Random Assignment in Psychology: Definition & Examples

Julia Simkus

Editor at Simply Psychology

BA (Hons) Psychology, Princeton University

Julia Simkus is a graduate of Princeton University with a Bachelor of Arts in Psychology. She is currently studying for a Master's Degree in Counseling for Mental Health and Wellness in September 2023. Julia's research has been published in peer reviewed journals.

Learn about our Editorial Process

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

In psychology, random assignment refers to the practice of allocating participants to different experimental groups in a study in a completely unbiased way, ensuring each participant has an equal chance of being assigned to any group.

In experimental research, random assignment, or random placement, organizes participants from your sample into different groups using randomization. 

Random assignment uses chance procedures to ensure that each participant has an equal opportunity of being assigned to either a control or experimental group.

The control group does not receive the treatment in question, whereas the experimental group does receive the treatment.

When using random assignment, neither the researcher nor the participant can choose the group to which the participant is assigned. This ensures that any differences between and within the groups are not systematic at the onset of the study. 

In a study to test the success of a weight-loss program, investigators randomly assigned a pool of participants to one of two groups.

Group A participants participated in the weight-loss program for 10 weeks and took a class where they learned about the benefits of healthy eating and exercise.

Group B participants read a 200-page book that explains the benefits of weight loss. The investigator randomly assigned participants to one of the two groups.

The researchers found that those who participated in the program and took the class were more likely to lose weight than those in the other group that received only the book.

Importance 

Random assignment ensures that each group in the experiment is identical before applying the independent variable.

In experiments , researchers will manipulate an independent variable to assess its effect on a dependent variable, while controlling for other variables. Random assignment increases the likelihood that the treatment groups are the same at the onset of a study.

Thus, any changes that result from the independent variable can be assumed to be a result of the treatment of interest. This is particularly important for eliminating sources of bias and strengthening the internal validity of an experiment.

Random assignment is the best method for inferring a causal relationship between a treatment and an outcome.

Random Selection vs. Random Assignment 

Random selection (also called probability sampling or random sampling) is a way of randomly selecting members of a population to be included in your study.

On the other hand, random assignment is a way of sorting the sample participants into control and treatment groups. 

Random selection ensures that everyone in the population has an equal chance of being selected for the study. Once the pool of participants has been chosen, experimenters use random assignment to assign participants into groups. 

Random assignment is only used in between-subjects experimental designs, while random selection can be used in a variety of study designs.

Random Assignment vs Random Sampling

Random sampling refers to selecting participants from a population so that each individual has an equal chance of being chosen. This method enhances the representativeness of the sample.

Random assignment, on the other hand, is used in experimental designs once participants are selected. It involves allocating these participants to different experimental groups or conditions randomly.

This helps ensure that any differences in results across groups are due to manipulating the independent variable, not preexisting differences among participants.

When to Use Random Assignment

Random assignment is used in experiments with a between-groups or independent measures design.

In these research designs, researchers will manipulate an independent variable to assess its effect on a dependent variable, while controlling for other variables.

There is usually a control group and one or more experimental groups. Random assignment helps ensure that the groups are comparable at the onset of the study.

How to Use Random Assignment

There are a variety of ways to assign participants into study groups randomly. Here are a handful of popular methods: 

  • Random Number Generator : Give each member of the sample a unique number; use a computer program to randomly generate a number from the list for each group.
  • Lottery : Give each member of the sample a unique number. Place all numbers in a hat or bucket and draw numbers at random for each group.
  • Flipping a Coin : Flip a coin for each participant to decide if they will be in the control group or experimental group (this method can only be used when you have just two groups) 
  • Roll a Die : For each number on the list, roll a dice to decide which of the groups they will be in. For example, assume that rolling 1, 2, or 3 places them in a control group and rolling 3, 4, 5 lands them in an experimental group.

When is Random Assignment not used?

  • When it is not ethically permissible: Randomization is only ethical if the researcher has no evidence that one treatment is superior to the other or that one treatment might have harmful side effects. 
  • When answering non-causal questions : If the researcher is just interested in predicting the probability of an event, the causal relationship between the variables is not important and observational designs would be more suitable than random assignment. 
  • When studying the effect of variables that cannot be manipulated: Some risk factors cannot be manipulated and so it would not make any sense to study them in a randomized trial. For example, we cannot randomly assign participants into categories based on age, gender, or genetic factors.

Drawbacks of Random Assignment

While randomization assures an unbiased assignment of participants to groups, it does not guarantee the equality of these groups. There could still be extraneous variables that differ between groups or group differences that arise from chance. Additionally, there is still an element of luck with random assignments.

Thus, researchers can not produce perfectly equal groups for each specific study. Differences between the treatment group and control group might still exist, and the results of a randomized trial may sometimes be wrong, but this is absolutely okay.

Scientific evidence is a long and continuous process, and the groups will tend to be equal in the long run when data is aggregated in a meta-analysis.

Additionally, external validity (i.e., the extent to which the researcher can use the results of the study to generalize to the larger population) is compromised with random assignment.

Random assignment is challenging to implement outside of controlled laboratory conditions and might not represent what would happen in the real world at the population level. 

Random assignment can also be more costly than simple observational studies, where an investigator is just observing events without intervening with the population.

Randomization also can be time-consuming and challenging, especially when participants refuse to receive the assigned treatment or do not adhere to recommendations. 

What is the difference between random sampling and random assignment?

Random sampling refers to randomly selecting a sample of participants from a population. Random assignment refers to randomly assigning participants to treatment groups from the selected sample.

Does random assignment increase internal validity?

Yes, random assignment ensures that there are no systematic differences between the participants in each group, enhancing the study’s internal validity .

Does random assignment reduce sampling error?

Yes, with random assignment, participants have an equal chance of being assigned to either a control group or an experimental group, resulting in a sample that is, in theory, representative of the population.

Random assignment does not completely eliminate sampling error because a sample only approximates the population from which it is drawn. However, random sampling is a way to minimize sampling errors. 

When is random assignment not possible?

Random assignment is not possible when the experimenters cannot control the treatment or independent variable.

For example, if you want to compare how men and women perform on a test, you cannot randomly assign subjects to these groups.

Participants are not randomly assigned to different groups in this study, but instead assigned based on their characteristics.

Does random assignment eliminate confounding variables?

Yes, random assignment eliminates the influence of any confounding variables on the treatment because it distributes them at random among the study groups. Randomization invalidates any relationship between a confounding variable and the treatment.

Why is random assignment of participants to treatment conditions in an experiment used?

Random assignment is used to ensure that all groups are comparable at the start of a study. This allows researchers to conclude that the outcomes of the study can be attributed to the intervention at hand and to rule out alternative explanations for study results.

Further Reading

  • Bogomolnaia, A., & Moulin, H. (2001). A new solution to the random assignment problem .  Journal of Economic theory ,  100 (2), 295-328.
  • Krause, M. S., & Howard, K. I. (2003). What random assignment does and does not do .  Journal of Clinical Psychology ,  59 (7), 751-766.

Print Friendly, PDF & Email

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

The Definition of Random Assignment According to Psychology

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

what is the most important reason for random assignment

Emily is a board-certified science editor who has worked with top digital publishing brands like Voices for Biodiversity, Study.com, GoodTherapy, Vox, and Verywell.

what is the most important reason for random assignment

Materio / Getty Images

Random assignment refers to the use of chance procedures in psychology experiments to ensure that each participant has the same opportunity to be assigned to any given group in a study to eliminate any potential bias in the experiment at the outset. Participants are randomly assigned to different groups, such as the treatment group versus the control group. In clinical research, randomized clinical trials are known as the gold standard for meaningful results.

Simple random assignment techniques might involve tactics such as flipping a coin, drawing names out of a hat, rolling dice, or assigning random numbers to a list of participants. It is important to note that random assignment differs from random selection .

While random selection refers to how participants are randomly chosen from a target population as representatives of that population, random assignment refers to how those chosen participants are then assigned to experimental groups.

Random Assignment In Research

To determine if changes in one variable will cause changes in another variable, psychologists must perform an experiment. Random assignment is a critical part of the experimental design that helps ensure the reliability of the study outcomes.

Researchers often begin by forming a testable hypothesis predicting that one variable of interest will have some predictable impact on another variable.

The variable that the experimenters will manipulate in the experiment is known as the independent variable , while the variable that they will then measure for different outcomes is known as the dependent variable. While there are different ways to look at relationships between variables, an experiment is the best way to get a clear idea if there is a cause-and-effect relationship between two or more variables.

Once researchers have formulated a hypothesis, conducted background research, and chosen an experimental design, it is time to find participants for their experiment. How exactly do researchers decide who will be part of an experiment? As mentioned previously, this is often accomplished through something known as random selection.

Random Selection

In order to generalize the results of an experiment to a larger group, it is important to choose a sample that is representative of the qualities found in that population. For example, if the total population is 60% female and 40% male, then the sample should reflect those same percentages.

Choosing a representative sample is often accomplished by randomly picking people from the population to be participants in a study. Random selection means that everyone in the group stands an equal chance of being chosen to minimize any bias. Once a pool of participants has been selected, it is time to assign them to groups.

By randomly assigning the participants into groups, the experimenters can be fairly sure that each group will have the same characteristics before the independent variable is applied.

Participants might be randomly assigned to the control group , which does not receive the treatment in question. The control group may receive a placebo or receive the standard treatment. Participants may also be randomly assigned to the experimental group , which receives the treatment of interest. In larger studies, there can be multiple treatment groups for comparison.

There are simple methods of random assignment, like rolling the die. However, there are more complex techniques that involve random number generators to remove any human error.

There can also be random assignment to groups with pre-established rules or parameters. For example, if you want to have an equal number of men and women in each of your study groups, you might separate your sample into two groups (by sex) before randomly assigning each of those groups into the treatment group and control group.

Random assignment is essential because it increases the likelihood that the groups are the same at the outset. With all characteristics being equal between groups, other than the application of the independent variable, any differences found between group outcomes can be more confidently attributed to the effect of the intervention.

Example of Random Assignment

Imagine that a researcher is interested in learning whether or not drinking caffeinated beverages prior to an exam will improve test performance. After randomly selecting a pool of participants, each person is randomly assigned to either the control group or the experimental group.

The participants in the control group consume a placebo drink prior to the exam that does not contain any caffeine. Those in the experimental group, on the other hand, consume a caffeinated beverage before taking the test.

Participants in both groups then take the test, and the researcher compares the results to determine if the caffeinated beverage had any impact on test performance.

A Word From Verywell

Random assignment plays an important role in the psychology research process. Not only does this process help eliminate possible sources of bias, but it also makes it easier to generalize the results of a tested sample of participants to a larger population.

Random assignment helps ensure that members of each group in the experiment are the same, which means that the groups are also likely more representative of what is present in the larger population of interest. Through the use of this technique, psychology researchers are able to study complex phenomena and contribute to our understanding of the human mind and behavior.

Lin Y, Zhu M, Su Z. The pursuit of balance: An overview of covariate-adaptive randomization techniques in clinical trials . Contemp Clin Trials. 2015;45(Pt A):21-25. doi:10.1016/j.cct.2015.07.011

Sullivan L. Random assignment versus random selection . In: The SAGE Glossary of the Social and Behavioral Sciences. SAGE Publications, Inc.; 2009. doi:10.4135/9781412972024.n2108

Alferes VR. Methods of Randomization in Experimental Design . SAGE Publications, Inc.; 2012. doi:10.4135/9781452270012

Nestor PG, Schutt RK. Research Methods in Psychology: Investigating Human Behavior. (2nd Ed.). SAGE Publications, Inc.; 2015.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Random Assignment in Psychology (Definition + 40 Examples)

practical psychology logo

Have you ever wondered how researchers discover new ways to help people learn, make decisions, or overcome challenges? A hidden hero in this adventure of discovery is a method called random assignment, a cornerstone in psychological research that helps scientists uncover the truths about the human mind and behavior.

Random Assignment is a process used in research where each participant has an equal chance of being placed in any group within the study. This technique is essential in experiments as it helps to eliminate biases, ensuring that the different groups being compared are similar in all important aspects.

By doing so, researchers can be confident that any differences observed are likely due to the variable being tested, rather than other factors.

In this article, we’ll explore the intriguing world of random assignment, diving into its history, principles, real-world examples, and the impact it has had on the field of psychology.

History of Random Assignment

two women in different conditions

Stepping back in time, we delve into the origins of random assignment, which finds its roots in the early 20th century.

The pioneering mind behind this innovative technique was Sir Ronald A. Fisher , a British statistician and biologist. Fisher introduced the concept of random assignment in the 1920s, aiming to improve the quality and reliability of experimental research .

His contributions laid the groundwork for the method's evolution and its widespread adoption in various fields, particularly in psychology.

Fisher’s groundbreaking work on random assignment was motivated by his desire to control for confounding variables – those pesky factors that could muddy the waters of research findings.

By assigning participants to different groups purely by chance, he realized that the influence of these confounding variables could be minimized, paving the way for more accurate and trustworthy results.

Early Studies Utilizing Random Assignment

Following Fisher's initial development, random assignment started to gain traction in the research community. Early studies adopting this methodology focused on a variety of topics, from agriculture (which was Fisher’s primary field of interest) to medicine and psychology.

The approach allowed researchers to draw stronger conclusions from their experiments, bolstering the development of new theories and practices.

One notable early study utilizing random assignment was conducted in the field of educational psychology. Researchers were keen to understand the impact of different teaching methods on student outcomes.

By randomly assigning students to various instructional approaches, they were able to isolate the effects of the teaching methods, leading to valuable insights and recommendations for educators.

Evolution of the Methodology

As the decades rolled on, random assignment continued to evolve and adapt to the changing landscape of research.

Advances in technology introduced new tools and techniques for implementing randomization, such as computerized random number generators, which offered greater precision and ease of use.

The application of random assignment expanded beyond the confines of the laboratory, finding its way into field studies and large-scale surveys.

Researchers across diverse disciplines embraced the methodology, recognizing its potential to enhance the validity of their findings and contribute to the advancement of knowledge.

From its humble beginnings in the early 20th century to its widespread use today, random assignment has proven to be a cornerstone of scientific inquiry.

Its development and evolution have played a pivotal role in shaping the landscape of psychological research, driving discoveries that have improved lives and deepened our understanding of the human experience.

Principles of Random Assignment

Delving into the heart of random assignment, we uncover the theories and principles that form its foundation.

The method is steeped in the basics of probability theory and statistical inference, ensuring that each participant has an equal chance of being placed in any group, thus fostering fair and unbiased results.

Basic Principles of Random Assignment

Understanding the core principles of random assignment is key to grasping its significance in research. There are three principles: equal probability of selection, reduction of bias, and ensuring representativeness.

The first principle, equal probability of selection , ensures that every participant has an identical chance of being assigned to any group in the study. This randomness is crucial as it mitigates the risk of bias and establishes a level playing field.

The second principle focuses on the reduction of bias . Random assignment acts as a safeguard, ensuring that the groups being compared are alike in all essential aspects before the experiment begins.

This similarity between groups allows researchers to attribute any differences observed in the outcomes directly to the independent variable being studied.

Lastly, ensuring representativeness is a vital principle. When participants are assigned randomly, the resulting groups are more likely to be representative of the larger population.

This characteristic is crucial for the generalizability of the study’s findings, allowing researchers to apply their insights broadly.

Theoretical Foundation

The theoretical foundation of random assignment lies in probability theory and statistical inference .

Probability theory deals with the likelihood of different outcomes, providing a mathematical framework for analyzing random phenomena. In the context of random assignment, it helps in ensuring that each participant has an equal chance of being placed in any group.

Statistical inference, on the other hand, allows researchers to draw conclusions about a population based on a sample of data drawn from that population. It is the mechanism through which the results of a study can be generalized to a broader context.

Random assignment enhances the reliability of statistical inferences by reducing biases and ensuring that the sample is representative.

Differentiating Random Assignment from Random Selection

It’s essential to distinguish between random assignment and random selection, as the two terms, while related, have distinct meanings in the realm of research.

Random assignment refers to how participants are placed into different groups in an experiment, aiming to control for confounding variables and help determine causes.

In contrast, random selection pertains to how individuals are chosen to participate in a study. This method is used to ensure that the sample of participants is representative of the larger population, which is vital for the external validity of the research.

While both methods are rooted in randomness and probability, they serve different purposes in the research process.

Understanding the theories, principles, and distinctions of random assignment illuminates its pivotal role in psychological research.

This method, anchored in probability theory and statistical inference, serves as a beacon of reliability, guiding researchers in their quest for knowledge and ensuring that their findings stand the test of validity and applicability.

Methodology of Random Assignment

woman sleeping with a brain monitor

Implementing random assignment in a study is a meticulous process that involves several crucial steps.

The initial step is participant selection, where individuals are chosen to partake in the study. This stage is critical to ensure that the pool of participants is diverse and representative of the population the study aims to generalize to.

Once the pool of participants has been established, the actual assignment process begins. In this step, each participant is allocated randomly to one of the groups in the study.

Researchers use various tools, such as random number generators or computerized methods, to ensure that this assignment is genuinely random and free from biases.

Monitoring and adjusting form the final step in the implementation of random assignment. Researchers need to continuously observe the groups to ensure that they remain comparable in all essential aspects throughout the study.

If any significant discrepancies arise, adjustments might be necessary to maintain the study’s integrity and validity.

Tools and Techniques Used

The evolution of technology has introduced a variety of tools and techniques to facilitate random assignment.

Random number generators, both manual and computerized, are commonly used to assign participants to different groups. These generators ensure that each individual has an equal chance of being placed in any group, upholding the principle of equal probability of selection.

In addition to random number generators, researchers often use specialized computer software designed for statistical analysis and experimental design.

These software programs offer advanced features that allow for precise and efficient random assignment, minimizing the risk of human error and enhancing the study’s reliability.

Ethical Considerations

The implementation of random assignment is not devoid of ethical considerations. Informed consent is a fundamental ethical principle that researchers must uphold.

Informed consent means that every participant should be fully informed about the nature of the study, the procedures involved, and any potential risks or benefits, ensuring that they voluntarily agree to participate.

Beyond informed consent, researchers must conduct a thorough risk and benefit analysis. The potential benefits of the study should outweigh any risks or harms to the participants.

Safeguarding the well-being of participants is paramount, and any study employing random assignment must adhere to established ethical guidelines and standards.

Conclusion of Methodology

The methodology of random assignment, while seemingly straightforward, is a multifaceted process that demands precision, fairness, and ethical integrity. From participant selection to assignment and monitoring, each step is crucial to ensure the validity of the study’s findings.

The tools and techniques employed, coupled with a steadfast commitment to ethical principles, underscore the significance of random assignment as a cornerstone of robust psychological research.

Benefits of Random Assignment in Psychological Research

The impact and importance of random assignment in psychological research cannot be overstated. It is fundamental for ensuring the study is accurate, allowing the researchers to determine if their study actually caused the results they saw, and making sure the findings can be applied to the real world.

Facilitating Causal Inferences

When participants are randomly assigned to different groups, researchers can be more confident that the observed effects are due to the independent variable being changed, and not other factors.

This ability to determine the cause is called causal inference .

This confidence allows for the drawing of causal relationships, which are foundational for theory development and application in psychology.

Ensuring Internal Validity

One of the foremost impacts of random assignment is its ability to enhance the internal validity of an experiment.

Internal validity refers to the extent to which a researcher can assert that changes in the dependent variable are solely due to manipulations of the independent variable , and not due to confounding variables.

By ensuring that each participant has an equal chance of being in any condition of the experiment, random assignment helps control for participant characteristics that could otherwise complicate the results.

Enhancing Generalizability

Beyond internal validity, random assignment also plays a crucial role in enhancing the generalizability of research findings.

When done correctly, it ensures that the sample groups are representative of the larger population, so can allow researchers to apply their findings more broadly.

This representative nature is essential for the practical application of research, impacting policy, interventions, and psychological therapies.

Limitations of Random Assignment

Potential for implementation issues.

While the principles of random assignment are robust, the method can face implementation issues.

One of the most common problems is logistical constraints. Some studies, due to their nature or the specific population being studied, find it challenging to implement random assignment effectively.

For instance, in educational settings, logistical issues such as class schedules and school policies might stop the random allocation of students to different teaching methods .

Ethical Dilemmas

Random assignment, while methodologically sound, can also present ethical dilemmas.

In some cases, withholding a potentially beneficial treatment from one of the groups of participants can raise serious ethical questions, especially in medical or clinical research where participants' well-being might be directly affected.

Researchers must navigate these ethical waters carefully, balancing the pursuit of knowledge with the well-being of participants.

Generalizability Concerns

Even when implemented correctly, random assignment does not always guarantee generalizable results.

The types of people in the participant pool, the specific context of the study, and the nature of the variables being studied can all influence the extent to which the findings can be applied to the broader population.

Researchers must be cautious in making broad generalizations from studies, even those employing strict random assignment.

Practical and Real-World Limitations

In the real world, many variables cannot be manipulated for ethical or practical reasons, limiting the applicability of random assignment.

For instance, researchers cannot randomly assign individuals to different levels of intelligence, socioeconomic status, or cultural backgrounds.

This limitation necessitates the use of other research designs, such as correlational or observational studies , when exploring relationships involving such variables.

Response to Critiques

In response to these critiques, people in favor of random assignment argue that the method, despite its limitations, remains one of the most reliable ways to establish cause and effect in experimental research.

They acknowledge the challenges and ethical considerations but emphasize the rigorous frameworks in place to address them.

The ongoing discussion around the limitations and critiques of random assignment contributes to the evolution of the method, making sure it is continuously relevant and applicable in psychological research.

While random assignment is a powerful tool in experimental research, it is not without its critiques and limitations. Implementation issues, ethical dilemmas, generalizability concerns, and real-world limitations can pose significant challenges.

However, the continued discourse and refinement around these issues underline the method's enduring significance in the pursuit of knowledge in psychology.

By being careful with how we do things and doing what's right, random assignment stays a really important part of studying how people act and think.

Real-World Applications and Examples

man on a treadmill

Random assignment has been employed in many studies across various fields of psychology, leading to significant discoveries and advancements.

Here are some real-world applications and examples illustrating the diversity and impact of this method:

  • Medicine and Health Psychology: Randomized Controlled Trials (RCTs) are the gold standard in medical research. In these studies, participants are randomly assigned to either the treatment or control group to test the efficacy of new medications or interventions.
  • Educational Psychology: Studies in this field have used random assignment to explore the effects of different teaching methods, classroom environments, and educational technologies on student learning and outcomes.
  • Cognitive Psychology: Researchers have employed random assignment to investigate various aspects of human cognition, including memory, attention, and problem-solving, leading to a deeper understanding of how the mind works.
  • Social Psychology: Random assignment has been instrumental in studying social phenomena, such as conformity, aggression, and prosocial behavior, shedding light on the intricate dynamics of human interaction.

Let's get into some specific examples. You'll need to know one term though, and that is "control group." A control group is a set of participants in a study who do not receive the treatment or intervention being tested , serving as a baseline to compare with the group that does, in order to assess the effectiveness of the treatment.

  • Smoking Cessation Study: Researchers used random assignment to put participants into two groups. One group received a new anti-smoking program, while the other did not. This helped determine if the program was effective in helping people quit smoking.
  • Math Tutoring Program: A study on students used random assignment to place them into two groups. One group received additional math tutoring, while the other continued with regular classes, to see if the extra help improved their grades.
  • Exercise and Mental Health: Adults were randomly assigned to either an exercise group or a control group to study the impact of physical activity on mental health and mood.
  • Diet and Weight Loss: A study randomly assigned participants to different diet plans to compare their effectiveness in promoting weight loss and improving health markers.
  • Sleep and Learning: Researchers randomly assigned students to either a sleep extension group or a regular sleep group to study the impact of sleep on learning and memory.
  • Classroom Seating Arrangement: Teachers used random assignment to place students in different seating arrangements to examine the effect on focus and academic performance.
  • Music and Productivity: Employees were randomly assigned to listen to music or work in silence to investigate the effect of music on workplace productivity.
  • Medication for ADHD: Children with ADHD were randomly assigned to receive either medication, behavioral therapy, or a placebo to compare treatment effectiveness.
  • Mindfulness Meditation for Stress: Adults were randomly assigned to a mindfulness meditation group or a waitlist control group to study the impact on stress levels.
  • Video Games and Aggression: A study randomly assigned participants to play either violent or non-violent video games and then measured their aggression levels.
  • Online Learning Platforms: Students were randomly assigned to use different online learning platforms to evaluate their effectiveness in enhancing learning outcomes.
  • Hand Sanitizers in Schools: Schools were randomly assigned to use hand sanitizers or not to study the impact on student illness and absenteeism.
  • Caffeine and Alertness: Participants were randomly assigned to consume caffeinated or decaffeinated beverages to measure the effects on alertness and cognitive performance.
  • Green Spaces and Well-being: Neighborhoods were randomly assigned to receive green space interventions to study the impact on residents’ well-being and community connections.
  • Pet Therapy for Hospital Patients: Patients were randomly assigned to receive pet therapy or standard care to assess the impact on recovery and mood.
  • Yoga for Chronic Pain: Individuals with chronic pain were randomly assigned to a yoga intervention group or a control group to study the effect on pain levels and quality of life.
  • Flu Vaccines Effectiveness: Different groups of people were randomly assigned to receive either the flu vaccine or a placebo to determine the vaccine’s effectiveness.
  • Reading Strategies for Dyslexia: Children with dyslexia were randomly assigned to different reading intervention strategies to compare their effectiveness.
  • Physical Environment and Creativity: Participants were randomly assigned to different room setups to study the impact of physical environment on creative thinking.
  • Laughter Therapy for Depression: Individuals with depression were randomly assigned to laughter therapy sessions or control groups to assess the impact on mood.
  • Financial Incentives for Exercise: Participants were randomly assigned to receive financial incentives for exercising to study the impact on physical activity levels.
  • Art Therapy for Anxiety: Individuals with anxiety were randomly assigned to art therapy sessions or a waitlist control group to measure the effect on anxiety levels.
  • Natural Light in Offices: Employees were randomly assigned to workspaces with natural or artificial light to study the impact on productivity and job satisfaction.
  • School Start Times and Academic Performance: Schools were randomly assigned different start times to study the effect on student academic performance and well-being.
  • Horticulture Therapy for Seniors: Older adults were randomly assigned to participate in horticulture therapy or traditional activities to study the impact on cognitive function and life satisfaction.
  • Hydration and Cognitive Function: Participants were randomly assigned to different hydration levels to measure the impact on cognitive function and alertness.
  • Intergenerational Programs: Seniors and young people were randomly assigned to intergenerational programs to study the effects on well-being and cross-generational understanding.
  • Therapeutic Horseback Riding for Autism: Children with autism were randomly assigned to therapeutic horseback riding or traditional therapy to study the impact on social communication skills.
  • Active Commuting and Health: Employees were randomly assigned to active commuting (cycling, walking) or passive commuting to study the effect on physical health.
  • Mindful Eating for Weight Management: Individuals were randomly assigned to mindful eating workshops or control groups to study the impact on weight management and eating habits.
  • Noise Levels and Learning: Students were randomly assigned to classrooms with different noise levels to study the effect on learning and concentration.
  • Bilingual Education Methods: Schools were randomly assigned different bilingual education methods to compare their effectiveness in language acquisition.
  • Outdoor Play and Child Development: Children were randomly assigned to different amounts of outdoor playtime to study the impact on physical and cognitive development.
  • Social Media Detox: Participants were randomly assigned to a social media detox or regular usage to study the impact on mental health and well-being.
  • Therapeutic Writing for Trauma Survivors: Individuals who experienced trauma were randomly assigned to therapeutic writing sessions or control groups to study the impact on psychological well-being.
  • Mentoring Programs for At-risk Youth: At-risk youth were randomly assigned to mentoring programs or control groups to assess the impact on academic achievement and behavior.
  • Dance Therapy for Parkinson’s Disease: Individuals with Parkinson’s disease were randomly assigned to dance therapy or traditional exercise to study the effect on motor function and quality of life.
  • Aquaponics in Schools: Schools were randomly assigned to implement aquaponics programs to study the impact on student engagement and environmental awareness.
  • Virtual Reality for Phobia Treatment: Individuals with phobias were randomly assigned to virtual reality exposure therapy or traditional therapy to compare effectiveness.
  • Gardening and Mental Health: Participants were randomly assigned to engage in gardening or other leisure activities to study the impact on mental health and stress reduction.

Each of these studies exemplifies how random assignment is utilized in various fields and settings, shedding light on the multitude of ways it can be applied to glean valuable insights and knowledge.

Real-world Impact of Random Assignment

old lady gardening

Random assignment is like a key tool in the world of learning about people's minds and behaviors. It’s super important and helps in many different areas of our everyday lives. It helps make better rules, creates new ways to help people, and is used in lots of different fields.

Health and Medicine

In health and medicine, random assignment has helped doctors and scientists make lots of discoveries. It’s a big part of tests that help create new medicines and treatments.

By putting people into different groups by chance, scientists can really see if a medicine works.

This has led to new ways to help people with all sorts of health problems, like diabetes, heart disease, and mental health issues like depression and anxiety.

Schools and education have also learned a lot from random assignment. Researchers have used it to look at different ways of teaching, what kind of classrooms are best, and how technology can help learning.

This knowledge has helped make better school rules, develop what we learn in school, and find the best ways to teach students of all ages and backgrounds.

Workplace and Organizational Behavior

Random assignment helps us understand how people act at work and what makes a workplace good or bad.

Studies have looked at different kinds of workplaces, how bosses should act, and how teams should be put together. This has helped companies make better rules and create places to work that are helpful and make people happy.

Environmental and Social Changes

Random assignment is also used to see how changes in the community and environment affect people. Studies have looked at community projects, changes to the environment, and social programs to see how they help or hurt people’s well-being.

This has led to better community projects, efforts to protect the environment, and programs to help people in society.

Technology and Human Interaction

In our world where technology is always changing, studies with random assignment help us see how tech like social media, virtual reality, and online stuff affect how we act and feel.

This has helped make better and safer technology and rules about using it so that everyone can benefit.

The effects of random assignment go far and wide, way beyond just a science lab. It helps us understand lots of different things, leads to new and improved ways to do things, and really makes a difference in the world around us.

From making healthcare and schools better to creating positive changes in communities and the environment, the real-world impact of random assignment shows just how important it is in helping us learn and make the world a better place.

So, what have we learned? Random assignment is like a super tool in learning about how people think and act. It's like a detective helping us find clues and solve mysteries in many parts of our lives.

From creating new medicines to helping kids learn better in school, and from making workplaces happier to protecting the environment, it’s got a big job!

This method isn’t just something scientists use in labs; it reaches out and touches our everyday lives. It helps make positive changes and teaches us valuable lessons.

Whether we are talking about technology, health, education, or the environment, random assignment is there, working behind the scenes, making things better and safer for all of us.

In the end, the simple act of putting people into groups by chance helps us make big discoveries and improvements. It’s like throwing a small stone into a pond and watching the ripples spread out far and wide.

Thanks to random assignment, we are always learning, growing, and finding new ways to make our world a happier and healthier place for everyone!

Related posts:

  • 19+ Experimental Design Examples (Methods + Types)
  • Cluster Sampling vs Stratified Sampling
  • 41+ White Collar Job Examples (Salary + Path)
  • 47+ Blue Collar Job Examples (Salary + Path)
  • McDonaldization of Society (Definition + Examples)

Reference this article:

About The Author

Photo of author

Free Personality Test

Free Personality Quiz

Free Memory Test

Free Memory Test

Free IQ Test

Free IQ Test

PracticalPie.com is a participant in the Amazon Associates Program. As an Amazon Associate we earn from qualifying purchases.

Follow Us On:

Youtube Facebook Instagram X/Twitter

Psychology Resources

Developmental

Personality

Relationships

Psychologists

Serial Killers

Psychology Tests

Personality Quiz

Memory Test

Depression test

Type A/B Personality Test

© PracticalPsychology. All rights reserved

Privacy Policy | Terms of Use

Logo for Open Library Publishing Platform

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

As previously mentioned, one of the characteristics of a true experiment is that researchers use a random process to decide which participants are tested under which conditions. Random assignation is a powerful research technique that addresses the assumption of pre-test equivalence – that the experimental and control group are equal in all respects before the administration of the independent variable (Palys & Atchison, 2014).

Random assignation is the primary way that researchers attempt to control extraneous variables across conditions. Random assignation is associated with experimental research methods. In its strictest sense, random assignment should meet two criteria.  One is that each participant has an equal chance of being assigned to each condition (e.g., a 50% chance of being assigned to each of two conditions). The second is that each participant is assigned to a condition independently of other participants. Thus, one way to assign participants to two conditions would be to flip a coin for each one. If the coin lands on the heads side, the participant is assigned to Condition A, and if it lands on the tails side, the participant is assigned to Condition B. For three conditions, one could use a computer to generate a random integer from 1 to 3 for each participant. If the integer is 1, the participant is assigned to Condition A; if it is 2, the participant is assigned to Condition B; and, if it is 3, the participant is assigned to Condition C. In practice, a full sequence of conditions—one for each participant expected to be in the experiment—is usually created ahead of time, and each new participant is assigned to the next condition in the sequence as he or she is tested.

However, one problem with coin flipping and other strict procedures for random assignment is that they are likely to result in unequal sample sizes in the different conditions. Unequal sample sizes are generally not a serious problem, and you should never throw away data you have already collected to achieve equal sample sizes. However, for a fixed number of participants, it is statistically most efficient to divide them into equal-sized groups. It is standard practice, therefore, to use a kind of modified random assignment that keeps the number of participants in each group as similar as possible.

One approach is block randomization. In block randomization, all the conditions occur once in the sequence before any of them is repeated. Then they all occur again before any of them is repeated again. Within each of these “blocks,” the conditions occur in a random order. Again, the sequence of conditions is usually generated before any participants are tested, and each new participant is assigned to the next condition in the sequence. When the procedure is computerized, the computer program often handles the random assignment, which is obviously much easier. You can also find programs online to help you randomize your random assignation. For example, the Research Randomizer website will generate block randomization sequences for any number of participants and conditions ( Research Randomizer ).

Random assignation is not guaranteed to control all extraneous variables across conditions. It is always possible that, just by chance, the participants in one condition might turn out to be substantially older, less tired, more motivated, or less depressed on average than the participants in another condition. However, there are some reasons that this may not be a major concern. One is that random assignment works better than one might expect, especially for large samples. Another is that the inferential statistics that researchers use to decide whether a difference between groups reflects a difference in the population take the “fallibility” of random assignment into account. Yet another reason is that even if random assignment does result in a confounding variable and therefore produces misleading results, this confound is likely to be detected when the experiment is replicated. The upshot is that random assignment to conditions—although not infallible in terms of controlling extraneous variables—is always considered a strength of a research design. Note: Do not confuse random assignation with random sampling. Random sampling is a method for selecting a sample from a population; we will talk about this in Chapter 7.

Research Methods, Data Collection and Ethics Copyright © 2020 by Valerie Sheppard is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Logo for British Columbia/Yukon Open Authoring Platform

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Chapter 6: Data Collection Strategies

6.1.1 Random Assignation

As previously mentioned, one of the characteristics of a true experiment is that researchers use a random process to decide which participants are tested under which conditions. Random assignation is a powerful research technique that addresses the assumption of pre-test equivalence – that the experimental and control group are equal in all respects before the administration of the independent variable (Palys & Atchison, 2014).

Random assignation is the primary way that researchers attempt to control extraneous variables across conditions. Random assignation is associated with experimental research methods. In its strictest sense, random assignment should meet two criteria.  One is that each participant has an equal chance of being assigned to each condition (e.g., a 50% chance of being assigned to each of two conditions). The second is that each participant is assigned to a condition independently of other participants. Thus, one way to assign participants to two conditions would be to flip a coin for each one. If the coin lands on the heads side, the participant is assigned to Condition A, and if it lands on the tails side, the participant is assigned to Condition B. For three conditions, one could use a computer to generate a random integer from 1 to 3 for each participant. If the integer is 1, the participant is assigned to Condition A; if it is 2, the participant is assigned to Condition B; and, if it is 3, the participant is assigned to Condition C. In practice, a full sequence of conditions—one for each participant expected to be in the experiment—is usually created ahead of time, and each new participant is assigned to the next condition in the sequence as he or she is tested.

However, one problem with coin flipping and other strict procedures for random assignment is that they are likely to result in unequal sample sizes in the different conditions. Unequal sample sizes are generally not a serious problem, and you should never throw away data you have already collected to achieve equal sample sizes. However, for a fixed number of participants, it is statistically most efficient to divide them into equal-sized groups. It is standard practice, therefore, to use a kind of modified random assignment that keeps the number of participants in each group as similar as possible.

One approach is block randomization. In block randomization, all the conditions occur once in the sequence before any of them is repeated. Then they all occur again before any of them is repeated again. Within each of these “blocks,” the conditions occur in a random order. Again, the sequence of conditions is usually generated before any participants are tested, and each new participant is assigned to the next condition in the sequence. When the procedure is computerized, the computer program often handles the random assignment, which is obviously much easier. You can also find programs online to help you randomize your random assignation. For example, the Research Randomizer website will generate block randomization sequences for any number of participants and conditions ( Research Randomizer ).

Random assignation is not guaranteed to control all extraneous variables across conditions. It is always possible that, just by chance, the participants in one condition might turn out to be substantially older, less tired, more motivated, or less depressed on average than the participants in another condition. However, there are some reasons that this may not be a major concern. One is that random assignment works better than one might expect, especially for large samples. Another is that the inferential statistics that researchers use to decide whether a difference between groups reflects a difference in the population take the “fallibility” of random assignment into account. Yet another reason is that even if random assignment does result in a confounding variable and therefore produces misleading results, this confound is likely to be detected when the experiment is replicated. The upshot is that random assignment to conditions—although not infallible in terms of controlling extraneous variables—is always considered a strength of a research design. Note: Do not confuse random assignation with random sampling. Random sampling is a method for selecting a sample from a population; we will talk about this in Chapter 7.

Research Methods for the Social Sciences: An Introduction Copyright © 2020 by Valerie Sheppard is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

helpful professor logo

Random Assignment in Psychology (Intro for Students)

random assignment examples and definition, explained below

Random assignment is a research procedure used to randomly assign participants to different experimental conditions (or ‘groups’). This introduces the element of chance, ensuring that each participant has an equal likelihood of being placed in any condition group for the study.

It is absolutely essential that the treatment condition and the control condition are the same in all ways except for the variable being manipulated.

Using random assignment to place participants in different conditions helps to achieve this.

It ensures that those conditions are the same in regards to all potential confounding variables and extraneous factors .

Why Researchers Use Random Assignment

Researchers use random assignment to control for confounds in research.

Confounds refer to unwanted and often unaccounted-for variables that might affect the outcome of a study. These confounding variables can skew the results, rendering the experiment unreliable.

For example, below is a study with two groups. Note how there are more ‘red’ individuals in the first group than the second:

a representation of a treatment condition showing 12 red people in the cohort

There is likely a confounding variable in this experiment explaining why more red people ended up in the treatment condition and less in the control condition. The red people might have self-selected, for example, leading to a skew of them in one group over the other.

Ideally, we’d want a more even distribution, like below:

a representation of a treatment condition showing 4 red people in the cohort

To achieve better balance in our two conditions, we use randomized sampling.

Fact File: Experiments 101

Random assignment is used in the type of research called the experiment.

An experiment involves manipulating the level of one variable and examining how it affects another variable. These are the independent and dependent variables :

  • Independent Variable: The variable manipulated is called the independent variable (IV)
  • Dependent Variable: The variable that it is expected to affect is called the dependent variable (DV).

The most basic form of the experiment involves two conditions: the treatment and the control .

  • The Treatment Condition: The treatment condition involves the participants being exposed to the IV.
  • The Control Condition: The control condition involves the absence of the IV. Therefore, the IV has two levels: zero and some quantity.

Researchers utilize random assignment to determine which participants go into which conditions.

Methods of Random Assignment

There are several procedures that researchers can use to randomly assign participants to different conditions.

1. Random number generator

There are several websites that offer computer-generated random numbers. Simply indicate how many conditions are in the experiment and then click. If there are 4 conditions, the program will randomly generate a number between 1 and 4 each time it is clicked.

2. Flipping a coin

If there are two conditions in an experiment, then the simplest way to implement random assignment is to flip a coin for each participant. Heads means being assigned to the treatment and tails means being assigned to the control (or vice versa).

3. Rolling a die

Rolling a single die is another way to randomly assign participants. If the experiment has three conditions, then numbers 1 and 2 mean being assigned to the control; numbers 3 and 4 mean treatment condition one; and numbers 5 and 6 mean treatment condition two.

4. Condition names in a hat

In some studies, the researcher will write the name of the treatment condition(s) or control on slips of paper and place them in a hat. If there are 4 conditions and 1 control, then there are 5 slips of paper.

The researcher closes their eyes and selects one slip for each participant. That person is then assigned to one of the conditions in the study and that slip of paper is placed back in the hat. Repeat as necessary.

There are other ways of trying to ensure that the groups of participants are equal in all ways with the exception of the IV. However, random assignment is the most often used because it is so effective at reducing confounds.

Read About More Methods and Examples of Random Assignment Here

Potential Confounding Effects

Random assignment is all about minimizing confounding effects.

Here are six types of confounds that can be controlled for using random assignment:

  • Individual Differences: Participants in a study will naturally vary in terms of personality, intelligence, mood, prior knowledge, and many other characteristics. If one group happens to have more people with a particular characteristic, this could affect the results. Random assignment ensures that these individual differences are spread out equally among the experimental groups, making it less likely that they will unduly influence the outcome.
  • Temporal or Time-Related Confounds: Events or situations that occur at a particular time can influence the outcome of an experiment. For example, a participant might be tested after a stressful event, while another might be tested after a relaxing weekend. Random assignment ensures that such effects are equally distributed among groups, thus controlling for their potential influence.
  • Order Effects: If participants are exposed to multiple treatments or tests, the order in which they experience them can influence their responses. Randomly assigning the order of treatments for different participants helps control for this.
  • Location or Environmental Confounds: The environment in which the study is conducted can influence the results. One group might be tested in a noisy room, while another might be in a quiet room. Randomly assigning participants to different locations can control for these effects.
  • Instrumentation Confounds: These occur when there are variations in the calibration or functioning of measurement instruments across conditions. If one group’s responses are being measured using a slightly different tool or scale, it can introduce a confound. Random assignment can ensure that any such potential inconsistencies in instrumentation are equally distributed among groups.
  • Experimenter Effects: Sometimes, the behavior or expectations of the person administering the experiment can unintentionally influence the participants’ behavior or responses. For instance, if an experimenter believes one treatment is superior, they might unconsciously communicate this belief to participants. Randomly assigning experimenters or using a double-blind procedure (where neither the participant nor the experimenter knows the treatment being given) can help control for this.

Random assignment helps balance out these and other potential confounds across groups, ensuring that any observed differences are more likely due to the manipulated independent variable rather than some extraneous factor.

Limitations of the Random Assignment Procedure

Although random assignment is extremely effective at eliminating the presence of participant-related confounds, there are several scenarios in which it cannot be used.

  • Ethics: The most obvious scenario is when it would be unethical. For example, if wanting to investigate the effects of emotional abuse on children, it would be unethical to randomly assign children to either received abuse or not.  Even if a researcher were to propose such a study, it would not receive approval from the Institutional Review Board (IRB) which oversees research by university faculty.
  • Practicality: Other scenarios involve matters of practicality. For example, randomly assigning people to specific types of diet over a 10-year period would be interesting, but it would be highly unlikely that participants would be diligent enough to make the study valid. This is why examining these types of subjects has to be carried out through observational studies . The data is correlational, which is informative, but falls short of the scientist’s ultimate goal of identifying causality.
  • Small Sample Size: The smaller the sample size being assigned to conditions, the more likely it is that the two groups will be unequal. For example, if you flip a coin many times in a row then you will notice that sometimes there will be a string of heads or tails that come up consecutively. This means that one condition may have a build-up of participants that share the same characteristics. However, if you continue flipping the coin, over the long-term, there will be a balance of heads and tails. Unfortunately, how large a sample size is necessary has been the subject of considerable debate (Bloom, 2006; Shadish et al., 2002).

“It is well known that larger sample sizes reduce the probability that random assignment will result in conditions that are unequal” (Goldberg, 2019, p. 2).

Applications of Random Assignment

The importance of random assignment has been recognized in a wide range of scientific and applied disciplines (Bloom, 2006).

Random assignment began as a tool in agricultural research by Fisher (1925, 1935). After WWII, it became extensively used in medical research to test the effectiveness of new treatments and pharmaceuticals (Marks, 1997).

Today it is widely used in industrial engineering (Box, Hunter, and Hunter, 2005), educational research (Lindquist, 1953; Ong-Dean et al., 2011)), psychology (Myers, 1972), and social policy studies (Boruch, 1998; Orr, 1999).

One of the biggest obstacles to the validity of an experiment is the confound. If the group of participants in the treatment condition are substantially different from the group in the control condition, then it is impossible to determine if the IV has an affect or if the confound has an effect.

Thankfully, random assignment is highly effective at eliminating confounds that are known and unknown. Because each participant has an equal chance of being placed in each condition, they are equally distributed.

There are several ways of implementing random assignment, including flipping a coin or using a random number generator.

Random assignment has become an essential procedure in research in a wide range of subjects such as psychology, education, and social policy.

Alferes, V. R. (2012). Methods of randomization in experimental design . Sage Publications.

Bloom, H. S. (2008). The core analytics of randomized experiments for social research. The SAGE Handbook of Social Research Methods , 115-133.

Boruch, R. F. (1998). Randomized controlled experiments for evaluation and planning. Handbook of applied social research methods , 161-191.

Box, G. E., Hunter, W. G., & Hunter, J. S. (2005). Design of experiments: Statistics for Experimenters: Design, Innovation and Discovery.

Dehue, T. (1997). Deception, efficiency, and random groups: Psychology and the gradual origination of the random group design. Isis , 88 (4), 653-673.

Fisher, R.A. (1925). Statistical methods for research workers (11th ed. rev.). Oliver and Boyd: Edinburgh.

Fisher, R. A. (1935). The Design of Experiments. Edinburgh: Oliver and Boyd.

Goldberg, M. H. (2019). How often does random assignment fail? Estimates and recommendations. Journal of Environmental Psychology , 66 , 101351.

Jamison, J. C. (2019). The entry of randomized assignment into the social sciences. Journal of Causal Inference , 7 (1), 20170025.

Lindquist, E. F. (1953). Design and analysis of experiments in psychology and education . Boston: Houghton Mifflin Company.

Marks, H. M. (1997). The progress of experiment: Science and therapeutic reform in the United States, 1900-1990 . Cambridge University Press.

Myers, J. L. (1972). Fundamentals of experimental design (2nd ed.). Allyn & Bacon.

Ong-Dean, C., Huie Hofstetter, C., & Strick, B. R. (2011). Challenges and dilemmas in implementing random assignment in educational research. American Journal of Evaluation , 32 (1), 29-49.

Orr, L. L. (1999). Social experiments: Evaluating public programs with experimental methods . Sage.

Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Quasi-experiments: interrupted time-series designs. Experimental and quasi-experimental designs for generalized causal inference , 171-205.

Stigler, S. M. (1992). A historical view of statistical concepts in psychology and educational research. American Journal of Education , 101 (1), 60-70.

Dave

Dave Cornell (PhD)

Dr. Cornell has worked in education for more than 20 years. His work has involved designing teacher certification for Trinity College in London and in-service training for state governments in the United States. He has trained kindergarten teachers in 8 countries and helped businessmen and women open baby centers and kindergartens in 3 countries.

  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 25 Positive Punishment Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 25 Dissociation Examples (Psychology)
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 15 Zone of Proximal Development Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ Perception Checking: 15 Examples and Definition

Chris

Chris Drew (PhD)

This article was peer-reviewed and edited by Chris Drew (PhD). The review process on Helpful Professor involves having a PhD level expert fact check, edit, and contribute to articles. Reviewers ensure all content reflects expert academic consensus and is backed up with reference to academic studies. Dr. Drew has published over 20 academic articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education and holds a PhD in Education from ACU.

  • Chris Drew (PhD) #molongui-disabled-link 25 Positive Punishment Examples
  • Chris Drew (PhD) #molongui-disabled-link 25 Dissociation Examples (Psychology)
  • Chris Drew (PhD) #molongui-disabled-link 15 Zone of Proximal Development Examples
  • Chris Drew (PhD) #molongui-disabled-link Perception Checking: 15 Examples and Definition

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

  • Yale Directories

Institution for Social and Policy Studies

Advancing research • shaping policy • developing leaders, why randomize.

About Randomized Field Experiments Randomized field experiments allow researchers to scientifically measure the impact of an intervention on a particular outcome of interest.

What is a randomized field experiment? In a randomized experiment, a study sample is divided into one group that will receive the intervention being studied (the treatment group) and another group that will not receive the intervention (the control group). For instance, a study sample might consist of all registered voters in a particular city. This sample will then be randomly divided into treatment and control groups. Perhaps 40% of the sample will be on a campaign’s Get-Out-the-Vote (GOTV) mailing list and the other 60% of the sample will not receive the GOTV mailings. The outcome measured –voter turnout– can then be compared in the two groups. The difference in turnout will reflect the effectiveness of the intervention.

What does random assignment mean? The key to randomized experimental research design is in the random assignment of study subjects – for example, individual voters, precincts, media markets or some other group – into treatment or control groups. Randomization has a very specific meaning in this context. It does not refer to haphazard or casual choosing of some and not others. Randomization in this context means that care is taken to ensure that no pattern exists between the assignment of subjects into groups and any characteristics of those subjects. Every subject is as likely as any other to be assigned to the treatment (or control) group. Randomization is generally achieved by employing a computer program containing a random number generator. Randomization procedures differ based upon the research design of the experiment. Individuals or groups may be randomly assigned to treatment or control groups. Some research designs stratify subjects by geographic, demographic or other factors prior to random assignment in order to maximize the statistical power of the estimated effect of the treatment (e.g., GOTV intervention). Information about the randomization procedure is included in each experiment summary on the site.

What are the advantages of randomized experimental designs? Randomized experimental design yields the most accurate analysis of the effect of an intervention (e.g., a voter mobilization phone drive or a visit from a GOTV canvasser, on voter behavior). By randomly assigning subjects to be in the group that receives the treatment or to be in the control group, researchers can measure the effect of the mobilization method regardless of other factors that may make some people or groups more likely to participate in the political process. To provide a simple example, say we are testing the effectiveness of a voter education program on high school seniors. If we allow students from the class to volunteer to participate in the program, and we then compare the volunteers’ voting behavior against those who did not participate, our results will reflect something other than the effects of the voter education intervention. This is because there are, no doubt, qualities about those volunteers that make them different from students who do not volunteer. And, most important for our work, those differences may very well correlate with propensity to vote. Instead of letting students self-select, or even letting teachers select students (as teachers may have biases in who they choose), we could randomly assign all students in a given class to be in either a treatment or control group. This would ensure that those in the treatment and control groups differ solely due to chance. The value of randomization may also be seen in the use of walk lists for door-to-door canvassers. If canvassers choose which houses they will go to and which they will skip, they may choose houses that seem more inviting or they may choose houses that are placed closely together rather than those that are more spread out. These differences could conceivably correlate with voter turnout. Or if house numbers are chosen by selecting those on the first half of a ten page list, they may be clustered in neighborhoods that differ in important ways from neighborhoods in the second half of the list. Random assignment controls for both known and unknown variables that can creep in with other selection processes to confound analyses. Randomized experimental design is a powerful tool for drawing valid inferences about cause and effect. The use of randomized experimental design should allow a degree of certainty that the research findings cited in studies that employ this methodology reflect the effects of the interventions being measured and not some other underlying variable or variables.

what is the most important reason for random assignment

The Plagiarism Checker Online For Your Academic Work

Start Plagiarism Check

Editing & Proofreading for Your Research Paper

Get it proofread now

Online Printing & Binding with Free Express Delivery

Configure binding now

  • Academic essay overview
  • The writing process
  • Structuring academic essays
  • Types of academic essays
  • Academic writing overview
  • Sentence structure
  • Academic writing process
  • Improving your academic writing
  • Titles and headings
  • APA style overview
  • APA citation & referencing
  • APA structure & sections
  • Citation & referencing
  • Structure and sections
  • APA examples overview
  • Commonly used citations
  • Other examples
  • British English vs. American English
  • Chicago style overview
  • Chicago citation & referencing
  • Chicago structure & sections
  • Chicago style examples
  • Citing sources overview
  • Citation format
  • Citation examples
  • College essay overview
  • Application
  • How to write a college essay
  • Types of college essays
  • Commonly confused words
  • Definitions
  • Dissertation overview
  • Dissertation structure & sections
  • Dissertation writing process
  • Graduate school overview
  • Application & admission
  • Study abroad
  • Master degree
  • Harvard referencing overview
  • Language rules overview
  • Grammatical rules & structures
  • Parts of speech
  • Punctuation
  • Methodology overview
  • Analyzing data
  • Experiments
  • Observations
  • Inductive vs. Deductive
  • Qualitative vs. Quantitative
  • Types of validity
  • Types of reliability
  • Sampling methods
  • Theories & Concepts
  • Types of research studies
  • Types of variables
  • MLA style overview
  • MLA examples
  • MLA citation & referencing
  • MLA structure & sections
  • Plagiarism overview
  • Plagiarism checker
  • Types of plagiarism
  • Printing production overview
  • Research bias overview
  • Types of research bias
  • Example sections
  • Types of research papers
  • Research process overview
  • Problem statement
  • Research proposal
  • Research topic
  • Statistics overview
  • Levels of measurment
  • Frequency distribution
  • Measures of central tendency
  • Measures of variability
  • Hypothesis testing
  • Parameters & test statistics
  • Types of distributions
  • Correlation
  • Effect size
  • Hypothesis testing assumptions
  • Types of ANOVAs
  • Types of chi-square
  • Statistical data
  • Statistical models
  • Spelling mistakes
  • Tips overview
  • Academic writing tips
  • Dissertation tips
  • Sources tips
  • Working with sources overview
  • Evaluating sources
  • Finding sources
  • Including sources
  • Types of sources

Your Step to Success

Plagiarism Check within 10min

Printing & Binding with 3D Live Preview

Random Assignment – A Simple Introduction with Examples

How do you like this article cancel reply.

Save my name, email, and website in this browser for the next time I comment.

Random-assignment-Definition

Completing a research or thesis paper is more work than most students imagine. For instance, you must conduct experiments before coming up with conclusions. Random assignment, a key methodology in academic research, ensures every participant has an equal chance of being placed in any group within an experiment. In experimental studies, the random assignment of participants is a vital element, which this article will discuss.

Inhaltsverzeichnis

  • 1 Random Assignment – In a Nutshell
  • 2 Definition: Random assignment
  • 3 Importance of random assignment
  • 4 Random assignment vs. random sampling
  • 5 How to use random assignment
  • 6 When random assignment is not used

Random Assignment – In a Nutshell

  • Random assignment is where you randomly place research participants into specific groups.
  • This method eliminates bias in the results by ensuring that all participants have an equal chance of getting into either group.
  • Random assignment is usually used in independent measures or between-group experiment designs.

Definition: Random assignment

Pearson Correlation is a descriptive statistical procedure that describes the measure of linear dependence between two variables. It entails a sample, control group , experimental design , and randomized design. In this statistical procedure, random assignment is used. Random assignment is the random placement of participants into different groups in experimental research.

Ireland

Importance of random assignment

Random assessment is essential for strengthening the internal validity of experimental research. Internal validity helps make a casual relationship’s conclusions reliable and trustworthy.

In experimental research, researchers isolate independent variables and manipulate them as they assess the impact while managing other variables. To achieve this, an independent variable for diverse member groups is vital. This experimental design is called an independent or between-group design.

Example: Different levels of independent variables

  • In a medical study, you can research the impact of nutrient supplements on the immune (nutrient supplements = independent variable, immune = dependent variable)

Three independent participant levels are applicable here:

  • Control group (given 0 dosages of iron supplements)
  • The experimental group (low dosage)
  • The second experimental group (high dosage)

This assignment technique in experiments ensures no bias in the treatment sets at the beginning of the trials. Therefore, if you do not use this technique, you won’t be able to exclude any alternate clarifications for your findings.

In the research experiment above, you can recruit participants randomly by handing out flyers at public spaces like gyms, cafés, and community centers. Then:

  • Place the group from cafés in the control group
  • Community center group in the low prescription trial group
  • Gym group in the high-prescription group

Even with random participant assignment, other extraneous variables may still create bias in experiment results. However, these variations are usually low, hence should not hinder your research. Therefore, using random placement in experiments is highly necessary, especially where it is ethically required or makes sense for your research subject.

Random assignment vs. random sampling

Simple random sampling is a method of choosing the participants for a study. On the other hand, the random assignment involves sorting the participants selected through random sampling. Another difference between random sampling and random assignment is that the former is used in several types of studies, while the latter is only applied in between-subject experimental designs.

Your study researches the impact of technology on productivity in a specific company.

In such a case, you have contact with the entire staff. So, you can assign each employee a quantity and apply a random number generator to pick a specific sample.

For instance, from 500 employees, you can pick 200. So, the full sample is 200.

Random sampling enhances external validity, as it guarantees that the study sample is unbiased, and that an entire population is represented. This way, you can conclude that the results of your studies can be accredited to the autonomous variable.

After determining the full sample, you can break it down into two groups using random assignment. In this case, the groups are:

  • The control group (does get access to technology)
  • The experimental group (gets access to technology)

Using random assignment assures you that any differences in the productivity results for each group are not biased and will help the company make a decision.

Random-assignment-vs-random-sampling

How to use random assignment

Firstly, give each participant a unique number as an identifier. Then, use a specific tool to simplify assigning the participants to the sample groups. Some tools you can use are:

Random member assignment is a prevailing technique for placing participants in specific groups because each person has a fair opportunity of being put in either group.

Random assignment in block experimental designs

In complex experimental designs , you must group your participants into blocks before using the random assignment technique.

You can create participant blocks depending on demographic variables, working hours, or scores. However, the blocks imply that you will require a bigger sample to attain high statistical power.

After grouping the participants in blocks, you can use random assignments inside each block to allocate the members to a specific treatment condition. Doing this will help you examine if quality impacts the result of the treatment.

Depending on their unique characteristics, you can also use blocking in experimental matched designs before matching the participants in each block. Then, you can randomly allot each partaker to one of the treatments in the research and examine the results.

When random assignment is not used

As powerful a tool as it is, random assignment does not apply in all situations. Like the following:

Comparing different groups

When the purpose of your study is to assess the differences between the participants, random member assignment may not work.

If you want to compare teens and the elderly with and without specific health conditions, you must ensure that the participants have specific characteristics. Therefore, you cannot pick them randomly.

In such a study, the medical condition (quality of interest) is the independent variable, and the participants are grouped based on their ages (different levels). Also, all partakers are tried similarly to ensure they have the medical condition, and their outcomes are tested per group level.

No ethical justifiability

Another situation where you cannot use random assignment is if it is ethically not permitted.

If your study involves unhealthy or dangerous behaviors or subjects, such as drug use. Instead of assigning random partakers to sets, you can conduct quasi-experimental research.

When using a quasi-experimental design , you examine the conclusions of pre-existing groups you have no control over, such as existing drug users. While you cannot randomly assign them to groups, you can use variables like their age, years of drug use, or socioeconomic status to group the participants.

What is the definition of random assignment?

It is an experimental research technique that involves randomly placing participants from your samples into different groups. It ensures that every sample member has the same opportunity of being in whichever group (control or experimental group).

When is random assignment applicable?

You can use this placement technique in experiments featuring an independent measures design. It helps ensure that all your sample groups are comparable.

What is the importance of random assignment?

It can help you enhance your study’s validity . This technique also helps ensure that every sample has an equal opportunity of being assigned to a control or trial group.

When should you NOT use random assignment

You should not use this technique if your study focuses on group comparisons or if it is not legally ethical.

We use cookies on our website. Some of them are essential, while others help us to improve this website and your experience.

  • External Media

Individual Privacy Preferences

Cookie Details Privacy Policy Imprint

Here you will find an overview of all cookies used. You can give your consent to whole categories or display further information and select certain cookies.

Accept all Save

Essential cookies enable basic functions and are necessary for the proper function of the website.

Show Cookie Information Hide Cookie Information

Statistics cookies collect information anonymously. This information helps us to understand how our visitors use our website.

Content from video platforms and social media platforms is blocked by default. If External Media cookies are accepted, access to those contents no longer requires manual consent.

Privacy Policy Imprint

Book cover

Behavioral Clinical Trials for Chronic Diseases pp 169–207 Cite as

Protection of Random Assignment

  • Lynda H. Powell 4 ,
  • Peter G. Kaufmann 5 &
  • Kenneth E. Freedland 6  
  • First Online: 14 October 2021

518 Accesses

Existence of an alternative explanation for the benefit of a treatment is a confounder. It is a nuisance “passenger” variable that rides along with treatment and undermines the ability to make causal inferences. This chapter focuses on why random assignment is so powerful and should be protected. It presents a history of attempts to answer the question of whether or not a treatment works, and the arrival at random assignment as the best way to make causal inferences about the benefits of a treatment. It defines confounding as an error of interpretation and the essential role of avoiding it by protecting the random assignment. It then goes on to illustrate ways to protect random assignment in the design, conduct, and analyses of a trial, with particular attention to the central role of identifying a patient-centered target population, recruiting it, retaining it, and insuring that all randomized participants are included in the evaluation of trial results.

“Daniel and his three companions were young Israelites who were taken to serve in the palace of the king of Babylon because they were of noble royal family, without physical defect, handsome, versed in wisdom, and competent. Daniel determined he would not defile himself with the King’s food or wine. He asked the overseer: ‘Please test us for 10 days and let us be given some vegetables to eat and water to drink. Then let our appearance be compared to the appearance of youths who are eating the King’s choice food.’ At the end of 10 days, their appearance seemed better and they were fatter than any of the youths who had been eating the King’s food. So the overseer let them continue to eat vegetables and drink water instead of what the king provided.” Bible, Old Testament, Book of Daniel 1:16

This is a preview of subscription content, log in via an institution .

Buying options

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Bull JP (1959) The historical development of clinical therapeutic trials. J Chron Dis 10:218–248

PubMed   Google Scholar  

Armitage P (1982) The role of randomization in clinical trials. Stat Med 1:345–352

Van Helmont JB (1662) Oriatrike or Physik Refined. In Debus AG (1968) The chemical dream of the renaissance. Heffer, London

Google Scholar  

Peirce CS, Jastrow J (1884) Fifth memoir: on small differences of sensation. Ntl Acad Sci 3:73–83

Yule G (1924) The function of statistical method in scientific investigation. Industrial Health Research Board Report 28. His Majesty’s Stationery Office, London

Eliot MM (1925) The control of rickets: preliminary discussion of the demonstration in New Haven. JAMA 85:656–663

Hill AB (1952) The clinical trial. New Engl J Med 247:113–119

Hill AB (1953) Observation and experiment. New Engl J Med 248:995–1001

Sinclair HM (1951) Nutritional surveys of population groups. New Engl J Med 245:39–47

Mill JS (1843) A system of logic ratiocinative and inductive. Being a connected view of the principles of evidence and the methods of scientific investigation. Book I. In Robson JM (ed). The collected works of John Stuart Mill (1974). University of Toronto Press, Toronto

Hill AB (1965) The environment and disease: association or causation. Proc Roy Soc Med 58:295–300

Wang D, Bakhai A (2006) Clinical trials: a practical guide to design, analysis, and reporting. Remedica, London

Domanski M, McKinlay S (2009) Successful randomized trials. A handbook for the 21st century. Lippincott Williams & Wilkins, Philadelphia

Friedman LM, Furberg CD, DeMets D, Reboussin DH, Granger CB (2015) Fundamentals of clinical trials, 5th edn. Springer, Cham

Rothman KJ, Greenland S, Lash TL (2008) Modern epidemiology, 3rd edn. Lippincott Williams & Wilkins, Philadelphia

Szklo M, Nieto FJ (2019) Epidemiology: beyond the basics, 4th edn. Jones & Bartlett Learning, Burlington

Hennekens CH, Buring JE, Mayrent SL (1987) Epidemiology in medicine. Little Brown, Boston

Susser M (1973) Causal thinking in the health sciences: Concepts and strategies of epidemiology. Oxford University Press, New York

Fisher RA (1951) The design of experiments, 6th edn. Hafner, New York

Shadish WR, Cook TD, Campbell DT (2002) Experimental and quasi-experimental designs for generalized causal inference. Houghton Mifflin, Boston

Byar DP, Simon RM, Friedewald WT, Schlesselman JJ, DeMets D, Ellenberg JH, Gail MH, Ware JH (1976) Randomized clinical trials--perspectives on some recent ideas. N Engl J Med 295:74–80

Moher D, Hopewell S, Schulz KF, Montori V, Gotzche PC, Devereaux PJ, Elbourne D, Egger M, Altman DG (2010) CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ 340:c869. https://doi.org/10.1136/bmj.c869

Mosteller F, Gilbert JP, McPeek B (1980) Reporting standards and research strategies for controlled trials. Control Clin Trials 1:37–58

Schulz KF, Chalmers I, Hayes RJ, Altman DG (1995) Empirical evidence of bias. Dimensions of methodological quality associated with estimates of treatment effects in controlled trials. JAMA 273:408–412

CONSORT Group (2010) CONSORT checklist. www.consort-statement.org

Schulz KF, Altman DG, Moher D, CONSORT Group (2010) CONSORT 2010 statement: updated guidelines for reporting parallel group randomized trials. Ann Intern Med 152:726–732

Zwarenstein M, Treweek S, Gagnier JJ, Altman DG, Tunis S, Haynes B, Oxman AD, Moher D, and for the CONSORT and Pragmatic Trials in Healthcare (Practihc) groups (2008) Improving the reporting of pragmatic trials: an extension of the CONSORT statement. BMJ 337:a2390. https://doi.org/10.1136/bmj.a2390

Schulz KF (1995) Subverting randomization in controlled trials. JAMA 274:1456–1458

Kraemer HC (2015) A source of false findings in published research studies: adjusting for covariates. JAMA Psychiatry 72:961–962

Pocock SJ, Assmann SE, Enos LE, Kasten LE (2002) Subgroup analysis, covariate adjustment and baseline comparisons in clinical trial reporting: current practice and problems. Stat Med 21:2917–2930

Schulz KF, Grimes DA, Altman DG, Hayes RJ (1996) Blinding and exclusions after allocation in randomised controlled trials: survey of published parallel group trials in obstetrics and gynaecology. BMJ 312:742–744

PubMed   PubMed Central   Google Scholar  

Detry MA, Lewis RJ (2014) The intention-to-treat principle: how to assess the true effect of choosing a medical treatment. JAMA 312:85–86

Freedman B (1987) Equipoise and the ethics of clinical research. N Eng J Med 317:141–145

Green SB, Byar DP (1984) Using observational data from registries to compare treatments: the fallacy of omnimetrics. Stat Med 3:361–373

Hollon SD, Wampold BE (2009) Are randomized controlled trials relevant to clinical practice? Can J Psychiatry 54:637–643

Cook TD, Campbell DT (1979) Quasi-experimentation: Design and analysis issues for field settings. Houghton Mifflin, Boston

Glasgow RE, Lichtenstein E, Marcus AC (2003) Why don’t we see more translation of health promotion research to practice? Rethinking the efficacy-to-effectiveness transition. Am J Public Health 93:1261–1267

Areán PA, Kraemer HC (2013) High-quality psychotherapy research: From conception to piloting to national trials. Oxford University Press, New York

Brownell KD, Wadden TA (1992) Etiology and treatment of obesity: understanding a serious, prevalent, and refractory disorder. J Consult Clin Psychol 60:505–517

Prochaska JO, DiClemente CC, Norcross JC (1992) In search of how people change: Applications to addictive behaviors. Am Psychol 47:1102–1114

Hall SM, Tsoh JY, Prochaska JJ, Eisendrath S, Rossi JS, Redding CA, Rosen AB, Meisner M, Humfleet GL, Gorecki JA (2006) Treatment for cigarette smoking among depressed mental health outpatients: a randomized clinical trial. Am J Public Health 96:1808–1814

Prochaska JJ, Hall SE, Delucchi K, Hall SM (2014) Efficacy of initiating tobacco dependence treatment in inpatient psychiatry: a randomized controlled trial. Am J Public Health 104:1557–1565

Prochaska JJ, Hall SE, Hall SM (2009) Stage-tailored tobacco cessation treatment in inpatient psychiatry. Psychiatr Serv 60:848. https://doi:10.1176/appi.ps.60.6.848

Prochaska JJ, Velicer WF, Prochaska JO, Delucchi K, Hall SM (2006) Comparing intervention outcomes in smokers treated for single versus multiple behavioral risks. Health Psychol 25:380–388

The Steering Committee of the Physicians Health Study Research Group (1988) Preliminary report: findings from the aspirin component of the ongoing Physicians’ Health Study. N Engl J Med 318:262–264

Coronary Drug Project Research Group (1980) Influence of adherence to treatment and response of cholesterol on mortality in the Coronary Drug Project. N Engl J Med 303:1038–1041

Adamson J, Cockayne S, Puffer S, Torgerson DJ (2006) Review of randomised trials using the post-randomised consent (Zelen’s) design. Contemp Clin Trials 27:305–319

Fabricatore AN, Wadden TA, Moore RH, Butryn ML, Gravallese EA, Erondu NE, Heymsfield SB, Nguyen AM (2009) Attrition from randomized controlled trials of pharmacological weight loss agents: a systematic review and analysis. Obes Rev 10:333–341

Lang JM (1990) The use of a run-in to enhance compliance. Stat Med 9:87–93

Kong W, Langlois MF, Kamga-Ngandé C, Gagnon C, Brown C, Baillargeon JP (2010) Predictors of success to weight-loss intervention program in individuals at high risk for type 2 diabetes. Diabetes Res Clin Pract 90:147–153

Teixeira PJ, Going SB, Houtkooper LB, Cussler EC, Metcalfe LL, Blew RM, Sardinha LB, Lohman TG (2004) Pretreatment predictors of attrition and successful weight management in women. Int J Obes Relat Metab Disord 28:1124–1133

Czajkowski SM, Powell LH, Adler N, Naar-King S, Reynolds KD, Hunter CM, Laraia B, Olster DH, Perna FM, Peterson JC, Epel E, Boyington JE, Charlson ME (2015) From ideas to efficacy: the ORBIT model for developing behavioral treatments for chronic diseases. Health Psychol 34:971–982

Bailey JV, Pavlou M, Copas A, McCarthy OL, Carswell K, Rait G, Hart G, Nazareth I, Free CJ, French R, Murray E (2013) The Sexunzipped trial: optimizing the design of online randomized controlled trials. J Med Internet Res 15:e278. https://doi.org/10.2196/jmir.2668

Boyd A, Tilling K, Cornish R, Davies A, Humphries K, Macleod J (2015) Professionally designed information materials and telephone reminders improved consent response rates: evidence from an RCT nested within a cohort study. J Clin Epidemiol 68:877–887

Dickson S, Logan J, Hagen S, Stark D, Glazener C, McDonald AM, McPherson G (2013) Reflecting on the methodological challenges of recruiting to a United Kingdom-wide, multi-centre, randomised controlled trial in gynaecology outpatient settings. Trials 14:389. https://doi.org/10.1186/1745-6215-14-389

Gupta A, Calfas KJ, Marshall SJ, Robinson TN, Rock CL, Huang JS, Epstein-Corbin M, Servetas C, Donohue MC, Norman GJ, Raab F, Merchant G, Fowler JH, Griswold WG, Fogg BJ, Patrick K (2015) Clinical trial management of participant recruitment, enrollment, engagement, and retention in the SMART study using a Marketing and Information Technology (MARKIT) model. Contemp Clin Trials 42:185–195

Hadidi N, Buckwalter K, Lindquist R, Rangen C (2012) Lessons learned in recruitment and retention of stroke survivors. J Neurosci Nurs 44:105–110

Hartlieb KB, Jacques-Tiura AJ, Naar-King S, Ellis DA, Jen KL, Marshall S (2015) Recruitment strategies and the retention of obese urban racial/ethnic minority adolescents in clinical trials: the FIT families project, Michigan, 2010–2014. Prev Chronic Dis 12:E22. https://doi.org/10.5888/pcd12.140409

Johnson DA, Joosten YA, Wilkins CH, Shibao CA (2015) Case study. Community engagement and clinical trial success: outreach to African American women. Clin Transl Sci 8:388–390

Blake K, Holbrook JT, Antal H, Shade D, Bunnell HT, McCahan SM, Wise RA, Pennington C, Garfinkel P, Wysocki T (2015) Use of mobile devices and the internet for multimedia informed consent delivery and data entry in a pediatric asthma trial: study design and rationale. Contemp Clin Trials 42:105–118

Cermak SA, Stein Duker LI, Williams ME, Lane CJ, Dawson ME, Borreson AE, Polido JC (2015) Feasibility of a sensory-adapted dental environment for children with autism. Am J Occup Ther 69:6903220020. https://doi.org/10.5014/ajot.2015.013714

Giuffrida A, Torgerson DJ (1997) Should we pay the patient? Review of financial incentives to enhance patient compliance. BMJ 315:703–707

Brown SD, Lee K, Schoffman DE, King AC, Crawley LM, Kiernan M (2012) Minority recruitment into clinical trials: experimental findings and practical implications. Contemp Clin Trials 33:620–623

Kiernan M, Phillips K, Fair JM, King AC (2000) Using direct mail to recruit Hispanic adults into a dietary intervention: an experimental study. Ann Behav Med 22:89–93

Batliner T, Fehringer KA, Tiwari T, Henderson WG, Wilson A, Brega AG, Albino J (2014) Motivational interviewing with American Indian mothers to prevent early childhood caries: study design and methodology of a randomized control trial. Trials 15:125. https://doi.org/10.1186/1745-6215-15-125

Article   PubMed   PubMed Central   Google Scholar  

Clark F, Pyatak EA, Carlson M, Blanche E, Vigen C, Hay J, Mallinson T, Blanchard J, Unger JB, Garber SL, Diaz J, Florindez L, Atkins M, Rubayi S, Azen SP, PUPS Study Group (2014) Implementing trials of complex interventions in community settings: the USC-Rancho Los Amigos Pressure Ulcer Prevention Study (PUPS). Clin Trials 11:218–229

Cruz TH, Davis SM, FitzGerald CA, Canaca GF, Keane PC (2014) Engagement, recruitment, and retention in a trans-community, randomized controlled trial for the prevention of obesity in rural American Indian and Hispanic children. J Prim Prev 35:135–149

Jimenez DE, Reynolds CF 3rd, Alegría M, Harvey P, Bartels SJ (2015) The Happy Older Latinos are Active (HOLA) health promotion and prevention study: study protocol for a pilot randomized controlled trial. Trials 6:579. https://doi.org/10.1186/s13063-015-1113-3

Koziol-McLain J, Vandal AC, Nada-Raja S, Wilson D, Glass NE, Eden KB, McLean C, Dobbs T, Case J (2015) A web-based intervention for abused women: the New Zealand isafe randomised controlled trial protocol. BMC Public Health 15:56. https://doi.org/10.1186/s12889-015-1395-0

Bakari M, Munseri P, Francis J, Aris E, Moshiro C, Siyame D, Janabi M, Ngatoluwa M, Aboud S, Lyamuya E, Sandström E, Mhalu F (2013) Experiences on recruitment and retention of volunteers in the first HIV vaccine trial in Dar es Salam, Tanzania - the phase I/II HIVIS 03 trial. BMC Public Health 13:1149. https://doi.org/10.1186/1471-2458-13-1149

Goldberg JH, Kiernan M (2005) Innovative techniques to address retention in a behavioral weight-loss trial. Health Educ Res 20:439–447

National Commission for the Protection of Human Subjects of Biomedical Behavioral Research (1978) The Belmont report: ethical principles and guidelines for the protection of human subjects of research. ERIC Clearinghouse, Bethesda

Moseley JB, O’Malley K, Petersen NJ, Menke TJ, Brody BA, Kuykendall DH, Hollingsworth JC, Ashton CM, Wray NP (2002) A controlled trial of arthroscopic surgery for osteoarthritis of the knee. N Engl J Med 347:81–88

Hays JL, Hunt JR, Hubbell FA, Anderson GL, Limacher MC, Allen C, Rossouw JE (2003) The Women’s Health Initiative recruitment methods and results. Ann Epidemiol 13:S18–S77

Kaptchuk TJ, Friedlander E, Kelley JM, Sanchez MN, Kokkotou E, Singer JP, Kowalczykowski M, Miller FG, Kirsch I, Lembo AJ (2010) Placebos without deception: a randomized controlled trial in irritable bowel syndrome. PLoS One 5:e15591. https://doi.org/10.1371/journal.pone.0015591

Crichton GE, Howe PR, Buckley JD, Coates AM, Murphy KJ, Bryan J (2012) Long-term dietary intervention trials: critical issues and challenges. Trials 13:111. https://doi.org/10.1186/1745-6215-13-111

Hulley SB, Cummings SR, Browner WS, Grady DG, Newman TB (2013) Designing clinical research, 4th edn. Lippincott Williams & Wilkins, Philadelphia

Siddiqi AE, Sikorskii A, Given CW, Given B (2008) Early participant attrition from clinical trials: role of trial design and logistics. Clin Trials 5:328–335

Idoko OT, Owolabi OA, Odutola AA, Ogundare O, Worwui A, Saidu Y, Smith-Sanneh A, Tunkara A, Sey G, Sanyang A, Mendy P, Ota MO (2014) Lessons in participant retention in the course of a randomized controlled clinical trial. BMC Res Notes 7:706. https://doi.org/10.1186/1756-0500-7-706

Rucker-Whitaker C, Flynn KJ, Kravitz G, Eaton C, Calvin JE, Powell LH (2006) Understanding African-American participation in a behavioral intervention: results from focus groups. Contemp Clin Trials 27:274–286

Gross D, Fogg L (2004) A critical analysis of the intent-to-treat principle in prevention research. J Primary Prevention 25:475–489

Feinstein AR (1991) Intent-to-treat policy for analyzing randomized trials: statistical distortions and neglected clinical challenges. In: Cramer JA, Spilker B (eds) Patient compliance in medical practice and clinical trials. Raven, New York

Sheiner LB, Rubin DB (1995) Intention-to-treat analysis and the goals of clinical trials. Clin Pharmacol Ther 57:6–15

Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM, Diabetes Prevention Program Research Group (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:393–403

Diabetes Prevention Program Research Group (1999) The Diabetes Prevention Program. Design and methods for a clinical trial in the prevention of type 2 diabetes. Diabetes Care 22:623–634

Diabetes Prevention Program Research Group (2000) The Diabetes Prevention Program: baseline characteristics of the randomized cohort. Diabetes Care 23:1619–1629

Frasure-Smith N, Prince R (1985) The Ischemic Heart Disease Life Stress Monitoring Program. Impact on mortality. Psychosom Med 47:431–445

Frasure-Smith N, Prince R (1989) Long-term follow-up of the Ischemic Heart Disease Life Stress Monitoring Program. Psychosom Med 51:485–513

Powell LH (1989) Unanswered questions in the Ischemic Heart Disease Life Stress Monitoring Program. Psychosom Med 51:479–484

Frasure-Smith N, Lespérance F, Prince RH, Verrier P, Garber RA, Juneau M, Wolfson C, Bourassa MG (1997) Randomised trial of home-based psychosocial nursing intervention for patients recovering from myocardial infarction. Lancet 350:473–479

O’Connor CM, Whellan DJ, Lee KL, Keteyian SJ, Cooper LS, Ellis SJ, Leifer ES, Kraus WE, Kitzman DW, Blumenthal JA, Rendall DS, Miller NH, Fleg JL, Schulman KA, McKelvie RS, Zannad F, Piña IL, HF-ACTION Investigators (2009) Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA 301:1439–1450

Keteyian SJ, Leifer ES, Houston-Miller N, Kraus WE, Brawner CA, O’Connor CM, Whellan DJ, Cooper LS, Fleg JL, Kitzman DW, Cohen-Solal A, Blumenthal JA, Rendall DS, Piña IL, HF-ACTION Investigators (2012) Relation between volume of exercise and clinical outcomes in patients with heart failure. J Am Coll Cardiol 60:1899–1905

Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride PE, McMurray JJ, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Tang WH, Tsai EJ, Wilkoff BL, American College of Cardiology Foundation, American Heart Association Task Force on Practice Guidelines (2013) 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 62:e147–e239

Centers for Medicare and Medicaid Services (2014) Decision memo for cardiac rehabilitation programs - chronic heart failure (CAG-00437N). US Department of Health & Human Services. http://www.cms.gov/medicare-coverage-database/details/nca-decision-memo.aspx?

McCambridge J, Kypri K, Elbourne D (2014) In randomization we trust? There are overlooked problems in experimenting with people in behavioral intervention trials. J Clin Epidemiol 67:247–253

Ashley EA (2015) The precision medicine initiative: a new national effort. JAMA 313:2019–2020

Khoury MJ, Evans JP (2015) A public health perspective on a national precision medicine cohort: balancing long-term knowledge generation with early health benefit. JAMA 313:2117–2118

Ma J, Rosas LG, Lv N (2016) Precision lifestyle medicine: a new frontier in the science of behavior change and population health. Am J Prev Med 50:395–397

Brewin CR, Bradley C (1989) Patient preferences and randomised clinical trials. Br Med J 299:313–315

Download references

Author information

Authors and affiliations.

Department of Preventive Medicine, Rush University Medical Center, Chicago, IL, USA

Lynda H. Powell

College of Nursing, Villanova University, Villanova, PA, USA

Peter G. Kaufmann

Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA

Kenneth E. Freedland

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Cite this chapter.

Powell, L.H., Kaufmann, P.G., Freedland, K.E. (2021). Protection of Random Assignment. In: Behavioral Clinical Trials for Chronic Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-39330-4_8

Download citation

DOI : https://doi.org/10.1007/978-3-030-39330-4_8

Published : 14 October 2021

Publisher Name : Springer, Cham

Print ISBN : 978-3-030-39328-1

Online ISBN : 978-3-030-39330-4

eBook Packages : Behavioral Science and Psychology Behavioral Science and Psychology (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Random Assignment in Experiments | Introduction & Examples

Random Assignment in Experiments | Introduction & Examples

Published on 6 May 2022 by Pritha Bhandari . Revised on 13 February 2023.

In experimental research, random assignment is a way of placing participants from your sample into different treatment groups using randomisation.

With simple random assignment, every member of the sample has a known or equal chance of being placed in a control group or an experimental group. Studies that use simple random assignment are also called completely randomised designs .

Random assignment is a key part of experimental design . It helps you ensure that all groups are comparable at the start of a study: any differences between them are due to random factors.

Table of contents

Why does random assignment matter, random sampling vs random assignment, how do you use random assignment, when is random assignment not used, frequently asked questions about random assignment.

Random assignment is an important part of control in experimental research, because it helps strengthen the internal validity of an experiment.

In experiments, researchers manipulate an independent variable to assess its effect on a dependent variable, while controlling for other variables. To do so, they often use different levels of an independent variable for different groups of participants.

This is called a between-groups or independent measures design.

You use three groups of participants that are each given a different level of the independent variable:

  • A control group that’s given a placebo (no dosage)
  • An experimental group that’s given a low dosage
  • A second experimental group that’s given a high dosage

Random assignment to helps you make sure that the treatment groups don’t differ in systematic or biased ways at the start of the experiment.

If you don’t use random assignment, you may not be able to rule out alternative explanations for your results.

  • Participants recruited from pubs are placed in the control group
  • Participants recruited from local community centres are placed in the low-dosage experimental group
  • Participants recruited from gyms are placed in the high-dosage group

With this type of assignment, it’s hard to tell whether the participant characteristics are the same across all groups at the start of the study. Gym users may tend to engage in more healthy behaviours than people who frequent pubs or community centres, and this would introduce a healthy user bias in your study.

Although random assignment helps even out baseline differences between groups, it doesn’t always make them completely equivalent. There may still be extraneous variables that differ between groups, and there will always be some group differences that arise from chance.

Most of the time, the random variation between groups is low, and, therefore, it’s acceptable for further analysis. This is especially true when you have a large sample. In general, you should always use random assignment in experiments when it is ethically possible and makes sense for your study topic.

Prevent plagiarism, run a free check.

Random sampling and random assignment are both important concepts in research, but it’s important to understand the difference between them.

Random sampling (also called probability sampling or random selection) is a way of selecting members of a population to be included in your study. In contrast, random assignment is a way of sorting the sample participants into control and experimental groups.

While random sampling is used in many types of studies, random assignment is only used in between-subjects experimental designs.

Some studies use both random sampling and random assignment, while others use only one or the other.

Random sample vs random assignment

Random sampling enhances the external validity or generalisability of your results, because it helps to ensure that your sample is unbiased and representative of the whole population. This allows you to make stronger statistical inferences .

You use a simple random sample to collect data. Because you have access to the whole population (all employees), you can assign all 8,000 employees a number and use a random number generator to select 300 employees. These 300 employees are your full sample.

Random assignment enhances the internal validity of the study, because it ensures that there are no systematic differences between the participants in each group. This helps you conclude that the outcomes can be attributed to the independent variable .

  • A control group that receives no intervention
  • An experimental group that has a remote team-building intervention every week for a month

You use random assignment to place participants into the control or experimental group. To do so, you take your list of participants and assign each participant a number. Again, you use a random number generator to place each participant in one of the two groups.

To use simple random assignment, you start by giving every member of the sample a unique number. Then, you can use computer programs or manual methods to randomly assign each participant to a group.

  • Random number generator: Use a computer program to generate random numbers from the list for each group.
  • Lottery method: Place all numbers individually into a hat or a bucket, and draw numbers at random for each group.
  • Flip a coin: When you only have two groups, for each number on the list, flip a coin to decide if they’ll be in the control or the experimental group.
  • Use a dice: When you have three groups, for each number on the list, roll a die to decide which of the groups they will be in. For example, assume that rolling 1 or 2 lands them in a control group; 3 or 4 in an experimental group; and 5 or 6 in a second control or experimental group.

This type of random assignment is the most powerful method of placing participants in conditions, because each individual has an equal chance of being placed in any one of your treatment groups.

Random assignment in block designs

In more complicated experimental designs, random assignment is only used after participants are grouped into blocks based on some characteristic (e.g., test score or demographic variable). These groupings mean that you need a larger sample to achieve high statistical power .

For example, a randomised block design involves placing participants into blocks based on a shared characteristic (e.g., college students vs graduates), and then using random assignment within each block to assign participants to every treatment condition. This helps you assess whether the characteristic affects the outcomes of your treatment.

In an experimental matched design , you use blocking and then match up individual participants from each block based on specific characteristics. Within each matched pair or group, you randomly assign each participant to one of the conditions in the experiment and compare their outcomes.

Sometimes, it’s not relevant or ethical to use simple random assignment, so groups are assigned in a different way.

When comparing different groups

Sometimes, differences between participants are the main focus of a study, for example, when comparing children and adults or people with and without health conditions. Participants are not randomly assigned to different groups, but instead assigned based on their characteristics.

In this type of study, the characteristic of interest (e.g., gender) is an independent variable, and the groups differ based on the different levels (e.g., men, women). All participants are tested the same way, and then their group-level outcomes are compared.

When it’s not ethically permissible

When studying unhealthy or dangerous behaviours, it’s not possible to use random assignment. For example, if you’re studying heavy drinkers and social drinkers, it’s unethical to randomly assign participants to one of the two groups and ask them to drink large amounts of alcohol for your experiment.

When you can’t assign participants to groups, you can also conduct a quasi-experimental study . In a quasi-experiment, you study the outcomes of pre-existing groups who receive treatments that you may not have any control over (e.g., heavy drinkers and social drinkers).

These groups aren’t randomly assigned, but may be considered comparable when some other variables (e.g., age or socioeconomic status) are controlled for.

In experimental research, random assignment is a way of placing participants from your sample into different groups using randomisation. With this method, every member of the sample has a known or equal chance of being placed in a control group or an experimental group.

Random selection, or random sampling , is a way of selecting members of a population for your study’s sample.

In contrast, random assignment is a way of sorting the sample into control and experimental groups.

Random sampling enhances the external validity or generalisability of your results, while random assignment improves the internal validity of your study.

Random assignment is used in experiments with a between-groups or independent measures design. In this research design, there’s usually a control group and one or more experimental groups. Random assignment helps ensure that the groups are comparable.

In general, you should always use random assignment in this type of experimental design when it is ethically possible and makes sense for your study topic.

To implement random assignment , assign a unique number to every member of your study’s sample .

Then, you can use a random number generator or a lottery method to randomly assign each number to a control or experimental group. You can also do so manually, by flipping a coin or rolling a die to randomly assign participants to groups.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bhandari, P. (2023, February 13). Random Assignment in Experiments | Introduction & Examples. Scribbr. Retrieved 22 April 2024, from https://www.scribbr.co.uk/research-methods/random-assignment-experiments/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, a quick guide to experimental design | 5 steps & examples, controlled experiments | methods & examples of control, control groups and treatment groups | uses & examples.

  • Study Guides
  • Homework Questions

5-1 Short Paper - The Importance of Random Assignment

what is the most important reason for random assignment

Snapsolve any problem by taking a picture. Try it in the Numerade app?

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

Gender pay gap in U.S. hasn’t changed much in two decades

The gender gap in pay has remained relatively stable in the United States over the past 20 years or so. In 2022, women earned an average of 82% of what men earned, according to a new Pew Research Center analysis of median hourly earnings of both full- and part-time workers. These results are similar to where the pay gap stood in 2002, when women earned 80% as much as men.

A chart showing that the Gender pay gap in the U.S. has not closed in recent years, but is narrower among young workers

As has long been the case, the wage gap is smaller for workers ages 25 to 34 than for all workers 16 and older. In 2022, women ages 25 to 34 earned an average of 92 cents for every dollar earned by a man in the same age group – an 8-cent gap. By comparison, the gender pay gap among workers of all ages that year was 18 cents.

While the gender pay gap has not changed much in the last two decades, it has narrowed considerably when looking at the longer term, both among all workers ages 16 and older and among those ages 25 to 34. The estimated 18-cent gender pay gap among all workers in 2022 was down from 35 cents in 1982. And the 8-cent gap among workers ages 25 to 34 in 2022 was down from a 26-cent gap four decades earlier.

The gender pay gap measures the difference in median hourly earnings between men and women who work full or part time in the United States. Pew Research Center’s estimate of the pay gap is based on an analysis of Current Population Survey (CPS) monthly outgoing rotation group files ( IPUMS ) from January 1982 to December 2022, combined to create annual files. To understand how we calculate the gender pay gap, read our 2013 post, “How Pew Research Center measured the gender pay gap.”

The COVID-19 outbreak affected data collection efforts by the U.S. government in its surveys, especially in 2020 and 2021, limiting in-person data collection and affecting response rates. It is possible that some measures of economic outcomes and how they vary across demographic groups are affected by these changes in data collection.

In addition to findings about the gender wage gap, this analysis includes information from a Pew Research Center survey about the perceived reasons for the pay gap, as well as the pressures and career goals of U.S. men and women. The survey was conducted among 5,098 adults and includes a subset of questions asked only for 2,048 adults who are employed part time or full time, from Oct. 10-16, 2022. Everyone who took part is a member of the Center’s American Trends Panel (ATP), an online survey panel that is recruited through national, random sampling of residential addresses. This way nearly all U.S. adults have a chance of selection. The survey is weighted to be representative of the U.S. adult population by gender, race, ethnicity, partisan affiliation, education and other categories. Read more about the ATP’s methodology .

Here are the questions used in this analysis, along with responses, and its methodology .

The  U.S. Census Bureau has also analyzed the gender pay gap, though its analysis looks only at full-time workers (as opposed to full- and part-time workers). In 2021, full-time, year-round working women earned 84% of what their male counterparts earned, on average, according to the Census Bureau’s most recent analysis.

Much of the gender pay gap has been explained by measurable factors such as educational attainment, occupational segregation and work experience. The narrowing of the gap over the long term is attributable in large part to gains women have made in each of these dimensions.

Related: The Enduring Grip of the Gender Pay Gap

Even though women have increased their presence in higher-paying jobs traditionally dominated by men, such as professional and managerial positions, women as a whole continue to be overrepresented in lower-paying occupations relative to their share of the workforce. This may contribute to gender differences in pay.

Other factors that are difficult to measure, including gender discrimination, may also contribute to the ongoing wage discrepancy.

Perceived reasons for the gender wage gap

A bar chart showing that Half of U.S. adults say women being treated differently by employers is a major reason for the gender wage gap

When asked about the factors that may play a role in the gender wage gap, half of U.S. adults point to women being treated differently by employers as a major reason, according to a Pew Research Center survey conducted in October 2022. Smaller shares point to women making different choices about how to balance work and family (42%) and working in jobs that pay less (34%).

There are some notable differences between men and women in views of what’s behind the gender wage gap. Women are much more likely than men (61% vs. 37%) to say a major reason for the gap is that employers treat women differently. And while 45% of women say a major factor is that women make different choices about how to balance work and family, men are slightly less likely to hold that view (40% say this).

Parents with children younger than 18 in the household are more likely than those who don’t have young kids at home (48% vs. 40%) to say a major reason for the pay gap is the choices that women make about how to balance family and work. On this question, differences by parental status are evident among both men and women.

Views about reasons for the gender wage gap also differ by party. About two-thirds of Democrats and Democratic-leaning independents (68%) say a major factor behind wage differences is that employers treat women differently, but far fewer Republicans and Republican leaners (30%) say the same. Conversely, Republicans are more likely than Democrats to say women’s choices about how to balance family and work (50% vs. 36%) and their tendency to work in jobs that pay less (39% vs. 30%) are major reasons why women earn less than men.

Democratic and Republican women are more likely than their male counterparts in the same party to say a major reason for the gender wage gap is that employers treat women differently. About three-quarters of Democratic women (76%) say this, compared with 59% of Democratic men. And while 43% of Republican women say unequal treatment by employers is a major reason for the gender wage gap, just 18% of GOP men share that view.

Pressures facing working women and men

Family caregiving responsibilities bring different pressures for working women and men, and research has shown that being a mother can reduce women’s earnings , while fatherhood can increase men’s earnings .

A chart showing that about two-thirds of U.S. working mothers feel a great deal of pressure to focus on responsibilities at home

Employed women and men are about equally likely to say they feel a great deal of pressure to support their family financially and to be successful in their jobs and careers, according to the Center’s October survey. But women, and particularly working mothers, are more likely than men to say they feel a great deal of pressure to focus on responsibilities at home.

About half of employed women (48%) report feeling a great deal of pressure to focus on their responsibilities at home, compared with 35% of employed men. Among working mothers with children younger than 18 in the household, two-thirds (67%) say the same, compared with 45% of working dads.

When it comes to supporting their family financially, similar shares of working moms and dads (57% vs. 62%) report they feel a great deal of pressure, but this is driven mainly by the large share of unmarried working mothers who say they feel a great deal of pressure in this regard (77%). Among those who are married, working dads are far more likely than working moms (60% vs. 43%) to say they feel a great deal of pressure to support their family financially. (There were not enough unmarried working fathers in the sample to analyze separately.)

About four-in-ten working parents say they feel a great deal of pressure to be successful at their job or career. These findings don’t differ by gender.

Gender differences in job roles, aspirations

A bar chart showing that women in the U.S. are more likely than men to say they're not the boss at their job - and don't want to be in the future

Overall, a quarter of employed U.S. adults say they are currently the boss or one of the top managers where they work, according to the Center’s survey. Another 33% say they are not currently the boss but would like to be in the future, while 41% are not and do not aspire to be the boss or one of the top managers.

Men are more likely than women to be a boss or a top manager where they work (28% vs. 21%). This is especially the case among employed fathers, 35% of whom say they are the boss or one of the top managers where they work. (The varying attitudes between fathers and men without children at least partly reflect differences in marital status and educational attainment between the two groups.)

In addition to being less likely than men to say they are currently the boss or a top manager at work, women are also more likely to say they wouldn’t want to be in this type of position in the future. More than four-in-ten employed women (46%) say this, compared with 37% of men. Similar shares of men (35%) and women (31%) say they are not currently the boss but would like to be one day. These patterns are similar among parents.

Note: This is an update of a post originally published on March 22, 2019. Anna Brown and former Pew Research Center writer/editor Amanda Barroso contributed to an earlier version of this analysis. Here are the questions used in this analysis, along with responses, and its methodology .

what is the most important reason for random assignment

What is the gender wage gap in your metropolitan area? Find out with our pay gap calculator

  • Gender & Work
  • Gender Equality & Discrimination
  • Gender Pay Gap
  • Gender Roles

Carolina Aragão's photo

Carolina Aragão is a research associate focusing on social and demographic trends at Pew Research Center

Women have gained ground in the nation’s highest-paying occupations, but still lag behind men

Diversity, equity and inclusion in the workplace, the enduring grip of the gender pay gap, more than twice as many americans support than oppose the #metoo movement, women now outnumber men in the u.s. college-educated labor force, most popular.

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Age & Generations
  • Coronavirus (COVID-19)
  • Economy & Work
  • Family & Relationships
  • Gender & LGBTQ
  • Immigration & Migration
  • International Affairs
  • Internet & Technology
  • Methodological Research
  • News Habits & Media
  • Non-U.S. Governments
  • Other Topics
  • Politics & Policy
  • Race & Ethnicity
  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

Copyright 2024 Pew Research Center

Terms & Conditions

Privacy Policy

Cookie Settings

Reprints, Permissions & Use Policy

IMAGES

  1. Introduction to Random Assignment -Voxco

    what is the most important reason for random assignment

  2. Random Assignment in Psychology: Definition, Example & Methods

    what is the most important reason for random assignment

  3. Random Assignment in Experiments

    what is the most important reason for random assignment

  4. Random Sample v Random Assignment

    what is the most important reason for random assignment

  5. What Is RANDOM ASSIGNMENT? RANDOM ASSIGNMENT Definition & Meaning

    what is the most important reason for random assignment

  6. What is random assignment? (6 of 11)

    what is the most important reason for random assignment

VIDEO

  1. Chapter 2.1 Introduce random variable (MAU)

  2. random sampling & assignment

  3. Conditions Most Conducive to Random Assignment

  4. One thing all WRITERS need to SUCCEED

  5. Real Number

  6. Assertion (A): Random errors arise due to random and unpredictable fluctuations in experimental

COMMENTS

  1. Random Assignment in Experiments

    Random assignment is an important part of control in experimental research, because it helps strengthen the internal validity of an experiment and avoid biases. In experiments, researchers manipulate an independent variable to assess its effect on a dependent variable, while controlling for other variables.

  2. Random Assignment in Psychology: Definition & Examples

    Random selection (also called probability sampling or random sampling) is a way of randomly selecting members of a population to be included in your study. On the other hand, random assignment is a way of sorting the sample participants into control and treatment groups. Random selection ensures that everyone in the population has an equal ...

  3. The Definition of Random Assignment In Psychology

    Random assignment refers to the use of chance procedures in psychology experiments to ensure that each participant has the same opportunity to be assigned to any given group in a study to eliminate any potential bias in the experiment at the outset. Participants are randomly assigned to different groups, such as the treatment group versus the ...

  4. Random Assignment in Psychology (Definition + 40 Examples)

    Random Assignment is a process used in research where each participant has an equal chance of being placed in any group within the study. This technique is essential in experiments as it helps to eliminate biases, ensuring that the different groups being compared are similar in all important aspects.

  5. Random Assignment in Experiments

    Random sampling is a process for obtaining a sample that accurately represents a population. Random assignment uses a chance process to assign subjects to experimental groups. Using random assignment requires that the experimenters can control the group assignment for all study subjects. For our study, we must be able to assign our participants ...

  6. Random sampling vs. random assignment (scope of inference)

    Random sampling Not random sampling; Random assignment: Can determine causal relationship in population. This design is relatively rare in the real world. Can determine causal relationship in that sample only. This design is where most experiments would fit. No random assignment: Can detect relationships in population, but cannot determine ...

  7. Random assignment

    Random assignment or random placement is an experimental technique for assigning human participants or animal subjects to different groups in an experiment (e.g., a treatment group versus a control group) using randomization, such as by a chance procedure (e.g., flipping a coin) or a random number generator. This ensures that each participant or subject has an equal chance of being placed in ...

  8. 6.1.1 Random Assignation

    Random assignation is associated with experimental research methods. In its strictest sense, random assignment should meet two criteria. One is that each participant has an equal chance of being assigned to each condition (e.g., a 50% chance of being assigned to each of two conditions). The second is that each participant is assigned to a ...

  9. 6.1.1 Random Assignation

    The upshot is that random assignment to conditions—although not infallible in terms of controlling extraneous variables—is always considered a strength of a research design. Note: Do not confuse random assignation with random sampling. Random sampling is a method for selecting a sample from a population; we will talk about this in Chapter 7.

  10. Random Assignment in Psychology (Intro for Students)

    Random assignment is a research procedure used to randomly assign participants to different experimental conditions (or 'groups'). This introduces the element of chance, ensuring that each participant has an equal likelihood of being placed in any condition group for the study. It is absolutely essential that the treatment condition and the ...

  11. What Is Random Assignment in Psychology?

    It is important to remember that random assignment is not the same thing as random selection, also known as random sampling. Random selection instead involves how people are chosen to be in a study. Using random selection, every member of a population stands an equal chance of being chosen for a study or experiment.

  12. Why randomize?

    It does not refer to haphazard or casual choosing of some and not others. Randomization in this context means that care is taken to ensure that no pattern exists between the assignment of subjects into groups and any characteristics of those subjects. Every subject is as likely as any other to be assigned to the treatment (or control) group.

  13. Elements of Research : Random Assignment

    Random assignment is a procedure used in experiments to create multiple study groups that include participants with similar characteristics so that the groups are equivalent at the beginning of the study. The procedure involves assigning individuals to an experimental treatment or program at random, or by chance (like the flip of a coin).

  14. Random Assignment ~ A Simple Introduction with Examples

    Random assignment, a key methodology in academic research, ensures every participant has an equal chance of being placed in any group within an experiment. In experimental studies, the random assignment of participants is a vital element, which this article will discuss. ... Citing sources or paraphrasing passages incorrectly are common causes ...

  15. 4 Flashcards

    What is the most important reason for this random assignment? (a) Random assignment eliminates the effects of other variables such as stress and body weight (b) Random assignment is a good way to create groups of subjects that are roughly equivalent at the beginning of the experiment (c) Random assignment makes it possible to make a conclusion ...

  16. Protection of Random Assignment

    Random assignment creates randomly equivalent treatment arms. This makes it possible to infer that any differences on the outcome are due to treatment and not to any known or unknown confounders. The single most important job of the behavioral trialist is to protect this random assignment in the design, operations, and analyses of the trial.

  17. What is random assignment?

    In experimental research, random assignment is a way of placing participants from your sample into different groups using randomisation. With this method, every member of the sample has a known or equal chance of being placed in a control group or an experimental group.

  18. How often does random assignment fail? Estimates and recommendations

    A fundamental goal of the scientific process is to make causal inferences. Random assignment to experimental conditions has been taken to be a gold-standard technique for establishing causality. Despite this, it is unclear how often random assignment fails to eliminate non-trivial differences between experimental conditions.

  19. Random Assignment in Experiments

    Random assignment is an important part of control in experimental research, because it helps strengthen the internal validity of an experiment. In experiments, researchers manipulate an independent variable to assess its effect on a dependent variable, while controlling for other variables. To do so, they often use different levels of an ...

  20. Statistics Practice Flashcards

    What is the most important reason for this random assignment. a. Random assignment eliminates the effects of other variables such as traffic volume and sun exposure. b. Random assignment is a good way to create two groups of road segments that are roughly equivalent. c. Random assignment makes it possible to generalize about all road segments. d.

  21. 5-1 Short Paper

    Random assignment also helps to increase the validity of the findings by allowing researchers to make more accurate inferences about cause-and-effect relationships. This is known as enhancing validity. These are two main considerations as to why random assignment is important even before the study begins.

  22. What is random assignment?

    In experimental research, random assignment is a way of placing participants from your sample into different groups using randomization. With this method, every member of the sample has a known or equal chance of being placed in a control group or an experimental group.

  23. Solved Question

    What is the most important reason for this random assignment? Random assignment reduces the amount of variation in baby weights. Random assignment makes it possible to make a conclusion about all babies. Random assignment prevents the placebo effect from ruining the results of the study.

  24. ⏩SOLVED:In the experiment of the previous exercise, the subjects

    The most important reason for random assignment in the experiment is b. That random assignment is a good way to create groups of subjects that are roughly equivalent at the beginning of the experiment. This is important because it helps to ensure that any differences observed between the groups…

  25. Gender pay gap remained stable over past 20 years in US

    The gender gap in pay has remained relatively stable in the United States over the past 20 years or so. In 2022, women earned an average of 82% of what men earned, according to a new Pew Research Center analysis of median hourly earnings of both full- and part-time workers. These results are similar to where the pay gap stood in 2002, when ...