Fastest Obstetric, Gynecology and Pediatric Insight Engine

  • Abdominal Key
  • Anesthesia Key
  • Basicmedical Key
  • Otolaryngology & Ophthalmology
  • Musculoskeletal Key
  • Obstetric, Gynecology and Pediatric
  • Oncology & Hematology
  • Plastic Surgery & Dermatology
  • Clinical Dentistry
  • Radiology Key
  • Thoracic Key
  • Veterinary Medicine
  • Gold Membership

Malpresentation, Malposition, Cephalopelvic Disproportion and Obstetric Procedures

26 Malpresentation, Malposition, Cephalopelvic Disproportion and Obstetric Procedures Kim Hinshaw 1,2 and Sabaratnam Arulkumaran 3 1 Sunderland Royal Hospital, Sunderland, UK 2 University of Sunderland, Sunderland, UK 3 St George’s University of London, London, UK Malpresentation, malposition and cephalopelvic disproportion Definitions The vertex is a diamond‐shaped area on the fetal skull bounded by the anterior and posterior fontanelles and laterally by the parietal eminences. Vertex presentation is found in 95% of labours at term and is associated with flexion of the fetal head. Breech, brow, face and shoulder presentations constitute the remaining 5% and are collectively known as malpresentations . Their aetiology is usually unknown, but associations include macrosomia, multiparity, polyhydramnios, multiple pregnancy, placenta praevia, preterm labour, and anomalies of the uterus or pelvis (congenital or acquired, e.g. lower segment fibroids) and more rarely the fetus. The denominator is a laterally sited bony eminence on the presenting part (‘occiput’ for vertex presentation, ‘mentum’ for face, ‘acromium’ for shoulder and ‘sacrum’ for breech). The position of the presenting part is defined by the relationship of the denominator to the maternal bony pelvis. The vertex enters the pelvis in the occipito‐transverse (OT) position and during descent rotates to an occipito‐anterior (OA) position in 90% of cases. This position is associated with a well‐flexed head, allowing the smallest anteroposterior (suboccipito‐bregmatic) and lateral (biparietal) diameters to pass through the pelvis (both 9.5 cm). Malposition occurs when the occiput remains in a tranverse or posterior position as labour progresses. Persistent malposition results in deflexion with a larger anteroposterior diameter presenting (occipito‐frontal 11.5 cm). It is associated with increasing degrees of anterior or posterior asynclitism , with one of the parietal bones preceding the sagittal suture (in posterior asynclitism, the posterior parietal bone leads; Fig. 26.1 ). Significant degrees of asynclitism can result in labour dystocia and a higher risk of operative delivery [1] . Fig. 26.1 Posterior asynclitism of the vertex: posterior parietal bone presenting below the sagittal suture. In most cases, flexion occurs as the vertex descends onto the pelvic floor, leading to correction of the malposition and a high chance of spontaneous delivery. The level of the presenting part should be critically assessed as labour progresses. On abdominal examination, the head should descend until it is no more than 1/5 palpable in the late first stage. On vaginal examination the presenting part is assessed relative to the level of the ischial spines. Care must be taken to assess the level using the lowest bony part . Malposition is associated with increased moulding of the fetal skull and a large caput succedaneum, which may give false reassurance about the true degree of descent. In modern obstetric practice, operative vaginal delivery is not attempted if the leading edge of the skull is above the ischial spines (i.e. above ‘0’ station; Fig. 26.2 ). Fig. 26.2 Level of the presenting part relative to the ischial spines. Malpresentations Breech presentation The incidence of breech presentation varies according to gestation: 20% at 30 weeks falling to 4% by term. The aetiology of most breech presentations at term is unclear but known factors to consider include placenta praevia, polyhydramnios, bicornuate uterus, fibroids and, rarely, spina bifida or hydrocephaly. Types of breech presentation Between 50 and 70% of breech presentations manifest with hips flexed and knees extended (extended breech) Complete (or flexed) breech is more common in multiparous women and constitutes 5–10% at term (hips and knees flexed; Fig. 26.3 ). Incomplete or footling breech (10–30%) presents with one or both hips extended, or one or both feet presenting and is most strongly assoiated with cord prolapse (5–10%). Knee presentation is rare. Fig. 26.3 The common types of breech presentation. Clinical diagnosis may miss up to 20% of breech presentations, relying on identifying the head as a distinct hard spherical hard mass to one or other side under the hypochondrium which distinctly ‘ballots’. In such cases the breech is said to feel broader and an old adage reminds us: ‘Beware the deeply engaged head – it is probably a breech!’ Auscultation may locate the fetal heart above the maternal umbilicus and ultrasound confirmation should be considered. Antenatal management If breech presentation is suspected at 36 weeks, ultrasound assessment is recommended as it allows a comprehensive assessment of the type of breech, placental site, estimated fetal weight, confirmation of normality and exclusion of nuchal cord or hyperextension of the fetal neck. External cephalic version (ECV) is encouraged after 36 or more weeks as the chance of spontaneous version to cephalic presentation after 37 weeks is only 8%. Absolute contraindications are relatively few but include placenta praevia, bleeding within the last 7 days, abnormal cardiotocography (CTG), major uterine anomaly, ruptured membranes and multiple pregnancy [2] . Couples should receive counselling about the procedure and its success rates and complications, and the subsequent management of persistent breech presentation. Tocolysis increases the likelihood of success, with average rates of 50% (range 30–80%). Women should be made aware that even with a cephalic presentation following ECV, labour is still associated with a higher rate of obstetric intervention than when ECV has not been required. ECV should be performed in a setting where urgent caesarean section (CS) is available in case of fetal compromise during or soon after ECV. CTG for 30–40 min prior to and after ECV should provide confirmation of fetal health. The chance of success is greater with multiparity, flexed breech presentation and an adequate liquor volume. The use of moxibustion at 33–35 weeks, in combination with acupuncture, may reduce the numbers of births by CS. Training specialist midwives is potentially cost‐efficient with success rates comparable to consultant‐led services (51–66%) [3] . The first step in ECV involves disengaging the breech by moving the fetus up and away from the pelvis, shifting it to a sideways position, followed by a forward somersault to move the head to the lower pole; if this fails a backward somersault can be tried. The need for emergency delivery by CS because of suspected fetal compromise is estimated to be 0.5%. Mothers who are rhesus‐negative should have a Kleihauer–Betke test after the procedure and receive anti‐D. If ECV is unsuccessful, women who are keen to avoid CS may be offered a repeat attempt under neuraxial blockade. This increases the chances of success (58.4% vs. 43.1%; relative risk, RR 1.44, 95% CI 1.27–1.64) and reduces the incidence of CS (46.0% vs. 55.3%; RR 0.83, 95% CI 0.71–0.97) [4] . Otherwise appropriate counselling about the options of elective CS or assisted vaginal breech delivery should be offered. Deciding mode of delivery Despite increasing evidence supporting elective CS for breech delivery at term, controversy and debate continue among professional groups. Breech presentation at term diagnosed antenatally . The Term Breech Trial is the largest published randomized controlled trial where the primary outcome (serious perinatal morbidity and mortality) favoured planned CS over planned vaginal birth: 17/1039 (1.6%) versus 50/1039 (5.0%; RR 0.33, 95% CI 0.19–0.56; P <0.0001) [5] . The trial concluded that ‘planned CS is better than planned VB for the term fetus in the breech presentation; serious maternal complications are similar between the groups’. This has significantly changed practice in many countries despite continuing debate and criticism about the trial design and intepretation of outcomes. However, the latest systematic review has confirmed a significant increased perinatal risk associated with planned vaginal birth [6] . Breech at term diagnosed in labour and preterm breech delivery . Observational trials of term breech ‘undiagnosed’ until presentation in labour confirm that this group has a high vaginal delivery rate with relatively low perinatal morbidity. In a similar vein, the evidence to guide best practice for delivery of the preterm breech remains equivocal, decisions often being based on individual interpretation of the data and local custom and practice. Conducting a vaginal breech delivery For women who wish to deliver vaginally, antenatal selection aims to ensure optimal outcome for mother and baby but remains relatively subjective. Women with frank and complete breech presentations (fetal weight <4000 g) encounter minimal problems, while those with footling breech are advised elective CS because of the increased risk of cord prolapse. CT or X‐ray pelvimetry do not appear to improve outcome. Spontaneous onset of labour is preferred and labour management is similar to vertex presentation. Successful outcome depends on a normal rate of cervical dilatation, descent of the breech and a normal fetal heart rate (FHR) pattern. Where progress of labour is poor and uterine contractions are inadequate, oxytocin augmentation can be used juidiciously with early resort to emergency CS if progress remains slow (<0.5 cm/hour), particularly in the late first stage. Epidural anaesthesia prevents bearing down before the cervix is fully dilated and is particularly important for labour with a preterm breech, when there is a real risk of head entrapment in the incompletely dilated cervix if pushing commences too early. For all breech labours, the mother should be encouraged to avoid bearing down for as long as possible. It is best to wait until the anterior buttock and anus of the baby are in view over the mother’s perineum, with no retraction between contractions. Classically, the mother’s legs are supported in the lithotomy position (the alternative upright breech technique is described later). Primigravidae will usually require an episiotomy with appropriate analgesia, although multigravidae can be assessed as the perineum stretches up. The buttocks deliver in the sacro‐tranverse position. The mother should be encouraged to push with contractions, aiming for an unassisted delivery up to and beyond the level of the umbilicus. There is no need to pull down a loop of cord. The accoucheur should sit with hands ready, but resting on their own legs. Assistance is only required if the legs do not deliver. Gentle abduction of the fetal thigh whilst hyperflexing the hip, followed by flexing the lower leg at the knee will release the foot and leg ( Fig. 26.4 ). Fig. 26.4 Delivery of extended legs by gentle abduction of the thigh with hyperflexion at the hip, followed by flexion at the knee: (a) right leg; (b) left leg. When the scapulae are visible with the arms flexed in front of the chest, sweep each arm around the side of the fetal chest to deliver using a finger placed along the length of the humerus. If the scapulae are not easily seen or if the arms are not easily reached, they may be extended above the shoulders. This can be resolved using the Løvset manoeuvre. Hold the baby by wrapping both hands around the bony pelvis, taking care not to apply pressure to the soft fetal abdomen. Rotate the baby 180° to bring the posterior shoulder to the front, i.e. to lie anteriorly ( Fig. 26.5 a). Complete delivery of the anterior arm by gently flexing the baby laterally downwards towards the floor; the arm will deliver easily from under the pubic ramus ( Fig. 26.5 b). Repeat the 180° rotation in the opposite direction, bringing the posterior shoulder to the front, then flex the baby laterally downwards to deliver the second arm. Fig. 26.5 Løvset’s manoeuvre for extended arms: (a) rotation to bring the posterior (left) arm to the front followed by (b) delivery of the left arm (now anterior) from under the pubic ramus. Nuchal displacement (an arm trapped behind the fetal neck) is rare. If the left arm is trapped, the baby will need to be rotated in a clockwise direction to ‘unwrap’ the arm so that it can be reached. If the right arm is involved, anticlockwise rotation is needed. Allow the head to descend into the pelvis, assisted by the weight of the fetus until the nape of the neck is visible under the symphysis pubis. Ensure slow controlled delivery of the head using one of four methods. Mauriceau–Smellie–Veit manoeuvre: two fingers are placed on the maxilla, lying the baby along the forearm. Hook index and fourth fingers of the other hand over the shoulders with the middle finger on the occiput to aid flexion. Apply traction to the shoulders with an assistant applying suprapubic pressure if needed ( Fig. 26.6 ). Burns–Marshall method: grasp the feet, apply gentle traction and swing the baby gently up and over the maternal abdomen until the mouth and nose appear. Forceps are applied to the head from below, with an assistant supporting the baby’s body in the horizontal plane avoiding hyperextension. Kielland’s forceps can be useful as they lack a pelvic curve. Apply traction, bringing the forceps upwards as the mouth and nose appear. The upright breech technique is increasingly popular in midwifery deliveries. Mobility is encouraged with delivery on all fours, sitting (on a birth stool), kneeling, standing or lying in a lateral position. Delivery is spontaneous with no manual assistance in 70% of cases and a reduced incidence of perineal trauma (14.9%). Fig. 26.6 Delivery of the head using the Mauriceau–Smellie–Veit manoeuvre assisted by suprapubic pressure. Entrapment of the aftercoming head This rare complication occurs in two situations. If the fetal back is allowed to rotate posteriorly, the chin may be trapped behind the symphysis pubis. Correction requires difficult internal manipulation to free the chin by pushing it laterally. McRoberts’ manoeuvre and suprapubic pressure may help. Symphysiotomy is a last resort that can increase the available pelvic diameters. In preterm delivery, the body can slip through an incompletely dilated cervix, with resulting head entrapment. If the cervix cannot be ‘stretched up’ digitally, surgical incisions are made in the cervical ring at 2, 6 and 10 o’clock (Dührssen incisions). Head entrapment in the contractile upper segment can occur at CS. Acute tocolysis and/or extension of the uterine incision may be required to release the head. Women should be intimately involved in decisions about mode of breech delivery and the available evidence presented appropriately. A senior midwife or a doctor experienced in assisted breech delivery must be present. As vaginal breech deliveries decline, developing expertise in breech delivery now relies on simulation training and experience of breech delivery at CS. Summary box 26.1 ECV has a high success rate (51–66%) and should be encouraged. Ensure the fetal back does not rotate posteriorly during breech delivery. The most experienced accoucheur available should directly supervise vaginal breech delivery. Brow presentation Brow presentation occurs in 1 in 1500–3000 deliveries. The head is partially deflexed (extended), with the largest diameter of the head presenting (mento‐vertical, 13.5 cm). The forehead is the lowest presenting part but diagnosis relies on identifying the prominent orbital ridges lying laterally. The eyeballs and nasal bridge may just be palpated lateral to the orbital ridges. Position is defined using the frontal bone as the denominator (i.e. ‘fronto‐‘). Persistent brow presentation results in true disproportion, but when diagnosed in early labour careful assessment of progress is appropriate. Flexion to vertex or further extension to face presentation occurs in 50% and vaginal delivery is possible. Cautious augmentation with oxytocin should only be considered in nulliparous patients for delay in the early active phase of labour. If brow presentation persists, emergency CS is recommended. Vaginal delivery of a brow presentation is possible in extreme prematurity. Preterm labour is best managed in the same way as term labour, with delivery by CS if progress slows or arrests. Cord prolapse is more common and, though rare, uterine rupture can occur in neglected labour or with injudicious use of oxytocin. For this reason labour should not be augmented in multigravid patients with a confirmed brow presentation if progress is inadequate. Face presentation Face presentation occurs in 1 in 500–800 labours. The general causes of malpresentation apply for face presentation, but fetal anomalies (neck or thyroid masses, hydrocephalus and anencephaly) should be excluded. The fetal head is hyperextended and the occiput may be felt higher and more prominently on the same side as the fetal spine. However, face presentation is rarely diagnosed antenatally. On vaginal examination in labour, diagnosis relies on feeling the mouth, malar bones, nose and orbital ridges. Position is defined using the chin or mentum as the denominator. The mouth and malar bones form a triangle which can help differentiate face presentation from breech, where the anus lies in a straight line between the prominent ischial tuberosities. Face presentation is often first diagnosed in late labour. The submento‐bregmatic diameter (9.5 cm) is compatible with normal delivery but only with the fetus in a mento‐anterior position (60%) ( Fig. 26.7 ). The same diameter presents with a persistent mento‐posterior position (25%) but this cannot deliver vaginally as the fetal neck is maximally extended. Fetal scalp clips, blood sampling and vacuum extraction are absolutely contraindicated. Forceps delivery from low cavity can be undertaken for mento‐anterior or mento‐lateral positions by an experienced accoucheur but CS may still be required when descent is poor. Fig. 26.7 The anteroposterior submento‐bregmatic diameter of face presentation. Shoulder presentation The incidence of shoulder presentation at term is 1 in 200 and is found with a transverse or oblique lie. Multiparity (uterine laxity) and prematurity are common associations and placenta praevia must be excluded. The lie will usually correct spontaneously before labour as uterine tone increases, although prolapse of the cord or arm is a significant risk if membranes rupture early. For this reason, hospital admission from 38 weeks is recommended for persistent transverse lie. External version can be offered (and may also be considered for transverse lie presenting in very early labour). On vaginal examination, the denominator is the acromium but defining position can be difficult. If membrane rupture occurs at term with the uterus actively contracting, delivery by CS should be undertaken promptly to avoid an impacted transverse lie. If the uterus is found to be moulded around the fetus, a classical CS is recommended to avoid both fetal and maternal trauma. In cases of intrauterine death with a transverse lie, spontaneous vaginal delivery is possible for early preterm fetuses by extreme flexion of the body (spontaneous evolution). However, CS will usually be required beyond mid‐trimester, although a lower segment approach may be used. Malposition and cephalopelvic disproportion In higher‐income countries, cephalopelvic disproportion is usually ‘relative’ and due to persistent malposition or relative fetal size (macrosomia). Classically we consider these problems with regard to the passage, the passenger or the powers, either alone or in combination. The passage Absolute disproportion due to a contracted pelvis is now rare in higher‐income countries unless caused by severe pelvic trauma and this should be known before the onset of labour. Caldwell and Moloy described four types of pelvis: gynaecoid (ovoid inlet, widest transversely, 50%), anthropoid (ovoid inlet, widest anteroposterior, 25%), android (heart‐shaped inlet, funnel‐shaped, 20%) and platypelloid (flattened gynaecoid, 3%). These can influence labour outcome but as pelvimetry is rarely used and clinical assessment of pelvic shape is inaccurate, this rarely influences clinical mangement in labour. The anthropoid pelvis is associated with a higher risk of persistent occipito‐posterior (OP) position and relative disproportion. The passenger and OP malposition Fetal anomalies (e.g. hydrocephalus, ascites) where disproportion may be a problem in labour are usually assessed antenatally and delivery by elective CS considered. Fetal macrosomia is increasing, related to the rising body mass index (BMI) in many pregnant populations. The evidence for inducing non‐diabetic women with an estimated fetal weight above the 90th centile (or >4000 g) in order to reduce cephalopelvic disproportion remains equivocal. Malposition is an increasingly common cause of disproportion and may be related to a sedentary lifestyle. OP position is associated with deflexion and/or asynclitism with a larger diameter presenting. Optimal uterine activity will correct the malposition in 75% of cases. Flexion occurs as the occiput reaches the pelvic floor with long rotation through 135° to an OA position and a high chance of normal delivery. Moulding of the fetal skull and pelvic elasticity (related to changes at the symphysis pubis) are dynamic changes that facilitate progress in labour and delivery. Short rotation through 45° to direct OP can result in spontaneous ‘face to pubes’ delivery, although episiotomy may be required to allow the occiput to deliver. Persistent OP position occurs in up to 25% of cases and is associated with further deflexion. The risk of assisted delivery is high because of relative disproportion as the presenting skull diameters increase. Delivery in the OP position from mid‐cavity (0 to +2 station) requires critical assessment to decide whether delivery should be attempted vaginally or abdominally and is discussed in later sections. The powers Disproportion is intimately related to dystocia and failure to progress in labour. National Institute for Health and Care Excellence (NICE) guidelines recommend that first stage delay is suspected with cervical dilatation of less than 2 cm in 4 hours when forewater amniotomy should be offered. Delay is confirmed if progress is less than 1 cm 2 hours later and oxytocin augmentation should be offered [6] . This shortens labour but does not affect operative delivery rates. High‐dose oxytocin may reduce CS rates but larger trials are required before these regimens are used routinely. The decision to use oxytocin in labour arrest in multigravid patients must only be made by the most senior obstetrician and should always be approached with extreme caution as uterine rupture is a possible consequence. In the second stage, particularly with epidural analgesia, passive descent for at least 1 hour is recommended, and possibly longer if the woman wishes, before encouraging active pushing. With regional analgesia and a normal FHR pattern, birth should occur within 4 hours of full dilatation regardless of parity [7] . Oxytocin may be commenced in nulliparous patients in the passive phase if contractions are felt to be inadequate and particularly with the persistent OP position. Failure of second‐stage descent combined with excessive caput or moulding suggests disproportion and requires critical assessment to decide the appropriate mode of delivery. Summary box 26.2 OP position with deflexion of the head and asynclitism results in relative disproportion compounded by inadequate uterine activity. With epidural analgesia in place, passive descent should be encouraged for at least 1 hour. Augmentation with oxytocin should be used with extreme caution in multigravid patients with labour arrest. Instrumental vaginal deliveries Background The incidence of instrumental vaginal delivery (IVD) varies widely and in Europe ranges from 0.5% (Romania) to 16.4% (Ireland), although there is no direct relationship with CS rates [ 8 , 9 ]. Epidural analgesia is associated with higher IVD rates. Allowing a longer passive second stage for descent results in less rotational deliveries and possibly a reduction in second‐stage CS [ 10 , 11 ]. Common indications for IVD include delay in the second stage of labour due to inadequate uterine activity, malposition with relative disproportion, maternal exhaustion and fetal compromise. Women with severe cardiac, respiratory or hypertensive disease or intracranial pathology may require IVD to shorten the second stage (when forceps may be preferred). Assessment and preparation for IVD The condition of the mother and fetus and the progress of labour should be assessed prior to performing IVD. Personal introductions to the woman and her partner are essential, explaining the reason for IVD and ensuring a chaperone and enough support are available. The findings, plan of action and the procedure itself should be explained and the discussions carefully recorded. Verbal or written consent is obtained. The mother and her partner may be physically and emotionally exhausted and great care should be exercised in terms of behaviour, communication and medical action. On abdominal examination, the fetal head should be no more than 1/5 palpable (preferably 0/5). A scaphoid shape to the lower abdomen may indicate an OP position. The FHR pattern should be assessed, noting any clinical signs of fetal compromise (e.g. fresh meconium). With acute fetal compromise (e.g. profound bradycardia, cord prolapse) delivery must be expedited urgently and this may only allow a brief explanation to be given to the patient and her partner at the time. If contractions are felt to be infrequent or short‐lasting, an oxytocin infusion should be considered in the absence of signs of fetal compromise. Both vacuum and forceps deliveries are associated with an almost threefold increased risk of shoulder dystocia compared with spontaneous delivery and this should be anticipated. However, it remains unclear whether this increased incidence is a cause or effect phenomenon [12] . On vaginal examination the cervix should be fully dilated with membranes absent. The colour and amount of amniotic fluid is recorded. Excessive caput or moulding may suggest the possibility of disproportion. Inability to reduce overlapping skull bones with gentle pressure is designated ‘moulding +++’; overlapping that reduces by gentle digital pressure is ‘moulding ++’, and meeting of the bones without overlap is ‘moulding +’. Identification of position, station, degree of deflexion and asynclitism will help decide whether IVD is appropriate, where it should be undertaken and who should undertake the procedure. Successful IVD is associated with station below the spines and progressive descent with pushing. If the head is 1/5 palpable abdominally, the leading bony part of the head is at the level of the ischial spines (mid‐cavity). When the head is more than 1/5 palpable and/or when station is above the spines, delivery by CS is recommended. Position is determined by identification of suture lines and fontanelles. The small posterior fontanelle (PF) lies at the Y‐shaped junction of the sagittal and lambdoidal sutures but may be difficult to feel when there is marked caput. The anterior fontanelle (AF) is a larger diamond‐shaped depression at the junction of the two parietal and two frontal bones. It can be differentiated from the PF by identifying the four sutures leading into the fontanelle. In deflexion (particularly OP positions) the AF lies centrally and is easily felt. Position can be confirmed by reaching for the pinna of the fetal ear, which can be flicked forwards indicating that the occiput lies in the opposite direction. Reaching the ear suggests descent below the mid‐pelvic strait. The degree of asynclitism should be assessed (see Fig. 26.1 ), with increasing degrees suggesting disproportion and a potentially more difficult IVD. Assessment of level and position can be difficult with OP position and in obesity. If there is any doubt after careful clinical examination, ultrasound assessment is recommended. The fetal orbits are sought and the position of the spine is noted. This is simple to do and can reduce the incorrect diagnosis of fetal position without delaying delivery, although on its own may not reduce morbidity associated with IVD [13] . IVD is normally performed with the mother in the dorsal semi‐upright position with legs flexed and abducted, supported by lithotomy poles or similar. The procedure is performed with good light and ideally aseptic conditions. The vulva and perineum should be cleansed and the bladder catheterized if the woman is unable to void. Adequate analgesia is essential and requires careful individualized assessment. Epidural anaesthesia is advisable for mid‐cavity IVD (i.e. station 0 to +2 cm below the ischial spines; see Fig. 26.2 ). In the absence of a pre‐existing epidural, spinal anaesthesia may be considered. IVD at station +2 cm or below is termed ‘low‐cavity’ and regional or pudendal block with local perineal infiltration (20 mL 1% plain lidocaine) can be used. Outlet IVD is performed when the head is on or near the perineum with the scalp visible without separating the labia. Descent to this level is associated with an OA position requiring minimal or no rotation and perineal infiltration with pudendal anaesthesia is effective. When the vertex is below the spines, IVD is carried out with different types of forceps or vacuum equipment, depending on the position and station of the vertex and the familiarity and experience of the doctor. Overall, comparing outcomes is easier if designation is by station and position at the time of instrumentation (e.g. left OP at +3) rather than simply mid, low or outlet IVD [ 11 , 14 ]. Choice of instruments: forceps or ventouse The choice of instrument depends on the operator’s experience, familiarity with the instrument, station and position of the vertex. Therefore, knowledge of the station and the position of the vertex is essential. The fetus in an OA position in the mid/low cavity can be delivered using non‐rotational, long or short‐handled forceps or a vacuum device: silicone, plastic or anterior metal cups (with suction tubing arising from the dorsum of the cup) are all suitable. For the fetus lying OT at mid‐ or low‐cavity, or lying OP position mid‐cavity, Kielland’s forceps or vacuum devices can be used to correct the malposition. Manual rotation is another technique to consider. Low‐cavity direct OP positions can be delivered ‘face to pubis’ but this may cause signifcant perineal trauma as the occiput delivers. For this reason, an OP vacuum cup (with the suction tubing arising from the edge of the cup) may be preferred. The cup will promote flexion and late rotation to OA often occurs on the perineum just prior to delivery. The Kiwi OmniCup® is an all‐purpose disposable vacuum delivery system with a plastic cup and in‐built PalmPump™ suitable for use in all positions of the vertex. Later models also display force traction to help the accoucheur avoid cup slippage ( http://clinicalinnovations.com/portfolio‐items/kiwi‐complete‐vacuum‐delivery‐system/ ) Forceps delivery Forceps come in pairs and most have fenestrated blades with a cephalic and pelvic curve between the heel and toe (distal end) of each blade. The heel continues as a shank which ends in the handle. The handles of the two blades sit together and meet at the lock. The cephalic curve fits along either side of the fetal head with the blades lying on the maxilla or malar eminences in the line of the mento‐vertical diameter ( Fig. 26.8 a). When correctly attached, uniform pressure is applied to the head, with the main traction force applied over the malar eminences. The shanks are over the flexion point, allowing effective traction in the correct direction. Non‐rotational forceps (the longer‐handled Neville Barnes or Simpson, and the shorter‐handled Wrigley’s) have a distinct pelvic curve that allows the blades to lie in the line of the pelvic axis whilst the handles remain horizontal. Kielland’s forceps have a minimal pelvic curve to allow rotation within the pelvis to correct malposition. Fig. 26.8 (a) Malar forceps application showing mento‐vertical diameter; (b) forceps traction (Pajot’s manoeuvre). Prior to applying forceps, the blades should be assembled to check whether they fit together as a pair. All forceps have matching numbers imprinted on the handles or shanks and these should also be checked. Non‐rotational forceps can be applied when the vertex is no more than 45° either side of the direct OA position (i.e. right OA to left OA). Application and delivery in a direct OP position is also possible but not routinely recommended because of increased perineal trauma. The left blade is inserted first using a light ‘pencil grip’, negotiating the pelvic and cephalic curves with a curved movement of the blade between the fetal head and the operator’s right hand, which is kept along the left vaginal wall for protection. Hands are swapped to insert the right blade using the same technique. Correct application results in the handles lying horizontally, right on top of left, and locking should be easy. Before applying traction, correct application must be confirmed: (i) the sagittal suture is lying midline, equidistant from and parallel to the blades; (ii) the occiput is no more than 2–3 cm above the level of the shanks (i.e. head well‐flexed); and (iii) no more than a fingertip passes into the fenestration at the heel of the blade. From mid‐ and low‐cavity, Pajot’s maneouvre should be used, balancing outward traction with one hand with downward pressure on the shanks with the other ( Fig. 26.8 b, white arrow). The handles are kept horizontal to avoid trauma to the anterior vaginal wall from the toes of the blades. Traction is synchronized with contractions and maternal effort, and the resultant movement is outwards down the line of the pelvic axis until the head is crowning. An episiotomy is usually needed as the perineum stretches up. The direction of traction is now upwards once the biparietal eminences emerge under the pubic arch and the head is born by extension. The mother will usually ask to have her baby handed to her immediately (unless active resuscitation is required). After completing the third stage, any perineal trauma is repaired and a full surgical count completed. The procedure, including plans for analgesia and bladder care, should be fully documented. Rotational forceps Kielland’s forceps have a minimal pelvic curve allowing rotation of the head at mid‐cavity. They are powerful forceps requiring a skilled accoucheur who is willing to abandon the procedure if progress is not as expected. The number of units able to teach use of Kielland’s forceps to the point of independent practice is declining in the UK. The forceps should match and are applied so that the knobs on the handles face the fetal occiput. Kielland’s are used to correct both OT and OP positions using two methods of application. Direct application involves sliding each blade along the side of the head if space permits, and is more easily achieved with OP positions. Wandering application is useful in OT positions. The first blade is applied in front of the fetal face, from where it is gently ‘wandered’ around to lie in the usual position alongside the malar bone. The posterior blade is applied directly using the space in the pelvic sacral curve. If application is difficult or the blades do not easily lock, the procedure should be abandoned. Correct application should be confirmed. Once locked, it is essential to hold the handles at a relatively steep angle downwards in the line of the mid‐pelvic axis in order to achieve easy rotation. Asynclitism is corrected using the sliding lock, moving the shanks over each other until the knobs are aligned. Rotation should take place between contractions, using only gentle force. Rotation may require the fetal head to be gently disimpacted, either upwards or downwards but no more than 1‐cm displacement is needed. Correct application should be checked again after rotation. Traction should result in progressive descent and an episiotomy is usually required. At the point of delivery, the handles of Kielland’s are only just above the horizontal because of the lack of pelvic curve. If there is no descent with traction during three contractions with maternal effort, the procedure should be abandoned. Whether Kielland’s delivery takes place in the delivery room or in obstetric theatre requires careful assessment of fetal and maternal condition, analgesia and labour progress. If there is any doubt, a formal trial of forceps should be arranged. Vacuum delivery Ventouse or vacuum delivery is increasingly favoured over forceps delivery for similar indications in the second stage of labour. The prerequisites to be satisfied before vacuum delivery are the same as for all forms of IVD. Vacuum delivery is contraindicated below 34 +0 weeks and should be used with caution between 34 +0 to 36 +0 weeks [11] . Overall it is contraindicated for fetuses with possible haemorrhagic tendencies (risk of subgaleal haemorrhage) and before full dilatation [11] . Experienced practitioners may consider vacuum after 8 cm in a multigravid patient in some circumstances. There are many types of vacuum cup in regular use, made of different materials and of differing shapes. Whichever cup is used, the aim is to ensure that the centre of the cup is directly over the flexion point. The flexion point is 3 cm in front of the occiput in the midline and is the point where the mento‐vertical diameter exits the fetal skull [15] . Traction on this point promotes flexion, presenting the smallest diameters for descent through the pelvis: this is the optimum flexing median application ( Fig. 26.9 a). Other applications increase the risk of cup detachment, failed vacuum delivery and scalp trauma. In decreasing order of effectiveness, these are the flexing paramedian application ( Fig. 26.9 b), the deflexing median application ( Fig. 26.9 c) and the deflexing paramedian application ( Fig. 26.9 d). Fig. 26.9 Placement of the vacuum cup, from most favourable (a) to unfavourable (d). (a) Flexing median; (b) flexing paramedian; (c) deflexing median; (d) deflexing paramedian. It is vitally important to select the correct cup and this will vary depending on both the position and attitude of the fetus. The soft Silc, Silastic or anterior metal cups (where the tubing is attached on the dorsum of the cup) are not suitable for OT or OP positions, as their shape and configuration do not allow application over the flexion point. They are suitable for OA positions where the flexion point is accessible in the midline. Metal cups come in different sizes, usually 4, 5 or 6 cm in diameter. In a systematic review they were more likely to result in successful vaginal birth than soft cups (RR 1.63, 95% CI 1.17–2.28), but with more cases of scalp injury (RR 0.67, 95% CI 0.53–0.86) and cephalhaematoma (RR 0.61, 95% CI 0.39–0.95) [16] . A specially designed cup should be used for OT and OP positions: metal OP cups have tubing emerging from the lateral aspect of the cup and the Kiwi OmniCup has a groove in the dorsum of the cup to accommodate the flexible stem. These cups can be manoeuvred more laterally or posteriorly to reach the flexion point. Hand‐held vacuum is associated with more failures than metal ventouse [16] , although a larger study suggested that the OmniCup has an overall failure rate of 12.9% [11] . Aldo Vacca (1941–2014) was the doyen of vacuum delivery and (with reference to the flexion point and cup application) his favourite quote was ‘It’s always more posterior than you think’. After ensuring flexion point application, the cup must be held firmly on the fetal scalp, and a finger should be run around the rim to ensure that no maternal tissue is entrapped. A vacuum of 0.2 bar (150 mmHg or 0.2 kg/cm 2 negative pressure) is created using a hand‐held or mechanical pump, before rechecking the position over the flexion point and confirming maternal tissue is not trapped. The vacuum is increased to 0.7–0.8 bar (500–600 mmHg or 0.8 kg/cm 2 ) in one step, waiting 2 min where possible to develop the ‘chignon’ within the cup. Axial traction in the line of the pelvic axis should be timed with uterine contractions and maternal pushing. A thumb should be placed on the cup, with the index finger on the scalp at the edge of the cup allowing the operator to feel any potential detachment before it is heard (by which point it is often too late to prevent detachment). Descent promotes auto‐rotation of the head to the OA position and episiotomy is often not required. Parents should be reassured that the ‘chignon’ will settle over 2–3 days. Manual rotation Manual rotation for persistent OP position is an alternative to IVD. The procedure requires insertion of one hand into the posterior vagina to encourage flexion and rotation. Careful patient selection is essential and the operator must ensure that effective analgesia is in place. The right hand is inserted for a left OP position (insert left hand for right OP). Four fingers are placed behind the fetal occiput to act as the ‘gutter’ on which the head will rotate, with the thumb placed alongside the anterior fontanelle. When the mother pushes with a contraction, the thumb applies pressure to flex the head and rotation to an OA position should occur with minimal effort. In a series ( N  = 61) where OP position was managed in two groups, the spontaneous delivery rate increased from 27% to 77% in the group offered digital rotation ( P <0.0001) [17] . Complications of IVD In a Cochrane review of 32 studies ( N  = 6597), forceps were less likely to fail to achieve a vaginal birth compared with ventouse (RR 0.65, 95% CI 0.45–0.94) [16] . Vaginal and perineal lacerations, including third‐ and fourth‐degree tears, are more common with forceps than with vacuum. Infra‐levator haematomas may occur occasionally and these should be drained if large or symptomatic. The risk of flatus incontinence or altered continence is also higher. Follow‐up of women who have had low or outlet IVD confirms normal physical and neourological outcomes for the vast majority of the newborn. In terms of neonatal outcome, cephalhaematoma is more common with vacuum but risk of facial injury is less. Facial and scalp abrasions are usually minor and heal in a few days. Unilateral facial nerve palsy is rare and resolves within days or weeks and is not usually related to poor technique. Skull fracture is rare and most need no treatment unless depressed, when surgical elevation may be indicated. Vacuum delivery may result in retinal haemorrhages, haematoma confined to one of the skull bones and neonatal jaundice. Severe scalp lacerations imply poor technique and are fortunately rare. Subgaleal haemorrhage may cause minor or severe morbidity and rarely mortality [18] . In reviewing morbidity associated with IVD, it is important to remember that the alternative option of second‐stage CS is also associated with increased morbidity for both mother and baby. Safe practice: sequential intrumentation and trial of instrumental delivery For all IVDs, the procedure should be abandoned if there is ‘no evidence of progressive descent with moderate traction during each contraction, or where delivery is not imminent following three contractions of a correctly applied instrument by an experienced operator’ [11] . Sequential instrumentation is associated with increased neonatal morbidity and the decision to proceed must take into account the relative risks of delivery by second‐stage CS from deep in the pelvis. It can be difficult to judge whether to proceed with IVD, especially in cases with mid‐cavity malposition at the level of the ischial spines. In such cases a trial of instrumental delivery should be undertaken in theatre under regional anaesthesia, with the full theatre team and neonatal practitioner present. The estimated incidence of trial of instrumental delivery is 2–5%. It is vital to maintain awareness of the situation, with a clear willingness to abandon the attempt if progress is not as expected, proceeding immediately to CS. The couple should be advised of this strategy and appropriate consent obtained prior to the procedure, which should be undertaken by the most senior obstetrician available. In the presence of fetal compromise, it is prudent to consider delivery by emergency CS, rather than proceeding with a potentially difficult IVD. Paired cord blood samples should be taken and results recorded after every attempted IVD. Contemporary developments in IVD New methods are being developed to achieve IVD and include disposable plastic forceps with the ability to measure traction force (see http://www.medipex.co.uk/success‐stories/pro‐nata‐yorkshire‐obstetric‐forceps/ and Fig. 26.10 ) and the Odon device where traction is applied using a plastic bag placed around the fetal head and neck. This device is undergoing trials led by the World Health Organization (see http://www.who.int/reproductivehealth/topics/maternal_perinatal/odon_device/en/ ). Fig. 26.10 Pro‐Nata Yorkshire obstetric forceps. Reproduced with permission of Mark Jessup.

Share this:

  • Click to share on Twitter (Opens in new window)
  • Click to share on Facebook (Opens in new window)

Related posts:

  • Subfertility
  • The Law and the Obstetrician and Gynaecologist
  • Assisted Reproduction
  • Ambulatory Gynaecology, Hysteroscopy and Laparoscopy

breech presentation with adequate liquor

Stay updated, free articles. Join our Telegram channel

Comments are closed for this page.

breech presentation with adequate liquor

Full access? Get Clinical Tree

breech presentation with adequate liquor

  • Open access
  • Published: 03 May 2020

Revisiting the management of term breech presentation: a proposal for overcoming some of the controversies

  • Lionel Carbillon   ORCID: orcid.org/0000-0001-6367-4828 1 , 2 ,
  • Amelie Benbara 2 ,
  • Ahmed Tigaizin 2 ,
  • Rouba Murtada 2 ,
  • Marion Fermaut 2 ,
  • Fatma Belmaghni 2 ,
  • Alexandre Bricou 2 &
  • Jeremy Boujenah 2  

BMC Pregnancy and Childbirth volume  20 , Article number:  263 ( 2020 ) Cite this article

12k Accesses

11 Citations

4 Altmetric

Metrics details

The debate surrounding the management of term breech presentation has excessively focused on the mode of delivery. Indeed, a steady decline in the rate of vaginal breech delivery has been observed over the last three decades, and the soundness of the vaginal route was seriously challenged at the beginning of the 2000s. However, associations between adverse perinatal outcomes and antenatal risk factors have been observed in foetuses that remain in the breech presentation in late gestation, confirming older data and raising the question of the role of these antenatal risk factors in adverse perinatal outcomes. Thus, aspects beyond the mode of delivery must be considered regarding the awareness and adequate management of such situations in term breech pregnancies.

In the context of the most recent meta-analysis and with the publication of large-scale epidemiologic studies from medical birth registries in countries that have not abruptly altered their criteria for individual decision-making regarding the breech delivery mode, the currently available data provide essential clues to understanding the underlying maternal-foetal conditions beyond the delivery mode that play a role in perinatal outcomes, such as foetal growth restriction and gestational diabetes mellitus. In view of such data, an accurate evaluation of these underlying conditions is necessary in cases of persistent term breech presentation. Timely breech detection, estimated foetal weight/growth curves and foetal/maternal well-being should be considered along with these possible antenatal risk factors; a thorough analysis of foetal presentation and an evaluation of the possible benefit of external cephalic version and pelvic adequacy in each specific situation of persistent breech presentation should be performed.

The adequate management of term breech pregnancies requires screening and the efficient identification of breech presentation at 36 weeks of gestation, followed by thorough evaluations of foetal weight, growth and mobility, while obstetric history, antenatal gestational disorders and pelvis size/conformation are considered. The management plan, including external cephalic version and follow-up based on the maternal/foetal condition and potentially associated disorders, should be organized on a case-by-case basis by a skilled team after the woman is informed and helped to make a reasoned decision regarding delivery route.

Peer Review reports

The ideal management of women with term breech presentation remains a matter of intense debate. The rate of vaginal delivery has steadily declined in the last decades of the last century [ 1 ]. In 2000, the Term Breech Trial (TBT) Collaborative Group concluded that a composite variable combining perinatal and neonatal mortality or serious neonatal morbidity was significantly lower in the planned caesarean section (CS) group than in the planned vaginal birth group [ 2 ], which marked an apparent turning point in this controversy. Based on the short-term outcomes presented in the TBT study, the Royal College of Obstetricians and Gynaecologists (RCOG) [ 3 ] and the American College of Obstetricians and Gynecologists (ACOG) [ 4 ] recommended over the next few years that all women with persistent singleton breech presentation at term should undergo a planned CS delivery. An important and almost immediate impact on the practice was also observed in some countries that previously had a high proportion of vaginal breech deliveries [ 5 ]. TBT was the largest randomized trial ever published on the term breech mode of delivery. However, despite its undeniable strengths, a number of weaknesses have been identified. Specifically, there was a lack of adherence to strict criteria for vaginal birth in an important proportion of the included patients and nonoptimal methods of labour management as recognized by the TBT group itself [ 6 , 7 , 8 ]. In addition, when the TBT Collaborative Group published the 2-year analysis of paediatric outcomes, despite a large (greater than 50%) post-randomization loss to follow-up [ 9 ], these researchers found no reduction in the risk of death or neurodevelopmental delay in children at 2 years of age, thus raising questions regarding the real lessons to be drawn from this trial. Using multiple logistic regression analyses, the TBT group also reported [ 10 ] that the risk of maternal morbidity was lowest following vaginal birth (odds ratio [OR] 1.0) and highest following CS after active labour (36.1% in the TBT) (OR 3.33; 95% CI 1.75–6.33, P  < 0.001), particularly after a short second stage < 30 min (OR 0.25; 95% CI 0.11–0.57, P < 0.001) [ 9 ].

Later, population-based retrospective studies helped refine the consequences of applying recommendations of systematically planned CS for women with term breech presentation at the population level. Hartnack Tharin et al. [ 11 ] found that the rate of CS for term breech deliveries increased from 79.6 to 94.2% between 1997 and 2008 in Denmark, while intrapartum or early neonatal mortality decreased from 0.13 to 0.05% [relative risk (RR) 0.38 (95% CI 0.15–0.98)], which was a significant but lower reduction than the difference reported in the TBT. Using the Dutch National Perinatal Registry from 1999 to 2007, Vlemmix et al. [ 12 ] stated that after publication of the TBT, the elective CS rate increased from 24 to 60%, and overall perinatal mortality and short-term morbidity decreased. In contrast, these outcomes remained stable in the planned vaginal birth group. However, the authors estimated that 338 CS deliveries would need to be performed to prevent one perinatal death, and Schutte et al. [ 13 ] estimated the perinatal case fatality rate for elective CS for breech presentation in 2000–2002 at 0.47/1000 operations. At the same time, in the Netherlands the incidence of severe maternal morbidity (SMM) was estimated at 6.4/1000 during an elective CS compared with 3.9/1000 during an attempted vaginal delivery (OR 1.7; 95% CI 1.4–2.0), with an increased risk for SMM in the next pregnancy (OR 3.0; 95% CI 2.7–3.3) [ 14 ], despite the numerous facilities and adequate resources allocated to perinatal care in such a high-income country.

On the other hand, new guidelines were published in 2009 by the Society of Obstetricians and Gynaecologists of Canada (SOGC) stating that “planned vaginal delivery is reasonable in selected women with a term singleton breech foetus”. Afterwards, a study [ 15 ] including 52,671 breech deliveries in Canada (2003–2011) reported in 2011 that vaginal deliveries increased from 2.7% in 2003 to 3.9%. In this study, a concomitant increase in composite neonatal mortality and morbidity rates was observed with an adjusted rate ratio of 3.60 (95% CI 2.50–5.15), compared with CS without labour [ 15 ]. Moreover, CS with labour also increased from 8.7 to 9.8%, highlighting the particular difficulty in returning to previous practices after the clinical skills required to conduct a vaginal breech delivery have declined [ 15 , 16 ].

Some authors recently considered that “the TBT recommendations should be withdrawn” [ 6 ], while others still consider that the “results (of the TBT) are generalizable” [ 16 , 17 ]. Nevertheless, national guideline bodies have partially reversed their recommendations based on these discussions [ 18 , 19 , 20 ]. However, as rightly noted by Joseph et al. [ 16 ], the availability of clinical skills has declined in some of these countries, raising concerns from a pedagogic resident education and training standpoint [ 16 ]. In this regard, a meaningful role could be given to the possibility of training by simulation in building and maintaining specific skills and competencies for vaginal breech delivery.

A new meta-analysis [ 21 ] and several large-scale epidemiologic datasets from medical birth registries [ 22 , 23 , 24 ] recently evaluated risk factors associated with adverse perinatal outcomes in planned vaginal breech labours at term. These investigations were conducted in countries that have not abruptly modified their policies and that have continuously applied similar strict criteria over the last several decades for individual decision-making in cases of term breech presentation. We believe that the time has come to go beyond the sole question of delivery mode in the management of these situations.

Term breech presentation: are we asking the right questions?

It now appears time to expand our thinking and, considering recent important data that help elucidate the underlying significance of persistent breech presentation at term, to offer more dynamic and multidisciplinary insight into the management of these cases.

Indeed, similar to some older studies [ 25 , 26 , 27 ], several recent population-based studies [ 22 , 23 ] strongly suggest that the increased risk observed in foetuses that remain in the breech presentation at term is closely linked to antenatal or underlying disorders that may be associated with the breech presentation and is not solely due to the mode of delivery. Because adverse outcomes can be caused by underlying or gestational disorders, any discussion that is limited to delivery mode seems too restrictive and does not address the whole issue.

Most recent large-scale data

Deterministic or accidental breech presentation.

In a recent Finnish population-based case-control study including all singleton deliveries from 1 January 2005 to 31 December 2014 and excluding preterm deliveries, antepartum-diagnosed stillbirths, placenta previa and infants with congenital malformations (499,206 foetuses at term), Macharey et al. [ 22 ] evaluated the antenatal risk factors associated with adverse perinatal outcomes in planned vaginal breech labour at term. They found that the stillbirth rate was significantly higher in cases of planned vaginal breech labour than in cases of cephalic presentation (0.2 vs 0.1%, respectively), which was correlated with foetal growth restriction, oligohydramnios, gestational diabetes mellitus (GDM) and a history of CS. Furthermore, in another recent survey based on the same cohort of mother-neonate dyads that also excluded congenital malformations, placenta previa and prelabour stillbirths [ 23 ], this same group showed that breech presentation at term was significantly associated with antenatal stillbirth and a number of individual obstetric risk factors for adverse perinatal outcomes, including oligohydramnios, foetal growth restriction, gestational diabetes, history of CS section and congenital anomalies. Among all planned singleton vaginal deliveries with the foetus in the breech presentation at term, a composite adverse perinatal outcome defined as umbilical arterial pH < 7.00, 5-min Apgar score below 7 and/or neonatal mortality during the first 6 days of life (excluding stillbirth) was associated with foetal growth restriction (aOR 2.94 [1.30–6.67]), oligohydramnios (adjusted OR 2.94 [1.15–7.81]), gestational diabetes (aOR 2.89[1.54–5.40]), and a history of CS (aOR 2.94 [1.28–6.77]).

In another recent population-based study based on perinatal data of all (650,968) children born in Norway from 1999 to 2009 [ 24 ], the authors recognized the limitations of most registry-based studies, as the selection of women with breech presentation and planned vaginal delivery was based on criteria that might have identified pregnancies with a lower risk of adverse outcomes compared with those selected for CS delivery. Moreover, in this study [ 24 ], the intrapartum conversion of some of the planned vaginal deliveries to an emergency CS delivery may have increased the risk for adverse outcome in the CS group. However, Bjellmo et al. [ 24 ] conducted an innovative analysis comparing breech deliveries to vaginal cephalic births. Thus, they showed that singleton children born at term without congenital malformations had a higher risk for stillbirth and neonatal mortality if they were born in the breech presentation “regardless of whether they were born vaginally or by CS delivery” (0.9 per 1000 in those actually delivered vaginally and 0.8 per 1000 in those actually born by CS delivery) compared with those born by vaginal cephalic delivery (0.3 per 1000). Of note, among those children born in the breech rather than in the cephalic presentation, these authors [ 24 ] found that a higher proportion of infants were born small for gestational age (SGA). However, these authors [ 23 ] did not distinguish foetal growth restriction among SGA neonates. In their interpretation, Bjellmo et al. [ 23 ] considered that “the overall higher risk for stillbirth and the higher proportion of infants born SGA among children born in the breech than in the cephalic presentation may suggest that foetuses with antenatal acquired risk factors for adverse outcomes are more likely to present in the breech than in the cephalic presentation at birth.” According to these authors, the findings were most likely explained by a combination of antenatal acquired risk factors for neonatal death with increased vulnerability to the birth process. Of note, in the TBT group, birth weights of less than 2.8 kg were also associated with adverse perinatal outcomes ( P  = 0.003) [ 10 ]. In fact, a limitation in the Norwegian study [ 24 ] was that, unlike Macharey et al., the authors did not distinguish foetal growth restriction among these SGA neonates. Indeed, in a large cohort study conducted with the National Health Service region in England through a multivariable analysis of 92,218 normally formed singletons delivered during 2009–2011 from 24 weeks of gestation, including 389 stillbirths, Gardosi et al. [ 25 ] showed that foetal growth restriction had the largest population attributable risk for stillbirth which was fivefold greater if it was not detected antenatally than when it was (32.0% v 6.2%). The above data suggest that some antenatal features associated with term breech presentation, notably foetal growth restriction, and some gestational disorders (such as uncontrolled gestational diabetes mellitus) could affect the prognosis in term breech cases. Previous data also support this conclusion; Luterkort M et al. [ 26 ] had previously reported in a prospective follow-up of 228 pregnancies with the foetus in the breech presentation in the 33rd gestational week that the 96 foetuses (42%) who remained in the breech presentation at delivery weighed 4.9% less than their vertex controls after adjustments were made for gestational age and had an increased frequency of oligohydramnios. Krebs et al. [ 27 ] later confirmed this association between breech presentation and foetal growth restriction from a register-based, case-control cohort of infants with cerebral palsy born between 1979 and 1986 in East Denmark.

In fact, as reported by Fox and Chapman [ 28 ], up to 21% of all foetuses adopt a noncephalic presentation at 28–29 weeks of gestation, and this proportion progressively decreases to 5% from 37 to 38 weeks [ 28 ]. Certain conditions, such as uterine malformation, can disturb both this continuous process of spontaneous cephalic version and normal foetal growth, thereby leading to increased term breech presentation rates in these cases [ 29 ]. This point highlights the importance of estimating foetal weight and well-being in cases of persistent breech presentation at term. Furthermore, even some cases of controlled GDM may be associated with excess foetal weight during the last weeks of pregnancy, leading to possible dystocia due to this overgrowth, or with other GDM-related complications, such as preeclampsia; thus, foetal weight estimates should be monitored closely beginning in the 37th week of gestation, with regular reassessment as long as the patient has not delivered.

The impact of strict criteria on the selection of vaginal delivery

From a broad perspective, in the most recent meta-analysis investigating the risks of planned vaginal breech delivery versus planned CS for term breech birth [ 21 ], the overall heterogeneity (I 2  = 36%) was informative. The variability of neonatal mortality among 14 studies accounting for 74,094 breech vaginal deliveries was low (ranging from 0.08 to 0.37%). On the other hand, neonatal mortality was markedly higher in only 2 studies authored by Singh et al. [ 30 ] and Hannah et al. [ 2 ] (the TBT). These two studies [ 2 , 30 ] accounted for 1099 breech vaginal deliveries (1.5% of births) and had perinatal mortality rates as high as 21 and 1.3%, respectively, for planned vaginal births (25.6% of perinatal deaths). The same was true for neurological morbidity, which was 3.4 and 1%, respectively, in the studies by Singh et al. [ 30 ] and TBT [ 2 ], while it ranged from 0.07 to 0.2% in the 14 other studies encompassing 74,094 breech vaginal deliveries conducted with the implementation of more stringent exclusion criteria for vaginal breech delivery.

In these 14 studies accounting for 74,094 breech vaginal deliveries, the retrospective observational cohort study from the Finnish Medical Birth Register [ 31 ] and the prospective observational study PREMODA [ 32 ] (as well as the more recent Norwegian Medical Birth Registry study) applied similar pre-established exclusion criteria for planned vaginal birth. In the PREMODA study, an increased absolute rate of perinatal death or serious neonatal morbidity was observed in both the planned vaginal group (1.60, 95% CI 1.14–2.17) and planned CS delivery group (1.45 [1.16–1.81]) with breech presentation among the total population of 264,105 births, but the planned vaginal group and the planned CS delivery group with breech presentation did not differ significantly for the combined outcome of foetal/neonatal mortality or serious morbidity (odds ratio [OR] = 1.10, 95% CI [0.75–1.61]). The Royal College of Obstetricians and Gynaecologists proposes comparable pre-established criteria for the management of term breech presentation, recommending that “women should be informed that a higher risk of planned vaginal breech birth is expected where there are independent indications for CS section and in circumstances such as a hyperextended neck on ultrasound, high estimated foetal weight (more than 3,800 g), low estimated weight (less than tenth centile), footling presentation, [and] evidence of antenatal foetal compromise” but considers that “the role of pelvimetry is unclear” [ 20 ]. Of note concerning this last point, Van Loon et al. showed in a randomized controlled trial [ 33 ] that the adequacy of pelvis size, as assessed by pelvimetry, improved the selection of delivery route. In line with them, two recent studies support this view [ 34 , 35 ]. Other authors also included criteria for the adequate management and continuous monitoring of foetal heart rate during labour (which is common in maternity wards of most high-income countries but could be monitored intermittently in the TBT). Indeed, decreased variability and late decelerations are more prevalent during breech deliveries than vertex deliveries [ 36 ], and good labour progress is a predictor of better neonatal outcomes [ 37 ]. In the Finnish Medical Birth Register [ 31 ], 1270 women (43.6%) were selected as candidates for vaginal breech delivery, and the selection quality was confirmed by the low conversion rate of vaginal to CS breech delivery (11.4%). This rate was higher (36.1%) in the TBT [ 30 ].

As noted by methodologists [ 38 ], real-world prenatal patient care is subject to decision-making based on the continuous evaluation of risk factors, medical history, comorbidities, behavioural aspects, and other factors that indeed cannot be strictly reproduced in randomized controlled trials. For example, in the TBT [ 2 ], an upper limit of 4000–4500 g was given for estimated foetal weight. However, as the duration between randomization and delivery inevitably lengthened in the planned vaginal delivery group, a significantly higher number of macrosomic neonates were born in the planned vaginal delivery group ( P  = 0.002). In actuality, an informed woman who opts for vaginal delivery at 36 or 37 weeks of gestation usually changes her mind if she has not delivered several weeks later and if the clinician tells her that the birthweight will probably exceed 3800–4000 g, with an associated increased risk of adverse perinatal outcomes. Thus, in cases of even minor glycaemic disorder, special attention should be paid in the 37th week of gestation to foetal weight estimates and the possible occurrence of preeclampsia or associated gestational disorders; moreover, cases of SGA foetuses with possible foetal growth restriction should be closely followed, regardless of the delivery mode chosen by the patient [ 26 , 39 ].

How might we maximize patient benefit from a safe external cephalic version attempt?

With the restrictive practice of breech vaginal delivery in the last 15 years, national colleges of obstetricians (RCOG, ACOG, SOGC and RANZCOG) and FIGO updated their guidelines and recommended external cephalic version (ECV) at term to limit the increase in elective CS rate for cases of term breech presentation. However, recent data urge us to develop a broader perspective and an accurate assessment of the real impact of various ECV policies.

Indeed, the true impact of ECV may first be limited by the timely detection of breech presentation. In a retrospective cohort study of 394 consecutive cases of breech presentation at term, Hemelaar et al. [ 40 ] found that over two periods separated by 10 years (1998–1999 and 2008–2009), the proportion of breech presentations not diagnosed antenatally increased from 23.2 to 32.5% ( P  = 0.04), causing 52.8% of women who were eligible for ECV to miss an attempt in 2008–2009. The authors also reported that the proportion of women who declined ECV during the same period decreased significantly from 19.1 to 9.0%.

Eligibility is a second limitation. In Australia, a large-scale survey [ 41 ] showed that 22.3% of 32,321 singleton breech pregnancies were considered ineligible (due to oligohydramnios, antepartum haemorrhage or abruption, previous CS or pelvic abnormality, placenta previa, placenta accreta, or an infant with major congenital anomalies). In this survey [ 41 ], only 10.5% of the singleton breech pregnancies had an ECV. In a systematic review, Rosman et al. [ 42 ] identified 60 studies that reported 39 different contraindications and five guidelines with 18 contraindications (varying from five to 13 contraindications per guideline), with oligohydramnios being the only contraindication that was consistently mentioned in all guidelines. Thus, there was no general consensus on the eligibility of patients for ECV, but contraindications generally include all conditions in which this procedure may be associated with a particular risk for the foetus or mother. These conditions include the following: severe intrauterine growth restriction, abnormal umbilical artery Doppler index and/or nonreassuring foetal heart rate, which may require an emergency CS birth; foetuses with a hyperextended head and significant foetal or uterine malformations, which may carry a particular foetal risk; rhesus alloimmunization, which might be reactivated by the procedure; and recent vaginal bleeding or ruptured membranes, which were associated with cord prolapse in 33% of reported cases after ECV attempt [ 43 ].

If CS or rapid delivery is indicated for another obstetric condition, ECV is also contraindicated, notably in cases of placenta previa, severe preeclampsia, and increased risk of placental abruption. Other situations, such as maternal obesity, nonsevere SGA foetuses, and nonsevere oligohydramnios, merely decrease the likelihood of ECV success. In contexts such as severe oligohydramnios or multiple gestations, ECV is simply impracticable, except for a second twin after delivery of the first. Furthermore, previous uterine surgery (CS delivery, myomectomy, or hysteroplasty) is considered a relative contraindication for ECV by some but not all authors [ 44 ]. On the other hand, in patients with gestational diabetes mellitus, incomplete or uncontrolled glucose levels are associated with an increased risk of foetal macrosomia in late pregnancy, and even if the estimated foetal weight seems compatible with a planned vaginal delivery when the mode of delivery is discussed, rapid foetal growth during the last weeks may lead to major difficulties during delivery. Therefore, in such a context, we believe there is potential for a particular benefit from successful ECV at 36 weeks.

Predictors of successful ECV

Pinard previously observed that unengaged breech presentation is an important predictor of successful ECV [ 45 ]; the same observation was made by Lau et al. [ 46 ], Aisenbrey et al. [ 47 ], and Hutton et al. [ 48 ]. In the large series of 1776 ECVs published by Hutton et al. [ 48 ], descent and impaction of the breech foetus were the most discriminating factors for predicting successful ECV, regardless of parity. Other predictors of success include parity [ 45 , 47 , 49 , 50 ], abundant amniotic fluid [ 49 , 50 , 51 ], nonfrank breech presentation [ 47 ], gestational age under 38 weeks [ 43 ], and posterior placenta [ 50 ]. In contrast, nulliparity and tense uterus are associated with a lower likelihood of success [ 44 , 48 , 52 ].

Velzel et al. [ 53 ] recently reviewed prediction models, most of which were developed without any external validation, and found that the most reliable predictors of successful ECV were nonimpacted breech presentation, parity and uterine softness (which usually go hand in hand), normal amniotic fluid index, posterior placental location, and, as noted by Pinard [ 45 ], foetal head in a palpable situation. These criteria might be used to support patient counselling and decision-making about ECV and to reduce the proportion of women declining ECV, particularly in the most favourable situations for ECV.

Obstetric outcomes after an ECV attempt

De Hundt et al. [ 54 ] conducted a systematic review and meta-analysis and showed that women who have had a successful ECV for breech presentation are at increased risk for CS delivery (OR 2.2; 95% CI 1.6–3.0) and instrumental vaginal delivery (OR 1.4; 95% CI 1.1–1.7) compared with women with spontaneous cephalic presentation. Interestingly, stratification by time delay between successful ECV and delivery revealed a trend for increased risk of CS during the first week after ECV [ 55 ]. Furthermore, in a cohort of 301 women with successful ECV, De Hundt et al. [ 56 ] found that nulliparity was the only of seven factors that predicted the risk of CS and instrumental vaginal delivery (OR 2.7; 95% CI 1.2–6.1). Based on a retrospective, population-based cohort study using the CDC’s birth data files from the US in 2006, Balayla et al. [ 57 ] also showed that relative to breech controls without an ECV attempt, cases of ECV failure with persistent breech presentation and labour attempts were associated with increased odds of CS delivery (adjusted OR 1.38; 95% CI 1.21–1.57), assisted ventilation at birth (aOR 1.50; 95% CI 1.27–1.78), 5-min Apgar score < 7 (aOR 1.35; 95% CI 1.20–1.51), and neonatal intensive care unit admission (aOR 1.48; 95% CI 1.20–1.82).

This information should also be considered in the dialog with women regarding the way in which late pregnancy and delivery should be managed based on existing data, their own situations and their wishes.

The true benefit of an active and systematic ECV policy is widely appreciated [ 58 , 59 ], and such evaluation may be subject to bias. Burgos et al. [ 58 ] found that their policy decreased the rate of breech presentation at delivery by 39.0% and decreased the CS rate for cases of breech presentation at term from 59 to 44%. On the other hand, Coppola et al. [ 59 ] reported that their CS rate was not significantly reduced in the planned ECV group, even after adjustments were made for age, parity and previous CS delivery. Thus, each perinatal centre should implement an appropriate and coherent policy in accordance with the prevalence of pathologies in the population.

Towards a consensus for a global shared vision and management of term breech presentation that could include the following

A policy of breech presentation screening at 36 weeks of gestation is efficient and cost effective [ 60 ].

Such screening should allow timely ECV and a careful evaluation of potential underlying antenatal risks, considering obstetric history, estimated foetal weight/growth and potential gestational disorders [ 23 , 24 , 25 , 26 , 27 , 29 ].

Foetal weight estimates based on clinical and ultrasound examinations are essential, despite the large confidence interval of all available algorithms for producing such estimates. Vaginal birth may be excluded when the estimated foetal weight approximates the upper limit used for selection in most national guidelines (3800 g) [ 18 , 19 , 20 ], particularly in the absence of previous successful vaginal delivery.

Before vaginal delivery is considered, clinical pelvic examination is universally recommended to rule out pathological pelvic contraction. Radiologic or magnetic resonance imaging (MRI) pelvimetry is not universally conducted [ 20 , 23 , 24 , 31 , 32 ]. However, Van Loon et al. [ 33 ] demonstrated in a randomized controlled trial that the use of MRI pelvimetry in breech presentation at term allowed better selection of delivery route, with a significantly lower emergency CS rate. More specifically, several recent studies [ 34 , 35 ] have evaluated the contribution of pelvimetry and found that MRI pelvimetry provided useful criteria for the preselection and counselling of women with breech presentation and the desire for vaginal delivery. Therefore, pelvimetry is diversely used in Europe for the preselection and counselling of women (particularly nulliparous women) with breech presentation and is specifically used in regions where vaginal delivery is still considered an option [ 35 ].

In cases of failed ECV with persistent breech presentation, this policy should allow customized care tailored to each situation in the last weeks of pregnancy.

A discussion with the informed patient is essential. One must thoroughly consider the experience of the health care team/the availability of clinical skills required for conducting a vaginal breech delivery and carefully select women who are eligible for planned vaginal delivery (considering obstetric history and the criteria described above for the choice between planned vaginal and CS deliveries) [ 20 , 23 , 24 , 26 , 28 ].

Regardless of the planned mode of delivery [ 22 ], adequate follow-up during the last weeks of pregnancy is mandatory, with particular consideration of possible associated underlying disorders (particularly foetal growth restriction or excessive foetal weight in cases of gestational diabetes mellitus) [ 24 , 25 , 26 ]. Thus, the foetal weight estimation should be carefully considered in the 37th week of gestation, even in cases of minor glycaemic disorder, with regular reassessments and a plan for CS delivery if the patient remains pregnant for many more weeks and if foetal weight estimates reach approximately 3600–3800 g.

If vaginal delivery is planned, careful labour management by a skilled team is needed, accompanied by continuous foetal heart rate monitoring [ 36 ] and a particular focus on the rate of progress in the second delivery stage [ 37 ]. When such conditions are not or cannot be fulfilled, a planned CS may be the best choice.

When a CS has been planned, adequate follow-up during the last weeks of pregnancy and careful calculation of the delivery date are needed, taking into account possible comorbidities and gestational disorders.

Term breech presentation is a condition for which personalized obstetrical care is particularly needed. The best way is likely to be as follows: first, efficiently screen for breech presentation at 36–37 weeks of gestation; second, thoroughly evaluate the maternal/foetal condition, foetal weight and growth potential, and the type (frank, complete, or footling) and mobility of breech presentation; and three, consider the obstetric history and pelvic size/conformation. The management plan, including ECV and follow-up during the last weeks, should then be organized taking into account antenatal risk factors on a case-by-case basis by a skilled team after informing the woman, discussing her personal situation and criteria and helping her make a rational decision. Foetal overgrowth or growth restriction and/or oligohydramnios may necessitate timely CS, and the mode of delivery should be re-evaluated as necessary according to obstetric conditions (e.g., estimated foetal weight and Bishop score).

Availability of data and materials

Not applicable.

Abbreviations

American College of Obstetricians and Gynecologists

Caesarean section

External cephalic version

International Federation of Gynecology and Obstetrics

Royal Australian and New Zealand College of Obstetricians and Gynaecologists

Royal College of Obstetricians and Gynaecologists

  • Severe maternal morbidity

Society of Obstetricians and Gynaecologists of Canada

Term breech trial

Trends in vaginal breech delivery. J Epidemiol Community Health. 2015;69:1237–9.

Hannah ME, Hannah WJ, Hewson SA, Hodnett ED, Saigal S, Willan AR. Planned caesarean section versus planned vaginal birth for breech presentation at term: a randomized multicentre trial. Term Breech Trial Collaborative Group Lancet. 2000;356(9239):1375–83.

CAS   Google Scholar  

RCOG. Setting standards to improve women’s health. 2001.

Google Scholar  

ACOG committee opinion: number 265, December 2001. Mode of term single breech delivery. Committee on Obstetric Practice. Obstet Gynecol. 2001;98:1189–90.

Rietberg CC, Elferink-Stinkens PM, Visser GH. The effect of the term breech trial on medical intervention behaviour and neonatal outcome in the Netherlands: an analysis of 35,453 term breech infants. BJOG. 2005;112:205–9.

Article   PubMed   Google Scholar  

Glezerman M. Five years to the term breech trial: the rise and fall of a randomized controlled trial. Obstet Gynecol. 2015;125:1162–7.

Article   Google Scholar  

Kotaska A. Inappropriate use of randomised trials to evaluate complex phenomena: case study of vaginal breech delivery. BMJ. 2004;329(7473):1039–42.

Article   PubMed   PubMed Central   Google Scholar  

Su M, McLeod L, Ross S, et al. Term Breech Trial Collaborative Group Factors associated with adverse perinatal outcome in the Term Breech Trial. Am J Obstet Gynecol. 2003;189:740–5.

Whyte H, Hannah ME, Saigal S, et al. Term Breech Trial Collaborative Group. Outcomes of children at 2 years after planned cesarean birth versus planned vaginal birth for breech presentation at term: the International Randomized Term Breech Trial. Am J Obstet Gynecol. 2004;191:864–71.

Su M, McLeod L, Ross S, et al. Factors associated with maternal morbidity in the term breech trial. J Obstet Gynaecol Can. 2007;29:324–30.

Hartnack Tharin JE, Rasmussen S. Krebs L consequences of the term breech trial in Denmark. Acta Obstet Gynecol Scand. 2011;90:767–71.

Vlemmix F, Bergenhenegouwen L, Schaaf JM, et al. Term breech deliveries in the Netherlands: did the increased cesarean rate affect neonatal outcome? A population-based cohort study. Acta Obstet Gynecol Scand. 2014;93:888–96.

Schutte JM, Steegers EA, Santema JG, Schuitemaker NW, van Roosmalen J, Maternal Mortality Committee of the Netherlands society of obstetrics. Maternal deaths after elective cesarean section for breech presentation in the Netherlands. Acta Obstet Gynecol Scand. 2007;86:240–3.

van Dillen J, Zwart JJ, Schutte J, Bloemenkamp KW, van Roosmalen J. Severe acute maternal morbidity and mode of delivery in the Netherlands. Acta Obstet Gynecol Scand. 2010;89(11):1460–5.

Lyons J, Pressey T, Bartholomew S, Liu S, Liston R, Joseph KS. Delivery of breech presentation at term gestation, Canada, 2003 to 2011. Obstet Gynecol. 2015;125:1153–61.

Joseph KS, Pressey T, Lyons J, Bartholomew S, Liu S, Muraca G, et al. Once more unto the breech: planned vaginal delivery compared with planned cesarean delivery. Obstet Gynecol. 2015;125:1162–7.

Article   CAS   PubMed   Google Scholar  

Thornton JG. The term breech trial results are generalisable. BJOG. 2016;123(1):58.

ACOG Committee Opinion No. 340. Mode of term singleton breech delivery. ACOG Committee on obstetric practice. Obstet Gynecol. 2006;108:235–7.

SOGC clinical practice guideline: Vaginal delivery of breech presentation: no. 226, June 2009, Kotaska A, Menticoglou S, Gagnon R, Farine D, Basso M, Bos H, Delisle MF, Grabowska K, Hudon L, Mundle W, Murphy-Kaulbeck L, Ouellet A, Pressey T, Roggensack A. Society of Obstetricians and Gynaecologists of Canada. Int J Gynaecol Obstet. 2009;107:169–76.

RCOG. Setting standards to improve women’s health. Guideline No. 20b. December 2006, actualized in March 2017.

Berhan Y, Haileamlak A. The risks of planned vaginal breech delivery versus planned caesarean section for term breech birth: a meta-analysis including observational studies. BJOG. 2016;123:49–57.

Macharey G, Gissler M, Rahkonen L, et al. Breech presentation at term and associated obstetric risks factors-a nationwide population based cohort study. Arch Gynecol Obstet. 2017;295:833–8.

Macharey G, Gissler M, Ulander VM, et al. Risk factors associated with adverse perinatal outcome in planned vaginal breech labors at term: a retrospective population-based case-control study. BMC Pregnancy Childbirth. 2017;17:93.

Bjellmo S, Andersen GL, Martinussen MP, et al. Is vaginal breech delivery associated with higher risk for perinatal death and cerebral palsy compared with vaginal cephalic birth? Registry-based cohort study in Norway. BMJ Open. 2017;7:e014979.

Gardosi J, Madurasinghe V, Williams M, Malik A, Francis A. Maternal and fetal risk factors for stillbirth: population based study. BMJ. 2013;346:f108.

Luterkort M, Persson PH, Weldner BM. Maternal and fetal factors in breech presentation. Obstet Gynecol. 1984;64:55–9.

Krebs L, Topp M, Langhoff-Roos J. The relation of breech presentation at term to cerebral palsy. Br J Obstet Gynaecol. 1999;106:943–7.

Fox AJ, Chapman MG. Longitudinal ultrasound assessment of fetal presentation: a review of 1010 consecutive cases. Aust N Z J Obstet Gynaecol. 2006;46:341–4.

Hiersch L, Yeoshoua E, Miremberg H, et al. The association between Mullerian anomalies and short-term pregnancy outcome. J Matern Fetal Neonatal Med. 2016;29:2573–8.

Singh A, Mishra N, Dewangan R. Delivery in breech presentation: the decision making. J Obstet Gynaecol India. 2012;62:401–5.

Ulander VM, Gissler M, Nuutila M, Ylikorkala O. Are health expectations of term breech infants unrealistically high? Acta Obstet Gynecol Scand. 2004;83:180–6.

Goffinet F, Carayol M, Foidart JM, et al. Is planned vaginal delivery for breech presentation at term still an option? Results of an observational prospective survey in France and Belgium. Am J Obstet Gynecol. 2006;194:1002–11.

Van Loon AJ, Mantingh A, Serlier EK, Kroon G, Mooyaart EL, Huisjes HJ. Randomised controlled trial of magnetic-resonance pelvimetry in breech presentation at term. Lancet. 1997;350:1799–80.

Hoffmann J, Thomassen K, Stumpp P, Grothoff M, Engel C, Kahn T, Stepan H. New MRI Criteria for Successful Vaginal Breech Delivery in Primiparae. PLoS One. 2016;11:e0161028.

Article   PubMed   PubMed Central   CAS   Google Scholar  

Klemt AS, Schulze S, Brüggmann D, Louwen F. MRI-based pelvimetric measurements as predictors for a successful vaginal breech delivery in the Frankfurt breech at term cohort (FRABAT). Eur J Obstet Gynecol Reprod Biol. 2019;232:10–7.

Toivonen E, Palomäki O, Huhtala H, Uotila J. Cardiotocography in breech versus vertex delivery: an examiner-blinded, cross-sectional nested case-control study. BMC Pregnancy Childbirth. 2016;16:319.

Macharey G, Ulander VM, Heinonen S, Kostev K, Nuutila M, Väisänen-Tommiska M. Risk factors and outcomes in “well-selected” vaginal breech deliveries: a retrospective observational study. J Perinat Med. 2017;45:291–7.

Goodin A, Delcher C, Valenzuela C, Wang X, Zhu Y, Roussos-Ross D, Brown JD. The power and pitfalls of big data research in obstetrics and gynecology: a Consumer's guide. Obstet Gynecol Surv. 2017;72:669–82.

Vargha P, Fülöp V, Tabák ÁG. Breech presentation: its predictors and consequences. An analysis of the Hungarian Tauffer obstetric database (1996-2011). Acta Obstet Gynecol Scand. 2016;95:347–54.

Hemelaar J, Lim LN, Impey LW. The impact of an ECV service is limited by antenatal breech detection: a retrospective cohort study. Birth. 2015;42:165–72.

Bin YS, Roberts CL, Nicholl MC, Ford JB. Uptake of external cephalic version for term breech presentation: an Australian population study, 2002-2012. BMC Pregnancy Childbirth. 2017;17:244.

Rosman AN, Guijt A, Vlemmix F, Rijnders M, Mol BW, Kok M. Contraindications for external cephalic version in breech presentation at term: a systematic review. Acta Obstet Gynecol Scand. 2013;92:137–42.

Quist-Nelson J, Landers K, McCurdy R, Berghella V. External cephalic version in premature rupture of membranes: a systematic review. J Matern Fetal Neonatal Med. 2017;30:2257–61.

Burgos J, Cobos P, Rodríguez L, et al. Is external cephalic version at term contraindicated in previous caesarean section? A prospective comparative cohort study. BJOG. 2014;121:230–5.

Traité du palper abdominal au point de vue obstétrical et de la version par manœuvres externes / par A. Pinard. PARIS H. LATJWEREYNS, LIBRAIRE-ÉDITEUR, 1878.

Lau TK, Lo KW, Wan D, Rogers MS. Predictors of successful external cephalic version at term: a prospective study. Br J Obstet Gynaecol. 1997;104:798–802.

Aisenbrey GA, Catanzarite VA, Nelson C. External cephalic version: predictors of success. Obstet Gynecol. 1999;94:783–6.

Hutton EK, Simioni JC, Thabane L. Predictors of success of external cephalic version and cephalic presentation at birth among 1253 women with non-cephalic presentation using logistic regression and classification tree analyses. Acta Obstet Gynecol Scand. 2017;96:1012–20.

Kew N, DuPlessis J, La Paglia D, Williams K. Predictors of cephalic vaginal delivery following external cephalic version: an eight-year single-Centre study of 447 cases. Obstet Gynecol Int. 2017;2017:3028398.

Salzer L, Nagar R, Melamed N, Wiznitzer A, Peled Y, Yogev Y. Predictors of successful external cephalic version and assessment of success for vaginal delivery. J Matern Fetal Neonatal Med. 2015;28:49–54.

Buhimschi CS, Buhimschi IA, Wehrum MJ, et al. Ultrasonographic evaluation of myometrial thickness and prediction of a successful external cephalic version. Obstet Gynecol. 2011;118:913–20.

De La Version Par Manoeuvres Externes by Justus Heinrich Wigand (translated in french by François-Joseph Herrgott).

Velzel J, de Hundt M, Mulder FM, et al. Prediction models for successful external cephalic version: a systematic review. Eur J Obstet Gynecol Reprod Biol. 2015;195:160–7.

De Hundt M, Velzel J, de Groot CJ, Mol BW, Kok M. Mode of delivery after successful external cephalic version: a systematic review and meta-analysis. Obstet Gynecol. 2014;123(6):1327–34.

Article   PubMed   CAS   Google Scholar  

Boujenah J, Fleury C, Bonneau C, Pharisien I, Tigaizin A, Carbillon L. Successful external cephalic version is an independent factor for caesarean section during trial of labor - a matched controlled study. J Gynecol Obstet Hum Reprod. 2017;46:737–42.

De Hundt M, Vlemmix F, Bais JM, de Groot CJ, Mol BW, Kok M. Risk factors for cesarean section and instrumental vaginal delivery after successful external cephalic version. J Matern Fetal Neonatal Med. 2016;29:2005–7.

Balayla J, Dahdouh EM, Villeneuve S, Boucher M, Gauthier RJ, Audibert F. Obstetrical and neonatal outcomes following unsuccessful external cephalic version: a stratified analysis amongst failures, successes, and controls. J Matern Fetal Neonatal Med. 2015;28:605–10.

Burgos J, Rodríguez L, Cobos P, et al. Management of breech presentation at term: a retrospective cohort study of 10 years of experience. J Perinatol. 2015;35:803–8.

Coppola C, Mottet N, Mariet AS, et al. Impact of the external cephalic version on the obstetrical prognosis in a team with a high success rate of vaginal delivery in breech presentation. J Gynecol Obstet Biol Reprod (Paris). 2016;45:859–65.

Article   CAS   Google Scholar  

Wastlund, et al. Screening for breech presentation using universal late-pregnancy ultrasonography: A prospective cohort study and cost effectiveness analysis. PLoS Med. 2019;16(4):e1002778.

Download references

Acknowledgements

Author information, authors and affiliations.

Department of Obstetrics and Gynecology, Sorbonne Paris Nord University, Assistance Publique – Hopitaux de Paris, Avenue du 14 juillet, Hôpital Jean Verdier, 93140, Bondy Cedex, France

Lionel Carbillon

Department of Obstetrics and Gynecology, Assistance Publique – Hôpitaux de Paris, Hôpital Jean Verdier, Bondy, France

Lionel Carbillon, Amelie Benbara, Ahmed Tigaizin, Rouba Murtada, Marion Fermaut, Fatma Belmaghni, Alexandre Bricou & Jeremy Boujenah

You can also search for this author in PubMed   Google Scholar

Contributions

Study conception and design: LC, AB, JB, AT, FB, AB. Analysis and interpretation of data: LC, JB. Drafting of manuscript: LC. Critical revision: LC, JB, RM, MF. The authors read and approved the final manuscript.

Corresponding author

Correspondence to Lionel Carbillon .

Ethics declarations

Ethics approval and consent to participate, consent for publication, competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Carbillon, L., Benbara, A., Tigaizin, A. et al. Revisiting the management of term breech presentation: a proposal for overcoming some of the controversies. BMC Pregnancy Childbirth 20 , 263 (2020). https://doi.org/10.1186/s12884-020-2831-4

Download citation

Received : 08 August 2019

Accepted : 20 February 2020

Published : 03 May 2020

DOI : https://doi.org/10.1186/s12884-020-2831-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Term breech delivery
  • Small-for-gestational-age
  • Foetal growth restriction
  • Oligohydramnios
  • Delivery route
  • Perinatal mortality
  • Perinatal morbidity

BMC Pregnancy and Childbirth

ISSN: 1471-2393

breech presentation with adequate liquor

Book cover

Labour and Delivery pp 75–97 Cite as

Breech Presentation

  • Astha Lalwani 2 ,
  • Neharika Malhotra 3 &
  • B. Aruna Suman 4  
  • First Online: 02 August 2023

465 Accesses

One of the most controversial and challenging topics is breech presentation, the management of which has evolved drastically in the past few years. Due to the fewer vaginal breech deliveries the expertise in conducting vaginal breeches is decreasing. The Term Breech Trial (TBT), multicentric, Randomised Controlled Trial in 2000 established the significantly lower neonatal and perinatal morbidity and mortality with the planned elective caesarean section for breech presentations. Thereby the incidence of Caesarean section increased in light of rising medicolegal awareness! But due to few limitations, TBT was criticised and questionned and many studies started coming up where with good patient selection criteria vaginal breech deliveries were conducted without increasing the perinatal and neonatal morbidities. Despite ongoing debate on both sides, the recommendation includes offering External Cephalic Version (ECV) for suitable patients and elective caesarean section at 39 weeks if they are not good candidates for ECV. If the patient goes in labour then the trial of vaginal breech can be considered if the predictors for successful vaginal birth are present. More drills on vaginal breech deliveries should be conducted in labour rooms to improve the expertise for the health care professionals in conducting vaginal breech deliveries.

This is a preview of subscription content, log in via an institution .

Buying options

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Ford J, Roberts C, Nassar N, Giles W, Morris J. Recurrence of breech presentation in consecutive pregnancies. BJOG Int J Obstet Gynaecol. 2010;117(7):830–6.

Article   CAS   Google Scholar  

Di Renzo G, Cabero Roura L, Facchinetti F, Helmer H, Hubinont C, Jacobsson B, et al. Preterm labor and birth management: recommendations from the European Association of Perinatal Medicine. J Matern Fetal Neonatal Med. 2017;30(17):2011–30.

Article   PubMed   Google Scholar  

Collea J, Chein C, Quilligan E. The randomized management of term frank breech presentation. Obstet Gynecol Surv. 1981;36(1):21–2.

Article   Google Scholar  

James D, Steer P, Weiner C, Gonik B, Robson S. High-risk pregnancy. 4th ed. Cambridge: Cambridge University Press; 2017. p. 1102.

Google Scholar  

Broche DE, Riethmuller D, Vidal C, Sautiere JL, Schaal JP, Maillet R. Obstetric and perinatal outcomes of a disreputable presentation: the nonfrank breech. J Gynecol Obstet Biol Reprod. 2005;34:781–8.

James D, Steer P, Weiner C, Gonik B, Robson S. High-risk pregnancy. 4th ed. Cambridge: Cambridge University Press; 2017. p. 1110.

van Loon AJ, Mantingh A, Serlier EK, Kroon G, Mooyaart EL, Huisjes HJ. Randomised controlled trial of magnetic-resonance pelvimetry in breech presentation at term. Lancet. 1997;2027(350):1799–804.

Hoffman K, Trawalter S, Axt J, Oliver M. Racial bias in pain assessment and treatment recommendations, and false beliefs about biological differences between blacks and whites. Proc Natl Acad Sci. 2016;113(16):4296–301.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Jeyabalan A, Larkin RW, Landers DV. Vaginal breech deliveries selected using computed tomographic pelvimetry may be associated with fewer adverse outcomes. J Matern Fetal Neonatal Med. 2005;17:381–5.

Vendittelli F, et al. The term breech presentation: Neonatal results and obstetrics practices in France. Eur J Obstet Gynecol Reprod Biol. 2006.

Vendittelli F, Rivière O, Creen-Hébert C, et al. Is a breech presentation at term more frequent in women with a history of cesarean delivery? Am J Obstet Gynecol. 2008;198(5):521.e1.

Bartlett DJ, Okun NB, Byrne PJ, et al. Early motor development of breech- and cephalic-presenting infants. Obstet Gynecol. 2000;95:425.

CAS   PubMed   Google Scholar  

de Hundt M, Vlemmix F, Bais JM, et al. Risk factors for developmental dysplasia of the hip: a meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2012;165(1):8.

Hannah ME, Hannah WJ, Hewson SA, Hodnett ED, Saigal S, Willan AR. Planned caesarean section versus planned vaginal birth for breech presentation at term: a randomised multicentre trial. Term breech trial collaborative group. Lancet. 2000;356(9239):1375–83. https://doi.org/10.1016/s0140-6736(00)02840-3 .

Article   CAS   PubMed   Google Scholar  

Whyte H, Hannah ME, Saigal S, et al. Outcomes of children at 2 years after planned ceserean birth versus planned vaginal birth for breech presentation at term the international randomized term breech trial. Am J Obstet Gynecol. 2004;191(3):864.

Fernandez CO, Bloom S, Wendel G. A prospective, randomized, blinded comparison of terbutaline versus placebo for singleton, term external cephalic version. Am J Obstet Gynecol. 1996;174:326.

ACOG Committee Opinion No. 745: Mode of Term Singleton Breech Delivery. Obstet Gynecol. 2018;132(2):e60–3. https://doi.org/10.1097/AOG.0000000000002755 . PMID: 30045211.

Williams Obstetrics, 25th Edition. Book by Catherine Y. Spong

James D, Steer P, Weiner C, Gonik B, Robson S. High-risk pregnancy. 4th ed. Cambridge: Cambridge University Press; 2017. p. 1107.

James D, Steer P, Weiner C, Gonik B, Robson S. High-risk pregnancy. 4th ed. Cambridge: Cambridge University Press; 2017. p. 1109.

Burgos J, Iglesias M, Pijoan JI, et al. Probability of cesarean delivery after successful external cephalic version. Int J Gynaecol Obstet. 2015;131(2):192.

Burgos J, Arana I, Garitano I, Rodríguez L, Cobos P, Osuna C, et al. Induction of labor in breech presentation at term: a retrospective cohort study. J Perinat Med. 2017;45(3):299.

Jennewein L, Kielland-Kaisen U, Paul B, Möllmann C, Klemt A, Schulze S, et al. Maternal and neonatal outcome after vaginal breech delivery at term of children weighing more or less than 3.8 kg: a FRABAT prospective cohort study. PLoS One. 2018;13(8):e0202760.

Article   PubMed   PubMed Central   Google Scholar  

Kielland-Kaisen U, Paul B, Jennewein L, Klemt A, Möllmann C, Bock N, et al. Maternal and neonatal outcome after vaginal breech delivery of nulliparous versus multiparous women of singletons at term—a prospective evaluation of the Frankfurt breech at term cohort (FRABAT). Eur J Obstet Gynecol Reprod Biol. 2020;252:583–7.

Burgos J, Arana I, Garitano I, et al. Induction of labor in breech presentation at term: a retrospective cohort study. J Perinat Med. 2017;45(3):299.

Kotaska A, Menticoglou S, Gagnon R. SOGC clinical practice guideline: vaginal delivery of breech presentation: no. 226, June 2009. Int J Gynaecol Obstet. 2009;107(2):169.

Cibils LA, Karrison T, Brown L. Factors influencing neonatal outcomes in the very low birthweight fetus (< 1500 g) with a breech presentation. Am J Obstet Gynecol. 1994;171:35–42.

Macharey G, Gissler M, Ulander VM, et al. Risk factors associated with adverse perinatal outcome in planned vaginal breech labors at term: a retrospective population-based case-control study. BMC Pregnancy Childbirth. 2017;17:93.

Wängberg Nordborg J, Svanberg T, Strandell A, Carlsson Y. Term breech presentation—intended cesarean section versus intended vaginal delivery—a systematic review and meta-analysis. Acta Obstet Gynecol Scand. 2022;101:564–76. https://doi.org/10.1111/aogs.14333 .

Download references

Author information

Authors and affiliations.

Department of Obstetrics and Gynaecology, Teerthanker Mahaveer Medical College and Research Centre, Moradabad, Uttar Pradesh, India

Astha Lalwani

IVF, Agra, India

Neharika Malhotra

Department of Obstetrics and Gynaecology, Jagityal KNR University, Warangal, Telangana, India

B. Aruna Suman

You can also search for this author in PubMed   Google Scholar

Editor information

Editors and affiliations.

Department of Obstetrics and Gynecology, Sarojini Naidu Medical College, Agra, Uttar Pradesh, India

Ruchika Garg

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter.

Lalwani, A., Malhotra, N., Suman, B.A. (2023). Breech Presentation. In: Garg, R. (eds) Labour and Delivery. Springer, Singapore. https://doi.org/10.1007/978-981-19-6145-8_5

Download citation

DOI : https://doi.org/10.1007/978-981-19-6145-8_5

Published : 02 August 2023

Publisher Name : Springer, Singapore

Print ISBN : 978-981-19-6144-1

Online ISBN : 978-981-19-6145-8

eBook Packages : Medicine Medicine (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Afr Health Sci
  • v.8(1); 2008 Mar

Intrapartum Rupture of the Uterus Diagnosed by Ultrasound

1 Department of Radiology University College Hospital Ibadan, Nigeria

OA Ogunseyinde

Al akinwuntan.

2 Department of Obstetrics and Gynaecology, University College Hospital Ibadan, Nigeria

Spontaneous uterine rupture is a life threatening obstetrical emergency encountered infrequently in the emergency department. Its diagnosis is often missed or delayed, leading to maternal and fetal mortality.

We present a case of ruptured uterus diagnosed by ultrasound in a 33-year-old gravid female with two previous cesarean sections.

To show the role of ultrasound in uterine rupture

Ultrasound demonstrates uterine laceration and intra-abdominal dislocation of placenta and foetus

Because of the severity of the complication and the great variation of symptoms in connection with it, the authors encourage the use of ultrasound screening in the detection of this rare, but often catastrophic complication.

Introduction

Spontaneous uterine rupture is a serious and potentially catastrophic event and must be considered by emergency physicians in pregnant patients with abdominal pain. 1 An incidence of 1 in 167 was reported in Ibadan 2 , 1 in 416 in Lagos 3 , compared with 1 in 1,666 for Ireland and between 1 in 1148 and 1 in 2,250 for the USA. 4 Modern obstetric practice has caused a decrease in the overall incidence of uterine rupture but a recent report shows that it is on the increase in Ibadan. 5 When presented with uterine hemorrhage in a gravid patient, a broad yet focused differential diagnosis is critical to a successful outcome and management.

There are a variety of definitions for uterine rupture, but the most accepted one is that of Plauche et al. 6 “ those cases of complete separation of the wall of the pregnant uterus with or without expulsion of the fetus .”

Whenever uterine rupture occurs, there is a significant increase in the maternal and perinatal morbidity and mortality. The chance of fetal survival, especially after rupture and expulsion into the peritoneal cavity, is dismal, and mortality rates reported in various studies range from 46 to 70%. 7

One of the main risk factors is previous cesarean section. Presented is a case of uterine rupture diagnosed by ultrasonic examination during the first stage of labor in a young woman with two previous cesarean sections. The correct diagnosis led to prompt surgical intervention.

Case Report

O.M is a 33-year-old mother of two children, from two previous caesarean sections admitted via the gynaecological emergency having been referred to UCH Ibadan from a private health centre at a gestational age of 43 weeks and 3 days.

She presented with labour pains of 9 hours, generalized abdominal pains and bleeding per vaginam of 5 hours duration. She presented first at the referral centre where she had booked for antenatal care. Her contractions were said to have been strong and regular but subsequently subsided and became replaced by persistent generalised abdominal pains. She however received no injections or infusions.

She felt foetal movements last at the onset of labour. Vaginal bleeding was moderate in nature and contained blood clots. There were no attempts at instrumental vaginal delivery. There was also no history of haematuria, dizziness, fainting spells or progressive abdominal distension.

She was booked for antenatal care at the referral centre at a gestational age of 21 weeks and had received two doses of tetanus toxoid.

Obstetric ultrasound scan done at 33 weeks, showed a singleton live intrauterine foetus in breech presentation with an anterior placenta and adequate liquor volume.

Her two previous deliveries were through caesarean sections in 1997 and 2001 on account of breech presentation in a primigravida and decreased foetal movement following premature rupture of membranes respectively.

Examination revealed a young woman in painful distress; she was afebrile, and not pale. Her respiratory rate was 32 cycles per minute and the lung fields were clinically clear. Her pulse rate was 112 beats per minute, regular and of moderate volume. The blood pressure was 160/100 mmHg. Heart sounds were normal. The abdomen was distended with generalized tenderness and guarding. There were no palpable uterine contractions, in spite of patient groaning in pain. The foetal parts were easily palpable. The foetal heart sounds were not heard. Fluid thrill was demonstrated and bowel sounds were absent. The vulva and vagina were normal. There was no active vaginal bleeding. The cervical os and presenting part were high and unreachable.

An impression of ruptured uterus with foetal death was made.

An abdominopelvic ultrasound scan, obtained in the emergency room showed a bulky empty uterus with a linear serrated sonolucency through the anterior uterine wall in keeping with an extensive uterine tear ( Fig. 1 ). The foetus and placenta were seen outside the uterus in the abdominal cavity with increased intra-peritoneal fluid ( Fig. 2 ). The placenta was seen underneath the anterior abdominal wall with the foetus lying obliquely with the head closely apposed to the inferior border of the liver and gall bladder (Fig. 3). No foetal movement or cardiac activity was seen. An emergency laparotomy was performed.

An external file that holds a picture, illustration, etc.
Object name is AFHS0801-0057Fig1.jpg

Ultrasound image showing bulky empty uterus with linear tear (arrow) through the anterior myometrial wall associated increased peritoneal fluid.

An external file that holds a picture, illustration, etc.
Object name is AFHS0801-0057Fig2.jpg

Ultrasound image showing foetal head closely apposed to the liver and gall bladder (GB).

Findings at the operation were consistent with ultrasonic images. Surgical findings included a fresh still-birth foetus and placenta extruded into the peritoneal cavity, a ragged anterior midline tear extending from the lower to the upper segment and one litre of haemoperitoneum.

The extruded baby was delivered by breech extraction along with the placenta. The tear was repaired and the haemoperitoneum drained. She made satisfactory clinical progress and was discharged home on the twelfth post-operative day.

Rupture of a pregnant uterus is one of the life-threatening complications encountered in obstetric practice. Although it may occur in an unscarred uterus, the most common cause of uterine rupture is separation of a previous cesarean section scar. Rupture of the uterus is a major contributor to maternal and foetal morbidity and mortality, 1 especially in developing countries. 2

Several aetiological factors may be responsible for rupture of the uterus. These include previous hysterotomy, caesarean section, trauma, uterine over distension, uterine anomalies, placenta percreta and choriocarcinoma. 4 The relative incidence of the factors will depend on the level of obstetric practice in the community. A review in Ibadan noted a positive history of previous trauma in 73.6% of cases, the lower segment caesarean section constituting 52% of these and prolonged obstructed labour contributing in 45.4% of the cases. 6

The only identifiable predisposing factor in our patient was two previous caesarean sections, which is the most common factor.

Both the maternal and the foetal prognoses are worsened by delay in the correct diagnosis. Although the use of ultrasound in obstetrics is routine nowadays, very little has been written about the possibilities in connection with the rupture of the uterus. 8

This catastrophe might have been avoided if an emergency caesarean section had been resorted to earlier at term. A combination of poverty, ignorance, illiteracy and aversion to abdominal delivery has been cited as being responsible for this grim state of affairs. 2

Diagnosis of ruptured uterus in this patient was fairly straight forward, given the history of two previous caesarean sections, abdominal pain, cessation of labour and foetal movements, and the clinical findings of vaginal bleeding and easily palpable foetal parts, followed by an ultrasonographic confirmation of a tear. Abdominal pain and vaginal bleeding are the commonest modes of presentation in Ibadan. 5

Ultrasonography is probably the safest and most useful imaging technique during pregnancy.

Extra-peritoneal haematoma, intrauterine blood, free peritoneal blood, empty uterus, gestational sac above the uterus, and large uterine mass with gas bubbles have been reported as sonographic findings associated with uterine rupture. 9 , 10

Free peritoneal blood, empty uterus, and an extra uterine foetus were some of the findings in our patient. Obstetric consultation in all pregnant women with abdominal pain must be considered. 11 In addition, if the pregnancy is advanced, foetal well-being can be established with ultrasonography.

The management of ruptured uterus is laparotomy as soon as possible, after resuscitation has been commenced. The correct surgical procedure is that which is the shortest, taking into consideration the surgeon's skill 12

IMAGES

  1. types of breech presentation ultrasound

    breech presentation with adequate liquor

  2. Breech Presentation with Increase Liquor amount

    breech presentation with adequate liquor

  3. What is Breech Presentation?

    breech presentation with adequate liquor

  4. types of presentation in delivery

    breech presentation with adequate liquor

  5. Breech Presentation and Turning a Breech Baby in the Womb (External

    breech presentation with adequate liquor

  6. Breech Presentation

    breech presentation with adequate liquor

VIDEO

  1. Breech delivery/उल्टे बच्चे की डिलीवरी। डा० कल्पना अग्रवाल

  2. case presentation on breech presentation (BSC nursing and GNM)

  3. Breech presentation (GTG guidline 20b)

  4. Breech Baby with NIL liquor at 27 week

  5. Breech Presentation in C-Section #trending #breechbaby #adorable #jiyatanwar05

  6. Breech Presentation, easy Notes , Management of Breech delivery @easynursingnotes14

COMMENTS

  1. Breech Presentation

    Breech presentation refers to the fetus in the longitudinal lie with the buttocks or lower extremity entering the pelvis first. The three types of breech presentation include frank breech, complete breech, and incomplete breech. In a frank breech, the fetus has flexion of both hips, and the legs are straight with the feet near the fetal face, in a pike position. The complete breech has the ...

  2. Malpresentation, Malposition, Cephalopelvic Disproportion and Obstetric

    Types of breech presentation. Between 50 and 70% of breech presentations manifest with hips flexed and knees extended (extended breech) Complete ... The chance of success is greater with multiparity, flexed breech presentation and an adequate liquor volume. The use of moxibustion at 33-35 weeks, in combination with acupuncture, may reduce the ...

  3. Management of Breech Presentation

    Management of Breech Presentation. This is the fourth edition of this guideline originally published in 1999 and revised in 2001 and 2006 under the same title. ... Adequate descent of the breech in the passive second stage is a prerequisite for encouragement of the active second stage.

  4. Breech presentation management: A critical review of leading clinical

    No. 384 — management of breech presentation at term [2019] The Society of Obstetricians and Gynaecologists of Canada (SOGC) Canada: GRADE methodology framework: 1: 12/14 (85.7) 82: Y: National Clinical Guideline: the management of breech presentation [2017] Institute of Obstetrician and Gynaecologists, Royal College of Physicians of Ireland ...

  5. Management of breech presentation

    Introduction. Breech presentation of the fetus in late pregnancy may result in prolonged or obstructed labour with resulting risks to both woman and fetus. Interventions to correct breech presentation (to cephalic) before labour and birth are important for the woman's and the baby's health. The aim of this review is to determine the most ...

  6. PDF TITLE: Management of Breech Presentation

    Breech presentation occurs in 3-4% of term pregnancies and in 15% of pregnancies ... estimated fetal weight and liquor volume. ... (clinical judgement is adequate to make this assessment) Frank or complete breech presentation Estimated fetal weight (EFW) >2500g and <4000g ...

  7. Identification of breech presentation

    The expected cost per person with breech presentation of universal ultrasound was £2957 (95% Credibility Interval [CrI]: £2922 to £2991), compared to £2,949 (95%CrI: £2915 to £2984) from selective ultrasound. The expected QALYs per person was 24.27615 in the universal ultrasound cohort and 24.27582 in the selective ultrasound cohort.

  8. PDF Management of breech presentation

    The most widely quoted study regarding the management of breech presentation at term is the 'Term Breech Trial'. Published in 2000, this large, international multicenter randomised clinical trial compared a policy of planned vaginal delivery with planned caesarean section for selected breech presentations.

  9. Revisiting the management of term breech presentation: a proposal for

    Term breech presentation is a condition for which personalized obstetrical care is particularly needed. The best way is likely to be as follows: first, efficiently screen for breech presentation at 36-37 weeks of gestation; second, thoroughly evaluate the maternal/foetal condition, foetal weight and growth potential, and the type (frank, complete, or footling) and mobility of breech ...

  10. OB Guideline 20: Management of Breech Presentations

    Assessment of the fetal presentation should be performed immediately prior to a scheduled cesarean. Planned vaginal delivery of a term singleton breech may be reasonable under hospital-specific protocol for both eligibility and management of labor (including use of oxytocin). 1,2 If the patient opts for a vaginal breech delivery, a detailed ...

  11. Guideline for the Management of Breech Presentation

    To identify the clinical management required for a woman with a breech baby giving birth at a CTMUHB hospital. To encourage individualised care and support for women with a breech presentation, thus improving both the experience and outcome for mother and baby. 2. Definition.

  12. PDF NATIONAL CLINICAL GUIDELINE The Management of Breech Presentation

    presence of a breech presentation because they may disguise fetopelvic disproportion. Oxytocin, however, may be used for the delivery of the aftercoming head. 9. If the presentation is breech and delivery is imminent preterm, consideration may be given to a vaginal delivery in the absence of intrapartum complications. 10.

  13. Editorial: Alternative approaches to breech presentation

    the publication of the term breech trial (Hannah et al. 2000), many practitio-ners have favoured the planned caesar-ean section approach as the safest management option for term breech presentation. In Hong Kong, breech presentation has become a popular indi-cation for caesarean section, and the percentage of vaginal breech delivery has ...

  14. PDF Abnormalities of Lie / Presentation

    Breech presentation occurs in 3% to 4% of pregnancies at term.1 The randomised multicentre Term Breech Trial (TBT) showed that a planned elective caesarean section (ELUSCS) reduces the risk for adverse perinatal outcomes or serious ... • The woman should have a clinically adequate pelvis.1-4 • Exclusion of a growth restricted fetus2, 3 or ...

  15. Editorial: Alternative approaches to breech presentation

    Breech presentation has been reported in approximately 3-4% of singleton pregnancies at term ().Since the publication of the term breech trial (Hannah et al. 2000), many practitioners have favoured the planned caesarean section approach as the safest management option for term breech presentation.In Hong Kong, breech presentation has become a popular indication for caesarean section, and the ...

  16. Breech Presentation

    Royal College of Obstetricians have provided the set of indications for the elective caesarean section where vaginal breech delivery is deferred. 1. Footling presentation—highest risk of cord prolapse, about 15-20% as compared to 1.4-6% in extended breech. In cephalic version the risk is lowest from 0.2 to 0.5%.

  17. Meconium stained amniotic fluid

    The incidence of meconium staining of the liquor increases from 36 to 42 weeks gestation, reaching around 20-30% at full term. ... With a breech presentation in the late first or second stage the passage of meconium is likely to be due to mechanical causes and therefore less sinister than a cephalic presentation, or when it occurs in an early ...

  18. Revisiting the management of term breech presentation: a proposal for

    Conclusion. The adequate management of term breech pregnancies requires screening and the efficient identification of breech presentation at 36 weeks of gestation, followed by thorough evaluations of foetal weight, growth and mobility, while obstetric history, antenatal gestational disorders and pelvis size/conformation are considered.

  19. Amnioinfusion for meconium‐stained liquor in labour

    Amnioinfusion for meconium‐stained liquor in labour. ... (breech presentation or multiple pregnancy: two in each group). Selective reporting . All expected outcomes were reported in one study Choudhary 2010 and a published protocol was available for another ... vertex presentation; adequate pelvis, cervical dilation > 5 cm, gestational age ...

  20. Breech Presentation

    Breech presentation refers to the fetus in the longitudinal lie with the buttocks or lower extremity entering the pelvis first. The three types of breech presentation include frank breech, complete breech, and incomplete breech. In a frank breech, the fetus has flexion of both hips, and the legs are straight with the feet near the fetal face ...

  21. Breech presentation

    Breech presentation - Download as a PDF or view online for free. Breech presentation - Download as a PDF or view online for free ... multiparity adequate liquor station of breech above the pelvic brim 6. Diagnosing a Breech Palpation: The fetal head can be palpated at uterine fundus Auscultation: ...

  22. Intrapartum Rupture of the Uterus Diagnosed by Ultrasound

    Obstetric ultrasound scan done at 33 weeks, showed a singleton live intrauterine foetus in breech presentation with an anterior placenta and adequate liquor volume. Her two previous deliveries were through caesarean sections in 1997 and 2001 on account of breech presentation in a primigravida and decreased foetal movement following premature ...