Python Tutorial

File handling, python modules, python numpy, python pandas, python matplotlib, python scipy, machine learning, python mysql, python mongodb, python reference, module reference, python how to, python examples, python assignment operators.

Assignment operators are used to assign values to variables:

Related Pages

Get Certified

COLOR PICKER

colorpicker

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail: [email protected]

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail: [email protected]

Top Tutorials

Top references, top examples, get certified.

  • Python Basics
  • Interview Questions
  • Python Quiz
  • Popular Packages
  • Python Projects
  • Practice Python
  • AI With Python
  • Learn Python3
  • Python Automation
  • Python Web Dev
  • DSA with Python
  • Python OOPs
  • Dictionaries

Different Forms of Assignment Statements in Python

We use Python assignment statements to assign objects to names. The target of an assignment statement is written on the left side of the equal sign (=), and the object on the right can be an arbitrary expression that computes an object.

There are some important properties of assignment in Python :-

  • Assignment creates object references instead of copying the objects.
  • Python creates a variable name the first time when they are assigned a value.
  • Names must be assigned before being referenced.
  • There are some operations that perform assignments implicitly.

Assignment statement forms :-

1. Basic form:

This form is the most common form.

2. Tuple assignment:

When we code a tuple on the left side of the =, Python pairs objects on the right side with targets on the left by position and assigns them from left to right. Therefore, the values of x and y are 50 and 100 respectively.

3. List assignment:

This works in the same way as the tuple assignment.

4. Sequence assignment:

In recent version of Python, tuple and list assignment have been generalized into instances of what we now call sequence assignment – any sequence of names can be assigned to any sequence of values, and Python assigns the items one at a time by position.

5. Extended Sequence unpacking:

It allows us to be more flexible in how we select portions of a sequence to assign.

Here, p is matched with the first character in the string on the right and q with the rest. The starred name (*q) is assigned a list, which collects all items in the sequence not assigned to other names.

This is especially handy for a common coding pattern such as splitting a sequence and accessing its front and rest part.

6. Multiple- target assignment:

In this form, Python assigns a reference to the same object (the object which is rightmost) to all the target on the left.

7. Augmented assignment :

The augmented assignment is a shorthand assignment that combines an expression and an assignment.

There are several other augmented assignment forms:

Similar Reads

  • Python Programs
  • python-basics

Please Login to comment...

Improve your coding skills with practice.

 alt=

What kind of Experience do you want to share?

Python Tutorial

  • Python Basics
  • Python - Home
  • Python - Overview
  • Python - History
  • Python - Features
  • Python vs C++
  • Python - Hello World Program
  • Python - Application Areas
  • Python - Interpreter
  • Python - Environment Setup
  • Python - Virtual Environment
  • Python - Basic Syntax
  • Python - Variables
  • Python - Data Types
  • Python - Type Casting
  • Python - Unicode System
  • Python - Literals
  • Python - Operators
  • Python - Arithmetic Operators
  • Python - Comparison Operators

Python - Assignment Operators

  • Python - Logical Operators
  • Python - Bitwise Operators
  • Python - Membership Operators
  • Python - Identity Operators
  • Python - Operator Precedence
  • Python - Comments
  • Python - User Input
  • Python - Numbers
  • Python - Booleans
  • Python Control Statements
  • Python - Control Flow
  • Python - Decision Making
  • Python - If Statement
  • Python - If else
  • Python - Nested If
  • Python - Match-Case Statement
  • Python - Loops
  • Python - for Loops
  • Python - for-else Loops
  • Python - While Loops
  • Python - break Statement
  • Python - continue Statement
  • Python - pass Statement
  • Python - Nested Loops
  • Python Functions & Modules
  • Python - Functions
  • Python - Default Arguments
  • Python - Keyword Arguments
  • Python - Keyword-Only Arguments
  • Python - Positional Arguments
  • Python - Positional-Only Arguments
  • Python - Arbitrary Arguments
  • Python - Variables Scope
  • Python - Function Annotations
  • Python - Modules
  • Python - Built in Functions
  • Python Strings
  • Python - Strings
  • Python - Slicing Strings
  • Python - Modify Strings
  • Python - String Concatenation
  • Python - String Formatting
  • Python - Escape Characters
  • Python - String Methods
  • Python - String Exercises
  • Python Lists
  • Python - Lists
  • Python - Access List Items
  • Python - Change List Items
  • Python - Add List Items
  • Python - Remove List Items
  • Python - Loop Lists
  • Python - List Comprehension
  • Python - Sort Lists
  • Python - Copy Lists
  • Python - Join Lists
  • Python - List Methods
  • Python - List Exercises
  • Python Tuples
  • Python - Tuples
  • Python - Access Tuple Items
  • Python - Update Tuples
  • Python - Unpack Tuples
  • Python - Loop Tuples
  • Python - Join Tuples
  • Python - Tuple Methods
  • Python - Tuple Exercises
  • Python Sets
  • Python - Sets
  • Python - Access Set Items
  • Python - Add Set Items
  • Python - Remove Set Items
  • Python - Loop Sets
  • Python - Join Sets
  • Python - Copy Sets
  • Python - Set Operators
  • Python - Set Methods
  • Python - Set Exercises
  • Python Dictionaries
  • Python - Dictionaries
  • Python - Access Dictionary Items
  • Python - Change Dictionary Items
  • Python - Add Dictionary Items
  • Python - Remove Dictionary Items
  • Python - Dictionary View Objects
  • Python - Loop Dictionaries
  • Python - Copy Dictionaries
  • Python - Nested Dictionaries
  • Python - Dictionary Methods
  • Python - Dictionary Exercises
  • Python Arrays
  • Python - Arrays
  • Python - Access Array Items
  • Python - Add Array Items
  • Python - Remove Array Items
  • Python - Loop Arrays
  • Python - Copy Arrays
  • Python - Reverse Arrays
  • Python - Sort Arrays
  • Python - Join Arrays
  • Python - Array Methods
  • Python - Array Exercises
  • Python File Handling
  • Python - File Handling
  • Python - Write to File
  • Python - Read Files
  • Python - Renaming and Deleting Files
  • Python - Directories
  • Python - File Methods
  • Python - OS File/Directory Methods
  • Python - OS Path Methods
  • Object Oriented Programming
  • Python - OOPs Concepts
  • Python - Classes & Objects
  • Python - Class Attributes
  • Python - Class Methods
  • Python - Static Methods
  • Python - Constructors
  • Python - Access Modifiers
  • Python - Inheritance
  • Python - Polymorphism
  • Python - Method Overriding
  • Python - Method Overloading
  • Python - Dynamic Binding
  • Python - Dynamic Typing
  • Python - Abstraction
  • Python - Encapsulation
  • Python - Interfaces
  • Python - Packages
  • Python - Inner Classes
  • Python - Anonymous Class and Objects
  • Python - Singleton Class
  • Python - Wrapper Classes
  • Python - Enums
  • Python - Reflection
  • Python Errors & Exceptions
  • Python - Syntax Errors
  • Python - Exceptions
  • Python - try-except Block
  • Python - try-finally Block
  • Python - Raising Exceptions
  • Python - Exception Chaining
  • Python - Nested try Block
  • Python - User-defined Exception
  • Python - Logging
  • Python - Assertions
  • Python - Built-in Exceptions
  • Python Multithreading
  • Python - Multithreading
  • Python - Thread Life Cycle
  • Python - Creating a Thread
  • Python - Starting a Thread
  • Python - Joining Threads
  • Python - Naming Thread
  • Python - Thread Scheduling
  • Python - Thread Pools
  • Python - Main Thread
  • Python - Thread Priority
  • Python - Daemon Threads
  • Python - Synchronizing Threads
  • Python Synchronization
  • Python - Inter-thread Communication
  • Python - Thread Deadlock
  • Python - Interrupting a Thread
  • Python Networking
  • Python - Networking
  • Python - Socket Programming
  • Python - URL Processing
  • Python - Generics
  • Python Libraries
  • NumPy Tutorial
  • Pandas Tutorial
  • SciPy Tutorial
  • Matplotlib Tutorial
  • Django Tutorial
  • OpenCV Tutorial
  • Python Miscellenous
  • Python - Date & Time
  • Python - Maths
  • Python - Iterators
  • Python - Generators
  • Python - Closures
  • Python - Decorators
  • Python - Recursion
  • Python - Reg Expressions
  • Python - PIP
  • Python - Database Access
  • Python - Weak References
  • Python - Serialization
  • Python - Templating
  • Python - Output Formatting
  • Python - Performance Measurement
  • Python - Data Compression
  • Python - CGI Programming
  • Python - XML Processing
  • Python - GUI Programming
  • Python - Command-Line Arguments
  • Python - Docstrings
  • Python - JSON
  • Python - Sending Email
  • Python - Further Extensions
  • Python - Tools/Utilities
  • Python - GUIs
  • Python Advanced Concepts
  • Python - Abstract Base Classes
  • Python - Custom Exceptions
  • Python - Higher Order Functions
  • Python - Object Internals
  • Python - Memory Management
  • Python - Metaclasses
  • Python - Metaprogramming with Metaclasses
  • Python - Mocking and Stubbing
  • Python - Monkey Patching
  • Python - Signal Handling
  • Python - Type Hints
  • Python - Automation Tutorial
  • Python - Humanize Package
  • Python - Context Managers
  • Python - Coroutines
  • Python - Descriptors
  • Python - Diagnosing and Fixing Memory Leaks
  • Python - Immutable Data Structures
  • Python Useful Resources
  • Python - Questions & Answers
  • Python - Online Quiz
  • Python - Quick Guide
  • Python - Reference
  • Python - Projects
  • Python - Useful Resources
  • Python - Discussion
  • Python Compiler
  • NumPy Compiler
  • Matplotlib Compiler
  • SciPy Compiler
  • Python - Programming Examples
  • Selected Reading
  • UPSC IAS Exams Notes
  • Developer's Best Practices
  • Questions and Answers
  • Effective Resume Writing
  • HR Interview Questions
  • Computer Glossary

Python Assignment Operator

The = (equal to) symbol is defined as assignment operator in Python. The value of Python expression on its right is assigned to a single variable on its left. The = symbol as in programming in general (and Python in particular) should not be confused with its usage in Mathematics, where it states that the expressions on the either side of the symbol are equal.

Example of Assignment Operator in Python

Consider following Python statements −

At the first instance, at least for somebody new to programming but who knows maths, the statement "a=a+b" looks strange. How could a be equal to "a+b"? However, it needs to be reemphasized that the = symbol is an assignment operator here and not used to show the equality of LHS and RHS.

Because it is an assignment, the expression on right evaluates to 15, the value is assigned to a.

In the statement "a+=b", the two operators "+" and "=" can be combined in a "+=" operator. It is called as add and assign operator. In a single statement, it performs addition of two operands "a" and "b", and result is assigned to operand on left, i.e., "a".

Augmented Assignment Operators in Python

In addition to the simple assignment operator, Python provides few more assignment operators for advanced use. They are called cumulative or augmented assignment operators. In this chapter, we shall learn to use augmented assignment operators defined in Python.

Python has the augmented assignment operators for all arithmetic and comparison operators.

Python augmented assignment operators combines addition and assignment in one statement. Since Python supports mixed arithmetic, the two operands may be of different types. However, the type of left operand changes to the operand of on right, if it is wider.

The += operator is an augmented operator. It is also called cumulative addition operator, as it adds "b" in "a" and assigns the result back to a variable.

The following are the augmented assignment operators in Python:

  • Augmented Addition Operator
  • Augmented Subtraction Operator
  • Augmented Multiplication Operator
  • Augmented Division Operator
  • Augmented Modulus Operator
  • Augmented Exponent Operator
  • Augmented Floor division Operator

Augmented Addition Operator (+=)

Following examples will help in understanding how the "+=" operator works −

It will produce the following output −

Augmented Subtraction Operator (-=)

Use -= symbol to perform subtract and assign operations in a single statement. The "a-=b" statement performs "a=a-b" assignment. Operands may be of any number type. Python performs implicit type casting on the object which is narrower in size.

Augmented Multiplication Operator (*=)

The "*=" operator works on similar principle. "a*=b" performs multiply and assign operations, and is equivalent to "a=a*b". In case of augmented multiplication of two complex numbers, the rule of multiplication as discussed in the previous chapter is applicable.

Augmented Division Operator (/=)

The combination symbol "/=" acts as divide and assignment operator, hence "a/=b" is equivalent to "a=a/b". The division operation of int or float operands is float. Division of two complex numbers returns a complex number. Given below are examples of augmented division operator.

Augmented Modulus Operator (%=)

To perform modulus and assignment operation in a single statement, use the %= operator. Like the mod operator, its augmented version also is not supported for complex number.

Augmented Exponent Operator (**=)

The "**=" operator results in computation of "a" raised to "b", and assigning the value back to "a". Given below are some examples −

Augmented Floor division Operator (//=)

For performing floor division and assignment in a single statement, use the "//=" operator. "a//=b" is equivalent to "a=a//b". This operator cannot be used with complex numbers.

Python Enhancement Proposals

  • Python »
  • PEP Index »

PEP 572 – Assignment Expressions

The importance of real code, exceptional cases, scope of the target, relative precedence of :=, change to evaluation order, differences between assignment expressions and assignment statements, specification changes during implementation, _pydecimal.py, datetime.py, sysconfig.py, simplifying list comprehensions, capturing condition values, changing the scope rules for comprehensions, alternative spellings, special-casing conditional statements, special-casing comprehensions, lowering operator precedence, allowing commas to the right, always requiring parentheses, why not just turn existing assignment into an expression, with assignment expressions, why bother with assignment statements, why not use a sublocal scope and prevent namespace pollution, style guide recommendations, acknowledgements, a numeric example, appendix b: rough code translations for comprehensions, appendix c: no changes to scope semantics.

This is a proposal for creating a way to assign to variables within an expression using the notation NAME := expr .

As part of this change, there is also an update to dictionary comprehension evaluation order to ensure key expressions are executed before value expressions (allowing the key to be bound to a name and then re-used as part of calculating the corresponding value).

During discussion of this PEP, the operator became informally known as “the walrus operator”. The construct’s formal name is “Assignment Expressions” (as per the PEP title), but they may also be referred to as “Named Expressions” (e.g. the CPython reference implementation uses that name internally).

Naming the result of an expression is an important part of programming, allowing a descriptive name to be used in place of a longer expression, and permitting reuse. Currently, this feature is available only in statement form, making it unavailable in list comprehensions and other expression contexts.

Additionally, naming sub-parts of a large expression can assist an interactive debugger, providing useful display hooks and partial results. Without a way to capture sub-expressions inline, this would require refactoring of the original code; with assignment expressions, this merely requires the insertion of a few name := markers. Removing the need to refactor reduces the likelihood that the code be inadvertently changed as part of debugging (a common cause of Heisenbugs), and is easier to dictate to another programmer.

During the development of this PEP many people (supporters and critics both) have had a tendency to focus on toy examples on the one hand, and on overly complex examples on the other.

The danger of toy examples is twofold: they are often too abstract to make anyone go “ooh, that’s compelling”, and they are easily refuted with “I would never write it that way anyway”.

The danger of overly complex examples is that they provide a convenient strawman for critics of the proposal to shoot down (“that’s obfuscated”).

Yet there is some use for both extremely simple and extremely complex examples: they are helpful to clarify the intended semantics. Therefore, there will be some of each below.

However, in order to be compelling , examples should be rooted in real code, i.e. code that was written without any thought of this PEP, as part of a useful application, however large or small. Tim Peters has been extremely helpful by going over his own personal code repository and picking examples of code he had written that (in his view) would have been clearer if rewritten with (sparing) use of assignment expressions. His conclusion: the current proposal would have allowed a modest but clear improvement in quite a few bits of code.

Another use of real code is to observe indirectly how much value programmers place on compactness. Guido van Rossum searched through a Dropbox code base and discovered some evidence that programmers value writing fewer lines over shorter lines.

Case in point: Guido found several examples where a programmer repeated a subexpression, slowing down the program, in order to save one line of code, e.g. instead of writing:

they would write:

Another example illustrates that programmers sometimes do more work to save an extra level of indentation:

This code tries to match pattern2 even if pattern1 has a match (in which case the match on pattern2 is never used). The more efficient rewrite would have been:

Syntax and semantics

In most contexts where arbitrary Python expressions can be used, a named expression can appear. This is of the form NAME := expr where expr is any valid Python expression other than an unparenthesized tuple, and NAME is an identifier.

The value of such a named expression is the same as the incorporated expression, with the additional side-effect that the target is assigned that value:

There are a few places where assignment expressions are not allowed, in order to avoid ambiguities or user confusion:

This rule is included to simplify the choice for the user between an assignment statement and an assignment expression – there is no syntactic position where both are valid.

Again, this rule is included to avoid two visually similar ways of saying the same thing.

This rule is included to disallow excessively confusing code, and because parsing keyword arguments is complex enough already.

This rule is included to discourage side effects in a position whose exact semantics are already confusing to many users (cf. the common style recommendation against mutable default values), and also to echo the similar prohibition in calls (the previous bullet).

The reasoning here is similar to the two previous cases; this ungrouped assortment of symbols and operators composed of : and = is hard to read correctly.

This allows lambda to always bind less tightly than := ; having a name binding at the top level inside a lambda function is unlikely to be of value, as there is no way to make use of it. In cases where the name will be used more than once, the expression is likely to need parenthesizing anyway, so this prohibition will rarely affect code.

This shows that what looks like an assignment operator in an f-string is not always an assignment operator. The f-string parser uses : to indicate formatting options. To preserve backwards compatibility, assignment operator usage inside of f-strings must be parenthesized. As noted above, this usage of the assignment operator is not recommended.

An assignment expression does not introduce a new scope. In most cases the scope in which the target will be bound is self-explanatory: it is the current scope. If this scope contains a nonlocal or global declaration for the target, the assignment expression honors that. A lambda (being an explicit, if anonymous, function definition) counts as a scope for this purpose.

There is one special case: an assignment expression occurring in a list, set or dict comprehension or in a generator expression (below collectively referred to as “comprehensions”) binds the target in the containing scope, honoring a nonlocal or global declaration for the target in that scope, if one exists. For the purpose of this rule the containing scope of a nested comprehension is the scope that contains the outermost comprehension. A lambda counts as a containing scope.

The motivation for this special case is twofold. First, it allows us to conveniently capture a “witness” for an any() expression, or a counterexample for all() , for example:

Second, it allows a compact way of updating mutable state from a comprehension, for example:

However, an assignment expression target name cannot be the same as a for -target name appearing in any comprehension containing the assignment expression. The latter names are local to the comprehension in which they appear, so it would be contradictory for a contained use of the same name to refer to the scope containing the outermost comprehension instead.

For example, [i := i+1 for i in range(5)] is invalid: the for i part establishes that i is local to the comprehension, but the i := part insists that i is not local to the comprehension. The same reason makes these examples invalid too:

While it’s technically possible to assign consistent semantics to these cases, it’s difficult to determine whether those semantics actually make sense in the absence of real use cases. Accordingly, the reference implementation [1] will ensure that such cases raise SyntaxError , rather than executing with implementation defined behaviour.

This restriction applies even if the assignment expression is never executed:

For the comprehension body (the part before the first “for” keyword) and the filter expression (the part after “if” and before any nested “for”), this restriction applies solely to target names that are also used as iteration variables in the comprehension. Lambda expressions appearing in these positions introduce a new explicit function scope, and hence may use assignment expressions with no additional restrictions.

Due to design constraints in the reference implementation (the symbol table analyser cannot easily detect when names are re-used between the leftmost comprehension iterable expression and the rest of the comprehension), named expressions are disallowed entirely as part of comprehension iterable expressions (the part after each “in”, and before any subsequent “if” or “for” keyword):

A further exception applies when an assignment expression occurs in a comprehension whose containing scope is a class scope. If the rules above were to result in the target being assigned in that class’s scope, the assignment expression is expressly invalid. This case also raises SyntaxError :

(The reason for the latter exception is the implicit function scope created for comprehensions – there is currently no runtime mechanism for a function to refer to a variable in the containing class scope, and we do not want to add such a mechanism. If this issue ever gets resolved this special case may be removed from the specification of assignment expressions. Note that the problem already exists for using a variable defined in the class scope from a comprehension.)

See Appendix B for some examples of how the rules for targets in comprehensions translate to equivalent code.

The := operator groups more tightly than a comma in all syntactic positions where it is legal, but less tightly than all other operators, including or , and , not , and conditional expressions ( A if C else B ). As follows from section “Exceptional cases” above, it is never allowed at the same level as = . In case a different grouping is desired, parentheses should be used.

The := operator may be used directly in a positional function call argument; however it is invalid directly in a keyword argument.

Some examples to clarify what’s technically valid or invalid:

Most of the “valid” examples above are not recommended, since human readers of Python source code who are quickly glancing at some code may miss the distinction. But simple cases are not objectionable:

This PEP recommends always putting spaces around := , similar to PEP 8 ’s recommendation for = when used for assignment, whereas the latter disallows spaces around = used for keyword arguments.)

In order to have precisely defined semantics, the proposal requires evaluation order to be well-defined. This is technically not a new requirement, as function calls may already have side effects. Python already has a rule that subexpressions are generally evaluated from left to right. However, assignment expressions make these side effects more visible, and we propose a single change to the current evaluation order:

  • In a dict comprehension {X: Y for ...} , Y is currently evaluated before X . We propose to change this so that X is evaluated before Y . (In a dict display like {X: Y} this is already the case, and also in dict((X, Y) for ...) which should clearly be equivalent to the dict comprehension.)

Most importantly, since := is an expression, it can be used in contexts where statements are illegal, including lambda functions and comprehensions.

Conversely, assignment expressions don’t support the advanced features found in assignment statements:

  • Multiple targets are not directly supported: x = y = z = 0 # Equivalent: (z := (y := (x := 0)))
  • Single assignment targets other than a single NAME are not supported: # No equivalent a [ i ] = x self . rest = []
  • Priority around commas is different: x = 1 , 2 # Sets x to (1, 2) ( x := 1 , 2 ) # Sets x to 1
  • Iterable packing and unpacking (both regular or extended forms) are not supported: # Equivalent needs extra parentheses loc = x , y # Use (loc := (x, y)) info = name , phone , * rest # Use (info := (name, phone, *rest)) # No equivalent px , py , pz = position name , phone , email , * other_info = contact
  • Inline type annotations are not supported: # Closest equivalent is "p: Optional[int]" as a separate declaration p : Optional [ int ] = None
  • Augmented assignment is not supported: total += tax # Equivalent: (total := total + tax)

The following changes have been made based on implementation experience and additional review after the PEP was first accepted and before Python 3.8 was released:

  • for consistency with other similar exceptions, and to avoid locking in an exception name that is not necessarily going to improve clarity for end users, the originally proposed TargetScopeError subclass of SyntaxError was dropped in favour of just raising SyntaxError directly. [3]
  • due to a limitation in CPython’s symbol table analysis process, the reference implementation raises SyntaxError for all uses of named expressions inside comprehension iterable expressions, rather than only raising them when the named expression target conflicts with one of the iteration variables in the comprehension. This could be revisited given sufficiently compelling examples, but the extra complexity needed to implement the more selective restriction doesn’t seem worthwhile for purely hypothetical use cases.

Examples from the Python standard library

env_base is only used on these lines, putting its assignment on the if moves it as the “header” of the block.

  • Current: env_base = os . environ . get ( "PYTHONUSERBASE" , None ) if env_base : return env_base
  • Improved: if env_base := os . environ . get ( "PYTHONUSERBASE" , None ): return env_base

Avoid nested if and remove one indentation level.

  • Current: if self . _is_special : ans = self . _check_nans ( context = context ) if ans : return ans
  • Improved: if self . _is_special and ( ans := self . _check_nans ( context = context )): return ans

Code looks more regular and avoid multiple nested if. (See Appendix A for the origin of this example.)

  • Current: reductor = dispatch_table . get ( cls ) if reductor : rv = reductor ( x ) else : reductor = getattr ( x , "__reduce_ex__" , None ) if reductor : rv = reductor ( 4 ) else : reductor = getattr ( x , "__reduce__" , None ) if reductor : rv = reductor () else : raise Error ( "un(deep)copyable object of type %s " % cls )
  • Improved: if reductor := dispatch_table . get ( cls ): rv = reductor ( x ) elif reductor := getattr ( x , "__reduce_ex__" , None ): rv = reductor ( 4 ) elif reductor := getattr ( x , "__reduce__" , None ): rv = reductor () else : raise Error ( "un(deep)copyable object of type %s " % cls )

tz is only used for s += tz , moving its assignment inside the if helps to show its scope.

  • Current: s = _format_time ( self . _hour , self . _minute , self . _second , self . _microsecond , timespec ) tz = self . _tzstr () if tz : s += tz return s
  • Improved: s = _format_time ( self . _hour , self . _minute , self . _second , self . _microsecond , timespec ) if tz := self . _tzstr (): s += tz return s

Calling fp.readline() in the while condition and calling .match() on the if lines make the code more compact without making it harder to understand.

  • Current: while True : line = fp . readline () if not line : break m = define_rx . match ( line ) if m : n , v = m . group ( 1 , 2 ) try : v = int ( v ) except ValueError : pass vars [ n ] = v else : m = undef_rx . match ( line ) if m : vars [ m . group ( 1 )] = 0
  • Improved: while line := fp . readline (): if m := define_rx . match ( line ): n , v = m . group ( 1 , 2 ) try : v = int ( v ) except ValueError : pass vars [ n ] = v elif m := undef_rx . match ( line ): vars [ m . group ( 1 )] = 0

A list comprehension can map and filter efficiently by capturing the condition:

Similarly, a subexpression can be reused within the main expression, by giving it a name on first use:

Note that in both cases the variable y is bound in the containing scope (i.e. at the same level as results or stuff ).

Assignment expressions can be used to good effect in the header of an if or while statement:

Particularly with the while loop, this can remove the need to have an infinite loop, an assignment, and a condition. It also creates a smooth parallel between a loop which simply uses a function call as its condition, and one which uses that as its condition but also uses the actual value.

An example from the low-level UNIX world:

Rejected alternative proposals

Proposals broadly similar to this one have come up frequently on python-ideas. Below are a number of alternative syntaxes, some of them specific to comprehensions, which have been rejected in favour of the one given above.

A previous version of this PEP proposed subtle changes to the scope rules for comprehensions, to make them more usable in class scope and to unify the scope of the “outermost iterable” and the rest of the comprehension. However, this part of the proposal would have caused backwards incompatibilities, and has been withdrawn so the PEP can focus on assignment expressions.

Broadly the same semantics as the current proposal, but spelled differently.

Since EXPR as NAME already has meaning in import , except and with statements (with different semantics), this would create unnecessary confusion or require special-casing (e.g. to forbid assignment within the headers of these statements).

(Note that with EXPR as VAR does not simply assign the value of EXPR to VAR – it calls EXPR.__enter__() and assigns the result of that to VAR .)

Additional reasons to prefer := over this spelling include:

  • In if f(x) as y the assignment target doesn’t jump out at you – it just reads like if f x blah blah and it is too similar visually to if f(x) and y .
  • import foo as bar
  • except Exc as var
  • with ctxmgr() as var

To the contrary, the assignment expression does not belong to the if or while that starts the line, and we intentionally allow assignment expressions in other contexts as well.

  • NAME = EXPR
  • if NAME := EXPR

reinforces the visual recognition of assignment expressions.

This syntax is inspired by languages such as R and Haskell, and some programmable calculators. (Note that a left-facing arrow y <- f(x) is not possible in Python, as it would be interpreted as less-than and unary minus.) This syntax has a slight advantage over ‘as’ in that it does not conflict with with , except and import , but otherwise is equivalent. But it is entirely unrelated to Python’s other use of -> (function return type annotations), and compared to := (which dates back to Algol-58) it has a much weaker tradition.

This has the advantage that leaked usage can be readily detected, removing some forms of syntactic ambiguity. However, this would be the only place in Python where a variable’s scope is encoded into its name, making refactoring harder.

Execution order is inverted (the indented body is performed first, followed by the “header”). This requires a new keyword, unless an existing keyword is repurposed (most likely with: ). See PEP 3150 for prior discussion on this subject (with the proposed keyword being given: ).

This syntax has fewer conflicts than as does (conflicting only with the raise Exc from Exc notation), but is otherwise comparable to it. Instead of paralleling with expr as target: (which can be useful but can also be confusing), this has no parallels, but is evocative.

One of the most popular use-cases is if and while statements. Instead of a more general solution, this proposal enhances the syntax of these two statements to add a means of capturing the compared value:

This works beautifully if and ONLY if the desired condition is based on the truthiness of the captured value. It is thus effective for specific use-cases (regex matches, socket reads that return '' when done), and completely useless in more complicated cases (e.g. where the condition is f(x) < 0 and you want to capture the value of f(x) ). It also has no benefit to list comprehensions.

Advantages: No syntactic ambiguities. Disadvantages: Answers only a fraction of possible use-cases, even in if / while statements.

Another common use-case is comprehensions (list/set/dict, and genexps). As above, proposals have been made for comprehension-specific solutions.

This brings the subexpression to a location in between the ‘for’ loop and the expression. It introduces an additional language keyword, which creates conflicts. Of the three, where reads the most cleanly, but also has the greatest potential for conflict (e.g. SQLAlchemy and numpy have where methods, as does tkinter.dnd.Icon in the standard library).

As above, but reusing the with keyword. Doesn’t read too badly, and needs no additional language keyword. Is restricted to comprehensions, though, and cannot as easily be transformed into “longhand” for-loop syntax. Has the C problem that an equals sign in an expression can now create a name binding, rather than performing a comparison. Would raise the question of why “with NAME = EXPR:” cannot be used as a statement on its own.

As per option 2, but using as rather than an equals sign. Aligns syntactically with other uses of as for name binding, but a simple transformation to for-loop longhand would create drastically different semantics; the meaning of with inside a comprehension would be completely different from the meaning as a stand-alone statement, while retaining identical syntax.

Regardless of the spelling chosen, this introduces a stark difference between comprehensions and the equivalent unrolled long-hand form of the loop. It is no longer possible to unwrap the loop into statement form without reworking any name bindings. The only keyword that can be repurposed to this task is with , thus giving it sneakily different semantics in a comprehension than in a statement; alternatively, a new keyword is needed, with all the costs therein.

There are two logical precedences for the := operator. Either it should bind as loosely as possible, as does statement-assignment; or it should bind more tightly than comparison operators. Placing its precedence between the comparison and arithmetic operators (to be precise: just lower than bitwise OR) allows most uses inside while and if conditions to be spelled without parentheses, as it is most likely that you wish to capture the value of something, then perform a comparison on it:

Once find() returns -1, the loop terminates. If := binds as loosely as = does, this would capture the result of the comparison (generally either True or False ), which is less useful.

While this behaviour would be convenient in many situations, it is also harder to explain than “the := operator behaves just like the assignment statement”, and as such, the precedence for := has been made as close as possible to that of = (with the exception that it binds tighter than comma).

Some critics have claimed that the assignment expressions should allow unparenthesized tuples on the right, so that these two would be equivalent:

(With the current version of the proposal, the latter would be equivalent to ((point := x), y) .)

However, adopting this stance would logically lead to the conclusion that when used in a function call, assignment expressions also bind less tight than comma, so we’d have the following confusing equivalence:

The less confusing option is to make := bind more tightly than comma.

It’s been proposed to just always require parentheses around an assignment expression. This would resolve many ambiguities, and indeed parentheses will frequently be needed to extract the desired subexpression. But in the following cases the extra parentheses feel redundant:

Frequently Raised Objections

C and its derivatives define the = operator as an expression, rather than a statement as is Python’s way. This allows assignments in more contexts, including contexts where comparisons are more common. The syntactic similarity between if (x == y) and if (x = y) belies their drastically different semantics. Thus this proposal uses := to clarify the distinction.

The two forms have different flexibilities. The := operator can be used inside a larger expression; the = statement can be augmented to += and its friends, can be chained, and can assign to attributes and subscripts.

Previous revisions of this proposal involved sublocal scope (restricted to a single statement), preventing name leakage and namespace pollution. While a definite advantage in a number of situations, this increases complexity in many others, and the costs are not justified by the benefits. In the interests of language simplicity, the name bindings created here are exactly equivalent to any other name bindings, including that usage at class or module scope will create externally-visible names. This is no different from for loops or other constructs, and can be solved the same way: del the name once it is no longer needed, or prefix it with an underscore.

(The author wishes to thank Guido van Rossum and Christoph Groth for their suggestions to move the proposal in this direction. [2] )

As expression assignments can sometimes be used equivalently to statement assignments, the question of which should be preferred will arise. For the benefit of style guides such as PEP 8 , two recommendations are suggested.

  • If either assignment statements or assignment expressions can be used, prefer statements; they are a clear declaration of intent.
  • If using assignment expressions would lead to ambiguity about execution order, restructure it to use statements instead.

The authors wish to thank Alyssa Coghlan and Steven D’Aprano for their considerable contributions to this proposal, and members of the core-mentorship mailing list for assistance with implementation.

Appendix A: Tim Peters’s findings

Here’s a brief essay Tim Peters wrote on the topic.

I dislike “busy” lines of code, and also dislike putting conceptually unrelated logic on a single line. So, for example, instead of:

instead. So I suspected I’d find few places I’d want to use assignment expressions. I didn’t even consider them for lines already stretching halfway across the screen. In other cases, “unrelated” ruled:

is a vast improvement over the briefer:

The original two statements are doing entirely different conceptual things, and slamming them together is conceptually insane.

In other cases, combining related logic made it harder to understand, such as rewriting:

as the briefer:

The while test there is too subtle, crucially relying on strict left-to-right evaluation in a non-short-circuiting or method-chaining context. My brain isn’t wired that way.

But cases like that were rare. Name binding is very frequent, and “sparse is better than dense” does not mean “almost empty is better than sparse”. For example, I have many functions that return None or 0 to communicate “I have nothing useful to return in this case, but since that’s expected often I’m not going to annoy you with an exception”. This is essentially the same as regular expression search functions returning None when there is no match. So there was lots of code of the form:

I find that clearer, and certainly a bit less typing and pattern-matching reading, as:

It’s also nice to trade away a small amount of horizontal whitespace to get another _line_ of surrounding code on screen. I didn’t give much weight to this at first, but it was so very frequent it added up, and I soon enough became annoyed that I couldn’t actually run the briefer code. That surprised me!

There are other cases where assignment expressions really shine. Rather than pick another from my code, Kirill Balunov gave a lovely example from the standard library’s copy() function in copy.py :

The ever-increasing indentation is semantically misleading: the logic is conceptually flat, “the first test that succeeds wins”:

Using easy assignment expressions allows the visual structure of the code to emphasize the conceptual flatness of the logic; ever-increasing indentation obscured it.

A smaller example from my code delighted me, both allowing to put inherently related logic in a single line, and allowing to remove an annoying “artificial” indentation level:

That if is about as long as I want my lines to get, but remains easy to follow.

So, in all, in most lines binding a name, I wouldn’t use assignment expressions, but because that construct is so very frequent, that leaves many places I would. In most of the latter, I found a small win that adds up due to how often it occurs, and in the rest I found a moderate to major win. I’d certainly use it more often than ternary if , but significantly less often than augmented assignment.

I have another example that quite impressed me at the time.

Where all variables are positive integers, and a is at least as large as the n’th root of x, this algorithm returns the floor of the n’th root of x (and roughly doubling the number of accurate bits per iteration):

It’s not obvious why that works, but is no more obvious in the “loop and a half” form. It’s hard to prove correctness without building on the right insight (the “arithmetic mean - geometric mean inequality”), and knowing some non-trivial things about how nested floor functions behave. That is, the challenges are in the math, not really in the coding.

If you do know all that, then the assignment-expression form is easily read as “while the current guess is too large, get a smaller guess”, where the “too large?” test and the new guess share an expensive sub-expression.

To my eyes, the original form is harder to understand:

This appendix attempts to clarify (though not specify) the rules when a target occurs in a comprehension or in a generator expression. For a number of illustrative examples we show the original code, containing a comprehension, and the translation, where the comprehension has been replaced by an equivalent generator function plus some scaffolding.

Since [x for ...] is equivalent to list(x for ...) these examples all use list comprehensions without loss of generality. And since these examples are meant to clarify edge cases of the rules, they aren’t trying to look like real code.

Note: comprehensions are already implemented via synthesizing nested generator functions like those in this appendix. The new part is adding appropriate declarations to establish the intended scope of assignment expression targets (the same scope they resolve to as if the assignment were performed in the block containing the outermost comprehension). For type inference purposes, these illustrative expansions do not imply that assignment expression targets are always Optional (but they do indicate the target binding scope).

Let’s start with a reminder of what code is generated for a generator expression without assignment expression.

  • Original code (EXPR usually references VAR): def f (): a = [ EXPR for VAR in ITERABLE ]
  • Translation (let’s not worry about name conflicts): def f (): def genexpr ( iterator ): for VAR in iterator : yield EXPR a = list ( genexpr ( iter ( ITERABLE )))

Let’s add a simple assignment expression.

  • Original code: def f (): a = [ TARGET := EXPR for VAR in ITERABLE ]
  • Translation: def f (): if False : TARGET = None # Dead code to ensure TARGET is a local variable def genexpr ( iterator ): nonlocal TARGET for VAR in iterator : TARGET = EXPR yield TARGET a = list ( genexpr ( iter ( ITERABLE )))

Let’s add a global TARGET declaration in f() .

  • Original code: def f (): global TARGET a = [ TARGET := EXPR for VAR in ITERABLE ]
  • Translation: def f (): global TARGET def genexpr ( iterator ): global TARGET for VAR in iterator : TARGET = EXPR yield TARGET a = list ( genexpr ( iter ( ITERABLE )))

Or instead let’s add a nonlocal TARGET declaration in f() .

  • Original code: def g (): TARGET = ... def f (): nonlocal TARGET a = [ TARGET := EXPR for VAR in ITERABLE ]
  • Translation: def g (): TARGET = ... def f (): nonlocal TARGET def genexpr ( iterator ): nonlocal TARGET for VAR in iterator : TARGET = EXPR yield TARGET a = list ( genexpr ( iter ( ITERABLE )))

Finally, let’s nest two comprehensions.

  • Original code: def f (): a = [[ TARGET := i for i in range ( 3 )] for j in range ( 2 )] # I.e., a = [[0, 1, 2], [0, 1, 2]] print ( TARGET ) # prints 2
  • Translation: def f (): if False : TARGET = None def outer_genexpr ( outer_iterator ): nonlocal TARGET def inner_generator ( inner_iterator ): nonlocal TARGET for i in inner_iterator : TARGET = i yield i for j in outer_iterator : yield list ( inner_generator ( range ( 3 ))) a = list ( outer_genexpr ( range ( 2 ))) print ( TARGET )

Because it has been a point of confusion, note that nothing about Python’s scoping semantics is changed. Function-local scopes continue to be resolved at compile time, and to have indefinite temporal extent at run time (“full closures”). Example:

This document has been placed in the public domain.

Source: https://github.com/python/peps/blob/main/peps/pep-0572.rst

Last modified: 2023-10-11 12:05:51 GMT

logo

Python Numerical Methods

../_images/book_cover.jpg

This notebook contains an excerpt from the Python Programming and Numerical Methods - A Guide for Engineers and Scientists , the content is also available at Berkeley Python Numerical Methods .

The copyright of the book belongs to Elsevier. We also have this interactive book online for a better learning experience. The code is released under the MIT license . If you find this content useful, please consider supporting the work on Elsevier or Amazon !

< 2.0 Variables and Basic Data Structures | Contents | 2.2 Data Structure - Strings >

Variables and Assignment ¶

When programming, it is useful to be able to store information in variables. A variable is a string of characters and numbers associated with a piece of information. The assignment operator , denoted by the “=” symbol, is the operator that is used to assign values to variables in Python. The line x=1 takes the known value, 1, and assigns that value to the variable with name “x”. After executing this line, this number will be stored into this variable. Until the value is changed or the variable deleted, the character x behaves like the value 1.

TRY IT! Assign the value 2 to the variable y. Multiply y by 3 to show that it behaves like the value 2.

A variable is more like a container to store the data in the computer’s memory, the name of the variable tells the computer where to find this value in the memory. For now, it is sufficient to know that the notebook has its own memory space to store all the variables in the notebook. As a result of the previous example, you will see the variable “x” and “y” in the memory. You can view a list of all the variables in the notebook using the magic command %whos .

TRY IT! List all the variables in this notebook

Note that the equal sign in programming is not the same as a truth statement in mathematics. In math, the statement x = 2 declares the universal truth within the given framework, x is 2 . In programming, the statement x=2 means a known value is being associated with a variable name, store 2 in x. Although it is perfectly valid to say 1 = x in mathematics, assignments in Python always go left : meaning the value to the right of the equal sign is assigned to the variable on the left of the equal sign. Therefore, 1=x will generate an error in Python. The assignment operator is always last in the order of operations relative to mathematical, logical, and comparison operators.

TRY IT! The mathematical statement x=x+1 has no solution for any value of x . In programming, if we initialize the value of x to be 1, then the statement makes perfect sense. It means, “Add x and 1, which is 2, then assign that value to the variable x”. Note that this operation overwrites the previous value stored in x .

There are some restrictions on the names variables can take. Variables can only contain alphanumeric characters (letters and numbers) as well as underscores. However, the first character of a variable name must be a letter or underscores. Spaces within a variable name are not permitted, and the variable names are case-sensitive (e.g., x and X will be considered different variables).

TIP! Unlike in pure mathematics, variables in programming almost always represent something tangible. It may be the distance between two points in space or the number of rabbits in a population. Therefore, as your code becomes increasingly complicated, it is very important that your variables carry a name that can easily be associated with what they represent. For example, the distance between two points in space is better represented by the variable dist than x , and the number of rabbits in a population is better represented by nRabbits than y .

Note that when a variable is assigned, it has no memory of how it was assigned. That is, if the value of a variable, y , is constructed from other variables, like x , reassigning the value of x will not change the value of y .

EXAMPLE: What value will y have after the following lines of code are executed?

WARNING! You can overwrite variables or functions that have been stored in Python. For example, the command help = 2 will store the value 2 in the variable with name help . After this assignment help will behave like the value 2 instead of the function help . Therefore, you should always be careful not to give your variables the same name as built-in functions or values.

TIP! Now that you know how to assign variables, it is important that you learn to never leave unassigned commands. An unassigned command is an operation that has a result, but that result is not assigned to a variable. For example, you should never use 2+2 . You should instead assign it to some variable x=2+2 . This allows you to “hold on” to the results of previous commands and will make your interaction with Python must less confusing.

You can clear a variable from the notebook using the del function. Typing del x will clear the variable x from the workspace. If you want to remove all the variables in the notebook, you can use the magic command %reset .

In mathematics, variables are usually associated with unknown numbers; in programming, variables are associated with a value of a certain type. There are many data types that can be assigned to variables. A data type is a classification of the type of information that is being stored in a variable. The basic data types that you will utilize throughout this book are boolean, int, float, string, list, tuple, dictionary, set. A formal description of these data types is given in the following sections.

The += Operator In Python – A Complete Guide

FeaImg =Operator

In this lesson, we will look at the += operator in Python and see how it works with several simple examples.

The operator ‘+=’ is a shorthand for the addition assignment operator . It adds two values and assigns the sum to a variable (left operand).

Let’s look at three instances to have a better idea of how this operator works.

1. Adding Two Numeric Values With += Operator

In the code mentioned below, we have initialized a variable X with an initial value of 5 and then add value 15 to it and store the resultant value in the same variable X.

The output of the Code is as follows:

2. Adding Two Strings

In the code mentioned above, we initialized two variables S1 and S2 with initial values as “Welcome to ” and ”AskPython” respectively.

We then add the two strings using the ‘+=’ operator which will concatenate the values of the string.

The output of the code is as follows:

3. Understanding Associativity of “+=” operator in Python

The associativity property of the ‘+=’ operator is from right to left. Let’s look at the example code mentioned below.

We initialized two variables X and Y with initial values as 5 and 10 respectively. In the code, we right shift the value of Y by 1 bit and then add the result to variable X and store the final result to X.

The output comes out to be X = 10 and Y = 10.

Congratulations! You just learned about the ‘+=’ operator in python and also learned about its various implementations.

Liked the tutorial? In any case, I would recommend you to have a look at the tutorials mentioned below:

  • The “in” and “not in” operators in Python
  • Python // operator – Floor Based Division
  • Python Not Equal operator
  • Operator Overloading in Python

Thank you for taking your time out! Hope you learned something new!! 😄

Learn Python practically and Get Certified .

Popular Tutorials

Popular examples, reference materials, learn python interactively, python introduction.

  • Get Started With Python
  • Your First Python Program
  • Python Comments

Python Fundamentals

  • Python Variables and Literals
  • Python Type Conversion
  • Python Basic Input and Output

Python Operators

Python flow control.

Python if...else Statement

  • Python for Loop
  • Python while Loop
  • Python break and continue
  • Python pass Statement

Python Data types

  • Python Numbers and Mathematics
  • Python List
  • Python Tuple
  • Python String
  • Python Dictionary
  • Python Functions
  • Python Function Arguments
  • Python Variable Scope
  • Python Global Keyword
  • Python Recursion
  • Python Modules
  • Python Package
  • Python Main function

Python Files

  • Python Directory and Files Management
  • Python CSV: Read and Write CSV files
  • Reading CSV files in Python
  • Writing CSV files in Python
  • Python Exception Handling
  • Python Exceptions
  • Python Custom Exceptions

Python Object & Class

  • Python Objects and Classes
  • Python Inheritance
  • Python Multiple Inheritance
  • Polymorphism in Python

Python Operator Overloading

Python Advanced Topics

  • List comprehension
  • Python Lambda/Anonymous Function
  • Python Iterators
  • Python Generators
  • Python Namespace and Scope
  • Python Closures
  • Python Decorators
  • Python @property decorator
  • Python RegEx

Python Date and Time

  • Python datetime
  • Python strftime()
  • Python strptime()
  • How to get current date and time in Python?
  • Python Get Current Time
  • Python timestamp to datetime and vice-versa
  • Python time Module
  • Python sleep()

Additional Topic

Precedence and Associativity of Operators in Python

  • Python Keywords and Identifiers
  • Python Asserts
  • Python Json
  • Python *args and **kwargs

Python Tutorials

Python 3 Tutorial

  • Python Strings
  • Python any()

Operators are special symbols that perform operations on variables and values. For example,

Here, + is an operator that adds two numbers: 5 and 6 .

  • Types of Python Operators

Here's a list of different types of Python operators that we will learn in this tutorial.

  • Arithmetic Operators
  • Assignment Operators
  • Comparison Operators
  • Logical Operators
  • Bitwise Operators
  • Special Operators

1. Python Arithmetic Operators

Arithmetic operators are used to perform mathematical operations like addition, subtraction, multiplication, etc. For example,

Here, - is an arithmetic operator that subtracts two values or variables.

Example 1: Arithmetic Operators in Python

In the above example, we have used multiple arithmetic operators,

  • + to add a and b
  • - to subtract b from a
  • * to multiply a and b
  • / to divide a by b
  • // to floor divide a by b
  • % to get the remainder
  • ** to get a to the power b

2. Python Assignment Operators

Assignment operators are used to assign values to variables. For example,

Here, = is an assignment operator that assigns 5 to x .

Here's a list of different assignment operators available in Python.

Example 2: Assignment Operators

Here, we have used the += operator to assign the sum of a and b to a .

Similarly, we can use any other assignment operators as per our needs.

3. Python Comparison Operators

Comparison operators compare two values/variables and return a boolean result: True or False . For example,

Here, the > comparison operator is used to compare whether a is greater than b or not.

Example 3: Comparison Operators

Note: Comparison operators are used in decision-making and loops . We'll discuss more of the comparison operator and decision-making in later tutorials.

4. Python Logical Operators

Logical operators are used to check whether an expression is True or False . They are used in decision-making. For example,

Here, and is the logical operator AND . Since both a > 2 and b >= 6 are True , the result is True .

Example 4: Logical Operators

Note : Here is the truth table for these logical operators.

5. Python Bitwise operators

Bitwise operators act on operands as if they were strings of binary digits. They operate bit by bit, hence the name.

For example, 2 is 10 in binary, and 7 is 111 .

In the table below: Let x = 10 ( 0000 1010 in binary) and y = 4 ( 0000 0100 in binary)

6. Python Special operators

Python language offers some special types of operators like the identity operator and the membership operator. They are described below with examples.

  • Identity operators

In Python, is and is not are used to check if two values are located at the same memory location.

It's important to note that having two variables with equal values doesn't necessarily mean they are identical.

Example 4: Identity operators in Python

Here, we see that x1 and y1 are integers of the same values, so they are equal as well as identical. The same is the case with x2 and y2 (strings).

But x3 and y3 are lists. They are equal but not identical. It is because the interpreter locates them separately in memory, although they are equal.

  • Membership operators

In Python, in and not in are the membership operators. They are used to test whether a value or variable is found in a sequence ( string , list , tuple , set and dictionary ).

In a dictionary, we can only test for the presence of a key, not the value.

Example 5: Membership operators in Python

Here, 'H' is in message , but 'hello' is not present in message (remember, Python is case-sensitive).

Similarly, 1 is key, and 'a' is the value in dictionary dict1 . Hence, 'a' in y returns False .

  • Precedence and Associativity of operators in Python

Table of Contents

  • Introduction
  • Python Arithmetic Operators
  • Python Assignment Operators
  • Python Comparison Operators
  • Python Logical Operators
  • Python Bitwise operators
  • Python Special operators

Before we wrap up, let’s put your knowledge of Python operators to the test! Can you solve the following challenge?

Write a function to split the restaurant bill among friends.

  • Take the subtotal of the bill and the number of friends as inputs.
  • Calculate the total bill by adding 20% tax to the subtotal and then divide it by the number of friends.
  • Return the amount each friend has to pay, rounded off to two decimal places.

Video: Operators in Python

Sorry about that.

Our premium learning platform, created with over a decade of experience and thousands of feedbacks .

Learn and improve your coding skills like never before.

  • Interactive Courses
  • Certificates
  • 2000+ Challenges

Related Tutorials

Python Tutorial

  • How it works
  • Homework answers

Physics help

Answer to Question #96157 in Python for Assignment 2: Room Area

Need a fast expert's response?

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS !

Leave a comment

Ask your question, related questions.

  • 1. Test if a date is a payday based on the day of the month (15th or the 30th). Sample run: Enter to
  • 2. Test if a password entered is correct. The secret phrase is Ada Lovelace.
  • 3. Test if a password entered is correct. The secret phrase is Ada Lovelace.
  • 4. Test if a number grade is an A (greater than or equal to 90). If so print "Great!". Exam
  • 5. write a cash register program that calculates change for a restaurant of your choice. Your program s
  • 6. Test if a number grade is an A (greater than or equal to 90). If so print "Great!".
  • 7. Test if a password entered is correct. The secret phrase is Ada Lovelace. Examples: Enter the Pa
  • Programming
  • Engineering

10 years of AssignmentExpert

assignment 2 python

Assignment 2.2 | Week-4 | Programming for Everybody (Getting Started with Python) By Coursera

Assignment 2.2 | Week-4 | Programming for Everybody (Getting Started with Python) By Coursera

Coursera Programming for Everybody (Getting Started with Python) Week 4  Assignment 2.2 

 Question:  2.2  Write a program that uses  input  to prompt a user for their name and then welcomes them. Note that  input  will pop up a dialog box. Enter  Sarah  in the pop-up box when you are prompted so your output will match the desired output.

assignment 2 python

Do Not Only Use These Quizzes For Getting Certificates.You Can Take Help From These Quizzes Answer. All Quizzes & Contents Are Free Of Charge. ✅ If You Want Any Quiz Answers Then Please  Contact Us

Related Questions & Answers:

  • Programming for Everybody (Getting Started with Python) – Coursera Quiz Answers Programming for Everybody (Getting Started with Python) – Coursera 4.8 Stars (167,402 ratings)   Instructor: Charles Russell Severance Enroll Now   This Programming ... Read more...
  • Assignment: Write Hello World | Week-3 | Programming for Everybody (Getting Started with Python) By Coursera   Coursera Programming for Everybody (Getting Started with Python) Week 3  Assignment: Write Hello World   Question:  Write a program that uses ... Read more...
  • Chapter 4 (Quiz Answers) | Week-6 | Programming for Everybody (Getting Started with Python) By Coursera Coursera Programming for Everybody (Getting Started with Python) Week 6 Chapter 4 Graded Quiz • 30 min 1. Which Python ... Read more...
  • Chapter 3 (Quiz Answers) | Week-5 | Programming for Everybody (Getting Started with Python) By Coursera Coursera Programming for Everybody (Getting Started with Python) Week 5 Chapter 3 Graded Quiz • 30 min 1. What do ... Read more...
  • Chapter 2 (Quiz Answers) | Week-4 | Programming for Everybody (Getting Started with Python) By Coursera Coursera Programming for Everybody (Getting Started with Python) Week 4 Chapter 2 Graded Quiz • 30 min 1. Which of ... Read more...
  • Chapter 1 (Quiz Answers) | Week-3 | Programming for Everybody (Getting Started with Python) By Coursera Coursera Programming for Everybody (Getting Started with Python) Week 3 Chapter 1 Graded Quiz • 30 min 1. When Python ... Read more...

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Please Enable JavaScript in your Browser to Visit this Site.

  • Python »
  • 3.13.0 Documentation »
  • The Python Tutorial »
  • 3. An Informal Introduction to Python
  • Theme Auto Light Dark |

3. An Informal Introduction to Python ¶

In the following examples, input and output are distinguished by the presence or absence of prompts ( >>> and … ): to repeat the example, you must type everything after the prompt, when the prompt appears; lines that do not begin with a prompt are output from the interpreter. Note that a secondary prompt on a line by itself in an example means you must type a blank line; this is used to end a multi-line command.

You can toggle the display of prompts and output by clicking on >>> in the upper-right corner of an example box. If you hide the prompts and output for an example, then you can easily copy and paste the input lines into your interpreter.

Many of the examples in this manual, even those entered at the interactive prompt, include comments. Comments in Python start with the hash character, # , and extend to the end of the physical line. A comment may appear at the start of a line or following whitespace or code, but not within a string literal. A hash character within a string literal is just a hash character. Since comments are to clarify code and are not interpreted by Python, they may be omitted when typing in examples.

Some examples:

3.1. Using Python as a Calculator ¶

Let’s try some simple Python commands. Start the interpreter and wait for the primary prompt, >>> . (It shouldn’t take long.)

3.1.1. Numbers ¶

The interpreter acts as a simple calculator: you can type an expression at it and it will write the value. Expression syntax is straightforward: the operators + , - , * and / can be used to perform arithmetic; parentheses ( () ) can be used for grouping. For example:

The integer numbers (e.g. 2 , 4 , 20 ) have type int , the ones with a fractional part (e.g. 5.0 , 1.6 ) have type float . We will see more about numeric types later in the tutorial.

Division ( / ) always returns a float. To do floor division and get an integer result you can use the // operator; to calculate the remainder you can use % :

With Python, it is possible to use the ** operator to calculate powers [ 1 ] :

The equal sign ( = ) is used to assign a value to a variable. Afterwards, no result is displayed before the next interactive prompt:

If a variable is not “defined” (assigned a value), trying to use it will give you an error:

There is full support for floating point; operators with mixed type operands convert the integer operand to floating point:

In interactive mode, the last printed expression is assigned to the variable _ . This means that when you are using Python as a desk calculator, it is somewhat easier to continue calculations, for example:

This variable should be treated as read-only by the user. Don’t explicitly assign a value to it — you would create an independent local variable with the same name masking the built-in variable with its magic behavior.

In addition to int and float , Python supports other types of numbers, such as Decimal and Fraction . Python also has built-in support for complex numbers , and uses the j or J suffix to indicate the imaginary part (e.g. 3+5j ).

3.1.2. Text ¶

Python can manipulate text (represented by type str , so-called “strings”) as well as numbers. This includes characters “ ! ”, words “ rabbit ”, names “ Paris ”, sentences “ Got your back. ”, etc. “ Yay! :) ”. They can be enclosed in single quotes ( '...' ) or double quotes ( "..." ) with the same result [ 2 ] .

To quote a quote, we need to “escape” it, by preceding it with \ . Alternatively, we can use the other type of quotation marks:

In the Python shell, the string definition and output string can look different. The print() function produces a more readable output, by omitting the enclosing quotes and by printing escaped and special characters:

If you don’t want characters prefaced by \ to be interpreted as special characters, you can use raw strings by adding an r before the first quote:

There is one subtle aspect to raw strings: a raw string may not end in an odd number of \ characters; see the FAQ entry for more information and workarounds.

String literals can span multiple lines. One way is using triple-quotes: """...""" or '''...''' . End of lines are automatically included in the string, but it’s possible to prevent this by adding a \ at the end of the line. In the following example, the initial newline is not included:

Strings can be concatenated (glued together) with the + operator, and repeated with * :

Two or more string literals (i.e. the ones enclosed between quotes) next to each other are automatically concatenated.

This feature is particularly useful when you want to break long strings:

This only works with two literals though, not with variables or expressions:

If you want to concatenate variables or a variable and a literal, use + :

Strings can be indexed (subscripted), with the first character having index 0. There is no separate character type; a character is simply a string of size one:

Indices may also be negative numbers, to start counting from the right:

Note that since -0 is the same as 0, negative indices start from -1.

In addition to indexing, slicing is also supported. While indexing is used to obtain individual characters, slicing allows you to obtain a substring:

Slice indices have useful defaults; an omitted first index defaults to zero, an omitted second index defaults to the size of the string being sliced.

Note how the start is always included, and the end always excluded. This makes sure that s[:i] + s[i:] is always equal to s :

One way to remember how slices work is to think of the indices as pointing between characters, with the left edge of the first character numbered 0. Then the right edge of the last character of a string of n characters has index n , for example:

The first row of numbers gives the position of the indices 0…6 in the string; the second row gives the corresponding negative indices. The slice from i to j consists of all characters between the edges labeled i and j , respectively.

For non-negative indices, the length of a slice is the difference of the indices, if both are within bounds. For example, the length of word[1:3] is 2.

Attempting to use an index that is too large will result in an error:

However, out of range slice indexes are handled gracefully when used for slicing:

Python strings cannot be changed — they are immutable . Therefore, assigning to an indexed position in the string results in an error:

If you need a different string, you should create a new one:

The built-in function len() returns the length of a string:

Strings are examples of sequence types , and support the common operations supported by such types.

Strings support a large number of methods for basic transformations and searching.

String literals that have embedded expressions.

Information about string formatting with str.format() .

The old formatting operations invoked when strings are the left operand of the % operator are described in more detail here.

3.1.3. Lists ¶

Python knows a number of compound data types, used to group together other values. The most versatile is the list , which can be written as a list of comma-separated values (items) between square brackets. Lists might contain items of different types, but usually the items all have the same type.

Like strings (and all other built-in sequence types), lists can be indexed and sliced:

Lists also support operations like concatenation:

Unlike strings, which are immutable , lists are a mutable type, i.e. it is possible to change their content:

You can also add new items at the end of the list, by using the list.append() method (we will see more about methods later):

Simple assignment in Python never copies data. When you assign a list to a variable, the variable refers to the existing list . Any changes you make to the list through one variable will be seen through all other variables that refer to it.:

All slice operations return a new list containing the requested elements. This means that the following slice returns a shallow copy of the list:

Assignment to slices is also possible, and this can even change the size of the list or clear it entirely:

The built-in function len() also applies to lists:

It is possible to nest lists (create lists containing other lists), for example:

3.2. First Steps Towards Programming ¶

Of course, we can use Python for more complicated tasks than adding two and two together. For instance, we can write an initial sub-sequence of the Fibonacci series as follows:

This example introduces several new features.

The first line contains a multiple assignment : the variables a and b simultaneously get the new values 0 and 1. On the last line this is used again, demonstrating that the expressions on the right-hand side are all evaluated first before any of the assignments take place. The right-hand side expressions are evaluated from the left to the right.

The while loop executes as long as the condition (here: a < 10 ) remains true. In Python, like in C, any non-zero integer value is true; zero is false. The condition may also be a string or list value, in fact any sequence; anything with a non-zero length is true, empty sequences are false. The test used in the example is a simple comparison. The standard comparison operators are written the same as in C: < (less than), > (greater than), == (equal to), <= (less than or equal to), >= (greater than or equal to) and != (not equal to).

The body of the loop is indented : indentation is Python’s way of grouping statements. At the interactive prompt, you have to type a tab or space(s) for each indented line. In practice you will prepare more complicated input for Python with a text editor; all decent text editors have an auto-indent facility. When a compound statement is entered interactively, it must be followed by a blank line to indicate completion (since the parser cannot guess when you have typed the last line). Note that each line within a basic block must be indented by the same amount.

The print() function writes the value of the argument(s) it is given. It differs from just writing the expression you want to write (as we did earlier in the calculator examples) in the way it handles multiple arguments, floating-point quantities, and strings. Strings are printed without quotes, and a space is inserted between items, so you can format things nicely, like this:

The keyword argument end can be used to avoid the newline after the output, or end the output with a different string:

Table of Contents

  • 3.1.1. Numbers
  • 3.1.2. Text
  • 3.1.3. Lists
  • 3.2. First Steps Towards Programming

Previous topic

2. Using the Python Interpreter

4. More Control Flow Tools

  • Report a Bug
  • Show Source

IMAGES

  1. GitHub

    assignment 2 python

  2. SOLUTION: Assignment 2 python

    assignment 2 python

  3. SOLUTION: Assignment 2 python basics

    assignment 2 python

  4. Assignment operators in python

    assignment 2 python

  5. SOLUTION: Decision making tool assignment 2 python

    assignment 2 python

  6. Assignment 2

    assignment 2 python

VIDEO

  1. NPTEL Programming, Data Structures and Algorithms using Python Programming Assignment 2

  2. The Joy Of Computing Using Python

  3. Programming, Data Structures and Algorithms using Python || NPTEL week 2 answers 2023 || #nptel

  4. NPTEL The Joy of Computing using Python Week 2 Programming Assignment Answers Solution

  5. Python: Variables and Assignment Operators Quiz (Udacity)

  6. Python Variables

COMMENTS

  1. Python's Assignment Operator: Write Robust Assignments

    Here, variable represents a generic Python variable, while expression represents any Python object that you can provide as a concrete value—also known as a literal—or an expression that evaluates to a value. To execute an assignment statement like the above, Python runs the following steps: Evaluate the right-hand expression to produce a concrete value or object.

  2. Assignment Operators in Python

    The Walrus Operator in Python is a new assignment operator which is introduced in Python version 3.8 and higher. This operator is used to assign a value to a variable within an expression. Syntax: a := expression. Example: In this code, we have a Python list of integers. We have used Python Walrus assignment operator within the Python while loop.

  3. Python Assignment Operators

    W3Schools offers free online tutorials, references and exercises in all the major languages of the web. Covering popular subjects like HTML, CSS, JavaScript, Python, SQL, Java, and many, many more.

  4. Different Forms of Assignment Statements in Python

    OUTPUT. x = 2 y = 4 4. Sequence assignment: In recent version of Python, tuple and list assignment have been generalized into instances of what we now call sequence assignment - any sequence of names can be assigned to any sequence of values, and Python assigns the items one at a time by position.

  5. python

    Since Python 3.8, code can use the so-called "walrus" operator (:=), documented in PEP 572, for assignment expressions.This seems like a really substantial new feature, since it allows this form of assignment within comprehensions and lambdas.. What exactly are the syntax, semantics, and grammar specifications of assignment expressions?

  6. How To Use Assignment Expressions in Python

    The author selected the COVID-19 Relief Fund to receive a donation as part of the Write for DOnations program.. Introduction. Python 3.8, released in October 2019, adds assignment expressions to Python via the := syntax. The assignment expression syntax is also sometimes called "the walrus operator" because := vaguely resembles a walrus with tusks. ...

  7. Assignment Expressions: The Walrus Operator

    In this lesson, you'll learn about the biggest change in Python 3.8: the introduction of assignment expressions.Assignment expression are written with a new notation (:=).This operator is often called the walrus operator as it resembles the eyes and tusks of a walrus on its side.. Assignment expressions allow you to assign and return a value in the same expression.

  8. Python

    Python Assignment Operator. The = (equal to) symbol is defined as assignment operator in Python. The value of Python expression on its right is assigned to a single variable on its left. The = symbol as in programming in general (and Python in particular) should not be confused with its usage in Mathematics, where it states that the expressions on the either side of the symbol are equal.

  9. The Walrus Operator: Python's Assignment Expressions

    Each new version of Python adds new features to the language. Back when Python 3.8 was released, the biggest change was the addition of assignment expressions.Specifically, the := operator gave you a new syntax for assigning variables in the middle of expressions. This operator is colloquially known as the walrus operator.. This tutorial is an in-depth introduction to the walrus operator.

  10. PEP 572

    Python Enhancement Proposals. Python » PEP Index » PEP 572; ... An assignment expression does not introduce a new scope. In most cases the scope in which the target will be bound is self-explanatory: it is the current scope. ... As per option 2, but using as rather than an equals sign.

  11. Variables and Assignment

    Variables and Assignment¶. When programming, it is useful to be able to store information in variables. A variable is a string of characters and numbers associated with a piece of information. The assignment operator, denoted by the "=" symbol, is the operator that is used to assign values to variables in Python.The line x=1 takes the known value, 1, and assigns that value to the variable ...

  12. The += Operator In Python

    In this lesson, we will look at the += operator in Python and see how it works with several simple examples. The operator '+=' is a shorthand for the addition assignment operator. It adds two values and assigns the sum to a variable (left operand). Let's look at three instances to have a better idea of how this operator works.

  13. 7. Simple statements

    7.2. Assignment statements ... The future statement is intended to ease migration to future versions of Python that introduce incompatible changes to the language. It allows use of the new features on a per-module basis before the release in which the feature becomes standard.

  14. coursera-applied-machine-learning-with-python/Assignment+2.py ...

    You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window.

  15. Python Operators (With Examples)

    2. Python Assignment Operators. Assignment operators are used to assign values to variables. For example, # assign 5 to x x = 5. Here, = is an assignment operator that assigns 5 to x. Here's a list of different assignment operators available in Python. Operator Name Example = Assignment Operator:

  16. applied-machine-learning-in-python/Assignment+2.ipynb at master

    You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window.

  17. Answer in Python for Assignment 2: Room Area #96157

    Answer to Question #96157 in Python for Assignment 2: Room Area 2019-10-08T09:57:57-04:00. Answers > Programming & Computer Science > Python. Question #96157. For this lab you will find the area of an irregularly shaped room with the shape as shown above.

  18. Assignment 2.2

    CourseraProgramming for Everybody (Getting Started with Python)Week 4 Assignment 2.2 Question: 2.2 Write a program that uses input to prompt a user for their name and then welcomes them. Note that input will pop up a dialog box. Enter Sarah in the pop-up box when you are prompted so your output will match the desired output. Input: # The code below…

  19. 3. An Informal Introduction to Python

    3.1.2. Text¶ Python can manipulate text (represented by type str, so-called "strings") as well as numbers. ... The first line contains a multiple assignment: the variables a and b simultaneously get the new values 0 and 1. On the last line this is used again, demonstrating that the expressions on the right-hand side are all evaluated first ...