and birth of the universe theory (Hoyle and Naralikar theory) are ...

  18. Quantitative Research: Types, Characteristics, Methods & Examples

    After defining research objectives, the next significant step in primary quantitative research is data collection. This involves using two main methods: sampling and conducting surveys or polls. Sampling methods: In quantitative research, there are two primary sampling methods: Probability and Non-probability sampling.

  19. What Is Qualitative Research?

    Qualitative research involves collecting and analyzing non-numerical data (e.g., text, video, or audio) to understand concepts, opinions, or experiences. It can be used to gather in-depth insights into a problem or generate new ideas for research. Qualitative research is the opposite of quantitative research, which involves collecting and ...

  20. What is a Research Problem? Characteristics, Types, and Examples

    Characteristics, Types, and Examples. August 22, 2023 Sunaina Singh. Knowing the basics of defining a research problem is instrumental in formulating a research inquiry. A research problem is a gap in existing knowledge, a contradiction in an established theory, or a real-world challenge that a researcher aims to address in their research.

  21. 5 Types of Research Design

    Here are some of the elements of a good research design: Purpose statement. Data collection methods. Techniques of data analysis. Types of research methodologies. Challenges of the research. Prerequisites required for study. Duration of the research study. Measurement of analysis.

  22. Research Design

    This will guide your research design and help you select appropriate methods. Select a research design: There are many different research designs to choose from, including experimental, survey, case study, and qualitative designs. Choose a design that best fits your research question and objectives.

  23. The 8 types of market research and how to use them

    Conception: The moment you're thinking about adding something new, market research can find market opportunities and provide insights into customer challenges or their jobs-to-be-done, so you can find a way to fill the gap. Formation: Once you have an idea, market researchers can help you turn it into a concept that can be tested. You can learn more about strategizing pricing, testing ...

  24. Pollution characteristics and risk assessment of ...

    As alternative substances of PBDEs, organophosphate esters (OPEs), an emerging organic pollutant, were increasingly produced and used in many kinds of industries and consumer products. However, OPEs also have various adverse toxic effects. Information on the pollution levels and exposure to OPEs in related industries is still limited. This study presented data on OPE contamination in the soil ...

  25. Experimental study on the damage characteristics of cyclic disturbance

    Three types of rocks, namely, muddy siltstone, fine-grained siltstone, and medium-grained siltstone from the No. 1 Coal Mine of Shanghai Temple were subjected to the experiment of "uniaxial compression + cyclic disturbance" to investigate the deformation response characteristics of rocks near the proximal face of a deep mine to cyclic ...

  26. Basic Research

    This type of research involves studying past events, developments, and discoveries to understand how science has evolved over time. It aims to provide insights into the factors that have influenced scientific progress and the role of basic research in shaping our understanding of the world. ... Characteristics of Basic Research. Here are some ...

  27. Organic Electrode Materials for Energy Storage and Conversion

    A comprehensive review to explore the characteristics of OEMs and establish the correlation between these characteristics and their specific application in energy storage and conversion is still lacking. In this Account, we initially provide an overview of the sustainability and environmental friendliness of OEMs for energy storage and conversion.

  28. Buildings

    The bond-slip behavior of the steel-concrete interface is critical in reinforced concrete (RC) structures since the bond action is the mechanism that ensures the two materials work in co-operation. However, there is little research considering the bond-slip behavior in massive ring-type reinforced concrete (MRRC) structure bearing analyses due to the complexity of modeling the ...