What Is Problem Solving? How Software Engineers Approach Complex Challenges

HackerRank AI Promotion

From debugging an existing system to designing an entirely new software application, a day in the life of a software engineer is filled with various challenges and complexities. The one skill that glues these disparate tasks together and makes them manageable? Problem solving . 

Throughout this blog post, we’ll explore why problem-solving skills are so critical for software engineers, delve into the techniques they use to address complex challenges, and discuss how hiring managers can identify these skills during the hiring process. 

What Is Problem Solving?

But what exactly is problem solving in the context of software engineering? How does it work, and why is it so important?

Problem solving, in the simplest terms, is the process of identifying a problem, analyzing it, and finding the most effective solution to overcome it. For software engineers, this process is deeply embedded in their daily workflow. It could be something as simple as figuring out why a piece of code isn’t working as expected, or something as complex as designing the architecture for a new software system. 

In a world where technology is evolving at a blistering pace, the complexity and volume of problems that software engineers face are also growing. As such, the ability to tackle these issues head-on and find innovative solutions is not only a handy skill — it’s a necessity. 

The Importance of Problem-Solving Skills for Software Engineers

Problem-solving isn’t just another ability that software engineers pull out of their toolkits when they encounter a bug or a system failure. It’s a constant, ongoing process that’s intrinsic to every aspect of their work. Let’s break down why this skill is so critical.

Driving Development Forward

Without problem solving, software development would hit a standstill. Every new feature, every optimization, and every bug fix is a problem that needs solving. Whether it’s a performance issue that needs diagnosing or a user interface that needs improving, the capacity to tackle and solve these problems is what keeps the wheels of development turning.

It’s estimated that 60% of software development lifecycle costs are related to maintenance tasks, including debugging and problem solving. This highlights how pivotal this skill is to the everyday functioning and advancement of software systems.

Innovation and Optimization

The importance of problem solving isn’t confined to reactive scenarios; it also plays a major role in proactive, innovative initiatives . Software engineers often need to think outside the box to come up with creative solutions, whether it’s optimizing an algorithm to run faster or designing a new feature to meet customer needs. These are all forms of problem solving.

Consider the development of the modern smartphone. It wasn’t born out of a pre-existing issue but was a solution to a problem people didn’t realize they had — a device that combined communication, entertainment, and productivity into one handheld tool.

Increasing Efficiency and Productivity

Good problem-solving skills can save a lot of time and resources. Effective problem-solvers are adept at dissecting an issue to understand its root cause, thus reducing the time spent on trial and error. This efficiency means projects move faster, releases happen sooner, and businesses stay ahead of their competition.

Improving Software Quality

Problem solving also plays a significant role in enhancing the quality of the end product. By tackling the root causes of bugs and system failures, software engineers can deliver reliable, high-performing software. This is critical because, according to the Consortium for Information and Software Quality, poor quality software in the U.S. in 2022 cost at least $2.41 trillion in operational issues, wasted developer time, and other related problems.

Problem-Solving Techniques in Software Engineering

So how do software engineers go about tackling these complex challenges? Let’s explore some of the key problem-solving techniques, theories, and processes they commonly use.

Decomposition

Breaking down a problem into smaller, manageable parts is one of the first steps in the problem-solving process. It’s like dealing with a complicated puzzle. You don’t try to solve it all at once. Instead, you separate the pieces, group them based on similarities, and then start working on the smaller sets. This method allows software engineers to handle complex issues without being overwhelmed and makes it easier to identify where things might be going wrong.

Abstraction

In the realm of software engineering, abstraction means focusing on the necessary information only and ignoring irrelevant details. It is a way of simplifying complex systems to make them easier to understand and manage. For instance, a software engineer might ignore the details of how a database works to focus on the information it holds and how to retrieve or modify that information.

Algorithmic Thinking

At its core, software engineering is about creating algorithms — step-by-step procedures to solve a problem or accomplish a goal. Algorithmic thinking involves conceiving and expressing these procedures clearly and accurately and viewing every problem through an algorithmic lens. A well-designed algorithm not only solves the problem at hand but also does so efficiently, saving computational resources.

Parallel Thinking

Parallel thinking is a structured process where team members think in the same direction at the same time, allowing for more organized discussion and collaboration. It’s an approach popularized by Edward de Bono with the “ Six Thinking Hats ” technique, where each “hat” represents a different style of thinking.

In the context of software engineering, parallel thinking can be highly effective for problem solving. For instance, when dealing with a complex issue, the team can use the “White Hat” to focus solely on the data and facts about the problem, then the “Black Hat” to consider potential problems with a proposed solution, and so on. This structured approach can lead to more comprehensive analysis and more effective solutions, and it ensures that everyone’s perspectives are considered.

This is the process of identifying and fixing errors in code . Debugging involves carefully reviewing the code, reproducing and analyzing the error, and then making necessary modifications to rectify the problem. It’s a key part of maintaining and improving software quality.

Testing and Validation

Testing is an essential part of problem solving in software engineering. Engineers use a variety of tests to verify that their code works as expected and to uncover any potential issues. These range from unit tests that check individual components of the code to integration tests that ensure the pieces work well together. Validation, on the other hand, ensures that the solution not only works but also fulfills the intended requirements and objectives.

Explore verified tech roles & skills.

The definitive directory of tech roles, backed by machine learning and skills intelligence.

Explore all roles

Evaluating Problem-Solving Skills

We’ve examined the importance of problem-solving in the work of a software engineer and explored various techniques software engineers employ to approach complex challenges. Now, let’s delve into how hiring teams can identify and evaluate problem-solving skills during the hiring process.

Recognizing Problem-Solving Skills in Candidates

How can you tell if a candidate is a good problem solver? Look for these indicators:

  • Previous Experience: A history of dealing with complex, challenging projects is often a good sign. Ask the candidate to discuss a difficult problem they faced in a previous role and how they solved it.
  • Problem-Solving Questions: During interviews, pose hypothetical scenarios or present real problems your company has faced. Ask candidates to explain how they would tackle these issues. You’re not just looking for a correct solution but the thought process that led them there.
  • Technical Tests: Coding challenges and other technical tests can provide insight into a candidate’s problem-solving abilities. Consider leveraging a platform for assessing these skills in a realistic, job-related context.

Assessing Problem-Solving Skills

Once you’ve identified potential problem solvers, here are a few ways you can assess their skills:

  • Solution Effectiveness: Did the candidate solve the problem? How efficient and effective is their solution?
  • Approach and Process: Go beyond whether or not they solved the problem and examine how they arrived at their solution. Did they break the problem down into manageable parts? Did they consider different perspectives and possibilities?
  • Communication: A good problem solver can explain their thought process clearly. Can the candidate effectively communicate how they arrived at their solution and why they chose it?
  • Adaptability: Problem-solving often involves a degree of trial and error. How does the candidate handle roadblocks? Do they adapt their approach based on new information or feedback?

Hiring managers play a crucial role in identifying and fostering problem-solving skills within their teams. By focusing on these abilities during the hiring process, companies can build teams that are more capable, innovative, and resilient.

Key Takeaways

As you can see, problem solving plays a pivotal role in software engineering. Far from being an occasional requirement, it is the lifeblood that drives development forward, catalyzes innovation, and delivers of quality software. 

By leveraging problem-solving techniques, software engineers employ a powerful suite of strategies to overcome complex challenges. But mastering these techniques isn’t simple feat. It requires a learning mindset, regular practice, collaboration, reflective thinking, resilience, and a commitment to staying updated with industry trends. 

For hiring managers and team leads, recognizing these skills and fostering a culture that values and nurtures problem solving is key. It’s this emphasis on problem solving that can differentiate an average team from a high-performing one and an ordinary product from an industry-leading one.

At the end of the day, software engineering is fundamentally about solving problems — problems that matter to businesses, to users, and to the wider society. And it’s the proficient problem solvers who stand at the forefront of this dynamic field, turning challenges into opportunities, and ideas into reality.

This article was written with the help of AI. Can you tell which parts?

Get started with HackerRank

Over 2,500 companies and 40% of developers worldwide use HackerRank to hire tech talent and sharpen their skills.

Recommended topics

  • Hire Developers
  • Problem Solving

Abstract, futuristic image generated by AI

Does a College Degree Still Matter for Developers in 2024?

UNIT 1: How to Think Like an Engineer

Learning objectives.

  • Explain what we mean by “Computational Thinking”.
  • Describe the problem being solved in a computational algorithm.
  • Explain the process for generating computational algorithms.
  • Generate and test algorithms to solve computational problems.
  • Evaluate computational algorithms for exactness, correctness, termination, generalizability and understandability.
  • Explain the role of programming in the field of Informatics.

Introduction

The goal of this book is to teach you to solve computational problems and to think like an engineer. Computational problems are problems that can be solved by the use of computations (a computation is what you do when you calculate something). Engineers are people who solve problems – they invent, design, analyze, build and test “things” to fulfill objectives and requirements. The single most important skill for you to learn is problem solving. Problem solving means the ability to formulate problems, think creatively about solutions, and express a solution clearly and accurately. As it turns out, the process of learning to program is an excellent opportunity to practice problem-solving skills.

This book strives to prepare you to write well-designed computer programs that solve interesting problems involving data.

Computational Thinking

computational thinking chart

Figure 1: “The seven components to computational thinking”(www.ignitemyfutureinschool.org/about)

Computational Thinking is the thought processes involved in understanding a problem and expressing its solution in a way that a computer can effectively carry out. Computational thinking involves solving problems, designing systems, and understanding human behavior (e.g. what the user needs or wants) – thinking like an engineer. Computational thinking is a fundamental skill for everyone, not just for programmers because computational thinking is what comes before any computing technology. [1]

Computer science is the study of computation — what can be computed and how to compute it whereas computational thinking is:

Conceptualizing , not programming. Computer science is not only computer programming. Thinking like a computer scientist means more than being able to program a computer. It requires thinking at multiple levels of abstraction;

Fundamental , not rote skill. A fundamental skill is something every human being must know to function in modern society. Rote means a mechanical routine;

A way that humans, not computers, think . Computational thinking is a way humans solve problems; it is not trying to get humans to think like computers. Computers are dull and boring; humans are clever and imaginative. We humans make computers exciting. Equipped with computing devices, we use our cleverness to tackle problems we would not dare take on before the age of computing and build systems with functionality limited only by our imaginations;

Complements and combines mathematical and engineering thinking . Computer science inherently draws on mathematical thinking, given that, like all sciences, its formal foundations rest on mathematics. Computer science inherently draws on engineering thinking, given that we build systems that interact with the real world;

Ideas , not artifacts. It’s not just the software and hardware artifacts we produce that will be physically present everywhere and touch our lives all the time, it will be the computational concepts we use to approach and solve problems, manage our daily lives, and communicate and interact with other people;

For everyone, everywhere . Computational thinking will be a reality when it is so integral to human endeavors it disappears as an explicit philosophy. [2]

role of problem solving in programming

Figure 2 “Are you happy?” by Typcut http://www.typcut.com/headup/are-you-happy

An algorithm specifies a series of steps that perform a particular computation or task. Throughout this book we’ll examine a number of different algorithms to solve a variety of computational problems.

Algorithms resemble recipes. Recipes tell you how to accomplish a task by performing a number of steps. For example, to bake a cake the steps are: preheat the oven; mix flour, sugar, and eggs thoroughly; pour into a baking pan; set the timer and bake until done.

However, “algorithm” is a technical term with a more specific meaning than “recipe”, and calling something an algorithm means that the following properties are all true:

  • An algorithm is an unambiguous description that makes clear what has to be implemented in order to solve the problem. In a recipe, a step such as “Bake until done” is ambiguous because it doesn’t explain what “done” means. A more explicit description such as “Bake until the cheese begins to bubble” is better. In a computational algorithm, a step such as “Choose a large number” is vague: what is large? 1 million, 1 billion, or 100? Does the number have to be different each time, or can the same number be used again?
  • An algorithm expects a defined set of inputs. For example, it might require two numbers where both numbers are greater than zero. Or it might require a word, or a list customer names.
  • An algorithm produces a defined set of outputs. It might output the larger of the two numbers, an all-uppercase version of a word, or a sorted version of the list of names.
  • An algorithm is guaranteed to terminate and produce a result, always stopping after a finite time. If an algorithm could potentially run forever, it wouldn’t be very useful because you might never get an answer.
  • Must be general for any input it is given. Algorithms solve general problems (determine if a password is valid); they are of little use if they only solve a specific problem (determine if ‘comp15’ is a valid password)
  • It is at the right level of detail…..the person or device executing the instruction know how to accomplish the instruction without any extra information.

Once we know it’s possible to solve a problem with an algorithm, a natural question is whether the algorithm is the best possible one. Can the problem be solved more quickly or efficiently?

The first thing you need to do before designing an algorithm is to understand completely the problem given. Read the problem’s description carefully, then read it again. Try sketching out by hand some examples of how the problem can be solved. Finally consider any special cases and design your algorithm to address them.

An algorithm does not solve a problem rather it gives you a series of steps that, if executed correctly, will result in a solution to a problem.

An Example Algorithm

Let us look at a very simple algorithm called find_max.

Problem : Given a list of positive numbers, return the largest number on the list.

Inputs : A list of positive numbers. This list must contain at least one number. (Asking for the largest number in a list of no numbers is not a meaningful question.)

Outputs : A number, which will be the largest number in the list.

Algorithm :

  • Accept a list of positive numbers; set to nums_list
  • Set max_number to 0.
  • If the number is larger, set max_number to the larger number.
  • max_number is now set to the largest number in the list of positive numbers, nums_list.

Does this meet the criteria for being an algorithm?

  • Is it unambiguous? Yes. Each step of the algorithm consists of uncomplicated operations, and translating each step into programming code is straight forward.
  • Does it have defined inputs and outputs? Yes.
  • Is it guaranteed to terminate? Yes. The list nums_list is of finite length, so after looking at every element of the list the algorithm will stop.
  • Is it general for any input? Yes. A list of any set of positive numbers works.
  • Does it produce the correct result? Yes. When tested, the results are what are expected

Figure 3: Example Algorithm

Figure 3: Example Algorithm

How do we know if an algorithm is unambiguous, correct, comes to an end, is general AND is at the right level of detail? We must test the algorithm. Testing means verifying that the algorithm does what we expect it to do. In our ‘bake a cake’ example we know our algorithm is ‘working’ if, in the end, we get something that looks, smells and tastes like a cake.

Verifying your Algorithm

role of problem solving in programming

Figure 3 “ Keyboard ” by Geralt is licensed under CC 2

Your first step should be to carefully read through EACH step of the algorithm to check for ambiguity and if there is any information missing. To ensure that the algorithm is correct, terminates and is general for any input we devise ‘test cases’ for the algorithm.

A test case is a set of inputs, conditions, and expected results developed for a particular computational problem to be solved. A test case is really just a question that you ask of the algorithm (e.g. if my list is the three numbers 2, 14, and 11 does the algorithm return the number 14?). The point of executing the test is to make sure the algorithm is correct, that it terminates and is general for any input.

Good (effective) test cases:

  • are easy to understand and execute
  • are created with the user in mind (what input mistakes will be made? what are the preconditions?)
  • make no assumptions (you already know what it is supposed to do)
  • consider the boundaries for a specified range of values.

Let us look at the example algorithm from the previous section. The input for the algorithm is ‘a list of positive numbers’. To make it easy to understand and execute keep the test lists short. The preconditions are that the list only contains numbers and these numbers must be positive so include a test with a ‘non-number’ (i.e. a special character or a letter) and a test with a negative number. The boundaries for the list are zero and the highest positive number so include a test with zero and a large positive number. That is it! Here is an example of three different test cases.

Manually, you should step through your algorithm using each of the three test cases, making sure that the algorithm does indeed terminate and that you get your expected result. As our algorithms and programs become more complex, skilled programmers often break each test case into individual steps of the algorithm/program and indicate what the expected result of each step should be. When you write a detailed test case, you don’t necessarily need to specify the expected result for each test step if the result is obvious.

In computer programming we accept a problem to solve and develop an algorithm that can serve as a general solution. Once we have such a solution, we can use our computer to automate the execution. Programming is a skill that allows a competent programmer to take an algorithm and represent it in a notation (a program) that can be followed by a computer. These programs are written in programming languages (such as Python). Writing a correct and valid algorithm to solve a computational problem is key to writing good code. Learn to Think First and coding will come naturally!

The Process of Computational Problem Solving

Computational problem solving does not simply involve the act of computer programming. It is a process, with programming being only one of the steps. Before a program is written, a design for the program must be developed (the algorithm). And before a design can be developed, the problem to be solved must be well understood. Once written, the program must be thoroughly tested. These steps are outlined in Figure 5.

image

Figure 5: Process of Computational Problem Solving [footnote]Dierbach, Charles. Introduction to Computer Science Using Python: A Computational Problem-solving Focus. Wiley Publishing, 2012, pp17-18.[/footnote]

Values and Variables

A value is one of the basic things computer programs works with, like a password or a number of errors.

Values belong to different types: 21 is an integer (like the number of errors), and ‘comp15’ is a string of characters (like the password). Python lets you give names to values giving us the ability to generalize our algorithms.

One of the most powerful features of a programming language is the ability to use variables. A variable is simply a name that refers to a value as shown below,

Whenever the variable errors appears in a calculation the current value of the variable is used.

We need some way of storing information (i.e. the number of errors or the password) and manipulate them as well. This is where variables come into the picture. Variables are exactly what the name implies – their value can vary, i.e., you can store anything using a variable. Variables are just parts of your computer’s memory where you store some information. Unlike literal constants, you need some method of accessing these variables and hence you give them names.

Programmers generally choose names for their variables that are meaningful and document what the variable is used for. It is a good idea to begin variable names with a lowercase letter . The underscore character (_) can appear in a name and is often used in names with multiple words.

A program is a sequence of instructions that specifies how to perform a computation. The computation might be something mathematical, such as solving a system of mathematical equations or finding the roots of a polynomial, but it can also be a symbolic computation, such as searching and replacing text in a document or something graphical, like processing user input on an ATM device.

What is a Program?

image

Figure 6: “ Python Code ” by nyuhuhuu is licensed under CC-BY 2.0

The details look different in different computer programming languages, but there are some low-level conceptual patterns (constructs) that we use to write all programs. These constructs are not just for Python programs, they are a part of every programming language.

input Get data from the “outside world”. This might be reading data from a file, or even some kind of sensor like a microphone or GPS. In our initial algorithms and programs, our input will come from the user typing data on the keyboard.

output Display the results of the program on a screen or store them in a file or perhaps write them to a device like a speaker to play music or speak text.

sequential execution Perform statements one after another in the order they are encountered in the script.

conditional execution Checks for certain conditions and then executes or skips a sequence of statements.

repeated execution Perform some set of statements repeatedly, usually with some variation.

reuse Write a set of instructions once and give them a name and then reuse those instructions as needed throughout your program.

Believe it or not, that’s pretty much all there is to it. Every computer application you’ve ever used, no matter how complicated, is made up of constructs that look pretty much like these. So you can think of programming as the process of breaking a large, complex task into smaller and smaller subtasks until the subtasks are simple enough to be performed with one of these basic constructs. The “art” of writing a program is composing and weaving these basic elements together many times over to produce something that is useful to its users.

Computational Problem Design Using the Basic Programming Constructs

The key to better algorithm design and thus to programming lies in limiting the control structure to only three constructs as shown below.

  • The Sequence structure (sequential execution)
  • The Decision, Selection or Control structure (conditional execution)
  • Repetition or Iteration Structure (repeated execution)

image

Figure 7: the 3 Programming Constructs

  Let us look at some examples for the sequential control and the selection control.

Sequential Control Example

The following algorithm is an example of sequential control .

Problem : Given two numbers, return the sum and the product of the two numbers.

Inputs : Two numbers.

Outputs : The sum and the product.

  • display “Input two numbers”
  • sum = number1 + number2
  • print “The sum is “, sum
  • product = number1 * number2
  • print “The product is “, product
  • Is it guaranteed to terminate? Yes. Sequential control, by its nature, always ends.
  • Is it general for any input? Yes. Any two numbers work in this design.
  • Does it produce the correct result? Yes. When tested, the results are what are expected.

Here is an example of three different test cases that are used to verify the algorithm.

Selection Control

The following two algorithms are examples of selection control which uses the ‘IF’ statement in most programming languages.

Problem : Given two numbers, the user chooses to either multiply, add or subtract the two numbers. Return the value of the chosen calculation.

Inputs : Two numbers and calculation option.

Outputs : The value of the chosen calculation.

The relational (or comparison) operators used in selection control are:

= is equal to

> is greater than

< is less than

>= is greater than or equal

<= is less than or equal

<> is not equal to

  • display “choose one of the following”
  • display “m for multiply”
  • display “a for add”
  • display “s for subtract”
  • accept choice
  • display “input two numbers you want to use”
  • accept number1, number2
  • if choice = m then answer= number1 * number2
  • if choice = a then answer= number1 + number2
  • if choice = s then answer= number1 -number212. if choice is not m, a, or s then answer is NONE
  • display answer
  • Is it guaranteed to terminate? Yes. The input is of finite length, so after accepting the user’s choice and the two numbers the algorithm will stop.
  • Is it general for any input? Yes. Any two numbers work in this design and only a choice of a’m’, ‘a’, or ‘s’ will result in numeric output.

This example uses an extension of the simple selection control structure we just saw and is referred to as the ‘IF-ELSE’ structure.

Problem : Accept from the user a positive integer value representing a salary amount, return tax due based on the salary amount.

Inputs : One positive integer number.

Outputs : The calculated tax amount.

  • accept salary
  • If salary < 50000 then
  • Tax = 0 Else
  • If salary > 50000 AND salary < 100000 then
  • Tax = 50000 * 0.05 Else
  • Tax = 100000 * 0.30
  • display Tax
  • Is it guaranteed to terminate? Yes. The input is of finite length, so after accepting the user’s number, even if it is negative, the algorithm will stop.
  • Is it general for any input? Yes. Any number entered in this design will work.

Iterative Control Examples

The third programming control is the iterative or, also referred to as, the repetition structure. This control structure causes certain steps to be repeated in a sequence a specified number of times or until a condition is met. This is what is called a ‘loop’ in programming

In all programming languages there are generally two options: an indefinite loop (the Python ‘WHILE’ programming statement) and a definite loop (the Python ‘FOR’ programming statement). We can use these two constructs, WHILE and FOR, for iterations or loops in our algorithms.

Note for Reader: A definite loop is where we know exactly the number of times the loop’s body will be executed. Definite iteration is usually best coded as a Python for loop. An indefinite loop is where we do not know before entering the body of the loop the exact number of iterations the loop will perform. The loop just keeps going until some condition is met. A while statement is used in this case.

The following algorithm is an example of iterative control using WHILE .

Problem : Print each keyboard character the users types in until the user chooses the ‘q’ (for ‘quit’) character.

Inputs : A series of individual characters.

Outputs : Each character typed in by the user.

  • initialize (set) letter = ‘a’
  • WHILE letter <> ‘q’
  • ACCEPT letter
  • DISPLAY “The character you typed is”, letter
  • Is it guaranteed to terminate? Yes. The input is of finite length, so after accepting the user’s keyboard character, even if it is not a letter, the algorithm will stop.
  • Is it general for any input? Yes. Any keyboard character entered in this design will work.

The following algorithm is an example of iterative control using FOR . This statement is used when the number of iterations is known in advance.

Problem : Ask the user how many words they want to enter then print the words entered by the user.

Inputs : Number of words to be entered; this value must be a positive integer greater than zero. Individual words.

Outputs : Each word typed in by the user.

  • accept num_words (must be at least one)
  • repeat num_words times (FOR 1 to num_words)
  • accept word
  • DISPLAY “The word you entered is”, word
  • Is it guaranteed to terminate? Yes. The input is of finite length, so after accepting the user’s number of words to enter and any characters typed on the keyboard, even if it is not a ‘word’ per say, the algorithm will stop.
  • Is it general for any input? Yes. Any positive integer greater than zero and any size ‘word’ will work.

Here is an example of two different test cases that are used to verify the algorithm.

The Role of Programming in the Field of Informatics

image

Figure8: iPhone apps by Jaap Arriens/NurPhoto via Getty Images (abcnews.go.com)

You see computer programming in use every day. When you use Google or your smartphone, or watch a movie with special effects, there is programing at work. When you order a product over the Internet, there is code in the web site, in the cryptography used to keep your credit card number secure, and in the way that UPS routes their delivery vehicle to get your order to you as quickly as possible.

Programming is indeed important to an informatics professional as they are interested in finding solutions for a wide variety of computational problems involving data.

When you Google the words “pie recipe,” Google reports that it finds approximately 38 million pages, ranked in order of estimated relevance and usefulness. Facebook has approximately 1 billion active users who generate over 3 billion comments and “Likes” each day. GenBank, a national database of DNA sequences used by biologists and medical researchers studying genetic diseases, has over 100 million genetic sequences with over 100 billion DNA base pairs. According to the International Data Corporation, by 2020 the digital universe – the data we create and copy annually – will reach 44 zettabytes, or 44 trillion gigabytes.

image

Figure 9: The Digital Universe ( www.emc.com/leadership/digital-universe/2014iview/images )

  Doing meaningful things with data is challenging, even if we’re not dealing with millions or billions of things. In this book, we will be working with smaller sets of data. But much of what we’ll do will be applicable to very large amounts of data too.

Unit Summary

Computational Thinking is the thought processes involved in formulating a problem and expressing its solution in a way that a computer—human or machine—can effectively carry out.

Computational Thinking is what comes before any computing technology—thought of by a human, knowing full well the power of automation.

Writing a correct and valid algorithm to solve a computational problem is key to writing good code.

  • What are the inputs?
  • What are the outputs (or results)?
  • Can we break the problem into parts?
  • Think about the connections between the input & output.
  • Consider designing ‘backwards’.
  • Have you seen the problem before? In a slightly different form?
  • Can you solve part of the problem?
  • Did you use all the inputs?
  • Can you test it on a variety of inputs?
  • Can you think of how you might write the algorithm differently if you had to start again?
  • Does it solve the problem? Does it meet all the requirements? Is the output correct?
  • Does it terminate?
  • Is it general for all cases?

Practice Problems

  • Write about a process in your life (e.g. driving to the mall, walking to class, etc.) and estimate the number of steps necessary to complete the task. Would you consider this a complex or simple task? What happens if you scale that task (e.g. driving two states away to the mall)? Is your method the most efficient? Can you come up with a more efficient way?

image

  • Write an algorithm to find the average of 25 test grades out of a possible 100 points.
  • If you are given three sticks, you may or may not be able to arrange them in a triangle. For example, if one of the sticks is 12 inches long and the other two are one inch long, it is clear that you will not be able to get the short sticks to meet in the middle. For any three lengths, there is a simple test to see if it is possible to form a triangle: “If any of the three lengths is greater than the sum of the other two, then you cannot form a triangle. Otherwise, you can.”Write an algorithm that accepts three integers as arguments, and that displays either “Yes” or “No,” depending on whether you can or cannot form a triangle from sticks with the given lengths.
  • ROT13 is a weak form of encryption that involves “rotating” each letter in a word by 13 places. To rotate a letter means to shift it through the alphabet, wrapping around to the beginning if necessary, so ‘A’ shifted by 3 is ‘D’ and ‘Z’ shifted by 1 is ‘A’. Write an algorithm that accepts a word and an integer from the user, and that prints a new encrypted word that contains the letters from the original word “rotated” by the given amount (the integer input). For example, “cheer” rotated by 7 is “jolly” and “melon” rotated by −10 is “cubed.”
  • Write an algorithm which repeatedly accepts numbers until the user enters “done”. Once “done” is entered, display the total sum of all the numbers, the count of numbers entered, and the average of all the numbers.
  • Write an algorithm that sums a series of ten positive integers entered by the user excluding all numbers greater than 100. Display the final sum.
  • Wing, Jeannette M. "Computational thinking." Communications of the ACM 49.3 (2006): 33-35. ↵

Footer Logo Lumen Candela

Privacy Policy

  • All Articles
  • Let's Connect
  • Fundamentals
  • Soft Skills
  • Side Projects

A Guide to Problem-Solving for Software Developers with Examples

If I ask you, out of the blue, what’s the role of a developer, what would you answer? Coding all day? Drinking coffee? Complaining about the management?

To me, a developer is first and foremost a problem solver, simply because solving problem is the most important (and the most difficult) part of our job. After all, even if our code is perfect, clear, performing great, a masterpiece of form and meaning, it’s useless if it doesn’t solve the problem it was meant to solve.

So, let’s dive into problem-solving today. More specifically, we’ll see in this article:

  • How to define a problem, and the difference sometimes made between problem-solving and decision-making.
  • Why some problems should not be solved.
  • The two wide categories of problems you can encounter.
  • Why it’s important to correctly define the problem, and how to do so.
  • How to explore the solution space.
  • Why deferring a problem might be the best decision to make in specific situations.
  • Why reflecting on the whole process afterward can help you in the future.

This article is mostly based on my own experience, even if I apply here some ideas I found in books and papers.

We have our plan. Now, it’s time to dive deep into the difficult, but rewarding, process of problem-solving.

Problem-Solving and Decision-Making

“When I use a word,” Humpty Dumpty said in rather a scornful tone, “it means just what I choose it to mean — neither more nor less.” “The question is,” said Alice, “whether you can make words mean so many different things.” “The question is,” said Humpty Dumpty, “which is to be master — that’s all.” Lewis Caroll Source

Words are ambiguous; they can mean different things for each of us. So let’s first begin to agree on the definition of “problem-solving” here, to be sure we’re on the same page.

Let’s first look at the definition of the word “problem” in a dictionary:

  • According to the American Heritage Dictionary , a problem is “a question to be considered, solved, or answered”.
  • According to the Oxford Learner’s dictionary , a problem is “a thing that is difficult to deal with or to understand”.

In short, in any problem, there is some degree of uncertainty. If you’re certain of the solution, the problem is already solved. Nothing would need to be “considered, solved, or answered”.

Information is useful to reduce this uncertainty. The quantity is often not the most important, but the quality will be decisive. If I tell you that 90% of my readers are extremely intelligent, would it help you to solve a problem in your daily job? I bet it wouldn’t. It’s information nonetheless, but its usefulness for you is close to zero.

This is an extreme example, but it highlights an important point: before collecting any data, define your problem clearly; then, according to the problem, decide what data you need. Yet, many companies out there begin to collect the data and then decide what problem to solve. We’ll come back to that soon in this article.

So, to summarize, a problem is a situation with some degree of uncertainty. Sometimes, this uncertainty needs to be reduced to come up with an appropriate solution, or, at least, a decision to move forward to your specific goal.

Is there a Problem to Solve?

Whenever you (or somebody else) see a problem, you should always ask yourself this simple question first: is it really a problem, and should we solve it now ?

In other words, ask yourself the following questions:

  • Why is this problem important to solve?
  • Would be solving the problem creates some value? What value?
  • What would happen if the problem was not solved?
  • What desired outcome do we expect by solving the problem?

If the problem doesn’t bother anybody and solving it doesn’t create any value, why allocating effort and time to solve it?

It sounds obvious, but it’s an important point nonetheless. More often than not, I see developers heading first in solving problems without asking themselves if they should solve them at the first place.

The most common examples I can think of are useless refactoring. I saw developers refactoring parts of codebases which never change, or is rarely executed at runtime. In the mind of the developer, the code itself is the problem: refactoring is the solution.

I remember a similar case: a developer refactored part of the codebase which was basically never used. We discovered, months later, when we had more and more users using this specific part of the codebase, that the refactoring didn’t really simplify anything. To the contrary; we had to refactor the code again. The first refactoring tried to solve a problem which didn’t exists.

Of course, the developer could argue that the value created is a “cleaner” codebase, but it’s arguable, especially when the code is neither often modified nor used. The value created here is not clear, and it would have been easier if the first refactoring never happened. In this specific situation, I recommend refactoring when you actively change part of the codebase for another reason (implementing a new feature for example).

Whether a problem is worthy to be solved is subjective. It also depends on the problem: if the solution is clear and straightforward, it might be useful to solve it, if the consequences of the solution are also clearly known and the risks are low. Unfortunately, these kinds of problems, in practice, are quite rare.

Types of Problems

I would define here two wide categories of problems: the problems with a (or multiple) clear solution (what the literature call “problem-solving”), and the problems without clear solution (it’s sometimes called “decision-making” instead of “problem-solving”).

In fact, if the problem you’re trying to solve has a clear, accepted answer, it’s very likely it has been solved already. It’s often the case for mechanical, technical problems. For example, let’s say that you need to order a list; you just have to search on the wild Internet how to do so in your programming language of choice, and you’re done! You can ask an “AI” too, or stack overflow, or whatever.

In my experience, most technical problems have one (or multiple) accepted solution. I won’t speak about these kinds of problems at length in this article, since they’re the easiest to solve.

When you’re in front of a problem which has no clear solution (even after doing some research), it’s where things get more complicated. I’d argue that most problems you’ll face, as a software developer, are of this category. Problems which are directly linked to the domain of the company you work with are often specific (because they depend on the domain), and complex.

For example, I’m working for a company providing a learning platform for medical students who want to become doctors, among other services. This context is changing because the real world is changing; medicine is no exception.

Recently, we had to create new data structures for the knowledge we provide; these data structures are directly linked to the domain (medicine) here. But what data structures to create? How can they adapt to the ever-changing environment? How to capture the data in the most meaningful way, with understandable naming for other developers?

Decisions had to be made, and when there are no clear solutions, you need to come up with a couple of hypothesizes. They won’t feel necessary like solutions , but rather decisions to take to move forward toward the desired outcome. It often ends up in compromises, especially if you’re working in a team where the members have different opinions .

Also, architectural decisions have often no clear solutions because they depend, again, on the changing context. How to be sure that an architectural decision is good today and in three months? How can we make the architecture flexible enough to adapt to the blurry future?

As developers, we deal with complex codebases, which are somewhat linked to the even more complex real world. It’s difficult to know beforehand the consequences of our decisions, as well as the benefits, the drawback, and the potential bugs we introduce.

Before jumping into the solution space however, we first need a good detour in the problem space.

Defining the Problem

Correctly stating the problem.

After determining that we indeed have some kind of problem, it’s tempting to try to find a solution directly. Be patient: it’s better to look at the problem more closely first.

If you don’t specify well the problem, you might not solve it entirely. It’s also possible that you end up solving the wrong problem, or the symptoms of a problem, that is, other minor problems created by a root problem. Often, the ideal scenario is to find the root problem, even if you don’t want to tackle it first. In any case, it’s always useful information.

For example, not long ago, our users didn’t find the content they were searching for, using our search functionality on our learning platform.

We could have directly solved the problem by asking the search team to adjust that for us, but this problem was only a symptom. It wasn’t the first time that we had to spend time and energy trying to communicate to the search team what we wanted to fix; the real root problem here was that we didn’t have any ownership of our search results.

The solution: we created a better API communicating with the search team, to be able to adjust ourselves the search results in a more flexible manner.

When looking at a problem, a good first step is to write it down. Don’t do it once; try to find different formulations for the same problem.

Writing is nice (I love it!), but other ways to represent ideas can be really useful too. You can try to draw what you understand from the problem: a drawing, a diagram, or even a picture can help you understand the problem.

From there, you can ask yourself: do you have enough information to take a decision? The answer will be mostly based on the experience of the problem solver, there is no magical formula to be sure that you can and will solve the problem.

You should also try to look at the problem from different angles, to really frame it correctly. The best way to do so is to solve problems as a team.

Solving Problems in a Team

Trying to describe and think about a problem is a great beginning, but it’s even better if you do it as a team. You can exchange experience, opinions, and it’s easier to look at a problem from multiple angles when multiple developers are involved.

First, make sure that everybody in the team is aware of the problem. Defining it altogether is the best. If you have a doubt that somebody is not on the same page, you can re-explain it using different words. It might bring more insights and ideas to the discussion.

Don’t assume that everybody understands the problem equally. Words are powerful, but they are also ambiguous; never hesitate to ask questions (even if they seem stupid at first), and encourage the team to do the same. If your colleagues see that you’re not afraid to ask, it will give them confidence to do the same.

The ambiguity can also build overtime, after the problem was discussed. That’s why it’s really important to document the whole process, for anybody to be able to look at it again and fix the possible creeping misconceptions. Don’t try to describe everything, but try to be specific enough. It’s a delicate balance, and you’ll get better at it with experience.

If you don’t like writing, I’d recommend you to try anyway: this is a powerful skill which will be useful in many areas of your life.

Regarding the team of problem solvers, diversity is important. Diversity of opinion, experience, background, you name it. The more diverse the opinions and ideas are, the more chances you’ll have to solve the problem satisfyingly (more on that later). If the members of the team have enough respect, humility, and know how to listen to their colleagues , you’re in the perfect environment to solve problems.

As developers, we’re dealing with moving systems, because they need to reflect the ever-changing business domain of the company you’re working with. These problems are unique, and even if similar problems might have been solved in the past, they’re never the exactly same. The differences can have an impact on the solution, sometimes insignificant (allowing you to re-apply the solution found previously), sometimes important enough to change the solution entirely.

Exploring the Solution Space

Now that we’ve defined the problem, thought about it with our team, tried to look at it from different angles, it’s time to try to find solutions, or at least to make a decision.

What is a good decision? The one which will bring you closer to your desired outcome. It sounds obvious, but there can be some ego involved in discussions, which will push us to try to be right even if it’s not the best solution in the current context. Our personal incentives can conflict with the company’s best interest; it’s always good to try to stay aware of that.

The solution should also be the simplest possible, while still moving forward to the desired outcome. It should also have an acceptable level of risk when we decide to apply the solution. In my experience, complicated solutions are the ones which come up first: don’t stop there. Take some time trying to find the best solution with your team.

For example, here’s what we do with my actual team:

  • We define the problem altogether.
  • We try to think about different hypothesizes. Not only one, but a couple of them.
  • We write the benefits and drawbacks of each hypothesis (which can lead to more ideas, and possibly more hypothesizes).
  • We commit to a hypothesis, which then needs to be implemented.

What I meant by “hypothesis” here is a solution which might work; but only the implementation of the hypothesis can be considered as a solution. Before the implementation, it’s just an informed guess. Many things can go wrong during an implementation.

This process looks simple, but when you have multiple developers involved, it’s not. Again, if each member of the team have good soft skills and some experience, it can be an enjoyable and rewarding process. But you need a good team for it to work efficiently (that’s why it’s so important to ask the good questions when joining a company). It’s even better if the members of the team are used to swim in uncertainty, and take it as a challenge more than a chore.

The process described above is just an example; in practice it’s often more chaotic. For example, even when a decision is made, your brain might still continue to process the problem passively. If you find some flaws in the hypothesis you’ve committed to, congratulations! You have now a brand-new problem.

I can’t emphasize it enough: try to be as detached as possible from your ideas, opinions, and preferred hypothesizes. The goal is not for you to be right and feel good, but for your company to move in the good direction. It’s hard, but with practice it gets easier.

I also want to underline the importance of finding both benefits and drawbacks for the different hypothesizes you (and your team) came up with.

To find good solutions, we might also need to reduce the uncertainty around their possible consequences. Doing some external research can help, like gathering data around the problem and the possible hypothesizes. In the best case scenario, if you can find enough data, and if you feel confident that you can move forward with a hypothesis, that’s already a great victory.

If you don’t have enough external information to reduce the uncertainty to a level you feel comfortable with, look at your past experience. Try to find problems similar to the one your deal with in the present, and try to think about the solutions applied at the time, to see if they could also be applied in your current case. But be careful with this approach: complex problems are context-sensitive, and the context you were in the past will never be exactly the same as the present and future contexts.

For example, I recently changed the way we display search results in our system, because we had some data indicating that some users had difficulties to find what they really wanted to find. The problem: users have difficulties to find the good information; it’s a recurrent problem which might never be 100% solved. That said, thanks to the data gathered, we found an easy way to improve the situation.

The data was very clear and specific, but it’s not always the case. More often than not, your data won’t really prove anything. It might only show correlations without clear causality. It will be even more true if you begin by gathering data without defining first the problem you try to solve. You can find problems looking at some data, that’s true, but it needs care and deep understanding of what you’re doing; looking at data when you know exactly what you want to solve works better.

Using this kind of process, the hypothesis is often some sort of compromise. That’s fine; committing to a hypothesis is not the end of the process, and there will be other occasions to revisit and refine the solution.

If you don’t feel comfortable with the level of uncertainty of the problem (or the risk involved by applying your hypothesis), you need to dig more. Writing a prototype can be useful for example, if you hesitate between two or more approaches. If your prototype is convincing enough, it can also be useful to gather feedback from your users, even if the ones testing your hypothesis will always be more invested if they test a real-life functionality, instead of a prototype which might use dummy data, or be in a context which is too remote from the “real” context.

In my opinion, prototypes are not always useful for complex problems, because a prototype only test a new feature at time T, but doesn’t allow you to see if the solution stay flexible enough overtime. That’s often a big concern: how will the solution evolve?

But prototyping can still help gather information and reduce the uncertainty of the problem, even if the prototype doesn’t really give you the solution on a silver platter. It’s also great for A/B testing, when you’re in the (likely) case when you have not much information about the real needs of your users. You could ask them of course, but nothing guarantee that they know themselves what these needs are.

If you don’t find any satisfying hypothesis to your problem, you might also challenge the desired outcome. Maybe a similar, simplest hypothesis, with slightly different outcomes, could work better? If it makes things easier, faster, and less complex, it could be the best solution. Don’t hesitate to challenge your stakeholders directly on the desired outcomes.

Deferring the Problem

In some cases, you might be hesitant to try to solve a problem if there is still too much uncertainty around it. In that case, it might be best to defer solving the problem altogether.

Deferring the problem means that you don’t solve it now ; you keep things as they are, until you get more information to reduce the uncertainty enough.

We had a problem in the company I worked with some time ago: we have dosages which can be discovered in articles, but users didn’t really find them, and nobody really knew why. Because of this lack of information, the problem was not tackled right away, but differed. From there, data have been collected overtime, allowing us to understand the scope of the problem better.

Don’t forget that deferring a problem is already taking a decision. It might be the less disruptive decision for the application and its codebase, but it’s s decision nonetheless, and it can have consequences. Seeing a differed problem as a decision will push you to think about the possible consequences of your inaction, and you’ll look at it as a partial “solution”, with some uncertainty and risk associated to it.

In my experience, deferring the problem works well only when you try to actively seek more data to solve it later. It can be some monitoring to see how the problem evolves, or some data taken from users’ actions. Sometimes, simply waiting can also give you important information about the nature of the problem.

What you shouldn’t do is try to forget the problem. It might come back in force to haunt your sleepless nightmares later. Avoiding a problem is not deferring it.

Here’s another example: we began recently to build some CMS tooling for medical editors, for them to write and edit content on our learning platform. We had one GraphQL API endpoint at the beginning, providing data to two different part of the application:

  • Our CMS for medical editors.
  • Our learning platform for medical students.

We knew that using one single GraphQL endpoint for these two types of users could cause some problems.

But we didn’t do anything about it, mostly because we didn’t see any real, concrete problem, at least at first. When a minor symptom, related to this unique endpoint, popped up, we spoke about it, and we still chose not to do anything. We preferred deferring the problem once more, to try to solve the real problem (one API for two different kinds of applications) later.

Finally, when we had enough symptoms and some frustration, we decided to split our graphQL API in two different endpoints. It was the best moment to do so: we had enough information to come up with a good decision, we applied it, and we stayed vigilant, to see how our applied hypothesis would evolve.

Moving fast and breaking things is not always the best solution. In some situations, waiting a bit and see how things evolve can allow you to solve your problems in a more effective way. But, as always, it depends on the problem, its context, and so on.

Reading this article, you might have wondered: how much information is enough to be comfortable enough to apply a solution? Well, again, your experience will be the best judge here. You’ll also need to consider carefully risks, benefits, and drawbacks. It doesn’t mean that you need to chicken out if you don’t have 100% certainty about a problem and some hypothesizes; being a software developer implies to have some courage and accept that mistakes will be made. It’s not an easy task, and there is no general process to follow in any possible case.

In short: use your brain. Even if you’re totally wrong, you’ll have the opportunity to fix the bad decisions you’ve made before the implementation, during the implementation, and even after it. We don’t code in stone.

The Implementation: The Value of Iteration

You’ve gathered with your team, tried to define the problem, found multiple hypothesizes, and agreed to try one of them. Great! Problem solved.

Not so fast! We still need to apply the hypothesis, and hope that it will become a good solution to the problem. Doing so, you’ll gather more information along the way, which might change your perspective on the problem, on your hypothesizes, and can even create some baby problems on its own.

It’s where the agile methodology is useful: since we’ll never have 100% certainty regarding a problem and its possible solution, we’ll learn more about both while implementing the hypothesis. That’s why it’s so valuable to iterate on the implementation: it gives you more information to possibly adjust your code, or even the problem, or even switching hypothesizes altogether. Who knows? A solution which is not implemented is just a guess.

If the hypothesis applied is not the ones you would have personally preferred (compromising, or even giving up on your preferred solution is common in a team), only applying it will tell you if you’re right or wrong; that is, if the hypothesis can become a solution solving the problem, at least in the present context.

If you’re worried about how a specific solution will evolve overtime, it’s more complicated, because an implementation won’t give you the information you seek. Still, implementing a hypothesis can be a great source of learning (the most valuable to me is when I’m wrong, because I learn even more). If you think that your hypothesis can have better outcome at time T, you might also try to implement it and compare it. Again, it’s where prototyping is useful.

When applying the solution, you need to look at the details of the implementation, as well as the big picture, to judge if the solution you’re creating is appropriate (leading to the desired outcome). This is a difficult exercise. In general, a developer should be able to reason on different levels of abstraction, more or less at the same time. Again, if you’re aware of it, your experience will help you here, and you can also push yourself to think of all the possible risks and consequences at different levels.

If you work in a team, try to participate (at least a bit) into the implementation of the solution. It’s not good to create silos in teams (that is, only a couple of members have some information others don’t have).

You can go as far as looking at other projects, and ask yourselves these questions:

  • Did we had similar problems on these other projects? How did we solve them?
  • What was the context of these projects? Is it similar to our current context?
  • What did we learn from these other problems, and their implementation? Is the implementation similar to what we’re doing now?

In any case, I would definitely recommend you to write a development journal. I write mine for years, and it has been valuable in many cases. I basically write in there:

  • The interesting problems I had.
  • The decisions made.
  • How the implementation of the solution evolved overtime.
  • The possible mistakes we made along the way.

It’s a great resource when you have a problem and you want to look at your past experience.

To evaluate your decisions overtime, nothing will beat a good monitoring process: logs, tests, and so on. It’s what the book Building Evolutionary Architecture call “fitness functions” for example, some monitoring allowing you to measure how healthy your architecture stays overtime. It doesn’t have to stop to the architecture; you can think about different monitoring system to see how something evolve, especially if the solution has still a lot of uncertainty regarding its benefits, drawbacks, and risks.

You can also do that retrospectively: looking at how the code complexity evolve overtime using Git for example.

Retrospective on the Process

We defined the problem, implemented a solution iteratively, and now the problem is gone. That’s it! We made it! Are we done now?

Decisions are sometimes not optimal, and implementing a solution successfully doesn’t mean that there wasn’t a better (simpler) one to begin with. That’s why it can be beneficial to look back and understand what went right, and what went wrong. For example, we can ask ourselves these questions:

  • Looking at what we learned during the whole process, is there a potentially better hypothesis to solve the problem in a simpler, more robust way?
  • What are the benefits and drawbacks we missed when speaking about the different hypothesizes, but we discovered during the implementation? Why we didn’t think about them beforehand?
  • What other problems did we encounter during the implementation? Did we solve them? Did we differ some? What should be the next steps regarding these new problems?
  • What kind of monitoring did we put in place to make sure that the solution won’t have undesired outcomes overtime? Can we learn something with this data?

Reflecting on past solutions is a difficult thing to do. There is no way to logically assess that the decision taken was better than others, since we didn’t implement the other hypothesizes, and we didn’t look at them overtime to appreciate their consequences. But you can still look at the implementation of the solution overtime, and write in your developer journal each time there is a bug which seems directly related to the solution. Would the bugs be the same if another solution would had been applied?

Bugs are often not an option; they will pop up, eventually. Nonetheless, it’s important to make sure that you can fix them in a reasonable amount of time, and that you don’t see them creeping back in the codebase after being solved. Some metrics, from the DevOps movement (like MTTR for example) can help here. Sometimes, bugs will show you a better, more refined solution to the original problem; after all, bugs can also give you some useful information. They are also the most direct result of the implementation of your solution.

If you want to know more about measuring complexity (which can be also used to measure complexity overtime after applying a solution), I wrote a couple of articles on the subject .

Humility in Problem-Solving

It’s time to do a little summary. What did we see in this article?

  • We need to ensure that the problem we found is really a problem we need to solve. Is there any value to solve the problem? Is it even a problem?
  • Try to determine what kind of problem you have: a problem which can have multiple, specific, known answers (like a technical problem), or a problem which depends on the real-life context, without known solutions?
  • Defining the problem is important. Try to define it using different words. Write these definitions down. Does everybody in your team understand the problem equally?
  • It’s time to explore the solution space. Draft a couple of hypothesizes, their benefits, drawbacks, and risks. You can also do some prototyping if you think it would give you more information to take the best decision.
  • Do you have enough information to implement a hypothesis, becoming effectively a solution? If it’s not the case, it might be better to keep the status quo and try to solve the problem later, when you’ll have more information. But don’t forget the problem!
  • If you decide to implement a solution, do it step by step, especially if you’re unsure about the consequences of your decisions. Implement an independent part of the hypothesis, look at the consequences, adjust if necessary, and re-iterate.
  • When the solution is implemented, it’s time to reflect on the whole process: did we solve the problem? What other problems did we encounter? Maybe another solution would have been better? Why?

As I was writing above, most problems you’ll encounter will be complex ones, embedded into a changing environment with different moving parts. As a result, it’s difficult to train to solve problems in a vacuum; the only good training I know is solving real life problems. That’s why your experience is so important.

Experience build your intuition, which in turn increase your expertise.

You’ll never have 100% certainty that a solution will bring you the desired outcome, especially if you are in front of a complex problem with a blurry context. If you are absolutely convinced that you have the good solution without even beginning to implement it, I’d advise you to stay humber in front of the Gods of Complexity, or they will show you how little you know.

  • How to solve it
  • Hammock Driven Development
  • When Deferring Decisions Leads to Better Codebases
  • Lean Development - deferring decision

Tutorial Playlist

Programming tutorial, your guide to the best backend languages for 2024, an ultimate guide that helps you to start learn coding 2024, what is backend development: the ultimate guide for beginners, all you need to know for choosing the first programming language to learn, here’s all you need to know about coding, decoding, and reasoning with examples, understanding what is xml: the best guide to xml and its concepts., an ultimate guide to learn the importance of low-code and no-code development, top frontend languages that you should know about, top 75+ frontend developer interview questions and answers, the ultimate guide to learn typescript generics, the most comprehensive guide for beginners to know ‘what is typescript’.

The Ultimate Guide on Introduction to Competitive Programming

Top 60+ TCS NQT Interview Questions and Answers for 2024

Most commonly asked logical reasoning questions in an aptitude test, everything you need to know about advanced typescript concepts, an absolute guide to build c hello world program, a one-stop solution guide to learn how to create a game in unity, what is nat significance of nat for translating ip addresses in the network model, data science vs software engineering: key differences, a real-time chat application typescript project using node.js as a server, what is raspberry pi here’s the best guide to get started, what is arduino here’s the best beginners guide to get started, arduino vs. raspberry pi: which is the better board, the perfect guide for all you need to learn about mean stack, software developer resume: a comprehensive guide, here’s everything all you need to know about the programming roadmap, an ultimate guide that helps you to develop and improve problem solving in programming, the top 10 awesome arduino projects of all time, roles of product managers, pyspark rdd: everything you need to know about pyspark rdd, wipro interview questions and answers that you should know before going for an interview, how to use typescript with nodejs: the ultimate guide, what is rust programming language why is it so popular, software terminologies, an ultimate guide that helps you to develop and improve problem solving in programming.

Lesson 27 of 34 By Hemant Deshpande

An Ultimate Guide That Helps You to Develop and Improve Problem Solving in Programming

Table of Contents

Coding and Programming skills hold a significant and critical role in implementing and developing various technologies and software. They add more value to the future and development. These programming and coding skills are essential for every person to improve problem solving skills. So, we brought you this article to help you learn and know the importance of these skills in the future. 

Want a Top Software Development Job? Start Here!

Want a Top Software Development Job? Start Here!

Topics covered in this problem solving in programming article are:

  • What is Problem Solving in Programming? 
  • Problem Solving skills in Programming
  • How does it impact your career ?
  • Steps involved in Problem Solving
  • Steps to improve Problem Solving in programming

What is Problem Solving in Programming?

Computers are used to solve various problems in day-to-day life. Problem Solving is an essential skill that helps to solve problems in programming. There are specific steps to be carried out to solve problems in computer programming, and the success depends on how correctly and precisely we define a problem. This involves designing, identifying and implementing problems using certain steps to develop a computer.

When we know what exactly problem solving in programming is, let us learn how it impacts your career growth.

How Does It Impact Your Career?

Many companies look for candidates with excellent problem solving skills. These skills help people manage the work and make candidates put more effort into the work, which results in finding solutions for complex problems in unexpected situations. These skills also help to identify quick solutions when they arise and are identified. 

People with great problem solving skills also possess more thinking and analytical skills, which makes them much more successful and confident in their career and able to work in any kind of environment. 

The above section gives you an idea of how problem solving in programming impacts your career and growth. Now, let's understand what problem solving skills mean.

Problem Solving Skills in Programming

Solving a question that is related to computers is more complicated than finding the solutions for other questions. It requires excellent knowledge and much thinking power. Problem solving in programming skills is much needed for a person and holds a major advantage. For every question, there are specific steps to be followed to get a perfect solution. By using those steps, it is possible to find a solution quickly.

The above section is covered with an explanation of problem solving in programming skills. Now let's learn some steps involved in problem solving.

Steps Involved in Problem Solving

Before being ready to solve a problem, there are some steps and procedures to be followed to find the solution. Let's have a look at them in this problem solving in programming article.

Basically, they are divided into four categories:

  • Analysing the problem
  • Developing the algorithm
  • Testing and debugging

Analysing the Problem

Every problem has a perfect solution; before we are ready to solve a problem, we must look over the question and understand it. When we know the question, it is easy to find the solution for it. If we are not ready with what we have to solve, then we end up with the question and cannot find the answer as expected. By analysing it, we can figure out the outputs and inputs to be carried out. Thus, when we analyse and are ready with the list, it is easy and helps us find the solution easily. 

Developing the Algorithm

It is required to decide a solution before writing a program. The procedure of representing the solution  in a natural language called an algorithm. We must design, develop and decide the final approach after a number of trials and errors, before actually writing the final code on an algorithm before we write the code. It captures and refines all the aspects of the desired solution.

Once we finalise the algorithm, we must convert the decided algorithm into a code or program using a dedicated programming language that is understandable by the computer to find a desired solution. In this stage, a wide variety of programming languages are used to convert the algorithm into code. 

Testing and Debugging

The designed and developed program undergoes several rigorous tests based on various real-time parameters and the program undergoes various levels of simulations. It must meet the user's requirements, which have to respond with the required time. It should generate all expected outputs to all the possible inputs. The program should also undergo bug fixing and all possible exception handling. If it fails to show the possible results, it should be checked for logical errors.

Industries follow some testing methods like system testing, component testing and acceptance testing while developing complex applications. The errors identified while testing are debugged or rectified and tested again until all errors are removed from the program.

The steps mentioned above are involved in problem solving in programming. Now let's see some more detailed information about the steps to improve problem solving in programming.

Steps to Improve Problem Solving in Programming

Right mindset.

The way to approach problems is the key to improving the skills. To find a solution, a positive mindset helps to solve problems quickly. If you think something is impossible, then it is hard to achieve. When you feel free and focus with a positive attitude, even complex problems will have a perfect solution.

Making Right Decisions

When we need to solve a problem, we must be clear with the solution. The perfect solution helps to get success in a shorter period. Making the right decisions in the right situation helps to find the perfect solution quickly and efficiently. These skills also help to get more command over the subject.

Keeping Ideas on Track

Ideas always help much in improving the skills; they also help to gain more knowledge and more command over things. In problem solving situations, these ideas help much and help to develop more skills. Give opportunities for the mind and keep on noting the ideas.

Learning from Feedbacks

A crucial part of learning is from the feedback. Mistakes help you to gain more knowledge and have much growth. When you have a solution for a problem, go for the feedback from the experienced or the professionals. It helps you get success within a shorter period and enables you to find other solutions easily.

Asking Questions

Questions are an incredible part of life. While searching for solutions, there are a lot of questions that arise in our minds. Once you know the question correctly, then you are able to find answers quickly. In coding or programming, we must have a clear idea about the problem. Then, you can find the perfect solution for it. Raising questions can help to understand the problem.

These are a few reasons and tips to improve problem solving in programming skills. Now let's see some major benefits in this article.

  • Problem solving in programming skills helps to gain more knowledge over coding and programming, which is a major benefit.
  • These problem solving skills also help to develop more skills in a person and build a promising career.
  • These skills also help to find the solutions for critical and complex problems in a perfect way.
  • Learning and developing problem solving in programming helps in building a good foundation.
  • Most of the companies are looking for people with good problem solving skills, and these play an important role when it comes to job opportunities 
Don't miss out on the opportunity to become a Certified Professional with Simplilearn's Post Graduate Program in Full Stack Web Development . Enroll Today!

Problem solving in programming skills is important in this modern world; these skills build a great career and hold a great advantage. This article on problem solving in programming provides you with an idea of how it plays a massive role in the present world. In this problem solving in programming article, the skills and the ways to improve more command on problem solving in programming are mentioned and explained in a proper way.

If you are looking to advance in your career. Simplilearn provides training and certification courses on various programming languages - Python , Java , Javascript , and many more. Check out our Post Graduate Program in Full Stack Web Development course that will help you excel in your career.

If you have any questions for us on the problem solving in programming article. Do let us know in the comments section below; we have our experts answer it right away.

Find our Full Stack Developer - MERN Stack Online Bootcamp in top cities:

About the author.

Hemant Deshpande

Hemant Deshpande, PMP has more than 17 years of experience working for various global MNC's. He has more than 10 years of experience in managing large transformation programs for Fortune 500 clients across verticals such as Banking, Finance, Insurance, Healthcare, Telecom and others. During his career he has worked across the geographies - North America, Europe, Middle East, and Asia Pacific. Hemant is an internationally Certified Executive Coach (CCA/ICF Approved) working with corporate leaders. He also provides Management Consulting and Training services. He is passionate about writing and regularly blogs and writes content for top websites. His motto in life - Making a positive difference.

Recommended Resources

Your One-Stop Solution to Understand Coin Change Problem

Your One-Stop Solution to Understand Coin Change Problem

Combating the Global Talent Shortage Through Skill Development Programs

Combating the Global Talent Shortage Through Skill Development Programs

What Is Problem Solving? Steps, Techniques, and Best Practices Explained

What Is Problem Solving? Steps, Techniques, and Best Practices Explained

One Stop Solution to All the Dynamic Programming Problems

One Stop Solution to All the Dynamic Programming Problems

The Ultimate Guide on Introduction to Competitive Programming

The Ultimate Guide to Top Front End and Back End Programming Languages for 2021

  • PMP, PMI, PMBOK, CAPM, PgMP, PfMP, ACP, PBA, RMP, SP, and OPM3 are registered marks of the Project Management Institute, Inc.

Problem Solving

Foundations course, introduction.

Before we start digging into some pretty nifty JavaScript, we need to begin talking about problem solving : the most important skill a developer needs.

Problem solving is the core thing software developers do. The programming languages and tools they use are secondary to this fundamental skill.

From his book, “Think Like a Programmer” , V. Anton Spraul defines problem solving in programming as:

Problem solving is writing an original program that performs a particular set of tasks and meets all stated constraints.

The set of tasks can range from solving small coding exercises all the way up to building a social network site like Facebook or a search engine like Google. Each problem has its own set of constraints, for example, high performance and scalability may not matter too much in a coding exercise but it will be vital in apps like Google that need to service billions of search queries each day.

New programmers often find problem solving the hardest skill to build. It’s not uncommon for budding programmers to breeze through learning syntax and programming concepts, yet when trying to code something on their own, they find themselves staring blankly at their text editor not knowing where to start.

The best way to improve your problem solving ability is by building experience by making lots and lots of programs. The more practice you have the better you’ll be prepared to solve real world problems.

In this lesson we will walk through a few techniques that can be used to help with the problem solving process.

Lesson overview

This section contains a general overview of topics that you will learn in this lesson.

  • Explain the three steps in the problem solving process.
  • Explain what pseudocode is and be able to use it to solve problems.
  • Be able to break a problem down into subproblems.

Understand the problem

The first step to solving a problem is understanding exactly what the problem is. If you don’t understand the problem, you won’t know when you’ve successfully solved it and may waste a lot of time on a wrong solution .

To gain clarity and understanding of the problem, write it down on paper, reword it in plain English until it makes sense to you, and draw diagrams if that helps. When you can explain the problem to someone else in plain English, you understand it.

Now that you know what you’re aiming to solve, don’t jump into coding just yet. It’s time to plan out how you’re going to solve it first. Some of the questions you should answer at this stage of the process:

  • Does your program have a user interface? What will it look like? What functionality will the interface have? Sketch this out on paper.
  • What inputs will your program have? Will the user enter data or will you get input from somewhere else?
  • What’s the desired output?
  • Given your inputs, what are the steps necessary to return the desired output?

The last question is where you will write out an algorithm to solve the problem. You can think of an algorithm as a recipe for solving a particular problem. It defines the steps that need to be taken by the computer to solve a problem in pseudocode.

Pseudocode is writing out the logic for your program in natural language instead of code. It helps you slow down and think through the steps your program will have to go through to solve the problem.

Here’s an example of what the pseudocode for a program that prints all numbers up to an inputted number might look like:

This is a basic program to demonstrate how pseudocode looks. There will be more examples of pseudocode included in the assignments.

Divide and conquer

From your planning, you should have identified some subproblems of the big problem you’re solving. Each of the steps in the algorithm we wrote out in the last section are subproblems. Pick the smallest or simplest one and start there with coding.

It’s important to remember that you might not know all the steps that you might need up front, so your algorithm may be incomplete -— this is fine. Getting started with and solving one of the subproblems you have identified in the planning stage often reveals the next subproblem you can work on. Or, if you already know the next subproblem, it’s often simpler with the first subproblem solved.

Many beginners try to solve the big problem in one go. Don’t do this . If the problem is sufficiently complex, you’ll get yourself tied in knots and make life a lot harder for yourself. Decomposing problems into smaller and easier to solve subproblems is a much better approach. Decomposition is the main way to deal with complexity, making problems easier and more approachable to solve and understand.

In short, break the big problem down and solve each of the smaller problems until you’ve solved the big problem.

Solving Fizz Buzz

To demonstrate this workflow in action, let’s solve Fizz Buzz

Understanding the problem

Write a program that takes a user’s input and prints the numbers from one to the number the user entered. However, for multiples of three print Fizz instead of the number and for the multiples of five print Buzz . For numbers which are multiples of both three and five print FizzBuzz .

This is the big picture problem we will be solving. But we can always make it clearer by rewording it.

Write a program that allows the user to enter a number, print each number between one and the number the user entered, but for numbers that divide by 3 without a remainder print Fizz instead. For numbers that divide by 5 without a remainder print Buzz and finally for numbers that divide by both 3 and 5 without a remainder print FizzBuzz .

Does your program have an interface? What will it look like? Our FizzBuzz solution will be a browser console program, so we don’t need an interface. The only user interaction will be allowing users to enter a number.

What inputs will your program have? Will the user enter data or will you get input from somewhere else? The user will enter a number from a prompt (popup box).

What’s the desired output? The desired output is a list of numbers from 1 to the number the user entered. But each number that is divisible by 3 will output Fizz , each number that is divisible by 5 will output Buzz and each number that is divisible by both 3 and 5 will output FizzBuzz .

Writing the pseudocode

What are the steps necessary to return the desired output? Here is an algorithm in pseudocode for this problem:

Dividing and conquering

As we can see from the algorithm we developed, the first subproblem we can solve is getting input from the user. So let’s start there and verify it works by printing the entered number.

With JavaScript, we’ll use the “prompt” method.

The above code should create a little popup box that asks the user for a number. The input we get back will be stored in our variable answer .

We wrapped the prompt call in a parseInt function so that a number is returned from the user’s input.

With that done, let’s move on to the next subproblem: “Loop from 1 to the entered number”. There are many ways to do this in JavaScript. One of the common ways - that you actually see in many other languages like Java, C++, and Ruby - is with the for loop :

If you haven’t seen this before and it looks strange, it’s actually straightforward. We declare a variable i and assign it 1: the initial value of the variable i in our loop. The second clause, i <= answer is our condition. We want to loop until i is greater than answer . The third clause, i++ , tells our loop to increment i by 1 every iteration. As a result, if the user inputs 10, this loop would print numbers 1 - 10 to the console.

Most of the time, programmers find themselves looping from 0. Due to the needs of our program, we’re starting from 1

With that working, let’s move on to the next problem: If the current number is divisible by 3, then print Fizz .

We are using the modulus operator ( % ) here to divide the current number by three. If you recall from a previous lesson, the modulus operator returns the remainder of a division. So if a remainder of 0 is returned from the division, it means the current number is divisible by 3.

After this change the program will now output this when you run it and the user inputs 10:

The program is starting to take shape. The final few subproblems should be easy to solve as the basic structure is in place and they are just different variations of the condition we’ve already got in place. Let’s tackle the next one: If the current number is divisible by 5 then print Buzz .

When you run the program now, you should see this output if the user inputs 10:

We have one more subproblem to solve to complete the program: If the current number is divisible by 3 and 5 then print FizzBuzz .

We’ve had to move the conditionals around a little to get it to work. The first condition now checks if i is divisible by 3 and 5 instead of checking if i is just divisible by 3. We’ve had to do this because if we kept it the way it was, it would run the first condition if (i % 3 === 0) , so that if i was divisible by 3, it would print Fizz and then move on to the next number in the iteration, even if i was divisible by 5 as well.

With the condition if (i % 3 === 0 && i % 5 === 0) coming first, we check that i is divisible by both 3 and 5 before moving on to check if it is divisible by 3 or 5 individually in the else if conditions.

The program is now complete! If you run it now you should get this output when the user inputs 20:

  • Read How to Think Like a Programmer - Lessons in Problem Solving by Richard Reis.
  • Watch How to Begin Thinking Like a Programmer by Coding Tech. It’s an hour long but packed full of information and definitely worth your time watching.
  • Read this Pseudocode: What It Is and How to Write It article from Built In.

Knowledge check

The following questions are an opportunity to reflect on key topics in this lesson. If you can’t answer a question, click on it to review the material, but keep in mind you are not expected to memorize or master this knowledge.

  • What are the three stages in the problem solving process?
  • Why is it important to clearly understand the problem first?
  • What can you do to help get a clearer understanding of the problem?
  • What are some of the things you should do in the planning stage of the problem solving process?
  • What is an algorithm?
  • What is pseudocode?
  • What are the advantages of breaking a problem down and solving the smaller problems?

Additional resources

This section contains helpful links to related content. It isn’t required, so consider it supplemental.

  • Read the first chapter in Think Like a Programmer: An Introduction to Creative Problem Solving ( not free ). This book’s examples are in C++, but you will understand everything since the main idea of the book is to teach programmers to better solve problems. It’s an amazing book and worth every penny. It will make you a better programmer.
  • Watch this video on repetitive programming techniques .
  • Watch Jonathan Blow on solving hard problems where he gives sage advice on how to approach problem solving in software projects.

Support us!

The odin project is funded by the community. join us in empowering learners around the globe by supporting the odin project.

Exploring the Problem Solving Cycle in Computer Science – Strategies, Techniques, and Tools

  • Post author By bicycle-u
  • Post date 08.12.2023

The world of computer science is built on the foundation of problem solving. Whether it’s finding a solution to a complex algorithm or analyzing data to make informed decisions, the problem solving cycle is at the core of every computer science endeavor.

At its essence, problem solving in computer science involves breaking down a complex problem into smaller, more manageable parts. This allows for a systematic approach to finding a solution by analyzing each part individually. The process typically starts with gathering and understanding the data or information related to the problem at hand.

Once the data is collected, computer scientists use various techniques and algorithms to analyze and explore possible solutions. This involves evaluating different approaches and considering factors such as efficiency, accuracy, and scalability. During this analysis phase, it is crucial to think critically and creatively to come up with innovative solutions.

After a thorough analysis, the next step in the problem solving cycle is designing and implementing a solution. This involves creating a detailed plan of action, selecting the appropriate tools and technologies, and writing the necessary code to bring the solution to life. Attention to detail and precision are key in this stage to ensure that the solution functions as intended.

The final step in the problem solving cycle is evaluating the solution and its effectiveness. This includes testing the solution against different scenarios and data sets to ensure its reliability and performance. If any issues or limitations are discovered, adjustments and optimizations are made to improve the solution.

In conclusion, the problem solving cycle is a fundamental process in computer science, involving analysis, data exploration, algorithm development, solution implementation, and evaluation. It is through this cycle that computer scientists are able to tackle complex problems and create innovative solutions that drive progress in the field of computer science.

Understanding the Importance

In computer science, problem solving is a crucial skill that is at the core of the problem solving cycle. The problem solving cycle is a systematic approach to analyzing and solving problems, involving various stages such as problem identification, analysis, algorithm design, implementation, and evaluation. Understanding the importance of this cycle is essential for any computer scientist or programmer.

Data Analysis and Algorithm Design

The first step in the problem solving cycle is problem identification, which involves recognizing and defining the issue at hand. Once the problem is identified, the next crucial step is data analysis. This involves gathering and examining relevant data to gain insights and understand the problem better. Data analysis helps in identifying patterns, trends, and potential solutions.

After data analysis, the next step is algorithm design. An algorithm is a step-by-step procedure or set of rules to solve a problem. Designing an efficient algorithm is crucial as it determines the effectiveness and efficiency of the solution. A well-designed algorithm takes into consideration the constraints, resources, and desired outcomes while implementing the solution.

Implementation and Evaluation

Once the algorithm is designed, the next step in the problem solving cycle is implementation. This involves translating the algorithm into a computer program using a programming language. The implementation phase requires coding skills and expertise in a specific programming language.

After implementation, the solution needs to be evaluated to ensure that it solves the problem effectively. Evaluation involves testing the program and verifying its correctness and efficiency. This step is critical to identify any errors or issues and to make necessary improvements or adjustments.

In conclusion, understanding the importance of the problem solving cycle in computer science is essential for any computer scientist or programmer. It provides a systematic and structured approach to analyze and solve problems, ensuring efficient and effective solutions. By following the problem solving cycle, computer scientists can develop robust algorithms, implement them in efficient programs, and evaluate their solutions to ensure their correctness and efficiency.

Identifying the Problem

In the problem solving cycle in computer science, the first step is to identify the problem that needs to be solved. This step is crucial because without a clear understanding of the problem, it is impossible to find a solution.

Identification of the problem involves a thorough analysis of the given data and understanding the goals of the task at hand. It requires careful examination of the problem statement and any constraints or limitations that may affect the solution.

During the identification phase, the problem is broken down into smaller, more manageable parts. This can involve breaking the problem down into sub-problems or identifying the different aspects or components that need to be addressed.

Identifying the problem also involves considering the resources and tools available for solving it. This may include considering the specific tools and programming languages that are best suited for the problem at hand.

By properly identifying the problem, computer scientists can ensure that they are focused on the right goals and are better equipped to find an effective and efficient solution. It sets the stage for the rest of the problem solving cycle, including the analysis, design, implementation, and evaluation phases.

Gathering the Necessary Data

Before finding a solution to a computer science problem, it is essential to gather the necessary data. Whether it’s writing a program or developing an algorithm, data serves as the backbone of any solution. Without proper data collection and analysis, the problem-solving process can become inefficient and ineffective.

The Importance of Data

In computer science, data is crucial for a variety of reasons. First and foremost, it provides the information needed to understand and define the problem at hand. By analyzing the available data, developers and programmers can gain insights into the nature of the problem and determine the most efficient approach for solving it.

Additionally, data allows for the evaluation of potential solutions. By collecting and organizing relevant data, it becomes possible to compare different algorithms or strategies and select the most suitable one. Data also helps in tracking progress and measuring the effectiveness of the chosen solution.

Data Gathering Process

The process of gathering data involves several steps. Firstly, it is necessary to identify the type of data needed for the particular problem. This may include numerical values, textual information, or other types of data. It is important to determine the sources of data and assess their reliability.

Once the required data has been identified, it needs to be collected. This can be done through various methods, such as surveys, experiments, observations, or by accessing existing data sets. The collected data should be properly organized, ensuring its accuracy and validity.

Data cleaning and preprocessing are vital steps in the data gathering process. This involves removing any irrelevant or erroneous data and transforming it into a suitable format for analysis. Properly cleaned and preprocessed data will help in generating reliable and meaningful insights.

Data Analysis and Interpretation

After gathering and preprocessing the data, the next step is data analysis and interpretation. This involves applying various statistical and analytical methods to uncover patterns, trends, and relationships within the data. By analyzing the data, programmers can gain valuable insights that can inform the development of an effective solution.

During the data analysis process, it is crucial to remain objective and unbiased. The analysis should be based on sound reasoning and logical thinking. It is also important to communicate the findings effectively, using visualizations or summaries to convey the information to stakeholders or fellow developers.

In conclusion, gathering the necessary data is a fundamental step in solving computer science problems. It provides the foundation for understanding the problem, evaluating potential solutions, and tracking progress. By following a systematic and rigorous approach to data gathering and analysis, developers can ensure that their solutions are efficient, effective, and well-informed.

Analyzing the Data

Once you have collected the necessary data, the next step in the problem-solving cycle is to analyze it. Data analysis is a crucial component of computer science, as it helps us understand the problem at hand and develop effective solutions.

To analyze the data, you need to break it down into manageable pieces and examine each piece closely. This process involves identifying patterns, trends, and outliers that may be present in the data. By doing so, you can gain insights into the problem and make informed decisions about the best course of action.

There are several techniques and tools available for data analysis in computer science. Some common methods include statistical analysis, data visualization, and machine learning algorithms. Each approach has its own strengths and limitations, so it’s essential to choose the most appropriate method for the problem you are solving.

Statistical Analysis

Statistical analysis involves using mathematical models and techniques to analyze data. It helps in identifying correlations, distributions, and other statistical properties of the data. By applying statistical tests, you can determine the significance and validity of your findings.

Data Visualization

Data visualization is the process of presenting data in a visual format, such as charts, graphs, or maps. It allows for a better understanding of complex data sets and facilitates the communication of findings. Through data visualization, patterns and trends can become more apparent, making it easier to derive meaningful insights.

Machine Learning Algorithms

Machine learning algorithms are powerful tools for analyzing large and complex data sets. These algorithms can automatically detect patterns and relationships in the data, leading to the development of predictive models and solutions. By training the algorithm on a labeled dataset, it can learn from the data and make accurate predictions or classifications.

In conclusion, analyzing the data is a critical step in the problem-solving cycle in computer science. It helps us gain a deeper understanding of the problem and develop effective solutions. Whether through statistical analysis, data visualization, or machine learning algorithms, data analysis plays a vital role in transforming raw data into actionable insights.

Exploring Possible Solutions

Once you have gathered data and completed the analysis, the next step in the problem-solving cycle is to explore possible solutions. This is where the true power of computer science comes into play. With the use of algorithms and the application of scientific principles, computer scientists can develop innovative solutions to complex problems.

During this stage, it is important to consider a variety of potential solutions. This involves brainstorming different ideas and considering their feasibility and potential effectiveness. It may be helpful to consult with colleagues or experts in the field to gather additional insights and perspectives.

Developing an Algorithm

One key aspect of exploring possible solutions is the development of an algorithm. An algorithm is a step-by-step set of instructions that outlines a specific process or procedure. In the context of problem solving in computer science, an algorithm provides a clear roadmap for implementing a solution.

The development of an algorithm requires careful thought and consideration. It is important to break down the problem into smaller, manageable steps and clearly define the inputs and outputs of each step. This allows for the creation of a logical and efficient solution.

Evaluating the Solutions

Once you have developed potential solutions and corresponding algorithms, the next step is to evaluate them. This involves analyzing each solution to determine its strengths, weaknesses, and potential impact. Consider factors such as efficiency, scalability, and resource requirements.

It may be helpful to conduct experiments or simulations to further assess the effectiveness of each solution. This can provide valuable insights and data to support the decision-making process.

Ultimately, the goal of exploring possible solutions is to find the most effective and efficient solution to the problem at hand. By leveraging the power of data, analysis, algorithms, and scientific principles, computer scientists can develop innovative solutions that drive progress and solve complex problems in the world of technology.

Evaluating the Options

Once you have identified potential solutions and algorithms for a problem, the next step in the problem-solving cycle in computer science is to evaluate the options. This evaluation process involves analyzing the potential solutions and algorithms based on various criteria to determine the best course of action.

Consider the Problem

Before evaluating the options, it is important to take a step back and consider the problem at hand. Understand the requirements, constraints, and desired outcomes of the problem. This analysis will help guide the evaluation process.

Analyze the Options

Next, it is crucial to analyze each solution or algorithm option individually. Look at factors such as efficiency, accuracy, ease of implementation, and scalability. Consider whether the solution or algorithm meets the specific requirements of the problem, and if it can be applied to related problems in the future.

Additionally, evaluate the potential risks and drawbacks associated with each option. Consider factors such as cost, time, and resources required for implementation. Assess any potential limitations or trade-offs that may impact the overall effectiveness of the solution or algorithm.

Select the Best Option

Based on the analysis, select the best option that aligns with the specific problem-solving goals. This may involve prioritizing certain criteria or making compromises based on the limitations identified during the evaluation process.

Remember that the best option may not always be the most technically complex or advanced solution. Consider the practicality and feasibility of implementation, as well as the potential impact on the overall system or project.

In conclusion, evaluating the options is a critical step in the problem-solving cycle in computer science. By carefully analyzing the potential solutions and algorithms, considering the problem requirements, and considering the limitations and trade-offs, you can select the best option to solve the problem at hand.

Making a Decision

Decision-making is a critical component in the problem-solving process in computer science. Once you have analyzed the problem, identified the relevant data, and generated a potential solution, it is important to evaluate your options and choose the best course of action.

Consider All Factors

When making a decision, it is important to consider all relevant factors. This includes evaluating the potential benefits and drawbacks of each option, as well as understanding any constraints or limitations that may impact your choice.

In computer science, this may involve analyzing the efficiency of different algorithms or considering the scalability of a proposed solution. It is important to take into account both the short-term and long-term impacts of your decision.

Weigh the Options

Once you have considered all the factors, it is important to weigh the options and determine the best approach. This may involve assigning weights or priorities to different factors based on their importance.

Using techniques such as decision matrices or cost-benefit analysis can help you systematically compare and evaluate different options. By quantifying and assessing the potential risks and rewards, you can make a more informed decision.

Remember: Decision-making in computer science is not purely subjective or based on personal preference. It is crucial to use analytical and logical thinking to select the most optimal solution.

In conclusion, making a decision is a crucial step in the problem-solving process in computer science. By considering all relevant factors and weighing the options using logical analysis, you can choose the best possible solution to a given problem.

Implementing the Solution

Once the problem has been analyzed and a solution has been proposed, the next step in the problem-solving cycle in computer science is implementing the solution. This involves turning the proposed solution into an actual computer program or algorithm that can solve the problem.

In order to implement the solution, computer science professionals need to have a strong understanding of various programming languages and data structures. They need to be able to write code that can manipulate and process data in order to solve the problem at hand.

During the implementation phase, the proposed solution is translated into a series of steps or instructions that a computer can understand and execute. This involves breaking down the problem into smaller sub-problems and designing algorithms to solve each sub-problem.

Computer scientists also need to consider the efficiency of their solution during the implementation phase. They need to ensure that the algorithm they design is able to handle large amounts of data and solve the problem in a reasonable amount of time. This often requires optimization techniques and careful consideration of the data structures used.

Once the code has been written and the algorithm has been implemented, it is important to test and debug the solution. This involves running test cases and checking the output to ensure that the program is working correctly. If any errors or bugs are found, they need to be fixed before the solution can be considered complete.

In conclusion, implementing the solution is a crucial step in the problem-solving cycle in computer science. It requires strong programming skills and a deep understanding of algorithms and data structures. By carefully designing and implementing the solution, computer scientists can solve problems efficiently and effectively.

Testing and Debugging

In computer science, testing and debugging are critical steps in the problem-solving cycle. Testing helps ensure that a program or algorithm is functioning correctly, while debugging analyzes and resolves any issues or bugs that may arise.

Testing involves running a program with specific input data to evaluate its output. This process helps verify that the program produces the expected results and handles different scenarios correctly. It is important to test both the normal and edge cases to ensure the program’s reliability.

Debugging is the process of identifying and fixing errors or bugs in a program. When a program does not produce the expected results or crashes, it is necessary to go through the code to find and fix the problem. This can involve analyzing the program’s logic, checking for syntax errors, and using debugging tools to trace the flow of data and identify the source of the issue.

Data analysis plays a crucial role in both testing and debugging. It helps to identify patterns, anomalies, or inconsistencies in the program’s behavior. By analyzing the data, developers can gain insights into potential issues and make informed decisions on how to improve the program’s performance.

In conclusion, testing and debugging are integral parts of the problem-solving cycle in computer science. Through testing and data analysis, developers can verify the correctness of their programs and identify and resolve any issues that may arise. This ensures that the algorithms and programs developed in computer science are robust, reliable, and efficient.

Iterating for Improvement

In computer science, problem solving often involves iterating through multiple cycles of analysis, solution development, and evaluation. This iterative process allows for continuous improvement in finding the most effective solution to a given problem.

The problem solving cycle starts with problem analysis, where the specific problem is identified and its requirements are understood. This step involves examining the problem from various angles and gathering all relevant information.

Once the problem is properly understood, the next step is to develop an algorithm or a step-by-step plan to solve the problem. This algorithm is a set of instructions that, when followed correctly, will lead to the solution.

After the algorithm is developed, it is implemented in a computer program. This step involves translating the algorithm into a programming language that a computer can understand and execute.

Once the program is implemented, it is then tested and evaluated to ensure that it produces the correct solution. This evaluation step is crucial in identifying any errors or inefficiencies in the program and allows for further improvement.

If any issues or problems are found during testing, the cycle iterates, starting from problem analysis again. This iterative process allows for refinement and improvement of the solution until the desired results are achieved.

Iterating for improvement is a fundamental concept in computer science problem solving. By continually analyzing, developing, and evaluating solutions, computer scientists are able to find the most optimal and efficient approaches to solving problems.

Documenting the Process

Documenting the problem-solving process in computer science is an essential step to ensure that the cycle is repeated successfully. The process involves gathering information, analyzing the problem, and designing a solution.

During the analysis phase, it is crucial to identify the specific problem at hand and break it down into smaller components. This allows for a more targeted approach to finding the solution. Additionally, analyzing the data involved in the problem can provide valuable insights and help in designing an effective solution.

Once the analysis is complete, it is important to document the findings. This documentation can take various forms, such as written reports, diagrams, or even code comments. The goal is to create a record that captures the problem, the analysis, and the proposed solution.

Documenting the process serves several purposes. Firstly, it allows for easy communication and collaboration between team members or future developers. By documenting the problem, analysis, and solution, others can easily understand the thought process behind the solution and potentially build upon it.

Secondly, documenting the process provides an opportunity for reflection and improvement. By reviewing the documentation, developers can identify areas where the problem-solving cycle can be strengthened or optimized. This continuous improvement is crucial in the field of computer science, as new challenges and technologies emerge rapidly.

In conclusion, documenting the problem-solving process is an integral part of the computer science cycle. It allows for effective communication, collaboration, and reflection on the solutions devised. By taking the time to document the process, developers can ensure a more efficient and successful problem-solving experience.

Communicating the Solution

Once the problem solving cycle is complete, it is important to effectively communicate the solution. This involves explaining the analysis, data, and steps taken to arrive at the solution.

Analyzing the Problem

During the problem solving cycle, a thorough analysis of the problem is conducted. This includes understanding the problem statement, gathering relevant data, and identifying any constraints or limitations. It is important to clearly communicate this analysis to ensure that others understand the problem at hand.

Presenting the Solution

The next step in communicating the solution is presenting the actual solution. This should include a detailed explanation of the steps taken to solve the problem, as well as any algorithms or data structures used. It is important to provide clear and concise descriptions of the solution, so that others can understand and reproduce the results.

Overall, effective communication of the solution in computer science is essential to ensure that others can understand and replicate the problem solving process. By clearly explaining the analysis, data, and steps taken, the solution can be communicated in a way that promotes understanding and collaboration within the field of computer science.

Reflecting and Learning

Reflecting and learning are crucial steps in the problem solving cycle in computer science. Once a problem has been solved, it is essential to reflect on the entire process and learn from the experience. This allows for continuous improvement and growth in the field of computer science.

During the reflecting phase, one must analyze and evaluate the problem solving process. This involves reviewing the initial problem statement, understanding the constraints and requirements, and assessing the effectiveness of the chosen algorithm and solution. It is important to consider the efficiency and accuracy of the solution, as well as any potential limitations or areas for optimization.

By reflecting on the problem solving cycle, computer scientists can gain valuable insights into their own strengths and weaknesses. They can identify areas where they excelled and areas where improvement is needed. This self-analysis helps in honing problem solving skills and becoming a better problem solver.

Learning from Mistakes

Mistakes are an integral part of the problem solving cycle, and they provide valuable learning opportunities. When a problem is not successfully solved, it is essential to analyze the reasons behind the failure and learn from them. This involves identifying errors in the algorithm or solution, understanding the underlying concepts or principles that were misunderstood, and finding alternative approaches or strategies.

Failure should not be seen as a setback, but rather as an opportunity for growth. By learning from mistakes, computer scientists can improve their problem solving abilities and expand their knowledge and understanding of computer science. It is through these failures and the subsequent learning process that new ideas and innovations are often born.

Continuous Improvement

Reflecting and learning should not be limited to individual problem solving experiences, but should be an ongoing practice. As computer science is a rapidly evolving field, it is crucial to stay updated with new technologies, algorithms, and problem solving techniques. Continuous learning and improvement contribute to staying competitive and relevant in the field.

Computer scientists can engage in continuous improvement by seeking feedback from peers, participating in research and development activities, attending conferences and workshops, and actively seeking new challenges and problem solving opportunities. This dedication to learning and improvement ensures that one’s problem solving skills remain sharp and effective.

In conclusion, reflecting and learning are integral parts of the problem solving cycle in computer science. They enable computer scientists to refine their problem solving abilities, learn from mistakes, and continuously improve their skills and knowledge. By embracing these steps, computer scientists can stay at the forefront of the ever-changing world of computer science and contribute to its advancements.

Applying Problem Solving in Real Life

In computer science, problem solving is not limited to the realm of programming and algorithms. It is a skill that can be applied to various aspects of our daily lives, helping us to solve problems efficiently and effectively. By using the problem-solving cycle and applying the principles of analysis, data, solution, algorithm, and cycle, we can tackle real-life challenges with confidence and success.

The first step in problem-solving is to analyze the problem at hand. This involves breaking it down into smaller, more manageable parts and identifying the key issues or goals. By understanding the problem thoroughly, we can gain insights into its root causes and potential solutions.

For example, let’s say you’re facing a recurring issue in your daily commute – traffic congestion. By analyzing the problem, you may discover that the main causes are a lack of alternative routes and a lack of communication between drivers. This analysis helps you identify potential solutions such as using navigation apps to find alternate routes or promoting carpooling to reduce the number of vehicles on the road.

Gathering and Analyzing Data

Once we have identified the problem, it is important to gather relevant data to support our analysis. This may involve conducting surveys, collecting statistics, or reviewing existing research. By gathering data, we can make informed decisions and prioritize potential solutions based on their impact and feasibility.

Continuing with the traffic congestion example, you may gather data on the average commute time, the number of vehicles on the road, and the impact of carpooling on congestion levels. This data can help you analyze the problem more accurately and determine the most effective solutions.

Generating and Evaluating Solutions

After analyzing the problem and gathering data, the next step is to generate potential solutions. This can be done through brainstorming, researching best practices, or seeking input from experts. It is important to consider multiple options and think outside the box to find innovative and effective solutions.

For our traffic congestion problem, potential solutions can include implementing a smart traffic management system that optimizes traffic flow or investing in public transportation to incentivize people to leave their cars at home. By evaluating each solution’s potential impact, cost, and feasibility, you can make an informed decision on the best course of action.

Implementing and Iterating

Once a solution has been chosen, it is time to implement it in real life. This may involve developing a plan, allocating resources, and executing the solution. It is important to monitor the progress and collect feedback to learn from the implementation and make necessary adjustments.

For example, if the chosen solution to address traffic congestion is implementing a smart traffic management system, you would work with engineers and transportation authorities to develop and deploy the system. Regular evaluation and iteration of the system’s performance would ensure that it is effective and making a positive impact on reducing congestion.

By applying the problem-solving cycle derived from computer science to real-life situations, we can approach challenges with a systematic and analytical mindset. This can help us make better decisions, improve our problem-solving skills, and ultimately achieve more efficient and effective solutions.

Building Problem Solving Skills

In the field of computer science, problem-solving is a fundamental skill that is crucial for success. Whether you are a computer scientist, programmer, or student, developing strong problem-solving skills will greatly benefit your work and studies. It allows you to approach challenges with a logical and systematic approach, leading to efficient and effective problem resolution.

The Problem Solving Cycle

Problem-solving in computer science involves a cyclical process known as the problem-solving cycle. This cycle consists of several stages, including problem identification, data analysis, solution development, implementation, and evaluation. By following this cycle, computer scientists are able to tackle complex problems and arrive at optimal solutions.

Importance of Data Analysis

Data analysis is a critical step in the problem-solving cycle. It involves gathering and examining relevant data to gain insights and identify patterns that can inform the development of a solution. Without proper data analysis, computer scientists may overlook important information or make unfounded assumptions, leading to subpar solutions.

To effectively analyze data, computer scientists can employ various techniques such as data visualization, statistical analysis, and machine learning algorithms. These tools enable them to extract meaningful information from large datasets and make informed decisions during the problem-solving process.

Developing Effective Solutions

Developing effective solutions requires creativity, critical thinking, and logical reasoning. Computer scientists must evaluate multiple approaches, consider various factors, and assess the feasibility of different solutions. They should also consider potential limitations and trade-offs to ensure that the chosen solution addresses the problem effectively.

Furthermore, collaboration and communication skills are vital when building problem-solving skills. Computer scientists often work in teams and need to effectively communicate their ideas, propose solutions, and address any challenges that arise during the problem-solving process. Strong interpersonal skills facilitate collaboration and enhance problem-solving outcomes.

  • Mastering programming languages and algorithms
  • Staying updated with technological advancements in the field
  • Practicing problem solving through coding challenges and projects
  • Seeking feedback and learning from mistakes
  • Continuing to learn and improve problem-solving skills

By following these strategies, individuals can strengthen their problem-solving abilities and become more effective computer scientists or programmers. Problem-solving is an essential skill in computer science and plays a central role in driving innovation and advancing the field.

Questions and answers:

What is the problem solving cycle in computer science.

The problem solving cycle in computer science refers to a systematic approach that programmers use to solve problems. It involves several steps, including problem definition, algorithm design, implementation, testing, and debugging.

How important is the problem solving cycle in computer science?

The problem solving cycle is extremely important in computer science as it allows programmers to effectively tackle complex problems and develop efficient solutions. It helps in organizing the thought process and ensures that the problem is approached in a logical and systematic manner.

What are the steps involved in the problem solving cycle?

The problem solving cycle typically consists of the following steps: problem definition and analysis, algorithm design, implementation, testing, and debugging. These steps are repeated as necessary until a satisfactory solution is achieved.

Can you explain the problem definition and analysis step in the problem solving cycle?

During the problem definition and analysis step, the programmer identifies and thoroughly understands the problem that needs to be solved. This involves analyzing the requirements, constraints, and possible inputs and outputs. It is important to have a clear understanding of the problem before proceeding to the next steps.

Why is testing and debugging an important step in the problem solving cycle?

Testing and debugging are important steps in the problem solving cycle because they ensure that the implemented solution functions as intended and is free from errors. Through testing, the programmer can identify and fix any issues or bugs in the code, thereby improving the quality and reliability of the solution.

What is the problem-solving cycle in computer science?

The problem-solving cycle in computer science refers to the systematic approach that computer scientists use to solve problems. It involves various steps, including problem analysis, algorithm design, coding, testing, and debugging.

Related posts:

  • The Stages of the Problem Solving Cycle in Cognitive Psychology – Understanding, Planning, Execution, Evaluation, and Reflection
  • A Comprehensive Guide to the Problem Solving Cycle in Psychology – Strategies, Techniques, and Applications
  • The Step-by-Step Problem Solving Cycle for Effective Solutions
  • The Importance of Implementing the Problem Solving Cycle in Education to Foster Critical Thinking and Problem-Solving Skills in Students
  • The Importance of the Problem Solving Cycle in Business Studies – Strategies for Success
  • The Comprehensive Guide to the Problem Solving Cycle in PDF Format
  • A Comprehensive Guide on the Problem Solving Cycle – Step-by-Step Approach with Real-Life Example
  • The Seven Essential Steps of the Problem Solving Cycle

Programming Insider

  • Streaming and Technology

What Is Problem-Solving Programming?

' src=

Are you interested in a career in computer programming? Are you wondering if you have what it takes? Perhaps you’re fluent in relevant programming languages, but you wonder what other skills are essential to a successful programming career.

Here, we’ll look at how problem-solving skills are essential for programmers. This article will equip you to leverage your problem-solving skills on your programming resume.  

A Career in Programming

What is programming? We’re not talking about television programming here. Programmers are also known as computer programmers, systems programmers, software engineers, or coders. Programmers “ are tasked with designing and creating software programs, integrating systems and software, training end-users, analyzing algorithms, modifying source-code, writing system instructions, debugging, and maintaining operating systems.” Fortunately, there are solutions to address these issues and one of them is Sentry. Sentry is an error monitoring tool designed to identify and diagnose bugs within your software. Moreover, Sentry is not your only option. There are numerous  alternatives to Sentry  available in the market, providing software engineers with a diverse set of tools to monitor and promptly address crashes in real-time.

What Is Problem-Solving in Programming?

Have you ever encountered a “computer bug?” Maybe you were playing a video game, using an app, or completing work or school assignments on your computer. The bug or glitch became evident when the computer crashed, the screen froze, or the program did not behave as you expected.  

Computer programmers use problem-solving skills, along with an in-depth knowledge of coding, to find and fix issues like these. Each time, the programmer will practice some or all of the following steps .

  • Identify the problem. Before a computer program, app, or game is released to the public, it is scrutinized by its makers. Programming teams use the software or play the game, searching for errors. They may recruit others through beta testing programs to use the application and report any problems.
  • Understand the problem. Once an error is reported, the programmer must evaluate the issue to determine possible causes and solutions. It’s important to take your time with this step – make sure you really understand every aspect of the problem and your not making assumptions based on past experience.
  • Work through the problem. To solve the problem, you’ll need to see it for yourself. Use the application and witness the issue. Then, work through it several more times with different variables to see if the issue is consistent.
  • Pseudocode. Write out what you need the lines of code to do before translating it to actual code.
  • Translate. Turn the pseudocode into code.
  • Test your code. Run the program and find out if it functions as it is supposed to.
  • Debug. Fix any errors as you go along.
  • Simplify. Errors can arise when code is more complicated than it has to be.
  • Take notes. Likely, you won’t be the only one to ever work with your lines of code. Even if you are, you may find that in a few months, you don’t remember exactly what each and every line accomplished. So, take notes on what each line is for.
  • Ask for feedback. Just as testing may have revealed the problem in the first place, so it can aid you in identifying any additional issues. Other coders, developers, or programmers may see solutions you don’t. They can make suggestions that will improve the product or process overall.

Improve Your Problem-Solving Skills

Many universities offer online courses that can help you learn creative problem-solving skills that relate directly to information technology applications.

You can also practice problem-solving techniques in everyday situations. When confronted with a challenge, try the following: 

  • Identify the problem.
  • Get the facts – research similar problems and ask questions. Practice active listening.
  • Find possible solutions – brainstorm. Make backup plans in case solutions don’t work as planned.
  • Decide on a plan. Weigh the pros and cons of each possible solution, and choose the one that is best overall. If multiple people are involved in the decision-making process, try to arrive at a decision that meets everyone’s needs.
  • Act! Once you’ve decided, implement your plan.
  • Look for results. Make observations and talk to others involved. Is your plan achieving the desired results? If not, find more facts and follow up with other possible solutions.

Even problem-solving skills from your daily life will serve you well when challenges arise at work.

How to List Problem-Solving Skills on Your Resume

You can include problem-solving skills on your resume in several ways:

  • In your skills list
  • In your skills summary or core competencies
  • Within your job descriptions

You don’t just have to use the term “problem-solving,” either. Show rather than tell. Could you include statements similar to the following that match your unique qualifications?

  • “Assisted a team of 6 in debugging a flagship program two days before the product launch.”
  • “Identified 32 discrete lines of code that were in error; debugged, simplified, and optimized the code in question.”
  • “Communicated with 24 beta testers from around the world over the course of 5 weeks to ready the program for launch.”

You may also use other terminology related to problem-solving, including creativity, analysis, designing, critical thinking, drawing conclusions, focus, experimenting, evaluation, communication, decision-making, and assessment.

How to Solve Coding Problems with a Simple Four Step Method

Madison Kanna

I had fifteen minutes left, and I knew I was going to fail.

I had spent two months studying for my first technical interview.

I thought I was prepared, but as the interview came to a close, it hit me: I had no idea how to solve coding problems.

Of all the tutorials I had taken when I was learning to code, not one of them had included an approach to solving coding problems.

I had to find a method for problem-solving—my career as a developer depended on it.

I immediately began researching methods. And I found one. In fact, what I uncovered was an invaluable strategy. It was a time-tested four-step method that was somehow under the radar in the developer ecosystem.

In this article, I’ll go over this four-step problem-solving method that you can use to start confidently solving coding problems.

Solving coding problems is not only part of the developer job interview process—it’s what a developer does all day. After all, writing code is problem-solving.

A method for solving problems

This method is from the book How to Solve It by George Pólya. It originally came out in 1945 and has sold over one million copies.

His problem-solving method has been used and taught by many programmers, from computer science professors (see Udacity’s Intro to CS course taught by professor David Evans) to modern web development teachers like Colt Steele.

Let’s walk through solving a simple coding problem using the four-step problem-solving method. This allows us to see the method in action as we learn it. We'll use JavaScript as our language of choice. Here’s the problem:

Create a function that adds together two numbers and returns that value. There are four steps to the problem-solving method:

  • Understand the problem.
  • Devise a plan.
  • Carry out the plan.

Let’s get started with step one.

Step 1: Understand the problem.

When given a coding problem in an interview, it’s tempting to rush into coding. This is hard to avoid, especially if you have a time limit.

However, try to resist this urge. Make sure you actually understand the problem before you get started with solving it.

Read through the problem. If you’re in an interview, you could read through the problem out loud if that helps you slow down.

As you read through the problem, clarify any part of it you do not understand. If you’re in an interview, you can do this by asking your interviewer questions about the problem description. If you’re on your own, think through and/or Google parts of the question you might not understand.

This first step is vital as we often don’t take the time to fully understand the problem. When you don’t fully understand the problem, you’ll have a much harder time solving it.

To help you better understand the problem, ask yourself:

What are the inputs?

What kinds of inputs will go into this problem? In this example, the inputs are the arguments that our function will take.

Just from reading the problem description so far, we know that the inputs will be numbers. But to be more specific about what the inputs will be, we can ask:

Will the inputs always be just two numbers? What should happen if our function receives as input three numbers?

Here we could ask the interviewer for clarification, or look at the problem description further.

The coding problem might have a note saying, “You should only ever expect two inputs into the function.” If so, you know how to proceed. You can get more specific, as you’ll likely realize that you need to ask more questions on what kinds of inputs you might be receiving.

Will the inputs always be numbers? What should our function do if we receive the inputs “a” and “b”? Clarify whether or not our function will always take in numbers.

Optionally, you could write down possible inputs in a code comment to get a sense of what they’ll look like:

//inputs: 2, 4

What are the outputs?

What will this function return? In this case, the output will be one number that is the result of the two number inputs. Make sure you understand what your outputs will be.

Create some examples.

Once you have a grasp of the problem and know the possible inputs and outputs, you can start working on some concrete examples.

Examples can also be used as sanity checks to test your eventual problem. Most code challenge editors that you’ll work in (whether it’s in an interview or just using a site like Codewars or HackerRank) have examples or test cases already written for you. Even so, writing out your own examples can help you cement your understanding of the problem.

Start with a simple example or two of possible inputs and outputs. Let's return to our addition function.

Let’s call our function “add.”

What’s an example input? Example input might be:

// add(2, 3)

What is the output to this? To write the example output, we can write:

// add(2, 3) ---> 5

This indicates that our function will take in an input of 2 and 3 and return 5 as its output.

Create complex examples.

By walking through more complex examples, you can take the time to look for edge cases you might need to account for.

For example, what should we do if our inputs are strings instead of numbers? What if we have as input two strings, for example, add('a', 'b')?

Your interviewer might possibly tell you to return an error message if there are any inputs that are not numbers. If so, you can add a code comment to handle this case if it helps you remember you need to do this.

Your interviewer might also tell you to assume that your inputs will always be numbers, in which case you don’t need to write any extra code to handle this particular input edge case.

If you don’t have an interviewer and you’re just solving this problem, the problem might say what happens when you enter invalid inputs.

For example, some problems will say, “If there are zero inputs, return undefined.” For cases like this, you can optionally write a comment.

// check if there are no inputs.

// If no inputs, return undefined.

For our purposes, we’ll assume that our inputs will always be numbers. But generally, it’s good to think about edge cases.

Computer science professor Evans says to write what developers call defensive code. Think about what could go wrong and how your code could defend against possible errors.  

Before we move on to step 2, let’s summarize step 1, understand the problem:

-Read through the problem.

-What are the inputs?

-What are the outputs?

Create simple examples, then create more complex ones.

2. Devise a plan for solving the problem.

Next, devise a plan for how you’ll solve the problem. As you devise a plan, write it out in pseudocode.

Pseudocode is a plain language description of the steps in an algorithm. In other words, your pseudocode is your step-by-step plan for how to solve the problem.

Write out the steps you need to take to solve the problem. For a more complicated problem, you’d have more steps. For this problem, you could write:

// Create a sum variable.

Add the first input to the second input using the addition operator .

// Store value of both inputs into sum variable.

// Return as output the sum variable. Now you have your step-by-step plan to solve the problem. For more complex problems, professor Evans notes, “Consider systematically how a human solves the problem.” That is, forget about how your code might solve the problem for a moment, and think about how you would solve it as a human. This can help you see the steps more clearly.

3. Carry out the plan (Solve the problem!)

Hand, Rubik, Cube, Puzzle, Game, Rubik Cube

The next step in the problem-solving strategy is to solve the problem. Using your pseudocode as your guide, write out your actual code.

Professor Evans suggests focusing on a simple, mechanical solution. The easier and simpler your solution is, the more likely you can program it correctly.

Taking our pseudocode, we could now write this:

Professor Evans adds, remember not to prematurely optimize. That is, you might be tempted to start saying, “Wait, I’m doing this and it’s going to be inefficient code!”

First, just get out your simple, mechanical solution.

What if you can’t solve the entire problem? What if there's a part of it you still don't know how to solve?

Colt Steele gives great advice here: If you can’t solve part of the problem, ignore that hard part that’s tripping you up. Instead, focus on everything else that you can start writing.

Temporarily ignore that difficult part of the problem you don’t quite understand and write out the other parts. Once this is done, come back to the harder part.

This allows you to get at least some of the problem finished. And often, you’ll realize how to tackle that harder part of the problem once you come back to it.

Step 4: Look back over what you've done.

Once your solution is working, take the time to reflect on it and figure out how to make improvements. This might be the time you refactor your solution into a more efficient one.

As you look at your work, here are some questions Colt Steele suggests you ask yourself to figure out how you can improve your solution:

  • Can you derive the result differently? What other approaches are there that are viable?
  • Can you understand it at a glance? Does it make sense?
  • Can you use the result or method for some other problem?
  • Can you improve the performance of your solution?
  • Can you think of other ways to refactor?
  • How have other people solved this problem?

One way we might refactor our problem to make our code more concise: removing our variable and using an implicit return:

With step 4, your problem might never feel finished. Even great developers still write code that they later look at and want to change. These are guiding questions that can help you.

If you still have time in an interview, you can go through this step and make your solution better. If you are coding on your own, take the time to go over these steps.

When I’m practicing coding on my own, I almost always look at the solutions out there that are more elegant or effective than what I’ve come up with.

Wrapping Up

In this post, we’ve gone over the four-step problem-solving strategy for solving coding problems.

Let's review them here:

  • Step 1: understand the problem.
  • Step 2: create a step-by-step plan for how you’ll solve it .
  • Step 3: carry out the plan and write the actual code.
  • Step 4: look back and possibly refactor your solution if it could be better.

Practicing this problem-solving method has immensely helped me in my technical interviews and in my job as a developer. If you don't feel confident when it comes to solving coding problems, just remember that problem-solving is a skill that anyone can get better at with time and practice.

If you enjoyed this post, join my coding club , where we tackle coding challenges together every Sunday and support each other as we learn new technologies.

If you have feedback or questions on this post, feel free to tweet me @madisonkanna ..

Read more posts .

If you read this far, thank the author to show them you care. Say Thanks

Learn to code for free. freeCodeCamp's open source curriculum has helped more than 40,000 people get jobs as developers. Get started

Computational Thinking, Problem-Solving, and Programming

Computer science is sometimes defined as the study of algorithms and their efficient implementation in a computer. The focus now is their role in problem solving, strategies for developing the, techniques for following and testing them. Because algorithms operate on data, we examine ways to structure data so that it can be more efficiently processed.

  • 1.1.1 Look for Familiar Things
  • 1.1.2 Divide and Conquer
  • 1.1.3 Algorithms
  • 1.1.4 Computer Problem-Solving Process
  • 1.1.5 Summary of Methodology
  • 1.1.6 Testing the Algorithm
  • 1.2 Thinking logically
  • 1.3 Thinking ahead
  • 1.4 Thinking concurrently
  • 1.5 Thinking abstractly
  • 2.1.1 Sequential search
  • 3.1 Nature of programming languages
  • 3.2 Use of programming languages

General principles [ edit | edit source ]

Thinking procedurally [ edit | edit source ].

4.1.1 Identify the procedure appropriate to solving a problem.

Generally speaking, all problems begin with an idea. Finding the connection between this information and the solution lies at the heart of problem solving. To do this, the following strategies can be utilised.

Ask questions

When given a problem or task verbally, one typically asks questions until what is needed is known fully and clear. Generally, when, why, and where are asked until the task is completely specified. If the instructions are written, one might put question marks in the margin; underline a word, a group of words, or a sentence; or in some other way indicate the parts of the task that are not clear. Perhaps the questions might be answered in a later paragraph, or one might have to discuss them with the person giving the task. If the task is one that it self-set, this sort of questioning might not be verbal, but instead takes place on the subconscious level.

  • In this case, some typical questions that one should consider are:
  • What should I know about the problem?
  • What does the solution look like?
  • What sort of special cases exist?
  • How will I recognise that I have found the solution?

Look for Familiar Things [ edit | edit source ]

Don't reinvent the wheel. Exploit the similarities between previous problems solved. This is a form of pattern recognition.

Divide and Conquer [ edit | edit source ]

Algorithms [ edit | edit source ], computer problem-solving process [ edit | edit source ], summary of methodology [ edit | edit source ], testing the algorithm [ edit | edit source ].

4.1.2 Evaluate whether the order in which activities are undertaken will result in the required outcome.

We constantly break up a large problem into smaller units that we can handle. The task of cleaning the house or apartment may seem overwhelming. The task composed of cleaning the living room, the dining room, the kitchen, the bedrooms, and the bathroom seems more manageable. This principle is especially relevant to computing.

4.1.3 Explain the role of sub-procedures in solving a problem.

Do not reinvent the wheel. If a solution exists, use it. If you have solved the same or a similar problem before, just repeat the successful solution. We usually do not consciously think, "I have seen this before, and I know what to do" - we just do it. Humans are good at recognising similar situations. We do not have to learn how to go to the store and buy milk, then to buy eggs, then to buy candy. We know that going to the store is always the same and only what we buy is different.

Recognising familiar situations is particularly useful in computing. In computing, you see certain problems again and again in different guises. A good programmer sees a task, or perhaps part of a task (a subtask), that has been solved before and plugs in the solution. For example, finding daily high and low temperatures in a list of temperatures is exactly the same problem as finding the highest and lowest grades in a list of test scores. You want to the largest and smallest values in a set of numbers.

Thinking logically [ edit | edit source ]

4.1.4 Identify when decision-making is required in a specified situation.

4.1.5 Identify the decisions required for the solution to a specified problem.

4.1.6 Identify the condition associated with a given decision in a specified problem.

4.1.7 Explain the relationship between the decisions and conditions of a system.

4.1.8 Deduce logical rules for real-world situations.

Thinking ahead [ edit | edit source ]

4.1.9 Identify the inputs and outputs required in a solution.

4.1.10 Identify pre-planning in a suggested problem and solution.

4.1.11 Explain the need for pre-conditions when executing an algorithm.

4.1.12 Outline the pre- and post-conditions to a specified problem.

4.1.13 Identify exceptions that need to be considered in a specified problem solution.

Thinking concurrently [ edit | edit source ]

4.1.14 Identify the parts of a solution that could be implemented concurrently.

4.1.15 Describe how concurrent processing can be used to solve a problem.

4.1.16 Evaluate the decision to use concurrent processing in solving a problem.

Concurrent processing allows for faster computation, as multiple tasks are run simultaneously. However, concurrent processing is a lot more difficult to program.

Thinking abstractly [ edit | edit source ]

4.1.17 Identify examples of abstraction.

4.1.18 Explain why abstraction is required in the derivation of computational solutions for a specified situation.

4.1.19 Construct an abstraction from a specified situation.

4.1.20 Distinguish between a real-world entity and its abstraction.

Connecting computational thinking and program design [ edit | edit source ]

Searching algorithms [ edit | edit source ], sequential search [ edit | edit source ].

4.2.1 Describe the characteristics of standard algorithms on linear arrays.

There are numerous algorithms that exist in the realm of computer science, however, sorting and searching are two of the most important types.

Sequential, or linear, search is the simplest search algorithm; it is a special case of brute-force search. Its worst case cost is proportional to the number of elements in the list; and so is its expected cost, if all list elements are equally likely to be searched for. Therefore, if the list has more than a few elements, other methods (such as binary search or hashing) will be faster, but they also impose additional requirements.

Binary Search

This relies upon the linear array being sorted into order. Assume we want to find X.

  • Start at the middle element.
  • Is X greater than or equal to that element?
  • If yes, remove all lower than that from the population.
  • Move to the middle of the new population and repeat.

Note the 'middle' is always the larger element when you have an even set.

Bubble Sort

Assuming we are sorting a list of numbers from lowest to highest.

  • Starting from the left, compare that number X to the one on its right Y.
  • Ix X>Y then swap X and Y around.
  • Repeat through the entire list.
  • Repeat whole process until nothing needs to switch on a full pass through.

Selection Sort

The simplest way to sort from low to high.

  • Go through entire population and find the lowest.
  • Shift the lowest to the farthest left.
  • Ignore the sorted element(s), go through the remainder of the population in the same manner.

4.2.2 Outline the standard operations of collections.

4.2.3 Discuss an algorithm to solve a specific problem.

4.2.4 Analyse an algorithm presented as a flow chart.

4.2.5 Analyse an algorithm presented as pseudocode.

4.2.6 Construct pseudocode to represent an algorithm.

4.2.7 Suggest suitable algorithms to solve a specific problem.

4.2.8 Deduce the efficiency of an algorithm in the context of its use.

4.2.9 Determine the number of times a step in an algorithm will be performed for given input data.

Introduction to programming [ edit | edit source ]

Nature of programming languages [ edit | edit source ].

4.3.1 State the fundamental operations of a computer.

4.3.2 Distinguish between fundamental and compound operations of a computer.

4.3.3 Explain the essential features of a computer language.

4.3.4 Explain the need for higher level languages.

4.3.5 Outline the need for a translation process from a higher level language to machine executable code.

Use of programming languages [ edit | edit source ]

4.3.6 Define the terms: variable, constant, operator, object.

4.3.7 {{{2}}}

4.3.8 Analyse the use of variables, constants and operators in algorithms.

4.3.9 Construct algorithms using loops, branching.

4.3.10 Describe the characteristics and applications of a collection.

4.3.11 Construct algorithms using the access methods of a collection.

4.3.12 Discuss the need for sub-programmes and collections within programmed solutions.

4.3.13 Construct algorithms using pre-defined sub-programmes, one-dimensional arrays and/or collections.

role of problem solving in programming

Navigation menu

' src=

The Essential Role of Algorithms in Programming: A Practical Perspective

Is learning algorithms a waste of time? This question often surfaces among aspiring and practicing programmers. The common belief is that algorithms and data structures are crucial only for building advanced systems or for clearing interviews at top tech firms like FAANG. But what about the everyday coding scenarios? Is algorithmic knowledge relevant there?

Basic Algorithms and Problem-Solving in Programming

Every experienced programmer can attest that a solid understanding of basic algorithms and problem-solving skills is fundamental, regardless of the complexity of the task at hand. Even for tasks that appear simple, such as developing a feature for a website or app, algorithmic thinking can be crucial.

Real-World Examples of Algorithm Use in Development

1. front-end development: carousel functionality.

Consider the carousel on AlgoCademy.com’s landing page, displaying testimonials. The carousel shifts one testimonial to the left upon clicking the right arrow. This seemingly straightforward functionality relies on a basic algorithm to group and display the testimonials effectively. Without a basic understanding of algorithms, implementing such a feature, especially when pre-existing solutions are inadequate, becomes a daunting task.

2. Custom Search Feature

Another example is the development of a custom search feature. Many JavaScript libraries can provide basic search functionalities, but they often fall short when dealing with misspelled words. Developing a search algorithm that accounts for misspelling requires a deeper understanding of how search algorithms work and how they can be adapted to specific requirements.

3. Interactive Coding Tutorial

The core feature of AlgoCademy, an interactive coding tutorial, is another testament to the importance of algorithms in programming. The development of this feature involved months of perfecting the underlying algorithm. Understanding and manipulating data structures like trees becomes essential when creating such interactive and dynamic features.

The Necessity of Algorithms in Backend Development

In backend development, technologies often rely on complex algorithms. For instance, database indexing, a critical aspect of database management, requires understanding how indexing algorithms enhance performance and scalability.

Algorithms in Innovative Technologies

Consider the algorithms behind the technologies we use daily:

  • Google Search : Utilizes inverted document indexing for instant search results, meet-in-the-middle algorithms for autocorrect, and graphs for analyzing website quality.
  • Google Maps : Employs shortest path algorithms and quad or kd trees for proximity searches.
  • Keyboard Autocorrect and Swipe Typing : Relies on Ternary Search Trees.
  • Facebook : Uses graph algorithms to store and analyze connections.
  • Amazon, Spotify, YouTube : All use sophisticated recommendation algorithms.

These examples highlight that algorithms are not just academic exercises; they are integral to the technologies that shape our world.

Can You Get By Without Algorithms?

Technically, yes. It’s possible to work in programming without a deep understanding of algorithms. However, this limitation will likely confine you to routine tasks, depriving you of opportunities to work on exciting projects or in teams where learning and growth are continuous.

The Essence of Programming

It’s crucial to remember that every program is, by definition, an algorithm. Whether it’s a simple function or a complex system, you’re creating a set of instructions to solve a problem or perform a task. This is the essence of algorithmic thinking.

Conclusion: The Value of Algorithms in Your Programming Career

In conclusion, while you might not need advanced algorithmic knowledge for every programming task, a solid grasp of basic algorithms and problem-solving skills is indispensable. These skills not only enable you to tackle a wide range of problems more effectively but also open doors to exciting projects and career growth opportunities. As a programmer, embracing algorithms is not just about solving complex problems; it’s about enriching your toolkit, enhancing your creativity, and preparing you for the challenges of the ever-evolving tech landscape.

An Introduction to Problem Solving: Understanding the Basics

In today’s fast-paced and complex world, the ability to solve problems is an essential skill that can greatly impact our personal and professional lives. Whether it’s finding a solution to a technical issue or resolving a conflict with a colleague, problem solving is a valuable tool that can help us overcome challenges and achieve our goals. In this article, we will explore the concept of problem solving, the stages involved, various problem-solving techniques, common barriers, and ways to enhance this critical skill.

The Concept of Problem Solving

At its core, problem solving can be defined as the process of finding solutions to issues or challenges that arise in different situations. It involves identifying the problem, evaluating potential solutions, and implementing the most effective one.

Problem solving is a fundamental aspect of human cognition and is essential for navigating the complexities of everyday life. From solving puzzles and riddles to addressing complex societal issues, problem solving is a skill that we constantly rely on.

When faced with a problem, our brains engage in a series of cognitive processes to analyze the situation, generate possible solutions, and evaluate their potential effectiveness. This cognitive process involves critical thinking, logical reasoning, and creativity.

Defining Problem Solving

Problem solving is not just about finding quick fixes; it is about addressing the root cause of a problem and devising sustainable solutions. It requires analytical thinking, logical reasoning, creativity, and open-mindedness.

Analytical thinking involves breaking down complex problems into smaller, more manageable parts, allowing us to better understand the underlying issues. Logical reasoning helps us make sense of the information available and identify patterns or connections that can lead to potential solutions.

Creativity plays a crucial role in problem solving by enabling us to think outside the box and come up with innovative solutions. It involves exploring different perspectives, challenging assumptions, and considering alternative approaches.

Open-mindedness is also essential in problem solving, as it allows us to consider different viewpoints and ideas. By being open to new possibilities, we can expand our problem-solving repertoire and increase the likelihood of finding effective solutions.

The Importance of Problem Solving Skills

Effective problem solving skills are crucial for success in various areas of life. Whether it’s in our personal or professional lives, being able to tackle challenges effectively can lead to personal growth, improved decision-making, and enhanced problem-solving abilities.

In the workplace, problem solving skills are highly valued by employers. Employees who can identify and resolve issues efficiently contribute to a more productive and efficient work environment. They are also better equipped to handle unexpected situations and adapt to changing circumstances.

Outside of work, problem solving skills are equally important. They enable us to navigate personal relationships, make informed decisions, and overcome obstacles that may arise in our daily lives. By developing strong problem solving skills, we can approach challenges with confidence and resilience.

Furthermore, problem solving skills are not limited to specific domains or professions. They are transferable skills that can be applied across various contexts. Whether you are a scientist, an artist, a teacher, or a parent, the ability to effectively solve problems is invaluable.

Overall, problem solving is a multifaceted skill that requires a combination of cognitive abilities and a mindset that embraces challenges. By honing our problem solving skills, we can become more adept at finding innovative solutions and navigating the complexities of life.

The Stages of Problem Solving

Problem solving typically involves several stages that help guide the process from identifying the problem to implementing and evaluating the solution. Let’s explore these stages in detail:

Section Image

Identifying the Problem

The first step in problem solving is identifying the issue at hand. This requires careful observation, gathering relevant information, and clarifying the problem’s scope and impact.

During the process of identifying the problem, it is crucial to engage in active listening and effective communication. This allows for a comprehensive understanding of the problem and ensures that all stakeholders are involved. Additionally, conducting thorough research and analysis aids in identifying the root cause of the problem, which is essential for developing effective solutions.

Developing Potential Solutions

Once the problem is identified, the next step is brainstorming and generating potential solutions. This is where creativity and critical thinking come into play. It’s important to consider various perspectives and evaluate the pros and cons of each potential solution.

During the brainstorming phase, it is beneficial to encourage a diverse range of ideas and perspectives. This can be achieved through group discussions, individual reflection, or even seeking external input. By exploring multiple solutions, one can increase the chances of finding the most innovative and effective approach.

Implementing and Evaluating the Solution

After choosing the most promising solution, it’s time to put it into action. This involves developing an implementation plan, allocating necessary resources, and monitoring progress. Once implemented, it’s important to evaluate the solution’s effectiveness and make adjustments if needed.

During the implementation phase, effective project management skills are crucial. This includes setting clear goals, establishing timelines, and assigning responsibilities. Regular monitoring and evaluation of the solution’s progress help identify any potential challenges or areas for improvement. By continuously assessing the solution’s effectiveness, one can ensure that it aligns with the desired outcomes and makes a positive impact.

Problem solving is not a linear process, but rather an iterative one. It often requires revisiting previous stages and making adjustments based on new information or unexpected obstacles. By embracing flexibility and adaptability, problem solvers can navigate through the complexities of finding and implementing effective solutions.

Problem Solving Techniques

When faced with a problem, it’s essential to have a set of techniques and tools to aid in the problem-solving process. These techniques not only help in finding solutions but also encourage creativity and critical thinking. Let’s explore a few commonly used problem-solving techniques:

Brainstorming

Brainstorming is a technique that encourages free thinking and idea generation. It involves gathering a group of individuals with diverse backgrounds and perspectives to generate a wide range of ideas without criticism or judgment. The goal is to create an environment where creativity can flourish, leading to unique and innovative solutions. During a brainstorming session, participants can build upon each other’s ideas, sparking new thoughts and possibilities.

For example, imagine a team working on a project to improve customer satisfaction for a company. During a brainstorming session, team members may suggest ideas such as implementing a loyalty program, enhancing customer service training, or developing a user-friendly mobile app. By allowing all ideas to be expressed without evaluation, the team can explore various possibilities and consider unconventional approaches.

Root Cause Analysis

Root cause analysis is a systematic approach to problem solving that focuses on identifying the underlying causes of an issue. It aims to dig deep and understand the core problem rather than merely addressing its symptoms. By uncovering the root cause, it becomes possible to develop targeted solutions that address the fundamental issue.

For instance, let’s say a manufacturing company is experiencing a high rate of product defects. Instead of simply fixing the defects as they occur, a root cause analysis would involve investigating the factors contributing to the defects. This analysis may reveal issues such as faulty machinery, inadequate training, or ineffective quality control processes. By addressing these underlying causes, the company can implement long-term solutions that prevent future defects and improve overall product quality.

Decision Matrix Analysis

A decision matrix is a tool used to evaluate multiple options based on predefined criteria. It provides a structured approach to decision-making by visually comparing various solutions and considering their respective advantages and disadvantages. This technique helps in making informed decisions and selecting the most suitable solution.

For example, imagine a project manager tasked with selecting a software vendor for a company’s new customer relationship management (CRM) system. The decision matrix would include criteria such as cost, functionality, user-friendliness, and customer support. Each potential vendor would be evaluated and scored based on these criteria, and the decision matrix would provide a clear visual representation of the strengths and weaknesses of each option. This analysis enables the project manager to make an objective and well-informed decision that aligns with the company’s needs and goals.

By utilizing problem-solving techniques like brainstorming, root cause analysis, and decision matrix analysis, individuals and teams can approach problems in a structured and effective manner. These techniques not only help in finding solutions but also foster collaboration, critical thinking, and innovation.

Test assessment tool

Barriers to Effective Problem Solving

Despite the benefits of problem solving, there can be barriers that hinder the process. Let’s explore a few common barriers:

Cognitive Biases

Cognitive biases are inherent mental shortcuts that can affect judgment and decision-making. These biases may lead to faulty reasoning, overlooking crucial information, or favoring familiar solutions over more effective ones.

One example of a cognitive bias is confirmation bias, where individuals tend to seek out information that confirms their existing beliefs or hypotheses while ignoring contradictory evidence. This can limit their ability to consider alternative perspectives and hinder problem-solving efforts.

Another cognitive bias is the availability heuristic, which is the tendency to rely on immediate examples or information that comes to mind easily. This can lead to overlooking less accessible but potentially relevant information, limiting the effectiveness of problem-solving approaches.

Overcoming cognitive biases requires self-awareness and a willingness to challenge one’s own assumptions. By actively seeking out diverse perspectives and considering a wide range of information, individuals can mitigate the impact of cognitive biases on problem-solving processes.

Lack of Information

Insufficient or inaccurate information can impede problem-solving efforts. Without a comprehensive understanding of the problem and relevant data, it becomes challenging to develop effective solutions.

One way to address this barrier is through thorough research and data collection. By gathering relevant information from reliable sources, individuals can gain a deeper understanding of the problem at hand. This may involve conducting surveys, interviews, or analyzing existing data sets to gather insights.

Additionally, collaboration and seeking input from others can help fill in knowledge gaps. By engaging with individuals who have different perspectives or expertise, new information and insights can be gained, leading to more effective problem-solving approaches.

It’s also important to critically evaluate the information gathered, ensuring its accuracy and relevance. By verifying the credibility of sources and cross-referencing data, individuals can make more informed decisions and overcome the barrier of a lack of information.

Emotional Barriers

Emotions such as fear, stress, or frustration can cloud judgment and hinder problem-solving abilities. It’s important to cultivate emotional intelligence and manage emotions effectively to maintain a clear and objective mindset.

One way to address emotional barriers is through mindfulness and self-reflection. By developing awareness of one’s emotions and their impact on decision-making, individuals can better regulate their emotional responses and prevent them from interfering with problem-solving processes.

Practicing stress management techniques, such as deep breathing exercises or engaging in physical activity, can also help reduce the impact of negative emotions on problem-solving abilities. Taking breaks and allowing time for relaxation and self-care can contribute to a clearer and more focused mindset.

Furthermore, fostering a supportive and collaborative environment can help individuals feel more comfortable expressing their emotions and seeking assistance when needed. By creating a safe space for open communication, emotional barriers can be minimized, allowing for more effective problem-solving.

By understanding and addressing these barriers, individuals can enhance their problem-solving skills and overcome challenges more effectively. Problem solving is a valuable skill that can be developed and improved with practice, and by recognizing and addressing these barriers, individuals can become more adept at finding innovative and effective solutions.

Enhancing Your Problem Solving Skills

While some individuals may possess natural problem-solving abilities, it is a skill that can be developed and honed over time. Here are a few ways to enhance your problem-solving skills:

Section Image

Critical Thinking

Critical thinking involves analyzing information objectively, questioning assumptions, and considering alternative perspectives. Practicing critical thinking can help improve problem-solving abilities by fostering a logical and rational approach.

One way to develop critical thinking skills is through engaging in thought-provoking discussions and debates. By actively participating in conversations that challenge your beliefs and encourage you to consider different viewpoints, you can expand your thinking and develop a more comprehensive understanding of complex problems.

Additionally, reading books and articles that present diverse perspectives on various subjects can also contribute to the development of critical thinking skills. By exposing yourself to different ideas and arguments, you can learn to evaluate information critically and make informed decisions.

Creativity and Innovation

Embracing creativity and innovation can encourage thinking outside the box and finding unique solutions. Engaging in activities such as brainstorming or exploring new ideas and perspectives can stimulate creativity and foster innovative problem-solving approaches.

One effective way to foster creativity is through the practice of divergent thinking. This involves generating multiple ideas and possibilities without judgment or evaluation. By allowing yourself to think freely and without constraints, you can uncover new and unconventional solutions to problems.

Furthermore, seeking inspiration from different sources can also enhance your creativity. Exploring different art forms, such as painting, music, or literature, can expose you to different ways of thinking and spark new ideas. Additionally, immersing yourself in nature or taking part in outdoor activities can provide a fresh perspective and stimulate creative thinking.

Persistence and Patience

Problem-solving can be challenging and may require multiple attempts to find the most effective solution. It’s important to remain persistent and patient, understanding that setbacks and failures are part of the learning process.

Developing a growth mindset can greatly contribute to persistence and patience. Embracing the belief that abilities and intelligence can be developed through dedication and hard work can help you stay motivated and resilient in the face of obstacles. Instead of viewing failures as permanent setbacks, see them as opportunities for growth and learning.

Moreover, seeking support from others can also help you maintain persistence and patience. Surrounding yourself with individuals who share your goals and values can provide encouragement and motivation during challenging times. Collaborating with others can also bring fresh perspectives and ideas to the problem-solving process.

Remember, enhancing problem-solving skills is an ongoing journey. By continuously practicing critical thinking, embracing creativity, and cultivating persistence and patience, you can become a more effective problem solver in various aspects of your life.

The Role of Problem Solving in Everyday Life

Problem-solving skills play a vital role in our everyday lives, both personally and professionally. Let’s explore how problem solving impacts different areas:

Section Image

Problem Solving in Personal Life

In our personal lives, problem solving helps us navigate challenges, make decisions, and overcome obstacles. Whether it’s managing personal relationships, resolving conflicts, or finding creative solutions to household problems, effective problem solving enhances our daily lives.

For example, imagine you are planning a surprise birthday party for a loved one. You encounter various challenges along the way, such as finding the perfect venue, coordinating with guests, and organizing the event. By employing problem-solving skills, you can brainstorm ideas, create a timeline, and address any unexpected issues that may arise. This not only ensures a successful surprise party but also showcases your ability to think critically and find solutions.

Problem Solving in Professional Life

In the professional realm, problem-solving skills are highly valued by employers. Being able to identify and resolve work-related issues can lead to increased productivity, improved teamwork, and career advancement. Effective problem solving is a key competency for success in various professions.

Consider a scenario where you work in a customer service role. You encounter a dissatisfied customer who has a complex issue that needs to be resolved promptly. By utilizing problem-solving skills, you can actively listen to the customer’s concerns, analyze the situation, and propose appropriate solutions. This not only resolves the issue but also showcases your ability to handle challenging situations professionally, leaving a positive impression on both the customer and your employer.

Problem Solving in Society

At a broader level, problem solving contributes to societal progress. Many global challenges require collective problem-solving efforts, such as finding sustainable solutions to environmental issues, addressing social inequalities, or improving public services. Effective problem solving can lead to positive societal change.

For instance, let’s consider the issue of climate change. Solving this complex problem requires the collaboration of scientists, policymakers, and individuals from various fields. By employing problem-solving skills, experts can analyze data, propose innovative solutions, and implement strategies to mitigate the effects of climate change. This collective problem-solving effort can lead to a more sustainable future for generations to come.

In conclusion, problem solving is a fundamental skill that plays a significant role in our lives. By understanding the concept, mastering problem-solving stages, and employing various techniques, we can enhance our ability to overcome challenges and achieve desired outcomes. Developing strong problem-solving skills not only benefits us personally and professionally but also contributes to broader societal progress. So, let’s embrace problem solving and harness its power to shape a better future.

  • Share on Facebook
  • Email this Page
  • Share on LinkedIn

role of problem solving in programming

Blog / Time To Code / 6 Ways to Improve Your Programming Problem Solving

6 Ways to Improve Your Programming Problem Solving

6 Ways to Improve Your Programming Problem Solving

Sign up for 7pace newsletter.

I would like to sign up to receive email updates from 7pace. Protected by 7pace's privacy policy .

Reporting is here

Software development is, at its core, all about problem solving.

Think about it.

First, developers need to find a problem they can solve with software. Then, they have to figure out how humans solve that problem. And then, they have to find a way to effectively translate both the problem and the solution into code that a computer can use to solve the problem as well as (or better than) a person.

And then there are all the problems along the way: Working with teams, finding and fixing bugs, meeting delivery deadlines.

Engineers use problem solving skills constantly .

Because of that, if you want to become a better developer, one place to start might be becoming a better problem solver. But that’s easier said than done, and requires a deep understanding of what problem solving is, why it matters, and what it actually takes to improve those skills.

Ready to dive in? Let’s get started.

What Is Problem Solving, and Why Does It Matter?

Have you ever heard this famous Steve Jobs quote?

“Everyone in this country should learn to program a computer because it teaches you to think.”

“Everyone in this country should learn to program a computer because it teaches you to think.”

Jobs was right. Software development is as much about “soft skills” like critical thinking, communication, and problem solving as it is about “hard skills” like writing code.

And so, in the context of software development, problem solving can mean a few different things:

  • Creating an application that meets the end user’s goals.
  • Communicating effectively with team members to delegate work.
  • Finding and fixing bugs in the code.
  • Meeting a tight deadline for a client.

There’s only one thing that’s true no matter what problem solving looks like on a given day: It’s an integral part of every step of the software development process.

Why Should Engineers Work On Problem Solving Skills?

Just like any other skill, problem solving takes practice to apply and master.

Many developers think that becoming a better problem solver means being able to solve more problems, faster. But that’s not true — it means being able to find the best solution to a problem, and then put that solution in place.

Learning to do that is a great way to become a better developer overall. And while soft skills can be more difficult to learn and improve upon than hard skills, there are still some tips and tricks that can help you get better at problem solving specifically.

6 Ways to Get Better at Problem Solving

As you’ll see from these learning tools, getting better at problem solving is mostly like getting better at any other skill for work: You need to practice. A lot. And then practice some more.

6 Ways to Get Better at Problem Solving

Solve a Lot of Problems on a Lot of Different Platforms

Step one? Solve as many problems as you can, but try to focus on different types of problems on different platforms.

Here’s why this is so beneficial: It prevents you from getting comfortable with one problem solving method or framework. As we already know, in the world of software development, there is definitely no one-size-fits-all solution for the problems we encounter.

When you regularly practice solving different types of problems in different platforms, it reinforces the fact that you can’t always rely on the same technique to solve every problem. It forces you to learn to be flexible, and to choose the best tool or framework for each job.

Solve Problems in Contexts Other Than Work

Since problem solving is a skill that requires practice, you can (and should) work on it even outside of work hours.

This doesn’t need to be a chore — there are a lot of fun ways to practice problem solving, like by doing math or logic puzzles, solving crosswords, or playing a game like chess. Even many video games can help work on problem solving skills.

There are also many opportunities to practice problem solving just as you live your life from day to day. Broke something around the house? Use your problem solving skills to DIY a fix. Need to solve a conflict with a friend or a family member? You guessed it — time to practice problem solving.

Learn From Past Solutions, and Apply Them to New Problems

As you keep practicing problem solving as much as possible, you’ll start to see patterns emerge in the problems you solve. You’ll build up a sort of toolkit filled with the solutions you’ve found and used in the past, and you’ll be able to apply those to solving new problems.

This part is just as important as finding the solutions in the first place, because the more you practice your growing problem solving skills, the more natural it will become to apply the right solutions to different types of problems, making you able to solve new problems more and more quickly, while still using the best possible solves.

Ask Others for Help and Feedback

Sometimes, finding the best solution to a problem just requires a fresh, new set of eyes. That’s why it’s important to treat growing your problem solving skills not as a totally solo venture, but as a team endeavor where everyone at your organization can support each other and help each other get better.

If you’re stuck on a specific problem, ask for help. Someone else might have a method or framework you aren’t familiar with, that they can teach you. You can then apply that to more problems down the road.

And if you’ve come up with a solve for a problem, ask others for feedback. They might be able to help you refine or further improve your framework, making it even better.

Train the Problem Solving Part of Your Mind

How do you keep muscles from growing weaker over time? You keep exercising them.

The same goes for your brain, and especially for different knowledge-base skills, like problem solving. You’ll stay at the top of your brain if you keep “working out,” or practicing problem solving all the time.

A good move for a developer who wants to invest in their problem solving skills is scheduling time every week (or even every day) to consciously practice problem solving. Remember, this doesn’t necessarily mean solving work problems. You could commit to doing a tricky logic puzzle every day on your lunch break, for example. The important thing is to get in the practice, no matter how that looks.

Practice Other Skills Related to Problem Solving

Problem solving is an important skill on its own. But there are other necessary skills developers need to support their problem solving abilities, and those skills all take practice, too.

Flexibility. Critical thinking. Communication. Teamwork. Focusing on building and practicing all these skills will help you improve your problem solving.

Problem solving is one of the most necessary skills for developers to have. With time, practice, and dedication, they can improve it, constantly, and keep becoming better.

Tyler Hakes Profile Picture

Rethinking Timekeeping for Developers:

Turning a timesuck into time well spent.

Rethinking Timekeeping for Developers

Leave a Comment

By submitting this form I confirm that I have read the privacy policy and agree to the processing of my personal data for the above mentioned purposes.

role of problem solving in programming

Great article regarding problem solving skill, informative and motivating both.

Codility Tests

Outstanding post, I believe people should larn a lot from this website, its really user pleasant.

Technical Screening Tools

I was very happy to discover this great site. I need to thank you for your time just for this fantastic read!

Sharifa Ismail Yusuf

I learnt from this article that one of the key skills a developer need to have is the \"problem solving skills\". Developers also need dedication, time, create time to practice so they can improve their problem solving skills constantly. I do ask for help from others and learn from past solutions and apply them to new problems. From what I have learnt so far, I will try my best to start focusing on building and practicing Flexibility, critical thinking, communication and team work. Solve a lot of problems on a lot of different platforms. Solve problems on context other than work. To start carring out the above, I will schedule time in a week or everyday to conciously practice problem solving skills and other related problem solving skills.Thanks alot for this wonderful article!

dewayne sewell

Ive learnt the skill of problem solving is like a muscle, where it is important to keep exercising it to stay strong. It is important to be aware of the soft skills necessary for effective problem solving also, such as communication, critical thinking, team working that can leverage your technical hard skills to find a solution faster/more effective. Two things I will aim to do is; 1. To solve problems on different platforms so I don’t get too comfortable on only one and stagnate. This not only challenges the brain to see things from a new perspective, but to start the habit of continuous learning and skill building. 2. Reach out to others for help / discuss problems and my solutions for feedback and advice and sharing ideas.

Pakize Bozkurt

Problem solving skills is a crucial thing to make easier or better your life. In fact as a human being we do it in every day life. I mean, we have to do it for living. There are many ways to how to do it. The best way is we should ask right questions. First of all, we should ask some questions, such as; \' Are we aware of the problem?, Are we clarify the problem? Do we go into problem rational? Do we have reasons? or Do we have evidences? Do we do check them out? etc. I am from Philosophy teacher background. I like solving problem whatever in my work or daily life. Secondly, we should have more perspectives . Although our brain is lazy, it is always in a starvation for knowledge.For this there are many enjoyable things to do it. I highly recommend to read book every day which kind of you like it and playing game or solving puzzle. I love solving Sudoku, puzzle and reading book or article. Finally, solving problem is our invatiable needed. Having flexibility, critical thinking, communication and teamwork are easy way to improve us to how we can do our work better and good life. Massive thank for this amazing article!

I read this amazing article. Normally, everyone knows that but we dont use most of time this informations. Which one is the best way to use? Really it does not matter, every one is like a gold opinion. We can use this ideas for the daily life. I have already used that learn from past solution and ask to someone who knows very well. This is so helpful for me. Sometimes google is the best option for ask to someone. Google can be the best teacher for us as well. Soft skills like a team work or solving problem and critical thinking can be important than typing code. We can learn typing code but we can not learn critical thinking and solving problems from google very well. Thank you for this article.

Ipsa iure sed rerum

Excepturi quo volupt

Thanks for this !

Fahil kiima

Thanks a lot for the ideas on problem solving,I really had a problem with that and now going to use what you\'ve informed us about to better my problem solving skills. Thanks.

Alan Codinho

Nice overview

7pace is coming to GitHub! Sign up here for early access to test our beta!

Time tracking can actually be valuable for your team and your organization. But first, you and all your team members need a complete shift in the way you frame time tracking as part of your work.

Sign up for our newsletter and get your free ebook!

Your information is protected by 7pace's privacy policy .

Thanks for subscribing!

Click the download button to receive your free copy of Rethinking Timekeeping for Developers:Turning a Timesuck Into Time Well Spent

Click the download button to receive your free copy of

Contact sales

Please, note that your personal data provided via the above form will be processed in line with the  Privacy Policy . By clicking “Send”, you confirm that you have read the  Privacy Policy  that sets out the purposes for which we process personal data, as well as your rights related to our processing of your personal data.

I wish to receive marketing emails from Appfire.

Request sent

Your message has been transmitted to 7pace.

We will contact you as soon as possible.

Github

Sign up for GitHub News

  • Trending Now
  • Foundational Courses
  • Data Science
  • Practice Problem
  • Machine Learning
  • System Design
  • DevOps Tutorial

Welcome to the daily solving of our PROBLEM OF THE DAY with Yash Dwivedi . We will discuss the entire problem step-by-step and work towards developing an optimized solution. This will not only help you brush up on your concepts of Number Theory but also build up problem-solving skills. In this problem, we are given a number n, find the Juggler Sequence for this number as the first term of the sequence until it becomes 1. Example :

Input: n = 9 Output: 9 27 140 11 36 6 2 1 Explaination: We start with 9 and use above formula to get next terms. Give the problem a try before going through the video. All the best!!! Problem Link:  https://www.geeksforgeeks.org/problems/juggler-sequence3930/1

Video Thumbnail

IMAGES

  1. 6 Ways to Improve Your Programming Problem Solving

    role of problem solving in programming

  2. Problem Solving In Programming

    role of problem solving in programming

  3. problem solving approach in programming

    role of problem solving in programming

  4. The 5 Steps of Problem Solving

    role of problem solving in programming

  5. The problem-solving process in programming.

    role of problem solving in programming

  6. What is problem solving process in programming?

    role of problem solving in programming

VIDEO

  1. Problem Solving

  2. Double in C

  3. Number Theory -GCD -LCM-Sieve of eratosthenes- Prime factorization شرح

  4. Prefix sum array شرح || Problem solving

  5. IFMS 3.0

  6. Fibonacci series Problem Solving C programming Bangla Tutorial

COMMENTS

  1. What is Problem Solving? An Introduction

    As you can see, problem solving plays a pivotal role in software engineering. Far from being an occasional requirement, it is the lifeblood that drives development forward, catalyzes innovation, and delivers of quality software. By leveraging problem-solving techniques, software engineers employ a powerful suite of strategies to overcome ...

  2. Solving the Puzzle: Strategies for Effective Problem-Solving in Programming

    The process of problem-solving in programming involves several key steps that guide programmers towards effective solutions. These steps include: Analyzing the Problem: Before diving into writing code, it's important to thoroughly understand the problem at hand. This includes identifying the inputs, expected outputs, edge cases, and any ...

  3. How to think like a programmer

    Simplest means you know the answer (or are closer to that answer). After that, simplest means this sub-problem being solved doesn't depend on others being solved. Once you solved every sub-problem, connect the dots. Connecting all your "sub-solutions" will give you the solution to the original problem. Congratulations!

  4. UNIT 1: How to Think Like an Engineer

    Computational Thinking is the thought processes involved in understanding a problem and expressing its solution in a way that a computer can effectively carry out. Computational thinking involves solving problems, designing systems, and understanding human behavior (e.g. what the user needs or wants) - thinking like an engineer. Computational ...

  5. A Guide to Problem-Solving for Software Developers with Examples

    It's even better if the members of the team are used to swim in uncertainty, and take it as a challenge more than a chore. The process described above is just an example; in practice it's often more chaotic. For example, even when a decision is made, your brain might still continue to process the problem passively.

  6. How to Develop Problem Solving Skills in Programming

    This article on problem solving in programming provides you with an idea of how it plays a massive role in the present world. In this problem solving in programming article, the skills and the ways to improve more command on problem solving in programming are mentioned and explained in a proper way. If you are looking to advance in your career.

  7. Problem-Solving Strategies for Software Engineers

    Write out the problem. Your problem won't always come right out and say: "It's me, hi. I'm the problem, it's me.". In fact, something that often gets in the way of solving a problem is that we zero in on the wrong problem. When pinpointing a problem, you can try borrowing a UX research technique that's part of the design thinking ...

  8. Mastering Problem Solving in Programming: A Guide for ...

    1. Understand the Problem. The first step in solving any programming problem is to thoroughly understand it. Take the time to read and re-read the problem statement or requirements. Ask questions ...

  9. Hands-on Tutorial: How To Improve Your Problem-Solving Skills As A

    Programming is ultimately problem-solving. We only apply the programming language to express how we've thought about a problem and the approach we're using to solve it. The worst thing you could do is to start chipping away at the problem once it's presented. This is where most newbie programmers get stuck and give up.

  10. How to think like a programmer

    Problem-solving skills are almost unanimously the most important qualification that employers look for….more than programming languages proficiency, debugging, and system design.

  11. Problem Solving

    The programming languages and tools they use are secondary to this fundamental skill. From his book, "Think Like a Programmer", V. Anton Spraul defines problem solving in programming as: Problem solving is writing an original program that performs a particular set of tasks and meets all stated constraints.

  12. The Problem Solving Cycle in Computer Science: A Complete Guide

    The problem solving cycle is a systematic approach to analyzing and solving problems, involving various stages such as problem identification, analysis, algorithm design, implementation, and evaluation. Understanding the importance of this cycle is essential for any computer scientist or programmer.

  13. Enhancing problem‐solving skills of novice programmers in an

    1 INTRODUCTION. Problem-solving skills play an important role in learning to code for novice programmers [].These skills help students to devise the solution to the given problem statement [].Moreover, it is important for students to understand the requirements of the given problem statement (input, output, and process) to start working on its solution.

  14. What Is Problem-Solving Programming?

    Computer programmers use problem-solving skills, along with an in-depth knowledge of coding, to find and fix issues like these. Each time, the programmer will practice some or all of the following steps. Identify the problem. Before a computer program, app, or game is released to the public, it is scrutinized by its makers.

  15. How to Solve Coding Problems with a Simple Four Step Method

    In this post, we've gone over the four-step problem-solving strategy for solving coding problems. Let's review them here: Step 1: understand the problem. Step 2: create a step-by-step plan for how you'll solve it. Step 3: carry out the plan and write the actual code.

  16. Computational Thinking, Problem-Solving, and Programming

    Computational Thinking, Problem-Solving, and Programming. Computer science is sometimes defined as the study of algorithms and their efficient implementation in a computer. The focus now is their role in problem solving, strategies for developing the, techniques for following and testing them. Because algorithms operate on data, we examine ways ...

  17. The Essential Role of Algorithms in Programming: A Practical Perspective

    The Essence of Programming. It's crucial to remember that every program is, by definition, an algorithm. Whether it's a simple function or a complex system, you're creating a set of instructions to solve a problem or perform a task. This is the essence of algorithmic thinking.

  18. An Introduction to Problem Solving: Understanding the Basics

    The Role of Problem Solving in Everyday Life. Problem-solving skills play a vital role in our everyday lives, both personally and professionally. Let's explore how problem solving impacts different areas: Problem Solving in Personal Life. In our personal lives, problem solving helps us navigate challenges, make decisions, and overcome obstacles.

  19. 6 Ways to Improve Your Programming Problem Solving

    But there are other necessary skills developers need to support their problem solving abilities, and those skills all take practice, too. Flexibility. Critical thinking. Communication. Teamwork. Focusing on building and practicing all these skills will help you improve your problem solving. Problem solving is one of the most necessary skills ...

  20. Programming Language/Problem-Solving Research: A Review of Relevant

    Other issues critical to successfully designing programming language/problem-solving research include (a) treatment-related issues, such as the method and duration of programming instruction; (b) language-related issues—that is, selecting the most beneficial programming language; and (c) selection of an appropriate sample. ... The role of ...

  21. Unraveling the Code: What Exactly Does a Programmer Do?

    The core of their day is spent writing and reviewing code, debugging, and problem-solving. They interact with other programmers, project managers, and clients to better understand requirements and provide timely updates. Despite the occasional late nights, programmers have a well-structured work-life balance and often spend time learning about ...

  22. Problem solving

    Problem solving is the process of achieving a goal by overcoming obstacles, a frequent part of most activities. Problems in need of solutions range from simple personal tasks (e.g. how to turn on an appliance) to complex issues in business and technical fields. The former is an example of simple problem solving (SPS) addressing one issue ...

  23. The Role of Algorithms in Computing

    Algorithms are fundamental to computing and play a crucial role in many aspects of the field. Some of the key needs and applications of algorithms in computing include: 1.Data processing: Algorithms are used to process and analyze large amounts of data, such as sorting and searching algorithms. 2.Problem solving: Algorithms are used to solve ...

  24. PROBLEM OF THE DAY : 11/05/2024

    Welcome to the daily solving of our PROBLEM OF THE DAY with Yash Dwivedi.We will discuss the entire problem step-by-step and work towards developing an optimized solution. This will not only help you brush up on your concepts of Number Theory but also build up problem-solving skills. In this problem, we are given a number n, find the Juggler Sequence for this number as the first term of the ...