Analyst Answers

Data & Finance for Work & Life

data analysis types, methods, and techniques tree diagram

Data Analysis: Types, Methods & Techniques (a Complete List)

( Updated Version )

While the term sounds intimidating, “data analysis” is nothing more than making sense of information in a table. It consists of filtering, sorting, grouping, and manipulating data tables with basic algebra and statistics.

In fact, you don’t need experience to understand the basics. You have already worked with data extensively in your life, and “analysis” is nothing more than a fancy word for good sense and basic logic.

Over time, people have intuitively categorized the best logical practices for treating data. These categories are what we call today types , methods , and techniques .

This article provides a comprehensive list of types, methods, and techniques, and explains the difference between them.

For a practical intro to data analysis (including types, methods, & techniques), check out our Intro to Data Analysis eBook for free.

Descriptive, Diagnostic, Predictive, & Prescriptive Analysis

If you Google “types of data analysis,” the first few results will explore descriptive , diagnostic , predictive , and prescriptive analysis. Why? Because these names are easy to understand and are used a lot in “the real world.”

Descriptive analysis is an informational method, diagnostic analysis explains “why” a phenomenon occurs, predictive analysis seeks to forecast the result of an action, and prescriptive analysis identifies solutions to a specific problem.

That said, these are only four branches of a larger analytical tree.

Good data analysts know how to position these four types within other analytical methods and tactics, allowing them to leverage strengths and weaknesses in each to uproot the most valuable insights.

Let’s explore the full analytical tree to understand how to appropriately assess and apply these four traditional types.

Tree diagram of Data Analysis Types, Methods, and Techniques

Here’s a picture to visualize the structure and hierarchy of data analysis types, methods, and techniques.

If it’s too small you can view the picture in a new tab . Open it to follow along!

techniques of research data analysis

Note: basic descriptive statistics such as mean , median , and mode , as well as standard deviation , are not shown because most people are already familiar with them. In the diagram, they would fall under the “descriptive” analysis type.

Tree Diagram Explained

The highest-level classification of data analysis is quantitative vs qualitative . Quantitative implies numbers while qualitative implies information other than numbers.

Quantitative data analysis then splits into mathematical analysis and artificial intelligence (AI) analysis . Mathematical types then branch into descriptive , diagnostic , predictive , and prescriptive .

Methods falling under mathematical analysis include clustering , classification , forecasting , and optimization . Qualitative data analysis methods include content analysis , narrative analysis , discourse analysis , framework analysis , and/or grounded theory .

Moreover, mathematical techniques include regression , Nïave Bayes , Simple Exponential Smoothing , cohorts , factors , linear discriminants , and more, whereas techniques falling under the AI type include artificial neural networks , decision trees , evolutionary programming , and fuzzy logic . Techniques under qualitative analysis include text analysis , coding , idea pattern analysis , and word frequency .

It’s a lot to remember! Don’t worry, once you understand the relationship and motive behind all these terms, it’ll be like riding a bike.

We’ll move down the list from top to bottom and I encourage you to open the tree diagram above in a new tab so you can follow along .

But first, let’s just address the elephant in the room: what’s the difference between methods and techniques anyway?

Difference between methods and techniques

Though often used interchangeably, methods ands techniques are not the same. By definition, methods are the process by which techniques are applied, and techniques are the practical application of those methods.

For example, consider driving. Methods include staying in your lane, stopping at a red light, and parking in a spot. Techniques include turning the steering wheel, braking, and pushing the gas pedal.

Data sets: observations and fields

It’s important to understand the basic structure of data tables to comprehend the rest of the article. A data set consists of one far-left column containing observations, then a series of columns containing the fields (aka “traits” or “characteristics”) that describe each observations. For example, imagine we want a data table for fruit. It might look like this:

The fruit (observation) (field1)Avg. diameter (field 2)Avg. time to eat (field 3)
Watermelon20 lbs (9 kg)16 inch (40 cm)20 minutes
Apple.33 lbs (.15 kg)4 inch (8 cm)5 minutes
Orange.30 lbs (.14 kg)4 inch (8 cm)5 minutes

Now let’s turn to types, methods, and techniques. Each heading below consists of a description, relative importance, the nature of data it explores, and the motivation for using it.

Quantitative Analysis

  • It accounts for more than 50% of all data analysis and is by far the most widespread and well-known type of data analysis.
  • As you have seen, it holds descriptive, diagnostic, predictive, and prescriptive methods, which in turn hold some of the most important techniques available today, such as clustering and forecasting.
  • It can be broken down into mathematical and AI analysis.
  • Importance : Very high . Quantitative analysis is a must for anyone interesting in becoming or improving as a data analyst.
  • Nature of Data: data treated under quantitative analysis is, quite simply, quantitative. It encompasses all numeric data.
  • Motive: to extract insights. (Note: we’re at the top of the pyramid, this gets more insightful as we move down.)

Qualitative Analysis

  • It accounts for less than 30% of all data analysis and is common in social sciences .
  • It can refer to the simple recognition of qualitative elements, which is not analytic in any way, but most often refers to methods that assign numeric values to non-numeric data for analysis.
  • Because of this, some argue that it’s ultimately a quantitative type.
  • Importance: Medium. In general, knowing qualitative data analysis is not common or even necessary for corporate roles. However, for researchers working in social sciences, its importance is very high .
  • Nature of Data: data treated under qualitative analysis is non-numeric. However, as part of the analysis, analysts turn non-numeric data into numbers, at which point many argue it is no longer qualitative analysis.
  • Motive: to extract insights. (This will be more important as we move down the pyramid.)

Mathematical Analysis

  • Description: mathematical data analysis is a subtype of qualitative data analysis that designates methods and techniques based on statistics, algebra, and logical reasoning to extract insights. It stands in opposition to artificial intelligence analysis.
  • Importance: Very High. The most widespread methods and techniques fall under mathematical analysis. In fact, it’s so common that many people use “quantitative” and “mathematical” analysis interchangeably.
  • Nature of Data: numeric. By definition, all data under mathematical analysis are numbers.
  • Motive: to extract measurable insights that can be used to act upon.

Artificial Intelligence & Machine Learning Analysis

  • Description: artificial intelligence and machine learning analyses designate techniques based on the titular skills. They are not traditionally mathematical, but they are quantitative since they use numbers. Applications of AI & ML analysis techniques are developing, but they’re not yet mainstream enough to show promise across the field.
  • Importance: Medium . As of today (September 2020), you don’t need to be fluent in AI & ML data analysis to be a great analyst. BUT, if it’s a field that interests you, learn it. Many believe that in 10 year’s time its importance will be very high .
  • Nature of Data: numeric.
  • Motive: to create calculations that build on themselves in order and extract insights without direct input from a human.

Descriptive Analysis

  • Description: descriptive analysis is a subtype of mathematical data analysis that uses methods and techniques to provide information about the size, dispersion, groupings, and behavior of data sets. This may sounds complicated, but just think about mean, median, and mode: all three are types of descriptive analysis. They provide information about the data set. We’ll look at specific techniques below.
  • Importance: Very high. Descriptive analysis is among the most commonly used data analyses in both corporations and research today.
  • Nature of Data: the nature of data under descriptive statistics is sets. A set is simply a collection of numbers that behaves in predictable ways. Data reflects real life, and there are patterns everywhere to be found. Descriptive analysis describes those patterns.
  • Motive: the motive behind descriptive analysis is to understand how numbers in a set group together, how far apart they are from each other, and how often they occur. As with most statistical analysis, the more data points there are, the easier it is to describe the set.

Diagnostic Analysis

  • Description: diagnostic analysis answers the question “why did it happen?” It is an advanced type of mathematical data analysis that manipulates multiple techniques, but does not own any single one. Analysts engage in diagnostic analysis when they try to explain why.
  • Importance: Very high. Diagnostics are probably the most important type of data analysis for people who don’t do analysis because they’re valuable to anyone who’s curious. They’re most common in corporations, as managers often only want to know the “why.”
  • Nature of Data : data under diagnostic analysis are data sets. These sets in themselves are not enough under diagnostic analysis. Instead, the analyst must know what’s behind the numbers in order to explain “why.” That’s what makes diagnostics so challenging yet so valuable.
  • Motive: the motive behind diagnostics is to diagnose — to understand why.

Predictive Analysis

  • Description: predictive analysis uses past data to project future data. It’s very often one of the first kinds of analysis new researchers and corporate analysts use because it is intuitive. It is a subtype of the mathematical type of data analysis, and its three notable techniques are regression, moving average, and exponential smoothing.
  • Importance: Very high. Predictive analysis is critical for any data analyst working in a corporate environment. Companies always want to know what the future will hold — especially for their revenue.
  • Nature of Data: Because past and future imply time, predictive data always includes an element of time. Whether it’s minutes, hours, days, months, or years, we call this time series data . In fact, this data is so important that I’ll mention it twice so you don’t forget: predictive analysis uses time series data .
  • Motive: the motive for investigating time series data with predictive analysis is to predict the future in the most analytical way possible.

Prescriptive Analysis

  • Description: prescriptive analysis is a subtype of mathematical analysis that answers the question “what will happen if we do X?” It’s largely underestimated in the data analysis world because it requires diagnostic and descriptive analyses to be done before it even starts. More than simple predictive analysis, prescriptive analysis builds entire data models to show how a simple change could impact the ensemble.
  • Importance: High. Prescriptive analysis is most common under the finance function in many companies. Financial analysts use it to build a financial model of the financial statements that show how that data will change given alternative inputs.
  • Nature of Data: the nature of data in prescriptive analysis is data sets. These data sets contain patterns that respond differently to various inputs. Data that is useful for prescriptive analysis contains correlations between different variables. It’s through these correlations that we establish patterns and prescribe action on this basis. This analysis cannot be performed on data that exists in a vacuum — it must be viewed on the backdrop of the tangibles behind it.
  • Motive: the motive for prescriptive analysis is to establish, with an acceptable degree of certainty, what results we can expect given a certain action. As you might expect, this necessitates that the analyst or researcher be aware of the world behind the data, not just the data itself.

Clustering Method

  • Description: the clustering method groups data points together based on their relativeness closeness to further explore and treat them based on these groupings. There are two ways to group clusters: intuitively and statistically (or K-means).
  • Importance: Very high. Though most corporate roles group clusters intuitively based on management criteria, a solid understanding of how to group them mathematically is an excellent descriptive and diagnostic approach to allow for prescriptive analysis thereafter.
  • Nature of Data : the nature of data useful for clustering is sets with 1 or more data fields. While most people are used to looking at only two dimensions (x and y), clustering becomes more accurate the more fields there are.
  • Motive: the motive for clustering is to understand how data sets group and to explore them further based on those groups.
  • Here’s an example set:

techniques of research data analysis

Classification Method

  • Description: the classification method aims to separate and group data points based on common characteristics . This can be done intuitively or statistically.
  • Importance: High. While simple on the surface, classification can become quite complex. It’s very valuable in corporate and research environments, but can feel like its not worth the work. A good analyst can execute it quickly to deliver results.
  • Nature of Data: the nature of data useful for classification is data sets. As we will see, it can be used on qualitative data as well as quantitative. This method requires knowledge of the substance behind the data, not just the numbers themselves.
  • Motive: the motive for classification is group data not based on mathematical relationships (which would be clustering), but by predetermined outputs. This is why it’s less useful for diagnostic analysis, and more useful for prescriptive analysis.

Forecasting Method

  • Description: the forecasting method uses time past series data to forecast the future.
  • Importance: Very high. Forecasting falls under predictive analysis and is arguably the most common and most important method in the corporate world. It is less useful in research, which prefers to understand the known rather than speculate about the future.
  • Nature of Data: data useful for forecasting is time series data, which, as we’ve noted, always includes a variable of time.
  • Motive: the motive for the forecasting method is the same as that of prescriptive analysis: the confidently estimate future values.

Optimization Method

  • Description: the optimization method maximized or minimizes values in a set given a set of criteria. It is arguably most common in prescriptive analysis. In mathematical terms, it is maximizing or minimizing a function given certain constraints.
  • Importance: Very high. The idea of optimization applies to more analysis types than any other method. In fact, some argue that it is the fundamental driver behind data analysis. You would use it everywhere in research and in a corporation.
  • Nature of Data: the nature of optimizable data is a data set of at least two points.
  • Motive: the motive behind optimization is to achieve the best result possible given certain conditions.

Content Analysis Method

  • Description: content analysis is a method of qualitative analysis that quantifies textual data to track themes across a document. It’s most common in academic fields and in social sciences, where written content is the subject of inquiry.
  • Importance: High. In a corporate setting, content analysis as such is less common. If anything Nïave Bayes (a technique we’ll look at below) is the closest corporations come to text. However, it is of the utmost importance for researchers. If you’re a researcher, check out this article on content analysis .
  • Nature of Data: data useful for content analysis is textual data.
  • Motive: the motive behind content analysis is to understand themes expressed in a large text

Narrative Analysis Method

  • Description: narrative analysis is a method of qualitative analysis that quantifies stories to trace themes in them. It’s differs from content analysis because it focuses on stories rather than research documents, and the techniques used are slightly different from those in content analysis (very nuances and outside the scope of this article).
  • Importance: Low. Unless you are highly specialized in working with stories, narrative analysis rare.
  • Nature of Data: the nature of the data useful for the narrative analysis method is narrative text.
  • Motive: the motive for narrative analysis is to uncover hidden patterns in narrative text.

Discourse Analysis Method

  • Description: the discourse analysis method falls under qualitative analysis and uses thematic coding to trace patterns in real-life discourse. That said, real-life discourse is oral, so it must first be transcribed into text.
  • Importance: Low. Unless you are focused on understand real-world idea sharing in a research setting, this kind of analysis is less common than the others on this list.
  • Nature of Data: the nature of data useful in discourse analysis is first audio files, then transcriptions of those audio files.
  • Motive: the motive behind discourse analysis is to trace patterns of real-world discussions. (As a spooky sidenote, have you ever felt like your phone microphone was listening to you and making reading suggestions? If it was, the method was discourse analysis.)

Framework Analysis Method

  • Description: the framework analysis method falls under qualitative analysis and uses similar thematic coding techniques to content analysis. However, where content analysis aims to discover themes, framework analysis starts with a framework and only considers elements that fall in its purview.
  • Importance: Low. As with the other textual analysis methods, framework analysis is less common in corporate settings. Even in the world of research, only some use it. Strangely, it’s very common for legislative and political research.
  • Nature of Data: the nature of data useful for framework analysis is textual.
  • Motive: the motive behind framework analysis is to understand what themes and parts of a text match your search criteria.

Grounded Theory Method

  • Description: the grounded theory method falls under qualitative analysis and uses thematic coding to build theories around those themes.
  • Importance: Low. Like other qualitative analysis techniques, grounded theory is less common in the corporate world. Even among researchers, you would be hard pressed to find many using it. Though powerful, it’s simply too rare to spend time learning.
  • Nature of Data: the nature of data useful in the grounded theory method is textual.
  • Motive: the motive of grounded theory method is to establish a series of theories based on themes uncovered from a text.

Clustering Technique: K-Means

  • Description: k-means is a clustering technique in which data points are grouped in clusters that have the closest means. Though not considered AI or ML, it inherently requires the use of supervised learning to reevaluate clusters as data points are added. Clustering techniques can be used in diagnostic, descriptive, & prescriptive data analyses.
  • Importance: Very important. If you only take 3 things from this article, k-means clustering should be part of it. It is useful in any situation where n observations have multiple characteristics and we want to put them in groups.
  • Nature of Data: the nature of data is at least one characteristic per observation, but the more the merrier.
  • Motive: the motive for clustering techniques such as k-means is to group observations together and either understand or react to them.

Regression Technique

  • Description: simple and multivariable regressions use either one independent variable or combination of multiple independent variables to calculate a correlation to a single dependent variable using constants. Regressions are almost synonymous with correlation today.
  • Importance: Very high. Along with clustering, if you only take 3 things from this article, regression techniques should be part of it. They’re everywhere in corporate and research fields alike.
  • Nature of Data: the nature of data used is regressions is data sets with “n” number of observations and as many variables as are reasonable. It’s important, however, to distinguish between time series data and regression data. You cannot use regressions or time series data without accounting for time. The easier way is to use techniques under the forecasting method.
  • Motive: The motive behind regression techniques is to understand correlations between independent variable(s) and a dependent one.

Nïave Bayes Technique

  • Description: Nïave Bayes is a classification technique that uses simple probability to classify items based previous classifications. In plain English, the formula would be “the chance that thing with trait x belongs to class c depends on (=) the overall chance of trait x belonging to class c, multiplied by the overall chance of class c, divided by the overall chance of getting trait x.” As a formula, it’s P(c|x) = P(x|c) * P(c) / P(x).
  • Importance: High. Nïave Bayes is a very common, simplistic classification techniques because it’s effective with large data sets and it can be applied to any instant in which there is a class. Google, for example, might use it to group webpages into groups for certain search engine queries.
  • Nature of Data: the nature of data for Nïave Bayes is at least one class and at least two traits in a data set.
  • Motive: the motive behind Nïave Bayes is to classify observations based on previous data. It’s thus considered part of predictive analysis.

Cohorts Technique

  • Description: cohorts technique is a type of clustering method used in behavioral sciences to separate users by common traits. As with clustering, it can be done intuitively or mathematically, the latter of which would simply be k-means.
  • Importance: Very high. With regard to resembles k-means, the cohort technique is more of a high-level counterpart. In fact, most people are familiar with it as a part of Google Analytics. It’s most common in marketing departments in corporations, rather than in research.
  • Nature of Data: the nature of cohort data is data sets in which users are the observation and other fields are used as defining traits for each cohort.
  • Motive: the motive for cohort analysis techniques is to group similar users and analyze how you retain them and how the churn.

Factor Technique

  • Description: the factor analysis technique is a way of grouping many traits into a single factor to expedite analysis. For example, factors can be used as traits for Nïave Bayes classifications instead of more general fields.
  • Importance: High. While not commonly employed in corporations, factor analysis is hugely valuable. Good data analysts use it to simplify their projects and communicate them more clearly.
  • Nature of Data: the nature of data useful in factor analysis techniques is data sets with a large number of fields on its observations.
  • Motive: the motive for using factor analysis techniques is to reduce the number of fields in order to more quickly analyze and communicate findings.

Linear Discriminants Technique

  • Description: linear discriminant analysis techniques are similar to regressions in that they use one or more independent variable to determine a dependent variable; however, the linear discriminant technique falls under a classifier method since it uses traits as independent variables and class as a dependent variable. In this way, it becomes a classifying method AND a predictive method.
  • Importance: High. Though the analyst world speaks of and uses linear discriminants less commonly, it’s a highly valuable technique to keep in mind as you progress in data analysis.
  • Nature of Data: the nature of data useful for the linear discriminant technique is data sets with many fields.
  • Motive: the motive for using linear discriminants is to classify observations that would be otherwise too complex for simple techniques like Nïave Bayes.

Exponential Smoothing Technique

  • Description: exponential smoothing is a technique falling under the forecasting method that uses a smoothing factor on prior data in order to predict future values. It can be linear or adjusted for seasonality. The basic principle behind exponential smoothing is to use a percent weight (value between 0 and 1 called alpha) on more recent values in a series and a smaller percent weight on less recent values. The formula is f(x) = current period value * alpha + previous period value * 1-alpha.
  • Importance: High. Most analysts still use the moving average technique (covered next) for forecasting, though it is less efficient than exponential moving, because it’s easy to understand. However, good analysts will have exponential smoothing techniques in their pocket to increase the value of their forecasts.
  • Nature of Data: the nature of data useful for exponential smoothing is time series data . Time series data has time as part of its fields .
  • Motive: the motive for exponential smoothing is to forecast future values with a smoothing variable.

Moving Average Technique

  • Description: the moving average technique falls under the forecasting method and uses an average of recent values to predict future ones. For example, to predict rainfall in April, you would take the average of rainfall from January to March. It’s simple, yet highly effective.
  • Importance: Very high. While I’m personally not a huge fan of moving averages due to their simplistic nature and lack of consideration for seasonality, they’re the most common forecasting technique and therefore very important.
  • Nature of Data: the nature of data useful for moving averages is time series data .
  • Motive: the motive for moving averages is to predict future values is a simple, easy-to-communicate way.

Neural Networks Technique

  • Description: neural networks are a highly complex artificial intelligence technique that replicate a human’s neural analysis through a series of hyper-rapid computations and comparisons that evolve in real time. This technique is so complex that an analyst must use computer programs to perform it.
  • Importance: Medium. While the potential for neural networks is theoretically unlimited, it’s still little understood and therefore uncommon. You do not need to know it by any means in order to be a data analyst.
  • Nature of Data: the nature of data useful for neural networks is data sets of astronomical size, meaning with 100s of 1000s of fields and the same number of row at a minimum .
  • Motive: the motive for neural networks is to understand wildly complex phenomenon and data to thereafter act on it.

Decision Tree Technique

  • Description: the decision tree technique uses artificial intelligence algorithms to rapidly calculate possible decision pathways and their outcomes on a real-time basis. It’s so complex that computer programs are needed to perform it.
  • Importance: Medium. As with neural networks, decision trees with AI are too little understood and are therefore uncommon in corporate and research settings alike.
  • Nature of Data: the nature of data useful for the decision tree technique is hierarchical data sets that show multiple optional fields for each preceding field.
  • Motive: the motive for decision tree techniques is to compute the optimal choices to make in order to achieve a desired result.

Evolutionary Programming Technique

  • Description: the evolutionary programming technique uses a series of neural networks, sees how well each one fits a desired outcome, and selects only the best to test and retest. It’s called evolutionary because is resembles the process of natural selection by weeding out weaker options.
  • Importance: Medium. As with the other AI techniques, evolutionary programming just isn’t well-understood enough to be usable in many cases. It’s complexity also makes it hard to explain in corporate settings and difficult to defend in research settings.
  • Nature of Data: the nature of data in evolutionary programming is data sets of neural networks, or data sets of data sets.
  • Motive: the motive for using evolutionary programming is similar to decision trees: understanding the best possible option from complex data.
  • Video example :

Fuzzy Logic Technique

  • Description: fuzzy logic is a type of computing based on “approximate truths” rather than simple truths such as “true” and “false.” It is essentially two tiers of classification. For example, to say whether “Apples are good,” you need to first classify that “Good is x, y, z.” Only then can you say apples are good. Another way to see it helping a computer see truth like humans do: “definitely true, probably true, maybe true, probably false, definitely false.”
  • Importance: Medium. Like the other AI techniques, fuzzy logic is uncommon in both research and corporate settings, which means it’s less important in today’s world.
  • Nature of Data: the nature of fuzzy logic data is huge data tables that include other huge data tables with a hierarchy including multiple subfields for each preceding field.
  • Motive: the motive of fuzzy logic to replicate human truth valuations in a computer is to model human decisions based on past data. The obvious possible application is marketing.

Text Analysis Technique

  • Description: text analysis techniques fall under the qualitative data analysis type and use text to extract insights.
  • Importance: Medium. Text analysis techniques, like all the qualitative analysis type, are most valuable for researchers.
  • Nature of Data: the nature of data useful in text analysis is words.
  • Motive: the motive for text analysis is to trace themes in a text across sets of very long documents, such as books.

Coding Technique

  • Description: the coding technique is used in textual analysis to turn ideas into uniform phrases and analyze the number of times and the ways in which those ideas appear. For this reason, some consider it a quantitative technique as well. You can learn more about coding and the other qualitative techniques here .
  • Importance: Very high. If you’re a researcher working in social sciences, coding is THE analysis techniques, and for good reason. It’s a great way to add rigor to analysis. That said, it’s less common in corporate settings.
  • Nature of Data: the nature of data useful for coding is long text documents.
  • Motive: the motive for coding is to make tracing ideas on paper more than an exercise of the mind by quantifying it and understanding is through descriptive methods.

Idea Pattern Technique

  • Description: the idea pattern analysis technique fits into coding as the second step of the process. Once themes and ideas are coded, simple descriptive analysis tests may be run. Some people even cluster the ideas!
  • Importance: Very high. If you’re a researcher, idea pattern analysis is as important as the coding itself.
  • Nature of Data: the nature of data useful for idea pattern analysis is already coded themes.
  • Motive: the motive for the idea pattern technique is to trace ideas in otherwise unmanageably-large documents.

Word Frequency Technique

  • Description: word frequency is a qualitative technique that stands in opposition to coding and uses an inductive approach to locate specific words in a document in order to understand its relevance. Word frequency is essentially the descriptive analysis of qualitative data because it uses stats like mean, median, and mode to gather insights.
  • Importance: High. As with the other qualitative approaches, word frequency is very important in social science research, but less so in corporate settings.
  • Nature of Data: the nature of data useful for word frequency is long, informative documents.
  • Motive: the motive for word frequency is to locate target words to determine the relevance of a document in question.

Types of data analysis in research

Types of data analysis in research methodology include every item discussed in this article. As a list, they are:

  • Quantitative
  • Qualitative
  • Mathematical
  • Machine Learning and AI
  • Descriptive
  • Prescriptive
  • Classification
  • Forecasting
  • Optimization
  • Grounded theory
  • Artificial Neural Networks
  • Decision Trees
  • Evolutionary Programming
  • Fuzzy Logic
  • Text analysis
  • Idea Pattern Analysis
  • Word Frequency Analysis
  • Nïave Bayes
  • Exponential smoothing
  • Moving average
  • Linear discriminant

Types of data analysis in qualitative research

As a list, the types of data analysis in qualitative research are the following methods:

Types of data analysis in quantitative research

As a list, the types of data analysis in quantitative research are:

Data analysis methods

As a list, data analysis methods are:

  • Content (qualitative)
  • Narrative (qualitative)
  • Discourse (qualitative)
  • Framework (qualitative)
  • Grounded theory (qualitative)

Quantitative data analysis methods

As a list, quantitative data analysis methods are:

Tabular View of Data Analysis Types, Methods, and Techniques

Types (Numeric or Non-numeric)Quantitative
Qualitative
Types tier 2 (Traditional Numeric or New Numeric)Mathematical
Artificial Intelligence (AI)
Types tier 3 (Informative Nature)Descriptive
Diagnostic
Predictive
Prescriptive
MethodsClustering
Classification
Forecasting
Optimization
Narrative analysis
Discourse analysis
Framework analysis
Grounded theory
TechniquesClustering (doubles as technique)
Regression (linear and multivariable)
Nïave Bayes
Cohorts
Factors
Linear Discriminants
Exponential smoothing
Moving average
Neural networks
Decision trees
Evolutionary programming
Fuzzy logic
Text analysis
Coding
Idea pattern analysis
Word frequency

About the Author

Noah is the founder & Editor-in-Chief at AnalystAnswers. He is a transatlantic professional and entrepreneur with 5+ years of corporate finance and data analytics experience, as well as 3+ years in consumer financial products and business software. He started AnalystAnswers to provide aspiring professionals with accessible explanations of otherwise dense finance and data concepts. Noah believes everyone can benefit from an analytical mindset in growing digital world. When he's not busy at work, Noah likes to explore new European cities, exercise, and spend time with friends and family.

File available immediately.

techniques of research data analysis

Notice: JavaScript is required for this content.

PW Skills | Blog

Data Analysis Techniques in Research – Methods, Tools & Examples

' src=

Varun Saharawat is a seasoned professional in the fields of SEO and content writing. With a profound knowledge of the intricate aspects of these disciplines, Varun has established himself as a valuable asset in the world of digital marketing and online content creation.

Data analysis techniques in research are essential because they allow researchers to derive meaningful insights from data sets to support their hypotheses or research objectives.

data analysis techniques in research

Data Analysis Techniques in Research : While various groups, institutions, and professionals may have diverse approaches to data analysis, a universal definition captures its essence. Data analysis involves refining, transforming, and interpreting raw data to derive actionable insights that guide informed decision-making for businesses.

A straightforward illustration of data analysis emerges when we make everyday decisions, basing our choices on past experiences or predictions of potential outcomes.

If you want to learn more about this topic and acquire valuable skills that will set you apart in today’s data-driven world, we highly recommend enrolling in the Data Analytics Course by Physics Wallah . And as a special offer for our readers, use the coupon code “READER” to get a discount on this course.

Table of Contents

What is Data Analysis?

Data analysis is the systematic process of inspecting, cleaning, transforming, and interpreting data with the objective of discovering valuable insights and drawing meaningful conclusions. This process involves several steps:

  • Inspecting : Initial examination of data to understand its structure, quality, and completeness.
  • Cleaning : Removing errors, inconsistencies, or irrelevant information to ensure accurate analysis.
  • Transforming : Converting data into a format suitable for analysis, such as normalization or aggregation.
  • Interpreting : Analyzing the transformed data to identify patterns, trends, and relationships.

Types of Data Analysis Techniques in Research

Data analysis techniques in research are categorized into qualitative and quantitative methods, each with its specific approaches and tools. These techniques are instrumental in extracting meaningful insights, patterns, and relationships from data to support informed decision-making, validate hypotheses, and derive actionable recommendations. Below is an in-depth exploration of the various types of data analysis techniques commonly employed in research:

1) Qualitative Analysis:

Definition: Qualitative analysis focuses on understanding non-numerical data, such as opinions, concepts, or experiences, to derive insights into human behavior, attitudes, and perceptions.

  • Content Analysis: Examines textual data, such as interview transcripts, articles, or open-ended survey responses, to identify themes, patterns, or trends.
  • Narrative Analysis: Analyzes personal stories or narratives to understand individuals’ experiences, emotions, or perspectives.
  • Ethnographic Studies: Involves observing and analyzing cultural practices, behaviors, and norms within specific communities or settings.

2) Quantitative Analysis:

Quantitative analysis emphasizes numerical data and employs statistical methods to explore relationships, patterns, and trends. It encompasses several approaches:

Descriptive Analysis:

  • Frequency Distribution: Represents the number of occurrences of distinct values within a dataset.
  • Central Tendency: Measures such as mean, median, and mode provide insights into the central values of a dataset.
  • Dispersion: Techniques like variance and standard deviation indicate the spread or variability of data.

Diagnostic Analysis:

  • Regression Analysis: Assesses the relationship between dependent and independent variables, enabling prediction or understanding causality.
  • ANOVA (Analysis of Variance): Examines differences between groups to identify significant variations or effects.

Predictive Analysis:

  • Time Series Forecasting: Uses historical data points to predict future trends or outcomes.
  • Machine Learning Algorithms: Techniques like decision trees, random forests, and neural networks predict outcomes based on patterns in data.

Prescriptive Analysis:

  • Optimization Models: Utilizes linear programming, integer programming, or other optimization techniques to identify the best solutions or strategies.
  • Simulation: Mimics real-world scenarios to evaluate various strategies or decisions and determine optimal outcomes.

Specific Techniques:

  • Monte Carlo Simulation: Models probabilistic outcomes to assess risk and uncertainty.
  • Factor Analysis: Reduces the dimensionality of data by identifying underlying factors or components.
  • Cohort Analysis: Studies specific groups or cohorts over time to understand trends, behaviors, or patterns within these groups.
  • Cluster Analysis: Classifies objects or individuals into homogeneous groups or clusters based on similarities or attributes.
  • Sentiment Analysis: Uses natural language processing and machine learning techniques to determine sentiment, emotions, or opinions from textual data.

Also Read: AI and Predictive Analytics: Examples, Tools, Uses, Ai Vs Predictive Analytics

Data Analysis Techniques in Research Examples

To provide a clearer understanding of how data analysis techniques are applied in research, let’s consider a hypothetical research study focused on evaluating the impact of online learning platforms on students’ academic performance.

Research Objective:

Determine if students using online learning platforms achieve higher academic performance compared to those relying solely on traditional classroom instruction.

Data Collection:

  • Quantitative Data: Academic scores (grades) of students using online platforms and those using traditional classroom methods.
  • Qualitative Data: Feedback from students regarding their learning experiences, challenges faced, and preferences.

Data Analysis Techniques Applied:

1) Descriptive Analysis:

  • Calculate the mean, median, and mode of academic scores for both groups.
  • Create frequency distributions to represent the distribution of grades in each group.

2) Diagnostic Analysis:

  • Conduct an Analysis of Variance (ANOVA) to determine if there’s a statistically significant difference in academic scores between the two groups.
  • Perform Regression Analysis to assess the relationship between the time spent on online platforms and academic performance.

3) Predictive Analysis:

  • Utilize Time Series Forecasting to predict future academic performance trends based on historical data.
  • Implement Machine Learning algorithms to develop a predictive model that identifies factors contributing to academic success on online platforms.

4) Prescriptive Analysis:

  • Apply Optimization Models to identify the optimal combination of online learning resources (e.g., video lectures, interactive quizzes) that maximize academic performance.
  • Use Simulation Techniques to evaluate different scenarios, such as varying student engagement levels with online resources, to determine the most effective strategies for improving learning outcomes.

5) Specific Techniques:

  • Conduct Factor Analysis on qualitative feedback to identify common themes or factors influencing students’ perceptions and experiences with online learning.
  • Perform Cluster Analysis to segment students based on their engagement levels, preferences, or academic outcomes, enabling targeted interventions or personalized learning strategies.
  • Apply Sentiment Analysis on textual feedback to categorize students’ sentiments as positive, negative, or neutral regarding online learning experiences.

By applying a combination of qualitative and quantitative data analysis techniques, this research example aims to provide comprehensive insights into the effectiveness of online learning platforms.

Also Read: Learning Path to Become a Data Analyst in 2024

Data Analysis Techniques in Quantitative Research

Quantitative research involves collecting numerical data to examine relationships, test hypotheses, and make predictions. Various data analysis techniques are employed to interpret and draw conclusions from quantitative data. Here are some key data analysis techniques commonly used in quantitative research:

1) Descriptive Statistics:

  • Description: Descriptive statistics are used to summarize and describe the main aspects of a dataset, such as central tendency (mean, median, mode), variability (range, variance, standard deviation), and distribution (skewness, kurtosis).
  • Applications: Summarizing data, identifying patterns, and providing initial insights into the dataset.

2) Inferential Statistics:

  • Description: Inferential statistics involve making predictions or inferences about a population based on a sample of data. This technique includes hypothesis testing, confidence intervals, t-tests, chi-square tests, analysis of variance (ANOVA), regression analysis, and correlation analysis.
  • Applications: Testing hypotheses, making predictions, and generalizing findings from a sample to a larger population.

3) Regression Analysis:

  • Description: Regression analysis is a statistical technique used to model and examine the relationship between a dependent variable and one or more independent variables. Linear regression, multiple regression, logistic regression, and nonlinear regression are common types of regression analysis .
  • Applications: Predicting outcomes, identifying relationships between variables, and understanding the impact of independent variables on the dependent variable.

4) Correlation Analysis:

  • Description: Correlation analysis is used to measure and assess the strength and direction of the relationship between two or more variables. The Pearson correlation coefficient, Spearman rank correlation coefficient, and Kendall’s tau are commonly used measures of correlation.
  • Applications: Identifying associations between variables and assessing the degree and nature of the relationship.

5) Factor Analysis:

  • Description: Factor analysis is a multivariate statistical technique used to identify and analyze underlying relationships or factors among a set of observed variables. It helps in reducing the dimensionality of data and identifying latent variables or constructs.
  • Applications: Identifying underlying factors or constructs, simplifying data structures, and understanding the underlying relationships among variables.

6) Time Series Analysis:

  • Description: Time series analysis involves analyzing data collected or recorded over a specific period at regular intervals to identify patterns, trends, and seasonality. Techniques such as moving averages, exponential smoothing, autoregressive integrated moving average (ARIMA), and Fourier analysis are used.
  • Applications: Forecasting future trends, analyzing seasonal patterns, and understanding time-dependent relationships in data.

7) ANOVA (Analysis of Variance):

  • Description: Analysis of variance (ANOVA) is a statistical technique used to analyze and compare the means of two or more groups or treatments to determine if they are statistically different from each other. One-way ANOVA, two-way ANOVA, and MANOVA (Multivariate Analysis of Variance) are common types of ANOVA.
  • Applications: Comparing group means, testing hypotheses, and determining the effects of categorical independent variables on a continuous dependent variable.

8) Chi-Square Tests:

  • Description: Chi-square tests are non-parametric statistical tests used to assess the association between categorical variables in a contingency table. The Chi-square test of independence, goodness-of-fit test, and test of homogeneity are common chi-square tests.
  • Applications: Testing relationships between categorical variables, assessing goodness-of-fit, and evaluating independence.

These quantitative data analysis techniques provide researchers with valuable tools and methods to analyze, interpret, and derive meaningful insights from numerical data. The selection of a specific technique often depends on the research objectives, the nature of the data, and the underlying assumptions of the statistical methods being used.

Also Read: Analysis vs. Analytics: How Are They Different?

Data Analysis Methods

Data analysis methods refer to the techniques and procedures used to analyze, interpret, and draw conclusions from data. These methods are essential for transforming raw data into meaningful insights, facilitating decision-making processes, and driving strategies across various fields. Here are some common data analysis methods:

  • Description: Descriptive statistics summarize and organize data to provide a clear and concise overview of the dataset. Measures such as mean, median, mode, range, variance, and standard deviation are commonly used.
  • Description: Inferential statistics involve making predictions or inferences about a population based on a sample of data. Techniques such as hypothesis testing, confidence intervals, and regression analysis are used.

3) Exploratory Data Analysis (EDA):

  • Description: EDA techniques involve visually exploring and analyzing data to discover patterns, relationships, anomalies, and insights. Methods such as scatter plots, histograms, box plots, and correlation matrices are utilized.
  • Applications: Identifying trends, patterns, outliers, and relationships within the dataset.

4) Predictive Analytics:

  • Description: Predictive analytics use statistical algorithms and machine learning techniques to analyze historical data and make predictions about future events or outcomes. Techniques such as regression analysis, time series forecasting, and machine learning algorithms (e.g., decision trees, random forests, neural networks) are employed.
  • Applications: Forecasting future trends, predicting outcomes, and identifying potential risks or opportunities.

5) Prescriptive Analytics:

  • Description: Prescriptive analytics involve analyzing data to recommend actions or strategies that optimize specific objectives or outcomes. Optimization techniques, simulation models, and decision-making algorithms are utilized.
  • Applications: Recommending optimal strategies, decision-making support, and resource allocation.

6) Qualitative Data Analysis:

  • Description: Qualitative data analysis involves analyzing non-numerical data, such as text, images, videos, or audio, to identify themes, patterns, and insights. Methods such as content analysis, thematic analysis, and narrative analysis are used.
  • Applications: Understanding human behavior, attitudes, perceptions, and experiences.

7) Big Data Analytics:

  • Description: Big data analytics methods are designed to analyze large volumes of structured and unstructured data to extract valuable insights. Technologies such as Hadoop, Spark, and NoSQL databases are used to process and analyze big data.
  • Applications: Analyzing large datasets, identifying trends, patterns, and insights from big data sources.

8) Text Analytics:

  • Description: Text analytics methods involve analyzing textual data, such as customer reviews, social media posts, emails, and documents, to extract meaningful information and insights. Techniques such as sentiment analysis, text mining, and natural language processing (NLP) are used.
  • Applications: Analyzing customer feedback, monitoring brand reputation, and extracting insights from textual data sources.

These data analysis methods are instrumental in transforming data into actionable insights, informing decision-making processes, and driving organizational success across various sectors, including business, healthcare, finance, marketing, and research. The selection of a specific method often depends on the nature of the data, the research objectives, and the analytical requirements of the project or organization.

Also Read: Quantitative Data Analysis: Types, Analysis & Examples

Data Analysis Tools

Data analysis tools are essential instruments that facilitate the process of examining, cleaning, transforming, and modeling data to uncover useful information, make informed decisions, and drive strategies. Here are some prominent data analysis tools widely used across various industries:

1) Microsoft Excel:

  • Description: A spreadsheet software that offers basic to advanced data analysis features, including pivot tables, data visualization tools, and statistical functions.
  • Applications: Data cleaning, basic statistical analysis, visualization, and reporting.

2) R Programming Language :

  • Description: An open-source programming language specifically designed for statistical computing and data visualization.
  • Applications: Advanced statistical analysis, data manipulation, visualization, and machine learning.

3) Python (with Libraries like Pandas, NumPy, Matplotlib, and Seaborn):

  • Description: A versatile programming language with libraries that support data manipulation, analysis, and visualization.
  • Applications: Data cleaning, statistical analysis, machine learning, and data visualization.

4) SPSS (Statistical Package for the Social Sciences):

  • Description: A comprehensive statistical software suite used for data analysis, data mining, and predictive analytics.
  • Applications: Descriptive statistics, hypothesis testing, regression analysis, and advanced analytics.

5) SAS (Statistical Analysis System):

  • Description: A software suite used for advanced analytics, multivariate analysis, and predictive modeling.
  • Applications: Data management, statistical analysis, predictive modeling, and business intelligence.

6) Tableau:

  • Description: A data visualization tool that allows users to create interactive and shareable dashboards and reports.
  • Applications: Data visualization , business intelligence , and interactive dashboard creation.

7) Power BI:

  • Description: A business analytics tool developed by Microsoft that provides interactive visualizations and business intelligence capabilities.
  • Applications: Data visualization, business intelligence, reporting, and dashboard creation.

8) SQL (Structured Query Language) Databases (e.g., MySQL, PostgreSQL, Microsoft SQL Server):

  • Description: Database management systems that support data storage, retrieval, and manipulation using SQL queries.
  • Applications: Data retrieval, data cleaning, data transformation, and database management.

9) Apache Spark:

  • Description: A fast and general-purpose distributed computing system designed for big data processing and analytics.
  • Applications: Big data processing, machine learning, data streaming, and real-time analytics.

10) IBM SPSS Modeler:

  • Description: A data mining software application used for building predictive models and conducting advanced analytics.
  • Applications: Predictive modeling, data mining, statistical analysis, and decision optimization.

These tools serve various purposes and cater to different data analysis needs, from basic statistical analysis and data visualization to advanced analytics, machine learning, and big data processing. The choice of a specific tool often depends on the nature of the data, the complexity of the analysis, and the specific requirements of the project or organization.

Also Read: How to Analyze Survey Data: Methods & Examples

Importance of Data Analysis in Research

The importance of data analysis in research cannot be overstated; it serves as the backbone of any scientific investigation or study. Here are several key reasons why data analysis is crucial in the research process:

  • Data analysis helps ensure that the results obtained are valid and reliable. By systematically examining the data, researchers can identify any inconsistencies or anomalies that may affect the credibility of the findings.
  • Effective data analysis provides researchers with the necessary information to make informed decisions. By interpreting the collected data, researchers can draw conclusions, make predictions, or formulate recommendations based on evidence rather than intuition or guesswork.
  • Data analysis allows researchers to identify patterns, trends, and relationships within the data. This can lead to a deeper understanding of the research topic, enabling researchers to uncover insights that may not be immediately apparent.
  • In empirical research, data analysis plays a critical role in testing hypotheses. Researchers collect data to either support or refute their hypotheses, and data analysis provides the tools and techniques to evaluate these hypotheses rigorously.
  • Transparent and well-executed data analysis enhances the credibility of research findings. By clearly documenting the data analysis methods and procedures, researchers allow others to replicate the study, thereby contributing to the reproducibility of research findings.
  • In fields such as business or healthcare, data analysis helps organizations allocate resources more efficiently. By analyzing data on consumer behavior, market trends, or patient outcomes, organizations can make strategic decisions about resource allocation, budgeting, and planning.
  • In public policy and social sciences, data analysis is instrumental in developing and evaluating policies and interventions. By analyzing data on social, economic, or environmental factors, policymakers can assess the effectiveness of existing policies and inform the development of new ones.
  • Data analysis allows for continuous improvement in research methods and practices. By analyzing past research projects, identifying areas for improvement, and implementing changes based on data-driven insights, researchers can refine their approaches and enhance the quality of future research endeavors.

However, it is important to remember that mastering these techniques requires practice and continuous learning. That’s why we highly recommend the Data Analytics Course by Physics Wallah . Not only does it cover all the fundamentals of data analysis, but it also provides hands-on experience with various tools such as Excel, Python, and Tableau. Plus, if you use the “ READER ” coupon code at checkout, you can get a special discount on the course.

For Latest Tech Related Information, Join Our Official Free Telegram Group : PW Skills Telegram Group

Data Analysis Techniques in Research FAQs

What are the 5 techniques for data analysis.

The five techniques for data analysis include: Descriptive Analysis Diagnostic Analysis Predictive Analysis Prescriptive Analysis Qualitative Analysis

What are techniques of data analysis in research?

Techniques of data analysis in research encompass both qualitative and quantitative methods. These techniques involve processes like summarizing raw data, investigating causes of events, forecasting future outcomes, offering recommendations based on predictions, and examining non-numerical data to understand concepts or experiences.

What are the 3 methods of data analysis?

The three primary methods of data analysis are: Qualitative Analysis Quantitative Analysis Mixed-Methods Analysis

What are the four types of data analysis techniques?

The four types of data analysis techniques are: Descriptive Analysis Diagnostic Analysis Predictive Analysis Prescriptive Analysis

  • What Is Data Integrity? Definition, Types, and Best Practices

Data integrity

Data integrity is a process that keeps data accurate and consistent over its entire life. Data integrity ensures that information…

  • Data Handling – Definition, Steps, Graphical Representation, Examples

Data Handling

Data handling is the process of collecting, managing, and representing data in such a way that it is easy to…

  • What Is Data Management? | Definition, Importance, & Processes

Data Management

Data management is the process of collecting, organizing, managing, and storing data in a useful manner that helps organizations in…

right adv

Related Articles

  • Data Modeling – Overview, Concepts, and Types
  • Descriptive Analytics: What It Is and Related Terms
  • What is Prescriptive Analytics? Definition & Examples
  • 10 Best Companies For Data Analysis Internships 2024
  • 9 Deep Learning Books to Check Out!
  • Top Best Big Data Analytics Classes 2024
  • Data Analyst Roadmap 2024: Responsibilities, Skills Required, Career Path

bottom banner

The 7 Most Useful Data Analysis Methods and Techniques

Data analytics is the process of analyzing raw data to draw out meaningful insights. These insights are then used to determine the best course of action.

When is the best time to roll out that marketing campaign? Is the current team structure as effective as it could be? Which customer segments are most likely to purchase your new product?

Ultimately, data analytics is a crucial driver of any successful business strategy. But how do data analysts actually turn raw data into something useful? There are a range of methods and techniques that data analysts use depending on the type of data in question and the kinds of insights they want to uncover.

You can get a hands-on introduction to data analytics in this free short course .

In this post, we’ll explore some of the most useful data analysis techniques. By the end, you’ll have a much clearer idea of how you can transform meaningless data into business intelligence. We’ll cover:

  • What is data analysis and why is it important?
  • What is the difference between qualitative and quantitative data?
  • Regression analysis
  • Monte Carlo simulation
  • Factor analysis
  • Cohort analysis
  • Cluster analysis
  • Time series analysis
  • Sentiment analysis
  • The data analysis process
  • The best tools for data analysis
  •  Key takeaways

The first six methods listed are used for quantitative data , while the last technique applies to qualitative data. We briefly explain the difference between quantitative and qualitative data in section two, but if you want to skip straight to a particular analysis technique, just use the clickable menu.

1. What is data analysis and why is it important?

Data analysis is, put simply, the process of discovering useful information by evaluating data. This is done through a process of inspecting, cleaning, transforming, and modeling data using analytical and statistical tools, which we will explore in detail further along in this article.

Why is data analysis important? Analyzing data effectively helps organizations make business decisions. Nowadays, data is collected by businesses constantly: through surveys, online tracking, online marketing analytics, collected subscription and registration data (think newsletters), social media monitoring, among other methods.

These data will appear as different structures, including—but not limited to—the following:

The concept of big data —data that is so large, fast, or complex, that it is difficult or impossible to process using traditional methods—gained momentum in the early 2000s. Then, Doug Laney, an industry analyst, articulated what is now known as the mainstream definition of big data as the three Vs: volume, velocity, and variety. 

  • Volume: As mentioned earlier, organizations are collecting data constantly. In the not-too-distant past it would have been a real issue to store, but nowadays storage is cheap and takes up little space.
  • Velocity: Received data needs to be handled in a timely manner. With the growth of the Internet of Things, this can mean these data are coming in constantly, and at an unprecedented speed.
  • Variety: The data being collected and stored by organizations comes in many forms, ranging from structured data—that is, more traditional, numerical data—to unstructured data—think emails, videos, audio, and so on. We’ll cover structured and unstructured data a little further on.

This is a form of data that provides information about other data, such as an image. In everyday life you’ll find this by, for example, right-clicking on a file in a folder and selecting “Get Info”, which will show you information such as file size and kind, date of creation, and so on.

Real-time data

This is data that is presented as soon as it is acquired. A good example of this is a stock market ticket, which provides information on the most-active stocks in real time.

Machine data

This is data that is produced wholly by machines, without human instruction. An example of this could be call logs automatically generated by your smartphone.

Quantitative and qualitative data

Quantitative data—otherwise known as structured data— may appear as a “traditional” database—that is, with rows and columns. Qualitative data—otherwise known as unstructured data—are the other types of data that don’t fit into rows and columns, which can include text, images, videos and more. We’ll discuss this further in the next section.

2. What is the difference between quantitative and qualitative data?

How you analyze your data depends on the type of data you’re dealing with— quantitative or qualitative . So what’s the difference?

Quantitative data is anything measurable , comprising specific quantities and numbers. Some examples of quantitative data include sales figures, email click-through rates, number of website visitors, and percentage revenue increase. Quantitative data analysis techniques focus on the statistical, mathematical, or numerical analysis of (usually large) datasets. This includes the manipulation of statistical data using computational techniques and algorithms. Quantitative analysis techniques are often used to explain certain phenomena or to make predictions.

Qualitative data cannot be measured objectively , and is therefore open to more subjective interpretation. Some examples of qualitative data include comments left in response to a survey question, things people have said during interviews, tweets and other social media posts, and the text included in product reviews. With qualitative data analysis, the focus is on making sense of unstructured data (such as written text, or transcripts of spoken conversations). Often, qualitative analysis will organize the data into themes—a process which, fortunately, can be automated.

Data analysts work with both quantitative and qualitative data , so it’s important to be familiar with a variety of analysis methods. Let’s take a look at some of the most useful techniques now.

3. Data analysis techniques

Now we’re familiar with some of the different types of data, let’s focus on the topic at hand: different methods for analyzing data. 

a. Regression analysis

Regression analysis is used to estimate the relationship between a set of variables. When conducting any type of regression analysis , you’re looking to see if there’s a correlation between a dependent variable (that’s the variable or outcome you want to measure or predict) and any number of independent variables (factors which may have an impact on the dependent variable). The aim of regression analysis is to estimate how one or more variables might impact the dependent variable, in order to identify trends and patterns. This is especially useful for making predictions and forecasting future trends.

Let’s imagine you work for an ecommerce company and you want to examine the relationship between: (a) how much money is spent on social media marketing, and (b) sales revenue. In this case, sales revenue is your dependent variable—it’s the factor you’re most interested in predicting and boosting. Social media spend is your independent variable; you want to determine whether or not it has an impact on sales and, ultimately, whether it’s worth increasing, decreasing, or keeping the same. Using regression analysis, you’d be able to see if there’s a relationship between the two variables. A positive correlation would imply that the more you spend on social media marketing, the more sales revenue you make. No correlation at all might suggest that social media marketing has no bearing on your sales. Understanding the relationship between these two variables would help you to make informed decisions about the social media budget going forward. However: It’s important to note that, on their own, regressions can only be used to determine whether or not there is a relationship between a set of variables—they don’t tell you anything about cause and effect. So, while a positive correlation between social media spend and sales revenue may suggest that one impacts the other, it’s impossible to draw definitive conclusions based on this analysis alone.

There are many different types of regression analysis, and the model you use depends on the type of data you have for the dependent variable. For example, your dependent variable might be continuous (i.e. something that can be measured on a continuous scale, such as sales revenue in USD), in which case you’d use a different type of regression analysis than if your dependent variable was categorical in nature (i.e. comprising values that can be categorised into a number of distinct groups based on a certain characteristic, such as customer location by continent). You can learn more about different types of dependent variables and how to choose the right regression analysis in this guide .

Regression analysis in action: Investigating the relationship between clothing brand Benetton’s advertising expenditure and sales

b. Monte Carlo simulation

When making decisions or taking certain actions, there are a range of different possible outcomes. If you take the bus, you might get stuck in traffic. If you walk, you might get caught in the rain or bump into your chatty neighbor, potentially delaying your journey. In everyday life, we tend to briefly weigh up the pros and cons before deciding which action to take; however, when the stakes are high, it’s essential to calculate, as thoroughly and accurately as possible, all the potential risks and rewards.

Monte Carlo simulation, otherwise known as the Monte Carlo method, is a computerized technique used to generate models of possible outcomes and their probability distributions. It essentially considers a range of possible outcomes and then calculates how likely it is that each particular outcome will be realized. The Monte Carlo method is used by data analysts to conduct advanced risk analysis, allowing them to better forecast what might happen in the future and make decisions accordingly.

So how does Monte Carlo simulation work, and what can it tell us? To run a Monte Carlo simulation, you’ll start with a mathematical model of your data—such as a spreadsheet. Within your spreadsheet, you’ll have one or several outputs that you’re interested in; profit, for example, or number of sales. You’ll also have a number of inputs; these are variables that may impact your output variable. If you’re looking at profit, relevant inputs might include the number of sales, total marketing spend, and employee salaries. If you knew the exact, definitive values of all your input variables, you’d quite easily be able to calculate what profit you’d be left with at the end. However, when these values are uncertain, a Monte Carlo simulation enables you to calculate all the possible options and their probabilities. What will your profit be if you make 100,000 sales and hire five new employees on a salary of $50,000 each? What is the likelihood of this outcome? What will your profit be if you only make 12,000 sales and hire five new employees? And so on. It does this by replacing all uncertain values with functions which generate random samples from distributions determined by you, and then running a series of calculations and recalculations to produce models of all the possible outcomes and their probability distributions. The Monte Carlo method is one of the most popular techniques for calculating the effect of unpredictable variables on a specific output variable, making it ideal for risk analysis.

Monte Carlo simulation in action: A case study using Monte Carlo simulation for risk analysis

 c. Factor analysis

Factor analysis is a technique used to reduce a large number of variables to a smaller number of factors. It works on the basis that multiple separate, observable variables correlate with each other because they are all associated with an underlying construct. This is useful not only because it condenses large datasets into smaller, more manageable samples, but also because it helps to uncover hidden patterns. This allows you to explore concepts that cannot be easily measured or observed—such as wealth, happiness, fitness, or, for a more business-relevant example, customer loyalty and satisfaction.

Let’s imagine you want to get to know your customers better, so you send out a rather long survey comprising one hundred questions. Some of the questions relate to how they feel about your company and product; for example, “Would you recommend us to a friend?” and “How would you rate the overall customer experience?” Other questions ask things like “What is your yearly household income?” and “How much are you willing to spend on skincare each month?”

Once your survey has been sent out and completed by lots of customers, you end up with a large dataset that essentially tells you one hundred different things about each customer (assuming each customer gives one hundred responses). Instead of looking at each of these responses (or variables) individually, you can use factor analysis to group them into factors that belong together—in other words, to relate them to a single underlying construct. In this example, factor analysis works by finding survey items that are strongly correlated. This is known as covariance . So, if there’s a strong positive correlation between household income and how much they’re willing to spend on skincare each month (i.e. as one increases, so does the other), these items may be grouped together. Together with other variables (survey responses), you may find that they can be reduced to a single factor such as “consumer purchasing power”. Likewise, if a customer experience rating of 10/10 correlates strongly with “yes” responses regarding how likely they are to recommend your product to a friend, these items may be reduced to a single factor such as “customer satisfaction”.

In the end, you have a smaller number of factors rather than hundreds of individual variables. These factors are then taken forward for further analysis, allowing you to learn more about your customers (or any other area you’re interested in exploring).

Factor analysis in action: Using factor analysis to explore customer behavior patterns in Tehran

d. Cohort analysis

Cohort analysis is a data analytics technique that groups users based on a shared characteristic , such as the date they signed up for a service or the product they purchased. Once users are grouped into cohorts, analysts can track their behavior over time to identify trends and patterns.

So what does this mean and why is it useful? Let’s break down the above definition further. A cohort is a group of people who share a common characteristic (or action) during a given time period. Students who enrolled at university in 2020 may be referred to as the 2020 cohort. Customers who purchased something from your online store via the app in the month of December may also be considered a cohort.

With cohort analysis, you’re dividing your customers or users into groups and looking at how these groups behave over time. So, rather than looking at a single, isolated snapshot of all your customers at a given moment in time (with each customer at a different point in their journey), you’re examining your customers’ behavior in the context of the customer lifecycle. As a result, you can start to identify patterns of behavior at various points in the customer journey—say, from their first ever visit to your website, through to email newsletter sign-up, to their first purchase, and so on. As such, cohort analysis is dynamic, allowing you to uncover valuable insights about the customer lifecycle.

This is useful because it allows companies to tailor their service to specific customer segments (or cohorts). Let’s imagine you run a 50% discount campaign in order to attract potential new customers to your website. Once you’ve attracted a group of new customers (a cohort), you’ll want to track whether they actually buy anything and, if they do, whether or not (and how frequently) they make a repeat purchase. With these insights, you’ll start to gain a much better understanding of when this particular cohort might benefit from another discount offer or retargeting ads on social media, for example. Ultimately, cohort analysis allows companies to optimize their service offerings (and marketing) to provide a more targeted, personalized experience. You can learn more about how to run cohort analysis using Google Analytics .

Cohort analysis in action: How Ticketmaster used cohort analysis to boost revenue

e. Cluster analysis

Cluster analysis is an exploratory technique that seeks to identify structures within a dataset. The goal of cluster analysis is to sort different data points into groups (or clusters) that are internally homogeneous and externally heterogeneous. This means that data points within a cluster are similar to each other, and dissimilar to data points in another cluster. Clustering is used to gain insight into how data is distributed in a given dataset, or as a preprocessing step for other algorithms.

There are many real-world applications of cluster analysis. In marketing, cluster analysis is commonly used to group a large customer base into distinct segments, allowing for a more targeted approach to advertising and communication. Insurance firms might use cluster analysis to investigate why certain locations are associated with a high number of insurance claims. Another common application is in geology, where experts will use cluster analysis to evaluate which cities are at greatest risk of earthquakes (and thus try to mitigate the risk with protective measures).

It’s important to note that, while cluster analysis may reveal structures within your data, it won’t explain why those structures exist. With that in mind, cluster analysis is a useful starting point for understanding your data and informing further analysis. Clustering algorithms are also used in machine learning—you can learn more about clustering in machine learning in our guide .

Cluster analysis in action: Using cluster analysis for customer segmentation—a telecoms case study example

f. Time series analysis

Time series analysis is a statistical technique used to identify trends and cycles over time. Time series data is a sequence of data points which measure the same variable at different points in time (for example, weekly sales figures or monthly email sign-ups). By looking at time-related trends, analysts are able to forecast how the variable of interest may fluctuate in the future.

When conducting time series analysis, the main patterns you’ll be looking out for in your data are:

  • Trends: Stable, linear increases or decreases over an extended time period.
  • Seasonality: Predictable fluctuations in the data due to seasonal factors over a short period of time. For example, you might see a peak in swimwear sales in summer around the same time every year.
  • Cyclic patterns: Unpredictable cycles where the data fluctuates. Cyclical trends are not due to seasonality, but rather, may occur as a result of economic or industry-related conditions.

As you can imagine, the ability to make informed predictions about the future has immense value for business. Time series analysis and forecasting is used across a variety of industries, most commonly for stock market analysis, economic forecasting, and sales forecasting. There are different types of time series models depending on the data you’re using and the outcomes you want to predict. These models are typically classified into three broad types: the autoregressive (AR) models, the integrated (I) models, and the moving average (MA) models. For an in-depth look at time series analysis, refer to our guide .

Time series analysis in action: Developing a time series model to predict jute yarn demand in Bangladesh

g. Sentiment analysis

When you think of data, your mind probably automatically goes to numbers and spreadsheets.

Many companies overlook the value of qualitative data, but in reality, there are untold insights to be gained from what people (especially customers) write and say about you. So how do you go about analyzing textual data?

One highly useful qualitative technique is sentiment analysis , a technique which belongs to the broader category of text analysis —the (usually automated) process of sorting and understanding textual data.

With sentiment analysis, the goal is to interpret and classify the emotions conveyed within textual data. From a business perspective, this allows you to ascertain how your customers feel about various aspects of your brand, product, or service.

There are several different types of sentiment analysis models, each with a slightly different focus. The three main types include:

Fine-grained sentiment analysis

If you want to focus on opinion polarity (i.e. positive, neutral, or negative) in depth, fine-grained sentiment analysis will allow you to do so.

For example, if you wanted to interpret star ratings given by customers, you might use fine-grained sentiment analysis to categorize the various ratings along a scale ranging from very positive to very negative.

Emotion detection

This model often uses complex machine learning algorithms to pick out various emotions from your textual data.

You might use an emotion detection model to identify words associated with happiness, anger, frustration, and excitement, giving you insight into how your customers feel when writing about you or your product on, say, a product review site.

Aspect-based sentiment analysis

This type of analysis allows you to identify what specific aspects the emotions or opinions relate to, such as a certain product feature or a new ad campaign.

If a customer writes that they “find the new Instagram advert so annoying”, your model should detect not only a negative sentiment, but also the object towards which it’s directed.

In a nutshell, sentiment analysis uses various Natural Language Processing (NLP) algorithms and systems which are trained to associate certain inputs (for example, certain words) with certain outputs.

For example, the input “annoying” would be recognized and tagged as “negative”. Sentiment analysis is crucial to understanding how your customers feel about you and your products, for identifying areas for improvement, and even for averting PR disasters in real-time!

Sentiment analysis in action: 5 Real-world sentiment analysis case studies

4. The data analysis process

In order to gain meaningful insights from data, data analysts will perform a rigorous step-by-step process. We go over this in detail in our step by step guide to the data analysis process —but, to briefly summarize, the data analysis process generally consists of the following phases:

Defining the question

The first step for any data analyst will be to define the objective of the analysis, sometimes called a ‘problem statement’. Essentially, you’re asking a question with regards to a business problem you’re trying to solve. Once you’ve defined this, you’ll then need to determine which data sources will help you answer this question.

Collecting the data

Now that you’ve defined your objective, the next step will be to set up a strategy for collecting and aggregating the appropriate data. Will you be using quantitative (numeric) or qualitative (descriptive) data? Do these data fit into first-party, second-party, or third-party data?

Learn more: Quantitative vs. Qualitative Data: What’s the Difference? 

Cleaning the data

Unfortunately, your collected data isn’t automatically ready for analysis—you’ll have to clean it first. As a data analyst, this phase of the process will take up the most time. During the data cleaning process, you will likely be:

  • Removing major errors, duplicates, and outliers
  • Removing unwanted data points
  • Structuring the data—that is, fixing typos, layout issues, etc.
  • Filling in major gaps in data

Analyzing the data

Now that we’ve finished cleaning the data, it’s time to analyze it! Many analysis methods have already been described in this article, and it’s up to you to decide which one will best suit the assigned objective. It may fall under one of the following categories:

  • Descriptive analysis , which identifies what has already happened
  • Diagnostic analysis , which focuses on understanding why something has happened
  • Predictive analysis , which identifies future trends based on historical data
  • Prescriptive analysis , which allows you to make recommendations for the future

Visualizing and sharing your findings

We’re almost at the end of the road! Analyses have been made, insights have been gleaned—all that remains to be done is to share this information with others. This is usually done with a data visualization tool, such as Google Charts, or Tableau.

Learn more: 13 of the Most Common Types of Data Visualization

To sum up the process, Will’s explained it all excellently in the following video:

5. The best tools for data analysis

As you can imagine, every phase of the data analysis process requires the data analyst to have a variety of tools under their belt that assist in gaining valuable insights from data. We cover these tools in greater detail in this article , but, in summary, here’s our best-of-the-best list, with links to each product:

The top 9 tools for data analysts

  • Microsoft Excel
  • Jupyter Notebook
  • Apache Spark
  • Microsoft Power BI

6. Key takeaways and further reading

As you can see, there are many different data analysis techniques at your disposal. In order to turn your raw data into actionable insights, it’s important to consider what kind of data you have (is it qualitative or quantitative?) as well as the kinds of insights that will be useful within the given context. In this post, we’ve introduced seven of the most useful data analysis techniques—but there are many more out there to be discovered!

So what now? If you haven’t already, we recommend reading the case studies for each analysis technique discussed in this post (you’ll find a link at the end of each section). For a more hands-on introduction to the kinds of methods and techniques that data analysts use, try out this free introductory data analytics short course. In the meantime, you might also want to read the following:

  • The Best Online Data Analytics Courses for 2024
  • What Is Time Series Data and How Is It Analyzed?
  • What is Spatial Analysis?
  • Reviews / Why join our community?
  • For companies
  • Frequently asked questions

Illustrated graphics showing different ways to map data.

Data Analysis: Techniques, Tools, and Processes

Big or small, companies now expect their decisions to be data-driven. The world is growing and relying more on data. There is a greater need for professionals who know data analysis techniques.

Data analysis is a valuable skill that empowers you to make better decisions. This skill serves as a powerful catalyst in your professional and personal life. From personal budgeting to analyzing customer experiences , data analysis is the stepping stone to your career advancement.

So, whether you’re looking to upskill at work or kickstart a career in data analytics, this article is for you. We will discuss the best data analysis techniques in detail. To put all that into perspective, we’ll also discuss the step-by-step data analysis process. 

Let’s begin.

What is Data Analysis?

Data analysis is collecting, cleansing, analyzing, presenting, and interpreting data to derive insights. This process aids decision-making by providing helpful insights and statistics. 

The history of data analysis dates back to the 1640s. John Grant, a hatmaker, started collecting the number of deaths in London. He was the first person to use data analysis to solve a problem. Also, Florence Nightingale, best known as a nurse from 1854, made significant contributions to medicine through data analysis, particularly in public health and sanitation.

This simple practice of data analysis has evolved and broadened over time. “ Data analytics ” is the bigger picture. It employs data, tools, and techniques (covered later in this article) to discover new insights and make predictions.  

Why is Data Analysis so Important Now?

How do businesses make better decisions, analyze trends, or invent better products and services ?

The simple answer: Data Analysis. The distinct methods of analysis reveal insights that would otherwise get lost in the mass of information. Big data analytics is getting even more prominent owing to the below reasons.

1. Informed Decision-making

The modern business world relies on facts rather than intuition. Data analysis serves as the foundation of informed decision-making. 

Consider the role of data analysis in UX design , specifically when dealing with non-numerical, subjective information. Qualitative research delves into the 'why' and 'how' behind user behavior , revealing nuanced insights. It provides a foundation for making well-informed decisions regarding color , layout, and typography . Applying these insights allows you to create visuals that deeply resonate with your target audience.

2. Better Customer Targeting and Predictive Capabilities

Data has become the lifeblood of successful marketing . Organizations rely on data science techniques to create targeted strategies and marketing campaigns. 

Big data analytics helps uncover deep insights about consumer behavior. For instance, Google collects and analyzes many different data types. It examines search history, geography, and trending topics to deduce what consumers want.

3. Improved Operational Efficiencies and Reduced Costs

Data analytics also brings the advantage of streamlining operations and reducing organizational costs. It makes it easier for businesses to identify bottlenecks and improvement opportunities. This enables them to optimize resource allocation and ultimately reduce costs.

Procter & Gamble (P&G) , a leading company, uses data analytics to optimize their supply chain and inventory management. Data analytics helps the company reduce excess inventory and stockouts, achieving cost savings.  

4. Better Customer Satisfaction and Retention

Customer behavior patterns enable you to understand how they feel about your products, services, and brand. Also, different data analysis models help uncover future trends. These trends allow you to personalize the customer experience and improve satisfaction.

The eCommerce giant Amazon learns from what each customer wants and likes. It then recommends the same or similar products when they return to the shopping app. Data analysis helps create personalized experiences for Amazon customers and improves user experience . 

Enhance your knowledge by understanding “when” and “why” to use data analytics.

  • Transcript loading…

Types of Data Analysis Methods

“We are surrounded by data, but starved for insights.” — Jay Baer, Customer Experience Expert & Speaker

The above quote summarizes that strategic analysis must support data to produce meaningful insights. 

Before discussing the top data analytics techniques , let’s first understand the two types of data analysis methods.

1. Quantitative Data Analysis

As the name suggests, quantitative analysis involves looking at the complex data, the actual numbers, or the rows and columns. Let’s understand this with the help of a scenario.

Your e-commerce company wants to assess the sales team’s performance. You gather quantitative data on various key performance indicators (KPIs). These KPIs include

The number of units sold.

Sales revenue.

Conversion rates.

Customer acquisition costs.

By analyzing these numeric data points, the company can calculate:

Monthly sales growth.

Average order value.

Return on investment (ROI) for each sales representative.

How does it help?

The quantitative analysis can help you identify:

Top-performing sales reps

Best-selling products. 

Most cost-effective customer acquisition channels.

The above metrics help the company make data-driven decisions and improve its sales strategy.

2. Qualitative Data Analysis

There are situations where numbers in rows and columns are impossible to fit. This is where qualitative research can help you understand the data’s underlying factors, patterns, and meanings via non-numerical means. Let’s take an example to understand this.

Imagine you’re a product manager for an online shopping app. You want to improve the app’s user experience and boost user engagement. You have quantitative data that tells you what's going on but not why . Here’s what to do:

Collect customer feedback through interviews, open-ended questions, and online reviews. 

Conduct in-depth interviews to explore their experiences. 

Watch this instructional video to elevate your interview preparation to a more professional level.

By reading and summarizing the comments, you can identify issues, sentiments, and areas that need improvement. This qualitative insight can guide you to identify and work on areas of frustration or confusion. 

Learn more about quantitative and qualitative user research in this video.

10 Best Data Analysis and Modeling Techniques

We generate over 120 zettabytes daily. That’s about 120 billion copies of the entire Internet in 2020, daily . Without the best data analysis techniques, businesses of all sizes will never be able to collect, analyze, and interpret data into real, actionable insights .  

Now that you have an overarching picture of data analysis , let’s move on to the nitty-gritty: top data analysis methods .

An infographic showcasing the best quantitative and qualitative data analysis techniques.

© Interaction Design Foundation, CC BY-SA 4.0

Quantitative Methods

1. cluster analysis.

Also called segmentation or taxonomy analysis, this method identifies structures within a dataset. It’s like sorting objects into different boxes (clusters) based on their similarities. The data points within a similar group are similar to each other (homogeneous). Likewise, they’re dissimilar to data points in another cluster(heterogeneous).  

Cluster analysis aims to find hidden patterns in the data. It can be your go-to approach if you require additional context to a trend or dataset.

Let’s say you own a retail store. You want to understand your customers better to tailor your marketing strategies. You collect customer data, including their shopping behavior and preferences. 

Here, cluster analysis can help you group customers with similar behaviors and preferences. Customers who visit your store frequently and shop a lot may form one cluster. Customers who shop infrequently and spend less may form another cluster.

With the help of cluster analysis, you can target your marketing efforts more efficiently.

2. Regression Analysis

Regression analysis is a powerful data analysis technique. It is quite popular in economics, biology, biology, and psychology. This technique helps you understand how one thing (or more) influences another. 

Suppose you’re a manager trying to predict next month’s sales. Many factors, like the weather, promotions, or the buzz about a better product, can affect these figures.

In addition, some people in your organization might have their own theory on what might impact sales the most. For instance, one colleague might confidently say, “When winter starts, our sales go up.” And another insists, “Sales will spike two weeks after we launch a promotion.”

All the above factors are “variables.” Now, the “dependent variable” will always be the factor being measured. In our example—the monthly sales. 

Next, you have your independent variables. These are the factors that might impact your dependent variable.

Regression analysis can mathematically sort out which variables have an impact. This statistical analysis identifies trends and patterns to make predictions and forecast possible future directions. 

There are many types of regression analysis, including linear regression, non-linear regression, binary logistic regression, and more. The model you choose will highly depend upon the type of data you have

3. Monte Carlo Simulation

This mathematical technique is an excellent way to estimate an uncertain event’s possible outcomes. Interestingly, the method derives its name from the Monte Carlo Casino in Monaco. The casino is famous for its games of chance. 

Let’s say you want to know how much money you might make from your investments in the stock market. So, you make thousands of guesses instead of one guess. Then, you consider several scenarios . The scenarios can be a growing economy or an unprecedented catastrophe like Covid-19. 

The idea is to test many random situations to estimate the potential outcomes.

4. Time Series Analysis

The time series method analyzes data collected over time. You can identify trends and cycles over time with this technique. Here, one data set recorded at different intervals helps understand patterns and make forecasts. 

Industries like finance, retail, and economics leverage time-series analysis to predict trends. It is so because they deal with ever-changing currency exchange rates and sales data. 

Using time series analysis in the stock market is an excellent example of this technique in action. Many stocks exhibit recurring patterns in their underlying businesses due to seasonality or cyclicality. Time series analysis can uncover these patterns. Hence, investors can take advantage of seasonal trading opportunities or adjust their portfolios accordingly.

Time series analysis is part of predictive analytics . It can show likely changes in the data to provide a better understanding of data variables and better forecasting. 

5. Cohort Analysis

Cohort analysis also involves breaking down datasets into relative groups (or cohorts), like cluster analysis. However, in this method, you focus on studying the behavior of specific groups over time. This aims to understand different groups’ performance within a larger population.

This technique is popular amongst marketing, product development, and user experience research teams. 

Let’s say you’re an app developer and want to understand user engagement over time. Using this method, you define cohorts based on a familiar identifier. This identifier can be the demographics, app download date, or users making an in-app purchase. In this way, your cohort represents a group of users who had a similar starting point. 

With the data in hand, you analyze how each cohort behaves over time. Do users from the US use your app more frequently than people in the UK? Are there any in-app purchases from a specific cohort?

This iterative approach can reveal insights to refine your marketing strategies and improve user engagement. 

Qualitative Methods

6. content analysis.

When you think of “data” or “analysis,” do you think of text, audio, video, or images? Probably not, but these forms of communication are an excellent way to uncover patterns, themes, and insights. 

Widely used in marketing, content analysis can reveal public sentiment about a product or brand. For instance, analyzing customer reviews and social media mentions can help brands discover hidden insights. 

There are two further categories in this method:

Conceptual analysis: It focuses on explicit data. For example, the number of times a word repeats in a content. 

Relational analysis: It examines the relationship between different concepts or words and how they connect. It's not about counting but about understanding how things fit together. A user experience technique called card sorting can help with this.

This technique involves counting and measuring the frequency of categorical data. It also studies the meaning and context of the content. This is why content analysis can be both quantitative and qualitative. 

How to Improve Your Design with Task Analysis

7. Sentiment Analysis

Also known as opinion mining, this technique is a valuable business intelligence tool. It can assist you to enhance your products and services. The modern business landscape has substantial textual data, including emails, social media comments, website chats, and reviews. You often need to know whether this text data conveys a positive, negative, or neutral sentiment.

Sentiment Analysis tools help scan this text to determine the emotional tone of the message automatically. The insights from sentiment analysis are highly helpful in improving customer service and elevating brand reputation.

8. Thematic Analysis

Whether you’re an entrepreneur, a UX researcher , or a customer relationship manager— thematic analysis can help you better understand user behaviors and needs. 

The thematic technique analyzes large chunks of text data such as transcripts or interviews. It then groups them into themes or categories that come up frequently within the text. While this may sound similar to content analysis, it’s worth noting that the thematic method purely uses qualitative data. 

Moreover, it is a very subjective technique since it depends upon the researcher’s experience to derive insights. 

9. Grounded Theory Analysis

Think of grounded theory as something you, as a researcher, might do. Instead of starting with a hypothesis and trying to prove or disprove it, you gather information and construct a theory as you go along.

It's like a continuous loop. You collect and examine data and then create a theory based on your discovery. You keep repeating this process until you've squeezed out all the insights possible from the data. This method allows theories to emerge naturally from the information, making it a flexible and open way to explore new ideas.

Grounded theory is the basis of a popular user-experience research technique called contextual enquiry .

10. Discourse Analysis

Discourse analysis is popular in linguistics, sociology, and communication studies. It aims to understand the meaning behind written texts, spoken conversations, or visual and multimedia communication. It seeks to uncover:

How individuals structure a specific language

What lies behind it; and 

How social and cultural practices influence it

For instance, as a social media manager, if you analyze social media posts, you go beyond the text itself. You would consider the emojis, hashtags, and even the timing of the posts. You might find that a particular hashtag is used to mobilize a social movement. 

The Data Analysis Process: Step-by-Step Guide

You must follow a step-by-step data analytics process to derive meaningful conclusions from your data. Here is a rundown of five main data analysis steps :

A graphical representation of data analysis steps. 

1. Problem Identification

The first step in the data analysis process is “identification.” What problem are you trying to solve? In other words, what research question do you want to address with your data analysis?

Let’s say you’re an analyst working for an e-commerce company. There has been a recent decline in sales. Now, the company wants to understand why this is happening. Our problem statement is to find the reason for the decline in sales. 

2. Data Collection

The next step is to collect data. You can do this through various internal and external sources. For example, surveys , questionnaires, focus groups , interviews , etc.

Delve deeper into the intricacies of data collection with Ann Blandford in this video:

The key here is to collect and aggregate the appropriate statistical data. By “appropriate,” we mean the data that could help you understand the problem and build a forecasting model. The data can be quantitative (sales figures) or qualitative (customer reviews). 

All types of data can fit into one of three categories:

First-party data : Data that you, or your company, can collect directly from customers.

Second-party data : The first-party data of other organizations. For instance, sales figures of your competition company. 

Third-party data : Data that a third-party organization can collect and aggregate from numerous sources. For instance, government portals or open data repositories. 

3. Data Cleaning

Now that you have acquired the necessary data, the next step is to prepare it for analysis. That means you must clean or scrub it. This is essential since acquired data can be in different formats. Cleaning ensures you’re not dealing with bad data and your results are dependable. 

Here are some critical data-cleaning steps:

Remove white spaces, duplicates, and formatting errors.

Delete unwanted data points.

Bring structure to your data.

For survey data, you also need to do consistency analysis. Some of this relies on good questionnaire design, but you also need to ensure that:

Respondents are not “straight-lining” (all answers in a single column).

Similar questions are answered consistently.

Open-ended questions contain plausible responses.

4. Data Analysis

This is the stage where you’d be ready to leverage any one or more of the data analysis and research techniques mentioned above. The choice of technique depends upon the data you’re dealing with and the desired results. 

All types of data analysis fit into the following four categories:

An illustration depicting the four data analysis processes. These types further represent their respective objectives.

A. Descriptive Analysis

Descriptive analysis focuses on what happened. It is the starting point for any research before proceeding with deeper explorations. As the first step, it involves breaking down data and summarizing its key characteristics.   

B. Diagnostic Analysis

This analysis focuses on why something has happened. Just as a doctor uses a patient’s diagnosis to uncover a disease, you can use diagnostic analysis to understand the underlying cause of the problem. 

C. Predictive Analysis

This type of analysis allows you to identify future trends based on historical data. It generally uses the results from the above analysis, machine learning (ML), and artificial intelligence (AI) to forecast future growth. 

D. Prescriptive Analysis

Now you know what to do, you must also understand how you’ll do it. The prescriptive analysis aims to determine your research’s best course of action.  

5. Data Interpretation

The step is like connecting the dots in a puzzle. This is where you start making sense of all the data and analysis done in the previous steps. You dig deeper into your data analysis findings and visualize the data to present insights in meaningful and understandable ways. 

Explore this comprehensive video resource to understand the complete user research data analysis process:

The Best Tools and Resources to Use for Data Analysis in 2023

You’ve got data in hand, mastered the process, and understood all the ways to analyze data . So, what comes next?

Well, parsing large amounts of data inputs can make it increasingly challenging to uncover hidden insights. Data analysis tools can track and analyze data through various algorithms, allowing you to create actionable reports and dashboards.

We’ve compiled a handy list of the best tools for you with their pros and cons. 

Microsoft Excel

Spreadsheet

Business Analysts, Managers

Basic data manipulation

Paid (Microsoft 365)

Google Sheets

Spreadsheet

Individuals, Small-Medium Businesses

Basic data analysis and collaboration

Free with Paid upgrades

Google Analytics

Web Analytics

Digital Marketers, Web Analysts

Digital marketing analysis

Free and Paid (Google Analytics 360)

RapidMiner

Data Science

Data Scientists, Analysts

Predictive analytics

Free and Paid (various licensing options)

Tableau

Business Analysts, Data Teams

Interactive dashboards

Paid (various plans)

Power BI

Business Intelligence

Business Analysts, Enterprises

Business reporting

Paid (various plans)

KNIME

Visual Workflow

Data Scientists, Analysts

Data science workflows

Free and Open-source 

Zoho Analytics

Business Intelligence

Small-Medium Businesses

Collaboration and reporting

Paid (various plans)

Qlik Sense

Business Intelligence

Business Analysts, Data Teams

Interactive analysis

Paid (various plans)

1. Microsoft Excel

The world’s best and most user-friendly spreadsheet software features calculations and graphing functions. It is ideal for non-techies to perform basic data analysis and create charts and reports.

No coding is required.

User-friendly interface.

Runs slow with complex data analysis.

Less automation compared to specialized tools.

2. Google Sheets

Similar to Microsoft Excel, Google Sheets stands out as a remarkable and cost-effective tool for fundamental data analysis. It handles everyday data analysis tasks, including sorting, filtering, and simple calculations. Besides, it is known for its seamless collaboration capabilities. 

Easily accessible .

Compatible with Microsoft Excel.

Seamless integration with other Google Workspace tools.

Lacks advanced features such as in Microsoft Excel.

May not be able to handle large datasets.

3. Google Analytics

Widely used by digital marketers and web analysts, this tool helps businesses understand how people interact with their websites and apps. It provides insights into website traffic, user behavior, and performance to make data-driven business decisions .

Free version available.

Integrates with Google services.

Limited customization for specific business needs.

May not support non-web data sources.

4. RapidMiner

RapidMiner is ideal for data mining and model development. This platform offers remarkable machine learning and predictive analytics capabilities. It allows professionals to work with data at many stages, including preparation, information visualization , and analysis.

Excellent support for machine learning.

Large library of pre-built models.

Can be expensive for advanced features.

Limited data integration capabilities.

Being one of the best commercial data analysis tools, Tableau is famous for its interactive dashboards and data exploration capabilities. Data teams can create visually appealing and interactive data representations through its easy-to-use interface and powerful capabilities. 

Intuitive drag-and-drop interface.

Interactive and dynamic data visualization.

Backed by Salesforce.

Expensive than competition.

Steeper learning curve for advanced features.

6. Power BI

This is an excellent choice for creating insightful business dashboards. It boasts incredible data integration features and interactive reporting, making it ideal for enterprises. 

Short for Konstanz Information Miner, KNIME is an outstanding tool for data mining. Its user-friendly graphical interface makes it accessible even to non-technical users, enabling them to create data workflows easily. Additionally, KNIME is a cost-effective choice. Hence, it is ideal for small businesses operating on a limited budget. 

Visual workflow for data blending and automation.

Active community and user support.

Complex for beginners.

Limited real-time data processing.

8. Zoho Analytics

Fueled by artificial intelligence and machine learning, Zoho Analytics is a robust data analysis platform. Its data integration capabilities empower you to seamlessly connect and import data from diverse sources while offering an extensive array of analytical functions.

Affordable pricing options.

User-friendly interface

Limited scalability for very large datasets.

Not as widely adopted as some other tools.

9. Qlik Sense

Qlik Sense offers a wide range of augmented capabilities. It has everything from AI-generated analysis and insights to automated creation and data prep, machine learning, and predictive analytics. 

Impressive data exploration and visualization features.

Can handle large datasets.

Steep learning curve for new users.

How to Pick the Right Tool?

Consider the below factors to find the perfect data analysis tool for your organization:

Your organization’s business needs.

Who needs to use the data analysis tools?

The tool’s data modeling capabilities.

The tool’s pricing. 

Besides the above tools, additional resources like a Service Design certification can empower you to provide sustainable solutions and optimal customer experiences. 

How to Become a Data Analyst? 

Data analysts are in high demand owing to the soaring data boom across various sectors. As per the US Bureau of Labor Statistics , the demand for data analytics jobs will grow by 23% between 2021 and 2031. What’s more, roles offer excellent salaries and career progression. As you gain experience and climb the ranks, your pay scales up, making it one of the most competitive fields in the job market. 

Learning data analytics methodology can help you give an all-new boost to your career. Here are some tips to become a data analyst:

1. Take an Online Course

You do not necessarily need a degree to become a data analyst. A degree can give you solid foundational knowledge in relevant quantitative skills. But so can certificate programs or university courses. 

2. Gain the Necessary Technical Skills

Having a set of specific technical skills will help you deepen your analytical capabilities. You must explore and understand the data analysis tools to deal with large datasets and comprehend the analysis. 

3. Gain Practical Knowledge

You can work on data analysis projects to showcase your skills. Then, create a portfolio highlighting your ability to handle real-world data and provide insights. You can also seek internship opportunities that provide valuable exposure and networking opportunities. 

4. Keep Up to Date with the Trends

Since data analysis is rapidly evolving, keep pace with cutting-edge analytics tools, methods, and trends. You can do this through exploration, networking, and continuous learning.

5. Search for the Ideal Job

The job titles and responsibilities continue to change and expand in data analytics. Beyond “Data Analyst,” explore titles like Business Analyst, Data Scientist, Data Engineer, Data Architect, and Marketing Analyst. Your knowledge, education, and experience can guide your path to the right data job. 

The Take Away

Whether you’re eager to delve into a personal area of interest or upgrade your skills to advance your data career, we’ve covered all the relevant aspects in this article. 

Now that you have a clear understanding of what data analysis is, and a grasp of the best data analysis techniques , it’s time to roll up your sleeves and put your knowledge into practice.

We have designed The IxDF courses and certifications to align with your intellectual and professional objectives. If you haven’t already, take the initial step toward enriching your data analytics skills by signing up today. Your journey to expertise in data analysis awaits.

Where to Learn More

1. Learn the most sought-after tool, Microsoft Excel, from basic to advanced in this LinkedIn Microsoft Excel Online Training Course .

2. Ensure all the touchpoints of your service are perfect through this certification in Service Design .

3. Learn more about the analytics data types we encounter daily in this video.

Author: Stewart Cheifet. Appearance time: 0:22 - 0:24. Copyright license and terms: CC / Fair Use. Modified: Yes. Link: https://archive.org/details/CC1218 greatestgames

4. Read this free eBook, The Elements of Statistical Learning , to boost your statistical analysis skills.

5. Check out Python for Data Analysis to learn how to solve statistical problems with Python. 

6. Join this beginner-level course and launch your career in data analytics. Data-Driven Design: Quantitative UX Research Course

Data-Driven Design: Quantitative Research for UX

techniques of research data analysis

Get Weekly Design Tips

Topics in this article, what you should read next, user research: what it is and why you should do it.

techniques of research data analysis

  • 1.1k shares
  • 2 years ago

Emotional Drivers for User and Consumer Behavior

techniques of research data analysis

  • 8 years ago

Habits: Five ways to help users change them

techniques of research data analysis

  • 4 years ago

User Experience (UX) Surveys: The Ultimate Guide

techniques of research data analysis

  • 11 mths ago

How to Moderate User Interviews

techniques of research data analysis

5 Ways to Use Behavioral Science to Create Better Products

techniques of research data analysis

Positive Friction: How You Can Use It to Create Better Experiences

techniques of research data analysis

Open Access—Link to us!

We believe in Open Access and the  democratization of knowledge . Unfortunately, world-class educational materials such as this page are normally hidden behind paywalls or in expensive textbooks.

If you want this to change , cite this article , link to us, or join us to help us democratize design knowledge !

Privacy Settings

Our digital services use necessary tracking technologies, including third-party cookies, for security, functionality, and to uphold user rights. Optional cookies offer enhanced features, and analytics.

Experience the full potential of our site that remembers your preferences and supports secure sign-in.

Governs the storage of data necessary for maintaining website security, user authentication, and fraud prevention mechanisms.

Enhanced Functionality

Saves your settings and preferences, like your location, for a more personalized experience.

Referral Program

We use cookies to enable our referral program, giving you and your friends discounts.

Error Reporting

We share user ID with Bugsnag and NewRelic to help us track errors and fix issues.

Optimize your experience by allowing us to monitor site usage. You’ll enjoy a smoother, more personalized journey without compromising your privacy.

Analytics Storage

Collects anonymous data on how you navigate and interact, helping us make informed improvements.

Differentiates real visitors from automated bots, ensuring accurate usage data and improving your website experience.

Lets us tailor your digital ads to match your interests, making them more relevant and useful to you.

Advertising Storage

Stores information for better-targeted advertising, enhancing your online ad experience.

Personalization Storage

Permits storing data to personalize content and ads across Google services based on user behavior, enhancing overall user experience.

Advertising Personalization

Allows for content and ad personalization across Google services based on user behavior. This consent enhances user experiences.

Enables personalizing ads based on user data and interactions, allowing for more relevant advertising experiences across Google services.

Receive more relevant advertisements by sharing your interests and behavior with our trusted advertising partners.

Enables better ad targeting and measurement on Meta platforms, making ads you see more relevant.

Allows for improved ad effectiveness and measurement through Meta’s Conversions API, ensuring privacy-compliant data sharing.

LinkedIn Insights

Tracks conversions, retargeting, and web analytics for LinkedIn ad campaigns, enhancing ad relevance and performance.

LinkedIn CAPI

Enhances LinkedIn advertising through server-side event tracking, offering more accurate measurement and personalization.

Google Ads Tag

Tracks ad performance and user engagement, helping deliver ads that are most useful to you.

Share Knowledge, Get Respect!

or copy link

Cite according to academic standards

Simply copy and paste the text below into your bibliographic reference list, onto your blog, or anywhere else. You can also just hyperlink to this article.

New to UX Design? We’re giving you a free ebook!

The Basics of User Experience Design

Download our free ebook The Basics of User Experience Design to learn about core concepts of UX design.

In 9 chapters, we’ll cover: conducting user interviews, design thinking, interaction design, mobile UX design, usability, UX research, and many more!

New to UX Design? We’re Giving You a Free ebook!

Data Analysis

  • Introduction to Data Analysis
  • Quantitative Analysis Tools
  • Qualitative Analysis Tools
  • Mixed Methods Analysis
  • Geospatial Analysis
  • Further Reading

Profile Photo

What is Data Analysis?

According to the federal government, data analysis is "the process of systematically applying statistical and/or logical techniques to describe and illustrate, condense and recap, and evaluate data" ( Responsible Conduct in Data Management ). Important components of data analysis include searching for patterns, remaining unbiased in drawing inference from data, practicing responsible  data management , and maintaining "honest and accurate analysis" ( Responsible Conduct in Data Management ). 

In order to understand data analysis further, it can be helpful to take a step back and understand the question "What is data?". Many of us associate data with spreadsheets of numbers and values, however, data can encompass much more than that. According to the federal government, data is "The recorded factual material commonly accepted in the scientific community as necessary to validate research findings" ( OMB Circular 110 ). This broad definition can include information in many formats. 

Some examples of types of data are as follows:

  • Photographs 
  • Hand-written notes from field observation
  • Machine learning training data sets
  • Ethnographic interview transcripts
  • Sheet music
  • Scripts for plays and musicals 
  • Observations from laboratory experiments ( CMU Data 101 )

Thus, data analysis includes the processing and manipulation of these data sources in order to gain additional insight from data, answer a research question, or confirm a research hypothesis. 

Data analysis falls within the larger research data lifecycle, as seen below. 

( University of Virginia )

Why Analyze Data?

Through data analysis, a researcher can gain additional insight from data and draw conclusions to address the research question or hypothesis. Use of data analysis tools helps researchers understand and interpret data. 

What are the Types of Data Analysis?

Data analysis can be quantitative, qualitative, or mixed methods. 

Quantitative research typically involves numbers and "close-ended questions and responses" ( Creswell & Creswell, 2018 , p. 3). Quantitative research tests variables against objective theories, usually measured and collected on instruments and analyzed using statistical procedures ( Creswell & Creswell, 2018 , p. 4). Quantitative analysis usually uses deductive reasoning. 

Qualitative  research typically involves words and "open-ended questions and responses" ( Creswell & Creswell, 2018 , p. 3). According to Creswell & Creswell, "qualitative research is an approach for exploring and understanding the meaning individuals or groups ascribe to a social or human problem" ( 2018 , p. 4). Thus, qualitative analysis usually invokes inductive reasoning. 

Mixed methods  research uses methods from both quantitative and qualitative research approaches. Mixed methods research works under the "core assumption... that the integration of qualitative and quantitative data yields additional insight beyond the information provided by either the quantitative or qualitative data alone" ( Creswell & Creswell, 2018 , p. 4). 

  • Next: Planning >>
  • Last Updated: Sep 4, 2024 11:49 AM
  • URL: https://guides.library.georgetown.edu/data-analysis

Creative Commons

8 Types of Data Analysis

The different types of data analysis include descriptive, diagnostic, exploratory, inferential, predictive, causal, mechanistic and prescriptive. Here’s what you need to know about each one.

Benedict Neo

Data analysis is an aspect of data science and  data analytics that is all about analyzing data for different kinds of purposes. The data analysis process involves inspecting, cleaning, transforming and  modeling data to draw useful insights from it.

Types of Data Analysis

  • Descriptive analysis
  • Diagnostic analysis
  • Exploratory analysis
  • Inferential analysis
  • Predictive analysis
  • Causal analysis
  • Mechanistic analysis
  • Prescriptive analysis

With its multiple facets, methodologies and techniques, data analysis is used in a variety of fields, including energy, healthcare and marketing, among others. As businesses thrive under the influence of technological advancements in data analytics, data analysis plays a huge role in decision-making , providing a better, faster and more effective system that minimizes risks and reduces human biases .

That said, there are different kinds of data analysis with different goals. We’ll examine each one below.

Two Camps of Data Analysis

Data analysis can be divided into two camps, according to the book R for Data Science :

  • Hypothesis Generation: This involves looking deeply at the data and combining your domain knowledge to generate  hypotheses about why the data behaves the way it does.
  • Hypothesis Confirmation: This involves using a precise mathematical model to generate falsifiable predictions with statistical sophistication to confirm your prior hypotheses.

More on Data Analysis: Data Analyst vs. Data Scientist: Similarities and Differences Explained

Data analysis can be separated and organized into types, arranged in an increasing order of complexity.  

1. Descriptive Analysis

The goal of descriptive analysis is to describe or summarize a set of data . Here’s what you need to know:

  • Descriptive analysis is the very first analysis performed in the data analysis process.
  • It generates simple summaries of samples and measurements.
  • It involves common, descriptive statistics like measures of central tendency, variability, frequency and position.

Descriptive Analysis Example

Take the Covid-19 statistics page on Google, for example. The line graph is a pure summary of the cases/deaths, a presentation and description of the population of a particular country infected by the virus.

Descriptive analysis is the first step in analysis where you summarize and describe the data you have using descriptive statistics, and the result is a simple presentation of your data.

2. Diagnostic Analysis  

Diagnostic analysis seeks to answer the question “Why did this happen?” by taking a more in-depth look at data to uncover subtle patterns. Here’s what you need to know:

  • Diagnostic analysis typically comes after descriptive analysis, taking initial findings and investigating why certain patterns in data happen. 
  • Diagnostic analysis may involve analyzing other related data sources, including past data, to reveal more insights into current data trends.  
  • Diagnostic analysis is ideal for further exploring patterns in data to explain anomalies .  

Diagnostic Analysis Example

A footwear store wants to review its  website traffic levels over the previous 12 months. Upon compiling and assessing the data, the company’s marketing team finds that June experienced above-average levels of traffic while July and August witnessed slightly lower levels of traffic. 

To find out why this difference occurred, the marketing team takes a deeper look. Team members break down the data to focus on specific categories of footwear. In the month of June, they discovered that pages featuring sandals and other beach-related footwear received a high number of views while these numbers dropped in July and August. 

Marketers may also review other factors like seasonal changes and company sales events to see if other variables could have contributed to this trend.    

3. Exploratory Analysis (EDA)

Exploratory analysis involves examining or  exploring data and finding relationships between variables that were previously unknown. Here’s what you need to know:

  • EDA helps you discover relationships between measures in your data, which are not evidence for the existence of the correlation, as denoted by the phrase, “ Correlation doesn’t imply causation .”
  • It’s useful for discovering new connections and forming hypotheses. It drives design planning and data collection .

Exploratory Analysis Example

Climate change is an increasingly important topic as the global temperature has gradually risen over the years. One example of an exploratory data analysis on climate change involves taking the rise in temperature over the years from 1950 to 2020 and the increase of human activities and industrialization to find relationships from the data. For example, you may increase the number of factories, cars on the road and airplane flights to see how that correlates with the rise in temperature.

Exploratory analysis explores data to find relationships between measures without identifying the cause. It’s most useful when formulating hypotheses. 

4. Inferential Analysis

Inferential analysis involves using a small sample of data to infer information about a larger population of data.

The goal of statistical modeling itself is all about using a small amount of information to extrapolate and generalize information to a larger group. Here’s what you need to know:

  • Inferential analysis involves using estimated data that is representative of a population and gives a measure of uncertainty or  standard deviation to your estimation.
  • The accuracy of inference depends heavily on your sampling scheme. If the sample isn’t representative of the population, the generalization will be inaccurate. This is known as the central limit theorem .

Inferential Analysis Example

A psychological study on the benefits of sleep might have a total of 500 people involved. When they followed up with the candidates, the candidates reported to have better overall attention spans and well-being with seven to nine hours of sleep, while those with less sleep and more sleep than the given range suffered from reduced attention spans and energy. This study drawn from 500 people was just a tiny portion of the 7 billion people in the world, and is thus an inference of the larger population.

Inferential analysis extrapolates and generalizes the information of the larger group with a smaller sample to generate analysis and predictions. 

5. Predictive Analysis

Predictive analysis involves using historical or current data to find patterns and make predictions about the future. Here’s what you need to know:

  • The accuracy of the predictions depends on the input variables.
  • Accuracy also depends on the types of models. A linear model might work well in some cases, and in other cases it might not.
  • Using a variable to predict another one doesn’t denote a causal relationship.

Predictive Analysis Example

The 2020 United States election is a popular topic and many prediction models are built to predict the winning candidate. FiveThirtyEight did this to forecast the 2016 and 2020 elections. Prediction analysis for an election would require input variables such as historical polling data, trends and current polling data in order to return a good prediction. Something as large as an election wouldn’t just be using a linear model, but a complex model with certain tunings to best serve its purpose.

6. Causal Analysis

Causal analysis looks at the cause and effect of relationships between variables and is focused on finding the cause of a correlation. This way, researchers can examine how a change in one variable affects another. Here’s what you need to know:

  • To find the cause, you have to question whether the observed correlations driving your conclusion are valid. Just looking at the surface data won’t help you discover the hidden mechanisms underlying the correlations.
  • Causal analysis is applied in randomized studies focused on identifying causation.
  • Causal analysis is the gold standard in data analysis and scientific studies where the cause of a phenomenon is to be extracted and singled out, like separating wheat from chaff.
  • Good data is hard to find and requires expensive research and studies. These studies are analyzed in aggregate (multiple groups), and the observed relationships are just average effects (mean) of the whole population. This means the results might not apply to everyone.

Causal Analysis Example  

Say you want to test out whether a new drug improves human strength and focus. To do that, you perform randomized control trials for the drug to test its effect. You compare the sample of candidates for your new drug against the candidates receiving a mock control drug through a few tests focused on strength and overall focus and attention. This will allow you to observe how the drug affects the outcome. 

7. Mechanistic Analysis

Mechanistic analysis is used to understand exact changes in variables that lead to other changes in other variables . In some ways, it is a predictive analysis, but it’s modified to tackle studies that require high precision and meticulous methodologies for physical or engineering science. Here’s what you need to know:

  • It’s applied in physical or engineering sciences, situations that require high  precision and little room for error, only noise in data is measurement error.
  • It’s designed to understand a biological or behavioral process, the pathophysiology of a disease or the mechanism of action of an intervention. 

Mechanistic Analysis Example

Say an experiment is done to simulate safe and effective nuclear fusion to power the world. A mechanistic analysis of the study would entail a precise balance of controlling and manipulating variables with highly accurate measures of both variables and the desired outcomes. It’s this intricate and meticulous modus operandi toward these big topics that allows for scientific breakthroughs and advancement of society.

8. Prescriptive Analysis  

Prescriptive analysis compiles insights from other previous data analyses and determines actions that teams or companies can take to prepare for predicted trends. Here’s what you need to know: 

  • Prescriptive analysis may come right after predictive analysis, but it may involve combining many different data analyses. 
  • Companies need advanced technology and plenty of resources to conduct prescriptive analysis. Artificial intelligence systems that process data and adjust automated tasks are an example of the technology required to perform prescriptive analysis.  

Prescriptive Analysis Example

Prescriptive analysis is pervasive in everyday life, driving the curated content users consume on social media. On platforms like TikTok and Instagram,  algorithms can apply prescriptive analysis to review past content a user has engaged with and the kinds of behaviors they exhibited with specific posts. Based on these factors, an  algorithm seeks out similar content that is likely to elicit the same response and  recommends it on a user’s personal feed. 

More on Data Explaining the Empirical Rule for Normal Distribution

When to Use the Different Types of Data Analysis  

  • Descriptive analysis summarizes the data at hand and presents your data in a comprehensible way.
  • Diagnostic analysis takes a more detailed look at data to reveal why certain patterns occur, making it a good method for explaining anomalies. 
  • Exploratory data analysis helps you discover correlations and relationships between variables in your data.
  • Inferential analysis is for generalizing the larger population with a smaller sample size of data.
  • Predictive analysis helps you make predictions about the future with data.
  • Causal analysis emphasizes finding the cause of a correlation between variables.
  • Mechanistic analysis is for measuring the exact changes in variables that lead to other changes in other variables.
  • Prescriptive analysis combines insights from different data analyses to develop a course of action teams and companies can take to capitalize on predicted outcomes. 

A few important tips to remember about data analysis include:

  • Correlation doesn’t imply causation.
  • EDA helps discover new connections and form hypotheses.
  • Accuracy of inference depends on the sampling scheme.
  • A good prediction depends on the right input variables.
  • A simple linear model with enough data usually does the trick.
  • Using a variable to predict another doesn’t denote causal relationships.
  • Good data is hard to find, and to produce it requires expensive research.
  • Results from studies are done in aggregate and are average effects and might not apply to everyone.​

Frequently Asked Questions

What is an example of data analysis.

A marketing team reviews a company’s web traffic over the past 12 months. To understand why sales rise and fall during certain months, the team breaks down the data to look at shoe type, seasonal patterns and sales events. Based on this in-depth analysis, the team can determine variables that influenced web traffic and make adjustments as needed.

How do you know which data analysis method to use?

Selecting a data analysis method depends on the goals of the analysis and the complexity of the task, among other factors. It’s best to assess the circumstances and consider the pros and cons of each type of data analysis before moving forward with a particular method.

Recent Data Science Articles

59 Examples of Artificial Intelligence in Business

Are you an agency specialized in UX, digital marketing, or growth? Join our Partner Program

Learn / Guides / Quantitative data analysis guide

Back to guides

8 quantitative data analysis methods to turn numbers into insights

Setting up a few new customer surveys or creating a fresh Google Analytics dashboard feels exciting…until the numbers start rolling in. You want to turn responses into a plan to present to your team and leaders—but which quantitative data analysis method do you use to make sense of the facts and figures?

Last updated

Reading time.

techniques of research data analysis

This guide lists eight quantitative research data analysis techniques to help you turn numeric feedback into actionable insights to share with your team and make customer-centric decisions. 

To pick the right technique that helps you bridge the gap between data and decision-making, you first need to collect quantitative data from sources like:

Google Analytics  

Survey results

On-page feedback scores

Fuel your quantitative analysis with real-time data

Use Hotjar’s tools to collect quantitative data that helps you stay close to customers.

Then, choose an analysis method based on the type of data and how you want to use it.

Descriptive data analysis summarizes results—like measuring website traffic—that help you learn about a problem or opportunity. The descriptive analysis methods we’ll review are:

Multiple choice response rates

Response volume over time

Net Promoter Score®

Inferential data analyzes the relationship between data—like which customer segment has the highest average order value—to help you make hypotheses about product decisions. Inferential analysis methods include:

Cross-tabulation

Weighted customer feedback

You don’t need to worry too much about these specific terms since each quantitative data analysis method listed below explains when and how to use them. Let’s dive in!

1. Compare multiple-choice response rates 

The simplest way to analyze survey data is by comparing the percentage of your users who chose each response, which summarizes opinions within your audience. 

To do this, divide the number of people who chose a specific response by the total respondents for your multiple-choice survey. Imagine 100 customers respond to a survey about what product category they want to see. If 25 people said ‘snacks’, 25% of your audience favors that category, so you know that adding a snacks category to your list of filters or drop-down menu will make the purchasing process easier for them.

💡Pro tip: ask open-ended survey questions to dig deeper into customer motivations.

A multiple-choice survey measures your audience’s opinions, but numbers don’t tell you why they think the way they do—you need to combine quantitative and qualitative data to learn that. 

One research method to learn about customer motivations is through an open-ended survey question. Giving customers space to express their thoughts in their own words—unrestricted by your pre-written multiple-choice questions—prevents you from making assumptions.

techniques of research data analysis

Hotjar’s open-ended surveys have a text box for customers to type a response

2. Cross-tabulate to compare responses between groups

To understand how responses and behavior vary within your audience, compare your quantitative data by group. Use raw numbers, like the number of website visitors, or percentages, like questionnaire responses, across categories like traffic sources or customer segments.

#A cross-tabulated content analysis lets teams focus on work with a higher potential of success

Let’s say you ask your audience what their most-used feature is because you want to know what to highlight on your pricing page. Comparing the most common response for free trial users vs. established customers lets you strategically introduce features at the right point in the customer journey . 

💡Pro tip: get some face-to-face time to discover nuances in customer feedback.

Rather than treating your customers as a monolith, use Hotjar to conduct interviews to learn about individuals and subgroups. If you aren’t sure what to ask, start with your quantitative data results. If you notice competing trends between customer segments, have a few conversations with individuals from each group to dig into their unique motivations.

Hotjar Engage lets you identify specific customer segments you want to talk to

Mode is the most common answer in a data set, which means you use it to discover the most popular response for questions with numeric answer options. Mode and median (that's next on the list) are useful to compare to the average in case responses on extreme ends of the scale (outliers) skew the outcome.

Let’s say you want to know how most customers feel about your website, so you use an on-page feedback widget to collect ratings on a scale of one to five.

#Visitors rate their experience on a scale with happy (or angry) faces, which translates to a quantitative scale

If the mode, or most common response, is a three, you can assume most people feel somewhat positive. But suppose the second-most common response is a one (which would bring the average down). In that case, you need to investigate why so many customers are unhappy. 

💡Pro tip: watch recordings to understand how customers interact with your website.

So you used on-page feedback to learn how customers feel about your website, and the mode was two out of five. Ouch. Use Hotjar Recordings to see how customers move around on and interact with your pages to find the source of frustration.

Hotjar Recordings lets you watch individual visitors interact with your site, like how they scroll, hover, and click

Median reveals the middle of the road of your quantitative data by lining up all numeric values in ascending order and then looking at the data point in the middle. Use the median method when you notice a few outliers that bring the average up or down and compare the analysis outcomes.

For example, if your price sensitivity survey has outlandish responses and you want to identify a reasonable middle ground of what customers are willing to pay—calculate the median.

💡Pro-tip: review and clean your data before analysis. 

Take a few minutes to familiarize yourself with quantitative data results before you push them through analysis methods. Inaccurate or missing information can complicate your calculations, and it’s less frustrating to resolve issues at the start instead of problem-solving later. 

Here are a few data-cleaning tips to keep in mind:

Remove or separate irrelevant data, like responses from a customer segment or time frame you aren’t reviewing right now 

Standardize data from multiple sources, like a survey that let customers indicate they use your product ‘daily’ vs. on-page feedback that used the phrasing ‘more than once a week’

Acknowledge missing data, like some customers not answering every question. Just note that your totals between research questions might not match.

Ensure you have enough responses to have a statistically significant result

Decide if you want to keep or remove outlying data. For example, maybe there’s evidence to support a high-price tier, and you shouldn’t dismiss less price-sensitive respondents. Other times, you might want to get rid of obviously trolling responses.

5. Mean (AKA average)

Finding the average of a dataset is an essential quantitative data analysis method and an easy task. First, add all your quantitative data points, like numeric survey responses or daily sales revenue. Then, divide the sum of your data points by the number of responses to get a single number representing the entire dataset. 

Use the average of your quant data when you want a summary, like the average order value of your transactions between different sales pages. Then, use your average to benchmark performance, compare over time, or uncover winners across segments—like which sales page design produces the most value.

💡Pro tip: use heatmaps to find attention-catching details numbers can’t give you.

Calculating the average of your quant data set reveals the outcome of customer interactions. However, you need qualitative data like a heatmap to learn about everything that led to that moment. A heatmap uses colors to illustrate where most customers look and click on a page to reveal what drives (or drops) momentum.

techniques of research data analysis

Hotjar Heatmaps uses color to visualize what most visitors see, ignore, and click on

6. Measure the volume of responses over time

Some quantitative data analysis methods are an ongoing project, like comparing top website referral sources by month to gauge the effectiveness of new channels. Analyzing the same metric at regular intervals lets you compare trends and changes. 

Look at quantitative survey results, website sessions, sales, cart abandons, or clicks regularly to spot trouble early or monitor the impact of a new initiative.

Here are a few areas you can measure over time (and how to use qualitative research methods listed above to add context to your results):

7. Net Promoter Score®

Net Promoter Score® ( NPS ®) is a popular customer loyalty and satisfaction measurement that also serves as a quantitative data analysis method. 

NPS surveys ask customers to rate how likely they are to recommend you on a scale of zero to ten. Calculate it by subtracting the percentage of customers who answer the NPS question with a six or lower (known as ‘detractors’) from those who respond with a nine or ten (known as ‘promoters’). Your NPS score will fall between -100 and 100, and you want a positive number indicating more promoters than detractors. 

#NPS scores exist on a scale of zero to ten

💡Pro tip : like other quantitative data analysis methods, you can review NPS scores over time as a satisfaction benchmark. You can also use it to understand which customer segment is most satisfied or which customers may be willing to share their stories for promotional materials.

techniques of research data analysis

Review NPS score trends with Hotjar to spot any sudden spikes and benchmark performance over time

8. Weight customer feedback 

So far, the quantitative data analysis methods on this list have leveraged numeric data only. However, there are ways to turn qualitative data into quantifiable feedback and to mix and match data sources. For example, you might need to analyze user feedback from multiple surveys.

To leverage multiple data points, create a prioritization matrix that assigns ‘weight’ to customer feedback data and company priorities and then multiply them to reveal the highest-scoring option. 

Let’s say you identify the top four responses to your churn survey . Rate the most common issue as a four and work down the list until one—these are your customer priorities. Then, rate the ease of fixing each problem with a maximum score of four for the easy wins down to one for difficult tasks—these are your company priorities. Finally, multiply the score of each customer priority with its coordinating company priority scores and lead with the highest scoring idea. 

💡Pro-tip: use a product prioritization framework to make decisions.

Try a product prioritization framework when the pressure is on to make high-impact decisions with limited time and budget. These repeatable decision-making tools take the guesswork out of balancing goals, customer priorities, and team resources. Four popular frameworks are:

RICE: weighs four factors—reach, impact, confidence, and effort—to weigh initiatives differently

MoSCoW: considers stakeholder opinions on 'must-have', 'should-have', 'could-have', and 'won't-have' criteria

Kano: ranks ideas based on how likely they are to satisfy customer needs

Cost of delay analysis: determines potential revenue loss by not working on a product or initiative

Share what you learn with data visuals

Data visualization through charts and graphs gives you a new perspective on your results. Plus, removing the clutter of the analysis process helps you and stakeholders focus on the insight over the method.

Data visualization helps you:

Get buy-in with impactful charts that summarize your results

Increase customer empathy and awareness across your company with digestible insights

Use these four data visualization types to illustrate what you learned from your quantitative data analysis: 

Bar charts reveal response distribution across multiple options

Line graphs compare data points over time

Scatter plots showcase how two variables interact

Matrices contrast data between categories like customer segments, product types, or traffic source

#Bar charts, like this example, give a sense of how common responses are within an audience and how responses relate to one another

Use a variety of customer feedback types to get the whole picture

Quantitative data analysis pulls the story out of raw numbers—but you shouldn’t take a single result from your data collection and run with it. Instead, combine numbers-based quantitative data with descriptive qualitative research to learn the what, why, and how of customer experiences. 

Looking at an opportunity from multiple angles helps you make more customer-centric decisions with less guesswork.

Stay close to customers with Hotjar

Hotjar’s tools offer quantitative and qualitative insights you can use to make customer-centric decisions, get buy-in, and highlight your team’s impact.

Frequently asked questions about quantitative data analysis

What is quantitative data.

Quantitative data is numeric feedback and information that you can count and measure. For example, you can calculate multiple-choice response rates, but you can’t tally a customer’s open-ended product feedback response. You have to use qualitative data analysis methods for non-numeric feedback.

What are quantitative data analysis methods?

Quantitative data analysis either summarizes or finds connections between numerical data feedback. Here are eight ways to analyze your online business’s quantitative data:

Compare multiple-choice response rates

Cross-tabulate to compare responses between groups

Measure the volume of response over time

Net Promoter Score

Weight customer feedback

How do you visualize quantitative data?

Data visualization makes it easier to spot trends and share your analysis with stakeholders. Bar charts, line graphs, scatter plots, and matrices are ways to visualize quantitative data.

What are the two types of statistical analysis for online businesses?

Quantitative data analysis is broken down into two analysis technique types:

Descriptive statistics summarize your collected data, like the number of website visitors this month

Inferential statistics compare relationships between multiple types of quantitative data, like survey responses between different customer segments

Quantitative data analysis process

Previous chapter

Quantitative data analysis software

Next chapter

techniques of research data analysis

Quantitative Data Analysis 101

The Lingo, Methods and Techniques – Explained Simply.

By: Derek Jansen (MBA)  and Kerryn Warren (PhD) | December 2020

Dissertation Coaching

Overview: Quantitative Data Analysis 101

  • What (exactly) is quantitative data analysis?
  • When to use quantitative analysis
  • How quantitative analysis works

The two “branches” of quantitative analysis

  • Descriptive statistics 101
  • Inferential statistics 101
  • How to choose the right quantitative methods
  • Recap & summary

What is quantitative data analysis?

Despite being a mouthful, quantitative data analysis simply means analysing data that is numbers-based – or data that can be easily “converted” into numbers without losing any meaning.

For example, category-based variables like gender, ethnicity, or native language could all be “converted” into numbers without losing meaning – for example, English could equal 1, French 2, etc.

This contrasts against qualitative data analysis, where the focus is on words, phrases and expressions that can’t be reduced to numbers. If you’re interested in learning about qualitative analysis, check out our post and video here .

What is quantitative analysis used for?

Quantitative analysis is generally used for three purposes.

  • Firstly, it’s used to measure differences between groups . For example, the popularity of different clothing colours or brands.
  • Secondly, it’s used to assess relationships between variables . For example, the relationship between weather temperature and voter turnout.
  • And third, it’s used to test hypotheses in a scientifically rigorous way. For example, a hypothesis about the impact of a certain vaccine.

Again, this contrasts with qualitative analysis , which can be used to analyse people’s perceptions and feelings about an event or situation. In other words, things that can’t be reduced to numbers.

How does quantitative analysis work?

Well, since quantitative data analysis is all about analysing numbers , it’s no surprise that it involves statistics . Statistical analysis methods form the engine that powers quantitative analysis, and these methods can vary from pretty basic calculations (for example, averages and medians) to more sophisticated analyses (for example, correlations and regressions).

Sounds like gibberish? Don’t worry. We’ll explain all of that in this post. Importantly, you don’t need to be a statistician or math wiz to pull off a good quantitative analysis. We’ll break down all the technical mumbo jumbo in this post.

Need a helping hand?

techniques of research data analysis

As I mentioned, quantitative analysis is powered by statistical analysis methods . There are two main “branches” of statistical methods that are used – descriptive statistics and inferential statistics . In your research, you might only use descriptive statistics, or you might use a mix of both , depending on what you’re trying to figure out. In other words, depending on your research questions, aims and objectives . I’ll explain how to choose your methods later.

So, what are descriptive and inferential statistics?

Well, before I can explain that, we need to take a quick detour to explain some lingo. To understand the difference between these two branches of statistics, you need to understand two important words. These words are population and sample .

First up, population . In statistics, the population is the entire group of people (or animals or organisations or whatever) that you’re interested in researching. For example, if you were interested in researching Tesla owners in the US, then the population would be all Tesla owners in the US.

However, it’s extremely unlikely that you’re going to be able to interview or survey every single Tesla owner in the US. Realistically, you’ll likely only get access to a few hundred, or maybe a few thousand owners using an online survey. This smaller group of accessible people whose data you actually collect is called your sample .

So, to recap – the population is the entire group of people you’re interested in, and the sample is the subset of the population that you can actually get access to. In other words, the population is the full chocolate cake , whereas the sample is a slice of that cake.

So, why is this sample-population thing important?

Well, descriptive statistics focus on describing the sample , while inferential statistics aim to make predictions about the population, based on the findings within the sample. In other words, we use one group of statistical methods – descriptive statistics – to investigate the slice of cake, and another group of methods – inferential statistics – to draw conclusions about the entire cake. There I go with the cake analogy again…

With that out the way, let’s take a closer look at each of these branches in more detail.

Descriptive statistics vs inferential statistics

Branch 1: Descriptive Statistics

Descriptive statistics serve a simple but critically important role in your research – to describe your data set – hence the name. In other words, they help you understand the details of your sample . Unlike inferential statistics (which we’ll get to soon), descriptive statistics don’t aim to make inferences or predictions about the entire population – they’re purely interested in the details of your specific sample .

When you’re writing up your analysis, descriptive statistics are the first set of stats you’ll cover, before moving on to inferential statistics. But, that said, depending on your research objectives and research questions , they may be the only type of statistics you use. We’ll explore that a little later.

So, what kind of statistics are usually covered in this section?

Some common statistical tests used in this branch include the following:

  • Mean – this is simply the mathematical average of a range of numbers.
  • Median – this is the midpoint in a range of numbers when the numbers are arranged in numerical order. If the data set makes up an odd number, then the median is the number right in the middle of the set. If the data set makes up an even number, then the median is the midpoint between the two middle numbers.
  • Mode – this is simply the most commonly occurring number in the data set.
  • In cases where most of the numbers are quite close to the average, the standard deviation will be relatively low.
  • Conversely, in cases where the numbers are scattered all over the place, the standard deviation will be relatively high.
  • Skewness . As the name suggests, skewness indicates how symmetrical a range of numbers is. In other words, do they tend to cluster into a smooth bell curve shape in the middle of the graph, or do they skew to the left or right?

Feeling a bit confused? Let’s look at a practical example using a small data set.

Descriptive statistics example data

First, we can see that the mean weight is 72.4 kilograms. In other words, the average weight across the sample is 72.4 kilograms. Straightforward.

Next, we can see that the median is very similar to the mean (the average). This suggests that this data set has a reasonably symmetrical distribution (in other words, a relatively smooth, centred distribution of weights, clustered towards the centre).

In terms of the mode , there is no mode in this data set. This is because each number is present only once and so there cannot be a “most common number”. If there were two people who were both 65 kilograms, for example, then the mode would be 65.

Next up is the standard deviation . 10.6 indicates that there’s quite a wide spread of numbers. We can see this quite easily by looking at the numbers themselves, which range from 55 to 90, which is quite a stretch from the mean of 72.4.

And lastly, the skewness of -0.2 tells us that the data is very slightly negatively skewed. This makes sense since the mean and the median are slightly different.

As you can see, these descriptive statistics give us some useful insight into the data set. Of course, this is a very small data set (only 10 records), so we can’t read into these statistics too much. Also, keep in mind that this is not a list of all possible descriptive statistics – just the most common ones. But why do all of these numbers matter?

While these descriptive statistics are all fairly basic, they’re important for a few reasons:

  • Firstly, they help you get both a macro and micro-level view of your data. In other words, they help you understand both the big picture and the finer details.
  • Secondly, they help you spot potential errors in the data – for example, if an average is way higher than you’d expect, or responses to a question are highly varied, this can act as a warning sign that you need to double-check the data.
  • And lastly, these descriptive statistics help inform which inferential statistical techniques you can use, as those techniques depend on the skewness (in other words, the symmetry and normality) of the data.

Simply put, descriptive statistics are really important , even though the statistical techniques used are fairly basic. All too often at Grad Coach, we see students skimming over the descriptives in their eagerness to get to the more exciting inferential methods, and then landing up with some very flawed results.

Private Coaching

Branch 2: Inferential Statistics

As I mentioned, while descriptive statistics are all about the details of your specific data set – your sample – inferential statistics aim to make inferences about the population . In other words, you’ll use inferential statistics to make predictions about what you’d expect to find in the full population.

What kind of predictions, you ask? Well, there are two common types of predictions that researchers try to make using inferential stats:

  • Firstly, predictions about differences between groups – for example, height differences between children grouped by their favourite meal or gender.
  • And secondly, relationships between variables – for example, the relationship between body weight and the number of hours a week a person does yoga.

In other words, inferential statistics (when done correctly), allow you to connect the dots and make predictions about what you expect to see in the real world population, based on what you observe in your sample data. For this reason, inferential statistics are used for hypothesis testing – in other words, to test hypotheses that predict changes or differences.

Inferential statistics are used to make predictions about what you’d expect to find in the full population, based on the sample.

For example, if your population of interest is a mix of 50% male and 50% female , but your sample is 80% male , you can’t make inferences about the population based on your sample, since it’s not representative. This area of statistics is called sampling, but we won’t go down that rabbit hole here (it’s a deep one!) – we’ll save that for another post . What statistics are usually used in this branch?

There are many, many different statistical analysis methods within the inferential branch and it’d be impossible for us to discuss them all here. So we’ll just take a look at some of the most common inferential statistical methods so that you have a solid starting point.

First up are T-Tests . T-tests compare the means (the averages) of two groups of data to assess whether they’re statistically significantly different. In other words, do they have significantly different means, standard deviations and skewness.

This type of testing is very useful for understanding just how similar or different two groups of data are. For example, you might want to compare the mean blood pressure between two groups of people – one that has taken a new medication and one that hasn’t – to assess whether they are significantly different.

Kicking things up a level, we have ANOVA, which stands for “analysis of variance”. This test is similar to a T-test in that it compares the means of various groups, but ANOVA allows you to analyse multiple groups , not just two groups So it’s basically a t-test on steroids…

Next, we have correlation analysis . This type of analysis assesses the relationship between two variables. In other words, if one variable increases, does the other variable also increase, decrease or stay the same. For example, if the average temperature goes up, do average ice creams sales increase too? We’d expect some sort of relationship between these two variables intuitively , but correlation analysis allows us to measure that relationship scientifically .

Lastly, we have regression analysis – this is quite similar to correlation in that it assesses the relationship between variables, but it goes a step further to understand cause and effect between variables, not just whether they move together. In other words, does the one variable actually cause the other one to move, or do they just happen to move together naturally thanks to another force? Just because two variables correlate doesn’t necessarily mean that one causes the other. Stats overload…

I hear you. To make this all a little more tangible, let’s take a look at an example of a correlation in action.

Sample correlation

How to choose the right analysis method

To choose the right statistical methods, you need to think about two important factors :

  • The type of quantitative data you have (specifically, level of measurement and the shape of the data). And,
  • Your research questions and hypotheses

Let’s take a closer look at each of these.

Factor 1 – Data type

The first thing you need to consider is the type of data you’ve collected (or the type of data you will collect). By data types, I’m referring to the four levels of measurement – namely, nominal, ordinal, interval and ratio. If you’re not familiar with this lingo, check out the video below.

Well, because different statistical methods and techniques require different types of data. This is one of the “assumptions” I mentioned earlier – every method has its assumptions regarding the type of data.

For example, some techniques work with categorical data (for example, yes/no type questions, or gender or ethnicity), while others work with continuous numerical data (for example, age, weight or income) – and, of course, some work with multiple data types.

If you try to use a statistical method that doesn’t support the data type you have, your results will be largely meaningless . So, make sure that you have a clear understanding of what types of data you’ve collected (or will collect). Once you have this, you can then check which statistical methods would support your data types here .

If you haven’t collected your data yet, you can work in reverse and look at which statistical method would give you the most useful insights, and then design your data collection strategy to collect the correct data types.

Another important factor to consider is the shape of your data . Specifically, does it have a normal distribution (in other words, is it a bell-shaped curve, centred in the middle) or is it very skewed to the left or the right? Again, different statistical techniques work for different shapes of data – some are designed for symmetrical data while others are designed for skewed data.

Factor 2: Your research questions

The next thing you need to consider is your specific research questions, as well as your hypotheses (if you have some). The nature of your research questions and research hypotheses will heavily influence which statistical methods and techniques you should use.

If you’re just interested in understanding the attributes of your sample (as opposed to the entire population), then descriptive statistics are probably all you need. For example, if you just want to assess the means (averages) and medians (centre points) of variables in a group of people.

On the other hand, if you aim to understand differences between groups or relationships between variables and to infer or predict outcomes in the population, then you’ll likely need both descriptive statistics and inferential statistics.

So, it’s really important to get very clear about your research aims and research questions, as well your hypotheses – before you start looking at which statistical techniques to use.

Never shoehorn a specific statistical technique into your research just because you like it or have some experience with it. Your choice of methods must align with all the factors we’ve covered here.

Time to recap…

You’re still with me? That’s impressive. We’ve covered a lot of ground here, so let’s recap on the key points:

  • Quantitative data analysis is all about  analysing number-based data  (which includes categorical and numerical data) using various statistical techniques.
  • The two main  branches  of statistics are  descriptive statistics  and  inferential statistics . Descriptives describe your sample, whereas inferentials make predictions about what you’ll find in the population.
  • Common  descriptive statistical methods include  mean  (average),  median , standard  deviation  and  skewness .
  • Common  inferential statistical methods include  t-tests ,  ANOVA ,  correlation  and  regression  analysis.
  • To choose the right statistical methods and techniques, you need to consider the  type of data you’re working with , as well as your  research questions  and hypotheses.

Research Methodology Bootcamp

Learn More About Quantitative:

Triangulation: The Ultimate Credibility Enhancer

Triangulation: The Ultimate Credibility Enhancer

Triangulation is one of the best ways to enhance the credibility of your research. Learn about the different options here.

Inferential Statistics 101: Simple Explainer (With Examples)

Inferential Statistics 101: Simple Explainer (With Examples)

Quant Analysis 101: Inferential Statistics Everything You Need To Get Started (With...

Descriptive Statistics 101: Simple Explainer (With Examples)

Descriptive Statistics 101: Simple Explainer (With Examples)

Quant Analysis 101: Descriptive Statistics Everything You Need To Get Started (With...

Validity & Reliability: Explained Simply

Validity & Reliability: Explained Simply

Validity & Reliability In Research A Plain-Language Explanation (With Examples)By:...

Research Design 101: Qualitative & Quantitative

Research Design 101: Qualitative & Quantitative

Learn about research design for both qualitative and quantitative studies. Includes plain-language explanations and examples.

📄 FREE TEMPLATES

Research Topic Ideation

Proposal Writing

Literature Review

Methodology & Analysis

Academic Writing

Referencing & Citing

Apps, Tools & Tricks

The Grad Coach Podcast

77 Comments

Oddy Labs

Hi, I have read your article. Such a brilliant post you have created.

Derek Jansen

Thank you for the feedback. Good luck with your quantitative analysis.

Abdullahi Ramat

Thank you so much.

Obi Eric Onyedikachi

Thank you so much. I learnt much well. I love your summaries of the concepts. I had love you to explain how to input data using SPSS

MWASOMOLA, BROWN

Very useful, I have got the concept

Lumbuka Kaunda

Amazing and simple way of breaking down quantitative methods.

Charles Lwanga

This is beautiful….especially for non-statisticians. I have skimmed through but I wish to read again. and please include me in other articles of the same nature when you do post. I am interested. I am sure, I could easily learn from you and get off the fear that I have had in the past. Thank you sincerely.

Essau Sefolo

Send me every new information you might have.

fatime

i need every new information

Dr Peter

Thank you for the blog. It is quite informative. Dr Peter Nemaenzhe PhD

Mvogo Mvogo Ephrem

It is wonderful. l’ve understood some of the concepts in a more compréhensive manner

Maya

Your article is so good! However, I am still a bit lost. I am doing a secondary research on Gun control in the US and increase in crime rates and I am not sure which analysis method I should use?

Joy

Based on the given learning points, this is inferential analysis, thus, use ‘t-tests, ANOVA, correlation and regression analysis’

Peter

Well explained notes. Am an MPH student and currently working on my thesis proposal, this has really helped me understand some of the things I didn’t know.

Jejamaije Mujoro

I like your page..helpful

prashant pandey

wonderful i got my concept crystal clear. thankyou!!

Dailess Banda

This is really helpful , thank you

Lulu

Thank you so much this helped

wossen

Wonderfully explained

Niamatullah zaheer

thank u so much, it was so informative

mona

THANKYOU, this was very informative and very helpful

Thaddeus Ogwoka

This is great GRADACOACH I am not a statistician but I require more of this in my thesis

Include me in your posts.

Alem Teshome

This is so great and fully useful. I would like to thank you again and again.

Mrinal

Glad to read this article. I’ve read lot of articles but this article is clear on all concepts. Thanks for sharing.

Emiola Adesina

Thank you so much. This is a very good foundation and intro into quantitative data analysis. Appreciate!

Josyl Hey Aquilam

You have a very impressive, simple but concise explanation of data analysis for Quantitative Research here. This is a God-send link for me to appreciate research more. Thank you so much!

Lynnet Chikwaikwai

Avery good presentation followed by the write up. yes you simplified statistics to make sense even to a layman like me. Thank so much keep it up. The presenter did ell too. i would like more of this for Qualitative and exhaust more of the test example like the Anova.

Adewole Ikeoluwa

This is a very helpful article, couldn’t have been clearer. Thank you.

Samih Soud ALBusaidi

Awesome and phenomenal information.Well done

Nūr

The video with the accompanying article is super helpful to demystify this topic. Very well done. Thank you so much.

Lalah

thank you so much, your presentation helped me a lot

Anjali

I don’t know how should I express that ur article is saviour for me 🥺😍

Saiqa Aftab Tunio

It is well defined information and thanks for sharing. It helps me a lot in understanding the statistical data.

Funeka Mvandaba

I gain a lot and thanks for sharing brilliant ideas, so wish to be linked on your email update.

Rita Kathomi Gikonyo

Very helpful and clear .Thank you Gradcoach.

Hilaria Barsabal

Thank for sharing this article, well organized and information presented are very clear.

AMON TAYEBWA

VERY INTERESTING AND SUPPORTIVE TO NEW RESEARCHERS LIKE ME. AT LEAST SOME BASICS ABOUT QUANTITATIVE.

Tariq

An outstanding, well explained and helpful article. This will help me so much with my data analysis for my research project. Thank you!

chikumbutso

wow this has just simplified everything i was scared of how i am gonna analyse my data but thanks to you i will be able to do so

Idris Haruna

simple and constant direction to research. thanks

Mbunda Castro

This is helpful

AshikB

Great writing!! Comprehensive and very helpful.

himalaya ravi

Do you provide any assistance for other steps of research methodology like making research problem testing hypothesis report and thesis writing?

Sarah chiwamba

Thank you so much for such useful article!

Lopamudra

Amazing article. So nicely explained. Wow

Thisali Liyanage

Very insightfull. Thanks

Melissa

I am doing a quality improvement project to determine if the implementation of a protocol will change prescribing habits. Would this be a t-test?

Aliyah

The is a very helpful blog, however, I’m still not sure how to analyze my data collected. I’m doing a research on “Free Education at the University of Guyana”

Belayneh Kassahun

tnx. fruitful blog!

Suzanne

So I am writing exams and would like to know how do establish which method of data analysis to use from the below research questions: I am a bit lost as to how I determine the data analysis method from the research questions.

Do female employees report higher job satisfaction than male employees with similar job descriptions across the South African telecommunications sector? – I though that maybe Chi Square could be used here. – Is there a gender difference in talented employees’ actual turnover decisions across the South African telecommunications sector? T-tests or Correlation in this one. – Is there a gender difference in the cost of actual turnover decisions across the South African telecommunications sector? T-tests or Correlation in this one. – What practical recommendations can be made to the management of South African telecommunications companies on leveraging gender to mitigate employee turnover decisions?

Your assistance will be appreciated if I could get a response as early as possible tomorrow

Like

This was quite helpful. Thank you so much.

kidane Getachew

wow I got a lot from this article, thank you very much, keep it up

FAROUK AHMAD NKENGA

Thanks for yhe guidance. Can you send me this guidance on my email? To enable offline reading?

Nosi Ruth Xabendlini

Thank you very much, this service is very helpful.

George William Kiyingi

Every novice researcher needs to read this article as it puts things so clear and easy to follow. Its been very helpful.

Adebisi

Wonderful!!!! you explained everything in a way that anyone can learn. Thank you!!

Miss Annah

I really enjoyed reading though this. Very easy to follow. Thank you

Reza Kia

Many thanks for your useful lecture, I would be really appreciated if you could possibly share with me the PPT of presentation related to Data type?

Protasia Tairo

Thank you very much for sharing, I got much from this article

Fatuma Chobo

This is a very informative write-up. Kindly include me in your latest posts.

naphtal

Very interesting mostly for social scientists

Boy M. Bachtiar

Thank you so much, very helpfull

You’re welcome 🙂

Dr Mafaza Mansoor

woow, its great, its very informative and well understood because of your way of writing like teaching in front of me in simple languages.

Opio Len

I have been struggling to understand a lot of these concepts. Thank you for the informative piece which is written with outstanding clarity.

Eric

very informative article. Easy to understand

Leena Fukey

Beautiful read, much needed.

didin

Always greet intro and summary. I learn so much from GradCoach

Mmusyoka

Quite informative. Simple and clear summary.

Jewel Faver

I thoroughly enjoyed reading your informative and inspiring piece. Your profound insights into this topic truly provide a better understanding of its complexity. I agree with the points you raised, especially when you delved into the specifics of the article. In my opinion, that aspect is often overlooked and deserves further attention.

Shantae

Absolutely!!! Thank you

Thazika Chitimera

Thank you very much for this post. It made me to understand how to do my data analysis.

lule victor

its nice work and excellent job ,you have made my work easier

Pedro Uwadum

Wow! So explicit. Well done.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Submit Comment

techniques of research data analysis

  • Print Friendly

Instant insights, infinite possibilities

10 data analysis techniques you should know

Last updated

14 July 2023

Reviewed by

Cathy Heath

With rapidly changing markets, uncertain economic times, and challenging consumer attitudes, today’s businesses have small margins for error. 

They must make smart and fast business decisions to thrive, so it’s important they understand data analysis. 

In this article, we’ll look at the best data analysis techniques in research for businesses. 

  • What is data analysis?

Data analysis is the practice of applying statistical and logical techniques to illustrate, recap, condense, and evaluate data to make informed decisions. 

Companies rely on these processes and tools to gather insights to support operational and strategic decision-making. 

You can use various methods to analyze data, and they’re primarily based on two major areas:

Quantitative data analysis:  This is data that you can count, measure, order, or quantify with a numerical value.

Basically, quantitative research focuses on the numbers, while qualitative research focuses on the why behind the numbers. 

However, while each method provides different types of data, it’s challenging to conduct a successful data analysis without both research types.

  • The data analysis process

Now you know what data analysis is, let’s look at how to perform it step-by-step. 

The first step of the data analysis process is determining why you need an analysis and your goals for this undertaking.  

When trying to find your purpose for research, consider: 

The metrics you need to track

What type of data you want to use 

What data you plan to analyze

Collecting 

You need to collect the data from your sources, which can include surveys , questionnaires , observations, case studies , and focus groups . 

Make sure to organize the data so it is easier to analyze. 

Obtaining a significant amount of data is great, but it’s not necessarily all usable. 

You need to clean up the data before analyzing it. Remove duplicates, fix basic errors to avoid any false results, and ensure you have the largest amount of data to analyze. 

Here’s where you use data intelligence tools to interpret, categorize, and understand your data. 

The goal is to have reliable, relevant information for the situation you’re analyzing. It should help you understand the question you asked. 

Interpreting

Now you have the results, interpret them and figure out what they mean for your company. These findings will help you decide on the best course of action. 

Visualizing

This step involves representing data and information through charts, graphs, bullet points, maps, and other visual methods. 

It’s a powerful way to highlight valuable insights, patterns, or trends that others can read and understand quickly.

Presenting your data in this way is especially useful when comparing datasets and observing relationships between them. 

  • Why is data analysis important?

Data analysis is an important tool for any business that wants to: 

Understand its customers better

Improve sales

Figure out ways to target customers

Reduce costs

Discover problem-solving solutions

When conducted appropriately, data analysis enables businesses to:

Make better-informed business decisions and avoid spending money on ineffective, unproven strategies for products and services

Use the data to examine their processes, fuel marketing campaigns, and ensure promotions engage the right audiences

Collect large amounts of valuable customer data and feedback

Discover meaningful patterns to optimize their services and products

Identify opportunities to streamline operations, maximize profits, and reduce costs

Use insights to determine which processes lead to better results and which ones don’t

Manage risks, anticipate problems, protect against fraud, and raise quality standards

  • Quantitative data analysis techniques

Researchers typically use quantitative data for three purposes: 

To measure the differences between certain types of groups

To assess relationships between variables

To test hypotheses in a significant way

The techniques to measure quantitative data include the following:

Regression analysis

This quantitative research method studies several variables where the relationships have one or more independent variables and a dependent variable . 

Simple linear regression analysis

This tool models the relationship between two continuous variables: One dependent variable and one independent variable. 

The objective of this method is to predict an output variable’s value based on the value of an input variable. 

Multiple linear regression analysis

The multiple linear regression analysis technique uses two or more independent variables to determine the outcome of a dependent variable. 

Hypothesis analysis

This technique allows businesses to test their assumptions and estimate the relationship between two statistical variables. 

Null hypothesis

The null hypothesis claims no relationship exists between the two sets of variables you’re analyzing. Instead, any difference is because of chance alone, and an underlying causative relationship does not exist.

Alternative hypothesis

The alternative hypothesis claims an effect on the population, and it’s the statement you test when trying to disprove the null hypothesis. 

  • Qualitative data analysis techniques

Qualitative data refers to non-numeric information such as recordings, images, documents, transcripts, and other notes. 

As a result, we can divide analysis techniques into these categories:

Content analysis

This research tool determines the presence of certain themes and concepts within different types of qualitative data. 

Content analysis can reveal patterns in communication that indicate the message, purpose, and effect of the content. 

It can also determine the intent of the content producers and the impact it has on target audiences. 

Identify data sources

The first step in categorizing existing data is to determine the type of content you need to analyze, where the data comes from, and who owns the data. 

These sources include books, social media posts, newspapers, and videos or photos. 

Determine data criteria

This step determines what makes a particular text appropriate to the study. 

For example, does the text mentions a specific topic? Is it even related to the issue? Or does it fall within a particular data range? 

Discourse analysis

This method analyzes the structure of texts longer than one sentence. It takes into account their linguistic and sociolinguistic context. 

As a result, discourse analysis helps companies interpret the true intent and meaning of communication, clearing up any misunderstandings. 

  • How to choose the right data analysis technique

Because many types of data analysis tools and methods are available, figuring out which techniques to use can be tricky. 

It depends on the type of data you have and what you want to achieve. It’s critical to note that your results can be meaningless or incorrect if you try to use a method that does not support your data. 

Consequently, ensure that you clearly understand the data type you’re using and determine which technique supports it.

  • How much time is required for data analysis?

The time involved in analyzing data depends on several factors, including the amount of data you have. If you want to analyze data faster, follow these steps:

Define your goals

Before analyzing your data, set clear goals and figure out what you want to gain. This can help you figure out what data you need to collect and the type of analysis to perform. 

Decide how you will measure your goals

After defining your goals, figure out how to measure these goals. For instance, consider whether you need qualitative or quantitative data or both to get the desired results.

Collect the data

Once you understand your goals and how you want to measure them, you can begin collecting appropriate data. 

While you should collect quantitative and qualitative data, you want relevant data for the questions you’re trying to answer. 

Companies usually store quantitative data in databases, and you can find qualitative data in customer emails, support tickets, product reviews, survey responses, and social media data. However, simply finding this data is not enough. 

You also need to look for high-quality data. It’s critical to take the time to prepare the data by removing unnecessary elements that usually appear in unstructured text.

Analyze the data

Once you’ve gathered the data you need, you can analyze it. Create comprehensive charts to better understand what these figures can mean for your company. 

Using the right tools and processes means gathering appropriate data and getting results faster.

  • How have methods of data analysis changed over time?

Today's competitive marketplace means businesses must sift through massive amounts of data faster and analyze it for appropriate action. Fortunately, as technology continues to evolve, so do data analysis methods:

Descriptive analytics

Descriptive analysis examines content or data to answer what happened or what is happening. 

Companies need to review raw historical data and present it in an easy-to-understand, accurate view of past behaviors or patterns. 

When businesses understand what happened, they can see how it might influence their future.

Predictive analytics

Predictive analysis is the process of accurately forecasting what could happen moving forward. 

This process uses machine learning, artificial intelligence, data analysis, and statistical models to find certain data patterns. These can predict future behavior, forecast demands, and identify trends based on various variables. 

Prescriptive analytics

Prescriptive analysis refers to the advanced process of analyzing content and data to recommend the best strategy moving forward. 

Put more simply, it looks to answer the question, "What should we do?" 

While this is a relatively new form of analytics, companies have successfully used it to optimize customer experience and deliver the right projects within the appropriate time frames. 

Data analysis ensures companies can keep their fingers on the pulse, continually meet customer needs, and improve their bottom line.

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 18 April 2023

Last updated: 27 February 2023

Last updated: 22 August 2024

Last updated: 5 February 2023

Last updated: 16 April 2023

Last updated: 9 March 2023

Last updated: 30 April 2024

Last updated: 12 December 2023

Last updated: 11 March 2024

Last updated: 4 July 2024

Last updated: 6 March 2024

Last updated: 5 March 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next, log in or sign up.

Get started for free

Your Modern Business Guide To Data Analysis Methods And Techniques 

3 mins read

techniques of research data analysis

Data is highly crucial for any business. It can give us abundant information if we use it well. A recent report suggested that 91.9% of organizations achieved measurable value from data and analytics investments in 2023. Whether you’re new to data analysis or already know a lot, having a guide with different ways to analyze data is crucial for making smart choices and staying ahead. This article is here to help, giving you insights into the main ways businesses analyze data today. 

Table of Contents

What is Data Analysis and Interpretation?  

Data analysis is when we examine, clean, transform, and model data to find useful information, draw conclusions, and support decision-making. This includes using different techniques to look at raw data, find patterns, and get important insights. 

Interpretation is about explaining and making sense of the results from data analysis. It means putting the findings into context, understanding what they mean, and coming up with meaningful conclusions. Interpretation is really important because it helps turn data into practical insights and guides decision-making. 

Understanding the Landscape: The Importance of Data Analysis and Interpretation  

Going by the data, 3 in 5 organizations are using data analytics to drive business innovation. These days, businesses gather piles of information. They collect data on what customers do, market trends, and how things work inside the company. This data helps us understand what’s effective, what isn’t, and where there are chances to do better. Smart organizations know that analyzing this data is important to stay ahead of the competition. 

Data Analysis Techniques  

A lot goes into the interpretation of data in research. Data analysis methods in research include systematic processes. These processes involve inspecting, cleaning, transforming, and modeling data. The goal is to discover useful information, draw conclusions, and support decision-making . The choice of methods depends on the research design, objectives, and the type of data collected. Here are some data analytics techniques: 

1. Descriptive Statistics:  

What it is: Descriptive statistics are like summaries of data. They use things like average, middle value, most common number, and how spread out the numbers are. 

Why it matters: Giving a quick look at where the data usually falls and how much it varies is the first step for looking at it more closely. 

2. Data Visualization:  

What it is: Tools like charts and graphs make it easy to understand complicated data by turning it into pictures. 

Why it matters: Pictures help us see patterns, trends, and unusual things in data. This makes it easier for everyone involved to understand. 

3. Inferential Statistics:  

What it is: Inferential statistics help businesses guess things about a bigger group based on what they see in a smaller part of it. 

Why it matters : Knowing how to make decisions based on small samples is really important. It often means doing tests and looking at relationships between things. 

4. Machine Learning and Predictive Analytics:  

What it is: Using special methods and models to guess what might happen in the future by looking at what happened in the past. 

Why it matters : Machine learning helps companies make decisions automatically, improve their plans, and get better at predicting what might happen in the future. 

5. Big Data Analytics:  

What it is: Analyzing large volumes of diverse data sets, often in real-time, to extract meaningful insights. 

Why it matters : Big data analytics helps companies see the whole picture, find patterns that aren’t obvious, and make decisions based on a lot of information. 

Putting it Into Practice: Steps for Effective Data Analysis  

  • Define Objectives: Clearly outline what you want to achieve with your data analysis. 
  • Data Collection: Gather relevant and accurate data aligned with your objectives. 
  • Cleaning and Preprocessing : Ensure your data is clean, addressing any missing values or errors. 
  • Exploratory Data Analysis (EDA) : Dive into your data, visualize it, and identify potential patterns or outliers. 
  • Statistical Analysis: Apply appropriate statistical techniques based on your objectives. 
  • Machine Learning Models: Implement machine learning algorithms for predictive analysis if applicable. 
  • Interpretation and Communication: Draw meaningful conclusions and effectively communicate your findings to stakeholders. 

Final thoughts  

Knowing and using the methods in this guide can turn raw data into useful ideas, helping businesses be more creative and successful. Using data analysis and interpretation is not just something businesses should do; it’s a smart move that gives them an advantage in facing challenges, grabbing chances, and staying ahead in today’s changing business world. As businesses keep using data, they set themselves up to make smart choices that help them grow and stay strong in the fast-changing world of modern business. 

Subscribe to our Newsletter

Get the latest posts in your email.

Lumenore Walkthrough Demo

Social Media Share

About the author.

techniques of research data analysis

Content Creator @ Lumenore

Published: January 12, 2024

Recommended Blogs

techniques of research data analysis

How Predictive Analytics Can Help Keep Your Customers Happy 

Brands across the globe have been more focused than ever on creating a loyal customer base. According to LoyaltyOne's Big Picture Loyal...

techniques of research data analysis

Reducing Average Handle Time by Proven Techniques for Contact Center Efficiency 

In the quest to deliver great customer experience, every second counts — especially in contact centers where Average Handle Time (AHT...

techniques of research data analysis

What is Healthcare Analytics? Benefits and Use Cases 

Healthcare analytics is making waves in the medical sector, skillfully turning extensive data into actionable insights that elevate p...

techniques of research data analysis

Embracing the Future of Analytics: Trusted Data & Responsible AI 

In the modern data-driven business landscape, the competitive advantages go to the organizations that effectively harness their distr...

techniques of research data analysis

Embrace Self-Service Analytics – 3 Shifts in the Modern Data Environment 

​​Data is frequently lauded as an organization's greatest asset and competitive differentiator. But for many companies, their data ...

techniques of research data analysis

Good Decisions Start with Data  

We have all been there — sitting in a meeting room, staring at slides full of numbers and charts, as the presenters try to make a cas...

techniques of research data analysis

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center
  • Introduction

Data collection

Data analysis at the Armstrong Flight Research Center in Palmdale, California

data analysis

Our editors will review what you’ve submitted and determine whether to revise the article.

  • Academia - Data Analysis
  • U.S. Department of Health and Human Services - Office of Research Integrity - Data Analysis
  • Chemistry LibreTexts - Data Analysis
  • IBM - What is Exploratory Data Analysis?
  • Table Of Contents

data analysis , the process of systematically collecting, cleaning, transforming, describing, modeling, and interpreting data , generally employing statistical techniques. Data analysis is an important part of both scientific research and business, where demand has grown in recent years for data-driven decision making . Data analysis techniques are used to gain useful insights from datasets, which can then be used to make operational decisions or guide future research . With the rise of “ big data ,” the storage of vast quantities of data in large databases and data warehouses, there is increasing need to apply data analysis techniques to generate insights about volumes of data too large to be manipulated by instruments of low information-processing capacity.

Datasets are collections of information. Generally, data and datasets are themselves collected to help answer questions, make decisions, or otherwise inform reasoning. The rise of information technology has led to the generation of vast amounts of data of many kinds, such as text, pictures, videos, personal information, account data, and metadata, the last of which provide information about other data. It is common for apps and websites to collect data about how their products are used or about the people using their platforms. Consequently, there is vastly more data being collected today than at any other time in human history. A single business may track billions of interactions with millions of consumers at hundreds of locations with thousands of employees and any number of products. Analyzing that volume of data is generally only possible using specialized computational and statistical techniques.

The desire for businesses to make the best use of their data has led to the development of the field of business intelligence , which covers a variety of tools and techniques that allow businesses to perform data analysis on the information they collect.

For data to be analyzed, it must first be collected and stored. Raw data must be processed into a format that can be used for analysis and be cleaned so that errors and inconsistencies are minimized. Data can be stored in many ways, but one of the most useful is in a database . A database is a collection of interrelated data organized so that certain records (collections of data related to a single entity) can be retrieved on the basis of various criteria . The most familiar kind of database is the relational database , which stores data in tables with rows that represent records (tuples) and columns that represent fields (attributes). A query is a command that retrieves a subset of the information in the database according to certain criteria. A query may retrieve only records that meet certain criteria, or it may join fields from records across multiple tables by use of a common field.

Frequently, data from many sources is collected into large archives of data called data warehouses. The process of moving data from its original sources (such as databases) to a centralized location (generally a data warehouse) is called ETL (which stands for extract , transform , and load ).

  • The extraction step occurs when you identify and copy or export the desired data from its source, such as by running a database query to retrieve the desired records.
  • The transformation step is the process of cleaning the data so that they fit the analytical need for the data and the schema of the data warehouse. This may involve changing formats for certain fields, removing duplicate records, or renaming fields, among other processes.
  • Finally, the clean data are loaded into the data warehouse, where they may join vast amounts of historical data and data from other sources.

After data are effectively collected and cleaned, they can be analyzed with a variety of techniques. Analysis often begins with descriptive and exploratory data analysis. Descriptive data analysis uses statistics to organize and summarize data, making it easier to understand the broad qualities of the dataset. Exploratory data analysis looks for insights into the data that may arise from descriptions of distribution, central tendency, or variability for a single data field. Further relationships between data may become apparent by examining two fields together. Visualizations may be employed during analysis, such as histograms (graphs in which the length of a bar indicates a quantity) or stem-and-leaf plots (which divide data into buckets, or “stems,” with individual data points serving as “leaves” on the stem).

techniques of research data analysis

Data analysis frequently goes beyond descriptive analysis to predictive analysis, making predictions about the future using predictive modeling techniques. Predictive modeling uses machine learning , regression analysis methods (which mathematically calculate the relationship between an independent variable and a dependent variable), and classification techniques to identify trends and relationships among variables. Predictive analysis may involve data mining , which is the process of discovering interesting or useful patterns in large volumes of information. Data mining often involves cluster analysis , which tries to find natural groupings within data, and anomaly detection , which detects instances in data that are unusual and stand out from other patterns. It may also look for rules within datasets, strong relationships among variables in the data.

  • University Libraries
  • Research Guides
  • Topic Guides
  • Research Methods Guide
  • Data Analysis

Research Methods Guide: Data Analysis

  • Introduction
  • Research Design & Method
  • Survey Research
  • Interview Research
  • Resources & Consultation

Tools for Analyzing Survey Data

  • R (open source)
  • Stata 
  • DataCracker (free up to 100 responses per survey)
  • SurveyMonkey (free up to 100 responses per survey)

Tools for Analyzing Interview Data

  • AQUAD (open source)
  • NVivo 

Data Analysis and Presentation Techniques that Apply to both Survey and Interview Research

  • Create a documentation of the data and the process of data collection.
  • Analyze the data rather than just describing it - use it to tell a story that focuses on answering the research question.
  • Use charts or tables to help the reader understand the data and then highlight the most interesting findings.
  • Don’t get bogged down in the detail - tell the reader about the main themes as they relate to the research question, rather than reporting everything that survey respondents or interviewees said.
  • State that ‘most people said …’ or ‘few people felt …’ rather than giving the number of people who said a particular thing.
  • Use brief quotes where these illustrate a particular point really well.
  • Respect confidentiality - you could attribute a quote to 'a faculty member', ‘a student’, or 'a customer' rather than ‘Dr. Nicholls.'

Survey Data Analysis

  • If you used an online survey, the software will automatically collate the data – you will just need to download the data, for example as a spreadsheet.
  • If you used a paper questionnaire, you will need to manually transfer the responses from the questionnaires into a spreadsheet.  Put each question number as a column heading, and use one row for each person’s answers.  Then assign each possible answer a number or ‘code’.
  • When all the data is present and correct, calculate how many people selected each response.
  • Once you have calculated how many people selected each response, you can set up tables and/or graph to display the data.  This could take the form of a table or chart.
  • In addition to descriptive statistics that characterize findings from your survey, you can use statistical and analytical reporting techniques if needed.

Interview Data Analysis

  • Data Reduction and Organization: Try not to feel overwhelmed by quantity of information that has been collected from interviews- a one-hour interview can generate 20 to 25 pages of single-spaced text.   Once you start organizing your fieldwork notes around themes, you can easily identify which part of your data to be used for further analysis.
  • What were the main issues or themes that struck you in this contact / interviewee?"
  • Was there anything else that struck you as salient, interesting, illuminating or important in this contact / interviewee? 
  • What information did you get (or failed to get) on each of the target questions you had for this contact / interviewee?
  • Connection of the data: You can connect data around themes and concepts - then you can show how one concept may influence another.
  • Examination of Relationships: Examining relationships is the centerpiece of the analytic process, because it allows you to move from simple description of the people and settings to explanations of why things happened as they did with those people in that setting.
  • << Previous: Interview Research
  • Next: Resources & Consultation >>
  • Last Updated: Aug 21, 2023 10:42 AM

techniques of research data analysis

Data Analysis Methods: Qualitative vs. Quantitative

' src=

  • Couchbase Product Marketing February 13, 2024

Data analysis is a crucial step in extracting meaningful insights from collected data. Two common approaches to analyzing data are qualitative and quantitative analysis. Each method offers different techniques for interpreting and understanding your findings.

This blog post will further explore different qualitative and quantitative analysis methods, their strengths and limitations, and how to apply them in various research and business contexts. Whether you’re a researcher, analyst, or decision maker, understanding these methods will help you make informed decisions when analyzing data and deriving valuable insights.

What is Data Analysis, and Why is it Necessary?

Data analysis is comparable to a detective looking for evidence to uncover important information. It helps us understand trends and patterns in data that we may not see immediately. Analyzing data allows us to make better decisions, find opportunities, and solve problems. It’s necessary because it helps make sense of the large amounts of data available today. Data would be messy and hard to understand without analysis, but we can find connections, discover abnormalities, and understand the bigger picture by analyzing it.

It also helps us predict the future by looking at past data. Historical data is useful in fields like business, finance, and healthcare. It allows us to predict customer behavior, market trends, and potential risks. With this information, we can plan and prepare for what might happen. Data analysis also improves performance and efficiency. By studying data, we can find areas to fix or improve, making things run smoother and using resources wisely.

What Does the Data Analysis Process Entail?

Data analysis involves several key steps to extract meaningful insights from data. Here’s an overview of the typical data analysis process:

  • Objective Definition: Clearly define the objective of the analysis by understanding the specific questions to answer or problems to solve.
  • Data Collection and Preprocessing: Gather relevant data from various sources, ensuring accuracy, completeness, and representativeness. Clean the data by removing errors, inconsistencies, or missing values, and preprocess it as needed (e.g., normalization, standardization).
  • Exploratory Data Analysis (EDA): Explore the data through visualization, charts, graphs, and summary statistics to identify patterns, trends, or relationships and gain initial insights.
  • Data Analysis Techniques: Depending on the data’s objective and characteristics, suitable techniques like descriptive statistics, hypothesis testing, regression, clustering, or classification can be used to analyze data effectively.
  • Interpretation and Communication: Analyze the output of the analysis techniques, interpret the findings in the context of the objective, and draw conclusions. Communicate the results effectively using visualizations, reports, or presentations to stakeholders or decision makers.

Throughout the process, it’s important to validate and verify the analysis by checking for consistency, conducting sensitivity analyses, or using peer review. Additionally, the data analysis process often involves iteration, allowing for refinement and improvement based on initial findings or feedback received.

What is the Difference Between Qualitative and Quantitative Data?

Qualitative and quantitative data are two different types of data used in research and analysis. Here are the key differences between them:

It consists of non-numerical or categorical information, such as descriptions, opinions, observations, or narratives. It focuses on capturing subjective or qualitative aspects of a phenomenon. It comprises numerical information that can be measured or counted. It deals with objective or quantitative aspects of a phenomenon.
It’s typically represented in the form of words, texts, images, or codes and can be organized into categories, themes, or patterns. It’s represented as numbers or numerical values and can be organized into tables, graphs, charts, or statistical summaries.
It’s collected through interviews, focus groups, observations, or open-ended survey questions. It aims to gather in-depth insights and capture the richness of human experiences. It’s collected through surveys, experiments, or structured observations. It aims to gather data that can be analyzed statistically and generalize findings to a larger population.
It involves analyzing data thematically or by identifying patterns, themes, or commonalities. Techniques like coding, content analysis, or discourse analysis are commonly used. It involves analyzing data using statistical techniques. It focuses on numerical relationships, patterns, or trends and involves computations, statistical tests, and modeling.
It provides in-depth understanding, rich descriptions, and contextual insights. Findings may be specific to the studied context and not easily generalizable to a larger population. It provides numerical measurements, statistical relationships, and quantifiable results. Findings can be generalized to a larger population within a certain level of confidence.

Both qualitative and quantitative data have their strengths and applications. They can be used together in mixed-methods research to comprehensively understand a research topic or triangulate findings for more robust conclusions.

Data Analysis Methods

Data analysis methods refer to the techniques and approaches used to analyze and interpret data. These methods vary depending on the type of data you’re analyzing and the research objectives. Two common categories of data analysis methods are qualitative data analysis and quantitative data analysis.

Qualitative Data

Qualitative data analysis involves examining non-numerical or categorical information to uncover patterns, themes, and meanings. Here are some commonly used methods for analyzing qualitative data:

Thematic Analysis : Identifies recurring themes or patterns in qualitative data by categorizing and coding the data.

Content Analysis : Analyzes textual data systematically by categorizing and coding it to identify patterns and concepts.

Narrative Analysis : Examines stories or narratives to understand experiences, perspectives, and meanings.

Grounded Theory : Develops theories or frameworks based on systematically collected and analyzed data, allowing theory development to be guided by the analysis process.

Quantitative Data

Quantitative data analysis involves analyzing numerical data to uncover statistical patterns, relationships, and trends. Here are some commonly used methods for analyzing quantitative data:

Descriptive Statistics : Summarizes dataset features using mean, median, mode, standard deviation, and percentages.

Inferential Statistics : Draws conclusions about a population based on sample data using hypothesis testing, t-tests, and regression analysis.

Data Mining : Discovers patterns and correlations in large datasets using algorithms and statistical techniques.

Experimental Design : Designs controlled experiments to determine causal relationships between variables.

These are just a few examples of the data analysis methods used for qualitative and quantitative data. The choice of method depends on the research objectives, type of data, available resources, and the specific questions to address. Researchers often employ a combination of methods to comprehensively understand the data and draw meaningful conclusions.

Data Analysis Obstacles

You’ll likely encounter obstacles to obtaining accurate and meaningful insights during the data analysis process. Understanding these obstacles is crucial for effective data analysis. Here are some common ones:

Data Quality Issues: Poor data quality can be a significant obstacle. Addressing data quality issues by carefully cleaning and preprocessing your data is essential.

Insufficient or Unrepresentative Data: If the data collected doesn’t cover the relevant variables or lacks diversity, the insights obtained may be limited or biased. 

Lack of Domain Knowledge: Data analysis often requires domain knowledge to interpret the results accurately. Without a thorough understanding of the subject matter, it can be challenging to identify relevant patterns or relationships in the data.

Complexity and Volume of Data: Large and complex datasets can pose processing, analysis, and interpretation challenges. Analyzing such data requires advanced techniques and tools to handle the volume and complexity effectively.

Biases and Assumptions: Biases and assumptions made during data analysis can influence the process. Biases can occur at various stages, such as data collection, preprocessing, or analysis. 

Overcoming these obstacles requires careful attention to data quality, ensuring representative data, acquiring domain knowledge, utilizing appropriate tools and techniques, and being mindful of biases and assumptions. By addressing these challenges, data analysts can enhance the reliability and validity of their analysis, leading to more accurate and insightful results.

How to Ensure Data Quality

It’s crucial to prioritize data quality to ensure that insights obtained from data analysis are accurate and reliable. Here are some simple steps to ensure data quality:

Data analysis processes

  • Data Collection Planning: Plan the data collection process carefully. Clearly define the data requirements and variables needed to address the analysis objective.
  • Data Cleaning and Validation: Thoroughly clean the collected data to remove errors, inconsistencies, or missing values. Validate the data by cross-checking it against known standards or conducting data verification checks. 
  • Data Standardization: Ensure consistency and comparability by converting data into a common format, unit, or scale. 
  • Data Integration: If working with multiple datasets, integrate them carefully to ensure coherence and accuracy. You should match variables, resolve inconsistencies, and merge all data correctly.
  • Data Documentation: Thoroughly document the data collection and preprocessing procedures. Record data sources, data cleaning steps, transformations applied, and any other modifications made.

By following these steps, data quality can be maintained throughout the analysis process. High-quality data enhances the credibility of the analysis and enables informed decision making based on accurate and trustworthy information.

How Data Analysis Benefits Your Organization

Data analysis offers organizations numerous benefits , helping them improve processes, make informed decisions, and gain a competitive edge. Here are some key advantages of data analysis in clear and simple terms:

Informed Decision Making : Data analysis helps organizations make informed decisions by providing valuable insights and identifying trends and patterns in data.

Improved Efficiency and Productivity : By analyzing data, organizations can identify inefficiencies, streamline processes, and allocate resources effectively, improving efficiency and productivity.

Enhanced Customer Understanding : Data analysis enables organizations to gain a deeper understanding of customers and their needs, preferences, and behavior, enabling personalized marketing strategies and better customer service.

Competitive Advantage : Data analysis helps organizations stay ahead of the competition by identifying market trends, monitoring competitors, and uncovering new opportunities.

Risk Identification and Mitigation : Data analysis allows organizations to identify and mitigate risks by analyzing historical data, detecting potential fraud, predicting customer churn, and proactively developing risk management strategies.

In summary, data analysis empowers organizations to make informed decisions, improve efficiency, understand customers, gain a competitive advantage, and mitigate risks, leading to enhanced performance and success.

Key Takeaways 

Data analysis is a powerful process that offers significant benefits to organizations. It enables organizations to improve efficiency, optimize processes, and allocate resources effectively, leading to cost savings and increased productivity. It also helps organizations better understand their customers, tailor strategies, and develop products that meet customer needs, fostering customer satisfaction and loyalty. Furthermore, data analysis provides a competitive advantage by uncovering market trends, monitoring competitors, and identifying new opportunities.

Check out the following resources to learn even more about data analysis:

  • What is Big Data Analytics?
  • Enterprise Analytics
  • Unstructured Data
  • Semi-Structured Data
  • What is Data Management?
  • What is a Data Platform?
  • Database vs. Data Warehouse: Differences, Use Cases, Examples
  • Couchbase Capella Columnar Adds Real-time Data Analytics Service
  • JSON Analytics Product Page

Couchbase Product Marketing

  • Posted in: Application Design , Best Practices and Tutorials
  • Tagged in: Data Analysis , data analytics

Posted by Couchbase Product Marketing

Leave a reply cancel reply.

You must be logged in to post a comment.

Check your inbox or spam folder to confirm your subscription.

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

techniques of research data analysis

Home Market Research

Qualitative Data Analysis: What is it, Methods + Examples

Explore qualitative data analysis with diverse methods and real-world examples. Uncover the nuances of human experiences with this guide.

In a world rich with information and narrative, understanding the deeper layers of human experiences requires a unique vision that goes beyond numbers and figures. This is where the power of qualitative data analysis comes to light.

In this blog, we’ll learn about qualitative data analysis, explore its methods, and provide real-life examples showcasing its power in uncovering insights.

What is Qualitative Data Analysis?

Qualitative data analysis is a systematic process of examining non-numerical data to extract meaning, patterns, and insights.

In contrast to quantitative analysis, which focuses on numbers and statistical metrics, the qualitative study focuses on the qualitative aspects of data, such as text, images, audio, and videos. It seeks to understand every aspect of human experiences, perceptions, and behaviors by examining the data’s richness.

Companies frequently conduct this analysis on customer feedback. You can collect qualitative data from reviews, complaints, chat messages, interactions with support centers, customer interviews, case notes, or even social media comments. This kind of data holds the key to understanding customer sentiments and preferences in a way that goes beyond mere numbers.

Importance of Qualitative Data Analysis

Qualitative data analysis plays a crucial role in your research and decision-making process across various disciplines. Let’s explore some key reasons that underline the significance of this analysis:

In-Depth Understanding

It enables you to explore complex and nuanced aspects of a phenomenon, delving into the ‘how’ and ‘why’ questions. This method provides you with a deeper understanding of human behavior, experiences, and contexts that quantitative approaches might not capture fully.

Contextual Insight

You can use this analysis to give context to numerical data. It will help you understand the circumstances and conditions that influence participants’ thoughts, feelings, and actions. This contextual insight becomes essential for generating comprehensive explanations.

Theory Development

You can generate or refine hypotheses via qualitative data analysis. As you analyze the data attentively, you can form hypotheses, concepts, and frameworks that will drive your future research and contribute to theoretical advances.

Participant Perspectives

When performing qualitative research, you can highlight participant voices and opinions. This approach is especially useful for understanding marginalized or underrepresented people, as it allows them to communicate their experiences and points of view.

Exploratory Research

The analysis is frequently used at the exploratory stage of your project. It assists you in identifying important variables, developing research questions, and designing quantitative studies that will follow.

Types of Qualitative Data

When conducting qualitative research, you can use several qualitative data collection methods , and here you will come across many sorts of qualitative data that can provide you with unique insights into your study topic. These data kinds add new views and angles to your understanding and analysis.

Interviews and Focus Groups

Interviews and focus groups will be among your key methods for gathering qualitative data. Interviews are one-on-one talks in which participants can freely share their thoughts, experiences, and opinions.

Focus groups, on the other hand, are discussions in which members interact with one another, resulting in dynamic exchanges of ideas. Both methods provide rich qualitative data and direct access to participant perspectives.

Observations and Field Notes

Observations and field notes are another useful sort of qualitative data. You can immerse yourself in the research environment through direct observation, carefully documenting behaviors, interactions, and contextual factors.

These observations will be recorded in your field notes, providing a complete picture of the environment and the behaviors you’re researching. This data type is especially important for comprehending behavior in their natural setting.

Textual and Visual Data

Textual and visual data include a wide range of resources that can be qualitatively analyzed. Documents, written narratives, and transcripts from various sources, such as interviews or speeches, are examples of textual data.

Photographs, films, and even artwork provide a visual layer to your research. These forms of data allow you to investigate what is spoken and the underlying emotions, details, and symbols expressed by language or pictures.

When to Choose Qualitative Data Analysis over Quantitative Data Analysis

As you begin your research journey, understanding why the analysis of qualitative data is important will guide your approach to understanding complex events. If you analyze qualitative data, it will provide new insights that complement quantitative methodologies, which will give you a broader understanding of your study topic.

It is critical to know when to use qualitative analysis over quantitative procedures. You can prefer qualitative data analysis when:

  • Complexity Reigns: When your research questions involve deep human experiences, motivations, or emotions, qualitative research excels at revealing these complexities.
  • Exploration is Key: Qualitative analysis is ideal for exploratory research. It will assist you in understanding a new or poorly understood topic before formulating quantitative hypotheses.
  • Context Matters: If you want to understand how context affects behaviors or results, qualitative data analysis provides the depth needed to grasp these relationships.
  • Unanticipated Findings: When your study provides surprising new viewpoints or ideas, qualitative analysis helps you to delve deeply into these emerging themes.
  • Subjective Interpretation is Vital: When it comes to understanding people’s subjective experiences and interpretations, qualitative data analysis is the way to go.

You can make informed decisions regarding the right approach for your research objectives if you understand the importance of qualitative analysis and recognize the situations where it shines.

Qualitative Data Analysis Methods and Examples

Exploring various qualitative data analysis methods will provide you with a wide collection for making sense of your research findings. Once the data has been collected, you can choose from several analysis methods based on your research objectives and the data type you’ve collected.

There are five main methods for analyzing qualitative data. Each method takes a distinct approach to identifying patterns, themes, and insights within your qualitative data. They are:

Method 1: Content Analysis

Content analysis is a methodical technique for analyzing textual or visual data in a structured manner. In this method, you will categorize qualitative data by splitting it into manageable pieces and assigning the manual coding process to these units.

As you go, you’ll notice ongoing codes and designs that will allow you to conclude the content. This method is very beneficial for detecting common ideas, concepts, or themes in your data without losing the context.

Steps to Do Content Analysis

Follow these steps when conducting content analysis:

  • Collect and Immerse: Begin by collecting the necessary textual or visual data. Immerse yourself in this data to fully understand its content, context, and complexities.
  • Assign Codes and Categories: Assign codes to relevant data sections that systematically represent major ideas or themes. Arrange comparable codes into groups that cover the major themes.
  • Analyze and Interpret: Develop a structured framework from the categories and codes. Then, evaluate the data in the context of your research question, investigate relationships between categories, discover patterns, and draw meaning from these connections.

Benefits & Challenges

There are various advantages to using content analysis:

  • Structured Approach: It offers a systematic approach to dealing with large data sets and ensures consistency throughout the research.
  • Objective Insights: This method promotes objectivity, which helps to reduce potential biases in your study.
  • Pattern Discovery: Content analysis can help uncover hidden trends, themes, and patterns that are not always obvious.
  • Versatility: You can apply content analysis to various data formats, including text, internet content, images, etc.

However, keep in mind the challenges that arise:

  • Subjectivity: Even with the best attempts, a certain bias may remain in coding and interpretation.
  • Complexity: Analyzing huge data sets requires time and great attention to detail.
  • Contextual Nuances: Content analysis may not capture all of the contextual richness that qualitative data analysis highlights.

Example of Content Analysis

Suppose you’re conducting market research and looking at customer feedback on a product. As you collect relevant data and analyze feedback, you’ll see repeating codes like “price,” “quality,” “customer service,” and “features.” These codes are organized into categories such as “positive reviews,” “negative reviews,” and “suggestions for improvement.”

According to your findings, themes such as “price” and “customer service” stand out and show that pricing and customer service greatly impact customer satisfaction. This example highlights the power of content analysis for obtaining significant insights from large textual data collections.

Method 2: Thematic Analysis

Thematic analysis is a well-structured procedure for identifying and analyzing recurring themes in your data. As you become more engaged in the data, you’ll generate codes or short labels representing key concepts. These codes are then organized into themes, providing a consistent framework for organizing and comprehending the substance of the data.

The analysis allows you to organize complex narratives and perspectives into meaningful categories, which will allow you to identify connections and patterns that may not be visible at first.

Steps to Do Thematic Analysis

Follow these steps when conducting a thematic analysis:

  • Code and Group: Start by thoroughly examining the data and giving initial codes that identify the segments. To create initial themes, combine relevant codes.
  • Code and Group: Begin by engaging yourself in the data, assigning first codes to notable segments. To construct basic themes, group comparable codes together.
  • Analyze and Report: Analyze the data within each theme to derive relevant insights. Organize the topics into a consistent structure and explain your findings, along with data extracts that represent each theme.

Thematic analysis has various benefits:

  • Structured Exploration: It is a method for identifying patterns and themes in complex qualitative data.
  • Comprehensive knowledge: Thematic analysis promotes an in-depth understanding of the complications and meanings of the data.
  • Application Flexibility: This method can be customized to various research situations and data kinds.

However, challenges may arise, such as:

  • Interpretive Nature: Interpreting qualitative data in thematic analysis is vital, and it is critical to manage researcher bias.
  • Time-consuming: The study can be time-consuming, especially with large data sets.
  • Subjectivity: The selection of codes and topics might be subjective.

Example of Thematic Analysis

Assume you’re conducting a thematic analysis on job satisfaction interviews. Following your immersion in the data, you assign initial codes such as “work-life balance,” “career growth,” and “colleague relationships.” As you organize these codes, you’ll notice themes develop, such as “Factors Influencing Job Satisfaction” and “Impact on Work Engagement.”

Further investigation reveals the tales and experiences included within these themes and provides insights into how various elements influence job satisfaction. This example demonstrates how thematic analysis can reveal meaningful patterns and insights in qualitative data.

Method 3: Narrative Analysis

The narrative analysis involves the narratives that people share. You’ll investigate the histories in your data, looking at how stories are created and the meanings they express. This method is excellent for learning how people make sense of their experiences through narrative.

Steps to Do Narrative Analysis

The following steps are involved in narrative analysis:

  • Gather and Analyze: Start by collecting narratives, such as first-person tales, interviews, or written accounts. Analyze the stories, focusing on the plot, feelings, and characters.
  • Find Themes: Look for recurring themes or patterns in various narratives. Think about the similarities and differences between these topics and personal experiences.
  • Interpret and Extract Insights: Contextualize the narratives within their larger context. Accept the subjective nature of each narrative and analyze the narrator’s voice and style. Extract insights from the tales by diving into the emotions, motivations, and implications communicated by the stories.

There are various advantages to narrative analysis:

  • Deep Exploration: It lets you look deeply into people’s personal experiences and perspectives.
  • Human-Centered: This method prioritizes the human perspective, allowing individuals to express themselves.

However, difficulties may arise, such as:

  • Interpretive Complexity: Analyzing narratives requires dealing with the complexities of meaning and interpretation.
  • Time-consuming: Because of the richness and complexities of tales, working with them can be time-consuming.

Example of Narrative Analysis

Assume you’re conducting narrative analysis on refugee interviews. As you read the stories, you’ll notice common themes of toughness, loss, and hope. The narratives provide insight into the obstacles that refugees face, their strengths, and the dreams that guide them.

The analysis can provide a deeper insight into the refugees’ experiences and the broader social context they navigate by examining the narratives’ emotional subtleties and underlying meanings. This example highlights how narrative analysis can reveal important insights into human stories.

Method 4: Grounded Theory Analysis

Grounded theory analysis is an iterative and systematic approach that allows you to create theories directly from data without being limited by pre-existing hypotheses. With an open mind, you collect data and generate early codes and labels that capture essential ideas or concepts within the data.

As you progress, you refine these codes and increasingly connect them, eventually developing a theory based on the data. Grounded theory analysis is a dynamic process for developing new insights and hypotheses based on details in your data.

Steps to Do Grounded Theory Analysis

Grounded theory analysis requires the following steps:

  • Initial Coding: First, immerse yourself in the data, producing initial codes that represent major concepts or patterns.
  • Categorize and Connect: Using axial coding, organize the initial codes, which establish relationships and connections between topics.
  • Build the Theory: Focus on creating a core category that connects the codes and themes. Regularly refine the theory by comparing and integrating new data, ensuring that it evolves organically from the data.

Grounded theory analysis has various benefits:

  • Theory Generation: It provides a one-of-a-kind opportunity to generate hypotheses straight from data and promotes new insights.
  • In-depth Understanding: The analysis allows you to deeply analyze the data and reveal complex relationships and patterns.
  • Flexible Process: This method is customizable and ongoing, which allows you to enhance your research as you collect additional data.

However, challenges might arise with:

  • Time and Resources: Because grounded theory analysis is a continuous process, it requires a large commitment of time and resources.
  • Theoretical Development: Creating a grounded theory involves a thorough understanding of qualitative data analysis software and theoretical concepts.
  • Interpretation of Complexity: Interpreting and incorporating a newly developed theory into existing literature can be intellectually hard.

Example of Grounded Theory Analysis

Assume you’re performing a grounded theory analysis on workplace collaboration interviews. As you open code the data, you will discover notions such as “communication barriers,” “team dynamics,” and “leadership roles.” Axial coding demonstrates links between these notions, emphasizing the significance of efficient communication in developing collaboration.

You create the core “Integrated Communication Strategies” category through selective coding, which unifies new topics.

This theory-driven category serves as the framework for understanding how numerous aspects contribute to effective team collaboration. This example shows how grounded theory analysis allows you to generate a theory directly from the inherent nature of the data.

Method 5: Discourse Analysis

Discourse analysis focuses on language and communication. You’ll look at how language produces meaning and how it reflects power relations, identities, and cultural influences. This strategy examines what is said and how it is said; the words, phrasing, and larger context of communication.

The analysis is precious when investigating power dynamics, identities, and cultural influences encoded in language. By evaluating the language used in your data, you can identify underlying assumptions, cultural standards, and how individuals negotiate meaning through communication.

Steps to Do Discourse Analysis

Conducting discourse analysis entails the following steps:

  • Select Discourse: For analysis, choose language-based data such as texts, speeches, or media content.
  • Analyze Language: Immerse yourself in the conversation, examining language choices, metaphors, and underlying assumptions.
  • Discover Patterns: Recognize the dialogue’s reoccurring themes, ideologies, and power dynamics. To fully understand the effects of these patterns, put them in their larger context.

There are various advantages of using discourse analysis:

  • Understanding Language: It provides an extensive understanding of how language builds meaning and influences perceptions.
  • Uncovering Power Dynamics: The analysis reveals how power dynamics appear via language.
  • Cultural Insights: This method identifies cultural norms, beliefs, and ideologies stored in communication.

However, the following challenges may arise:

  • Complexity of Interpretation: Language analysis involves navigating multiple levels of nuance and interpretation.
  • Subjectivity: Interpretation can be subjective, so controlling researcher bias is important.
  • Time-Intensive: Discourse analysis can take a lot of time because careful linguistic study is required in this analysis.

Example of Discourse Analysis

Consider doing discourse analysis on media coverage of a political event. You notice repeating linguistic patterns in news articles that depict the event as a conflict between opposing parties. Through deconstruction, you can expose how this framing supports particular ideologies and power relations.

You can illustrate how language choices influence public perceptions and contribute to building the narrative around the event by analyzing the speech within the broader political and social context. This example shows how discourse analysis can reveal hidden power dynamics and cultural influences on communication.

How to do Qualitative Data Analysis with the QuestionPro Research suite?

QuestionPro is a popular survey and research platform that offers tools for collecting and analyzing qualitative and quantitative data. Follow these general steps for conducting qualitative data analysis using the QuestionPro Research Suite:

  • Collect Qualitative Data: Set up your survey to capture qualitative responses. It might involve open-ended questions, text boxes, or comment sections where participants can provide detailed responses.
  • Export Qualitative Responses: Export the responses once you’ve collected qualitative data through your survey. QuestionPro typically allows you to export survey data in various formats, such as Excel or CSV.
  • Prepare Data for Analysis: Review the exported data and clean it if necessary. Remove irrelevant or duplicate entries to ensure your data is ready for analysis.
  • Code and Categorize Responses: Segment and label data, letting new patterns emerge naturally, then develop categories through axial coding to structure the analysis.
  • Identify Themes: Analyze the coded responses to identify recurring themes, patterns, and insights. Look for similarities and differences in participants’ responses.
  • Generate Reports and Visualizations: Utilize the reporting features of QuestionPro to create visualizations, charts, and graphs that help communicate the themes and findings from your qualitative research.
  • Interpret and Draw Conclusions: Interpret the themes and patterns you’ve identified in the qualitative data. Consider how these findings answer your research questions or provide insights into your study topic.
  • Integrate with Quantitative Data (if applicable): If you’re also conducting quantitative research using QuestionPro, consider integrating your qualitative findings with quantitative results to provide a more comprehensive understanding.

Qualitative data analysis is vital in uncovering various human experiences, views, and stories. If you’re ready to transform your research journey and apply the power of qualitative analysis, now is the moment to do it. Book a demo with QuestionPro today and begin your journey of exploration.

LEARN MORE         FREE TRIAL

MORE LIKE THIS

user behavior

User Behavior: What it is, How to Understand, Track & Uses

Sep 24, 2024

techniques of research data analysis

Mass Personalization is not Personalization! — Tuesday CX Thoughts

change management questions

Change Management Questions: How to Design & Ask Questions

Sep 23, 2024

Top 5 Change Management Models to Transform Your Organization

Sep 20, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

Research Methods | Definitions, Types, Examples

Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design . When planning your methods, there are two key decisions you will make.

First, decide how you will collect data . Your methods depend on what type of data you need to answer your research question :

  • Qualitative vs. quantitative : Will your data take the form of words or numbers?
  • Primary vs. secondary : Will you collect original data yourself, or will you use data that has already been collected by someone else?
  • Descriptive vs. experimental : Will you take measurements of something as it is, or will you perform an experiment?

Second, decide how you will analyze the data .

  • For quantitative data, you can use statistical analysis methods to test relationships between variables.
  • For qualitative data, you can use methods such as thematic analysis to interpret patterns and meanings in the data.

Table of contents

Methods for collecting data, examples of data collection methods, methods for analyzing data, examples of data analysis methods, other interesting articles, frequently asked questions about research methods.

Data is the information that you collect for the purposes of answering your research question . The type of data you need depends on the aims of your research.

Qualitative vs. quantitative data

Your choice of qualitative or quantitative data collection depends on the type of knowledge you want to develop.

For questions about ideas, experiences and meanings, or to study something that can’t be described numerically, collect qualitative data .

If you want to develop a more mechanistic understanding of a topic, or your research involves hypothesis testing , collect quantitative data .

Qualitative to broader populations. .
Quantitative .

You can also take a mixed methods approach , where you use both qualitative and quantitative research methods.

Primary vs. secondary research

Primary research is any original data that you collect yourself for the purposes of answering your research question (e.g. through surveys , observations and experiments ). Secondary research is data that has already been collected by other researchers (e.g. in a government census or previous scientific studies).

If you are exploring a novel research question, you’ll probably need to collect primary data . But if you want to synthesize existing knowledge, analyze historical trends, or identify patterns on a large scale, secondary data might be a better choice.

Primary . methods.
Secondary

Descriptive vs. experimental data

In descriptive research , you collect data about your study subject without intervening. The validity of your research will depend on your sampling method .

In experimental research , you systematically intervene in a process and measure the outcome. The validity of your research will depend on your experimental design .

To conduct an experiment, you need to be able to vary your independent variable , precisely measure your dependent variable, and control for confounding variables . If it’s practically and ethically possible, this method is the best choice for answering questions about cause and effect.

Descriptive . .
Experimental

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Research methods for collecting data
Research method Primary or secondary? Qualitative or quantitative? When to use
Primary Quantitative To test cause-and-effect relationships.
Primary Quantitative To understand general characteristics of a population.
Interview/focus group Primary Qualitative To gain more in-depth understanding of a topic.
Observation Primary Either To understand how something occurs in its natural setting.
Secondary Either To situate your research in an existing body of work, or to evaluate trends within a research topic.
Either Either To gain an in-depth understanding of a specific group or context, or when you don’t have the resources for a large study.

Your data analysis methods will depend on the type of data you collect and how you prepare it for analysis.

Data can often be analyzed both quantitatively and qualitatively. For example, survey responses could be analyzed qualitatively by studying the meanings of responses or quantitatively by studying the frequencies of responses.

Qualitative analysis methods

Qualitative analysis is used to understand words, ideas, and experiences. You can use it to interpret data that was collected:

  • From open-ended surveys and interviews , literature reviews , case studies , ethnographies , and other sources that use text rather than numbers.
  • Using non-probability sampling methods .

Qualitative analysis tends to be quite flexible and relies on the researcher’s judgement, so you have to reflect carefully on your choices and assumptions and be careful to avoid research bias .

Quantitative analysis methods

Quantitative analysis uses numbers and statistics to understand frequencies, averages and correlations (in descriptive studies) or cause-and-effect relationships (in experiments).

You can use quantitative analysis to interpret data that was collected either:

  • During an experiment .
  • Using probability sampling methods .

Because the data is collected and analyzed in a statistically valid way, the results of quantitative analysis can be easily standardized and shared among researchers.

Research methods for analyzing data
Research method Qualitative or quantitative? When to use
Quantitative To analyze data collected in a statistically valid manner (e.g. from experiments, surveys, and observations).
Meta-analysis Quantitative To statistically analyze the results of a large collection of studies.

Can only be applied to studies that collected data in a statistically valid manner.

Qualitative To analyze data collected from interviews, , or textual sources.

To understand general themes in the data and how they are communicated.

Either To analyze large volumes of textual or visual data collected from surveys, literature reviews, or other sources.

Can be quantitative (i.e. frequencies of words) or qualitative (i.e. meanings of words).

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Chi square test of independence
  • Statistical power
  • Descriptive statistics
  • Degrees of freedom
  • Pearson correlation
  • Null hypothesis
  • Double-blind study
  • Case-control study
  • Research ethics
  • Data collection
  • Hypothesis testing
  • Structured interviews

Research bias

  • Hawthorne effect
  • Unconscious bias
  • Recall bias
  • Halo effect
  • Self-serving bias
  • Information bias

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts and meanings, use qualitative methods .
  • If you want to analyze a large amount of readily-available data, use secondary data. If you want data specific to your purposes with control over how it is generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyze data (for example, experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

Is this article helpful?

Other students also liked, writing strong research questions | criteria & examples.

  • What Is a Research Design | Types, Guide & Examples
  • Data Collection | Definition, Methods & Examples

More interesting articles

  • Between-Subjects Design | Examples, Pros, & Cons
  • Cluster Sampling | A Simple Step-by-Step Guide with Examples
  • Confounding Variables | Definition, Examples & Controls
  • Construct Validity | Definition, Types, & Examples
  • Content Analysis | Guide, Methods & Examples
  • Control Groups and Treatment Groups | Uses & Examples
  • Control Variables | What Are They & Why Do They Matter?
  • Correlation vs. Causation | Difference, Designs & Examples
  • Correlational Research | When & How to Use
  • Critical Discourse Analysis | Definition, Guide & Examples
  • Cross-Sectional Study | Definition, Uses & Examples
  • Descriptive Research | Definition, Types, Methods & Examples
  • Ethical Considerations in Research | Types & Examples
  • Explanatory and Response Variables | Definitions & Examples
  • Explanatory Research | Definition, Guide, & Examples
  • Exploratory Research | Definition, Guide, & Examples
  • External Validity | Definition, Types, Threats & Examples
  • Extraneous Variables | Examples, Types & Controls
  • Guide to Experimental Design | Overview, Steps, & Examples
  • How Do You Incorporate an Interview into a Dissertation? | Tips
  • How to Do Thematic Analysis | Step-by-Step Guide & Examples
  • How to Write a Literature Review | Guide, Examples, & Templates
  • How to Write a Strong Hypothesis | Steps & Examples
  • Inclusion and Exclusion Criteria | Examples & Definition
  • Independent vs. Dependent Variables | Definition & Examples
  • Inductive Reasoning | Types, Examples, Explanation
  • Inductive vs. Deductive Research Approach | Steps & Examples
  • Internal Validity in Research | Definition, Threats, & Examples
  • Internal vs. External Validity | Understanding Differences & Threats
  • Longitudinal Study | Definition, Approaches & Examples
  • Mediator vs. Moderator Variables | Differences & Examples
  • Mixed Methods Research | Definition, Guide & Examples
  • Multistage Sampling | Introductory Guide & Examples
  • Naturalistic Observation | Definition, Guide & Examples
  • Operationalization | A Guide with Examples, Pros & Cons
  • Population vs. Sample | Definitions, Differences & Examples
  • Primary Research | Definition, Types, & Examples
  • Qualitative vs. Quantitative Research | Differences, Examples & Methods
  • Quasi-Experimental Design | Definition, Types & Examples
  • Questionnaire Design | Methods, Question Types & Examples
  • Random Assignment in Experiments | Introduction & Examples
  • Random vs. Systematic Error | Definition & Examples
  • Reliability vs. Validity in Research | Difference, Types and Examples
  • Reproducibility vs Replicability | Difference & Examples
  • Reproducibility vs. Replicability | Difference & Examples
  • Sampling Methods | Types, Techniques & Examples
  • Semi-Structured Interview | Definition, Guide & Examples
  • Simple Random Sampling | Definition, Steps & Examples
  • Single, Double, & Triple Blind Study | Definition & Examples
  • Stratified Sampling | Definition, Guide & Examples
  • Structured Interview | Definition, Guide & Examples
  • Survey Research | Definition, Examples & Methods
  • Systematic Review | Definition, Example, & Guide
  • Systematic Sampling | A Step-by-Step Guide with Examples
  • Textual Analysis | Guide, 3 Approaches & Examples
  • The 4 Types of Reliability in Research | Definitions & Examples
  • The 4 Types of Validity in Research | Definitions & Examples
  • Transcribing an Interview | 5 Steps & Transcription Software
  • Triangulation in Research | Guide, Types, Examples
  • Types of Interviews in Research | Guide & Examples
  • Types of Research Designs Compared | Guide & Examples
  • Types of Variables in Research & Statistics | Examples
  • Unstructured Interview | Definition, Guide & Examples
  • What Is a Case Study? | Definition, Examples & Methods
  • What Is a Case-Control Study? | Definition & Examples
  • What Is a Cohort Study? | Definition & Examples
  • What Is a Conceptual Framework? | Tips & Examples
  • What Is a Controlled Experiment? | Definitions & Examples
  • What Is a Double-Barreled Question?
  • What Is a Focus Group? | Step-by-Step Guide & Examples
  • What Is a Likert Scale? | Guide & Examples
  • What Is a Prospective Cohort Study? | Definition & Examples
  • What Is a Retrospective Cohort Study? | Definition & Examples
  • What Is Action Research? | Definition & Examples
  • What Is an Observational Study? | Guide & Examples
  • What Is Concurrent Validity? | Definition & Examples
  • What Is Content Validity? | Definition & Examples
  • What Is Convenience Sampling? | Definition & Examples
  • What Is Convergent Validity? | Definition & Examples
  • What Is Criterion Validity? | Definition & Examples
  • What Is Data Cleansing? | Definition, Guide & Examples
  • What Is Deductive Reasoning? | Explanation & Examples
  • What Is Discriminant Validity? | Definition & Example
  • What Is Ecological Validity? | Definition & Examples
  • What Is Ethnography? | Definition, Guide & Examples
  • What Is Face Validity? | Guide, Definition & Examples
  • What Is Non-Probability Sampling? | Types & Examples
  • What Is Participant Observation? | Definition & Examples
  • What Is Peer Review? | Types & Examples
  • What Is Predictive Validity? | Examples & Definition
  • What Is Probability Sampling? | Types & Examples
  • What Is Purposive Sampling? | Definition & Examples
  • What Is Qualitative Observation? | Definition & Examples
  • What Is Qualitative Research? | Methods & Examples
  • What Is Quantitative Observation? | Definition & Examples
  • What Is Quantitative Research? | Definition, Uses & Methods

Get unlimited documents corrected

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

The urgent need for humanitarian assistance intensifies with famine imminent in Gaza.

The Reduced Access Analytical Methods Toolkit

A person crossing a suspension bridge.

  • Share on Facebook
  • Share on Twitter
  • Share on LinkedIn
  • Share by email

Download the RAAM toolkit ▸ Download the RAAM supporting tools ▸

The toolkit is designed for both managerial and technical users, with step-by-step guidance, tools, and resource lists for each method. The interactive downloadable toolkit walks users through the steps of the process and provides links to live, cloud-hosted versions of all supporting tools.

If you are in a low-bandwidth environment or have unstable access to internet, you can also download copies of all supporting tools. The tools in the file are current as of the date marked on the files. Currently in English, the toolkit will be made available here in French, Spanish, and Arabic by November 2024.

The Reduced Access Analytical Methods (RAAM) toolkit is a practical resource designed to help humanitarian practitioners overcome monitoring challenges in reduced access environments. Reduced access can be caused by natural disaster, conflict, political instability, or other factors, and typically makes it difficult to conduct normal monitoring of program implementation.

The RAAM toolkit offers technical and managerial tools for a menu of analytical methods that can fill information gaps and/or improve data quality during reduced access program monitoring. RAAM supplements (but does not replace) traditional Monitoring, Evaluation and Learning (MEL).

Logo for the reduced access analytical methods toolkit.

The analytical methods covered by the RAAM toolkit were designed to address commonly-encountered information gaps and data quality issues in reduced access environments. The toolkit covers the following methods:

  • Data Triangulation: Systematic comparison of multiple data sources to improve the reliability and accuracy of program data, helping to identify strengths and weaknesses in information.
  • Context Mapping: Layering various data sources on a map to understand factors that may impact program activities, such as access changes or conflict trends.
  • Rumor Tracking: Monitoring unverified information in communities to identify potential gaps, implementation issues, or early signs of violence, enabling timely interventions.
  • Remote Sensing: Using satellite or aerial data to monitor physical conditions and changes in implementation areas from a distance.
  • Transaction Analysis: Analysing digital transaction data from cash or voucher assistance programs to understand usage patterns, vendor capacity, and more.

Purdue University Graduate School

DATA DRIVEN TECHNIQUES FOR THE ANALYSIS OF ORAL DOSAGE DRUG FORMULATIONS

This thesis focusses on developing novel data driven oral drug formulation analysis methods by employing technologies such as Fourier transform analysis and generative adversarial learning. Data driven measurements have been addressing challenges in advanced manufacturing and analysis for pharmaceutical development for the last two decade. Data science combined with analytical chemistry holds the future to solving key problems in the next wave of industrial research and development. Data acquisition is expensive in the realm of pharmaceutical development, and how to leverage the capability of data science to extract information in data deprived circumstances is a key aspect for improving such data driven measurements. Among multiple measurement techniques, chemical imaging is an informative tool for analyzing oral drug formulations. However, chemical imaging can often fall into data deprived situations, where data could be limited from the time-consuming sample preparation or related chemical synthesis. An integrated imaging approach, which folds data science techniques into chemical measurements, could lead to a future of informative and cost-effective data driven measurements. In this thesis, the development of data driven chemical imaging techniques for the analysis of oral drug formulations via Fourier transformation and generative adversarial learning are elaborated. Chapter 1 begins with a brief introduction of current techniques commonly implemented within the pharmaceutical industry, their limitations, and how the limitations are being addressed. Chapter 2 discusses how Fourier transform fluorescence recovery after photobleaching (FT-FRAP) technique can be used for monitoring the phase separated drug-polymer aggregation. Chapter 3 follows the innovation presented in Chapter 1 and illustrates how analysis can be improved by incorporating diffractive optical elements in the patterned illumination. While previous chapters discuss dynamic analysis aspects of drug product formulation, Chapter 4 elaborates on the innovation in composition analysis of oral drug products via use of novel generative adversarial learning methods for linear analyses.

NSF award (CHE-2004046, CHE-2305178,CHE-GOALI-1710475, CCF-1763896)

Nsf center for bioanalytic metrology (iip-1916691), nsf intern award (iip-2129760), degree type.

  • Doctor of Philosophy

Campus location

  • West Lafayette

Advisor/Supervisor/Committee Chair

Additional committee member 2, additional committee member 3, additional committee member 4, usage metrics.

  • Analytical spectrometry
  • Applications in life sciences
  • Medical physics

CC BY 4.0

Mapping the Global Research Landscape on Liposuction: A Bibliometric and Visualized Analysis

  • Letter to the Editor
  • Published: 25 September 2024

Cite this article

techniques of research data analysis

  • Sa’ed H. Zyoud   ORCID: orcid.org/0000-0002-7369-2058 1 , 2 ,
  • Moyad Shahwan 3 &
  • Ammar A. Jairoun 4  

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

techniques of research data analysis

Data Availability

All the data generated or analyzed during this study are presented within this article. Additional datasets utilized in the study are accessible upon reasonable request from the corresponding author.

Triana L, Palacios Huatuco RM, Campilgio G, Liscano E (2024) Trends in surgical and nonsurgical aesthetic procedures: A 14-year analysis of the international society of aesthetic plastic surgery-ISAPS. Aesthet Plast Surg. https://doi.org/10.1007/s00266-024-04260-2

Article   Google Scholar  

Ellegaard O, Wallin JA (2015) The bibliometric analysis of scholarly production: how great is the impact? Scientometrics 105(3):1809–1831

Article   PubMed   PubMed Central   Google Scholar  

Ma C, He L (2024) Trend and hotspots of plastic surgery guidelines: a bibliometric and visualization analysis. J Plast Reconstr Aesthet Surg 93:242–245

Article   PubMed   Google Scholar  

van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84(2):523–538

Yoshimura K, Shigeura T, Matsumoto D, Sato T, Takaki Y, Aiba-Kojima E, Sato K, Inoue K, Nagase T, Koshima I et al (2006) Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol 208(1):64–76

Download references

Acknowledgments

The authors express their gratitude to An-Najah National University for the invaluable administrative support provided throughout the project.

No support was received for conducting this study.

Author information

Authors and affiliations.

Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine

Sa’ed H. Zyoud

Clinical Research Centre, An-Najah National University Hospital, Nablus, 44839, Palestine

College of Pharmacy and Health Sciences, Ajman University, 346, Ajman, United Arab Emirates

Moyad Shahwan

Health and Safety Department, Dubai Municipality, 67, Dubai, United Arab Emirates

Ammar A. Jairoun

You can also search for this author in PubMed   Google Scholar

Contributions

The research project was initiated and designed by Zyoud SH, who also conducted data management and analysis, generated figures, significantly contributed to the literature review and interpretation, and drafted the manuscript. Jairoun A, and Shahwan WM participated in data interpretation, manuscript preparation, and revision of the initial draft. All authors critically reviewed the manuscript and approved the final version before submission.

Corresponding author

Correspondence to Sa’ed H. Zyoud .

Ethics declarations

Conflict of interest.

The authors declare that they have no competing interests.

Ethics Approval

As no human subjects were involved in this research, ethics committee review was not needed.

Consent for Publication

Not applicable.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Zyoud, S.H., Shahwan, M. & Jairoun, A.A. Mapping the Global Research Landscape on Liposuction: A Bibliometric and Visualized Analysis. Aesth Plast Surg (2024). https://doi.org/10.1007/s00266-024-04413-3

Download citation

Received : 09 September 2024

Accepted : 11 September 2024

Published : 25 September 2024

DOI : https://doi.org/10.1007/s00266-024-04413-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Find a journal
  • Publish with us
  • Track your research

null

Enter the URL below into your favorite RSS reader.

Health-Related Quality-of-Life Utility Values in Adults With Late-Onset Pompe Disease: Analyses of EQ-5D Data From the PROPEL Clinical Trial

  • Citation (BibTeX)
  • Online Supplementary Material Download

Sorry, something went wrong. Please try again.

If this problem reoccurs, please contact Scholastica Support

Error message:

View more stats

Background: Pompe disease is a rare lysosomal storage disorder, leading to accumulation of glycogen characterized by muscle weakness, fatigue, pain, and, in the longer term, a requirement for ventilatory and ambulatory support, and early mortality if untreated. Clinical evidence suggests that enzyme replacement therapy improves health outcomes for adults with late-onset Pompe disease (LOPD). PROPEL was a Phase 3, double-blind, randomized controlled trial, which evaluated cipaglucosidase alfa plus miglustat, vs alglucosidase alfa plus placebo in 123 adult patients with LOPD ( clinicaltrials.gov : NCT03729362). Objectives: To analyze EQ-5D health-related quality of life (HRQoL) utility data from PROPEL. Methods: Multilevel modeling techniques (mixed regression methods) were used to analyze PROPEL EQ-5D-3L estimates and predict utility values for 7 health states previously identified in an economic evaluation for LOPD. In PROPEL, EQ-5D-5L values were assessed at screening and at weeks 12, 26, 38, and 52. EQ-5D-5L utility values were mapped to EQ-5D-3L values using the van Hout algorithm as recommended by the EuroQoL and the National Institute of Health and Care Excellence position statement at time of analysis. UK population tariffs were applied for all EQ-5D utility valuations. Utility values were predicted according to 6-minute walk distance (6MWD) and percent predicted sitting forced vital capacity. Results: The mixed model predicted that EQ-5D-3L utility values for patients who could walk >75 m with LOPD ranged between 0.55 and 0.67 according to patient 6MWD and respiratory function. In this analysis, patients with a 6MWD ≤75 m, consistent with a health state requiring wheelchair support in the economic analysis, had a predicted utility value of 0.49. There were few patients in PROPEL who could walk ≤75 m at any time point in the study, hence, these utility estimates should be interpreted with caution. EQ-5D-3L utility estimates from PROPEL were consistent with previously reported EQ-5D-3L values in LOPD. Conclusions: Overall, the results from our analysis indicate that important HRQoL losses are associated with reductions in mobility and respiratory function for patients with Pompe disease. The study provides important evidence of HRQoL utility values for patients with advanced LOPD, a population for whom published data are limited.

INTRODUCTION

Pompe disease is a rare genetic lysosomal storage disorder associated with complete or partial loss of endogenous acid α-glucosidase (GAA) activity, which results in an accumulation of glycogen in the body. 1–3 It is characterized by a progressive loss of muscle function resulting in weakness, fatigue, pain, exercise intolerance and, in the longer term, a requirement for ventilatory and ambulatory support. 1–3 The primary cause of death in patients with Pompe disease is respiratory failure, occurring in approximately 70% of diagnosed patients. 4 , 5 Pompe disease is associated with significant health-related quality of life (HRQoL) losses over a patient’s lifetime due to the severity of symptoms. 6 There are 2 primary subtypes of Pompe disease: infantile-onset Pompe disease, which presents at a very young age, and late-onset Pompe disease (LOPD), which presents in children, juveniles, and adults. Prevalence estimates are rarely published and vary widely within Europe; a study in Belgium suggested the prevalence of LOPD was 1 in 57 000, while a study in The Netherlands reported estimates of 1 in 250 000. 5 , 7

Current standard-of-care treatment for patients with LOPD is enzyme replacement therapy (ERT) with recombinant human acid α-glucosidase (rhGAA), which is designed to improve lysosomal glycogen degradation and slow disease progression. 8 The first approved ERT was alglucosidase alfa (Myozyme ® ). 9 It is estimated that 24% to 30% of patients do not respond to alglucosidase alfa as measured according to 6-minute walk distance (6MWD) and percent predicted forced vital capacity (% predicted FVC). 10 Nevertheless, in those who do initially respond, current evidence indicates there can also be a progressive deterioration of function over time. In a 2021 study by Gutschmidt et al, 11 patients with 3 or more years of alglucosidase alfa treatment at study baseline demonstrated a 14.9% decline in % predicted FVC over the next 10 years of treatment with alglucosidase alfa; over the same time period, the percentage of patients requiring ventilation increased by 33%. 11 Consequently, there remains a significant need for alternative treatments for Pompe disease that are effective and well tolerated.

Cipaglucosidase alfa (cipa) is a novel (Chinese hamster ovary cell–derived) rhGAA with enhanced glycosylation for improved cellular uptake and retained capacity for processing into the most active form of the enzyme. Cipa is administered in combination with miglustat (mig; cipa + mig; Pombiliti ® /Opfolda ® ), an orally administered small-molecule stabilizer of cipa, which acts in the circulation so that catalytic activity is maintained upon uptake to the muscles. 12 , 13 Cipa + mig has recently received market authorization from the US Food and Drug Administration, the European Medicines Agency, and the Medicines and Healthcare products Regulatory Agency in the United Kingdom following positive results from the pivotal PROPEL clinical trial ( clinicaltrials.gov : NCT03729362). 3 , 14–16

PROPEL was a multicenter, international, Phase 3 randomized controlled trial designed to evaluate cipa + mig vs alglucosidase alfa plus placebo (alg + pbo) in 123 adult patients with LOPD. 3 In PROPEL, cipa + mig was associated with clinically meaningful improvements in key motor and respiratory outcomes compared with standard-of-care ERT. 3 The PROPEL clinical study also indicated numeric improvements for cipa + mig vs alg + pbo in most patient-reported outcomes. 3

The overall aim of this study was to predict EQ-5D utility estimates for health states associated with LOPD, which have been defined according to patient mobility (6MWD) and respiratory function (% predicted FVC). It is anticipated that the results from these analyses will improve the evidence base for Pompe disease currently available to healthcare decision makers.

In PROPEL, patients received 20 mg/kg of cipaglucosidase alfa via intravenous (IV) infusion plus oral miglustat (195 mg or 260 mg for body weights <50 kg, ≥50 kg, respectively) or alglucosidase alfa (20 mg/kg IV) plus matching placebo, biweekly for 52 weeks. Randomization was stratified according to baseline 6MWD from ≥75 m to <150 m, ≥150 m to <400 m, or ≥400 m and ERT status (naïve vs experienced). The primary objective was to assess the efficacy of cipa + mig vs alg + pbo using the 6-minute walk test. A key secondary objective was to assess the efficacy of cipa + mig vs alg + pbo on pulmonary function, as measured by % predicted FVC. Patient-reported outcomes data were collected using 4 instruments: EQ-5D-5L, Patient-Reported Outcomes Measurement Information System, Rasch-Built Pompe-Specific Activity Scale, and Subject’s Global Impression of Change. The full study design and results for PROPEL have been previously reported. 3

The EQ-5D-5L is a generic instrument that assesses disease severity across 5 dimensions of a patient’s HRQoL (mobility, self-care, usual activities, pain/discomfort, and anxiety/depression) and can be used to generate health-related utility values. Utility values typically represent patients’ quality of life on a scale where 0 represents death and 1 represents full health (although negative values are feasible). 5 , 17 In an economic evaluation, utility values are used to “quality adjust” patient survival time and reflect important differences in the quality of life for surviving patients.

EQ-5D-5L data were collected during PROPEL at repeated intervals (at screening and weeks 12, 26, 38, and 52). EQ-5D-5L is the updated version of the EQ-5D-3L questionnaire in which, for each of the 5 domains, patients are required to select 1 of 5 possible responses (no problems, slight problems, moderate problems, severe problems, and extreme problems). 17 The earlier EQ-5D-3L questionnaire required patients to select 1 of 3 possible responses for each domain (no problems, moderate problems, extreme problems). The National Institute for Health and Care Excellence (NICE) technology assessment guidelines recommend using EQ-5D-3L values in UK health technology submissions due to issues with cross-validation of the EQ-5D-5L questionnaire. 6 , 18 In line with EuroQoL recommendations and NICE recommendations at the time of the analysis, PROPEL EQ-5D-3L utility values were mapped from EQ-5D-5L domain scores using the van Hout crosswalk algorithm. 19 Our base-case analyses reported EQ-5D-3L utility estimates, while EQ-5D-5L results were considered in sensitivity analyses and were reported in supplementary material. The analysis took a UK perspective and applied UK population tariffs for all EQ-5D utility valuations.

Health States

We used PROPEL data to derive utility values for 7 health states, consistent with the health states used in recently published cost-effectiveness analyses in LOPD and were defined using a combination of patient mobility and respiratory function as follows 4–9 :

No wheelchair use or respiratory support

Intermittent mobility support

Intermittent respiratory support (noninvasive ventilation)

Intermittent mobility support and intermittent respiratory support (noninvasive ventilation)

Wheelchair-dependent

Wheelchair-dependent and intermittent respiratory support (noninvasive ventilation)

Wheelchair and respiratory support-dependent (invasive ventilation)

The thresholds for 6MWD and % predicted FVC, which determine mobility and respiratory function in the cost-effectiveness analysis (and hence in this study), were derived with the input from 3 clinical experts and validated using opinion from a further 2 experts ( Table 1 ). It is noted that the PROPEL dataset was representative of the first 4 health states of interest, patients who required wheelchair support were not eligible for randomization during the PROPEL trial. Due to this limitation, we have derived utility estimates for more severe health states, in which both respiratory and wheelchair support were required, using a series of assumptions and a multiplicative approach consistent with NICE guidance. 7 , 20

Intermittent mobility support (max m in 6MWD) 250 UK clinical opinion
Wheelchair-dependent (max m in 6MWD) 75
Intermittent respiratory support (max % predicted FVC) 40 Assumption
Respiratory support-dependent (max % predicted FVC) 30 UK clinical opinion

Abbreviations: 6MWD, 6-minute walk distance; FVC, forced vital capacity; max, maximum.

Utility values for patients in the health state for intermittent mobility support and intermittent respiratory support (noninvasive ventilation) were based on the ratio of patients requiring intermittent respiratory support vs no support, applied to utility estimates for intermittent mobility support. To estimate the potential severity of utility loss associated with the combination of wheelchair use and noninvasive respiratory support, the multiplier was based on the relative utility loss for wheelchair use vs full mobility, applied to the health state for intermittent mobility and respiratory support. Due to the severity of a health state associated with wheelchair use and invasive ventilation, the same approach was used with the multiplier raised to the second power.

Statistical Analyses

Summary statistics based on EQ-5D-3L and EQ-5D-5L estimates were prepared. The EQ-5D datasets were longitudinal, repeated measures datasets with multiple observations available for each individual patient, hence, multilevel modeling techniques (also known as mixed models) were considered for the primary analysis. In the presence of clustering, mixed models provide a more reliable estimate of predicted outcomes compared to conventional regression methods. Estimates of the intraclass correlation coefficient and a likelihood ratio test comparing a mixed model to a standard linear model were used to establish the most suitable approach to analyzing PROPEL data. In our final analysis, we assumed that EQ-5D scores within each patient were correlated and a random intercept mixed model was developed.

The mixed regression model was developed using a multivariable regression technique. The base-case outcome variable was EQ-5D-3L utility scores. The explanatory variables considered for potential inclusion were based on the clinical study protocol and included treatment, baseline EQ-5D-3L (EQ-5D-5L for the sensitivity analysis), baseline values of key clinical outcomes (% predicted FVC, 6MWD), prior ERT experience (yes, no), duration of prior ERT (years), baseline use of mobility devices (yes, no) and history of falls (yes, no), as well as patient characteristics known to be associated with HRQoL (age, sex, body mass index). Variables were selected using backward stepwise elimination and corroborated using forward selection. The variables finally included in the regression model were those variables that demonstrated evidence of an important association with HRQoL, which was based on the direction, magnitude, and significance of the effect on utility outcomes ( P < .05), as well as the impact on other explanatory variables. Correlation matrices were reviewed for evidence of potential collinearity between explanatory variables.

All analyses were conducted in STATA statistical software: Release 14 (StataCorp LP).

Baseline Characteristics

In total, 123 adults were randomized in PROPEL. The majority of patients were ERT-experienced (76% cipa + mig group, 79% alg + pbo group). As reported previously, 3 there were some slight numeric differences in baseline characteristics between the cipa + mig and alg + pbo groups. Notably, patients treated with cipa + mig, compared with those receiving alg + pbo, were more likely to be female (58% vs 47%), be slightly older (aged 48 vs 45 years), 3 and have slightly poorer baseline HRQoL (EQ-5D-3L value at baseline: 0.634 vs 0.669; Supplementary Table S1 ).

EQ-5D Outcome Data

EQ-5D data were available for 122/123 patients across all 5 data collection points. It is noted that 1 patient in the alg + pbo group was not included in final estimates for the primary and secondary outcomes in the main PROPEL trial due to evidence of reporting bias. This patient was also excluded from our EQ-5D analysis. A normal probability plot demonstrated some evidence of non-normality; however, most data points lay over the range between 0.3 and 0.9, and the non-normality of the data was not considered extreme (see Supplementary Figure S1) . Transformation of the outcome variable was not undertaken since residuals from the final analysis appeared approximately normally distributed.

Initial Analyses

A log-likelihood ratio test comparing a standard linear model with linear mixed model showed statistical significance ( P < .001), suggesting a multilevel regression model was preferable to a generalized linear model. The intraclass correlation coefficient was also greater than 0.5 for cluster variables, which suggested evidence of important correlation between measurements from the same patient and further evidence that a multilevel regression model would be preferred to a generalized linear model. Univariable, random effects, mixed regression analyses considering the effect of each explanatory variable individually indicated that patient age, sex, mobility issues, % predicted FVC, 6MWD were all potentially associated with patient HRQoL.

Multivariable Mixed Regression

Multivariable analyses indicated that only 6MWD and sex were significant predictors of HRQoL. Female patients appeared to have poorer HRQoL than male patients, a trend that has been previously reported in other large HRQoL studies and is not considered unique to PROPEL data. 21 , 22 While % predicted FVC was also independently associated with patient HRQoL in univariable analyses ( P = .03), additional exploratory analysis indicated a strong correlation between % predicted FVC and 6MWD ( Supplementary Figure S2 ). The introduction of both 6MWD and % predicted FVC into the multivariable regression resulted in large changes in the parameter estimates for explanatory variables, suggestive of collinearity. Furthermore, when assessed using a multivariable model that included both % predicted FVC and 6MWD, % predicted FVC was no longer a significant predictor of HRQoL. Overall, 6MWD appeared to be a much stronger predictor of HRQoL compared with % predicted FVC; hence, 6MWD was retained in the base-case regression model ( Table 2 ). We presented an equation without sex as a potential predictor since differences in HRQoL outcomes by sex would not typically be considered in an economic evaluation of a new intervention due to equity considerations. A risk equation that includes sex has been presented in supplementary materials ( Supplementary Table S2 ).

> z
6MWD 0.001 0.000 5.500 0.000 0.000 0.001
Constant 0.470 0.036 13.050 0.000 0.399 0.540

Abbreviations: 6MWD, 6-minute walk distance; coef, coefficient; LCI, lower bound confidence interval; SE, standard error; UCI, upper bound confidence interval.

Health State Predictions

The results from the base-case mixed regression analysis indicate that EQ-5D-3L utility values for non-wheelchair-dependent patients were predicted as 0.55 (6MWD >75 to ≤250 m) and 0.67 (6MWD >250 m) ( Table 3 ). In the mixed regression model, patients who could walk ≤75 m distance were predicted to have a utility value of 0.49. The base-case algorithm excluded respiratory function as a predictor of HRQoL utility; hence, utility predictions for health states purely associated with a deterioration in respiratory function could not be obtained from the base-case equation. To address this limitation, a separate risk equation was developed based purely on % predicted FVC ( Table 4 ). The predicted utility value for patients requiring intermittent respiratory support (% predicted FVC >30 to ≤40%) was 0.61 ( Table 5 ). The derived composite utility values derived using assumptions regarding the potential utility loss for more severe health states indicated that patient utility may range between 0.19 and 0.37 ( Table 6 ).

EQ-5D-3L utility value 0.49 0.55 0.67

Note: Utility values estimated for category midpoints. a Utility predictions based on mean 6MWD for patients with a 6MWD >250 m (mean: 406 m). Abbreviation: 6MWD, 6-minute walk distance.

> z
% predicted FVC 0.0012 0.0006 2.1600 0.0310 0.0001 0.0024
Constant 0.5681 0.0424 13.4000 0.0000 0.4850 0.6512

Abbreviations: coef, coefficient; FVC, forced vital capacity; LCI, lower bound confidence interval; SE, standard error; UCI, upper bound confidence interval.

EQ-5D-3L utility value 0.59 0.61 0.66

Note: Utility values estimated for category midpoints. a Utility predictions based on mean % predicted FVC for patients with a predicted FVC >40% (mean: 72.1). Abbreviation: FVC, forced vital capacity.

No wheelchair use or respiratory support (>15 y) 0.67 0.75 0.65 0.61 0.75
Intermittent mobility support 0.55 0.62 0.43 0.61
Intermittent respiratory support (noninvasive ventilation) 0.62 0.69 0.61 0.36 0.56
Intermittent mobility support and intermittent respiratory support (noninvasive ventilation) 0.55 0.29 0.41
Wheelchair-dependent 0.49 0.55 0.50 0.11 0.34
Wheelchair-dependent and intermittent respiratory support (noninvasive ventilation) 0.40 0.08 0.24
Wheelchair and respiratory support-dependent (invasive ventilation) −0.08 0.13

Bolded values: Composite utility values derived from combination of scores from other health states. Abbreviations: NICE, National Institute of Health and Care Excellence; TTO, time trade-off.

Sensitivity Analysis: EQ-5D-5L

Overall, the results for analyses based on the EQ-5D-5L data showed comparable trends to those based on EQ-5D-3L values, although overall the EQ-5D-5L utility estimates were higher than those derived based on EQ-5D-3L estimates. The analyses of EQ-5D-5L data suggested that utility values ranged between 0.62 and 0.75 for non-wheelchair-dependent patients with LOPD, while those who could walk ≤75 m were predicted to have a utility value of 0.55 ( Supplementary Table S3 and Supplementary Table S4 ).

The PROPEL trial demonstrated that cipa + mig was associated with clinically meaningful improvements in key motor and respiratory outcomes compared with alg + pbo in adult patients with LOPD. 3 The objective of this study was to analyze EQ-5D data from PROPEL according to treatment, key clinical outcomes (% predicted FVC, 6MWD) and other potential predictors of HRQoL to provide utility estimates for key health states previously associated with Pompe disease. In the base-case analysis we have developed a mixed model using longitudinal EQ-5D-3L estimates from PROPEL. This model indicated only 6MWD (and sex) were strongly associated with patient HRQoL utility scores. The EQ-5D-3L utility values for non-wheelchair-dependent LOPD patients ranged from 0.55 (6MWD >75 to ≤250 m) to 0.67 (6MWD >250 m), while patients with a 6MWD ≤75 m, who were likely to require wheelchair support, were estimated to have a utility value of 0.49.

The current study has used the van Hout crosswalk algorithm to map EQ-5D-5L values to EQ-5D-3L as recommended by EuroQoL and in keeping with the NICE EQ-5D-5L position statement at the time of the analysis. It is acknowledged that the current NICE health technology assessment manual recommends an alternative mapping function by Hernandez-Alava et al. 18 , 24 Comparisons of the 2 approaches suggest only small differences in goodness-of-fit, and we do not anticipate that the use of the Hernandez-Alava approach would alter conclusions from this study. 23 , 24

The limitations of this study are primarily associated with the data available, which were constrained by the rarity of the disease. PROPEL, although the largest randomized controlled trial to date in Pompe disease, was a relatively small study (n = 123), and the eligibility criteria required all patients to be ambulatory and requiring ≤6 hours/day ventilatory support. This meant that few patients were in the later stages of disease progression, which made predictions for more health states associated with more severe disease challenging. It is acknowledged that the study may not have been powered specifically to adequately characterize the effect of all variables that impact patient HRQoL, reflecting this common challenge in rare disease trials. Multivariable analyses indicated that when both % predicted FVC and 6MWD were included in the regression model, % predicted FVC was no longer a significant predictor of HRQoL and there was evidence of collinearity, hence % predicted FVC was not included in the final equation. Thus, to provide utility values for health states associated with respiratory function, a separate risk equation was developed based purely on % predicted FVC as an explanatory variable. It is noted that the algorithm was based on the same data as the algorithm for 6MWD, hence, the combination of these estimates may result in some overestimation of the utility losses associated with composite health states, which include reductions in both respiratory function and patient mobility.

Nevertheless, despite these limitations, this study provides important evidence of HRQoL utility values across the spectrum of health states for patients with LOPD, a population for whom there are currently limited published data. The utility estimates in this study are highly consistent with estimates of EQ-5D utility values from the small number of previously published studies in LOPD. 6 , 8 Notably, a recent NICE health technology assessment of avalglucosidase alfa (Nexviadyme™) in Pompe disease (TA821) indicated that non-wheelchair-dependent patients may have an EQ-5D-3L utility value between 0.55 and 0.65 according to patient mobility and respiratory support requirements ( Table 6 ). 8 The closeness of these estimates to EQ-5D 3L values we have derived from PROPEL suggests cross-validity between studies.

It is acknowledged that a recent vignette study by Hubig et al reported lower utility EQ-5D-5L values for LOPD patients than PROPEL. This difference may be explained by differences in the methods of utility estimation between the vignette study and the PROPEL clinical trial. 3 , 6 The vignette study created a series of health state descriptions based on interviews with patients with LOPD and UK clinical experts. One hundred members of the general public were asked to imagine they were in the vignette health states and value their HRQoL utility value using 3 elicitation methods: EQ-5D-5L, visual analog scale, and time trade-off (TTO). PROPEL utility values were based on EQ-5D-5L questionnaires completed by 123 adults with LOPD. It has been noted elsewhere that individuals in the general population are likely to overstate the disability in a given health state compared with those who have been suffering from the disease and adapting to their condition over time. Furthermore, in the vignette study, there was some inconsistency between utility values estimated from the 3 different elicitation methods: notably, EQ-5D-5L values were much lower than TTO values. The vignette TTO values were more consistent with EQ-5D-3L results presented in this work than the vignette EQ-5D-5L values. It was unclear why the vignette EQ-5D-5L results were low, but this trend has been seen in previous research. 22 These findings provide an interesting insight into the potential challenges associated with estimating utilities in rare diseases when utility data are not captured within the clinical study itself.

Very few patients were in the late stages of LOPD progression in the PROPEL trial; hence, predictions from our study for patients in more severe health states data may not be reliable and should be interpreted with appropriate caution. In particular, it is noted that no patients who were wheelchair-dependent were using invasive ventilation in PROPEL. The reported utility value has been derived using strong assumptions regarding the relative loss in utility for patients requiring invasive ventilation. These assumptions merit further clinical validation, and the values derived are difficult to cross-validate, since utility values for severe LOPD health states have been rarely reported in the published literature. The vignette study by Hubig et al suggested that EQ-5D-5L patient utility for this health state would be less than 0 (ie, this health state was valued as worse than death), although, in the NICE appraisal of cipa + mig, the NICE Evidence Assessment Group noted that it is rare to apply utility values that are significantly below 0.50, and rarer still to assign negative utility values. 4

It is noted that mixed models cannot consider any bias associated with data not missing at random. Informative censoring may occur when patients in poorer health do not provide HRQoL responses. While this may be an important consideration in Pompe disease due to the severity of symptoms, given the relatively earlier stage of disease progression of patients in PROPEL and high completion rate, it is not considered an issue in this study.

We have estimated utility values for 7 health states, which have been defined according to patient respiratory function and mobility commonly associated with LOPD. Overall, the results from our analysis indicate that important HRQoL losses are associated with reductions in mobility and respiratory function for patients with Pompe disease. The study provides important evidence of HRQoL utility values for patients with LOPD, including advanced LOPD, a population for whom there are currently limited published data.

Acknowledgments

The authors thank the patients, their families, and Pompe disease patient organizations, as well as the PROPEL study investigators. Medical editing support was provided by Tamsin Brown, MSc, at AMICULUM, Ltd, under the direction of the authors in accordance with Good Publication Practice guidelines and was funded by Amicus Therapeutics, Inc.

Disclosures

A.M., N.J. and S.S. are employees of Amicus Therapeutics UK, Ltd and hold stock in Amicus Therapeutics, Inc. A.G. is employed by Research Economics. Research Economics received funding from Amicus Therapeutics UK, Ltd in relation to this study.

This study was supported by Amicus Therapeutics UK, Ltd.

Submitted : June 11, 2024 EDT

Accepted : August 30, 2024 EDT

Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Federal Bureau of Investigation Logo

FBI Releases 2023 Crime in the Nation Statistics

  • Press Releases

Share on X X.com Share on Facebook Facebook Email Email

The FBI released detailed data on over 14 million criminal offenses for 2023 reported to the Uniform Crime Reporting (UCR) Program by participating law enforcement agencies. More than 16,000 state, county, city, university and college, and tribal agencies, covering a combined population of 94.3% inhabitants, submitted data to the UCR Program through the National Incident-Based Reporting System (NIBRS) and the Summary Reporting System.

The FBI’s crime statistics estimates, based on reported data for 2023, show that national violent crime decreased an estimated 3.0% in 2023 compared to 2022 estimates:  

  • Murder and non-negligent manslaughter recorded a 2023 estimated nationwide decrease of 11.6% compared to the previous year.  
  • In 2023, the estimated number of offenses in the revised rape category saw an estimated 9.4% decrease.  
  • Aggravated assault figures decreased an estimated 2.8% in 2023. 
  • Robbery showed an estimated decrease of 0.3% nationally.  

In 2023, 16,009 agencies participated in the hate crime collection, with a population coverage of 95.2%. Law enforcement agencies submitted incident reports involving 11,862 criminal incidents and 13,829 related offenses as being motivated by bias toward race, ethnicity, ancestry, religion, sexual orientation, disability, gender, and gender identity.  

To publish a national trend, the FBI’s UCR Program used a dataset of reported hate crime incidents and zero reports submitted by agencies reporting six or more common months or two or more common quarters (six months) of hate crime data to the FBI’s UCR Program for both 2022 and 2023. According to this dataset, reported hate crime incidents decreased 0.6% from 10,687 in 2022 to 10,627 in 2023.  

The complete analysis is located on the FBI’s Crime Data Explorer .   

  • Most Wanted
  • Ten Most Wanted
  • Kidnappings / Missing Persons
  • Seeking Information
  • Bank Robbers
  • Submit a Tip
  • Crime Statistics
  • Scams & Safety
  • Podcasts and Radio
  • Español
  • How We Can Help You
  • Law Enforcement
  • Parents and Caregivers
  • Safety Resources
  • Need an FBI Service or More Information?
  • What We Investigate
  • Counterintelligence
  • Cyber Crime
  • Public Corruption
  • Civil Rights
  • Organized Crime
  • White-Collar Crime
  • Violent Crime
  • Mission & Priorities
  • Leadership & Structure
  • Partnerships
  • Community Outreach
  • Field Offices
  • FBI Headquarters
  • Visit the FBI Experience
  • Overseas Offices
  • Additional Resources
  • Accessibility
  • eRulemaking
  • Freedom of Information / Privacy Act
  • Legal Notices
  • Legal Policies & Disclaimers
  • Privacy Policy
  • White House
  • No FEAR Act
  • Equal Opportunity

techniques of research data analysis

federal bureau of investigation

Fbi.gov contact center, email updates.

  • How We Investigate

email Stay Connected Get FBI email alerts Subscribe No Thanks ×

IMAGES

  1. Data analysis

    techniques of research data analysis

  2. Essential data analysis methods for business success

    techniques of research data analysis

  3. Data Analysis: Techniques, Tools, and Processes

    techniques of research data analysis

  4. Basic methods of data analysis

    techniques of research data analysis

  5. What Is Data Analysis In Research Process

    techniques of research data analysis

  6. Unleashing Insights: Mastering the Art of Research and Data Analysis

    techniques of research data analysis

VIDEO

  1. What is Data Analysis?

  2. Qualitative Research (Data Analysis and Interpretation) Video Lesson

  3. Understanding Quantitative Research Methods

  4. Research and Data Analysis: Part I: An Unusual Outlook

  5. Data Analysis in Research

  6. Data analysis

COMMENTS

  1. Data Analysis: Types, Methods & Techniques (a Complete List)

    Quantitative data analysis then splits into mathematical analysis and artificial intelligence (AI) analysis. Mathematical types then branch into descriptive, diagnostic, predictive, and prescriptive. Methods falling under mathematical analysis include clustering, classification, forecasting, and optimization.

  2. Data Analysis Techniques in Research

    Data Analysis Techniques in Research: While various groups, institutions, and professionals may have diverse approaches to data analysis, a universal definition captures its essence. Data analysis involves refining, transforming, and interpreting raw data to derive actionable insights that guide informed decision-making for businesses. ...

  3. Data Analysis in Research: Types & Methods

    Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. Three essential things occur during the data ...

  4. The 7 Most Useful Data Analysis Methods and Techniques

    Let's take a look at some of the most useful techniques now. 3. Data analysis techniques. Now we're familiar with some of the different types of data, let's focus on the topic at hand: different methods for analyzing data. a. Regression analysis. Regression analysis is used to estimate the relationship between a set of variables.

  5. What is Data Analysis? An Expert Guide With Examples

    Data analysis is a comprehensive method of inspecting, cleansing, transforming, and modeling data to discover useful information, draw conclusions, and support decision-making. It is a multifaceted process involving various techniques and methodologies to interpret data from various sources in different formats, both structured and unstructured.

  6. Data Analysis

    Data Analysis. Definition: Data analysis refers to the process of inspecting, cleaning, transforming, and modeling data with the goal of discovering useful information, drawing conclusions, and supporting decision-making. It involves applying various statistical and computational techniques to interpret and derive insights from large datasets.

  7. Data Analysis: Techniques, Tools, and Processes

    10 Best Data Analysis and Modeling Techniques. We generate over 120 zettabytes daily. That's about 120 billion copies of the entire Internet in 2020, daily.Without the best data analysis techniques, businesses of all sizes will never be able to collect, analyze, and interpret data into real, actionable insights. Now that you have an overarching picture of data analysis, let's move on to ...

  8. Introduction to Data Analysis

    Data analysis can be quantitative, qualitative, or mixed methods. Quantitative research typically involves numbers and "close-ended questions and responses" (Creswell & Creswell, 2018, p. 3).Quantitative research tests variables against objective theories, usually measured and collected on instruments and analyzed using statistical procedures (Creswell & Creswell, 2018, p. 4).

  9. 8 Types of Data Analysis

    Exploratory analysis. Inferential analysis. Predictive analysis. Causal analysis. Mechanistic analysis. Prescriptive analysis. With its multiple facets, methodologies and techniques, data analysis is used in a variety of fields, including energy, healthcare and marketing, among others. As businesses thrive under the influence of technological ...

  10. Quantitative Data Analysis Methods, Types + Techniques

    8. Weight customer feedback. So far, the quantitative data analysis methods on this list have leveraged numeric data only. However, there are ways to turn qualitative data into quantifiable feedback and to mix and match data sources. For example, you might need to analyze user feedback from multiple surveys.

  11. What is Data Analysis? (Types, Methods, and Tools)

    December 17, 2023. Data analysis is the process of cleaning, transforming, and interpreting data to uncover insights, patterns, and trends. It plays a crucial role in decision making, problem solving, and driving innovation across various domains. In addition to further exploring the role data analysis plays this blog post will discuss common ...

  12. Quantitative Data Analysis Methods & Techniques 101

    Quantitative Data Analysis 101. The lingo, methods and techniques, explained simply. Quantitative data analysis is one of those things that often strikes fear in students. It's totally understandable - quantitative analysis is a complex topic, full of daunting lingo, like medians, modes, correlation and regression.

  13. Guide to the Best Data Analysis Techniques

    Quantitative data analysis: This is data that you can count, measure, order, or quantify with a numerical value. Qualitative data analysis: This data focuses on words rather than numbers. Basically, quantitative research focuses on the numbers, while qualitative research focuses on the why behind the numbers. However, while each method provides ...

  14. Approach To Data Analysis Methods and Techniques

    Data analysis methods in research include systematic processes. These processes involve inspecting, cleaning, transforming, and modeling data. The goal is to discover useful information, draw conclusions, and support decision-making. The choice of methods depends on the research design, objectives, and the type of data collected.

  15. PDF The SAGE Handbook of Qualitative Data Analysis

    The SAGE Handbook of. tive Data AnalysisUwe FlickMapping the FieldData analys. s is the central step in qualitative research. Whatever the data are, it is their analysis that, in a de. isive way, forms the outcomes of the research. Sometimes, data collection is limited to recording and docu-menting naturally occurring ph.

  16. Data analysis

    Data analysis is an important part of both scientific research and business, where demand has grown in recent years for data-driven decision making. Data analysis techniques are used to gain useful insights from datasets, which can then be used to make operational decisions or guide future research .

  17. Research Methods Guide: Data Analysis

    Data Analysis and Presentation Techniques that Apply to both Survey and Interview Research. Create a documentation of the data and the process of data collection. Analyze the data rather than just describing it - use it to tell a story that focuses on answering the research question. Use charts or tables to help the reader understand the data ...

  18. Data Analysis Methods: Qualitative vs. Quantitative

    Both qualitative and quantitative data have their strengths and applications. They can be used together in mixed-methods research to comprehensively understand a research topic or triangulate findings for more robust conclusions. Data Analysis Methods. Data analysis methods refer to the techniques and approaches used to analyze and interpret ...

  19. The Beginner's Guide to Statistical Analysis

    Statistical analysis means investigating trends, patterns, and relationships using quantitative data. It is an important research tool used by scientists, governments, businesses, and other organizations. To draw valid conclusions, statistical analysis requires careful planning from the very start of the research process. You need to specify ...

  20. Qualitative Data Analysis: What is it, Methods + Examples

    Qualitative data analysis is a systematic process of examining non-numerical data to extract meaning, patterns, and insights. In contrast to quantitative analysis, which focuses on numbers and statistical metrics, the qualitative study focuses on the qualitative aspects of data, such as text, images, audio, and videos.

  21. A practical guide to data analysis in general literature reviews

    This article is a practical guide to conducting data analysis in general literature reviews. The general literature review is a synthesis and analysis of published research on a relevant clinical issue, and is a common format for academic theses at the bachelor's and master's levels in nursing, physiotherapy, occupational therapy, public health and other related fields.

  22. Research Methods

    For quantitative data, you can use statistical analysis methods to test relationships between variables. For qualitative data, you can use methods such as thematic analysis to interpret patterns and meanings in the data. Note AI tools can be useful when brainstorming research method ideas and designing certain data collection methods. However ...

  23. Codebooks for the Novice Researcher

    Within my research journey, I decided to use Braun and Clarke's (2020) well-established approach to thematic analysis for the interview data that I had gathered. However, I faced a number of challenges in successfully conducting the data analysis. A large data set of 25 interviews, which varied in length from 20 minutes to two hours.

  24. Qualitative research

    Qualitative research is a type of research that aims to gather and analyse non-numerical (descriptive) data in order to gain an understanding of individuals' social reality, including understanding their attitudes, beliefs, and motivation.This type of research typically involves in-depth interviews, focus groups, or field observations in order to collect data that is rich in detail and context.

  25. The Reduced Access Analytical Methods Toolkit

    Transaction Analysis: Analysing digital transaction data from cash or voucher assistance programs to understand usage patterns, vendor capacity, and more. The toolkit is designed for both managerial and technical users, with step-by-step guidance, tools, and resource lists for each method.

  26. Data Driven Techniques for The Analysis of Oral Dosage Drug Formulations

    In this thesis, the development of data driven chemical imaging techniques for the analysis of oral drug formulations via Fourier transformation and generative adversarial learning are elaborated. Chapter 1 begins with a brief introduction of current techniques commonly implemented within the pharmaceutical industry, their limitations, and how ...

  27. Testimonio Methodology: A Systematic Analysis of the Data Collection

    This literature review systematically analyzes 100 critical scholarly articles, utilizing testimonio as a primary research method and methodology, alongside literary criticism. This descriptive and pragmatic methodological examination explores scholars' processes to collect testimonios, highlighting the various data collection procedures ...

  28. Mapping the Global Research Landscape on Liposuction: A ...

    Bibliometric analysis, which involves applying mathematical and statistical methods to related publications, serves as a tool to evaluate the growth and development trends in research on any subject [].Although bibliometric studies and research on plastic surgery have increased, liposuction has not been given specific attention, as observed in academic databases such as PubMed, Scopus, and Web ...

  29. Health-Related Quality-of-Life Utility Values in Adults With Late-Onset

    Estimates of the intraclass correlation coefficient and a likelihood ratio test comparing a mixed model to a standard linear model were used to establish the most suitable approach to analyzing PROPEL data. In our final analysis, we assumed that EQ-5D scores within each patient were correlated and a random intercept mixed model was developed.

  30. FBI Releases 2023 Crime in the Nation Statistics

    The FBI's crime statistics estimates, based on reported data for 2023, show that national violent crime decreased an estimated 3.0% in 2023 compared to 2022 estimates: