Math Geek Mama logo.

Fun teaching resources & tips to help you teach math with confidence

Math Geek Mama logo.

Math Strategies: Problem Solving by Making a List

As I’ve mentioned many times, one of the main goals in mathematics education is to raise up confident problem solvers . And while there are many ways to go about solving math problems, and we as adults may often see strategies as common sense, these are things that need to be taught. Giving kids as many tools as possible will set them up for success so that you can “let them loose” and see their creative minds work and explore. To continue my series on teaching kids to problem solve, today I’m going to discuss problem solving by making a list .

This seems so easy and straightforward to an adult, but it's really something that should be taught to kids so they have the tools they need to succeed!

–>Pssst! Do your kids need help making sense of and solving word problems? You might like this set of editable word problem solving templates ! Use these with any grade level, for any type of word problem :

Making a Meaningful List: 

This was always a hard approach for me personally because it doesn’t seem like math, and can often be time consuming. I mean, who really wants to sit and list out all the possible solutions to a math problem? BUT, it is a very useful strategy, and as we’ll see, learning to be organized and systematic is the key ( and will also save tons of time )!

So when is it useful to make a list? Basically, any time you have a problem that has more than one solution , or you’re trying to solve a combination problem , it’s helpful to make a list.

But not just any list of possibilities. That will feel useless and frustrating if you’re just trying to pull out possibilities from anywhere. And more than that, it’s very likely possibilities will be skipped or repeated, making the final solution wrong.

On top of that, it will probably be more time consuming to make a list if you don’t have a systematic approach to it, which is probably why I was never a fan as a kid. No one wants to just sit and stare at the paper hoping solutions will pop into their brain.

Organizing the information in a logical way keeps you on track and ensures that all the possible solutions will be found.

There are different ways to organize information, but the idea is to exhaust all the possibilities with one part of your list before moving on.

For example, say you’re trying to figure out all the different combinations of ice cream toppings at your local ice cream shop. They have 3 different flavors (chocolate, vanilla and strawberry), but also have 4 different toppings (nuts, whipped cream, chocolate candies and gummy bears).

If you just start listing different possibilities without any kind of structure, you’re bound to get lost in your list and miss something. So instead, list all the possibilities for chocolate ice cream before moving on to vanilla.

Chocolate: just chocolate (no toppings), chocolate with nuts, chocolate with whipped cream, chocolate with candies and chocolate with gummy bears.

Now we see that there are 5 possibilities if you get chocolate ice cream, and so we can move on to vanilla, and then strawberry.

The key is to start with the first flavor and list every possible topping in order . Then move on to the next flavor and go through the toppings in the same order .

Then nothing gets skipped, forgotten or repeated . After completing the list, we see that there are 15 possible combinations.

Some students may even notice that there will be 5 possibilities for each flavor , and thus multiply 3×5 without completing the list. (That’s another great strategy: look for patterns ).

Even if a pattern is not discovered, however, completing the list in an organized, systematic way will ensure all possibilities are covered and the total (15) found.

Another way to organize the list is to make a tree diagram . Here’s another example problem:

Sarah is on vacation and brought 3 pairs of pants (blue, black, and white) and 3 shirts (pink, yellow and green). How many different outfit combinations can she make?

Using a tree diagram is a great way to keep the information organized, especially if you have kids who struggle with keeping track of their list:

This seems so easy and straightforward to an adult, but it's really something that should be taught to kids so they have the tools they need to succeed!

Then it is very easy for students to see that there are 9 different outfit combinations .

Great tips and helpful strategies for teaching kids to be problem solvers!

Was this helpful? Is it a strategy that you share with your kids?

See the rest of the posts in this series and prepare your kids to be great problem solvers:

  • Problem Solve by Solving an Easier Problem
  • Problem Solve by Drawing a Picture
  • Problem Solve by Working Backwards
  • Problem Solve by Finding a Pattern
  • Problem Solve with Guess & Check

list of problem solving in math

I’m really liking this “problem solving” series! As someone who’s not so great as problem solving, these tips are going to come in handy when helping my daughter! Thanks for sharing at the Thoughtful Spot!

I was never very good at math, and unfortunately, my daughter isn’t great at it either. I came across this post on Hop (on the Hip Homeschool Moms site), and I love it! I’m going to read the other articles in the series too. I would love to help my daughter enjoy and understand math, and I’m hopeful that your posts will help me do that! Thanks so much for sharing your post with us on the Hop!

Comments are closed.

Similar Posts

30+ of the Best LEGO Math Activities for All Ages

30+ of the Best LEGO Math Activities for All Ages

{FREE} Function Representations Sort: Small Group Activity

{FREE} Function Representations Sort: Small Group Activity

The Lion’s Share: Lessons and Printables!

The Lion’s Share: Lessons and Printables!

Summer Math Camp: Week 1

Summer Math Camp: Week 1

Learning About 3D Shapes with Atmosflare 3D Pen

Learning About 3D Shapes with Atmosflare 3D Pen

How to Teach Multiplication Facts That Stick {From Understanding to Fluency}

How to Teach Multiplication Facts That Stick {From Understanding to Fluency}

Find more resources to help make math engaging, join 165k+ parents & teachers.

Who learn new tips and strategies, as well as receive engaging resources to make math fun!

Math Geek Mama logo.

  • Privacy Policy

Math Time Doesn't Have to End in Tears

Join 165,000+ parents and teachers who learn new tips and strategies, as well as receive engaging resources to make math fun. Plus, receive my guide, "5 Games You Can Play Today to Make Math Fun," as my free gift to get you started!

  • PRINT TO PLAY
  • DIGITAL GAMES

list of problem solving in math

Problem-Solving Strategies

October 16, 2019

There are many different ways to solve a math problem, and equipping students with problem-solving strategies is just as important as teaching computation and algorithms. Problem-solving strategies help students visualize the problem or present the given information in a way that can lead them to the solution. Solving word problems using strategies works great as a number talks activity and helps to revise many skills.

Problem-solving strategies

1. create a diagram/picture, 2. guess and check., 3. make a table or a list., 4. logical reasoning., 5. find a pattern, 6. work backward, 1. create a diagram/draw a picture.

Creating a diagram helps students visualize the problem and reach the solution. A diagram can be a picture with labels, or a representation of the problem with objects that can be manipulated. Role-playing and acting out the problem like a story can help get to the solution.

Alice spent 3/4 of her babysitting money on comic books. She is left with $6. How much money did she make from babysitting?

list of problem solving in math

2. Guess and check

Teach students the same strategy research mathematicians use.

With this strategy, students solve problems by making a reasonable guess depending on the information given. Then they check to see if the answer is correct and they improve it accordingly.  By repeating this process, a student can arrive at a correct answer that has been checked. It is recommended that the students keep a record of their guesses by making a chart, a table or a list. This is a flexible strategy that works for many types of problems. When students are stuck, guessing and checking helps them start and explore the problem. However, there is a trap. Exactly because it is such a simple strategy to use, some students find it difficult to consider other strategies. As problems get more complicated, other strategies become more important and more effective.

Find two numbers that have sum 11 and product 24.

Try/guess  5 and 6  the product is 30 too high

  adjust  to 4 and 7 with product 28 still high

  adjust  again 3 and 8 product 24

3. Make a table or a list

Carefully organize the information on a table or list according to the problem information. It might be a table of numbers, a table with ticks and crosses to solve a logic problem or a list of possible answers. Seeing the given information sorted out on a table or a list will help find patterns and lead to the correct solution.

To make sure you are listing all the information correctly read the problem carefully.

Find the common factors of 24, 30 and 18

list of problem solving in math

Logical reasoning is the process of using logical, systemic steps to arrive at a conclusion based on given facts and mathematic principles. Read and understand the problem. Then find the information that helps you start solving the problem. Continue with each piece of information and write possible answers.

Thomas, Helen, Bill, and Mary have cats that are black, brown, white, or gray. The cats’ names are Buddy, Lucky, Fifi, and Moo. Buddy is brown. Thoma’s cat, Lucky, is not gray. Helen’s cat is white but is not named Moo. The gray cat belongs to Bill. Which cat belongs to each student, and what is its color?

A table or list is useful in solving logic problems.

Since Lucky is not gray it can be black or brown. However, Buddy is brown so Lucky has to be black.

Buddy is brown so it cannot be Helen’s cat. Helen’s cat cannot be Moo, Buddy or Lucky, so it is Fifi.

Therefore, Moo is Bill’s cat and Buddy is Mary’s cat.

5. Find a pattern.

Finding a pattern is a strategy in which students look for patterns in the given information in order to solve the problem. When the problem consists of data like numbers or events that are repeated then it can be solved using the “find a pattern” problem-solving strategy. Data can be organized in a table or a list to reveal the pattern and help discover the “rule” of the pattern.

 The “rule” can then be used to find the answer to the question and complete the table/list.

Shannon’s Pizzeria made 5 pizzas on Sunday, 10 pizzas on Monday, 20 pizzas on Tuesday, and 40 pizzas on Wednesday. If this pattern continues, how many pizzas will the pizzeria make on Saturday?

6. Working backward

Problems that can be solved with this strategy are the ones that  list a series of events or a sequence of steps .

In this strategy, the students must start with the solution and work back to the beginning. Each operation must be reversed to get back to the beginning. So if working forwards requires addition, when students work backward they will need to subtract. And if they multiply working forwards, they must divide when working backward.

Mom bought a box of candy. Mary took 5 of them, Nick took 4 of them and 31 were given out on Halloween night. The next morning they found 8 pieces of candy in the box. How many candy pieces were in the box when mom bought it.

For this problem, we know that the final number of candy was 8, so if we work backward to “put back” the candy that was taken from the box we can reach the number of candy pieces that were in the box, to begin with.

The candy was taken away so we will normally subtract them. However, to get back to the original number of candy we need to work backward and do the opposite, which is to add them.

8 candy pieces were left + the 31 given out + plus the ones Mary took + the ones Nick took

8+31+5+4= 48   Answer: The box came with 48 pieces of candy.

Selecting the best strategy for a problem comes with practice and often problems will require the use of more than one strategies.

Print and digital activities

I have created a collection of print and digital activity cards and worksheets with word problems (print and google slides) to solve using the strategies above. The collection includes 70 problems (5 challenge ones) and their solution s and explanations.

sample below

list of problem solving in math

How to use the activity cards

Allow the students to use manipulatives to solve the problems. (counters, shapes, lego blocks, Cuisenaire blocks, base 10 blocks, clocks) They can use manipulatives to create a picture and visualize the problem. They can use counters for the guess and check strategy. Discuss which strategy/strategies are better for solving each problem. Discuss the different ways. Use the activities as warm-ups, number talks, initiate discussions, group work, challenge, escape rooms, and more.

Ask your students to write their own problems using the problems in this resource, and more, as examples. Start with a simple type. Students learn a lot when trying to compose a problem. They can share the problem with their partner or the whole class. Make a collection of problems to share with another class.

For the google slides the students can use text boxes to explain their thinking with words, add shapes and lines to create diagrams, and add (insert) tables and diagrams.

Many of the problems can be solved faster by using algebraic expressions. However, since I created this resource for grades 4 and up I chose to show simple conceptual ways of solving the problems using the strategies above. You can suggest different ways of solving the problems based on the grade level.

Find the free and premium versions of the resource below. The premium version includes 70 problems (challenge problems included) and their solutions

There are 2 versions of the resource

70 google slides with explanations + 70 printable task cards

70 google slides with explanations + 11 worksheets

You might also like

list of problem solving in math

Multiplying fractions/mixed numbers/simplifying

list of problem solving in math

Adding and subtracting fractions

list of problem solving in math

AM/PM, 24-hour clock, Elapsed Time – ideas, games, and activities

list of problem solving in math

Teaching area, ideas, games, print, and digital activities

list of problem solving in math

Multi-Digit Multiplication, Area model, Partial Products algorithm, Puzzles, Word problems

list of problem solving in math

Place Value – Representing and adding 2/3 digit numbers with manipulatives

list of problem solving in math

Multiplication Mission – arrays, properties, multiples, factors, division

list of problem solving in math

Fractions Games and activities – Equivalence, make 1, compare, add, subtract, like, unlike

list of problem solving in math

Diving into Division -Teaching division conceptually

list of problem solving in math

Expressions with arrays

list of problem solving in math

Decimals, Decimal fractions, Percentages – print and digital

list of problem solving in math

Solving Word Problems- Math talks-Strategies, Ideas and Activities-print and digital

Check out our best selling card games now available at amazon.com and amazon.ca.

list of problem solving in math

Chicken Escape

A multiplayer card game that makes mental math practice fun! Chicken Escape is a fast-paced multiplayer card game. While playing…

list of problem solving in math

Dragon Times – A math Adventure card game

Dragon Times is an educational fantasy card game that aims to motivate children to practice multiplication and division facts while…

Problem Solving in Mathematics

  • Math Tutorials
  • Pre Algebra & Algebra
  • Exponential Decay
  • Worksheets By Grade

The main reason for learning about math is to become a better problem solver in all aspects of life. Many problems are multistep and require some type of systematic approach. There are a couple of things you need to do when solving problems. Ask yourself exactly what type of information is being asked for: Is it one of addition, subtraction, multiplication , or division? Then determine all the information that is being given to you in the question.

Mathematician George Pólya’s book, “ How to Solve It: A New Aspect of Mathematical Method ,” written in 1957, is a great guide to have on hand. The ideas below, which provide you with general steps or strategies to solve math problems, are similar to those expressed in Pólya’s book and should help you untangle even the most complicated math problem.

Use Established Procedures

Learning how to solve problems in mathematics is knowing what to look for. Math problems often require established procedures and knowing what procedure to apply. To create procedures, you have to be familiar with the problem situation and be able to collect the appropriate information, identify a strategy or strategies, and use the strategy appropriately.

Problem-solving requires practice. When deciding on methods or procedures to use to solve problems, the first thing you will do is look for clues, which is one of the most important skills in solving problems in mathematics. If you begin to solve problems by looking for clue words, you will find that these words often indicate an operation.

Look for Clue Words

Think of yourself as a math detective. The first thing to do when you encounter a math problem is to look for clue words. This is one of the most important skills you can develop. If you begin to solve problems by looking for clue words, you will find that those words often indicate an operation.

Common clue words for addition  problems:

Common clue words for  subtraction  problems:

  • How much more

Common clue words for multiplication problems:

Common clue words for division problems:

Although clue words will vary a bit from problem to problem, you'll soon learn to recognize which words mean what in order to perform the correct operation.

Read the Problem Carefully

This, of course, means looking for clue words as outlined in the previous section. Once you’ve identified your clue words, highlight or underline them. This will let you know what kind of problem you’re dealing with. Then do the following:

  • Ask yourself if you've seen a problem similar to this one. If so, what is similar about it?
  • What did you need to do in that instance?
  • What facts are you given about this problem?
  • What facts do you still need to find out about this problem?

Develop a Plan and Review Your Work

Based on what you discovered by reading the problem carefully and identifying similar problems you’ve encountered before, you can then:

  • Define your problem-solving strategy or strategies. This might mean identifying patterns, using known formulas, using sketches, and even guessing and checking.
  • If your strategy doesn't work, it may lead you to an ah-ha moment and to a strategy that does work.

If it seems like you’ve solved the problem, ask yourself the following:

  • Does your solution seem probable?
  • Does it answer the initial question?
  • Did you answer using the language in the question?
  • Did you answer using the same units?

If you feel confident that the answer is “yes” to all questions, consider your problem solved.

Tips and Hints

Some key questions to consider as you approach the problem may be:

  • What are the keywords in the problem?
  • Do I need a data visual, such as a diagram, list, table, chart, or graph?
  • Is there a formula or equation that I'll need? If so, which one?
  • Will I need to use a calculator? Is there a pattern I can use or follow?

Read the problem carefully, and decide on a method to solve the problem. Once you've finished working the problem, check your work and ensure that your answer makes sense and that you've used the same terms and or units in your answer.

  • Free Christmas Math Worksheets
  • 2nd Grade Math Word Problems
  • The Horse Problem: A Math Challenge
  • 2020-21 Common Application Essay Option 4—Solving a Problem
  • How to Use Math Journals in Class
  • The Frayer Model for Math
  • Algorithms in Mathematics and Beyond
  • "Grandpa's Rubik's Cube"—Sample Common Application Essay, Option #4
  • Math Stumper: Use Two Squares to Make Separate Pens for Nine Pigs
  • Critical Thinking Definition, Skills, and Examples
  • College Interview Tips: "Tell Me About a Challenge You Overcame"
  • Graphic Organizers in Math
  • Christmas Word Problem Worksheets
  • Solving Problems Involving Distance, Rate, and Time
  • Innovative Ways to Teach Math
  • Study Tips for Math Homework and Math Tests

list of problem solving in math

How Do You Solve a Problem by Making an Organized List?

Organization is a big part of math. In this tutorial, you'll see how organizing information given in a word problem can help you solve the problem and find the answer!

  • word problem
  • organized list

Background Tutorials

A problem-solving plan.

How Do You Make a Problem Solving Plan?

How Do You Make a Problem Solving Plan?

Planning is a key part of solving math problems. Follow along with this tutorial to see the steps involved to make a problem solving plan!

Further Exploration

How Do You Solve a Problem Using Logical Reasoning?

How Do You Solve a Problem Using Logical Reasoning?

Using logic is a strong approach to solving math problems! This tutorial goes through an example of using logical reasoning to find the answer to a word problem.

  • Terms of Use
  • 1st Grade Math
  • 2nd Grade Math
  • 3rd Grade Math
  • 4th Grade Math
  • 5th Grade Math
  • 6th Grade Math
  • 7th Grade Math
  • 8th Grade Math
  • Knowledge Base
  • Math for kids

10 Strategies for Problem Solving in Math

Created: May 19, 2022

Last updated: January 6, 2024

strategies for problem solving in math

When faced with problem-solving, children often get stuck. Word puzzles and math questions with an unknown variable, like x, usually confuse them. Therefore, this article discusses math strategies and how your students may use them since instructors often have to lead students through this problem-solving maze.

What Are Problem Solving Strategies in Math?

If you want to fix a problem, you need a solid plan. Math strategies for problem solving are ways of tackling math in a way that guarantees better outcomes. These strategies simplify math for kids so that less time is spent figuring out the problem. Both those new to mathematics and those more knowledgeable about the subject may benefit from these methods.

There are several methods to apply problem-solving procedures in math, and each strategy is different. While none of these methods failsafe, they may help your student become a better problem solver, particularly when paired with practice and examples. The more math problems kids tackle, the more math problem solving skills they acquire, and practice is the key.

Strategies for Problem-solving in Math

Even if a student is not a math wiz, a suitable solution to mathematical problems in math may help them discover answers. There is no one best method for helping students solve arithmetic problems, but the following ten approaches have shown to be very effective.

Understand the Problem

Understanding the nature of math problems is a prerequisite to solving them. They need to specify what kind of issue it is ( fraction problem , word problem, quadratic equation, etc.). Searching for keywords in the math problem, revisiting similar questions, or consulting the internet are all great ways to strengthen their grasp of the material. This step keeps the pupil on track.

Math for Kids

Guess and Check

One of the time-intensive strategies for resolving mathematical problems is the guess and check method. In this approach, students keep guessing until they get the answer right.

After assuming how to solve a math issue, students should reintroduce that assumption to check for correctness. While the approach may appear cumbersome, it is typically successful in revealing patterns in a child’s thought process.

Work It Out

Encourage pupils to record their thinking process as they go through a math problem. Since this technique requires an initial comprehension of the topic, it serves as a self-monitoring method for mathematics students. If they immediately start solving the problem, they risk making mistakes.

Students may keep track of their ideas and fix their math problems as they go along using this method. A youngster may still need you to explain their methods of solving the arithmetic questions on the extra page. This confirmation stage etches the steps they took to solve the problem in their minds.

Work Backwards

In mathematics, a fresh perspective is sometimes the key to a successful solution. Young people need to know that the ability to recreate math problems is valuable in many professional fields, including project management and engineering.

Students may better prepare for difficulties in real-world circumstances by using the “Work Backwards” technique. The end product may be used as a start-off point to identify the underlying issue.

In most cases, a visual representation of a math problem may help youngsters understand it better. Some of the most helpful math tactics for kids include having them play out the issue and picture how to solve it.

One way to visualize a workout is to use a blank piece of paper to draw a picture or make tally marks. Students might also use a marker and a whiteboard to draw as they demonstrate the technique before writing it down.

Find a Pattern

Kids who use pattern recognition techniques can better grasp math concepts and retain formulae. The most remarkable technique for problem solving in mathematics is to help students see patterns in math problems by instructing them how to extract and list relevant details. This method may be used by students when learning shapes and other topics that need repetition.

Students may use this strategy to spot patterns and fill in the blanks. Over time, this strategy will help kids answer math problems quickly.

When faced with a math word problem, it might be helpful to ask, “What are some possible solutions to this issue?” It encourages you to give the problem more thought, develop creative solutions, and prevent you from being stuck in a rut. So, tell the pupils to think about the math problems and not just go with the first solution that comes to mind.

Draw a Picture or Diagram

Drawing a picture of a math problem can help kids understand how to solve it, just like picturing it can help them see it. Shapes or numbers could be used to show the forms to keep things easy. Kids might learn how to use dots or letters to show the parts of a pattern or graph if you teach them.

Charts and graphs can be useful even when math isn’t involved. Kids can draw pictures of the ideas they read about to help them remember them after they’ve learned them. The plan for how to solve the mathematical problem will help kids understand what the problem is and how to solve it.

Trial and Error Method

The trial and error method may be one of the most common problem solving strategies for kids to figure out how to solve problems. But how well this strategy is used will determine how well it works. Students have a hard time figuring out math questions if they don’t have clear formulas or instructions.

They have a better chance of getting the correct answer, though, if they first make a list of possible answers based on rules they already know and then try each one. Don’t be too quick to tell kids they shouldn’t learn by making mistakes.

Review Answers with Peers

It’s fun to work on your math skills with friends by reviewing the answers to math questions together. If different students have different ideas about how to solve the same problem, get them to share their thoughts with the class.

During class time, kids’ ways of working might be compared. Then, students can make their points stronger by fixing these problems.

Check out the Printable Math Worksheets for Your Kids!

There are different ways to solve problems that can affect how fast and well students do on math tests. That’s why they need to learn the best ways to do things. If students follow the steps in this piece, they will have better experiences with solving math questions.

Jessica is a a seasoned math tutor with over a decade of experience in the field. With a BSc and Master’s degree in Mathematics, she enjoys nurturing math geniuses, regardless of their age, grade, and skills. Apart from tutoring, Jessica blogs at Brighterly. She also has experience in child psychology, homeschooling and curriculum consultation for schools and EdTech websites.

After-School Math Program

Image -After-School Math Program

  • Boost Math Skills After School!
  • Join our Math Program, Ideal for Students in Grades 1-8!

Kid’s grade

After-School Math Program Boost Your Child's Math Abilities! Ideal for 1st-8th Graders, Perfectly Synced with School Curriculum!

After-School Math Program

Related posts

teaching strategies

May 19, 2022

13 Successful Teaching Strategies

Teaching children is a complex process because they require more attention than an adult person. You may need to employ different teaching strategies when teaching kids. But what are teaching strategies? Teaching strategies are the methods to ensure your kids or students learn efficiently. But not all strategies yield similarly, and if the one you […]

one on one tutoring

May 25, 2022

The Benefits of One on One Tutoring for Kids’ Development

Schools have changed significantly over the years, both in terms of structure and the process of learning. After-school support to boost kids’ performance has become more necessary. Knowing that extra help will set their kids on the path to mastery of school subjects, parents enlist professional tutors. So, if you are looking to do the […]

Plug blog

February 21, 2024

Mathematical Thinking: An Essential Skill For Everyday Living

Every day, kids and adults alike encounter challenges that require mathematics. You need a basic knowledge of mathematics, whether you’re going to the grocery store or just want to count the coins you gave in your piggy bank. These are classic examples of locations and situations where you regularly engage your mathematical thinking capacity. At […]

We use cookies to help give you the best service possible. If you continue to use the website we will understand that you consent to the Terms and Conditions. These cookies are safe and secure. We will not share your history logs with third parties. Learn More

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

32 Mathematical Ideas: Problem-Solving Techniques

Jenna Lehmann

Solving Problems by Inductive Reasoning

Before we can talk about how to use inductive reasoning, we need to define it and distinguish it from deductive reasoning.

Inductive reasoning is when one makes generalizations based on repeated observations of specific examples. For instance, if I have only ever had mean math teachers, I might draw the conclusion that all math teachers are mean. Because I witnessed multiple instances of mean math teachers and only mean math teachers, I’ve drawn this conclusion. That being said, one of the downfalls of inductive reasoning is that it only takes meeting one nice math teacher for my original conclusion to be proven false. This is called a counterexample . Since inductive reasoning can so easily be proven false with one counterexample, we don’t say that a conclusion drawn from inductive reasoning is the absolute truth unless we can also prove it using deductive reasoning. With inductive reasoning, we can never be sure that what is true in a specific case will be true in general, but it is a way of making an educated guess.

Deductive reasoning depends on a hypothesis that is considered to be true. In other words, if X = Y and Y = Z, then we can deduce that X = Z. An example of this might be that if we know for a fact that all dogs are good, and Lucky is a dog, then we can deduce that Lucky is good.

Strategies for Problem Solving

No matter what tool you use to solve a problem, there is a method for going about solving the problem.

  • Understand the Problem: You may need to read a problem several times before you can conceptualize it. Don’t become frustrated, and take a walk if you need to. It might take some time to click.
  • Devise a Plan: There may be more than one way to solve the problem. Find the way which is most comfortable for you or the most practical.
  • Carry Out the Plan: Try it out. You may need to adjust your plan if you run into roadblocks or dead ends.
  • Look Back and Check: Make sure your answer gives sense given the context.

There are several different ways one might go about solving a problem. Here are a few:

  • Tables and Charts: Sometimes you’ll be working with a lot of data or computing a problem with a lot of different steps. It may be best to keep it organized in a table or chart so you can refer back to previous work later.
  • Working Backward: Sometimes you’ll be given a word problem where they describe a series of algebraic functions that took place and then what the end result is. Sometimes you’ll have to work backward chronologically.
  • Using Trial and Error: Sometimes you’ll know what mathematical function you need to use but not what number to start with. You may need to use trial and error to get the exact right number.
  • Guessing and Checking: Sometimes it will appear that a math problem will have more than one correct answer. Be sure to go back and check your work to determine if some of the answers don’t actually work out.
  • Considering a Similar, Simpler Problem: Sometimes you can use the strategy you think you would like to use on a simpler, hypothetical problem first to see if you can find a pattern and apply it to the harder problem.
  • Drawing a Sketch: Sometimes—especially with geometrical problems—it’s more helpful to draw a sketch of what is being asked of you.
  • Using Common Sense: Be sure to read questions very carefully. Sometimes it will seem like the answer to a question is either too obvious or impossible. There is usually a phrasing of the problem which would lead you to believe that the rules are one way when really it’s describing something else. Pay attention to literal language.

This chapter was originally posted to the Math Support Center blog at the University of Baltimore on November 6, 2019.

Math and Statistics Guides from UB's Math & Statistics Center Copyright © by Jenna Lehmann is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Microsoft

Get step-by-step solutions to your math problems

qr code

Try Math Solver

Key Features

Get step-by-step explanations

Graph your math problems

Graph your math problems

Practice, practice, practice

Practice, practice, practice

Get math help in your language

Get math help in your language

Download on App Store

  • Solve equations and inequalities
  • Simplify expressions
  • Factor polynomials
  • Graph equations and inequalities
  • Advanced solvers
  • All solvers
  • Arithmetics
  • Determinant
  • Percentages
  • Scientific Notation
  • Inequalities

Download on App Store

What can QuickMath do?

QuickMath will automatically answer the most common problems in algebra, equations and calculus faced by high-school and college students.

  • The algebra section allows you to expand, factor or simplify virtually any expression you choose. It also has commands for splitting fractions into partial fractions, combining several fractions into one and cancelling common factors within a fraction.
  • The equations section lets you solve an equation or system of equations. You can usually find the exact answer or, if necessary, a numerical answer to almost any accuracy you require.
  • The inequalities section lets you solve an inequality or a system of inequalities for a single variable. You can also plot inequalities in two variables.
  • The calculus section will carry out differentiation as well as definite and indefinite integration.
  • The matrices section contains commands for the arithmetic manipulation of matrices.
  • The graphs section contains commands for plotting equations and inequalities.
  • The numbers section has a percentages command for explaining the most common types of percentage problems and a section for dealing with scientific notation.

Math Topics

More solvers.

  • Add Fractions
  • Simplify Fractions
  • Create account

Luminous Learning

Math and Special Education Blog

8 problem solving strategies for the math classroom.

Posted by Colleen Uscianowski · February 25, 2014

Luminous Learning Tuesday Teaching Tip: Math Problem Solving Handout for Special Education Students

Would you draw a picture, make a list  possible number pairs that have the ratio 5:3, or guess and check? 

Explicit strategy instruction should be an integral part of your math classroom, whether you're teaching kindergarten or 12th grade.

Teach students that they can choose from a list of strategies to solve a problem, and often there isn't one correct way of finding a solution.

Demonstrate how you solve a word problem by thinking aloud as you choose and execute a strategy.

Ask students if they would solve the problem differently and praise students for coming up with unique ways of arriving at an answer.

Here are some problem-solving strategies I've taught my students:

Below is a helpful chart to remind students of the many problem-solving strategies they can use when solving word problems. This useful handout is a great addition to students' strategy binders, math notebooks, or math journals.  

math problem solving strategies

How do you teach problem-solving in your classroom? Feel free to share advice and tips below!    

math workbooks for special education

Sign up to receive a FREE copy of our problem-solving poster.

  • Prodigy Math
  • Prodigy English
  • Is a Premium Membership Worth It?
  • Promote a Growth Mindset
  • Help Your Child Who's Struggling with Math
  • Parent's Guide to Prodigy
  • Assessments
  • Math Curriculum Coverage
  • English Curriculum Coverage
  • Game Portal

Top 9 Math Strategies for Successful Learning (2021 and Beyond)

no image

Written by Ashley Crowe

  • Teaching Strategies

Why are effective Math strategies so important for students?

Getting students excited about math problems, top 9 math strategies for engaging lessons.

  • How teachers can refine math strategies

Math is an essential life skill. You use problem-solving every day. The math strategies you teach are needed, but many students have a difficult time making that connection between math and life.

Math isn’t just done with a pencil and paper. It’s not just solving word problems in a textbook. As an educator, you need fresh ways for math skills to stick while also keeping your students engaged. 

In this article, we’re sharing 9 engaging math strategies to boost your students’ learning . Show your students how fun math can be, and let’s freshen up those lesson plans!

Unlike other subjects, math builds on itself. You can’t successfully move forward without a strong understanding of previous materials. And this makes math instruction difficult.

To succeed in math, students need to do more than memorize formulas or drill times tables. They need to develop a full understanding of what their math lessons mean , and how they translate into the real world. To reach that level of understanding, you need a variety of teaching strategies. 

Conceptual understanding doesn’t just happen at the whiteboard. But it can be achieved by incorporating fun math activities into your lessons, including 

  • Hands-on practice
  • Collaborative projects
  • Gamified or game-based learning

Repetition and homework are important. But for these lessons to really stick, your students need to find the excitement and wonder in math.

Creating excitement around math can be an uphill battle. But it’s one you and your students can win! 

Math is a challenging subject — both to teach and to learn. But it’s also one of the most rewarding. Finding the right mix of fun and learning can bring a lot of excitement to the classroom. 

Think about what your students already love doing. Video games? Legos? Use these passions to create exciting math lesson plans your students can relate to. 

Hands-on math practice can engage students that have disconnected from math. Putting away the pencils and textbooks and moving students out of their desks can re-energize your classroom.

If you’re teaching elementary or middle school math, find ways for your students to work together. Kids this age crave peer interaction. So don’t fight it — provide it! 

Play a variety of math games or puzzles . Give them a chance to problem-solve together. Build real-world skills in the classroom while also boosting student confidence. 

And be sure to celebrate all the wins! It is easy to get bogged down with instruction and testing. But even the smallest accomplishments are worth celebrating. And these rewarding moments will keep your students motivated and pushing forward.

Keep reading to uncover all of our top math strategies for keeping your students excited about math. 

1. Explicit instruction

You can’t always jump straight into the fun. Explicit instruction still provides the best foundation for the activities to come. 

Set up your lesson for the day at the whiteboard, along with materials to demonstrate the coming activities. Make sure to also focus on any new vocabulary and concepts. 

Tip: don't stay here for too long. Once the lesson is introduced, move on to the next fun strategy for the day!

2. Conceptual understanding

Helping your students understand the concept behind the lesson is crucial, but not always easy. Even your highest performing students may only be following a pattern to solve problems, without grasping the “why.”

Visual aids and math manipulatives are some of your best tools to increase conceptual understanding. Math is not a two dimensional subject. Even the best drawing of a cone isn’t going to provide the same experience as holding one. Find ways to let your students examine math from all sides.

Math manipulatives don’t need to be anything fancy. Basic wooden blocks, magnets, molding clay and other toys can create great hands-on lessons. No need to invest in expensive or hard-to-find materials. 

Math word problems are also a great time to break out a full-fledged demo. Hot Wheels cars can demonstrate velocity and acceleration. A tape measure is an interactive way to teach area and volume. These materials give your students a chance to bring math off the page and into real life. 

3. Using concepts in Math vocabulary

There’s more than one way to say something. And the more ways you can describe a mathematical concept, the better. Subtraction can also be described as taking away or removing. Memorizing multiplication facts is useful, but seeing these numbers used to calculate area gives them new meaning. 

Some math words are going to be unfamiliar. So to help students get comfortable with these concepts, demonstrate and label math ideas throughout your classroom . Understanding comes more easily when students are surrounded by new ideas. 

For example, create a division corner in your station rotations , with blocks to demonstrate the concept of one number going into another. Use baskets and labels to have students separate the blocks into each part of the division problem: dividend, divisor, quotient and remainder.  

Give students time to explore, and teach them big ideas with both academic and everyday terms. Demystify math and watch their confidence build!

Teacher sitting in front of her class of students with their arms raised

4. Cooperative learning strategies

When students work together, it benefits everyone. More advanced students can lead, helping them solidify their knowledge. And they may have just the right words to describe an idea to others who are struggling.

It is rare in real-life situations for big problems to be solved alone. Cooperative learning allows students to view a problem from various angles. This can lead to more flexible, out-of-the-box thinking. 

After reviewing a word problem together as a class, ask small student groups to create their own problems. What is something they care about that they can solve with these skills? Involve them as much as possible in both the planning and solving. Encourage each student to think about what they bring to the group. There’s no better preparation for the future than learning to work as a team. 

5. Meaningful and frequent homework

When it comes to homework, it pays to think outside of textbooks and worksheets. Repetition is important, but how can you keep it fun?

Create more meaningful homework by including games in your curriculum plans. Encourage board game play or encourage families to play quiz-style games at home to improve critical thinking, problem solving and basic math skills. 

Sometimes you need homework that doesn’t put extra work onto the parents. The end of the day is already full for many families. To encourage practice and give parents a break, assign game-based options like Prodigy Math Game for homework. 

With Prodigy, students can enjoy a fun, video game experience that helps them stay excited and motivated to keep learning. They’ll practice math skills, while their parents have time to fix dinner. Plus, you’ll get progress reports that can help you plan future instruction . Win-win-win!    

Set an Assessment through your Prodigy teacher account today to reinforce what you’re teaching in class and differentiate for student needs. 

The Assessment creation screen in a Prodigy teacher account.

Ready to make homework fun?

6. Puzzle pieces math instruction

Some kids excel at math. But others pull back and may rarely participate. That lack of confidence is hard to break through. How can you get your reluctant students to join in?

Try giving each student a piece of the puzzle. When you’re presenting your class with a problem, this creates necessary collaboration to get to the solution. 

Each student is given a piece of information needed to solve the problem. A number, a unit of measurement, or direction — break your problem into as many pieces as possible. 

If you have a large class, break down three or more problems at a time. The first task: find the other students who are working on your problem (try color-coding or using symbols to distinguish each problem’s parts). Then watch the learning happen as everyone plays their own important role. 

7. Verbalize math problems

There’s little time to slow down in the classroom. Instruction has to move fast to keep up with the expected standards. And students feel that, too. 

When possible, try to set aside some time to ask about your students’ math struggles. Make sure they know that they can come to you when they get stuck. Keep the conversation open to their questions as much as possible.

One great way to encourage questions is to address common troubles students have encountered in the past. Where have your past classes struggled? Point these out during your explicit instruction, and let your students know this is a tricky area. 

It’s always encouraging to know you’re not alone in finding something difficult. This also leaves the door open for questions, leading to more discovery and greater understanding.

8. Reflection time

Providing time to reflect gives the brain a chance to process the work completed. This can be done after both group and individual activities.

Group Reflection

After a collaborative activity, save some time for the group to discuss the project . Encourage them to ask:

  • What worked?
  • What didn’t work?
  • Did I learn a new approach?
  • What could we have done differently?
  • Did someone share something I had never thought of before? 

These questions encourage critical thinking. They also show the value of working together with others to solve a problem. Everyone has different ways of approaching a problem, and they’re all valuable.

Individual Reflection

One way to make math more approachable is to show how often math is used. Journaling math encounters can be a great way for students to see that math is all around. 

Ask them to add a little bit to their journal every day, even just a line or two. Where did they encounter math outside of class? Or what have they learned in class that has helped them at home? 

Zoomed in image of a student's hand writing in a journal

Math skills easily transfer outside of the classroom. Help them see how much they have grown, both in terms of academics and social emotional learning .

9. Making Math facts fun

As a teacher, you know math is anything but boring. But transferring that passion to your students is a tricky task. So how can you make learning math facts fun?

Play games! Math games are great classroom activities. Here are a few examples:

  • Design and play a board game.
  • Build structures and judge durability.
  • Divide into groups for a quiz or game show. 
  • Get kids moving and measure speed or distance jumped.

Even repetitive tasks can be fun with the right tools. That’s why engaging games are a great way to help students build essential math skills. When students play Prodigy Math Game , for example, they learn curriculum-aligned math facts without things like worksheets or flashcards. This can help them become excited to play and learn! 

How teachers can refine Math strategies

Sometimes trying something new can make a huge difference for your students. But don’t stress and try to change too much at once. 

You know your classroom and students best. Pick a couple of your favorite strategies above and try them out. 

If you're looking to freshen up your math instruction, sign up for a free Prodigy teacher account. Your students can jump right into the magic of the Prodigy Math Game, and you’ll start seeing data on their progress right away! 

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Additional menu

Khan Academy Blog

Free Math Worksheets — Over 100k free practice problems on Khan Academy

Looking for free math worksheets.

You’ve found something even better!

That’s because Khan Academy has over 100,000 free practice questions. And they’re even better than traditional math worksheets – more instantaneous, more interactive, and more fun!

Just choose your grade level or topic to get access to 100% free practice questions:

Kindergarten, basic geometry, pre-algebra, algebra basics, high school geometry.

  • Trigonometry

Statistics and probability

High school statistics, ap®︎/college statistics, precalculus, differential calculus, integral calculus, ap®︎/college calculus ab, ap®︎/college calculus bc, multivariable calculus, differential equations, linear algebra.

  • Addition and subtraction
  • Place value (tens and hundreds)
  • Addition and subtraction within 20
  • Addition and subtraction within 100
  • Addition and subtraction within 1000
  • Measurement and data
  • Counting and place value
  • Measurement and geometry
  • Place value
  • Measurement, data, and geometry
  • Add and subtract within 20
  • Add and subtract within 100
  • Add and subtract within 1,000
  • Money and time
  • Measurement
  • Intro to multiplication
  • 1-digit multiplication
  • Addition, subtraction, and estimation
  • Intro to division
  • Understand fractions
  • Equivalent fractions and comparing fractions
  • More with multiplication and division
  • Arithmetic patterns and problem solving
  • Quadrilaterals
  • Represent and interpret data
  • Multiply by 1-digit numbers
  • Multiply by 2-digit numbers
  • Factors, multiples and patterns
  • Add and subtract fractions
  • Multiply fractions
  • Understand decimals
  • Plane figures
  • Measuring angles
  • Area and perimeter
  • Units of measurement
  • Decimal place value
  • Add decimals
  • Subtract decimals
  • Multi-digit multiplication and division
  • Divide fractions
  • Multiply decimals
  • Divide decimals
  • Powers of ten
  • Coordinate plane
  • Algebraic thinking
  • Converting units of measure
  • Properties of shapes
  • Ratios, rates, & percentages
  • Arithmetic operations
  • Negative numbers
  • Properties of numbers
  • Variables & expressions
  • Equations & inequalities introduction
  • Data and statistics
  • Negative numbers: addition and subtraction
  • Negative numbers: multiplication and division
  • Fractions, decimals, & percentages
  • Rates & proportional relationships
  • Expressions, equations, & inequalities
  • Numbers and operations
  • Solving equations with one unknown
  • Linear equations and functions
  • Systems of equations
  • Geometric transformations
  • Data and modeling
  • Volume and surface area
  • Pythagorean theorem
  • Transformations, congruence, and similarity
  • Arithmetic properties
  • Factors and multiples
  • Reading and interpreting data
  • Negative numbers and coordinate plane
  • Ratios, rates, proportions
  • Equations, expressions, and inequalities
  • Exponents, radicals, and scientific notation
  • Foundations
  • Algebraic expressions
  • Linear equations and inequalities
  • Graphing lines and slope
  • Expressions with exponents
  • Quadratics and polynomials
  • Equations and geometry
  • Algebra foundations
  • Solving equations & inequalities
  • Working with units
  • Linear equations & graphs
  • Forms of linear equations
  • Inequalities (systems & graphs)
  • Absolute value & piecewise functions
  • Exponents & radicals
  • Exponential growth & decay
  • Quadratics: Multiplying & factoring
  • Quadratic functions & equations
  • Irrational numbers
  • Performing transformations
  • Transformation properties and proofs
  • Right triangles & trigonometry
  • Non-right triangles & trigonometry (Advanced)
  • Analytic geometry
  • Conic sections
  • Solid geometry
  • Polynomial arithmetic
  • Complex numbers
  • Polynomial factorization
  • Polynomial division
  • Polynomial graphs
  • Rational exponents and radicals
  • Exponential models
  • Transformations of functions
  • Rational functions
  • Trigonometric functions
  • Non-right triangles & trigonometry
  • Trigonometric equations and identities
  • Analyzing categorical data
  • Displaying and comparing quantitative data
  • Summarizing quantitative data
  • Modeling data distributions
  • Exploring bivariate numerical data
  • Study design
  • Probability
  • Counting, permutations, and combinations
  • Random variables
  • Sampling distributions
  • Confidence intervals
  • Significance tests (hypothesis testing)
  • Two-sample inference for the difference between groups
  • Inference for categorical data (chi-square tests)
  • Advanced regression (inference and transforming)
  • Analysis of variance (ANOVA)
  • Scatterplots
  • Data distributions
  • Two-way tables
  • Binomial probability
  • Normal distributions
  • Displaying and describing quantitative data
  • Inference comparing two groups or populations
  • Chi-square tests for categorical data
  • More on regression
  • Prepare for the 2020 AP®︎ Statistics Exam
  • AP®︎ Statistics Standards mappings
  • Polynomials
  • Composite functions
  • Probability and combinatorics
  • Limits and continuity
  • Derivatives: definition and basic rules
  • Derivatives: chain rule and other advanced topics
  • Applications of derivatives
  • Analyzing functions
  • Parametric equations, polar coordinates, and vector-valued functions
  • Applications of integrals
  • Differentiation: definition and basic derivative rules
  • Differentiation: composite, implicit, and inverse functions
  • Contextual applications of differentiation
  • Applying derivatives to analyze functions
  • Integration and accumulation of change
  • Applications of integration
  • AP Calculus AB solved free response questions from past exams
  • AP®︎ Calculus AB Standards mappings
  • Infinite sequences and series
  • AP Calculus BC solved exams
  • AP®︎ Calculus BC Standards mappings
  • Integrals review
  • Integration techniques
  • Thinking about multivariable functions
  • Derivatives of multivariable functions
  • Applications of multivariable derivatives
  • Integrating multivariable functions
  • Green’s, Stokes’, and the divergence theorems
  • First order differential equations
  • Second order linear equations
  • Laplace transform
  • Vectors and spaces
  • Matrix transformations
  • Alternate coordinate systems (bases)

Frequently Asked Questions about Khan Academy and Math Worksheets

Why is khan academy even better than traditional math worksheets.

Khan Academy’s 100,000+ free practice questions give instant feedback, don’t need to be graded, and don’t require a printer.

What do Khan Academy’s interactive math worksheets look like?

Here’s an example:

What are teachers saying about Khan Academy’s interactive math worksheets?

“My students love Khan Academy because they can immediately learn from their mistakes, unlike traditional worksheets.”

Is Khan Academy free?

Khan Academy’s practice questions are 100% free—with no ads or subscriptions.

What do Khan Academy’s interactive math worksheets cover?

Our 100,000+ practice questions cover every math topic from arithmetic to calculus, as well as ELA, Science, Social Studies, and more.

Is Khan Academy a company?

Khan Academy is a nonprofit with a mission to provide a free, world-class education to anyone, anywhere.

Want to get even more out of Khan Academy?

Then be sure to check out our teacher tools . They’ll help you assign the perfect practice for each student from our full math curriculum and track your students’ progress across the year. Plus, they’re also 100% free — with no subscriptions and no ads.

Get Khanmigo

The best way to learn and teach with AI is here. Ace the school year with our AI-powered guide, Khanmigo. 

For learners     For teachers     For parents

Please ensure that your password is at least 8 characters and contains each of the following:

  • a special character: @$#!%*?&

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Mathematics LibreTexts

4.9: Strategies for Solving Applications and Equations

  • Last updated
  • Save as PDF
  • Page ID 113697

Learning Objectives

By the end of this section, you will be able to:

  • Use a problem solving strategy for word problems
  • Solve number word problems
  • Solve percent applications
  • Solve simple interest applications

Before you get started, take this readiness quiz.

  • Translate “six less than twice x ” into an algebraic expression. If you missed this problem, review [link] .
  • Convert 4.5% to a decimal. If you missed this problem, review [link] .
  • Convert 0.6 to a percent. If you missed this problem, review [link] .

Have you ever had any negative experiences in the past with word problems? When we feel we have no control, and continue repeating negative thoughts, we set up barriers to success. Realize that your negative experiences with word problems are in your past. To move forward you need to calm your fears and change your negative feelings.

Start with a fresh slate and begin to think positive thoughts. Repeating some of the following statements may be helpful to turn your thoughts positive. Thinking positive thoughts is a first step towards success.

  • I think I can! I think I can!
  • While word problems were hard in the past, I think I can try them now.
  • I am better prepared now—I think I will begin to understand word problems.
  • I am able to solve equations because I practiced many problems and I got help when I needed it—I can try that with word problems.
  • It may take time, but I can begin to solve word problems.
  • You are now well prepared and you are ready to succeed. If you take control and believe you can be successful, you will be able to master word problems.

Use a Problem Solving Strategy for Word Problems

Now that we can solve equations, we are ready to apply our new skills to word problems. We will develop a strategy we can use to solve any word problem successfully.

EXAMPLE \(\PageIndex{1}\)

Normal yearly snowfall at the local ski resort is 12 inches more than twice the amount it received last season. The normal yearly snowfall is 62 inches. What was the snowfall last season at the ski resort?

EXAMPLE \(\PageIndex{2}\)

Guillermo bought textbooks and notebooks at the bookstore. The number of textbooks was three more than twice the number of notebooks. He bought seven textbooks. How many notebooks did he buy?

He bought two notebooks

EXAMPLE \(\PageIndex{3}\)

Gerry worked Sudoku puzzles and crossword puzzles this week. The number of Sudoku puzzles he completed is eight more than twice the number of crossword puzzles. He completed 22 Sudoku puzzles. How many crossword puzzles did he do?

He did seven crosswords puzzles

We summarize an effective strategy for problem solving.

PROBLEM SOLVING STRATEGY FOR WORD PROBLEMS

  • Read the problem. Make sure all the words and ideas are understood.
  • Identify what you are looking for.
  • Name what you are looking for. Choose a variable to represent that quantity.
  • Translate into an equation. It may be helpful to restate the problem in one sentence with all the important information. Then, translate the English sentence into an algebra equation.
  • Solve the equation using proper algebra techniques.
  • Check the answer in the problem to make sure it makes sense.
  • Answer the question with a complete sentence.

Solve Number Word Problems

We will now apply the problem solving strategy to “number word problems.” Number word problems give some clues about one or more numbers and we use these clues to write an equation. Number word problems provide good practice for using the Problem Solving Strategy.

EXAMPLE \(\PageIndex{4}\)

The sum of seven times a number and eight is thirty-six. Find the number.

Did you notice that we left out some of the steps as we solved this equation? If you’re not yet ready to leave out these steps, write down as many as you need.

EXAMPLE \(\PageIndex{5}\)

The sum of four times a number and two is fourteen. Find the number.

EXAMPLE \(\PageIndex{6}\)

The sum of three times a number and seven is twenty-five. Find the number.

Some number word problems ask us to find two or more numbers. It may be tempting to name them all with different variables, but so far, we have only solved equations with one variable. In order to avoid using more than one variable, we will define the numbers in terms of the same variable. Be sure to read the problem carefully to discover how all the numbers relate to each other.

EXAMPLE \(\PageIndex{7}\)

The sum of two numbers is negative fifteen. One number is nine less than the other. Find the numbers.

EXAMPLE \(\PageIndex{8}\)

The sum of two numbers is negative twenty-three. One number is seven less than the other. Find the numbers.

\(−15,−8\)

EXAMPLE \(\PageIndex{9}\)

The sum of two numbers is negative eighteen. One number is forty more than the other. Find the numbers.

\(−29,11\)

Consecutive Integers (optional)

Some number problems involve consecutive integers . Consecutive integers are integers that immediately follow each other. Examples of consecutive integers are:

\[\begin{array}{rrrr} 1, & 2, & 3, & 4 \\ −10, & −9, & −8, & −7\\ 150, & 151, & 152, & 153 \end{array}\]

Notice that each number is one more than the number preceding it. Therefore, if we define the first integer as n , the next consecutive integer is \(n+1\). The one after that is one more than \(n+1\), so it is \(n+1+1\), which is \(n+2\).

\[\begin{array}{ll} n & 1^{\text{st}} \text{integer} \\ n+1 \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; & 2^{\text{nd}}\text{consecutive integer} \\ n+2 & 3^{\text{rd}}\text{consecutive integer} \;\;\;\;\;\;\;\; \text{etc.} \end{array}\]

We will use this notation to represent consecutive integers in the next example.

EXAMPLE \(\PageIndex{10}\)

Find three consecutive integers whose sum is \(−54\).

EXAMPLE \(\PageIndex{11}\)

Find three consecutive integers whose sum is \(−96\).

\(−33,−32,−31\)

EXAMPLE \(\PageIndex{12}\)

Find three consecutive integers whose sum is \(−36\).

\(−13,−12,−11\)

Now that we have worked with consecutive integers, we will expand our work to include consecutive even integers and consecutive odd integers . Consecutive even integers are even integers that immediately follow one another. Examples of consecutive even integers are:

\[24, 26, 28\]

\[−12,−10,−8\]

Notice each integer is two more than the number preceding it. If we call the first one n , then the next one is \(n+2\). The one after that would be \(n+2+2\) or \(n+4\).

Consecutive odd integers are odd integers that immediately follow one another. Consider the consecutive odd integers 63, 65, and 67.

\[63, 65, 67\]

\[n,n+2,n+4\]

Does it seem strange to have to add two (an even number) to get the next odd number? Do we get an odd number or an even number when we add 2 to 3? to 11? to 47?

Whether the problem asks for consecutive even numbers or odd numbers, you do not have to do anything different. The pattern is still the same—to get to the next odd or the next even integer, add two.

EXAMPLE \(\PageIndex{13}\)

Find three consecutive even integers whose sum is \(120\).

EXAMPLE \(\PageIndex{14}\)

Find three consecutive even integers whose sum is 102.

\(32, 34, 36\)

EXAMPLE \(\PageIndex{15}\)

Find three consecutive even integers whose sum is \(−24\).

\(−10,−8,−6\)

When a number problem is in a real life context, we still use the same strategies that we used for the previous examples.

EXAMPLE \(\PageIndex{16}\)

A married couple together earns $110,000 a year. The wife earns $16,000 less than twice what her husband earns. What does the husband earn?

According to the National Automobile Dealers Association, the average cost of a car in 2014 was $28,400. This was $1,600 less than six times the cost in 1975. What was the average cost of a car in 1975?

The average cost was $5,000.

EXAMPLE \(\PageIndex{18}\)

US Census data shows that the median price of new home in the U.S. in November 2014 was $280,900. This was $10,700 more than 14 times the price in November 1964. What was the median price of a new home in November 1964?

The median price was $19,300.

Solve Percent Applications

There are several methods to solve percent equations. In algebra, it is easiest if we just translate English sentences into algebraic equations and then solve the equations. Be sure to change the given percent to a decimal before you use it in the equation.

EXAMPLE \(\PageIndex{19}\)

Translate and solve:

  • What number is 45% of 84?
  • 8.5% of what amount is $4.76?
  • 168 is what percent of 112?
  • What number is 45% of 80?
  • 7.5% of what amount is $1.95?
  • 110 is what percent of 88?

ⓐ 36 ⓑ $26 ⓒ \(125 \% \)

EXAMPLE \(\PageIndex{21}\)

  • What number is 55% of 60?
  • 8.5% of what amount is $3.06?
  • 126 is what percent of 72?

ⓐ 33 ⓑ $36 ⓐ \(175 \% \)

Now that we have a problem solving strategy to refer to, and have practiced solving basic percent equations, we are ready to solve percent applications. Be sure to ask yourself if your final answer makes sense—since many of the applications we will solve involve everyday situations, you can rely on your own experience.

EXAMPLE \(\PageIndex{22}\)

The label on Audrey’s yogurt said that one serving provided 12 grams of protein, which is 24% of the recommended daily amount. What is the total recommended daily amount of protein?

EXAMPLE \(\PageIndex{23}\)

One serving of wheat square cereal has 7 grams of fiber, which is 28% of the recommended daily amount. What is the total recommended daily amount of fiber?

EXAMPLE \(\PageIndex{24}\)

One serving of rice cereal has 190 mg of sodium, which is 8% of the recommended daily amount. What is the total recommended daily amount of sodium?

Remember to put the answer in the form requested. In the next example we are looking for the percent.

EXAMPLE \(\PageIndex{25}\)

Veronica is planning to make muffins from a mix. The package says each muffin will be 240 calories and 60 calories will be from fat. What percent of the total calories is from fat?

EXAMPLE \(\PageIndex{26}\)

Mitzi received some gourmet brownies as a gift. The wrapper said each 28% brownie was 480 calories, and had 240 calories of fat. What percent of the total calories in each brownie comes from fat? Round the answer to the nearest whole percent.

EXAMPLE \(\PageIndex{27}\)

The mix Ricardo plans to use to make brownies says that each brownie will be 190 calories, and 76 calories are from fat. What percent of the total calories are from fat? Round the answer to the nearest whole percent.

It is often important in many fields—business, sciences, pop culture—to talk about how much an amount has increased or decreased over a certain period of time. This increase or decrease is generally expressed as a percent and called the percent change .

To find the percent change, first we find the amount of change, by finding the difference of the new amount and the original amount. Then we find what percent the amount of change is of the original amount.

FIND PERCENT CHANGE

\[\text{change}= \text{new amount}−\text{original amount}\]

change is what percent of the original amount?

EXAMPLE \(\PageIndex{28}\)

Recently, the California governor proposed raising community college fees from $36 a unit to $46 a unit. Find the percent change. (Round to the nearest tenth of a percent.)

EXAMPLE \(\PageIndex{29}\)

Find the percent change. (Round to the nearest tenth of a percent.) In 2011, the IRS increased the deductible mileage cost to 55.5 cents from 51 cents.

\(8.8 \% \)

EXAMPLE \(\PageIndex{30}\)

Find the percent change. (Round to the nearest tenth of a percent.) In 1995, the standard bus fare in Chicago was $1.50. In 2008, the standard bus fare was 2.25.

Applications of discount and mark-up are very common in retail settings.

When you buy an item on sale, the original price has been discounted by some dollar amount. The discount rate , usually given as a percent, is used to determine the amount of the discount . To determine the amount of discount, we multiply the discount rate by the original price.

The price a retailer pays for an item is called the original cost . The retailer then adds a mark-up to the original cost to get the list price , the price he sells the item for. The mark-up is usually calculated as a percent of the original cost. To determine the amount of mark-up, multiply the mark-up rate by the original cost.

\[ \begin{align} \text{amount of discount} &= \text{discount rate}· \text{original price} \\ \text{sale price} &= \text{original amount}– \text{discount price} \end{align}\]

The sale price should always be less than the original price.

\[\begin{align} \text{amount of mark-up} &= \text{mark-up rate}·\text{original price} \\ \text{list price} &= \text{original cost}–\text{mark-up} \end{align}\]

The list price should always be more than the original cost.

EXAMPLE \(\PageIndex{31}\)

Liam’s art gallery bought a painting at an original cost of $750. Liam marked the price up 40%. Find

  • the amount of mark-up and
  • the list price of the painting.

EXAMPLE \(\PageIndex{32}\)

Find ⓐ the amount of mark-up and ⓑ the list price: Jim’s music store bought a guitar at original cost $1,200. Jim marked the price up 50%.

ⓐ $600 ⓑ $1,800

EXAMPLE \(\PageIndex{33}\)

Find ⓐ the amount of mark-up and ⓑ the list price: The Auto Resale Store bought Pablo’s Toyota for $8,500. They marked the price up 35%.

ⓐ $2,975 ⓑ $11,475

Solve Simple Interest Applications

Interest is a part of our daily lives. From the interest earned on our savings to the interest we pay on a car loan or credit card debt, we all have some experience with interest in our lives.

The amount of money you initially deposit into a bank is called the principal , P , and the bank pays you interest, I. When you take out a loan, you pay interest on the amount you borrow, also called the principal.

In either case, the interest is computed as a certain percent of the principal, called the rate of interest , r . The rate of interest is usually expressed as a percent per year, and is calculated by using the decimal equivalent of the percent. The variable t , (for time) represents the number of years the money is saved or borrowed.

Interest is calculated as simple interest or compound interest. Here we will use simple interest.

SIMPLE INTEREST

If an amount of money, P , called the principal, is invested or borrowed for a period of t years at an annual interest rate r , the amount of interest, I , earned or paid is

\[ \begin{array}{ll} I=Prt \; \; \; \; \; \; \; \; \; \; \; \; \text{where} & { \begin{align} I &= \text{interest} \\ P &= \text{principal} \\ r &= \text{rate} \\ t &= \text{time} \end{align}} \end{array}\]

Interest earned or paid according to this formula is called simple interest .

The formula we use to calculate interest is \(I=Prt\). To use the formula we substitute in the values for variables that are given, and then solve for the unknown variable. It may be helpful to organize the information in a chart.

EXAMPLE \(\PageIndex{34}\)

Areli invested a principal of $950 in her bank account that earned simple interest at an interest rate of 3%. How much interest did she earn in five years?

\( \begin{aligned} I & = \; ? \\ P & = \; \$ 950 \\ r & = \; 3 \% \\ t & = \; 5 \text{ years} \end{aligned}\)

\(\begin{array}{ll} \text{Identify what you are asked to find, and choose a} & \text{What is the simple interest?} \\ \text{variable to represent it.} & \text{Let } I= \text{interest.} \\ \text{Write the formula.} & I=Prt \\ \text{Substitute in the given information.} & I=(950)(0.03)(5) \\ \text{Simplify.} & I=142.5 \\ \text{Check.} \\ \text{Is } \$142.50 \text{ a reasonable amount of interest on } \$ \text{ 950?} \; \;\;\;\;\; \;\;\;\;\;\; \\ \text{Yes.} \\ \text{Write a complete sentence.} & \text{The interest is } \$ \text{142.50.} \end{array}\)

EXAMPLE \(\PageIndex{35}\)

Nathaly deposited $12,500 in her bank account where it will earn 4% simple interest. How much interest will Nathaly earn in five years?

He will earn $2,500.

EXAMPLE \(\PageIndex{36}\)

Susana invested a principal of $36,000 in her bank account that earned simple interest at an interest rate of 6.5%.6.5%. How much interest did she earn in three years?

She earned $7,020.

There may be times when we know the amount of interest earned on a given principal over a certain length of time, but we do not know the rate.

EXAMPLE \(\PageIndex{37}\)

Hang borrowed $7,500 from her parents to pay her tuition. In five years, she paid them $1,500 interest in addition to the $7,500 she borrowed. What was the rate of simple interest?

\( \begin{aligned} I & = \; \$ 1500 \\ P & = \; \$ 7500 \\ r & = \; ? \\ t & = \; 5 \text{ years} \end{aligned}\)

Identify what you are asked to find, and choose What is the rate of simple interest? a variable to represent it. Write the formula. Substitute in the given information. Multiply. Divide. Change to percent form. Let r = rate of interest. I = P r t 1,500 = ( 7,500 ) r ( 5 ) 1,500 = 37,500 r 0.04 = r 4 % = r Check. I = P r t 1,500 = ? ( 7,500 ) ( 0.04 ) ( 5 ) 1,500 = 1,500 ✓ Write a complete sentence. The rate of interest was 4%. Identify what you are asked to find, and choose What is the rate of simple interest? a variable to represent it. Write the formula. Substitute in the given information. Multiply. Divide. Change to percent form. Let r = rate of interest. I = P r t 1 ,500 = ( 7,500 ) r ( 5 ) 1,500 = 37,500 r 0.04 = r 4 % = r Check. I = P r t 1 ,500 = ? ( 7,500 ) ( 0.04 ) ( 5 ) 1,500 = 1, 500 ✓ Write a complete sentence. The rate of interest was 4%.

EXAMPLE \(\PageIndex{38}\)

Jim lent his sister $5,000 to help her buy a house. In three years, she paid him the $5,000, plus $900 interest. What was the rate of simple interest?

The rate of simple interest was 6%.

EXAMPLE \(\PageIndex{39}\)

Loren lent his brother $3,000 to help him buy a car. In four years, his brother paid him back the $3,000 plus $660 in interest. What was the rate of simple interest?

The rate of simple interest was 5.5%.

In the next example, we are asked to find the principal—the amount borrowed.

EXAMPLE \(\PageIndex{40}\)

Sean’s new car loan statement said he would pay $4,866,25 in interest from a simple interest rate of 8.5% over five years. How much did he borrow to buy his new car?

\( \begin{aligned} I & = \; 4,866.25 \\ P & = \; ? \\ r & = \; 8.5 \% \\ t & = \; 5 \text{ years} \end{aligned}\)

Identify what you are asked to find, What is the amount borrowed (the principal)? and choose a variable to represent it. Write the formula. Substitute in the given information. Multiply. Divide. Let P = principal borrowed. I = P r t 4,866.25 = P ( 0.085 ) ( 5 ) 4,866.25 = 0.425 P 11,450 = P Check. I = P r t 4,866.25 = ? ( 11,450 ) ( 0.085 ) ( 5 ) 4,866.25 = 4,866.25 ✓ Write a complete sentence. The principal was $11,450. Identify what you are asked to find, What is the amount borrowed (the principal)? and choose a variable to represent it. Write the formula. Substitute in the given information. Multiply. Divide. Let P = principal borrowed. I = P r t 4 ,866.25 = P ( 0.085 ) ( 5 ) 4,866.25 = 0.425 P 11,450 = P Check. I = P r t 4 ,866.25 = ? ( 11,450 ) ( 0.085 ) ( 5 ) 4,866.25 = 4,866.25 ✓ Write a complete sentence. The principal was $11,450.

EXAMPLE \(\PageIndex{41}\)

Eduardo noticed that his new car loan papers stated that with a 7.5% simple interest rate, he would pay $6,596.25 in interest over five years. How much did he borrow to pay for his car?

He paid $17,590.

EXAMPLE \(\PageIndex{42}\)

In five years, Gloria’s bank account earned $2,400 interest at 5% simple interest. How much had she deposited in the account?

She deposited $9,600.

Access this online resource for additional instruction and practice with using a problem solving strategy.

  • Begining Arithmetic Problems

Key Concepts

\(\text{change}=\text{new amount}−\text{original amount}\)

\(\text{change is what percent of the original amount?}\)

  • \( \begin{align} \text{amount of discount} &= \text{discount rate}· \text{original price} \\ \text{sale price} &= \text{original amount}– \text{discount price} \end{align}\)
  • \(\begin{align} \text{amount of mark-up} &= \text{mark-up rate}·\text{original price} \\ \text{list price} &= \text{original cost}–\text{mark-up} \end{align}\)
  • If an amount of money, P , called the principal, is invested or borrowed for a period of t years at an annual interest rate r , the amount of interest, I , earned or paid is: \[\begin{aligned} &{} &{} &{I=interest} \nonumber\\ &{I=Prt} &{\text{where} \space} &{P=principal} \nonumber\\ &{} &{\space} &{r=rate} \nonumber\\ &{} &{\space} &{t=time} \nonumber \end{aligned}\]

Practice Makes Perfect

1. List five positive thoughts you can say to yourself that will help you approach word problems with a positive attitude. You may want to copy them on a sheet of paper and put it in the front of your notebook, where you can read them often.

Answers will vary.

2. List five negative thoughts that you have said to yourself in the past that will hinder your progress on word problems. You may want to write each one on a small piece of paper and rip it up to symbolically destroy the negative thoughts.

In the following exercises, solve using the problem solving strategy for word problems. Remember to write a complete sentence to answer each question.

3. There are \(16\) girls in a school club. The number of girls is four more than twice the number of boys. Find the number of boys.

4. There are \(18\) Cub Scouts in Troop 645. The number of scouts is three more than five times the number of adult leaders. Find the number of adult leaders.

5. Huong is organizing paperback and hardback books for her club’s used book sale. The number of paperbacks is \(12\) less than three times the number of hardbacks. Huong had \(162\) paperbacks. How many hardback books were there?

58 hardback books

6. Jeff is lining up children’s and adult bicycles at the bike shop where he works. The number of children’s bicycles is nine less than three times the number of adult bicycles. There are \(42\) adult bicycles. How many children’s bicycles are there?

In the following exercises, solve each number word problem.

7. The difference of a number and \(12\) is three. Find the number.

8. The difference of a number and eight is four. Find the number.

9. The sum of three times a number and eight is \(23\). Find the number.

10. The sum of twice a number and six is \(14\). Find the number.

11 . The difference of twice a number and seven is \(17\). Find the number.

12. The difference of four times a number and seven is \(21\). Find the number.

13. Three times the sum of a number and nine is \(12\). Find the number.

14. Six times the sum of a number and eight is \(30\). Find the number.

15. One number is six more than the other. Their sum is \(42\). Find the numbers.

\(18, \;24\)

16. One number is five more than the other. Their sum is \(33\). Find the numbers.

17. The sum of two numbers is \(20\). One number is four less than the other. Find the numbers.

\(8, \;12\)

18 . The sum of two numbers is \(27\). One number is seven less than the other. Find the numbers.

19. One number is \(14\) less than another. If their sum is increased by seven, the result is \(85\). Find the numbers.

\(32,\; 46\)

20 . One number is \(11\) less than another. If their sum is increased by eight, the result is \(71\). Find the numbers.

21. The sum of two numbers is \(14\). One number is two less than three times the other. Find the numbers.

\(4,\; 10\)

22. The sum of two numbers is zero. One number is nine less than twice the other. Find the numbers.

23. The sum of two consecutive integers is \(77\). Find the integers.

\(38,\; 39\)

24. The sum of two consecutive integers is \(89\). Find the integers.

25. The sum of three consecutive integers is \(78\). Find the integers.

\(25,\; 26,\; 27\)

26. The sum of three consecutive integers is \(60\). Find the integers.

27. Find three consecutive integers whose sum is \(−36\).

\(−11,\;−12,\;−13\)

28. Find three consecutive integers whose sum is \(−3\).

29. Find three consecutive even integers whose sum is \(258\).

\(84,\; 86,\; 88\)

30. Find three consecutive even integers whose sum is \(222\).

31. Find three consecutive odd integers whose sum is \(−213\).

\(−69,\;−71,\;−73\)

32. Find three consecutive odd integers whose sum is \(−267\).

33. Philip pays \($1,620\) in rent every month. This amount is \($120\) more than twice what his brother Paul pays for rent. How much does Paul pay for rent?

34. Marc just bought an SUV for \($54,000\). This is \($7,400\) less than twice what his wife paid for her car last year. How much did his wife pay for her car?

35. Laurie has \($46,000\) invested in stocks and bonds. The amount invested in stocks is \($8,000\) less than three times the amount invested in bonds. How much does Laurie have invested in bonds?

\($13,500\)

36. Erica earned a total of \($50,450\) last year from her two jobs. The amount she earned from her job at the store was \($1,250\) more than three times the amount she earned from her job at the college. How much did she earn from her job at the college?

In the following exercises, translate and solve.

37. a. What number is 45% of 120? b. 81 is 75% of what number? c. What percent of 260 is 78?

a. 54 b. 108 c. 30%

38. a. What number is 65% of 100? b. 93 is 75% of what number? c. What percent of 215 is 86?

39. a. 250% of 65 is what number? b. 8.2% of what amount is $2.87? c. 30 is what percent of 20?

a. 162.5 b. $35 c. 150%

40. a. 150% of 90 is what number? b. 6.4% of what amount is $2.88? c. 50 is what percent of 40?

In the following exercises, solve.

41. Geneva treated her parents to dinner at their favorite restaurant. The bill was $74.25. Geneva wants to leave 16% of the total bill as a tip. How much should the tip be?

42. When Hiro and his co-workers had lunch at a restaurant near their work, the bill was $90.50. They want to leave 18% of the total bill as a tip. How much should the tip be?

43. One serving of oatmeal has 8 grams of fiber, which is 33% of the recommended daily amount. What is the total recommended daily amount of fiber?

44. One serving of trail mix has 67 grams of carbohydrates, which is 22% of the recommended daily amount. What is the total recommended daily amount of carbohydrates?

45. A bacon cheeseburger at a popular fast food restaurant contains 2070 milligrams (mg) of sodium, which is 86% of the recommended daily amount. What is the total recommended daily amount of sodium?

46. A grilled chicken salad at a popular fast food restaurant contains 650 milligrams (mg) of sodium, which is 27% of the recommended daily amount. What is the total recommended daily amount of sodium?

47. The nutrition fact sheet at a fast food restaurant says the fish sandwich has 380 calories, and 171 calories are from fat. What percent of the total calories is from fat?

48. The nutrition fact sheet at a fast food restaurant says a small portion of chicken nuggets has 190 calories, and 114 calories are from fat. What percent of the total calories is from fat?

49. Emma gets paid $3,000 per month. She pays $750 a month for rent. What percent of her monthly pay goes to rent?

50. Dimple gets paid $3,200 per month. She pays $960 a month for rent. What percent of her monthly pay goes to rent?

51. Tamanika received a raise in her hourly pay, from $15.50 to $17.36. Find the percent change.

52. Ayodele received a raise in her hourly pay, from $24.50 to $25.48. Find the percent change.

53. Annual student fees at the University of California rose from about $4,000 in 2000 to about $12,000 in 2010. Find the percent change.

54. The price of a share of one stock rose from $12.50 to $50. Find the percent change.

55. A grocery store reduced the price of a loaf of bread from $2.80 to $2.73. Find the percent change.

−2.5%

56. The price of a share of one stock fell from $8.75 to $8.54. Find the percent change.

57. Hernando’s salary was $49,500 last year. This year his salary was cut to $44,055. Find the percent change.

58. In ten years, the population of Detroit fell from 950,000 to about 712,500. Find the percent change.

In the following exercises, find a. the amount of discount and b. the sale price.

59. Janelle bought a beach chair on sale at 60% off. The original price was $44.95.

a. $26.97 b. $17.98

60. Errol bought a skateboard helmet on sale at 40% off. The original price was $49.95.

In the following exercises, find a. the amount of discount and b. the discount rate (Round to the nearest tenth of a percent if needed.)

61. Larry and Donna bought a sofa at the sale price of $1,344. The original price of the sofa was $1,920.

a. $576 b. 30%

62. Hiroshi bought a lawnmower at the sale price of $240. The original price of the lawnmower is $300.

In the following exercises, find a. the amount of the mark-up and b. the list price.

63. Daria bought a bracelet at original cost $16 to sell in her handicraft store. She marked the price up 45%. What was the list price of the bracelet?

a. $7.20 b. $23.20

64. Regina bought a handmade quilt at original cost $120 to sell in her quilt store. She marked the price up 55%. What was the list price of the quilt?

65. Tom paid $0.60 a pound for tomatoes to sell at his produce store. He added a 33% mark-up. What price did he charge his customers for the tomatoes?

a. $0.20 b. $0.80

66. Flora paid her supplier $0.74 a stem for roses to sell at her flower shop. She added an 85% mark-up. What price did she charge her customers for the roses?

67. Casey deposited $1,450 in a bank account that earned simple interest at an interest rate of 4%. How much interest was earned in two years?

68 . Terrence deposited $5,720 in a bank account that earned simple interest at an interest rate of 6%. How much interest was earned in four years?

69. Robin deposited $31,000 in a bank account that earned simple interest at an interest rate of 5.2%. How much interest was earned in three years?

70. Carleen deposited $16,400 in a bank account that earned simple interest at an interest rate of 3.9% How much interest was earned in eight years?

71. Hilaria borrowed $8,000 from her grandfather to pay for college. Five years later, she paid him back the $8,000, plus $1,200 interest. What was the rate of simple interest?

72. Kenneth lent his niece $1,200 to buy a computer. Two years later, she paid him back the $1,200, plus $96 interest. What was the rate of simple interest?

73. Lebron lent his daughter $20,000 to help her buy a condominium. When she sold the condominium four years later, she paid him the $20,000, plus $3,000 interest. What was the rate of simple interest?

74. Pablo borrowed $50,000 to start a business. Three years later, he repaid the $50,000, plus $9,375 interest. What was the rate of simple interest?

75. In 10 years, a bank account that paid 5.25% simple interest earned $18,375 interest. What was the principal of the account?

76. In 25 years, a bond that paid 4.75% simple interest earned $2,375 interest. What was the principal of the bond?

77. Joshua’s computer loan statement said he would pay $1,244.34 in simple interest for a three-year loan at 12.4%. How much did Joshua borrow to buy the computer?

78. Margaret’s car loan statement said she would pay $7,683.20 in simple interest for a five-year loan at 9.8%. How much did Margaret borrow to buy the car?

Everyday Math

79 . Tipping At the campus coffee cart, a medium coffee costs $1.65. MaryAnne brings $2.00 with her when she buys a cup of coffee and leaves the change as a tip. What percent tip does she leave?

80 . Tipping Four friends went out to lunch and the bill came to $53.75 They decided to add enough tip to make a total of $64, so that they could easily split the bill evenly among themselves. What percent tip did they leave?

Most Used Actions

Practice animation

Please add a message.

Message received. Thanks for the feedback.

Math = Love

List of Problem Solving Strategies for INBs or Binders

By: Author Sarah Carter

Posted on Published: July 15, 2015  - Last updated: January 28, 2023

Categories Interactive Notebook Resources

Today I want to share a list of problem solving strategies designed to be glued in interactive notebooks. I have also included a full-sized version for binders.

list of math problem solving strategies for interactive notebooks

The upcoming school year is going to be a BUSY one, so I’ve been trying to get as many resources created as possible this summer.  My current project is writing SBG quizzes for Algebra 1 and Algebra 2.  So far, I’ve written 25 quizzes, but I have a zillion more to go.  Still, this is the first time I’ve ever written quizzes ahead of time, so I’m feeling pretty proud of myself.

problem solving strategies for math classroom decorations

I was so excited about how productive I was being that I let myself work on something a bit more on the creative side: a problem solving strategies insert for my students to put in the front of their interactive notebooks.  I have various problem solving strategies posters on the wall of my classroom, but I decided I wanted students to have a copy, too!

list of math problem solving strategies for interactive notebooks

Each strategy has a small box to the left of it.  My idea is that when I go over these strategies with my students as we put them in our notebooks that they will draw a small icon to represent each strategy in the box.

Free Download of Problem Solving Strategies List

Problem Solving Strategies INB Page (PDF) (935 downloads )

Problem Solving Strategies INB Page (Editable Publisher File ZIP) (687 downloads )

If you download the editable file, you will need these free fonts: HVD Comic Serif Pro, Print Bold, and Spicy Rice.

Sunday 25th of February 2018

Dear Sarah, I discovered your blog and website yesterday and have spent a great deal of time reading your entries - you have done a marvelous job! You are so generous with your ideas - you must be a terrific teacher! You also give note to others. On your list of Problem-solving strategies you have the additional "Staring is not a viable problem-sovlig strategy" and attribute it to Margaret Kenney. Peg was a dear friend of mine - actually she was one of my undergraduate professors and then my boss when I worked for her and Fr. Bezuzska, S.J. at the Boston College Mathematics Institute. It was such nice surprise to see her name on your website. I have bookmarked your site - thank you for your work! It is stellar!

Sunday 11th of September 2016

Thank you Sarah! You rock as usual!

Sarah Carter (@mathequalslove)

Saturday 15th of October 2016

Thanks Melynee!

Saturday 8th of August 2015

Where did you find the bulletin board letters?

Friday 18th of September 2015

I bought them at Mardel, but it was 4 years ago.

asuransi pendidikan

Thursday 23rd of July 2015

Your article is very interesting, I wait for your next article.

Asuransi Pendidikan

Thursday 16th of July 2015

Sarah I love this! I have your problem solving signs on my wall on a bulletin board and refer to them but not as often as I'd like. I think this might hold me more accountable :) Thanks! Also loving the new logo? title image? on your site!!

Friday 17th of July 2015

Thanks Nikki! I made the blog header using Canva. So easy!

list of problem solving in math

10 Helpful Worksheet Ideas for Primary School Math Lessons

M athematics is a fundamental subject that shapes the way children think and analyze the world. At the primary school level, laying a strong foundation is crucial. While hands-on activities, digital tools, and interactive discussions play significant roles in learning, worksheets remain an essential tool for reinforcing concepts, practicing skills, and assessing understanding. Here’s a look at some helpful worksheets for primary school math lessons.

Comparison Chart Worksheets

Comparison charts provide a visual means for primary school students to grasp relationships between numbers or concepts. They are easy to make at www.storyboardthat.com/create/comparison-chart-template , and here is how they can be used:

  • Quantity Comparison: Charts might display two sets, like apples vs. bananas, prompting students to determine which set is larger.
  • Attribute Comparison: These compare attributes, such as different shapes detailing their number of sides and characteristics.
  • Number Line Comparisons: These help students understand number magnitude by placing numbers on a line to visualize their relative sizes.
  • Venn Diagrams: Introduced in later primary grades, these diagrams help students compare and contrast two sets of items or concepts.
  • Weather Charts: By comparing weather on different days, students can learn about temperature fluctuations and patterns.

Number Recognition and Counting Worksheets

For young learners, recognizing numbers and counting is the first step into the world of mathematics. Worksheets can offer:

  • Number Tracing: Allows students to familiarize themselves with how each number is formed.
  • Count and Circle: Images are presented, and students have to count and circle the correct number.
  • Missing Numbers: Sequences with missing numbers that students must fill in to practice counting forward and backward.

Basic Arithmetic Worksheets

Once students are familiar with numbers, they can start simple arithmetic. 

  • Addition and Subtraction within 10 or 20: Using visual aids like number lines, counters, or pictures can be beneficial.
  • Word Problems: Simple real-life scenarios can help students relate math to their daily lives.
  • Skip Counting: Worksheets focused on counting by 2s, 5s, or 10s.

Geometry and Shape Worksheets

Geometry offers a wonderful opportunity to relate math to the tangible world.

  • Shape Identification: Recognizing and naming basic shapes such as squares, circles, triangles, etc.
  • Comparing Shapes: Worksheets that help students identify differences and similarities between shapes.
  • Pattern Recognition: Repeating shapes in patterns and asking students to determine the next shape in the sequence.

Measurement Worksheets

Measurement is another area where real-life application and math converge.

  • Length and Height: Comparing two or more objects and determining which is longer or shorter.
  • Weight: Lighter vs. heavier worksheets using balancing scales as visuals.
  • Time: Reading clocks, days of the week, and understanding the calendar.

Data Handling Worksheets

Even at a primary level, students can start to understand basic data representation.

  • Tally Marks: Using tally marks to represent data and counting them.
  • Simple Bar Graphs: Interpreting and drawing bar graphs based on given data.
  • Pictographs: Using pictures to represent data, which can be both fun and informative.

Place Value Worksheets

Understanding the value of each digit in a number is fundamental in primary math.

  • Identifying Place Values: Recognizing units, tens, hundreds, etc., in a given number.
  • Expanding Numbers: Breaking down numbers into their place value components, such as understanding 243 as 200 + 40 + 3.
  • Comparing Numbers: Using greater than, less than, or equal to symbols to compare two numbers based on their place values.

Fraction Worksheets

Simple fraction concepts can be introduced at the primary level.

  • Identifying Fractions: Recognizing half, quarter, third, etc., of shapes or sets.
  • Comparing Fractions: Using visual aids like pie charts or shaded drawings to compare fractions.
  • Simple Fraction Addition: Adding fractions with the same denominator using visual aids.

Money and Real-Life Application Worksheets

Understanding money is both practical and a great way to apply arithmetic.

  • Identifying Coins and Notes: Recognizing different denominations.
  • Simple Transactions: Calculating change, adding up costs, or determining if there’s enough money to buy certain items.
  • Word Problems with Money: Real-life scenarios involving buying, selling, and saving.

Logic and Problem-Solving Worksheets

Even young students can hone their problem-solving skills with appropriate challenges.

  • Sequences and Patterns: Predicting the next item in a sequence or recognizing a pattern.
  • Logical Reasoning: Simple puzzles or riddles that require students to think critically.
  • Story Problems: Reading a short story and solving a math-related problem based on the context.

Worksheets allow students to practice at their own pace, offer teachers a tool for assessment, and provide parents with a glimpse into their child’s learning progression. While digital tools and interactive activities are gaining prominence in education, the significance of worksheets remains undiminished. They are versatile and accessible and, when designed creatively, can make math engaging and fun for young learners.

The post 10 Helpful Worksheet Ideas for Primary School Math Lessons appeared first on Mom and More .

Mathematics is a fundamental subject that shapes the way children think and analyze the world. At the primary school level, laying a strong foundation is crucial. While hands-on activities, digital tools, and interactive discussions play significant roles in learning, worksheets remain an essential tool for reinforcing concepts, practicing skills, and assessing understanding. Here’s a look […]

IMAGES

  1. math problem solving checklist

    list of problem solving in math

  2. Some students need a problem solving checklist to help them stay

    list of problem solving in math

  3. Problem Solving Strategies

    list of problem solving in math

  4. 😀 List of math problem solving strategies. Work Backwards. 2019-01-20

    list of problem solving in math

  5. problem solving math definition

    list of problem solving in math

  6. math problem solving strategies with examples

    list of problem solving in math

VIDEO

  1. Problem Solving and Reasoning: Polya's Steps and Problem Solving Strategies

  2. Problem solving strategy organized list

  3. Course 1, Lesson 7-3: Making an Organized List (Problem Solving)

  4. 3 Easy Algebra Problems (you need to be able to solve….)

  5. Can You Solve This Easy Math Problem in Your Mind?

  6. 11 Most Effective Ways to Solve Problems

COMMENTS

  1. Module 1: Problem Solving Strategies

    This is where math becomes a creative endeavor (and where it becomes so much fun). We will articulate some useful problem solving strategies, but no such list will ever be complete. This is really just a start to help you on your way. The best way to become a skilled problem solver is to learn the background material well, and then to solve a ...

  2. Math Strategies: Problem Solving by Making a List

    FREE Word Problem Templates: Simply enter your email here to receive this set of Editable Word Problem Solving Templates. You should receive them in an email shortly after submitting the form. You will also be added to my email list to receive teaching tips, freebies and special offers. First Name (optional) Email Address.

  3. Problem-Solving Strategies

    There are many different ways to solve a math problem, and equipping students with problem-solving strategies is just as important as teaching computation and algorithms. Problem-solving strategies help students visualize the problem or present the given information in a way that can lead them to the solution. Solving word problems using …</p>

  4. Problem Solving in Mathematics

    Problem-solving requires practice. When deciding on methods or procedures to use to solve problems, the first thing you will do is look for clues, which is one of the most important skills in solving problems in mathematics. If you begin to solve problems by looking for clue words, you will find that these words often indicate an operation.

  5. How Do You Solve a Problem by Making an Organized List?

    Using logic is a strong approach to solving math problems! This tutorial goes through an example of using logical reasoning to find the answer to a word problem. Virtual Nerd's patent-pending tutorial system provides in-context information, hints, and links to supporting tutorials, synchronized with videos, each 3 to 7 minutes long. In this non ...

  6. Algebra 1

    The Algebra 1 course, often taught in the 9th grade, covers Linear equations, inequalities, functions, and graphs; Systems of equations and inequalities; Extension of the concept of a function; Exponential models; and Quadratic equations, functions, and graphs. Khan Academy's Algebra 1 course is built to deliver a comprehensive, illuminating, engaging, and Common Core aligned experience!

  7. 10 Strategies for Problem Solving in Math

    The most remarkable technique for problem solving in mathematics is to help students see patterns in math problems by instructing them how to extract and list relevant details. This method may be used by students when learning shapes and other topics that need repetition. Students may use this strategy to spot patterns and fill in the blanks.

  8. PDF MAKE AN ORGANIZED LIST OR A TABLE

    MATH IN ACTION MAKE AN ORGANIZED LIST OR A TABLE Making a list or a table is a way to organize data presented in a problem. This problem solving strategy allows students to discover relationships and patterns among data. This strategy helps students to bring a logical and systematic development to their mathematics. Example 1:

  9. Mathematical Ideas: Problem-Solving Techniques

    32 Mathematical Ideas: Problem-Solving Techniques Jenna Lehmann. Solving Problems by Inductive Reasoning. Before we can talk about how to use inductive reasoning, we need to define it and distinguish it from deductive reasoning. Inductive reasoning is when one makes generalizations based on repeated observations of specific examples. For ...

  10. Art of Problem Solving

    Art of Problem Solving offers two other multifaceted programs. Beast Academy is our comic-based online math curriculum for students ages 6-13. And AoPS Academy brings our methodology to students grades 2-12 through small, in-person classes at local campuses. Through our three programs, AoPS offers the most comprehensive honors math pathway ...

  11. Microsoft Math Solver

    Online math solver with free step by step solutions to algebra, calculus, and other math problems. Get help on the web or with our math app.

  12. Step-by-Step Math Problem Solver

    QuickMath will automatically answer the most common problems in algebra, equations and calculus faced by high-school and college students. The algebra section allows you to expand, factor or simplify virtually any expression you choose. It also has commands for splitting fractions into partial fractions, combining several fractions into one and ...

  13. 8 Problem Solving Strategies for the Math Classroom

    If not, change your numbers and try again. 3. Make a list. 4. Make a table. 5. Act it out: Grab a friend and reenact the word problem. 6. Work backward: Begin with the last piece of information and work backward.

  14. Top 9 Math Strategies for Successful Learning (2021 and Beyond)

    Math is an essential life skill. You use problem-solving every day. The math strategies you teach are needed, but many students have a difficult time making that connection between math and life. Math isn't just done with a pencil and paper. It's not just solving word problems in a textbook.

  15. Free Math Worksheets

    Khan Academy's 100,000+ free practice questions give instant feedback, don't need to be graded, and don't require a printer. Math Worksheets. Khan Academy. Math worksheets take forever to hunt down across the internet. Khan Academy is your one-stop-shop for practice from arithmetic to calculus. Math worksheets can vary in quality from ...

  16. Mathway

    Free math problem solver answers your algebra homework questions with step-by-step explanations.

  17. 4.9: Strategies for Solving Applications and Equations

    How To Use a Problem Solving Strategy for Word Problems. Read the problem. Make sure all the words and ideas are understood. Identify what you are looking for. Name what you are looking for. Choose a variable to represent that quantity. Translate into an equation. It may be helpful to restate the problem in one sentence with all the important ...

  18. Symbolab Math Calculator

    Popular Calculators. Fractions Radical Equation Factoring Inverse Quadratic Simplify Slope Domain Antiderivatives Polynomial Equation Log Equation Cross Product Partial Derivative Implicit Derivative Tangent Complex Numbers. Symbolab: equation search and math solver - solves algebra, trigonometry and calculus problems step by step.

  19. List of Problem Solving Strategies for INBs or Binders

    On your list of Problem-solving strategies you have the additional "Staring is not a viable problem-sovlig strategy" and attribute it to Margaret Kenney. Peg was a dear friend of mine - actually she was one of my undergraduate professors and then my boss when I worked for her and Fr. Bezuzska, S.J. at the Boston College Mathematics Institute.

  20. 10 Helpful Worksheet Ideas for Primary School Math Lessons

    Story Problems: Reading a short story and solving a math-related problem based on the context. To Sum Up. Worksheets allow students to practice at their own pace, offer teachers a tool for ...

  21. Exploring students' strategies in the problem-solving process on number

    Many researchers have researched the problem-solving process in learning mathematics. This study investigates students' strategies in solving mathematical problems related to number pattern material. Data were collected from the results of solving 2 number pattern problems given to 32 eighth-grade students in junior high school. Students selected to solve the problems given are students with ...