DSpace logo

DSpace JSPUI

Egyankosh preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets.

  • IGNOU Self Learning Material (SLM)
  • 02. School of Social Sciences (SOSS)
  • Diploma Programmes
  • Post Graduate Diploma in Disaster Management (PGDDM)
  • MPA-001 Understanding Natural Disasters

Items in eGyanKosh are protected by copyright, with all rights reserved, unless otherwise indicated.

Google Play

swayam-logo

Introduction to Climate Change

In the backdrop of importance placed on creating awareness on climate change science and adaptation strategies by various ministries under the Government of India, the course is tailor-made to incorporate the developments in the domain of climate change concerning human influences on climate, the consequences of climate change, climate change conventions and protocols. 

The course covers fundamentals of climate change, the past and present climate, climate change indicators, international conventions on climate change and National Action Plan on Climate change. The objective of this course is to explain the science of climate change, and to explain the conventions on climate change.

The learners will be enriched with knowledge on the impact of climate change on terrestrial and aquatic ecosystems. The potential threats of climate change on sectors like agriculture, livestock and natural resources are covered extensively in the course.

Page Visits

Course layout, books and references.

Barry RG and Chorley RJ. (2010). Atmosphere, weather and climate. 8th Edition. Routledge, New York. pp.421

Burroughs WJ (2007) Climate Change: A multidisciplinary approach. 2nd Edition. Cambridge University Press. Pp.390. ISBN: 978-0-521-69033-1 

Dessler A (2016) Introduction to Modern Climate Change. 2nd Edition. Cambridge University Press. ISBN: 978-521-17315-5 

Fletcher C (2018) Climate Change: What the science tells us. 2nd Edition. John Wiley & Sons. Pp.336. ISBN: 978-1-118-79306-0 

Houghton JT (2015) Global Warming: The complete briefing. 5th Edition. Cambridge University Press. Pp.456. ISBN: 978-0-521-70916. 

IPCC (2014a) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp. 

IPCC (2014b) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y .O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P .R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, USA, 1132 pp. 

IPCC (2014c) Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

IPCC, (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. 

IPCC, (2018) Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. World Meteorological Organization, Geneva, Switzerland, 32 pp. 

Web Links 

http://www.ipcc.ch/report/ar5/wg1/  

http://www.ipcc.ch/report/ar5/wg2/  

http://www.ipcc.ch/report/ar5/wg3/

http://www.ipcc.ch/report/ar5/syr/

https://www.ipcc.ch/sr15/

Instructor bio

make a presentation on the topic global warming ignou

Dr V. Venkat Ramanan

make a presentation on the topic global warming ignou

DOWNLOAD APP

make a presentation on the topic global warming ignou

SWAYAM SUPPORT

Please choose the SWAYAM National Coordinator for support. * :

Global Warming

Miss Parson – Allerton Grange School

Aims and objectives

  • To be able to define and understand the process of Global Warming.
  • Be able to describe the effects of Global Warming on a global and local scale.
  • Be able to recognise how the effects of Global Warming can be reduced.

What is�Global Warming ?

Global warming is the increase in the world’s average temperature, believed to be the result from the release of carbon dioxide and other gases into the atmosphere by burning fossil fuels.

This increase in greenhouse gases is causing an increase in the rate of the greenhouse effect .

The Greenhouse�Effect

The earth is warming rather like the inside of a greenhouse. On a basic level the sun’s rays enter the earths atmosphere and are prevented from escaping by the greenhouse gases. This results in higher world temperatures.

In more detail………

Energy from the sun drives the earth's weather and climate, and heats the earth's surface; in turn, the earth radiates energy back into space. Atmospheric greenhouse gases (water vapor, carbon dioxide, and other gases) trap some of the outgoing energy, retaining heat somewhat like the glass panels of a greenhouse.�

Without this natural "greenhouse effect," temperatures would be much lower than they are now, and life as known today would not be possible. Instead, thanks to greenhouse gases, the earth's average temperature is a more hospitable 60°F. However, problems may arise when the atmospheric concentration of greenhouse gases increases. �

What are the�greenhouse gases?

Since the beginning of the industrial revolution, atmospheric concentrations of carbon dioxide have increased nearly 30%, methane concentrations have more than doubled, and nitrous oxide concentrations have risen by about 15%. Why are greenhouse gas concentrations increasing?

Burning of fossil fuels and other human activities are the primary reason for the increased concentration of carbon dioxide.

CFC’s from aerosols, air conditioners, foam packaging and refrigerators most damaging (approx 6%).

Methane is released from decaying organic matter, waste dumps, animal dung, swamps and peat bogs (approx 19%).

Nitrous Oxide is emitted from car exhausts, power stations and agricultural fertiliser (approx 6%).

The major contributor is Carbon Dioxide (approx 64%).

Task 1:The �Greenhouse Effect

Complete your worksheet by cutting and labeling the diagram and answering the questions

Task 2 : Effects of global warming

You are about to see a series of pictures which show some of the effects of global warming.

Draw a rough sketch then write down the effects or titles for the pictures you've drawn

I’m thinking !

What are the consequences of Global Warming?

What are the pictures showing, what are the effects of global warming?

How did�you do?

Hurricanes –extreme weather

Flooding of coastal areas

Desertification

Ice caps melt

Rise in temperatures

Loss of wildlife habitats and species

Sea level rise

Extreme storms

There are also some positive effects of global warming

  • Decrease in death and disease
  • Healthier, faster growing forests due to excess CO2
  • Longer growing seasons
  • Warmer temperatures (UK Mediterranean climate!!)
  • Plants and shrubs will be able to grow further north and in present desert conditions
  • Heavier rainfall in certain locations will give higher agricultural production (Rice in India, Wheat in Africa).

How can Global Warming be reduced?

  • Reduce the use of fossil fuels. A major impact would be to find alternatives to coal, oil and gas power stations.
  • Afforest areas, trees use up the CO2, reduce deforestation.
  • Reduce the reliance on the car (promote shared public transport).
  • Try to use energy efficiently (turn off lights and not use as much!).
  • Reduce, Reuse, Recycle.
  • Careful long term planning to reduce the impact of global warming.
  • Global Warming is the increase in global temperatures due to the increased rate of the Greenhouse Effect.
  • Greenhouse gases trap the incoming solar radiation, these gases include Carbon Dioxide, CFCs, Methane, Nitrous Oxides and other Halocarbons. These are released by human activity.
  • We need the Greenhouse effect to maintain life on earth as we know it…however if we keep adding to the Greenhouse gases there will be many changes.
  • Consequences can be negative ( ice caps melt, sea level rise, extreme weather conditions) or positive (more rain in drought areas, longer growing season).

Re do diagram slide 7

http://www.flickr.com/photos/wwworks/2222523486/ - slide 1

http://www.flickr.com/photos/dzwjedziak/375723120/ - slide 8 and 1

http://www.flickr.com/photos/bratan/452189020/ - slide 4

http://www.flickr.com/photos/hogbard/412932972/- slide 6

http://www.flickr.com/photos/tiger_empress/467671978/ - slide 8

http://www.flickr.com/photos/48135670@N00/97951579/ - slide 9,12

http://www.flickr.com/photos/60158441@N00/177929708/ - slide 9,12

http://www.flickr.com/photos/andzer/1480068258/ - slide 9,12

http://www.flickr.com/photos/nickrussill/146743082/ - slide 9,12

http://www.flickr.com/photos/dasha/443747644/ - slide 10,13

http://www.flickr.com/photos/11371618@N00/469788104/ - slide 10,13

http://www.flickr.com/photos/mikebaird/2087879492/ - slide 10,13

http://www.flickr.com/photos/7471118@N02/432453250/ - slide 10,13

http://www.flickr.com/photos/madron/2595909135/ - slide 11

http://www.flickr.com/photos/chi-liu/491412087/ - slide 12,13

http://www.flickr.com/photos/fabbriciuse/2073789872/ - slide 16

http://www.flickr.com/photos/algo/92463787/ - slide 16

http://www.flickr.com/photos/nickwheeleroz/2295584401/ - slide 16

http://www.flickr.com/photos/andidfl/229169559/ - slide 16

9 questions about climate change you were too embarrassed to ask

Basic answers to basic questions about global warming and the future climate.

by Brad Plumer , Umair Irfan , and Brian Resnick

earth

This explainer was updated by Umair Irfan in December 2018 and draws heavily from a card stack written by Brad Plumer in 2015. Brian Resnick contributed the section on the Paris climate accord in 2017.

There’s a vast and growing gap between the urgency to fight climate change and the policies needed to combat it.

In 2018, the United Nations’ Intergovernmental Panel on Climate Change found that it is possible to limit global warming to 1.5 degrees Celsius this century, but the world may have as little as 12 years left to act. The US government’s National Climate Assessment , with input from NASA, the Environmental Protection Agency, and the Pentagon, also reported that the consequences of climate change are already here, ranging from nuisance flooding to the spread of mosquito-borne viruses into what were once colder climates. Left unchecked, warming will cost the US economy hundreds of billions of dollars.

However, these facts have failed to register with the Trump administration, which is actively pushing policies that will increase the emissions of heat-trapping gases.

Ever since he took office, President Donald Trump has rejected or undermined President Barack Obama’s signature climate achievements: the Paris climate agreement; the Clean Power Plan , the main domestic policy for limiting greenhouse gas emissions; and fuel economy standards , which target transportation, the largest US source of greenhouse gases.

At the same time, the Trump administration has aggressively boosted fossil fuels: opening unprecedented swaths of public lands to mining and drilling , attempting to bail out foundering coal power plants , and promoting hydrocarbon exploitation at climate change conferences .

Trump has also appointed climate change skeptics to key positions. Quietly, officials at these and other science agencies have been removing the words “climate change” from government websites and press releases.

Yet the evidence for humanity’s role in changing the climate continues to mount, and its consequences are increasingly difficult to ignore. Atmospheric carbon dioxide concentrations now top 408 parts per million, a threshold the planet hasn’t seen in millions of years . Greenhouse gas emissions reached a record high in 2018. Disasters worsened by climate change have taken hundreds of lives, destroyed thousands of homes, and cost billions of dollars.

The big questions now are how these ongoing changes in the climate will reverberate throughout the rest of the world, and what we should do about them. The answers bridge decades of research across geology, economics, and social science, which have been confounded by uncertainty and obscured by jargon. That’s why it can be a bit daunting to join the discussion for the first time, or to revisit the conversation after a hiatus.

To help, we’ve provided answers to some fundamental questions about climate change you may have been afraid to ask.

1) What is global warming?

In short: The world is getting hotter, and humans are responsible.

Yes, the planet’s temperature has changed before, but it’s the rise in average temperature of the Earth's climate system since the late 19th century, the dawn of the Industrial Revolution, that’s important here. Temperatures over land and ocean  have gone up  0.8° to 1° Celsius (1.4° to 1.8° Fahrenheit), on average, in that span:

make a presentation on the topic global warming ignou

Many people use the term “climate change” to describe this rise in temperatures and the associated effects on the Earth's climate. (The shift from the term “global warming” to “climate change” was also part of a deliberate messaging effort by a Republican pollster to undermine support for environmental regulations.)

Like detectives solving a murder, climate scientists have found humanity’s fingerprints all over the planet’s warming, with the overwhelming majority of the evidence pointing to the extra greenhouse gases humans have put into the atmosphere by burning fossil fuels. Greenhouse gases like carbon dioxide  trap heat  at the Earth’s surface, preventing that heat from escaping back out into space too quickly. When we burn coal, natural gas, or oil for energy, or when we cut down forests that usually soak up greenhouse gases, we  add even more  carbon dioxide to the atmosphere, so the planet warms up.

Global warming also refers to what scientists think will happen in the future if humans  keep  adding greenhouse gases to the atmosphere.

Though there is a steady stream of new studies on climate change, one of the most robust aggregations of the science remains the Intergovernmental Panel on Climate Change’s fifth assessment report from 2013. The IPCC is convened by the United Nations, and the report draws on more than 800 expert authors. It  projects  that temperatures could rise at least 2°C (3.6°F) by the end of the century under many plausible scenarios — and possibly 4°C or more. A more recent study by scientists in the United Kingdom found a narrower range of expected temperatures if atmospheric carbon dioxide doubled, rising between 2.2°C and 3.4°C.

Many experts consider 2°C of warming to be  unacceptably high , increasing the risk of deadly heat waves, droughts, flooding, and extinctions. Rising temperatures will drive up global sea levels as the world’s glaciers and ice sheets melt. Further global warming  could affect  everything from our ability to grow food to the spread of disease.

That’s why the IPCC put out another report in 2018 comparing 2°C of warming to a scenario with 1.5°C of warming . The researchers found that this half-degree difference is actually pretty important, since every bit of warming matters. Between the two outlooks, less warming means fewer people will have to move from coastal areas, natural weather events will be less severe, and economies will take a smaller hit.

However, limiting warming would likely require a complete overhaul of our energy system. Fossil fuels currently  provide just over 80 percent  of the world’s energy. To zero out emissions this century, we’d have to replace most of that with low-carbon sources like wind, solar, nuclear, geothermal, or carbon capture.

Beyond that, we may have to electrify everything that uses energy and start pulling greenhouse gases straight from the air. And to get on track for 1.5°C of warming, the world would have to halve greenhouse gas emissions from current levels by 2030.

That’s a staggering task, and there are huge technological and political hurdles standing in the way. As such, the world's nations have been slow to act on global warming — many of the existing targets for curbing greenhouse gas emissions are too weak , yet many countries are falling short of even these modest goals.

2) How do we know global warming is real?

The simplest way is through temperature measurements. Agencies in the United States, Europe, and Japan have  independently   analyzed   historical temperature data and reached the same conclusion: The Earth’s average surface temperature has risen roughly 0.8° Celsius (1.4° Fahrenheit) since the early 20th century.

But that’s not the only clue. Scientists have also noted that glaciers and ice sheets around the world are melting. Satellite observations since the 1970s have shown warming in the lower atmosphere. There’s more heat in the ocean, causing water to expand and sea levels to rise. Plants are flowering earlier in many parts of the world. There’s more humidity in the atmosphere.  Here’s  a summary from the National Oceanic and Atmospheric Administration:

make a presentation on the topic global warming ignou

These are all signs that the Earth really is getting warmer — and that it’s not just a glitch in the thermometers. That explains why climate scientists  say things like , “Warming in the climate system is unequivocal.” They’re really confident about this one.

3) How do we know humans are causing global warming?

Climate scientists say they are more than  95 percent certain that human influence has been the dominant cause of global warming since 1950. They’re about  as sure of this  as they are that cigarette smoke causes cancer.

Why are they so confident? In part because they have a good grasp of how greenhouse gases can warm the planet, in part because the theory fits the available evidence, and in part because alternate theories have been ruled out. Let's break it down in six steps:

1) Scientists have long known that  greenhouse gases  in the atmosphere — such as carbon dioxide, methane, or water vapor — absorb certain frequencies of infrared radiation and  scatter them back  toward the Earth. These gases essentially prevent heat from escaping too quickly back into space, trapping that radiation at the surface and keeping the planet warm.

2) Climate scientists also know that concentrations of greenhouse gases in the atmosphere  have grown significantly  since the Industrial Revolution. Carbon dioxide has risen 45 percent . Methane has risen more than 200 percent . Through some relatively straightforward chemistry and physics , scientists can trace these increases to human activities like burning oil, gas, and coal.

3) So it stands to reason that more greenhouse gases would lead to more heat. And indeed, satellite measurements have shown that less infrared radiation is escaping out  into space over time and instead  returning  to the Earth’s surface. That’s strong evidence that the greenhouse effect is increasing.

4) There are other human fingerprints  that suggest increased greenhouse gases are warming the planet. For instance, back in the 1960s, simple climate models predicted that global warming caused by more carbon dioxide would lead to cooling in the upper atmosphere (because the heat is getting trapped at the surface). Later satellite measurements confirmed  exactly that . Here are  a few  other  similar predictions  that have also been confirmed.

make a presentation on the topic global warming ignou

5) Meanwhile, climate scientists have ruled out other explanations for the rise in average temperatures over the past century. To take one example: Solar activity can shift from year to year, affecting the Earth's climate. But satellite data shows that total solar irradiance  has declined slightly  in the past 35 years, even as the Earth has warmed.

6) More  recent calculations  have shown that it’s impossible to explain the temperature rise we’ve seen in the past century without taking the increase in carbon dioxide and other greenhouse gases into account. Natural causes, like the sun or volcanoes, have an influence, but they’re not sufficient by themselves.

Ultimately, the Intergovernmental Panel on Climate Change  concluded  that most of the warming since 1951 has been due to human activities. The Earth’s climate can certainly fluctuate from year to year due to natural forces (including oscillations in the Pacific Ocean, such as  El Niño ). But greenhouse gases are driving the larger upward trend in temperatures.

And as the Climate Science Special Report , released by 13 US federal agencies in November 2017, put it, “For the warming over the last century, there is no convincing alternative explanation supported by the extent of the observational evidence.”

More:  This chart breaks down all the different factors affecting the Earth’s average temperature. And there’s much more detail in the IPCC’s  report , particularly this section  and  this one .

4) How has global warming affected the world so far?

Here’s a list of ongoing changes that climate scientists have concluded are likely linked to global warming, as detailed by the IPCC  here  and  here .

Higher temperatures:  Every continent has warmed substantially since the 1950s. There are more hot days and fewer cold days, on average, and the hot days are hotter.

Heavier storms and floods:  The world’s atmosphere can hold more moisture as it warms. As a result, the overall number of heavier storms has increased since the mid-20th century, particularly in North America and Europe (though there’s plenty of regional variation). Scientists reported in December that at least 18 percent of Hurricane Harvey’s record-setting rainfall over Houston in August was due to climate change.

Heat waves:  Heat waves have become  longer and more frequent  around the world over the past 50 years, particularly in Europe, Asia, and Australia.

Shrinking sea ice:  The extent of sea ice in the Arctic, always at its maximum in winter, has shrunk since 1979, by 3.3 percent per decade. Summer sea ice has dwindled even more rapidly, by 13.2 percent per decade. Antarctica has seen recent years with record growth in sea ice, but it’s a very different environment than the Arctic, and the losses in the north far exceed any gains at the South Pole, so total global sea ice is on the decline:

Shrinking glaciers and ice sheets:  Glaciers around the world have, on average, been losing ice since the 1970s. In some areas, that  is reducing  the amount of available freshwater. The ice sheet on Greenland, which would raise global sea levels by 25 feet if it all melted, is declining, with some sections experiencing a sudden surge in the melt rate. The Antarctic ice sheet is also getting smaller, but at a much slower rate .

Sea level rise:  Global sea levels rose 9.8 inches (25 centimeters) in the 19th and 20th centuries, after 2,000 years  of relatively little change , and the pace is speeding up . Sea level rise is caused by both the thermal expansion of the oceans — as water warms up, it expands — and the melting of glaciers and ice sheets (but not sea ice).

Food supply:  A hotter climate can be both good for crops (it lengthens the growing season, and more carbon dioxide can increase photosynthesis) and bad for crops (excess heat can damage plants). The IPCC  found  that global warming was currently benefiting crops in some high-latitude areas but that negative effects are becoming increasingly common worldwide. In areas like California, crop yields are estimated to decline 40 percent by 2050.

Shifting species:  Many land and marine species  have had to shift  their geographic ranges in response to warmer temperatures. So far, several extinctions  have been linked  to global warming, such as certain frog species in Central America.

Warmer winters: In general, winters are warming faster than summers . Average low temperatures are rising all over the world. In some cases, these temperatures are climbing above the freezing point of water. We’re already seeing massive declines in snow accumulation in the United States, which can paradoxically increase flood, drought, and wildfire risk — as water that would ordinarily dispatch slowly over the course of a season instead flows through a region all at once.

Debated impacts

Here are a few other ways the Earth’s climate has been changing — but scientists are still debating whether and how they’re linked to global warming:

Droughts have become  more frequent and more intense  in some parts of the world — such as the American Southwest, Mediterranean Europe, and West Africa — though it’s hard to identify a clear global trend. In other parts of the world, such as the Midwestern United States and Northwestern Australia, droughts appear to have become  less  frequent. A recent study shows that, globally, the time between droughts is shrinking and more areas are affected by drought and taking longer to recover from them.

Hurricanes have clearly become more intense in the North Atlantic Ocean since 1970, the IPCC says. But it’s less clear whether global warming is driving this. 2017 was an exceptionally bad year for Atlantic hurricanes in terms of strength and damage. And while scientists are still uncertain whether they were a fluke or part of a trend, they are warning we should treat it as a baseline year. There doesn’t yet seem to be  any clear trajectory for tropical cyclones worldwide.

5) What impacts will global warming have in the future?

It depends on how much the planet actually heats up. The changes associated with 4° Celsius (or 7.2° Fahrenheit) of warming are expected to be more dramatic than the changes associated with 2°C of warming.

Here’s a basic rundown of big impacts we can expect if global warming continues, via the IPCC ( here  and  here ).

Hotter temperatures:  If emissions keep rising unchecked, then global average surface temperatures will be at least 2°C higher (3.6°F) than preindustrial levels by 2100 — and possibly 3°C or 4°C or more.

Higher sea level rise:  The expert consensus is that global sea levels will rise somewhere between 0.2 and 2 meters by the end of the century if global warming continues unchecked (that’s between 0.6 and 6.6 feet). That’s a wide range, reflecting some of the uncertainties scientists have in how ice will melt. In specific regions like the Eastern United States, sea level rise could be even higher, and around the world, the rate of rise is accelerating .

Heat waves:  A hotter planet will mean more frequent and severe heat waves .

Droughts and floods:  Across the globe, wet seasons are expected to become wetter, and dry seasons drier. As the IPCC  puts it , the world will see “more intense downpours, leading to more floods, yet longer dry periods between rain events, leading to more drought.”

Hurricanes:  It’s not yet clear what impact global warming will have on tropical cyclones. The IPCC  said  it was likely that tropical cyclones would get stronger as the oceans heat up, with faster winds and heavier rainfall. But the overall number of hurricanes in many regions was likely to “either decrease or remain essentially unchanged.”

Heavier storm surges:  Higher sea levels will  increase the risk of storm surges  and flooding when storms do hit.

Agriculture:  In many parts of the world, the mix of increased heat and drought is expected to make food production more difficult. The IPCC  concluded  that global warming of 1°C or more could start hurting crop yields for wheat, corn, and rice by the 2030s, especially in the tropics. (This wouldn’t be uniform, however; some crops may benefit from mild warming, such as winter wheat in the United States.)

make a presentation on the topic global warming ignou

Extinctions:  As the world warms, many plant and animal species will need to shift habitats at a rapid rate to maintain their current conditions. Some species will be able to keep up; others likely won’t. The Great Barrier Reef, for instance, may not be able to recover from major recent bleaching events linked to climate change. The National Research Council  has estimated  that a mass extinction event “could conceivably occur before the year 2100.”

Long-term changes:  Most of the projected changes above will occur in the 21st century. But temperatures will keep rising after that if greenhouse gas levels aren’t stabilized. That increases the risk of more drastic longer-term shifts. One example: If West Antarctica’s ice sheet started crumbling, that could push sea levels up significantly. The National Research Council in 2013 deemed  many of these rapid climate surprises unlikely this century but a real possibility further into the future.

6) What happens if the world heats up more drastically — say, 4°C?

The risks of climate change would rise considerably if temperatures rose 4° Celsius (7.2° Fahrenheit) above preindustrial levels — something that’s possible if greenhouse gas emissions keep rising at their current rate.

The IPCC  says  4°C of global warming could lead to “substantial species extinctions,” “large risks to global and regional food security,” and the risk of irreversibly destabilizing Greenland’s massive ice sheet.

One huge concern is food production: A  growing   number  of  studies suggest it would become significantly more difficult for the world to grow food with 3°C or 4°C of global warming. Countries like Bangladesh, Egypt, Vietnam, and parts of Africa could see large tracts of farmland turn unusable due to rising seas. Scientists are also concerned about crops getting less nutritious due to rising CO2.

Humans could struggle to adapt to these conditions. Many people might think the impacts of 4°C of warming will simply be twice as bad as those of 2°C. But as a 2013 World Bank  report argued, that’s not necessarily true. Impacts may interact with each other in unpredictable ways. Current agriculture models, for instance, don’t have a good sense of what will happen to crops if increased heat waves, droughts, new pests and diseases, and other changes all start to combine.

“Given that uncertainty remains about the full nature and scale of impacts,” the World Bank report said, “there is also no certainty that adaptation to a 4°C world is possible.” Its conclusion was blunt: “The projected 4°C warming simply must not be allowed to occur.”

7) What do climate models say about the warming that could actually happen in the coming decades?

That depends on your faith in humanity.

Climate models depend on not only complicated physics but the intricacies of human behavior over the entire planet.

Generally, the more greenhouse gases humanity pumps into the atmosphere, the warmer it will get. But scientists aren’t certain how sensitive the global climate system is to increases in greenhouse gases. And just how much we might emit over the coming decades remains an open question, depending on advances in technology and international efforts to cut emissions.

The IPCC groups these scenarios into four categories of atmospheric greenhouse gas concentrations known as Representative Concentration Pathways . They serve as standard benchmarks for evaluating climate models, but they also have some assumptions baked in .

RCP 2.6, also called RCP 3PD, is the scenario with very low greenhouse gas concentrations in the atmosphere. It bets on declining oil use, a population of 9 billion by 2100, increasing energy efficiency, and emissions holding steady until 2020, at which point they’ll decline and even go negative by 2100. This is, to put it mildly, very optimistic.

The next tier up is RCP 4.5, which still banks on ambitious reductions in emissions but anticipates an inflection point in the emissions rate around 2040. RCP 6 expects emissions to increase 75 percent above today’s levels before peaking and declining around 2060 as the world continues to rely heavily on fossil fuels.

The highest tier, RCP 8.5, is the pessimistic business-as-usual scenario, anticipating no policy changes nor any technological advances. It expects a global population of 12 billion and triple the rate of carbon dioxide emissions compared to today by 2100.

Here’s how greenhouse gas emissions under each scenario stack up next to each other:

make a presentation on the topic global warming ignou

And here’s what that means for global average temperatures, assuming that a doubling of carbon dioxide concentrations in the atmosphere leads to 3°C of warming:

make a presentation on the topic global warming ignou

As you can see, RCP 3PD is the only trajectory that keeps the planet below 2°C of warming. Recall what it would take to keep emissions in line with this pathway and you’ll understand the enormity of the challenge of meeting this goal.

8) How do we stop global warming?

The world’s nations would need to cut  their greenhouse gas emissions by a lot. And even that wouldn’t stop all global warming.

For example, let’s say we wanted to limit global warming to below 2°C. To do that, the IPCC  has calculated  that annual greenhouse gas emissions would need to drop at least 40 to 70 percent by midcentury.

Emissions would then have to keep falling until humans were hardly emitting any extra greenhouse gases by the end of the century. We’d also have to remove carbon dioxide from the atmosphere .

Cutting emissions that sharply is a daunting task. Right now, the world gets  87 percent  of its primary energy from fossil fuels: oil, gas, and coal. By contrast, just 13 percent of the world’s primary energy is “low carbon”: a little bit of wind and solar power, some nuclear power plants, a bunch of hydroelectric dams. That’s one reason global emissions keep rising each year.

To stay below 2°C, that would all need to change radically. By 2050, the IPCC notes, the world would need to triple or even quadruple the share of clean energy it uses — and keep scaling it up thereafter. Second, we’d have to get dramatically more efficient at using energy in our homes, buildings, and cars. And stop cutting down forests. And reduce emissions from agriculture and from industrial processes like cement manufacturing.

The IPCC also notes that this task becomes even more difficult the longer we put it off, because carbon dioxide and other greenhouse gases will keep piling up in the atmosphere in the meantime, and the cuts necessary to stay below the 2°C limit become more severe.

9) What are we actually doing to fight climate change?

A global problem requires global action, but with climate change, there is a yawning gap between ambition and action.

The main international effort is the 2015 Paris climate accord, of which the United States is the only country in the world that wants out . The deal was hammered out over weeks of tense negotiations and weighs in at 31 pages . What it does is actually pretty simple.

The backbone is the global target of keeping global average temperatures from rising 2°C (compared to temperatures before the Industrial Revolution) by the end of the century. Beyond 2 degrees, we risk dramatically higher seas, changes in weather patterns, food and water crises, and an overall more hostile world.

Critics have argued that the 2-degree mark is arbitrary, or even too low , to make a difference. But it’s a starting point, a goal that, before Paris, the world was on track to wildly miss.

make a presentation on the topic global warming ignou

Paris is voluntary

To accomplish this 2-degree goal, the accord states that countries should strive to reach peak emissions “as soon as possible.” (Currently, we’re on track to hit peak emissions around 2030 or later , which will likely be too late.)

But the agreement doesn’t detail exactly how these countries should do that. Instead, it provides a framework for getting momentum going on greenhouse gas reduction, with some oversight and accountability. For the US, the pledge involves 26 to 28 percent reductions by 2025. (Under Trump’s current policies, that goal is impossible .)

There’s also no defined punishment for breaking it. The idea is to create a culture of accountability (and maybe some peer pressure) to get countries to step up their climate game.

In 2020, delegates are supposed to reconvene and provide updates about their emission pledges and report on how they’re becoming more aggressive on accomplishing the 2-degree goal.

However, many countries are already falling behind on their climate change commitments, and some, like Germany, are giving up on their near-term targets.

Paris asks richer countries to help out poorer countries

There’s a fundamental inequality when it comes to global emissions. Rich countries have plundered and burned huge amounts of fossil fuels and gotten rich from them. Poor countries seeking to grow their economies are now being admonished for using the same fuels. Many low-lying poor countries also will be among the first to bear the worst impacts of climate change.

The main vehicle for rectifying this is the Green Climate Fund , via which richer countries, like the US, are supposed to send $100 billion a year in aid and financing by 2020 to the poorer countries. The United States’ share was $3 billion , but with President Trump’s decision to withdraw from the Paris accord, this goal is unlikely to be met.

The agreement matters because we absolutely need momentum on this issue

The Paris agreement is largely symbolic, and it will live on even though Trump is aiming to pull the US out. But, as Jim Tankersley wrote for Vox , “the accord will be weakened, and, much more importantly, so will the fragile international coalition” around climate change.

We’re already seeing the Paris agreement lose steam. At a follow-up climate meeting this year in Katowice, Poland , negotiators forged an agreement on measuring and verifying their progress in cutting greenhouse gases, but left many critical questions of how to achieve these reductions unanswered.

But the Paris accord isn’t the only international climate policy game in town

There are regional international climate efforts like the European Union’s Emissions Trading System . However, the most effective global policy at keeping warming in check to date doesn’t have to do with climate change, at least on the surface.

The 1987 Montreal Protocol , which was convened by countries to halt the destruction of the ozone layer, had a major side effect of averting warming. In fact, it’s been the single most effective effort humanity has undertaken to fight climate change. Since many of the substances that eat away at the ozone layer are potent heat-trappers, limiting emissions of gases like chlorofluorocarbons has an outsize effect.

make a presentation on the topic global warming ignou

And the Trump administration doesn’t appear as hostile to Montreal as it does to Paris. The White House may send the 2016 Kigali Amendment to the Montreal Protocol to the Senate for ratification, giving the new regulations the force of law. If implemented, the amendment would avert 0.5°C of warming by 2100.

Regardless of what path we choose, the key thing to remember is that we are going to pay for climate change one way or another. We have the opportunity now to address warming on our own terms, with investments in clean energy, moving people away from disaster-prone areas, and regulating greenhouse gas emissions. Otherwise, we’ll pay through diminished crop harvests, inundated coastlines, destroyed homes, lost lives, and an increasingly unlivable planet. Ignoring or stalling on climate change chooses the latter option by default. Our choices do matter, but we’re running out of time to make them.

Further reading:

Avoiding catastrophic climate change isn’t impossible yet. Just incredibly hard.

Reckoning with climate change will demand ugly tradeoffs from environmentalists — and everyone else

Show this cartoon to anyone who doubts we need huge action on climate change

It’s time to start talking about “negative” carbon dioxide emissions

A history of the 2°C global warming target  

Scientists made a detailed “roadmap” for meeting the Paris climate goals. It’s eye-opening.

More in this stream

The rumors that Trump was changing course on the Paris climate accord, explained

The rumors that Trump was changing course on the Paris climate accord, explained

Trump axed a rule that would help protect coastal properties like Mar-a-Lago from flooding

Trump axed a rule that would help protect coastal properties like Mar-a-Lago from flooding

French President Macron said US climate researchers should come to France. He wasn’t joking.

French President Macron said US climate researchers should come to France. He wasn’t joking.

Most popular, trump wants the supreme court to toss out his conviction. will they, 10 big things we think will happen in the next 10 years, take a mental break with the newest vox crossword, why north korea dumped trash on south korea, israel is not fighting for its survival, today, explained.

Understand the world with a daily explainer plus the most compelling stories of the day.

More in Science

This changed everything

This changed everything

10 big things we think will happen in the next 10 years

The last 10 years, explained

The internet peaked with “the dress,” and then it unraveled

The internet peaked with “the dress,” and then it unraveled

The science of near-death experiences

The science of near-death experiences

Dopamine, explained

Dopamine, explained

This changed everything

Biden’s sweeping new asylum restrictions, explained

India’s election shows the world’s largest democracy is still a democracy

India’s election shows the world’s largest democracy is still a democracy

Trump’s New York conviction is not enough

Trump’s New York conviction is not enough

MDMA’s federal approval drama, briefly explained

MDMA’s federal approval drama, briefly explained

What we know about the police killing of Black Air Force member Roger Fortson

What we know about the police killing of Black Air Force member Roger Fortson

Backgrid paparazzi photos are everywhere. Is that such a big deal?

Backgrid paparazzi photos are everywhere. Is that such a big deal?

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Springer Nature - PMC COVID-19 Collection

Logo of phenaturepg

A review of the global climate change impacts, adaptation, and sustainable mitigation measures

Kashif abbass.

1 School of Economics and Management, Nanjing University of Science and Technology, Nanjing, 210094 People’s Republic of China

Muhammad Zeeshan Qasim

2 Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, 210094 People’s Republic of China

Huaming Song

Muntasir murshed.

3 School of Business and Economics, North South University, Dhaka, 1229 Bangladesh

4 Department of Journalism, Media and Communications, Daffodil International University, Dhaka, Bangladesh

Haider Mahmood

5 Department of Finance, College of Business Administration, Prince Sattam Bin Abdulaziz University, 173, Alkharj, 11942 Saudi Arabia

Ijaz Younis

Associated data.

Data sources and relevant links are provided in the paper to access data.

Climate change is a long-lasting change in the weather arrays across tropics to polls. It is a global threat that has embarked on to put stress on various sectors. This study is aimed to conceptually engineer how climate variability is deteriorating the sustainability of diverse sectors worldwide. Specifically, the agricultural sector’s vulnerability is a globally concerning scenario, as sufficient production and food supplies are threatened due to irreversible weather fluctuations. In turn, it is challenging the global feeding patterns, particularly in countries with agriculture as an integral part of their economy and total productivity. Climate change has also put the integrity and survival of many species at stake due to shifts in optimum temperature ranges, thereby accelerating biodiversity loss by progressively changing the ecosystem structures. Climate variations increase the likelihood of particular food and waterborne and vector-borne diseases, and a recent example is a coronavirus pandemic. Climate change also accelerates the enigma of antimicrobial resistance, another threat to human health due to the increasing incidence of resistant pathogenic infections. Besides, the global tourism industry is devastated as climate change impacts unfavorable tourism spots. The methodology investigates hypothetical scenarios of climate variability and attempts to describe the quality of evidence to facilitate readers’ careful, critical engagement. Secondary data is used to identify sustainability issues such as environmental, social, and economic viability. To better understand the problem, gathered the information in this report from various media outlets, research agencies, policy papers, newspapers, and other sources. This review is a sectorial assessment of climate change mitigation and adaptation approaches worldwide in the aforementioned sectors and the associated economic costs. According to the findings, government involvement is necessary for the country’s long-term development through strict accountability of resources and regulations implemented in the past to generate cutting-edge climate policy. Therefore, mitigating the impacts of climate change must be of the utmost importance, and hence, this global threat requires global commitment to address its dreadful implications to ensure global sustenance.

Introduction

Worldwide observed and anticipated climatic changes for the twenty-first century and global warming are significant global changes that have been encountered during the past 65 years. Climate change (CC) is an inter-governmental complex challenge globally with its influence over various components of the ecological, environmental, socio-political, and socio-economic disciplines (Adger et al.  2005 ; Leal Filho et al.  2021 ; Feliciano et al.  2022 ). Climate change involves heightened temperatures across numerous worlds (Battisti and Naylor  2009 ; Schuurmans  2021 ; Weisheimer and Palmer  2005 ; Yadav et al.  2015 ). With the onset of the industrial revolution, the problem of earth climate was amplified manifold (Leppänen et al.  2014 ). It is reported that the immediate attention and due steps might increase the probability of overcoming its devastating impacts. It is not plausible to interpret the exact consequences of climate change (CC) on a sectoral basis (Izaguirre et al.  2021 ; Jurgilevich et al.  2017 ), which is evident by the emerging level of recognition plus the inclusion of climatic uncertainties at both local and national level of policymaking (Ayers et al.  2014 ).

Climate change is characterized based on the comprehensive long-haul temperature and precipitation trends and other components such as pressure and humidity level in the surrounding environment. Besides, the irregular weather patterns, retreating of global ice sheets, and the corresponding elevated sea level rise are among the most renowned international and domestic effects of climate change (Lipczynska-Kochany  2018 ; Michel et al.  2021 ; Murshed and Dao 2020 ). Before the industrial revolution, natural sources, including volcanoes, forest fires, and seismic activities, were regarded as the distinct sources of greenhouse gases (GHGs) such as CO 2 , CH 4 , N 2 O, and H 2 O into the atmosphere (Murshed et al. 2020 ; Hussain et al.  2020 ; Sovacool et al.  2021 ; Usman and Balsalobre-Lorente 2022 ; Murshed 2022 ). United Nations Framework Convention on Climate Change (UNFCCC) struck a major agreement to tackle climate change and accelerate and intensify the actions and investments required for a sustainable low-carbon future at Conference of the Parties (COP-21) in Paris on December 12, 2015. The Paris Agreement expands on the Convention by bringing all nations together for the first time in a single cause to undertake ambitious measures to prevent climate change and adapt to its impacts, with increased funding to assist developing countries in doing so. As so, it marks a turning point in the global climate fight. The core goal of the Paris Agreement is to improve the global response to the threat of climate change by keeping the global temperature rise this century well below 2 °C over pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5° C (Sharma et al. 2020 ; Sharif et al. 2020 ; Chien et al. 2021 .

Furthermore, the agreement aspires to strengthen nations’ ability to deal with the effects of climate change and align financing flows with low GHG emissions and climate-resilient paths (Shahbaz et al. 2019 ; Anwar et al. 2021 ; Usman et al. 2022a ). To achieve these lofty goals, adequate financial resources must be mobilized and provided, as well as a new technology framework and expanded capacity building, allowing developing countries and the most vulnerable countries to act under their respective national objectives. The agreement also establishes a more transparent action and support mechanism. All Parties are required by the Paris Agreement to do their best through “nationally determined contributions” (NDCs) and to strengthen these efforts in the coming years (Balsalobre-Lorente et al. 2020 ). It includes obligations that all Parties regularly report on their emissions and implementation activities. A global stock-take will be conducted every five years to review collective progress toward the agreement’s goal and inform the Parties’ future individual actions. The Paris Agreement became available for signature on April 22, 2016, Earth Day, at the United Nations Headquarters in New York. On November 4, 2016, it went into effect 30 days after the so-called double threshold was met (ratification by 55 nations accounting for at least 55% of world emissions). More countries have ratified and continue to ratify the agreement since then, bringing 125 Parties in early 2017. To fully operationalize the Paris Agreement, a work program was initiated in Paris to define mechanisms, processes, and recommendations on a wide range of concerns (Murshed et al. 2021 ). Since 2016, Parties have collaborated in subsidiary bodies (APA, SBSTA, and SBI) and numerous formed entities. The Conference of the Parties functioning as the meeting of the Parties to the Paris Agreement (CMA) convened for the first time in November 2016 in Marrakesh in conjunction with COP22 and made its first two resolutions. The work plan is scheduled to be finished by 2018. Some mitigation and adaptation strategies to reduce the emission in the prospective of Paris agreement are following firstly, a long-term goal of keeping the increase in global average temperature to well below 2 °C above pre-industrial levels, secondly, to aim to limit the rise to 1.5 °C, since this would significantly reduce risks and the impacts of climate change, thirdly, on the need for global emissions to peak as soon as possible, recognizing that this will take longer for developing countries, lastly, to undertake rapid reductions after that under the best available science, to achieve a balance between emissions and removals in the second half of the century. On the other side, some adaptation strategies are; strengthening societies’ ability to deal with the effects of climate change and to continue & expand international assistance for developing nations’ adaptation.

However, anthropogenic activities are currently regarded as most accountable for CC (Murshed et al. 2022 ). Apart from the industrial revolution, other anthropogenic activities include excessive agricultural operations, which further involve the high use of fuel-based mechanization, burning of agricultural residues, burning fossil fuels, deforestation, national and domestic transportation sectors, etc. (Huang et al.  2016 ). Consequently, these anthropogenic activities lead to climatic catastrophes, damaging local and global infrastructure, human health, and total productivity. Energy consumption has mounted GHGs levels concerning warming temperatures as most of the energy production in developing countries comes from fossil fuels (Balsalobre-Lorente et al. 2022 ; Usman et al. 2022b ; Abbass et al. 2021a ; Ishikawa-Ishiwata and Furuya  2022 ).

This review aims to highlight the effects of climate change in a socio-scientific aspect by analyzing the existing literature on various sectorial pieces of evidence globally that influence the environment. Although this review provides a thorough examination of climate change and its severe affected sectors that pose a grave danger for global agriculture, biodiversity, health, economy, forestry, and tourism, and to purpose some practical prophylactic measures and mitigation strategies to be adapted as sound substitutes to survive from climate change (CC) impacts. The societal implications of irregular weather patterns and other effects of climate changes are discussed in detail. Some numerous sustainable mitigation measures and adaptation practices and techniques at the global level are discussed in this review with an in-depth focus on its economic, social, and environmental aspects. Methods of data collection section are included in the supplementary information.

Review methodology

Related study and its objectives.

Today, we live an ordinary life in the beautiful digital, globalized world where climate change has a decisive role. What happens in one country has a massive influence on geographically far apart countries, which points to the current crisis known as COVID-19 (Sarkar et al.  2021 ). The most dangerous disease like COVID-19 has affected the world’s climate changes and economic conditions (Abbass et al. 2022 ; Pirasteh-Anosheh et al.  2021 ). The purpose of the present study is to review the status of research on the subject, which is based on “Global Climate Change Impacts, adaptation, and sustainable mitigation measures” by systematically reviewing past published and unpublished research work. Furthermore, the current study seeks to comment on research on the same topic and suggest future research on the same topic. Specifically, the present study aims: The first one is, organize publications to make them easy and quick to find. Secondly, to explore issues in this area, propose an outline of research for future work. The third aim of the study is to synthesize the previous literature on climate change, various sectors, and their mitigation measurement. Lastly , classify the articles according to the different methods and procedures that have been adopted.

Review methodology for reviewers

This review-based article followed systematic literature review techniques that have proved the literature review as a rigorous framework (Benita  2021 ; Tranfield et al.  2003 ). Moreover, we illustrate in Fig.  1 the search method that we have started for this research. First, finalized the research theme to search literature (Cooper et al.  2018 ). Second, used numerous research databases to search related articles and download from the database (Web of Science, Google Scholar, Scopus Index Journals, Emerald, Elsevier Science Direct, Springer, and Sciverse). We focused on various articles, with research articles, feedback pieces, short notes, debates, and review articles published in scholarly journals. Reports used to search for multiple keywords such as “Climate Change,” “Mitigation and Adaptation,” “Department of Agriculture and Human Health,” “Department of Biodiversity and Forestry,” etc.; in summary, keyword list and full text have been made. Initially, the search for keywords yielded a large amount of literature.

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig1_HTML.jpg

Methodology search for finalized articles for investigations.

Source : constructed by authors

Since 2020, it has been impossible to review all the articles found; some restrictions have been set for the literature exhibition. The study searched 95 articles on a different database mentioned above based on the nature of the study. It excluded 40 irrelevant papers due to copied from a previous search after readings tiles, abstract and full pieces. The criteria for inclusion were: (i) articles focused on “Global Climate Change Impacts, adaptation, and sustainable mitigation measures,” and (ii) the search key terms related to study requirements. The complete procedure yielded 55 articles for our study. We repeat our search on the “Web of Science and Google Scholars” database to enhance the search results and check the referenced articles.

In this study, 55 articles are reviewed systematically and analyzed for research topics and other aspects, such as the methods, contexts, and theories used in these studies. Furthermore, this study analyzes closely related areas to provide unique research opportunities in the future. The study also discussed future direction opportunities and research questions by understanding the research findings climate changes and other affected sectors. The reviewed paper framework analysis process is outlined in Fig.  2 .

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig2_HTML.jpg

Framework of the analysis Process.

Natural disasters and climate change’s socio-economic consequences

Natural and environmental disasters can be highly variable from year to year; some years pass with very few deaths before a significant disaster event claims many lives (Symanski et al.  2021 ). Approximately 60,000 people globally died from natural disasters each year on average over the past decade (Ritchie and Roser  2014 ; Wiranata and Simbolon  2021 ). So, according to the report, around 0.1% of global deaths. Annual variability in the number and share of deaths from natural disasters in recent decades are shown in Fig.  3 . The number of fatalities can be meager—sometimes less than 10,000, and as few as 0.01% of all deaths. But shock events have a devastating impact: the 1983–1985 famine and drought in Ethiopia; the 2004 Indian Ocean earthquake and tsunami; Cyclone Nargis, which struck Myanmar in 2008; and the 2010 Port-au-Prince earthquake in Haiti and now recent example is COVID-19 pandemic (Erman et al.  2021 ). These events pushed global disaster deaths to over 200,000—more than 0.4% of deaths in these years. Low-frequency, high-impact events such as earthquakes and tsunamis are not preventable, but such high losses of human life are. Historical evidence shows that earlier disaster detection, more robust infrastructure, emergency preparedness, and response programmers have substantially reduced disaster deaths worldwide. Low-income is also the most vulnerable to disasters; improving living conditions, facilities, and response services in these areas would be critical in reducing natural disaster deaths in the coming decades.

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig3_HTML.jpg

Global deaths from natural disasters, 1978 to 2020.

Source EMDAT ( 2020 )

The interior regions of the continent are likely to be impacted by rising temperatures (Dimri et al.  2018 ; Goes et al.  2020 ; Mannig et al.  2018 ; Schuurmans  2021 ). Weather patterns change due to the shortage of natural resources (water), increase in glacier melting, and rising mercury are likely to cause extinction to many planted species (Gampe et al.  2016 ; Mihiretu et al.  2021 ; Shaffril et al.  2018 ).On the other hand, the coastal ecosystem is on the verge of devastation (Perera et al.  2018 ; Phillips  2018 ). The temperature rises, insect disease outbreaks, health-related problems, and seasonal and lifestyle changes are persistent, with a strong probability of these patterns continuing in the future (Abbass et al. 2021c ; Hussain et al.  2018 ). At the global level, a shortage of good infrastructure and insufficient adaptive capacity are hammering the most (IPCC  2013 ). In addition to the above concerns, a lack of environmental education and knowledge, outdated consumer behavior, a scarcity of incentives, a lack of legislation, and the government’s lack of commitment to climate change contribute to the general public’s concerns. By 2050, a 2 to 3% rise in mercury and a drastic shift in rainfall patterns may have serious consequences (Huang et al. 2022 ; Gorst et al.  2018 ). Natural and environmental calamities caused huge losses globally, such as decreased agriculture outputs, rehabilitation of the system, and rebuilding necessary technologies (Ali and Erenstein  2017 ; Ramankutty et al.  2018 ; Yu et al.  2021 ) (Table ​ (Table1). 1 ). Furthermore, in the last 3 or 4 years, the world has been plagued by smog-related eye and skin diseases, as well as a rise in road accidents due to poor visibility.

Main natural danger statistics for 1985–2020 at the global level

Source: EM-DAT ( 2020 )

Climate change and agriculture

Global agriculture is the ultimate sector responsible for 30–40% of all greenhouse emissions, which makes it a leading industry predominantly contributing to climate warming and significantly impacted by it (Grieg; Mishra et al.  2021 ; Ortiz et al.  2021 ; Thornton and Lipper  2014 ). Numerous agro-environmental and climatic factors that have a dominant influence on agriculture productivity (Pautasso et al.  2012 ) are significantly impacted in response to precipitation extremes including floods, forest fires, and droughts (Huang  2004 ). Besides, the immense dependency on exhaustible resources also fuels the fire and leads global agriculture to become prone to devastation. Godfray et al. ( 2010 ) mentioned that decline in agriculture challenges the farmer’s quality of life and thus a significant factor to poverty as the food and water supplies are critically impacted by CC (Ortiz et al.  2021 ; Rosenzweig et al.  2014 ). As an essential part of the economic systems, especially in developing countries, agricultural systems affect the overall economy and potentially the well-being of households (Schlenker and Roberts  2009 ). According to the report published by the Intergovernmental Panel on Climate Change (IPCC), atmospheric concentrations of greenhouse gases, i.e., CH 4, CO 2 , and N 2 O, are increased in the air to extraordinary levels over the last few centuries (Usman and Makhdum 2021 ; Stocker et al.  2013 ). Climate change is the composite outcome of two different factors. The first is the natural causes, and the second is the anthropogenic actions (Karami 2012 ). It is also forecasted that the world may experience a typical rise in temperature stretching from 1 to 3.7 °C at the end of this century (Pachauri et al. 2014 ). The world’s crop production is also highly vulnerable to these global temperature-changing trends as raised temperatures will pose severe negative impacts on crop growth (Reidsma et al. 2009 ). Some of the recent modeling about the fate of global agriculture is briefly described below.

Decline in cereal productivity

Crop productivity will also be affected dramatically in the next few decades due to variations in integral abiotic factors such as temperature, solar radiation, precipitation, and CO 2 . These all factors are included in various regulatory instruments like progress and growth, weather-tempted changes, pest invasions (Cammell and Knight 1992 ), accompanying disease snags (Fand et al. 2012 ), water supplies (Panda et al. 2003 ), high prices of agro-products in world’s agriculture industry, and preeminent quantity of fertilizer consumption. Lobell and field ( 2007 ) claimed that from 1962 to 2002, wheat crop output had condensed significantly due to rising temperatures. Therefore, during 1980–2011, the common wheat productivity trends endorsed extreme temperature events confirmed by Gourdji et al. ( 2013 ) around South Asia, South America, and Central Asia. Various other studies (Asseng, Cao, Zhang, and Ludwig 2009 ; Asseng et al. 2013 ; García et al. 2015 ; Ortiz et al. 2021 ) also proved that wheat output is negatively affected by the rising temperatures and also caused adverse effects on biomass productivity (Calderini et al. 1999 ; Sadras and Slafer 2012 ). Hereafter, the rice crop is also influenced by the high temperatures at night. These difficulties will worsen because the temperature will be rising further in the future owing to CC (Tebaldi et al. 2006 ). Another research conducted in China revealed that a 4.6% of rice production per 1 °C has happened connected with the advancement in night temperatures (Tao et al. 2006 ). Moreover, the average night temperature growth also affected rice indicia cultivar’s output pragmatically during 25 years in the Philippines (Peng et al. 2004 ). It is anticipated that the increase in world average temperature will also cause a substantial reduction in yield (Hatfield et al. 2011 ; Lobell and Gourdji 2012 ). In the southern hemisphere, Parry et al. ( 2007 ) noted a rise of 1–4 °C in average daily temperatures at the end of spring season unti the middle of summers, and this raised temperature reduced crop output by cutting down the time length for phenophases eventually reduce the yield (Hatfield and Prueger 2015 ; R. Ortiz 2008 ). Also, world climate models have recommended that humid and subtropical regions expect to be plentiful prey to the upcoming heat strokes (Battisti and Naylor 2009 ). Grain production is the amalgamation of two constituents: the average weight and the grain output/m 2 , however, in crop production. Crop output is mainly accredited to the grain quantity (Araus et al. 2008 ; Gambín and Borrás 2010 ). In the times of grain set, yield resources are mainly strewn between hitherto defined components, i.e., grain usual weight and grain output, which presents a trade-off between them (Gambín and Borrás 2010 ) beside disparities in per grain integration (B. L. Gambín et al. 2006 ). In addition to this, the maize crop is also susceptible to raised temperatures, principally in the flowering stage (Edreira and Otegui 2013 ). In reality, the lower grain number is associated with insufficient acclimatization due to intense photosynthesis and higher respiration and the high-temperature effect on the reproduction phenomena (Edreira and Otegui 2013 ). During the flowering phase, maize visible to heat (30–36 °C) seemed less anthesis-silking intermissions (Edreira et al. 2011 ). Another research by Dupuis and Dumas ( 1990 ) proved that a drop in spikelet when directly visible to high temperatures above 35 °C in vitro pollination. Abnormalities in kernel number claimed by Vega et al. ( 2001 ) is related to conceded plant development during a flowering phase that is linked with the active ear growth phase and categorized as a critical phase for approximation of kernel number during silking (Otegui and Bonhomme 1998 ).

The retort of rice output to high temperature presents disparities in flowering patterns, and seed set lessens and lessens grain weight (Qasim et al. 2020 ; Qasim, Hammad, Maqsood, Tariq, & Chawla). During the daytime, heat directly impacts flowers which lessens the thesis period and quickens the earlier peak flowering (Tao et al. 2006 ). Antagonistic effect of higher daytime temperature d on pollen sprouting proposed seed set decay, whereas, seed set was lengthily reduced than could be explicated by pollen growing at high temperatures 40◦C (Matsui et al. 2001 ).

The decline in wheat output is linked with higher temperatures, confirmed in numerous studies (Semenov 2009 ; Stone and Nicolas 1994 ). High temperatures fast-track the arrangements of plant expansion (Blum et al. 2001 ), diminution photosynthetic process (Salvucci and Crafts‐Brandner 2004 ), and also considerably affect the reproductive operations (Farooq et al. 2011 ).

The destructive impacts of CC induced weather extremes to deteriorate the integrity of crops (Chaudhary et al. 2011 ), e.g., Spartan cold and extreme fog cause falling and discoloration of betel leaves (Rosenzweig et al. 2001 ), giving them a somehow reddish appearance, squeezing of lemon leaves (Pautasso et al. 2012 ), as well as root rot of pineapple, have reported (Vedwan and Rhoades 2001 ). Henceforth, in tackling the disruptive effects of CC, several short-term and long-term management approaches are the crucial need of time (Fig.  4 ). Moreover, various studies (Chaudhary et al. 2011 ; Patz et al. 2005 ; Pautasso et al. 2012 ) have demonstrated adapting trends such as ameliorating crop diversity can yield better adaptability towards CC.

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig4_HTML.jpg

Schematic description of potential impacts of climate change on the agriculture sector and the appropriate mitigation and adaptation measures to overcome its impact.

Climate change impacts on biodiversity

Global biodiversity is among the severe victims of CC because it is the fastest emerging cause of species loss. Studies demonstrated that the massive scale species dynamics are considerably associated with diverse climatic events (Abraham and Chain 1988 ; Manes et al. 2021 ; A. M. D. Ortiz et al. 2021 ). Both the pace and magnitude of CC are altering the compatible habitat ranges for living entities of marine, freshwater, and terrestrial regions. Alterations in general climate regimes influence the integrity of ecosystems in numerous ways, such as variation in the relative abundance of species, range shifts, changes in activity timing, and microhabitat use (Bates et al. 2014 ). The geographic distribution of any species often depends upon its ability to tolerate environmental stresses, biological interactions, and dispersal constraints. Hence, instead of the CC, the local species must only accept, adapt, move, or face extinction (Berg et al. 2010 ). So, the best performer species have a better survival capacity for adjusting to new ecosystems or a decreased perseverance to survive where they are already situated (Bates et al. 2014 ). An important aspect here is the inadequate habitat connectivity and access to microclimates, also crucial in raising the exposure to climate warming and extreme heatwave episodes. For example, the carbon sequestration rates are undergoing fluctuations due to climate-driven expansion in the range of global mangroves (Cavanaugh et al. 2014 ).

Similarly, the loss of kelp-forest ecosystems in various regions and its occupancy by the seaweed turfs has set the track for elevated herbivory by the high influx of tropical fish populations. Not only this, the increased water temperatures have exacerbated the conditions far away from the physiological tolerance level of the kelp communities (Vergés et al. 2016 ; Wernberg et al. 2016 ). Another pertinent danger is the devastation of keystone species, which even has more pervasive effects on the entire communities in that habitat (Zarnetske et al. 2012 ). It is particularly important as CC does not specify specific populations or communities. Eventually, this CC-induced redistribution of species may deteriorate carbon storage and the net ecosystem productivity (Weed et al. 2013 ). Among the typical disruptions, the prominent ones include impacts on marine and terrestrial productivity, marine community assembly, and the extended invasion of toxic cyanobacteria bloom (Fossheim et al. 2015 ).

The CC-impacted species extinction is widely reported in the literature (Beesley et al. 2019 ; Urban 2015 ), and the predictions of demise until the twenty-first century are dreadful (Abbass et al. 2019 ; Pereira et al. 2013 ). In a few cases, northward shifting of species may not be formidable as it allows mountain-dwelling species to find optimum climates. However, the migrant species may be trapped in isolated and incompatible habitats due to losing topography and range (Dullinger et al. 2012 ). For example, a study indicated that the American pika has been extirpated or intensely diminished in some regions, primarily attributed to the CC-impacted extinction or at least local extirpation (Stewart et al. 2015 ). Besides, the anticipation of persistent responses to the impacts of CC often requires data records of several decades to rigorously analyze the critical pre and post CC patterns at species and ecosystem levels (Manes et al. 2021 ; Testa et al. 2018 ).

Nonetheless, the availability of such long-term data records is rare; hence, attempts are needed to focus on these profound aspects. Biodiversity is also vulnerable to the other associated impacts of CC, such as rising temperatures, droughts, and certain invasive pest species. For instance, a study revealed the changes in the composition of plankton communities attributed to rising temperatures. Henceforth, alterations in such aquatic producer communities, i.e., diatoms and calcareous plants, can ultimately lead to variation in the recycling of biological carbon. Moreover, such changes are characterized as a potential contributor to CO 2 differences between the Pleistocene glacial and interglacial periods (Kohfeld et al. 2005 ).

Climate change implications on human health

It is an understood corporality that human health is a significant victim of CC (Costello et al. 2009 ). According to the WHO, CC might be responsible for 250,000 additional deaths per year during 2030–2050 (Watts et al. 2015 ). These deaths are attributed to extreme weather-induced mortality and morbidity and the global expansion of vector-borne diseases (Lemery et al. 2021; Yang and Usman 2021 ; Meierrieks 2021 ; UNEP 2017 ). Here, some of the emerging health issues pertinent to this global problem are briefly described.

Climate change and antimicrobial resistance with corresponding economic costs

Antimicrobial resistance (AMR) is an up-surging complex global health challenge (Garner et al. 2019 ; Lemery et al. 2021 ). Health professionals across the globe are extremely worried due to this phenomenon that has critical potential to reverse almost all the progress that has been achieved so far in the health discipline (Gosling and Arnell 2016 ). A massive amount of antibiotics is produced by many pharmaceutical industries worldwide, and the pathogenic microorganisms are gradually developing resistance to them, which can be comprehended how strongly this aspect can shake the foundations of national and global economies (UNEP 2017 ). This statement is supported by the fact that AMR is not developing in a particular region or country. Instead, it is flourishing in every continent of the world (WHO 2018 ). This plague is heavily pushing humanity to the post-antibiotic era, in which currently antibiotic-susceptible pathogens will once again lead to certain endemics and pandemics after being resistant(WHO 2018 ). Undesirably, if this statement would become a factuality, there might emerge certain risks in undertaking sophisticated interventions such as chemotherapy, joint replacement cases, and organ transplantation (Su et al. 2018 ). Presently, the amplification of drug resistance cases has made common illnesses like pneumonia, post-surgical infections, HIV/AIDS, tuberculosis, malaria, etc., too difficult and costly to be treated or cure well (WHO 2018 ). From a simple example, it can be assumed how easily antibiotic-resistant strains can be transmitted from one person to another and ultimately travel across the boundaries (Berendonk et al. 2015 ). Talking about the second- and third-generation classes of antibiotics, e.g., most renowned generations of cephalosporin antibiotics that are more expensive, broad-spectrum, more toxic, and usually require more extended periods whenever prescribed to patients (Lemery et al. 2021 ; Pärnänen et al. 2019 ). This scenario has also revealed that the abundance of resistant strains of pathogens was also higher in the Southern part (WHO 2018 ). As southern parts are generally warmer than their counterparts, it is evident from this example how CC-induced global warming can augment the spread of antibiotic-resistant strains within the biosphere, eventually putting additional economic burden in the face of developing new and costlier antibiotics. The ARG exchange to susceptible bacteria through one of the potential mechanisms, transformation, transduction, and conjugation; Selection pressure can be caused by certain antibiotics, metals or pesticides, etc., as shown in Fig.  5 .

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig5_HTML.jpg

A typical interaction between the susceptible and resistant strains.

Source: Elsayed et al. ( 2021 ); Karkman et al. ( 2018 )

Certain studies highlighted that conventional urban wastewater treatment plants are typical hotspots where most bacterial strains exchange genetic material through horizontal gene transfer (Fig.  5 ). Although at present, the extent of risks associated with the antibiotic resistance found in wastewater is complicated; environmental scientists and engineers have particular concerns about the potential impacts of these antibiotic resistance genes on human health (Ashbolt 2015 ). At most undesirable and worst case, these antibiotic-resistant genes containing bacteria can make their way to enter into the environment (Pruden et al. 2013 ), irrigation water used for crops and public water supplies and ultimately become a part of food chains and food webs (Ma et al. 2019 ; D. Wu et al. 2019 ). This problem has been reported manifold in several countries (Hendriksen et al. 2019 ), where wastewater as a means of irrigated water is quite common.

Climate change and vector borne-diseases

Temperature is a fundamental factor for the sustenance of living entities regardless of an ecosystem. So, a specific living being, especially a pathogen, requires a sophisticated temperature range to exist on earth. The second essential component of CC is precipitation, which also impacts numerous infectious agents’ transport and dissemination patterns. Global rising temperature is a significant cause of many species extinction. On the one hand, this changing environmental temperature may be causing species extinction, and on the other, this warming temperature might favor the thriving of some new organisms. Here, it was evident that some pathogens may also upraise once non-evident or reported (Patz et al. 2000 ). This concept can be exemplified through certain pathogenic strains of microorganisms that how the likelihood of various diseases increases in response to climate warming-induced environmental changes (Table ​ (Table2 2 ).

Examples of how various environmental changes affect various infectious diseases in humans

Source: Aron and Patz ( 2001 )

A recent example is an outburst of coronavirus (COVID-19) in the Republic of China, causing pneumonia and severe acute respiratory complications (Cui et al. 2021 ; Song et al. 2021 ). The large family of viruses is harbored in numerous animals, bats, and snakes in particular (livescience.com) with the subsequent transfer into human beings. Hence, it is worth noting that the thriving of numerous vectors involved in spreading various diseases is influenced by Climate change (Ogden 2018 ; Santos et al. 2021 ).

Psychological impacts of climate change

Climate change (CC) is responsible for the rapid dissemination and exaggeration of certain epidemics and pandemics. In addition to the vast apparent impacts of climate change on health, forestry, agriculture, etc., it may also have psychological implications on vulnerable societies. It can be exemplified through the recent outburst of (COVID-19) in various countries around the world (Pal 2021 ). Besides, the victims of this viral infection have made healthy beings scarier and terrified. In the wake of such epidemics, people with common colds or fever are also frightened and must pass specific regulatory protocols. Living in such situations continuously terrifies the public and makes the stress familiar, which eventually makes them psychologically weak (npr.org).

CC boosts the extent of anxiety, distress, and other issues in public, pushing them to develop various mental-related problems. Besides, frequent exposure to extreme climatic catastrophes such as geological disasters also imprints post-traumatic disorder, and their ubiquitous occurrence paves the way to developing chronic psychological dysfunction. Moreover, repetitive listening from media also causes an increase in the person’s stress level (Association 2020 ). Similarly, communities living in flood-prone areas constantly live in extreme fear of drowning and die by floods. In addition to human lives, the flood-induced destruction of physical infrastructure is a specific reason for putting pressure on these communities (Ogden 2018 ). For instance, Ogden ( 2018 ) comprehensively denoted that Katrina’s Hurricane augmented the mental health issues in the victim communities.

Climate change impacts on the forestry sector

Forests are the global regulators of the world’s climate (FAO 2018 ) and have an indispensable role in regulating global carbon and nitrogen cycles (Rehman et al. 2021 ; Reichstein and Carvalhais 2019 ). Hence, disturbances in forest ecology affect the micro and macro-climates (Ellison et al. 2017 ). Climate warming, in return, has profound impacts on the growth and productivity of transboundary forests by influencing the temperature and precipitation patterns, etc. As CC induces specific changes in the typical structure and functions of ecosystems (Zhang et al. 2017 ) as well impacts forest health, climate change also has several devastating consequences such as forest fires, droughts, pest outbreaks (EPA 2018 ), and last but not the least is the livelihoods of forest-dependent communities. The rising frequency and intensity of another CC product, i.e., droughts, pose plenty of challenges to the well-being of global forests (Diffenbaugh et al. 2017 ), which is further projected to increase soon (Hartmann et al. 2018 ; Lehner et al. 2017 ; Rehman et al. 2021 ). Hence, CC induces storms, with more significant impacts also put extra pressure on the survival of the global forests (Martínez-Alvarado et al. 2018 ), significantly since their influences are augmented during higher winter precipitations with corresponding wetter soils causing weak root anchorage of trees (Brázdil et al. 2018 ). Surging temperature regimes causes alterations in usual precipitation patterns, which is a significant hurdle for the survival of temperate forests (Allen et al. 2010 ; Flannigan et al. 2013 ), letting them encounter severe stress and disturbances which adversely affects the local tree species (Hubbart et al. 2016 ; Millar and Stephenson 2015 ; Rehman et al. 2021 ).

Climate change impacts on forest-dependent communities

Forests are the fundamental livelihood resource for about 1.6 billion people worldwide; out of them, 350 million are distinguished with relatively higher reliance (Bank 2008 ). Agro-forestry-dependent communities comprise 1.2 billion, and 60 million indigenous people solely rely on forests and their products to sustain their lives (Sunderlin et al. 2005 ). For example, in the entire African continent, more than 2/3rd of inhabitants depend on forest resources and woodlands for their alimonies, e.g., food, fuelwood and grazing (Wasiq and Ahmad 2004 ). The livings of these people are more intensely affected by the climatic disruptions making their lives harder (Brown et al. 2014 ). On the one hand, forest communities are incredibly vulnerable to CC due to their livelihoods, cultural and spiritual ties as well as socio-ecological connections, and on the other, they are not familiar with the term “climate change.” (Rahman and Alam 2016 ). Among the destructive impacts of temperature and rainfall, disruption of the agroforestry crops with resultant downscale growth and yield (Macchi et al. 2008 ). Cruz ( 2015 ) ascribed that forest-dependent smallholder farmers in the Philippines face the enigma of delayed fruiting, more severe damages by insect and pest incidences due to unfavorable temperature regimes, and changed rainfall patterns.

Among these series of challenges to forest communities, their well-being is also distinctly vulnerable to CC. Though the detailed climate change impacts on human health have been comprehensively mentioned in the previous section, some studies have listed a few more devastating effects on the prosperity of forest-dependent communities. For instance, the Himalayan people have been experiencing frequent skin-borne diseases such as malaria and other skin diseases due to increasing mosquitoes, wild boar as well, and new wasps species, particularly in higher altitudes that were almost non-existent before last 5–10 years (Xu et al. 2008 ). Similarly, people living at high altitudes in Bangladesh have experienced frequent mosquito-borne calamities (Fardous; Sharma 2012 ). In addition, the pace of other waterborne diseases such as infectious diarrhea, cholera, pathogenic induced abdominal complications and dengue has also been boosted in other distinguished regions of Bangladesh (Cell 2009 ; Gunter et al. 2008 ).

Pest outbreak

Upscaling hotter climate may positively affect the mobile organisms with shorter generation times because they can scurry from harsh conditions than the immobile species (Fettig et al. 2013 ; Schoene and Bernier 2012 ) and are also relatively more capable of adapting to new environments (Jactel et al. 2019 ). It reveals that insects adapt quickly to global warming due to their mobility advantages. Due to past outbreaks, the trees (forests) are relatively more susceptible victims (Kurz et al. 2008 ). Before CC, the influence of factors mentioned earlier, i.e., droughts and storms, was existent and made the forests susceptible to insect pest interventions; however, the global forests remain steadfast, assiduous, and green (Jactel et al. 2019 ). The typical reasons could be the insect herbivores were regulated by several tree defenses and pressures of predation (Wilkinson and Sherratt 2016 ). As climate greatly influences these phenomena, the global forests cannot be so sedulous against such challenges (Jactel et al. 2019 ). Table ​ Table3 3 demonstrates some of the particular considerations with practical examples that are essential while mitigating the impacts of CC in the forestry sector.

Essential considerations while mitigating the climate change impacts on the forestry sector

Source : Fischer ( 2019 )

Climate change impacts on tourism

Tourism is a commercial activity that has roots in multi-dimensions and an efficient tool with adequate job generation potential, revenue creation, earning of spectacular foreign exchange, enhancement in cross-cultural promulgation and cooperation, a business tool for entrepreneurs and eventually for the country’s national development (Arshad et al. 2018 ; Scott 2021 ). Among a plethora of other disciplines, the tourism industry is also a distinct victim of climate warming (Gössling et al. 2012 ; Hall et al. 2015 ) as the climate is among the essential resources that enable tourism in particular regions as most preferred locations. Different places at different times of the year attract tourists both within and across the countries depending upon the feasibility and compatibility of particular weather patterns. Hence, the massive variations in these weather patterns resulting from CC will eventually lead to monumental challenges to the local economy in that specific area’s particular and national economy (Bujosa et al. 2015 ). For instance, the Intergovernmental Panel on Climate Change (IPCC) report demonstrated that the global tourism industry had faced a considerable decline in the duration of ski season, including the loss of some ski areas and the dramatic shifts in tourist destinations’ climate warming.

Furthermore, different studies (Neuvonen et al. 2015 ; Scott et al. 2004 ) indicated that various currently perfect tourist spots, e.g., coastal areas, splendid islands, and ski resorts, will suffer consequences of CC. It is also worth noting that the quality and potential of administrative management potential to cope with the influence of CC on the tourism industry is of crucial significance, which renders specific strengths of resiliency to numerous destinations to withstand against it (Füssel and Hildén 2014 ). Similarly, in the partial or complete absence of adequate socio-economic and socio-political capital, the high-demanding tourist sites scurry towards the verge of vulnerability. The susceptibility of tourism is based on different components such as the extent of exposure, sensitivity, life-supporting sectors, and capacity assessment factors (Füssel and Hildén 2014 ). It is obvious corporality that sectors such as health, food, ecosystems, human habitat, infrastructure, water availability, and the accessibility of a particular region are prone to CC. Henceforth, the sensitivity of these critical sectors to CC and, in return, the adaptive measures are a hallmark in determining the composite vulnerability of climate warming (Ionescu et al. 2009 ).

Moreover, the dependence on imported food items, poor hygienic conditions, and inadequate health professionals are dominant aspects affecting the local terrestrial and aquatic biodiversity. Meanwhile, the greater dependency on ecosystem services and its products also makes a destination more fragile to become a prey of CC (Rizvi et al. 2015 ). Some significant non-climatic factors are important indicators of a particular ecosystem’s typical health and functioning, e.g., resource richness and abundance portray the picture of ecosystem stability. Similarly, the species abundance is also a productive tool that ensures that the ecosystem has a higher buffering capacity, which is terrific in terms of resiliency (Roscher et al. 2013 ).

Climate change impacts on the economic sector

Climate plays a significant role in overall productivity and economic growth. Due to its increasingly global existence and its effect on economic growth, CC has become one of the major concerns of both local and international environmental policymakers (Ferreira et al. 2020 ; Gleditsch 2021 ; Abbass et al. 2021b ; Lamperti et al. 2021 ). The adverse effects of CC on the overall productivity factor of the agricultural sector are therefore significant for understanding the creation of local adaptation policies and the composition of productive climate policy contracts. Previous studies on CC in the world have already forecasted its effects on the agricultural sector. Researchers have found that global CC will impact the agricultural sector in different world regions. The study of the impacts of CC on various agrarian activities in other demographic areas and the development of relative strategies to respond to effects has become a focal point for researchers (Chandioet al. 2020 ; Gleditsch 2021 ; Mosavi et al. 2020 ).

With the rapid growth of global warming since the 1980s, the temperature has started increasing globally, which resulted in the incredible transformation of rain and evaporation in the countries. The agricultural development of many countries has been reliant, delicate, and susceptible to CC for a long time, and it is on the development of agriculture total factor productivity (ATFP) influence different crops and yields of farmers (Alhassan 2021 ; Wu  2020 ).

Food security and natural disasters are increasing rapidly in the world. Several major climatic/natural disasters have impacted local crop production in the countries concerned. The effects of these natural disasters have been poorly controlled by the development of the economies and populations and may affect human life as well. One example is China, which is among the world’s most affected countries, vulnerable to natural disasters due to its large population, harsh environmental conditions, rapid CC, low environmental stability, and disaster power. According to the January 2016 statistical survey, China experienced an economic loss of 298.3 billion Yuan, and about 137 million Chinese people were severely affected by various natural disasters (Xie et al. 2018 ).

Mitigation and adaptation strategies of climate changes

Adaptation and mitigation are the crucial factors to address the response to CC (Jahanzad et al. 2020 ). Researchers define mitigation on climate changes, and on the other hand, adaptation directly impacts climate changes like floods. To some extent, mitigation reduces or moderates greenhouse gas emission, and it becomes a critical issue both economically and environmentally (Botzen et al. 2021 ; Jahanzad et al. 2020 ; Kongsager 2018 ; Smit et al. 2000 ; Vale et al. 2021 ; Usman et al. 2021 ; Verheyen 2005 ).

Researchers have deep concern about the adaptation and mitigation methodologies in sectoral and geographical contexts. Agriculture, industry, forestry, transport, and land use are the main sectors to adapt and mitigate policies(Kärkkäinen et al. 2020 ; Waheed et al. 2021 ). Adaptation and mitigation require particular concern both at the national and international levels. The world has faced a significant problem of climate change in the last decades, and adaptation to these effects is compulsory for economic and social development. To adapt and mitigate against CC, one should develop policies and strategies at the international level (Hussain et al. 2020 ). Figure  6 depicts the list of current studies on sectoral impacts of CC with adaptation and mitigation measures globally.

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig6_HTML.jpg

Sectoral impacts of climate change with adaptation and mitigation measures.

Conclusion and future perspectives

Specific socio-agricultural, socio-economic, and physical systems are the cornerstone of psychological well-being, and the alteration in these systems by CC will have disastrous impacts. Climate variability, alongside other anthropogenic and natural stressors, influences human and environmental health sustainability. Food security is another concerning scenario that may lead to compromised food quality, higher food prices, and inadequate food distribution systems. Global forests are challenged by different climatic factors such as storms, droughts, flash floods, and intense precipitation. On the other hand, their anthropogenic wiping is aggrandizing their existence. Undoubtedly, the vulnerability scale of the world’s regions differs; however, appropriate mitigation and adaptation measures can aid the decision-making bodies in developing effective policies to tackle its impacts. Presently, modern life on earth has tailored to consistent climatic patterns, and accordingly, adapting to such considerable variations is of paramount importance. Because the faster changes in climate will make it harder to survive and adjust, this globally-raising enigma calls for immediate attention at every scale ranging from elementary community level to international level. Still, much effort, research, and dedication are required, which is the most critical time. Some policy implications can help us to mitigate the consequences of climate change, especially the most affected sectors like the agriculture sector;

Warming might lengthen the season in frost-prone growing regions (temperate and arctic zones), allowing for longer-maturing seasonal cultivars with better yields (Pfadenhauer 2020 ; Bonacci 2019 ). Extending the planting season may allow additional crops each year; when warming leads to frequent warmer months highs over critical thresholds, a split season with a brief summer fallow may be conceivable for short-period crops such as wheat barley, cereals, and many other vegetable crops. The capacity to prolong the planting season in tropical and subtropical places where the harvest season is constrained by precipitation or agriculture farming occurs after the year may be more limited and dependent on how precipitation patterns vary (Wu et al. 2017 ).

The genetic component is comprehensive for many yields, but it is restricted like kiwi fruit for a few. Ali et al. ( 2017 ) investigated how new crops will react to climatic changes (also stated in Mall et al. 2017 ). Hot temperature, drought, insect resistance; salt tolerance; and overall crop production and product quality increases would all be advantageous (Akkari 2016 ). Genetic mapping and engineering can introduce a greater spectrum of features. The adoption of genetically altered cultivars has been slowed, particularly in the early forecasts owing to the complexity in ensuring features are expediently expressed throughout the entire plant, customer concerns, economic profitability, and regulatory impediments (Wirehn 2018 ; Davidson et al. 2016 ).

To get the full benefit of the CO 2 would certainly require additional nitrogen and other fertilizers. Nitrogen not consumed by the plants may be excreted into groundwater, discharged into water surface, or emitted from the land, soil nitrous oxide when large doses of fertilizer are sprayed. Increased nitrogen levels in groundwater sources have been related to human chronic illnesses and impact marine ecosystems. Cultivation, grain drying, and other field activities have all been examined in depth in the studies (Barua et al. 2018 ).

  • The technological and socio-economic adaptation

The policy consequence of the causative conclusion is that as a source of alternative energy, biofuel production is one of the routes that explain oil price volatility separate from international macroeconomic factors. Even though biofuel production has just begun in a few sample nations, there is still a tremendous worldwide need for feedstock to satisfy industrial expansion in China and the USA, which explains the food price relationship to the global oil price. Essentially, oil-exporting countries may create incentives in their economies to increase food production. It may accomplish by giving farmers financing, seedlings, fertilizers, and farming equipment. Because of the declining global oil price and, as a result, their earnings from oil export, oil-producing nations may be unable to subsidize food imports even in the near term. As a result, these countries can boost the agricultural value chain for export. It may be accomplished through R&D and adding value to their food products to increase income by correcting exchange rate misalignment and adverse trade terms. These nations may also diversify their economies away from oil, as dependence on oil exports alone is no longer economically viable given the extreme volatility of global oil prices. Finally, resource-rich and oil-exporting countries can convert to non-food renewable energy sources such as solar, hydro, coal, wind, wave, and tidal energy. By doing so, both world food and oil supplies would be maintained rather than harmed.

IRENA’s modeling work shows that, if a comprehensive policy framework is in place, efforts toward decarbonizing the energy future will benefit economic activity, jobs (outweighing losses in the fossil fuel industry), and welfare. Countries with weak domestic supply chains and a large reliance on fossil fuel income, in particular, must undertake structural reforms to capitalize on the opportunities inherent in the energy transition. Governments continue to give major policy assistance to extract fossil fuels, including tax incentives, financing, direct infrastructure expenditures, exemptions from environmental regulations, and other measures. The majority of major oil and gas producing countries intend to increase output. Some countries intend to cut coal output, while others plan to maintain or expand it. While some nations are beginning to explore and execute policies aimed at a just and equitable transition away from fossil fuel production, these efforts have yet to impact major producing countries’ plans and goals. Verifiable and comparable data on fossil fuel output and assistance from governments and industries are critical to closing the production gap. Governments could increase openness by declaring their production intentions in their climate obligations under the Paris Agreement.

It is firmly believed that achieving the Paris Agreement commitments is doubtlful without undergoing renewable energy transition across the globe (Murshed 2020 ; Zhao et al. 2022 ). Policy instruments play the most important role in determining the degree of investment in renewable energy technology. This study examines the efficacy of various policy strategies in the renewable energy industry of multiple nations. Although its impact is more visible in established renewable energy markets, a renewable portfolio standard is also a useful policy instrument. The cost of producing renewable energy is still greater than other traditional energy sources. Furthermore, government incentives in the R&D sector can foster innovation in this field, resulting in cost reductions in the renewable energy industry. These nations may export their technologies and share their policy experiences by forming networks among their renewable energy-focused organizations. All policy measures aim to reduce production costs while increasing the proportion of renewables to a country’s energy system. Meanwhile, long-term contracts with renewable energy providers, government commitment and control, and the establishment of long-term goals can assist developing nations in deploying renewable energy technology in their energy sector.

Author contribution

KA: Writing the original manuscript, data collection, data analysis, Study design, Formal analysis, Visualization, Revised draft, Writing-review, and editing. MZQ: Writing the original manuscript, data collection, data analysis, Writing-review, and editing. HS: Contribution to the contextualization of the theme, Conceptualization, Validation, Supervision, literature review, Revised drapt, and writing review and editing. MM: Writing review and editing, compiling the literature review, language editing. HM: Writing review and editing, compiling the literature review, language editing. IY: Contribution to the contextualization of the theme, literature review, and writing review and editing.

Availability of data and material

Declarations.

Not applicable.

The authors declare no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Kashif Abbass, Email: nc.ude.tsujn@ssabbafihsak .

Muhammad Zeeshan Qasim, Email: moc.kooltuo@888misaqnahseez .

Huaming Song, Email: nc.ude.tsujn@gnimauh .

Muntasir Murshed, Email: [email protected] .

Haider Mahmood, Email: moc.liamtoh@doomhamrediah .

Ijaz Younis, Email: nc.ude.tsujn@sinuoyzaji .

  • Abbass K, Begum H, Alam ASA, Awang AH, Abdelsalam MK, Egdair IMM, Wahid R (2022) Fresh Insight through a Keynesian Theory Approach to Investigate the Economic Impact of the COVID-19 Pandemic in Pakistan. Sustain 14(3):1054
  • Abbass K, Niazi AAK, Qazi TF, Basit A, Song H (2021a) The aftermath of COVID-19 pandemic period: barriers in implementation of social distancing at workplace. Library Hi Tech
  • Abbass K, Song H, Khan F, Begum H, Asif M (2021b) Fresh insight through the VAR approach to investigate the effects of fiscal policy on environmental pollution in Pakistan. Environ Scie Poll Res 1–14 [ PubMed ]
  • Abbass K, Song H, Shah SM, Aziz B. Determinants of Stock Return for Non-Financial Sector: Evidence from Energy Sector of Pakistan. J Bus Fin Aff. 2019; 8 (370):2167–0234. [ Google Scholar ]
  • Abbass K, Tanveer A, Huaming S, Khatiya AA (2021c) Impact of financial resources utilization on firm performance: a case of SMEs working in Pakistan
  • Abraham E, Chain E. An enzyme from bacteria able to destroy penicillin. 1940. Rev Infect Dis. 1988; 10 (4):677. [ PubMed ] [ Google Scholar ]
  • Adger WN, Arnell NW, Tompkins EL. Successful adaptation to climate change across scales. Glob Environ Chang. 2005; 15 (2):77–86. doi: 10.1016/j.gloenvcha.2004.12.005. [ CrossRef ] [ Google Scholar ]
  • Akkari C, Bryant CR. The co-construction approach as approach to developing adaptation strategies in the face of climate change and variability: A conceptual framework. Agricultural Research. 2016; 5 (2):162–173. doi: 10.1007/s40003-016-0208-8. [ CrossRef ] [ Google Scholar ]
  • Alhassan H (2021) The effect of agricultural total factor productivity on environmental degradation in sub-Saharan Africa. Sci Afr 12:e00740
  • Ali A, Erenstein O. Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Clim Risk Manag. 2017; 16 :183–194. doi: 10.1016/j.crm.2016.12.001. [ CrossRef ] [ Google Scholar ]
  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Hogg ET. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag. 2010; 259 (4):660–684. doi: 10.1016/j.foreco.2009.09.001. [ CrossRef ] [ Google Scholar ]
  • Anwar A, Sinha A, Sharif A, Siddique M, Irshad S, Anwar W, Malik S (2021) The nexus between urbanization, renewable energy consumption, financial development, and CO2 emissions: evidence from selected Asian countries. Environ Dev Sust. 10.1007/s10668-021-01716-2
  • Araus JL, Slafer GA, Royo C, Serret MD. Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci. 2008; 27 (6):377–412. doi: 10.1080/07352680802467736. [ CrossRef ] [ Google Scholar ]
  • Aron JL, Patz J (2001) Ecosystem change and public health: a global perspective: JHU Press
  • Arshad MI, Iqbal MA, Shahbaz M. Pakistan tourism industry and challenges: a review. Asia Pacific Journal of Tourism Research. 2018; 23 (2):121–132. doi: 10.1080/10941665.2017.1410192. [ CrossRef ] [ Google Scholar ]
  • Ashbolt NJ. Microbial contamination of drinking water and human health from community water systems. Current Environmental Health Reports. 2015; 2 (1):95–106. doi: 10.1007/s40572-014-0037-5. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Asseng S, Cao W, Zhang W, Ludwig F (2009) Crop physiology, modelling and climate change: impact and adaptation strategies. Crop Physiol 511–543
  • Asseng S, Ewert F, Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Cammarano D. Uncertainty in simulating wheat yields under climate change. Nat Clim Chang. 2013; 3 (9):827–832. doi: 10.1038/nclimate1916. [ CrossRef ] [ Google Scholar ]
  • Association A (2020) Climate change is threatening mental health, American Psychological Association, “Kirsten Weir, . from < https://www.apa.org/monitor/2016/07-08/climate-change >, Accessed on 26 Jan 2020.
  • Ayers J, Huq S, Wright H, Faisal A, Hussain S. Mainstreaming climate change adaptation into development in Bangladesh. Clim Dev. 2014; 6 :293–305. doi: 10.1080/17565529.2014.977761. [ CrossRef ] [ Google Scholar ]
  • Balsalobre-Lorente D, Driha OM, Bekun FV, Sinha A, Adedoyin FF (2020) Consequences of COVID-19 on the social isolation of the Chinese economy: accounting for the role of reduction in carbon emissions. Air Qual Atmos Health 13(12):1439–1451
  • Balsalobre-Lorente D, Ibáñez-Luzón L, Usman M, Shahbaz M. The environmental Kuznets curve, based on the economic complexity, and the pollution haven hypothesis in PIIGS countries. Renew Energy. 2022; 185 :1441–1455. doi: 10.1016/j.renene.2021.10.059. [ CrossRef ] [ Google Scholar ]
  • Bank W (2008) Forests sourcebook: practical guidance for sustaining forests in development cooperation: World Bank
  • Barua S, Valenzuela E (2018) Climate change impacts on global agricultural trade patterns: evidence from the past 50 years. In Proceedings of the Sixth International Conference on Sustainable Development (pp. 26–28)
  • Bates AE, Pecl GT, Frusher S, Hobday AJ, Wernberg T, Smale DA, Colwell RK. Defining and observing stages of climate-mediated range shifts in marine systems. Glob Environ Chang. 2014; 26 :27–38. doi: 10.1016/j.gloenvcha.2014.03.009. [ CrossRef ] [ Google Scholar ]
  • Battisti DS, Naylor RL. Historical warnings of future food insecurity with unprecedented seasonal heat. Science. 2009; 323 (5911):240–244. doi: 10.1126/science.1164363. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Beesley L, Close PG, Gwinn DC, Long M, Moroz M, Koster WM, Storer T. Flow-mediated movement of freshwater catfish, Tandanus bostocki, in a regulated semi-urban river, to inform environmental water releases. Ecol Freshw Fish. 2019; 28 (3):434–445. doi: 10.1111/eff.12466. [ CrossRef ] [ Google Scholar ]
  • Benita F (2021) Human mobility behavior in COVID-19: A systematic literature review and bibliometric analysis. Sustain Cities Soc 70:102916 [ PMC free article ] [ PubMed ]
  • Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Pons M-N. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol. 2015; 13 (5):310–317. doi: 10.1038/nrmicro3439. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Berg MP, Kiers ET, Driessen G, Van DerHEIJDEN M, Kooi BW, Kuenen F, Ellers J. Adapt or disperse: understanding species persistence in a changing world. Glob Change Biol. 2010; 16 (2):587–598. doi: 10.1111/j.1365-2486.2009.02014.x. [ CrossRef ] [ Google Scholar ]
  • Blum A, Klueva N, Nguyen H. Wheat cellular thermotolerance is related to yield under heat stress. Euphytica. 2001; 117 (2):117–123. doi: 10.1023/A:1004083305905. [ CrossRef ] [ Google Scholar ]
  • Bonacci O. Air temperature and precipitation analyses on a small Mediterranean island: the case of the remote island of Lastovo (Adriatic Sea, Croatia) Acta Hydrotechnica. 2019; 32 (57):135–150. doi: 10.15292/acta.hydro.2019.10. [ CrossRef ] [ Google Scholar ]
  • Botzen W, Duijndam S, van Beukering P (2021) Lessons for climate policy from behavioral biases towards COVID-19 and climate change risks. World Dev 137:105214 [ PMC free article ] [ PubMed ]
  • Brázdil R, Stucki P, Szabó P, Řezníčková L, Dolák L, Dobrovolný P, Suchánková S. Windstorms and forest disturbances in the Czech Lands: 1801–2015. Agric for Meteorol. 2018; 250 :47–63. doi: 10.1016/j.agrformet.2017.11.036. [ CrossRef ] [ Google Scholar ]
  • Brown HCP, Smit B, Somorin OA, Sonwa DJ, Nkem JN. Climate change and forest communities: prospects for building institutional adaptive capacity in the Congo Basin forests. Ambio. 2014; 43 (6):759–769. doi: 10.1007/s13280-014-0493-z. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Bujosa A, Riera A, Torres CM. Valuing tourism demand attributes to guide climate change adaptation measures efficiently: the case of the Spanish domestic travel market. Tour Manage. 2015; 47 :233–239. doi: 10.1016/j.tourman.2014.09.023. [ CrossRef ] [ Google Scholar ]
  • Calderini D, Abeledo L, Savin R, Slafer GA. Effect of temperature and carpel size during pre-anthesis on potential grain weight in wheat. J Agric Sci. 1999; 132 (4):453–459. doi: 10.1017/S0021859699006504. [ CrossRef ] [ Google Scholar ]
  • Cammell M, Knight J. Effects of climatic change on the population dynamics of crop pests. Adv Ecol Res. 1992; 22 :117–162. doi: 10.1016/S0065-2504(08)60135-X. [ CrossRef ] [ Google Scholar ]
  • Cavanaugh KC, Kellner JR, Forde AJ, Gruner DS, Parker JD, Rodriguez W, Feller IC. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc Natl Acad Sci. 2014; 111 (2):723–727. doi: 10.1073/pnas.1315800111. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cell CC (2009) Climate change and health impacts in Bangladesh. Clima Chang Cell DoE MoEF
  • Chandio AA, Jiang Y, Rehman A, Rauf A (2020) Short and long-run impacts of climate change on agriculture: an empirical evidence from China. Int J Clim Chang Strat Manag
  • Chaudhary P, Rai S, Wangdi S, Mao A, Rehman N, Chettri S, Bawa KS (2011) Consistency of local perceptions of climate change in the Kangchenjunga Himalaya landscape. Curr Sci 504–513
  • Chien F, Anwar A, Hsu CC, Sharif A, Razzaq A, Sinha A (2021) The role of information and communication technology in encountering environmental degradation: proposing an SDG framework for the BRICS countries. Technol Soc 65:101587
  • Cooper C, Booth A, Varley-Campbell J, Britten N, Garside R. Defining the process to literature searching in systematic reviews: a literature review of guidance and supporting studies. BMC Med Res Methodol. 2018; 18 (1):1–14. doi: 10.1186/s12874-018-0545-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Costello A, Abbas M, Allen A, Ball S, Bell S, Bellamy R, Kett M. Managing the health effects of climate change: lancet and University College London Institute for Global Health Commission. The Lancet. 2009; 373 (9676):1693–1733. doi: 10.1016/S0140-6736(09)60935-1. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cruz DLA (2015) Mother Figured. University of Chicago Press. Retrieved from, 10.7208/9780226315072
  • Cui W, Ouyang T, Qiu Y, Cui D (2021) Literature Review of the Implications of Exercise Rehabilitation Strategies for SARS Patients on the Recovery of COVID-19 Patients. Paper presented at the Healthcare [ PMC free article ] [ PubMed ]
  • Davidson D. Gaps in agricultural climate adaptation research. Nat Clim Chang. 2016; 6 (5):433–435. doi: 10.1038/nclimate3007. [ CrossRef ] [ Google Scholar ]
  • Diffenbaugh NS, Singh D, Mankin JS, Horton DE, Swain DL, Touma D, Tsiang M. Quantifying the influence of global warming on unprecedented extreme climate events. Proc Natl Acad Sci. 2017; 114 (19):4881–4886. doi: 10.1073/pnas.1618082114. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Dimri A, Kumar D, Choudhary A, Maharana P. Future changes over the Himalayas: mean temperature. Global Planet Change. 2018; 162 :235–251. doi: 10.1016/j.gloplacha.2018.01.014. [ CrossRef ] [ Google Scholar ]
  • Dullinger S, Gattringer A, Thuiller W, Moser D, Zimmermann N, Guisan A. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat Clim Chang: Nature Publishing Group; 2012. [ Google Scholar ]
  • Dupuis I, Dumas C. Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive tissues. Plant Physiol. 1990; 94 (2):665–670. doi: 10.1104/pp.94.2.665. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Edreira JR, Otegui ME. Heat stress in temperate and tropical maize hybrids: a novel approach for assessing sources of kernel loss in field conditions. Field Crop Res. 2013; 142 :58–67. doi: 10.1016/j.fcr.2012.11.009. [ CrossRef ] [ Google Scholar ]
  • Edreira JR, Carpici EB, Sammarro D, Otegui M. Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids. Field Crop Res. 2011; 123 (2):62–73. doi: 10.1016/j.fcr.2011.04.015. [ CrossRef ] [ Google Scholar ]
  • Ellison D, Morris CE, Locatelli B, Sheil D, Cohen J, Murdiyarso D, Pokorny J. Trees, forests and water: Cool insights for a hot world. Glob Environ Chang. 2017; 43 :51–61. doi: 10.1016/j.gloenvcha.2017.01.002. [ CrossRef ] [ Google Scholar ]
  • Elsayed ZM, Eldehna WM, Abdel-Aziz MM, El Hassab MA, Elkaeed EB, Al-Warhi T, Mohammed ER. Development of novel isatin–nicotinohydrazide hybrids with potent activity against susceptible/resistant Mycobacterium tuberculosis and bronchitis causing–bacteria. J Enzyme Inhib Med Chem. 2021; 36 (1):384–393. doi: 10.1080/14756366.2020.1868450. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • EM-DAT (2020) EMDAT: OFDA/CRED International Disaster Database, Université catholique de Louvain – Brussels – Belgium. from http://www.emdat.be
  • EPA U (2018) United States Environmental Protection Agency, EPA Year in Review
  • Erman A, De Vries Robbe SA, Thies SF, Kabir K, Maruo M (2021) Gender Dimensions of Disaster Risk and Resilience
  • Fand BB, Kamble AL, Kumar M. Will climate change pose serious threat to crop pest management: a critical review. Int J Sci Res Publ. 2012; 2 (11):1–14. [ Google Scholar ]
  • FAO (2018).The State of the World’s Forests 2018 - Forest Pathways to Sustainable Development.
  • Fardous S Perception of climate change in Kaptai National Park. Rural Livelihoods and Protected Landscape: Co-Management in the Wetlands and Forests of Bangladesh, 186–204
  • Farooq M, Bramley H, Palta JA, Siddique KH. Heat stress in wheat during reproductive and grain-filling phases. Crit Rev Plant Sci. 2011; 30 (6):491–507. doi: 10.1080/07352689.2011.615687. [ CrossRef ] [ Google Scholar ]
  • Feliciano D, Recha J, Ambaw G, MacSween K, Solomon D, Wollenberg E (2022) Assessment of agricultural emissions, climate change mitigation and adaptation practices in Ethiopia. Clim Policy 1–18
  • Ferreira JJ, Fernandes CI, Ferreira FA (2020) Technology transfer, climate change mitigation, and environmental patent impact on sustainability and economic growth: a comparison of European countries. Technol Forecast Soc Change 150:119770
  • Fettig CJ, Reid ML, Bentz BJ, Sevanto S, Spittlehouse DL, Wang T. Changing climates, changing forests: a western North American perspective. J Forest. 2013; 111 (3):214–228. doi: 10.5849/jof.12-085. [ CrossRef ] [ Google Scholar ]
  • Fischer AP. Characterizing behavioral adaptation to climate change in temperate forests. Landsc Urban Plan. 2019; 188 :72–79. doi: 10.1016/j.landurbplan.2018.09.024. [ CrossRef ] [ Google Scholar ]
  • Flannigan M, Cantin AS, De Groot WJ, Wotton M, Newbery A, Gowman LM. Global wildland fire season severity in the 21st century. For Ecol Manage. 2013; 294 :54–61. doi: 10.1016/j.foreco.2012.10.022. [ CrossRef ] [ Google Scholar ]
  • Fossheim M, Primicerio R, Johannesen E, Ingvaldsen RB, Aschan MM, Dolgov AV. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat Clim Chang. 2015; 5 (7):673–677. doi: 10.1038/nclimate2647. [ CrossRef ] [ Google Scholar ]
  • Füssel HM, Hildén M (2014) How is uncertainty addressed in the knowledge base for national adaptation planning? Adapting to an Uncertain Climate (pp. 41–66): Springer
  • Gambín BL, Borrás L, Otegui ME. Source–sink relations and kernel weight differences in maize temperate hybrids. Field Crop Res. 2006; 95 (2–3):316–326. doi: 10.1016/j.fcr.2005.04.002. [ CrossRef ] [ Google Scholar ]
  • Gambín B, Borrás L. Resource distribution and the trade-off between seed number and seed weight: a comparison across crop species. Annals of Applied Biology. 2010; 156 (1):91–102. doi: 10.1111/j.1744-7348.2009.00367.x. [ CrossRef ] [ Google Scholar ]
  • Gampe D, Nikulin G, Ludwig R. Using an ensemble of regional climate models to assess climate change impacts on water scarcity in European river basins. Sci Total Environ. 2016; 573 :1503–1518. doi: 10.1016/j.scitotenv.2016.08.053. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • García GA, Dreccer MF, Miralles DJ, Serrago RA. High night temperatures during grain number determination reduce wheat and barley grain yield: a field study. Glob Change Biol. 2015; 21 (11):4153–4164. doi: 10.1111/gcb.13009. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Garner E, Inyang M, Garvey E, Parks J, Glover C, Grimaldi A, Edwards MA. Impact of blending for direct potable reuse on premise plumbing microbial ecology and regrowth of opportunistic pathogens and antibiotic resistant bacteria. Water Res. 2019; 151 :75–86. doi: 10.1016/j.watres.2018.12.003. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gleditsch NP (2021) This time is different! Or is it? NeoMalthusians and environmental optimists in the age of climate change. J Peace Res 0022343320969785
  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Toulmin C. Food security: the challenge of feeding 9 billion people. Science. 2010; 327 (5967):812–818. doi: 10.1126/science.1185383. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Goes S, Hasterok D, Schutt DL, Klöcking M (2020) Continental lithospheric temperatures: A review. Phys Earth Planet Inter 106509
  • Gorst A, Dehlavi A, Groom B. Crop productivity and adaptation to climate change in Pakistan. Environ Dev Econ. 2018; 23 (6):679–701. doi: 10.1017/S1355770X18000232. [ CrossRef ] [ Google Scholar ]
  • Gosling SN, Arnell NW. A global assessment of the impact of climate change on water scarcity. Clim Change. 2016; 134 (3):371–385. doi: 10.1007/s10584-013-0853-x. [ CrossRef ] [ Google Scholar ]
  • Gössling S, Scott D, Hall CM, Ceron J-P, Dubois G. Consumer behaviour and demand response of tourists to climate change. Ann Tour Res. 2012; 39 (1):36–58. doi: 10.1016/j.annals.2011.11.002. [ CrossRef ] [ Google Scholar ]
  • Gourdji SM, Sibley AM, Lobell DB. Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environ Res Lett. 2013; 8 (2):024041. doi: 10.1088/1748-9326/8/2/024041. [ CrossRef ] [ Google Scholar ]
  • Grieg E Responsible Consumption and Production
  • Gunter BG, Rahman A, Rahman A (2008) How Vulnerable are Bangladesh’s Indigenous People to Climate Change? Bangladesh Development Research Center (BDRC)
  • Hall CM, Amelung B, Cohen S, Eijgelaar E, Gössling S, Higham J, Scott D. On climate change skepticism and denial in tourism. J Sustain Tour. 2015; 23 (1):4–25. doi: 10.1080/09669582.2014.953544. [ CrossRef ] [ Google Scholar ]
  • Hartmann H, Moura CF, Anderegg WR, Ruehr NK, Salmon Y, Allen CD, Galbraith D. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol. 2018; 218 (1):15–28. doi: 10.1111/nph.15048. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hatfield JL, Prueger JH. Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes. 2015; 10 :4–10. doi: 10.1016/j.wace.2015.08.001. [ CrossRef ] [ Google Scholar ]
  • Hatfield JL, Boote KJ, Kimball B, Ziska L, Izaurralde RC, Ort D, Wolfe D. Climate impacts on agriculture: implications for crop production. Agron J. 2011; 103 (2):351–370. doi: 10.2134/agronj2010.0303. [ CrossRef ] [ Google Scholar ]
  • Hendriksen RS, Munk P, Njage P, Van Bunnik B, McNally L, Lukjancenko O, Kjeldgaard J. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat Commun. 2019; 10 (1):1124. doi: 10.1038/s41467-019-08853-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Huang S (2004) Global trade patterns in fruits and vegetables. USDA-ERS Agriculture and Trade Report No. WRS-04–06
  • Huang W, Gao Q-X, Cao G-L, Ma Z-Y, Zhang W-D, Chao Q-C. Effect of urban symbiosis development in China on GHG emissions reduction. Adv Clim Chang Res. 2016; 7 (4):247–252. doi: 10.1016/j.accre.2016.12.003. [ CrossRef ] [ Google Scholar ]
  • Huang Y, Haseeb M, Usman M, Ozturk I (2022) Dynamic association between ICT, renewable energy, economic complexity and ecological footprint: Is there any difference between E-7 (developing) and G-7 (developed) countries? Tech Soc 68:101853
  • Hubbart JA, Guyette R, Muzika R-M. More than drought: precipitation variance, excessive wetness, pathogens and the future of the western edge of the eastern deciduous forest. Sci Total Environ. 2016; 566 :463–467. doi: 10.1016/j.scitotenv.2016.05.108. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hussain M, Butt AR, Uzma F, Ahmed R, Irshad S, Rehman A, Yousaf B. A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan. Environ Monit Assess. 2020; 192 (1):48. doi: 10.1007/s10661-019-7956-4. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hussain M, Liu G, Yousaf B, Ahmed R, Uzma F, Ali MU, Butt AR. Regional and sectoral assessment on climate-change in Pakistan: social norms and indigenous perceptions on climate-change adaptation and mitigation in relation to global context. J Clean Prod. 2018; 200 :791–808. doi: 10.1016/j.jclepro.2018.07.272. [ CrossRef ] [ Google Scholar ]
  • Intergov. Panel Clim Chang 33 from 10.1017/CBO9781107415324
  • Ionescu C, Klein RJ, Hinkel J, Kumar KK, Klein R. Towards a formal framework of vulnerability to climate change. Environ Model Assess. 2009; 14 (1):1–16. doi: 10.1007/s10666-008-9179-x. [ CrossRef ] [ Google Scholar ]
  • IPCC (2013) Summary for policymakers. Clim Chang Phys Sci Basis Contrib Work Gr I Fifth Assess Rep
  • Ishikawa-Ishiwata Y, Furuya J (2022) Economic evaluation and climate change adaptation measures for rice production in vietnam using a supply and demand model: special emphasis on the Mekong River Delta region in Vietnam. In Interlocal Adaptations to Climate Change in East and Southeast Asia (pp. 45–53). Springer, Cham
  • Izaguirre C, Losada I, Camus P, Vigh J, Stenek V. Climate change risk to global port operations. Nat Clim Chang. 2021; 11 (1):14–20. doi: 10.1038/s41558-020-00937-z. [ CrossRef ] [ Google Scholar ]
  • Jactel H, Koricheva J, Castagneyrol B (2019) Responses of forest insect pests to climate change: not so simple. Current opinion in insect science [ PubMed ]
  • Jahanzad E, Holtz BA, Zuber CA, Doll D, Brewer KM, Hogan S, Gaudin AC. Orchard recycling improves climate change adaptation and mitigation potential of almond production systems. PLoS ONE. 2020; 15 (3):e0229588. doi: 10.1371/journal.pone.0229588. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Jurgilevich A, Räsänen A, Groundstroem F, Juhola S. A systematic review of dynamics in climate risk and vulnerability assessments. Environ Res Lett. 2017; 12 (1):013002. doi: 10.1088/1748-9326/aa5508. [ CrossRef ] [ Google Scholar ]
  • Karami E (2012) Climate change, resilience and poverty in the developing world. Paper presented at the Culture, Politics and Climate change conference
  • Kärkkäinen L, Lehtonen H, Helin J, Lintunen J, Peltonen-Sainio P, Regina K, . . . Packalen T (2020) Evaluation of policy instruments for supporting greenhouse gas mitigation efforts in agricultural and urban land use. Land Use Policy 99:104991
  • Karkman A, Do TT, Walsh F, Virta MP. Antibiotic-resistance genes in waste water. Trends Microbiol. 2018; 26 (3):220–228. doi: 10.1016/j.tim.2017.09.005. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kohfeld KE, Le Quéré C, Harrison SP, Anderson RF. Role of marine biology in glacial-interglacial CO2 cycles. Science. 2005; 308 (5718):74–78. doi: 10.1126/science.1105375. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kongsager R. Linking climate change adaptation and mitigation: a review with evidence from the land-use sectors. Land. 2018; 7 (4):158. doi: 10.3390/land7040158. [ CrossRef ] [ Google Scholar ]
  • Kurz WA, Dymond C, Stinson G, Rampley G, Neilson E, Carroll A, Safranyik L. Mountain pine beetle and forest carbon feedback to climate change. Nature. 2008; 452 (7190):987. doi: 10.1038/nature06777. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lamperti F, Bosetti V, Roventini A, Tavoni M, Treibich T (2021) Three green financial policies to address climate risks. J Financial Stab 54:100875
  • Leal Filho W, Azeiteiro UM, Balogun AL, Setti AFF, Mucova SA, Ayal D, . . . Oguge NO (2021) The influence of ecosystems services depletion to climate change adaptation efforts in Africa. Sci Total Environ 146414 [ PubMed ]
  • Lehner F, Coats S, Stocker TF, Pendergrass AG, Sanderson BM, Raible CC, Smerdon JE. Projected drought risk in 1.5 C and 2 C warmer climates. Geophys Res Lett. 2017; 44 (14):7419–7428. doi: 10.1002/2017GL074117. [ CrossRef ] [ Google Scholar ]
  • Lemery J, Knowlton K, Sorensen C (2021) Global climate change and human health: from science to practice: John Wiley & Sons
  • Leppänen S, Saikkonen L, Ollikainen M (2014) Impact of Climate Change on cereal grain production in Russia: Mimeo
  • Lipczynska-Kochany E. Effect of climate change on humic substances and associated impacts on the quality of surface water and groundwater: a review. Sci Total Environ. 2018; 640 :1548–1565. doi: 10.1016/j.scitotenv.2018.05.376. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • livescience.com. New coronavirus may have ‘jumped’ to humans from snakes, study finds, live science,. from < https://www.livescience.com/new-coronavirus-origin-snakes.html > accessed on Jan 2020
  • Lobell DB, Field CB. Global scale climate–crop yield relationships and the impacts of recent warming. Environ Res Lett. 2007; 2 (1):014002. doi: 10.1088/1748-9326/2/1/014002. [ CrossRef ] [ Google Scholar ]
  • Lobell DB, Gourdji SM. The influence of climate change on global crop productivity. Plant Physiol. 2012; 160 (4):1686–1697. doi: 10.1104/pp.112.208298. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ma L, Li B, Zhang T. New insights into antibiotic resistome in drinking water and management perspectives: a metagenomic based study of small-sized microbes. Water Res. 2019; 152 :191–201. doi: 10.1016/j.watres.2018.12.069. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Macchi M, Oviedo G, Gotheil S, Cross K, Boedhihartono A, Wolfangel C, Howell M (2008) Indigenous and traditional peoples and climate change. International Union for the Conservation of Nature, Gland, Suiza
  • Mall RK, Gupta A, Sonkar G (2017) Effect of climate change on agricultural crops. In Current developments in biotechnology and bioengineering (pp. 23–46). Elsevier
  • Manes S, Costello MJ, Beckett H, Debnath A, Devenish-Nelson E, Grey KA, . . . Krause C (2021) Endemism increases species’ climate change risk in areas of global biodiversity importance. Biol Conserv 257:109070
  • Mannig B, Pollinger F, Gafurov A, Vorogushyn S, Unger-Shayesteh K (2018) Impacts of climate change in Central Asia Encyclopedia of the Anthropocene (pp. 195–203): Elsevier
  • Martínez-Alvarado O, Gray SL, Hart NC, Clark PA, Hodges K, Roberts MJ. Increased wind risk from sting-jet windstorms with climate change. Environ Res Lett. 2018; 13 (4):044002. doi: 10.1088/1748-9326/aaae3a. [ CrossRef ] [ Google Scholar ]
  • Matsui T, Omasa K, Horie T. The difference in sterility due to high temperatures during the flowering period among japonica-rice varieties. Plant Production Science. 2001; 4 (2):90–93. doi: 10.1626/pps.4.90. [ CrossRef ] [ Google Scholar ]
  • Meierrieks D (2021) Weather shocks, climate change and human health. World Dev 138:105228
  • Michel D, Eriksson M, Klimes M (2021) Climate change and (in) security in transboundary river basins Handbook of Security and the Environment: Edward Elgar Publishing
  • Mihiretu A, Okoyo EN, Lemma T. Awareness of climate change and its associated risks jointly explain context-specific adaptation in the Arid-tropics. Northeast Ethiopia SN Social Sciences. 2021; 1 (2):1–18. [ Google Scholar ]
  • Millar CI, Stephenson NL. Temperate forest health in an era of emerging megadisturbance. Science. 2015; 349 (6250):823–826. doi: 10.1126/science.aaa9933. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Mishra A, Bruno E, Zilberman D (2021) Compound natural and human disasters: Managing drought and COVID-19 to sustain global agriculture and food sectors. Sci Total Environ 754:142210 [ PMC free article ] [ PubMed ]
  • Mosavi SH, Soltani S, Khalilian S (2020) Coping with climate change in agriculture: Evidence from Hamadan-Bahar plain in Iran. Agric Water Manag 241:106332
  • Murshed M (2020) An empirical analysis of the non-linear impacts of ICT-trade openness on renewable energy transition, energy efficiency, clean cooking fuel access and environmental sustainability in South Asia. Environ Sci Pollut Res 27(29):36254–36281. 10.1007/s11356-020-09497-3 [ PMC free article ] [ PubMed ]
  • Murshed M. Pathways to clean cooking fuel transition in low and middle income Sub-Saharan African countries: the relevance of improving energy use efficiency. Sustainable Production and Consumption. 2022; 30 :396–412. doi: 10.1016/j.spc.2021.12.016. [ CrossRef ] [ Google Scholar ]
  • Murshed M, Dao NTT. Revisiting the CO2 emission-induced EKC hypothesis in South Asia: the role of Export Quality Improvement. GeoJournal. 2020 doi: 10.1007/s10708-020-10270-9. [ CrossRef ] [ Google Scholar ]
  • Murshed M, Abbass K, Rashid S. Modelling renewable energy adoption across south Asian economies: Empirical evidence from Bangladesh, India, Pakistan and Sri Lanka. Int J Finan Eco. 2021; 26 (4):5425–5450. doi: 10.1002/ijfe.2073. [ CrossRef ] [ Google Scholar ]
  • Murshed M, Nurmakhanova M, Elheddad M, Ahmed R. Value addition in the services sector and its heterogeneous impacts on CO2 emissions: revisiting the EKC hypothesis for the OPEC using panel spatial estimation techniques. Environ Sci Pollut Res. 2020; 27 (31):38951–38973. doi: 10.1007/s11356-020-09593-4. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Murshed M, Nurmakhanova M, Al-Tal R, Mahmood H, Elheddad M, Ahmed R (2022) Can intra-regional trade, renewable energy use, foreign direct investments, and economic growth reduce ecological footprints in South Asia? Energy Sources, Part B: Economics, Planning, and Policy. 10.1080/15567249.2022.2038730
  • Neuvonen M, Sievänen T, Fronzek S, Lahtinen I, Veijalainen N, Carter TR. Vulnerability of cross-country skiing to climate change in Finland–an interactive mapping tool. J Outdoor Recreat Tour. 2015; 11 :64–79. doi: 10.1016/j.jort.2015.06.010. [ CrossRef ] [ Google Scholar ]
  • npr.org. Please Help Me.’ What people in China are saying about the outbreak on social media, npr.org, . from < https://www.npr.org/sections/goatsandsoda/2020/01/24/799000379/please-help-me-what-people-in-china-are-saying-about-the-outbreak-on-social-medi >, Accessed on 26 Jan 2020.
  • Ogden LE. Climate change, pathogens, and people: the challenges of monitoring a moving target. Bioscience. 2018; 68 (10):733–739. doi: 10.1093/biosci/biy101. [ CrossRef ] [ Google Scholar ]
  • Ortiz AMD, Outhwaite CL, Dalin C, Newbold T. A review of the interactions between biodiversity, agriculture, climate change, and international trade: research and policy priorities. One Earth. 2021; 4 (1):88–101. doi: 10.1016/j.oneear.2020.12.008. [ CrossRef ] [ Google Scholar ]
  • Ortiz R. Crop genetic engineering under global climate change. Ann Arid Zone. 2008; 47 (3):343. [ Google Scholar ]
  • Otegui MAE, Bonhomme R. Grain yield components in maize: I. Ear growth and kernel set. Field Crop Res. 1998; 56 (3):247–256. doi: 10.1016/S0378-4290(97)00093-2. [ CrossRef ] [ Google Scholar ]
  • Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, . . . Dasgupta P (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change: Ipcc
  • Pal JK. Visualizing the knowledge outburst in global research on COVID-19. Scientometrics. 2021; 126 (5):4173–4193. doi: 10.1007/s11192-021-03912-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Panda R, Behera S, Kashyap P. Effective management of irrigation water for wheat under stressed conditions. Agric Water Manag. 2003; 63 (1):37–56. doi: 10.1016/S0378-3774(03)00099-4. [ CrossRef ] [ Google Scholar ]
  • Pärnänen KM, Narciso-da-Rocha C, Kneis D, Berendonk TU, Cacace D, Do TT, Jaeger T. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Sci Adv. 2019; 5 (3):eaau9124. doi: 10.1126/sciadv.aau9124. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Parry M, Parry ML, Canziani O, Palutikof J, Van der Linden P, Hanson C (2007) Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC (Vol. 4): Cambridge University Press
  • Patz JA, Campbell-Lendrum D, Holloway T, Foley JA. Impact of regional climate change on human health. Nature. 2005; 438 (7066):310–317. doi: 10.1038/nature04188. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Patz JA, Graczyk TK, Geller N, Vittor AY. Effects of environmental change on emerging parasitic diseases. Int J Parasitol. 2000; 30 (12–13):1395–1405. doi: 10.1016/S0020-7519(00)00141-7. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Pautasso M, Döring TF, Garbelotto M, Pellis L, Jeger MJ. Impacts of climate change on plant diseases—opinions and trends. Eur J Plant Pathol. 2012; 133 (1):295–313. doi: 10.1007/s10658-012-9936-1. [ CrossRef ] [ Google Scholar ]
  • Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Cassman KG. Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci. 2004; 101 (27):9971–9975. doi: 10.1073/pnas.0403720101. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Pereira HM, Ferrier S, Walters M, Geller GN, Jongman R, Scholes RJ, Cardoso A. Essential biodiversity variables. Science. 2013; 339 (6117):277–278. doi: 10.1126/science.1229931. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Perera K, De Silva K, Amarasinghe M. Potential impact of predicted sea level rise on carbon sink function of mangrove ecosystems with special reference to Negombo estuary, Sri Lanka. Global Planet Change. 2018; 161 :162–171. doi: 10.1016/j.gloplacha.2017.12.016. [ CrossRef ] [ Google Scholar ]
  • Pfadenhauer JS, Klötzli FA (2020) Zonal Vegetation of the Subtropical (Warm–Temperate) Zone with Winter Rain. In Global Vegetation (pp. 455–514). Springer, Cham
  • Phillips JD. Environmental gradients and complexity in coastal landscape response to sea level rise. CATENA. 2018; 169 :107–118. doi: 10.1016/j.catena.2018.05.036. [ CrossRef ] [ Google Scholar ]
  • Pirasteh-Anosheh H, Parnian A, Spasiano D, Race M, Ashraf M (2021) Haloculture: A system to mitigate the negative impacts of pandemics on the environment, society and economy, emphasizing COVID-19. Environ Res 111228 [ PMC free article ] [ PubMed ]
  • Pruden A, Larsson DJ, Amézquita A, Collignon P, Brandt KK, Graham DW, Snape JR. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ Health Perspect. 2013; 121 (8):878–885. doi: 10.1289/ehp.1206446. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Qasim MZ, Hammad HM, Abbas F, Saeed S, Bakhat HF, Nasim W, Fahad S. The potential applications of picotechnology in biomedical and environmental sciences. Environ Sci Pollut Res. 2020; 27 (1):133–142. doi: 10.1007/s11356-019-06554-4. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Qasim MZ, Hammad HM, Maqsood F, Tariq T, Chawla MS Climate Change Implication on Cereal Crop Productivity
  • Rahman M, Alam K. Forest dependent indigenous communities’ perception and adaptation to climate change through local knowledge in the protected area—a Bangladesh case study. Climate. 2016; 4 (1):12. doi: 10.3390/cli4010012. [ CrossRef ] [ Google Scholar ]
  • Ramankutty N, Mehrabi Z, Waha K, Jarvis L, Kremen C, Herrero M, Rieseberg LH. Trends in global agricultural land use: implications for environmental health and food security. Annu Rev Plant Biol. 2018; 69 :789–815. doi: 10.1146/annurev-arplant-042817-040256. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Rehman A, Ma H, Ahmad M, Irfan M, Traore O, Chandio AA (2021) Towards environmental Sustainability: devolving the influence of carbon dioxide emission to population growth, climate change, Forestry, livestock and crops production in Pakistan. Ecol Indic 125:107460
  • Reichstein M, Carvalhais N. Aspects of forest biomass in the Earth system: its role and major unknowns. Surv Geophys. 2019; 40 (4):693–707. doi: 10.1007/s10712-019-09551-x. [ CrossRef ] [ Google Scholar ]
  • Reidsma P, Ewert F, Boogaard H, van Diepen K. Regional crop modelling in Europe: the impact of climatic conditions and farm characteristics on maize yields. Agric Syst. 2009; 100 (1–3):51–60. doi: 10.1016/j.agsy.2008.12.009. [ CrossRef ] [ Google Scholar ]
  • Ritchie H, Roser M (2014) Natural disasters. Our World in Data
  • Rizvi AR, Baig S, Verdone M. Ecosystems based adaptation: knowledge gaps in making an economic case for investing in nature based solutions for climate change. Gland, Switzerland: IUCN; 2015. p. 48. [ Google Scholar ]
  • Roscher C, Fergus AJ, Petermann JS, Buchmann N, Schmid B, Schulze E-D. What happens to the sown species if a biodiversity experiment is not weeded? Basic Appl Ecol. 2013; 14 (3):187–198. doi: 10.1016/j.baae.2013.01.003. [ CrossRef ] [ Google Scholar ]
  • Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Khabarov N. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci. 2014; 111 (9):3268–3273. doi: 10.1073/pnas.1222463110. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Rosenzweig C, Iglesius A, Yang XB, Epstein PR, Chivian E (2001) Climate change and extreme weather events-implications for food production, plant diseases, and pests
  • Sadras VO, Slafer GA. Environmental modulation of yield components in cereals: heritabilities reveal a hierarchy of phenotypic plasticities. Field Crop Res. 2012; 127 :215–224. doi: 10.1016/j.fcr.2011.11.014. [ CrossRef ] [ Google Scholar ]
  • Salvucci ME, Crafts-Brandner SJ. Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant. 2004; 120 (2):179–186. doi: 10.1111/j.0031-9317.2004.0173.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Santos WS, Gurgel-Gonçalves R, Garcez LM, Abad-Franch F. Deforestation effects on Attalea palms and their resident Rhodnius, vectors of Chagas disease, in eastern Amazonia. PLoS ONE. 2021; 16 (5):e0252071. doi: 10.1371/journal.pone.0252071. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sarkar P, Debnath N, Reang D (2021) Coupled human-environment system amid COVID-19 crisis: a conceptual model to understand the nexus. Sci Total Environ 753:141757 [ PMC free article ] [ PubMed ]
  • Schlenker W, Roberts MJ. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc Natl Acad Sci. 2009; 106 (37):15594–15598. doi: 10.1073/pnas.0906865106. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Schoene DH, Bernier PY. Adapting forestry and forests to climate change: a challenge to change the paradigm. Forest Policy Econ. 2012; 24 :12–19. doi: 10.1016/j.forpol.2011.04.007. [ CrossRef ] [ Google Scholar ]
  • Schuurmans C (2021) The world heat budget: expected changes Climate Change (pp. 1–15): CRC Press
  • Scott D. Sustainable Tourism and the Grand Challenge of Climate Change. Sustainability. 2021; 13 (4):1966. doi: 10.3390/su13041966. [ CrossRef ] [ Google Scholar ]
  • Scott D, McBoyle G, Schwartzentruber M. Climate change and the distribution of climatic resources for tourism in North America. Climate Res. 2004; 27 (2):105–117. doi: 10.3354/cr027105. [ CrossRef ] [ Google Scholar ]
  • Semenov MA. Impacts of climate change on wheat in England and Wales. J R Soc Interface. 2009; 6 (33):343–350. doi: 10.1098/rsif.2008.0285. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Shaffril HAM, Krauss SE, Samsuddin SF. A systematic review on Asian’s farmers’ adaptation practices towards climate change. Sci Total Environ. 2018; 644 :683–695. doi: 10.1016/j.scitotenv.2018.06.349. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Shahbaz M, Balsalobre-Lorente D, Sinha A (2019) Foreign direct Investment–CO2 emissions nexus in Middle East and North African countries: Importance of biomass energy consumption. J Clean Product 217:603–614
  • Sharif A, Mishra S, Sinha A, Jiao Z, Shahbaz M, Afshan S (2020) The renewable energy consumption-environmental degradation nexus in Top-10 polluted countries: Fresh insights from quantile-on-quantile regression approach. Renew Energy 150:670–690
  • Sharma R. Impacts on human health of climate and land use change in the Hindu Kush-Himalayan region. Mt Res Dev. 2012; 32 (4):480–486. doi: 10.1659/MRD-JOURNAL-D-12-00068.1. [ CrossRef ] [ Google Scholar ]
  • Sharma R, Sinha A, Kautish P. Examining the impacts of economic and demographic aspects on the ecological footprint in South and Southeast Asian countries. Environ Sci Pollut Res. 2020; 27 (29):36970–36982. doi: 10.1007/s11356-020-09659-3. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Smit B, Burton I, Klein RJ, Wandel J (2000) An anatomy of adaptation to climate change and variability Societal adaptation to climate variability and change (pp. 223–251): Springer
  • Song Y, Fan H, Tang X, Luo Y, Liu P, Chen Y (2021) The effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on ischemic stroke and the possible underlying mechanisms. Int J Neurosci 1–20 [ PMC free article ] [ PubMed ]
  • Sovacool BK, Griffiths S, Kim J, Bazilian M (2021) Climate change and industrial F-gases: a critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions. Renew Sustain Energy Rev 141:110759
  • Stewart JA, Perrine JD, Nichols LB, Thorne JH, Millar CI, Goehring KE, Wright DH. Revisiting the past to foretell the future: summer temperature and habitat area predict pika extirpations in California. J Biogeogr. 2015; 42 (5):880–890. doi: 10.1111/jbi.12466. [ CrossRef ] [ Google Scholar ]
  • Stocker T, Qin D, Plattner G, Tignor M, Allen S, Boschung J, . . . Midgley P (2013) Climate change 2013: The physical science basis. Working group I contribution to the IPCC Fifth assessment report: Cambridge: Cambridge University Press. 1535p
  • Stone P, Nicolas M. Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress. Funct Plant Biol. 1994; 21 (6):887–900. doi: 10.1071/PP9940887. [ CrossRef ] [ Google Scholar ]
  • Su H-C, Liu Y-S, Pan C-G, Chen J, He L-Y, Ying G-G. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: from drinking water source to tap water. Sci Total Environ. 2018; 616 :453–461. doi: 10.1016/j.scitotenv.2017.10.318. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sunderlin WD, Angelsen A, Belcher B, Burgers P, Nasi R, Santoso L, Wunder S. Livelihoods, forests, and conservation in developing countries: an overview. World Dev. 2005; 33 (9):1383–1402. doi: 10.1016/j.worlddev.2004.10.004. [ CrossRef ] [ Google Scholar ]
  • Symanski E, Han HA, Han I, McDaniel M, Whitworth KW, McCurdy S, . . . Delclos GL (2021) Responding to natural and industrial disasters: partnerships and lessons learned. Disaster medicine and public health preparedness 1–4 [ PMC free article ] [ PubMed ]
  • Tao F, Yokozawa M, Xu Y, Hayashi Y, Zhang Z. Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agric for Meteorol. 2006; 138 (1–4):82–92. doi: 10.1016/j.agrformet.2006.03.014. [ CrossRef ] [ Google Scholar ]
  • Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA. Going to the extremes. Clim Change. 2006; 79 (3–4):185–211. doi: 10.1007/s10584-006-9051-4. [ CrossRef ] [ Google Scholar ]
  • Testa G, Koon E, Johannesson L, McKenna G, Anthony T, Klintmalm G, Gunby R (2018) This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as
  • Thornton PK, Lipper L (2014) How does climate change alter agricultural strategies to support food security? (Vol. 1340): Intl Food Policy Res Inst
  • Tranfield D, Denyer D, Smart P. Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br J Manag. 2003; 14 (3):207–222. doi: 10.1111/1467-8551.00375. [ CrossRef ] [ Google Scholar ]
  • UNEP (2017) United nations environment programme: frontiers 2017. from https://www.unenvironment.org/news-and-stories/press-release/antimicrobial-resistance - environmental-pollution-among-biggest
  • Usman M, Balsalobre-Lorente D (2022) Environmental concern in the era of industrialization: Can financial development, renewable energy and natural resources alleviate some load? Ene Policy 162:112780
  • Usman M, Makhdum MSA (2021) What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development. Renew Energy 179:12–28
  • Usman M, Balsalobre-Lorente D, Jahanger A, Ahmad P. Pollution concern during globalization mode in financially resource-rich countries: Do financial development, natural resources, and renewable energy consumption matter? Rene. Energy. 2022; 183 :90–102. doi: 10.1016/j.renene.2021.10.067. [ CrossRef ] [ Google Scholar ]
  • Usman M, Jahanger A, Makhdum MSA, Balsalobre-Lorente D, Bashir A (2022a) How do financial development, energy consumption, natural resources, and globalization affect Arctic countries’ economic growth and environmental quality? An advanced panel data simulation. Energy 241:122515
  • Usman M, Khalid K, Mehdi MA. What determines environmental deficit in Asia? Embossing the role of renewable and non-renewable energy utilization. Renew Energy. 2021; 168 :1165–1176. doi: 10.1016/j.renene.2021.01.012. [ CrossRef ] [ Google Scholar ]
  • Urban MC. Accelerating extinction risk from climate change. Science. 2015; 348 (6234):571–573. doi: 10.1126/science.aaa4984. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Vale MM, Arias PA, Ortega G, Cardoso M, Oliveira BF, Loyola R, Scarano FR (2021) Climate change and biodiversity in the Atlantic Forest: best climatic models, predicted changes and impacts, and adaptation options The Atlantic Forest (pp. 253–267): Springer
  • Vedwan N, Rhoades RE. Climate change in the Western Himalayas of India: a study of local perception and response. Climate Res. 2001; 19 (2):109–117. doi: 10.3354/cr019109. [ CrossRef ] [ Google Scholar ]
  • Vega CR, Andrade FH, Sadras VO, Uhart SA, Valentinuz OR. Seed number as a function of growth. A comparative study in soybean, sunflower, and maize. Crop Sci. 2001; 41 (3):748–754. doi: 10.2135/cropsci2001.413748x. [ CrossRef ] [ Google Scholar ]
  • Vergés A, Doropoulos C, Malcolm HA, Skye M, Garcia-Pizá M, Marzinelli EM, Vila-Concejo A. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc Natl Acad Sci. 2016; 113 (48):13791–13796. doi: 10.1073/pnas.1610725113. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Verheyen R (2005) Climate change damage and international law: prevention duties and state responsibility (Vol. 54): Martinus Nijhoff Publishers
  • Waheed A, Fischer TB, Khan MI. Climate Change Policy Coherence across Policies, Plans, and Strategies in Pakistan—implications for the China-Pakistan Economic Corridor Plan. Environ Manage. 2021; 67 (5):793–810. doi: 10.1007/s00267-021-01449-y. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wasiq M, Ahmad M (2004) Sustaining forests: a development strategy: The World Bank
  • Watts N, Adger WN, Agnolucci P, Blackstock J, Byass P, Cai W, Cooper A. Health and climate change: policy responses to protect public health. The Lancet. 2015; 386 (10006):1861–1914. doi: 10.1016/S0140-6736(15)60854-6. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Weed AS, Ayres MP, Hicke JA. Consequences of climate change for biotic disturbances in North American forests. Ecol Monogr. 2013; 83 (4):441–470. doi: 10.1890/13-0160.1. [ CrossRef ] [ Google Scholar ]
  • Weisheimer A, Palmer T (2005) Changing frequency of occurrence of extreme seasonal temperatures under global warming. Geophys Res Lett 32(20)
  • Wernberg T, Bennett S, Babcock RC, De Bettignies T, Cure K, Depczynski M, Hovey RK. Climate-driven regime shift of a temperate marine ecosystem. Science. 2016; 353 (6295):169–172. doi: 10.1126/science.aad8745. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • WHO (2018) WHO, 2018. Antimicrobial resistance
  • Wilkinson DM, Sherratt TN. Why is the world green? The interactions of top–down and bottom–up processes in terrestrial vegetation ecology. Plant Ecolog Divers. 2016; 9 (2):127–140. doi: 10.1080/17550874.2016.1178353. [ CrossRef ] [ Google Scholar ]
  • Wiranata IJ, Simbolon K. Increasing awareness capacity of disaster potential as a support to achieve sustainable development goal (sdg) 13 in lampung province. Jurnal Pir: Power in International Relations. 2021; 5 (2):129–146. doi: 10.22303/pir.5.2.2021.129-146. [ CrossRef ] [ Google Scholar ]
  • Wiréhn L. Nordic agriculture under climate change: a systematic review of challenges, opportunities and adaptation strategies for crop production. Land Use Policy. 2018; 77 :63–74. doi: 10.1016/j.landusepol.2018.04.059. [ CrossRef ] [ Google Scholar ]
  • Wu D, Su Y, Xi H, Chen X, Xie B. Urban and agriculturally influenced water contribute differently to the spread of antibiotic resistance genes in a mega-city river network. Water Res. 2019; 158 :11–21. doi: 10.1016/j.watres.2019.03.010. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wu HX (2020) Losing Steam?—An industry origin analysis of China’s productivity slowdown Measuring Economic Growth and Productivity (pp. 137–167): Elsevier
  • Wu H, Qian H, Chen J, Huo C. Assessment of agricultural drought vulnerability in the Guanzhong Plain. China Water Resources Management. 2017; 31 (5):1557–1574. doi: 10.1007/s11269-017-1594-9. [ CrossRef ] [ Google Scholar ]
  • Xie W, Huang J, Wang J, Cui Q, Robertson R, Chen K (2018) Climate change impacts on China’s agriculture: the responses from market and trade. China Econ Rev
  • Xu J, Sharma R, Fang J, Xu Y. Critical linkages between land-use transition and human health in the Himalayan region. Environ Int. 2008; 34 (2):239–247. doi: 10.1016/j.envint.2007.08.004. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Yadav MK, Singh R, Singh K, Mall R, Patel C, Yadav S, Singh M. Assessment of climate change impact on productivity of different cereal crops in Varanasi. India J Agrometeorol. 2015; 17 (2):179–184. doi: 10.54386/jam.v17i2.1000. [ CrossRef ] [ Google Scholar ]
  • Yang B, Usman M. Do industrialization, economic growth and globalization processes influence the ecological footprint and healthcare expenditures? Fresh insights based on the STIRPAT model for countries with the highest healthcare expenditures. Sust Prod Cons. 2021; 28 :893–910. [ Google Scholar ]
  • Yu Z, Razzaq A, Rehman A, Shah A, Jameel K, Mor RS (2021) Disruption in global supply chain and socio-economic shocks: a lesson from COVID-19 for sustainable production and consumption. Oper Manag Res 1–16
  • Zarnetske PL, Skelly DK, Urban MC. Biotic multipliers of climate change. Science. 2012; 336 (6088):1516–1518. doi: 10.1126/science.1222732. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Zhang M, Liu N, Harper R, Li Q, Liu K, Wei X, Liu S. A global review on hydrological responses to forest change across multiple spatial scales: importance of scale, climate, forest type and hydrological regime. J Hydrol. 2017; 546 :44–59. doi: 10.1016/j.jhydrol.2016.12.040. [ CrossRef ] [ Google Scholar ]
  • Zhao J, Sinha A, Inuwa N, Wang Y, Murshed M, Abbasi KR (2022) Does Structural Transformation in Economy Impact Inequality in Renewable Energy Productivity? Implications for Sustainable Development. Renew Energy 189:853–864. 10.1016/j.renene.2022.03.050

Gullybaba Logo

100% Satisfaction or Money Back Guarantee Know More

  • IGNOU Codes

IGNOU BEGAE-182 - English Communication Skills

Bought By: 43220

Rating: 3.6

BEGAE 182 (E) front

English Communication Skills

IGNOU’s Bachelor of Arts (BAG) English offers a course, BEGAE–182, that provides students an opportunity to learn communication skills in the language. BEGAE–182 disciplines include the communication process, globalization, verbal and non-verbal communication, asking questions, discussions, meetings, presentation skills, writing and reading skills, and vocabulary development.

Get Good Marks in your BAEGH English Programme in the Term-End Exams even if you are busy in your job or profession.

We've sold over 42,563,444 Help Books and Delivered 52,143,729 Assignments Since 2002. As our customers will tell you...yes, it really result-oriented.

IGNOU BEGAE-182 Code Details

  • University IGNOU (Indira Gandhi National Open University)
  • Title English Communication Skills
  • Language(s) English
  • Code BEGAE-182
  • Subject English
  • Degree(s) BAVTM , BSCG , BSC (Honours) , BA (Honours) , BAG , BAECH , BAHIH , BAPSH , BAPCH , BAPAH , BASOH , BAEGH
  • Course Ability Enhancement Compulsory Courses (AECC)

IGNOU BEGAE-182 English Topics Covered

Block 1 - understanding communication.

  • Unit 1 - The Process of Communication
  • Unit 2 - The Globalisation of Communication: A Global Village
  • Unit 3 - Verbal and Non-verbal Communication

Block 2 - Listening and Speaking in Informal and Formal Contexts

  • Unit 1 - Informal Interpersonal Functions
  • Unit 2 - Making Enquiries/Asking Questions
  • Unit 3 - Group Discussions and Meetings
  • Unit 4 - Presentation Skills: Essentials of Presentation Skills

Block 3 - Reading and Writing Skills

  • Unit 1 - The Reading Skill
  • Unit 2 - Vocabulary Development
  • Unit 3 - The Writing Skill: Some Basic Guidelines
  • Unit 4 - The Language of Formal Letters

IGNOU BEGAE-182 (July 2023 - January 2024) Assignment Questions

Ignou begae-182 (july 2022 - january 2023) assignment questions, related codes.

  • BEGC-101 Indian Classical Literature
  • BEGC-102 European Classical Literature
  • BEGC-103 Indian Writing in English
  • BEGC-104 British Poetry and Drama 14th-17th Century
  • BEGC-105 American Literature
  • BEGC-106 Popular Literature
  • BEGC-107 British Poetry and Drama: 17th and 18th Centuries
  • BEGC-108 British Literature: 18th Century
  • BEGC-109 British Romantic Literature
  • BEGC-110 British Literature: 19th Century
  • BEGC-111 Women's Writing
  • BEGC-112 British Literature: The Early 20th Century
  • BEGC-113 Modern European Drama
  • BEGC-114 Postcolonial Literatures
  • BEGE-141 Understanding Prose
  • BEGE-142 Understanding Drama
  • BEGE-143 Understanding Poetry
  • BEGE-144 Understanding The Novel
  • BEGG-171 Media and Communication Skills
  • BEGG-172 Language and Linguistics
  • BEGG-173 Academic Writing & Composition
  • BEGS-183 Writing and Study Skills
  • BEGS-185 English Language Teaching
  • BEGS-186 व्यावसायिक संचार - Business Communication

Why Download BEGAE-182 Materials and What is its best use?

To attend IGNOU BEGAE-182 Term-End Examination, you must first submit your Assignments to the university and it is possible from the BEGAE-182 study material. You can solve all necessary Assignments using Help Books. This will help in gaining good marks.

All best wishes with our efforts that you do not meet any obstacle before attending examinations next year. You can pass the BAEGH English Programme Annual Exams with a good grade using Books/Materials from any one place at home or anywhere else!

ALL THE BEST!!! Team GullyBaba

  • Why Name GullyBaba?
  • GPH Writers
  • Affiliate Program
  • Become Our Distributor

Student Support

  • Help and FAQs
  • Join WhatsApp Groups
  • Scholarship
  • Jobs and Hiring

Important Links

  • How to Buy & Download Assignments?
  • How to Buy & Download Project/Synopsis?
  • How to Buy Books?
  • How to Change or Cancel My Order?

Popular Links

  • IGNOU Solved Assignments
  • IGNOU Help Books
  • IGNOU Question Papers
  • IGNOU Handwritten Assignments
  • IGNOU MEG-05 Help Book
  • IGNOU MEG-10 English Help Book & Assignment
  • IGNOU MCO-01 Solved Assignments 2023-2024

ENCYCLOPEDIC ENTRY

Climate change.

Climate change is a long-term shift in global or regional climate patterns. Often climate change refers specifically to the rise in global temperatures from the mid-20th century to present.

Earth Science, Climatology

Fracking tower

Fracking is a controversial form of drilling that uses high-pressure liquid to create cracks in underground shale to extract natural gas and petroleum. Carbon emissions from fossils fuels like these have been linked to global warming and climate change.

Photograph by Mark Thiessen / National Geographic

Fracking is a controversial form of drilling that uses high-pressure liquid to create cracks in underground shale to extract natural gas and petroleum. Carbon emissions from fossils fuels like these have been linked to global warming and climate change.

Climate is sometimes mistaken for weather. But climate is different from weather because it is measured over a long period of time, whereas weather can change from day to day, or from year to year. The climate of an area includes seasonal temperature and rainfall averages, and wind patterns. Different places have different climates. A desert, for example, is referred to as an arid climate because little water falls, as rain or snow, during the year. Other types of climate include tropical climates, which are hot and humid , and temperate climates, which have warm summers and cooler winters.

Climate change is the long-term alteration of temperature and typical weather patterns in a place. Climate change could refer to a particular location or the planet as a whole. Climate change may cause weather patterns to be less predictable. These unexpected weather patterns can make it difficult to maintain and grow crops in regions that rely on farming because expected temperature and rainfall levels can no longer be relied on. Climate change has also been connected with other damaging weather events such as more frequent and more intense hurricanes, floods, downpours, and winter storms.

In polar regions, the warming global temperatures associated with climate change have meant ice sheets and glaciers are melting at an accelerated rate from season to season. This contributes to sea levels rising in different regions of the planet. Together with expanding ocean waters due to rising temperatures, the resulting rise in sea level has begun to damage coastlines as a result of increased flooding and erosion.

The cause of current climate change is largely human activity, like burning fossil fuels , like natural gas, oil, and coal. Burning these materials releases what are called greenhouse gases into Earth’s atmosphere . There, these gases trap heat from the sun’s rays inside the atmosphere causing Earth’s average temperature to rise. This rise in the planet's temperature is called global warming. The warming of the planet impacts local and regional climates. Throughout Earth's history, climate has continually changed. When occuring naturally, this is a slow process that has taken place over hundreds and thousands of years. The human influenced climate change that is happening now is occuring at a much faster rate.

Media Credits

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Production Managers

Program specialists, last updated.

October 19, 2023

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

4 climate topics we should be talking about

Which climate issues should be prioritized to create real impact?

Which climate issues should be prioritized to create real impact? Image:  Pexels.

.chakra .wef-1c7l3mo{-webkit-transition:all 0.15s ease-out;transition:all 0.15s ease-out;cursor:pointer;-webkit-text-decoration:none;text-decoration:none;outline:none;color:inherit;}.chakra .wef-1c7l3mo:hover,.chakra .wef-1c7l3mo[data-hover]{-webkit-text-decoration:underline;text-decoration:underline;}.chakra .wef-1c7l3mo:focus,.chakra .wef-1c7l3mo[data-focus]{box-shadow:0 0 0 3px rgba(168,203,251,0.5);} Amy White

Listen to the article

  • COP27 takes place in Egypt this month – urgent priorities include mitigation, adaptation, finance and collaboration.
  • Here we focus on key topics which deserve more attention as we seek to find climate change solutions.
  • Contributions from business leaders shine a light on what's needed to consolidate action.

This year’s UN Climate Conference COP27 takes place in Sharm el-Sheikh, 6-18 November, against a backdrop of turbulent global events: the war in Ukraine has sparked an energy crisis and we are experiencing more extreme weather events.

Last year's COP26 in Glasgow, marked five years since the Paris Agreement was signed, with its aim to keep global temperatures well below 2C above pre-industrial levels and to limit temperature increases to 1.5C.

Now, according to the UN's recent Emissions Gap Report , there is “no credible pathway to 1.5C in place”. This stark warning sets the tone for this year's climate summit.

With a vision to scale-up climate efforts and accelerate emissions reductions, the summit will focus on four central objectives: mitigation and reducing emissions; adaptation and enhancing resilience; the $100 billion promised by developed nations; and the urgent need for collaboration.

With that in mind, we've highlighted key climate issues – which aren't always given due consideration – but which should be prioritized to create real impact, including contributions from two business leaders.

1. Harnessing the power of the ocean

"five solutions can reduce greenhouse gas emissions by 20%".

We're not harnessing the true power of the ocean. Not only does the ocean offer solutions to reduce emissions and make a huge environmental impact, but we can also improve the health of this precious ecosystem.

Kristian Teleki, Director, Friends of Ocean Action, explains "There are five solutions that can reduce greenhouse gas emissions by 20% in order to get us to the 1.5C target those five solutions are: reducing emissions from maritime transport; nature-based solutions; shifting diets to eat more low carbon-intensive food from the ocean; offshore wind (or offshore renewable energy); and indeed storing carbon in the seabed."

The Blue Carbon Challenge is a key part of this effort to solve the climate crisis. Essentially, it's a global call for blue carbon initiatives (focused on mangrove, seagrass, marsh and seaweed) which could lead to carbon credits, and/or tools in finance, education and training that improve trust and transparency in the blue carbon market.

There's a huge opportunity to prioritise projects that benefit indigenous, local communities and biodiversity. The solutions exist but we need to focus our energies on making change happen now, before it's too late.

2. Women as climate leaders

"we have to start valuing, community-based knowledge and traditional ecological knowledge".

Climate change is unequivocally a threat to all humanity but not everyone is affected or at risk to the same extent. Women are 14 times more likely to die in a climate-rated disaster than men. Those living in low and middle-income countries bear the brunt of caring responsibilities, looking after children and elderly relatives, in incredibly challenging conditions.

Kahea Pacheco, co-executive director of the Women's Earth Alliance , says "They are often tasked with finding food and providing energy for cooking and all of those things become worse and become harder to do when dealing with climate impacts and when dealing with environmental justice."

Too often these women are ignored but they are uniquely positioned to contribute to solutions that work best for their communities. They understand better than anyone what could make a real difference and offer a fresh perspective on how to achieve meaningful impact.

Pacheco explains, "We have to start valuing, community-based knowledge and traditional ecological knowledge on the same playing field as we value Western knowledge and science. Because I think there's a power dynamic there. And I think that not valuing it equally is one of the reasons that entities don't think to partner with communities first and foremost."

Have you read?

7 leaders share what's needed now for climate action ahead of cop27, cop27: why it matters and 5 key areas for action, true success at cop27 means addressing climate justice — here's how to do it, 3. africa has a pivotal role to play, "africa must chart its sustainability ambitions at cop27".

Caroline Parker, Managing Director, Strategic Communications, FTI Consulting South Africa

Dr. Martin Porter, Senior Advisor for Sustainability at FTI Consulting and Executive Chair, Cambridge Institute of Sustainability Leadership, Brussels

African nations must use COP27 to present a united vision of their transition path to a climate neutral, sustainable continent that ensures its economies and people are central to potential solutions. This requires building resilience and being compensated fairly for loss or damage, whilst benefitting from economic and social opportunities.

Three important threads inform policy adoption for Africa. First, policy transformation must act as a catalyst for progress and change. Secondly, policy harmonisation will facilitate intra-Africa cooperation and regional integration that positions it more powerfully on the world stage.

Finally, optimising global cooperation and partnerships such as with the EU will create initiatives and common agendas based on shared interest. The EU is working to include sustainability considerations into every aspect of finance and support tangible ESG business transformations to attract investors. Investment policies adopted by our own financial institutions must be conducive towards climate change and climate neutrality, while supporting Africa’s just transition.

These steps will help create policy certainty required to secure capital flows to build new sectors while transitioning to a sustainable economy. Robust governance aligned with global standards will be critical, while Africa must not be disadvantaged by principles and frameworks adopted elsewhere in the world.

Climate change poses an urgent threat demanding decisive action. Communities around the world are already experiencing increased climate impacts, from droughts to floods to rising seas. The World Economic Forum's Global Risks Report continues to rank these environmental threats at the top of the list.

To limit global temperature rise to well below 2°C and as close as possible to 1.5°C above pre-industrial levels, it is essential that businesses, policy-makers, and civil society advance comprehensive near- and long-term climate actions in line with the goals of the Paris Agreement on climate change.

The World Economic Forum's Climate Initiative supports the scaling and acceleration of global climate action through public and private-sector collaboration. The Initiative works across several workstreams to develop and implement inclusive and ambitious solutions.

This includes the Alliance of CEO Climate Leaders, a global network of business leaders from various industries developing cost-effective solutions to transitioning to a low-carbon, climate-resilient economy. CEOs use their position and influence with policy-makers and corporate partners to accelerate the transition and realize the economic benefits of delivering a safer climate.

Contact us to get involved.

4. Climate 2.0: c limate adaptation is key

"recognizing the dual opportunity of climate adaptation and mitigation".

Peter Herweck, CEO, AVEVA

At COP27, business leaders have an unprecedented opportunity to support accelerating access to clean, affordable and reliable energy for all as part of the solution to current crises. Setting and realizing ambitious decarbonization commitments continues to present an important source of economic opportunity for many businesses and communities.

For example, McKinsey projects growing demand for net-zero offerings can create new value pools, across infrastructure, transport, energy, power and buildings worth more than $12 trillion of annual sales by 2030.

Notwithstanding unwavering commitment to mitigation, it is important to recognize that we are already seeing devastating impacts from climate change across the globe. This includes in African continent, which is responsible for less than 4% of global CO2 emissions but pays one of the highest prices for global warming.

It is time for industry to step up and recognize that adaptation also provides significant opportunity and that we do not need to start from scratch to support its realization. Applying lessons learned from our net-zero journeys, using our business mindset and growing digital tools, we can identify a path forward, and build the collaboration we need to take us to a more equitable, resilient and sustainable future. Are you with us?

Climate Matters • November 25, 2020

New Presentation: Our Changing Climate

Key concepts:.

Climate Central unveils Our Changing Climate —an informative and customizable climate change presentation that meteorologists, journalists, and others can use for educational outreach and/or a personal Climate 101 tool.

The presentation follows a ”Simple, Serious, Solvable” framework, inspired by climate scientist Scott Denning. This allows the presenter to comfortably explain, and the viewers to easily understand, the causes (Simple), impacts (Serious), and solutions (Solvable) of climate change. 

Our Changing Climate is a revamped version of our 2016 climate presentation, and includes the following updates and features:

Up-to-date graphics and topics

Local data and graphics

Fully editable slides (add, remove, customize)

Presenter notes, background information, and references for each slide

Supplementary and bonus slides

Download Outline (PDF, 110KB)

Download Full Presentation (PPT, 148MB)

Updated: April 2021

Climate Central is presenting a new outreach and education resource for meteorologists, journalists, and others—a climate change presentation, Our Changing Climate . This 55-slide presentation is a guide through the basics of climate change, outlining its causes, impacts, and solutions. This climate change overview is unique because it includes an array of local graphics from our ever-expanding media library. By providing these local angles, the presenter can demonstrate that climate change is not only happening at a global-scale, but in our backyards.

This presentation was designed to support your climate change storytelling, but can also double as a great Climate 101 tool for journalists or educators who want to understand climate change better. Every slide contains main points along with background information, so people that are interested can learn at their own pace or utilize graphics for their own content. 

In addition to those features, it follows the “Simple, Serious, Solvable” framework inspired by Scott Denning, a climate scientist and professor of atmospheric science at Colorado State University (and a good friend of the program). These three S’s help create the presentation storyline and outline the causes (Simple), impacts (Serious), and solutions (Solvable) of climate change. 

Simple. It is simple—burning fossil fuels is heating up the Earth. This section outlines the well-understood science that goes back to the 1800s, presenting local and global evidence that our climate is warming due to human activities.

Serious. More extreme weather, rising sea levels, and increased health and economic risks—the consequences of climate change. In this section, well, we get serious. Climate change impacts are already being felt around the world, and they will continue to intensify until we cut greenhouse gas emissions. 

Solvable. With such a daunting crisis like climate change, it is easy to get wrapped up in the negative impacts. This section explains how we can curb climate change and lists the main pathways and solutions to achieving this goal. 

With the rollout of our new climate change presentation, we at Climate Central would value any feedback on this presentation. Feel free to reach out to us about how the presentation worked for you, how your audience reacted, or any ideas or topics you would like to see included. 

ACKNOWLEDGMENTS & SPECIAL THANKS

Climate Central would like to acknowledge Paul Gross at WDIV-TV in Detroit and the AMS Station Science Committee for the original version of the climate presentation, Climate Change Outreach Presentation , that was created in 2016. We would also like to give special thanks to Scott Denning, professor of atmospheric science at Colorado State University and a member of our NSF advisory board, for allowing us to use this “Simple, Serious, Solvable” framework in this presentation resource.

SUPPORTING MULTIMEDIA

Image

  • Search Menu

Sign in through your institution

  • Browse content in Arts and Humanities
  • Browse content in Archaeology
  • Anglo-Saxon and Medieval Archaeology
  • Archaeological Methodology and Techniques
  • Archaeology by Region
  • Archaeology of Religion
  • Archaeology of Trade and Exchange
  • Biblical Archaeology
  • Contemporary and Public Archaeology
  • Environmental Archaeology
  • Historical Archaeology
  • History and Theory of Archaeology
  • Industrial Archaeology
  • Landscape Archaeology
  • Mortuary Archaeology
  • Prehistoric Archaeology
  • Underwater Archaeology
  • Zooarchaeology
  • Browse content in Architecture
  • Architectural Structure and Design
  • History of Architecture
  • Residential and Domestic Buildings
  • Theory of Architecture
  • Browse content in Art
  • Art Subjects and Themes
  • History of Art
  • Industrial and Commercial Art
  • Theory of Art
  • Biographical Studies
  • Byzantine Studies
  • Browse content in Classical Studies
  • Classical History
  • Classical Philosophy
  • Classical Mythology
  • Classical Literature
  • Classical Reception
  • Classical Art and Architecture
  • Classical Oratory and Rhetoric
  • Greek and Roman Epigraphy
  • Greek and Roman Law
  • Greek and Roman Archaeology
  • Greek and Roman Papyrology
  • Late Antiquity
  • Religion in the Ancient World
  • Digital Humanities
  • Browse content in History
  • Colonialism and Imperialism
  • Diplomatic History
  • Environmental History
  • Genealogy, Heraldry, Names, and Honours
  • Genocide and Ethnic Cleansing
  • Historical Geography
  • History by Period
  • History of Agriculture
  • History of Education
  • History of Emotions
  • History of Gender and Sexuality
  • Industrial History
  • Intellectual History
  • International History
  • Labour History
  • Legal and Constitutional History
  • Local and Family History
  • Maritime History
  • Military History
  • National Liberation and Post-Colonialism
  • Oral History
  • Political History
  • Public History
  • Regional and National History
  • Revolutions and Rebellions
  • Slavery and Abolition of Slavery
  • Social and Cultural History
  • Theory, Methods, and Historiography
  • Urban History
  • World History
  • Browse content in Language Teaching and Learning
  • Language Learning (Specific Skills)
  • Language Teaching Theory and Methods
  • Browse content in Linguistics
  • Applied Linguistics
  • Cognitive Linguistics
  • Computational Linguistics
  • Forensic Linguistics
  • Grammar, Syntax and Morphology
  • Historical and Diachronic Linguistics
  • History of English
  • Language Acquisition
  • Language Variation
  • Language Families
  • Language Evolution
  • Language Reference
  • Lexicography
  • Linguistic Theories
  • Linguistic Typology
  • Linguistic Anthropology
  • Phonetics and Phonology
  • Psycholinguistics
  • Sociolinguistics
  • Translation and Interpretation
  • Writing Systems
  • Browse content in Literature
  • Bibliography
  • Children's Literature Studies
  • Literary Studies (Asian)
  • Literary Studies (European)
  • Literary Studies (Eco-criticism)
  • Literary Studies (Modernism)
  • Literary Studies (Romanticism)
  • Literary Studies (American)
  • Literary Studies - World
  • Literary Studies (1500 to 1800)
  • Literary Studies (19th Century)
  • Literary Studies (20th Century onwards)
  • Literary Studies (African American Literature)
  • Literary Studies (British and Irish)
  • Literary Studies (Early and Medieval)
  • Literary Studies (Fiction, Novelists, and Prose Writers)
  • Literary Studies (Gender Studies)
  • Literary Studies (Graphic Novels)
  • Literary Studies (History of the Book)
  • Literary Studies (Plays and Playwrights)
  • Literary Studies (Poetry and Poets)
  • Literary Studies (Postcolonial Literature)
  • Literary Studies (Queer Studies)
  • Literary Studies (Science Fiction)
  • Literary Studies (Travel Literature)
  • Literary Studies (War Literature)
  • Literary Studies (Women's Writing)
  • Literary Theory and Cultural Studies
  • Mythology and Folklore
  • Shakespeare Studies and Criticism
  • Browse content in Media Studies
  • Browse content in Music
  • Applied Music
  • Dance and Music
  • Ethics in Music
  • Ethnomusicology
  • Gender and Sexuality in Music
  • Medicine and Music
  • Music Cultures
  • Music and Religion
  • Music and Culture
  • Music and Media
  • Music Education and Pedagogy
  • Music Theory and Analysis
  • Musical Scores, Lyrics, and Libretti
  • Musical Structures, Styles, and Techniques
  • Musicology and Music History
  • Performance Practice and Studies
  • Race and Ethnicity in Music
  • Sound Studies
  • Browse content in Performing Arts
  • Browse content in Philosophy
  • Aesthetics and Philosophy of Art
  • Epistemology
  • Feminist Philosophy
  • History of Western Philosophy
  • Metaphysics
  • Moral Philosophy
  • Non-Western Philosophy
  • Philosophy of Science
  • Philosophy of Action
  • Philosophy of Law
  • Philosophy of Religion
  • Philosophy of Language
  • Philosophy of Mind
  • Philosophy of Perception
  • Philosophy of Mathematics and Logic
  • Practical Ethics
  • Social and Political Philosophy
  • Browse content in Religion
  • Biblical Studies
  • Christianity
  • East Asian Religions
  • History of Religion
  • Judaism and Jewish Studies
  • Qumran Studies
  • Religion and Education
  • Religion and Health
  • Religion and Politics
  • Religion and Science
  • Religion and Law
  • Religion and Art, Literature, and Music
  • Religious Studies
  • Browse content in Society and Culture
  • Cookery, Food, and Drink
  • Cultural Studies
  • Customs and Traditions
  • Ethical Issues and Debates
  • Hobbies, Games, Arts and Crafts
  • Natural world, Country Life, and Pets
  • Popular Beliefs and Controversial Knowledge
  • Sports and Outdoor Recreation
  • Technology and Society
  • Travel and Holiday
  • Visual Culture
  • Browse content in Law
  • Arbitration
  • Browse content in Company and Commercial Law
  • Commercial Law
  • Company Law
  • Browse content in Comparative Law
  • Systems of Law
  • Competition Law
  • Browse content in Constitutional and Administrative Law
  • Government Powers
  • Judicial Review
  • Local Government Law
  • Military and Defence Law
  • Parliamentary and Legislative Practice
  • Construction Law
  • Contract Law
  • Browse content in Criminal Law
  • Criminal Procedure
  • Criminal Evidence Law
  • Sentencing and Punishment
  • Employment and Labour Law
  • Environment and Energy Law
  • Browse content in Financial Law
  • Banking Law
  • Insolvency Law
  • History of Law
  • Human Rights and Immigration
  • Intellectual Property Law
  • Browse content in International Law
  • Private International Law and Conflict of Laws
  • Public International Law
  • IT and Communications Law
  • Jurisprudence and Philosophy of Law
  • Law and Politics
  • Law and Society
  • Browse content in Legal System and Practice
  • Courts and Procedure
  • Legal Skills and Practice
  • Primary Sources of Law
  • Regulation of Legal Profession
  • Medical and Healthcare Law
  • Browse content in Policing
  • Criminal Investigation and Detection
  • Police and Security Services
  • Police Procedure and Law
  • Police Regional Planning
  • Browse content in Property Law
  • Personal Property Law
  • Study and Revision
  • Terrorism and National Security Law
  • Browse content in Trusts Law
  • Wills and Probate or Succession
  • Browse content in Medicine and Health
  • Browse content in Allied Health Professions
  • Arts Therapies
  • Clinical Science
  • Dietetics and Nutrition
  • Occupational Therapy
  • Operating Department Practice
  • Physiotherapy
  • Radiography
  • Speech and Language Therapy
  • Browse content in Anaesthetics
  • General Anaesthesia
  • Neuroanaesthesia
  • Browse content in Clinical Medicine
  • Acute Medicine
  • Cardiovascular Medicine
  • Clinical Genetics
  • Clinical Pharmacology and Therapeutics
  • Dermatology
  • Endocrinology and Diabetes
  • Gastroenterology
  • Genito-urinary Medicine
  • Geriatric Medicine
  • Infectious Diseases
  • Medical Oncology
  • Medical Toxicology
  • Pain Medicine
  • Palliative Medicine
  • Rehabilitation Medicine
  • Respiratory Medicine and Pulmonology
  • Rheumatology
  • Sleep Medicine
  • Sports and Exercise Medicine
  • Clinical Neuroscience
  • Community Medical Services
  • Critical Care
  • Emergency Medicine
  • Forensic Medicine
  • Haematology
  • History of Medicine
  • Browse content in Medical Dentistry
  • Oral and Maxillofacial Surgery
  • Paediatric Dentistry
  • Restorative Dentistry and Orthodontics
  • Surgical Dentistry
  • Medical Ethics
  • Browse content in Medical Skills
  • Clinical Skills
  • Communication Skills
  • Nursing Skills
  • Surgical Skills
  • Medical Statistics and Methodology
  • Browse content in Neurology
  • Clinical Neurophysiology
  • Neuropathology
  • Nursing Studies
  • Browse content in Obstetrics and Gynaecology
  • Gynaecology
  • Occupational Medicine
  • Ophthalmology
  • Otolaryngology (ENT)
  • Browse content in Paediatrics
  • Neonatology
  • Browse content in Pathology
  • Chemical Pathology
  • Clinical Cytogenetics and Molecular Genetics
  • Histopathology
  • Medical Microbiology and Virology
  • Patient Education and Information
  • Browse content in Pharmacology
  • Psychopharmacology
  • Browse content in Popular Health
  • Caring for Others
  • Complementary and Alternative Medicine
  • Self-help and Personal Development
  • Browse content in Preclinical Medicine
  • Cell Biology
  • Molecular Biology and Genetics
  • Reproduction, Growth and Development
  • Primary Care
  • Professional Development in Medicine
  • Browse content in Psychiatry
  • Addiction Medicine
  • Child and Adolescent Psychiatry
  • Forensic Psychiatry
  • Learning Disabilities
  • Old Age Psychiatry
  • Psychotherapy
  • Browse content in Public Health and Epidemiology
  • Epidemiology
  • Public Health
  • Browse content in Radiology
  • Clinical Radiology
  • Interventional Radiology
  • Nuclear Medicine
  • Radiation Oncology
  • Reproductive Medicine
  • Browse content in Surgery
  • Cardiothoracic Surgery
  • Gastro-intestinal and Colorectal Surgery
  • General Surgery
  • Neurosurgery
  • Paediatric Surgery
  • Peri-operative Care
  • Plastic and Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery
  • Trauma and Orthopaedic Surgery
  • Vascular Surgery
  • Browse content in Science and Mathematics
  • Browse content in Biological Sciences
  • Aquatic Biology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Developmental Biology
  • Ecology and Conservation
  • Evolutionary Biology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology
  • Natural History
  • Plant Sciences and Forestry
  • Research Methods in Life Sciences
  • Structural Biology
  • Systems Biology
  • Zoology and Animal Sciences
  • Browse content in Chemistry
  • Analytical Chemistry
  • Computational Chemistry
  • Crystallography
  • Environmental Chemistry
  • Industrial Chemistry
  • Inorganic Chemistry
  • Materials Chemistry
  • Medicinal Chemistry
  • Mineralogy and Gems
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Study and Communication Skills in Chemistry
  • Theoretical Chemistry
  • Browse content in Computer Science
  • Artificial Intelligence
  • Computer Architecture and Logic Design
  • Game Studies
  • Human-Computer Interaction
  • Mathematical Theory of Computation
  • Programming Languages
  • Software Engineering
  • Systems Analysis and Design
  • Virtual Reality
  • Browse content in Computing
  • Business Applications
  • Computer Security
  • Computer Games
  • Computer Networking and Communications
  • Digital Lifestyle
  • Graphical and Digital Media Applications
  • Operating Systems
  • Browse content in Earth Sciences and Geography
  • Atmospheric Sciences
  • Environmental Geography
  • Geology and the Lithosphere
  • Maps and Map-making
  • Meteorology and Climatology
  • Oceanography and Hydrology
  • Palaeontology
  • Physical Geography and Topography
  • Regional Geography
  • Soil Science
  • Urban Geography
  • Browse content in Engineering and Technology
  • Agriculture and Farming
  • Biological Engineering
  • Civil Engineering, Surveying, and Building
  • Electronics and Communications Engineering
  • Energy Technology
  • Engineering (General)
  • Environmental Science, Engineering, and Technology
  • History of Engineering and Technology
  • Mechanical Engineering and Materials
  • Technology of Industrial Chemistry
  • Transport Technology and Trades
  • Browse content in Environmental Science
  • Applied Ecology (Environmental Science)
  • Conservation of the Environment (Environmental Science)
  • Environmental Sustainability
  • Environmentalist Thought and Ideology (Environmental Science)
  • Management of Land and Natural Resources (Environmental Science)
  • Natural Disasters (Environmental Science)
  • Nuclear Issues (Environmental Science)
  • Pollution and Threats to the Environment (Environmental Science)
  • Social Impact of Environmental Issues (Environmental Science)
  • History of Science and Technology
  • Browse content in Materials Science
  • Ceramics and Glasses
  • Composite Materials
  • Metals, Alloying, and Corrosion
  • Nanotechnology
  • Browse content in Mathematics
  • Applied Mathematics
  • Biomathematics and Statistics
  • History of Mathematics
  • Mathematical Education
  • Mathematical Finance
  • Mathematical Analysis
  • Numerical and Computational Mathematics
  • Probability and Statistics
  • Pure Mathematics
  • Browse content in Neuroscience
  • Cognition and Behavioural Neuroscience
  • Development of the Nervous System
  • Disorders of the Nervous System
  • History of Neuroscience
  • Invertebrate Neurobiology
  • Molecular and Cellular Systems
  • Neuroendocrinology and Autonomic Nervous System
  • Neuroscientific Techniques
  • Sensory and Motor Systems
  • Browse content in Physics
  • Astronomy and Astrophysics
  • Atomic, Molecular, and Optical Physics
  • Biological and Medical Physics
  • Classical Mechanics
  • Computational Physics
  • Condensed Matter Physics
  • Electromagnetism, Optics, and Acoustics
  • History of Physics
  • Mathematical and Statistical Physics
  • Measurement Science
  • Nuclear Physics
  • Particles and Fields
  • Plasma Physics
  • Quantum Physics
  • Relativity and Gravitation
  • Semiconductor and Mesoscopic Physics
  • Browse content in Psychology
  • Affective Sciences
  • Clinical Psychology
  • Cognitive Neuroscience
  • Cognitive Psychology
  • Criminal and Forensic Psychology
  • Developmental Psychology
  • Educational Psychology
  • Evolutionary Psychology
  • Health Psychology
  • History and Systems in Psychology
  • Music Psychology
  • Neuropsychology
  • Organizational Psychology
  • Psychological Assessment and Testing
  • Psychology of Human-Technology Interaction
  • Psychology Professional Development and Training
  • Research Methods in Psychology
  • Social Psychology
  • Browse content in Social Sciences
  • Browse content in Anthropology
  • Anthropology of Religion
  • Human Evolution
  • Medical Anthropology
  • Physical Anthropology
  • Regional Anthropology
  • Social and Cultural Anthropology
  • Theory and Practice of Anthropology
  • Browse content in Business and Management
  • Business Strategy
  • Business History
  • Business Ethics
  • Business and Government
  • Business and Technology
  • Business and the Environment
  • Comparative Management
  • Corporate Governance
  • Corporate Social Responsibility
  • Entrepreneurship
  • Health Management
  • Human Resource Management
  • Industrial and Employment Relations
  • Industry Studies
  • Information and Communication Technologies
  • International Business
  • Knowledge Management
  • Management and Management Techniques
  • Operations Management
  • Organizational Theory and Behaviour
  • Pensions and Pension Management
  • Public and Nonprofit Management
  • Strategic Management
  • Supply Chain Management
  • Browse content in Criminology and Criminal Justice
  • Criminal Justice
  • Criminology
  • Forms of Crime
  • International and Comparative Criminology
  • Youth Violence and Juvenile Justice
  • Development Studies
  • Browse content in Economics
  • Agricultural, Environmental, and Natural Resource Economics
  • Asian Economics
  • Behavioural Finance
  • Behavioural Economics and Neuroeconomics
  • Econometrics and Mathematical Economics
  • Economic Systems
  • Economic Methodology
  • Economic History
  • Economic Development and Growth
  • Financial Markets
  • Financial Institutions and Services
  • General Economics and Teaching
  • Health, Education, and Welfare
  • History of Economic Thought
  • International Economics
  • Labour and Demographic Economics
  • Law and Economics
  • Macroeconomics and Monetary Economics
  • Microeconomics
  • Public Economics
  • Urban, Rural, and Regional Economics
  • Welfare Economics
  • Browse content in Education
  • Adult Education and Continuous Learning
  • Care and Counselling of Students
  • Early Childhood and Elementary Education
  • Educational Equipment and Technology
  • Educational Strategies and Policy
  • Higher and Further Education
  • Organization and Management of Education
  • Philosophy and Theory of Education
  • Schools Studies
  • Secondary Education
  • Teaching of a Specific Subject
  • Teaching of Specific Groups and Special Educational Needs
  • Teaching Skills and Techniques
  • Browse content in Environment
  • Applied Ecology (Social Science)
  • Climate Change
  • Conservation of the Environment (Social Science)
  • Environmentalist Thought and Ideology (Social Science)
  • Natural Disasters (Environment)
  • Social Impact of Environmental Issues (Social Science)
  • Browse content in Human Geography
  • Cultural Geography
  • Economic Geography
  • Political Geography
  • Browse content in Interdisciplinary Studies
  • Communication Studies
  • Museums, Libraries, and Information Sciences
  • Browse content in Politics
  • African Politics
  • Asian Politics
  • Chinese Politics
  • Comparative Politics
  • Conflict Politics
  • Elections and Electoral Studies
  • Environmental Politics
  • Ethnic Politics
  • European Union
  • Foreign Policy
  • Gender and Politics
  • Human Rights and Politics
  • Indian Politics
  • International Relations
  • International Organization (Politics)
  • International Political Economy
  • Irish Politics
  • Latin American Politics
  • Middle Eastern Politics
  • Political Methodology
  • Political Communication
  • Political Philosophy
  • Political Sociology
  • Political Theory
  • Political Behaviour
  • Political Economy
  • Political Institutions
  • Politics and Law
  • Politics of Development
  • Public Administration
  • Public Policy
  • Quantitative Political Methodology
  • Regional Political Studies
  • Russian Politics
  • Security Studies
  • State and Local Government
  • UK Politics
  • US Politics
  • Browse content in Regional and Area Studies
  • African Studies
  • Asian Studies
  • East Asian Studies
  • Japanese Studies
  • Latin American Studies
  • Middle Eastern Studies
  • Native American Studies
  • Scottish Studies
  • Browse content in Research and Information
  • Research Methods
  • Browse content in Social Work
  • Addictions and Substance Misuse
  • Adoption and Fostering
  • Care of the Elderly
  • Child and Adolescent Social Work
  • Couple and Family Social Work
  • Direct Practice and Clinical Social Work
  • Emergency Services
  • Human Behaviour and the Social Environment
  • International and Global Issues in Social Work
  • Mental and Behavioural Health
  • Social Justice and Human Rights
  • Social Policy and Advocacy
  • Social Work and Crime and Justice
  • Social Work Macro Practice
  • Social Work Practice Settings
  • Social Work Research and Evidence-based Practice
  • Welfare and Benefit Systems
  • Browse content in Sociology
  • Childhood Studies
  • Community Development
  • Comparative and Historical Sociology
  • Economic Sociology
  • Gender and Sexuality
  • Gerontology and Ageing
  • Health, Illness, and Medicine
  • Marriage and the Family
  • Migration Studies
  • Occupations, Professions, and Work
  • Organizations
  • Population and Demography
  • Race and Ethnicity
  • Social Theory
  • Social Movements and Social Change
  • Social Research and Statistics
  • Social Stratification, Inequality, and Mobility
  • Sociology of Religion
  • Sociology of Education
  • Sport and Leisure
  • Urban and Rural Studies
  • Browse content in Warfare and Defence
  • Defence Strategy, Planning, and Research
  • Land Forces and Warfare
  • Military Administration
  • Military Life and Institutions
  • Naval Forces and Warfare
  • Other Warfare and Defence Issues
  • Peace Studies and Conflict Resolution
  • Weapons and Equipment

Global Warming: A Very Short Introduction (2nd edn)

A newer edition of this book is available.

  • < Previous chapter

10 (page 173) p. 173 Conclusion

  • Published: November 2008
  • Cite Icon Cite
  • Permissions Icon Permissions

The ‘Conclusion’ confirms that global warming is the major challenge for our global society. There is very little doubt that global warming will change our climate in the next century. So what are the solutions to global warming? First, there must be an international political solution. Second, funding for developing cheap and clean energy production must be increased, as all economic development is based on increasing energy usage. We must not pin all our hopes on global politics and clean energy technology, so we must prepare for the worst and adapt. If implemented now, a lot of the costs and damage that could be caused by changing climate can be mitigated.

Signed in as

Institutional accounts.

  • Google Scholar Indexing
  • GoogleCrawler [DO NOT DELETE]

Personal account

  • Sign in with email/username & password
  • Get email alerts
  • Save searches
  • Purchase content
  • Activate your purchase/trial code
  • Add your ORCID iD

Institutional access

Sign in with a library card.

  • Sign in with username/password
  • Recommend to your librarian
  • Institutional account management
  • Get help with access

Access to content on Oxford Academic is often provided through institutional subscriptions and purchases. If you are a member of an institution with an active account, you may be able to access content in one of the following ways:

IP based access

Typically, access is provided across an institutional network to a range of IP addresses. This authentication occurs automatically, and it is not possible to sign out of an IP authenticated account.

Choose this option to get remote access when outside your institution. Shibboleth/Open Athens technology is used to provide single sign-on between your institution’s website and Oxford Academic.

  • Click Sign in through your institution.
  • Select your institution from the list provided, which will take you to your institution's website to sign in.
  • When on the institution site, please use the credentials provided by your institution. Do not use an Oxford Academic personal account.
  • Following successful sign in, you will be returned to Oxford Academic.

If your institution is not listed or you cannot sign in to your institution’s website, please contact your librarian or administrator.

Enter your library card number to sign in. If you cannot sign in, please contact your librarian.

Society Members

Society member access to a journal is achieved in one of the following ways:

Sign in through society site

Many societies offer single sign-on between the society website and Oxford Academic. If you see ‘Sign in through society site’ in the sign in pane within a journal:

  • Click Sign in through society site.
  • When on the society site, please use the credentials provided by that society. Do not use an Oxford Academic personal account.

If you do not have a society account or have forgotten your username or password, please contact your society.

Sign in using a personal account

Some societies use Oxford Academic personal accounts to provide access to their members. See below.

A personal account can be used to get email alerts, save searches, purchase content, and activate subscriptions.

Some societies use Oxford Academic personal accounts to provide access to their members.

Viewing your signed in accounts

Click the account icon in the top right to:

  • View your signed in personal account and access account management features.
  • View the institutional accounts that are providing access.

Signed in but can't access content

Oxford Academic is home to a wide variety of products. The institutional subscription may not cover the content that you are trying to access. If you believe you should have access to that content, please contact your librarian.

For librarians and administrators, your personal account also provides access to institutional account management. Here you will find options to view and activate subscriptions, manage institutional settings and access options, access usage statistics, and more.

Our books are available by subscription or purchase to libraries and institutions.

  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Rights and permissions
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Climate change:

Tackling a global challenge

Download chapter 4

Ede Ijjasz-Vasquez

Nonresident Senior Fellow, Africa Growth Initiative, Brookings Institution

Aloysius Uche Ordu

Director and Senior Fellow, Africa Growth Initiative, Brookings Institution

From COP26 (Glasgow) to COP27 (Sharm el-Sheikh, Egypt): What to expect at Africa’s COP

Despite progress towards the shared goal of addressing climate change, COP26 did not sufficiently put the world on track to successfully tackle the problem. The outcomes especially fell short of what Africans had hoped for. On the positive side, the Glasgow Accord kept the “1.5 o C warming goal alive,” and countries have been asked to come to COP27, to be held in Sharm el Sheikh, Egypt, with more ambitious Nationally Determined Contribution (NDCs). A new agreement on global carbon trading was achieved, adding a much-needed tool to the fight against climate change. Negotiators reached other significant agreements in Glasgow, notably 65 countries committed to phasing out coal power, more than 100 countries agreed to slash methane emissions, and 130 countries—representing over 90 percent of the world’s forests—pledged to end deforestation by 2030.

On the other hand, developed countries failed to reach the $100 billion annual funds promised in Paris to developing countries for climate action by 2020. The current NDCs are estimated to reach a warming trajectory of 2.4 o C—almost an entire degree above the goal . The discussion on climate “loss and damage”—what damage is caused by climate change and which parties should pay for it—made some modest progress, and the Glasgow Accord called to start a dialogue to discuss funding arrangements. Such an announcement is a major step given that many major powers had previously opposed even using the words “loss and damage” in climate-related negotiations.

“Under the projected warming trajectory of 2.4 o C, the impacts of climate change could make many parts of Africa uninhabitable.”

The evident lack of urgency contrasts sharply with the projections from the Sixth Assessment of the Intergovernmental Panel on Climate Change (IPCC) for Africa. Life-threatening temperatures above 40 o C are projected to increase by 10 to 140 days a year, depending on the scenario and region. The continent will see drier conditions in most regions, with more droughts but also more flooding. With the rise in sea level (as much as 0.9 meters by 2100 under high-warming scenarios) and more frequent flooding, a current 1-in-100 year flood event will become 1-in-10 or -20 years by 2050, and 1-in-5 years to annually by 2100, even under moderate warming. With rapidly growing cities in low-lying coastal areas in Africa, the damage to property and livelihoods more generally, exacerbated by climate change, will be compounded. In other words, under the projected warming trajectory of 2.4 o C, the impacts of climate change could make many parts of Africa uninhabitable. Policy change, financial transfers, and decisive and transformational mitigation measures by the largest-emitting countries are critical. The narrative is clear and remains consistent: Africa’s historical and current emissions of greenhouse gases are minimal; still, the region will suffer some of climate change’s most severe consequences if not adequately addressed.

Even if the world remains under 1.5 o C warming, Africa will need to adapt to the new reality of a rapidly changing climate. Thankfully, COP26 did result in some positive steps regarding climate adaptation. The developed world recognized the need to increase funding for adaptation support: The Glasgow Accord “urges developed country Parties to at least double their collective provision of climate finance for adaptation to developing country Parties from 2019 levels by 2025.” Africa was already moving toward a similar goal: The African Development Bank and the Global Center of Adaptation launched a $25 billion program to finance accelerated adaptation in the region earlier in the year.

“Even if the world remains under 1.5 o C warming, Africa will need to adapt to the new reality of a rapidly changing climate.”

Africa has great opportunities to help the world fight climate change but cannot do it alone. The protection and sustainable management of its forest and marine resources can provide essential carbon sinks. In fact, the Congo Basin— the world’s second-largest rainforest and which absorbs 1.2 billion tons of CO2 each year —also has vital mineral reserves needed for the clean industries that underpin the net-zero commitments of countries worldwide. The energy, transport, and urban infrastructure that is yet to be built in Africa over the next two decades will either lock the region into a high-emission economic development trajectory or support the global climate goals if adequate additional resources to finance the extra costs of decarbonization are provided at the level and speed needed.

COP27—the “Africa COP”—is a unique opportunity to accelerate progress in climate action and mobilize the partnerships needed for Africa’s rapid, inclusive, green, and resilient development. However, Africa’s policymakers should not be passive recipients of what “others” can do for Africa in COP27. Africans should be well prepared and organized. They should have a unified, active, and consistent voice about the dire consequences of climate change for the continent and the urgency to take action.

“Africa has great opportunities to help the world fight climate change but cannot do it alone.”

First and foremost, the world needs to show at COP27 that progress and firm commitments—not only pledges—are moving the needle towards the 1.5 o C warming level. As noted above, Africa absolutely cannot afford a 2.4 o C warmer world: At that level of warming, adaptation measures in many parts of the continent may not be technically feasible or financially viable. This point highlights the importance of the other significant opportunity presented by COP27: Leaders must further raise the level of action, speed, and ambition toward climate adaptation, especially for Africa and vulnerable countries in other regions.

As leaders and negotiators descend on Sharm el-Sheikh in 2022, they should focus on four distinct opportunities for decisive, urgent climate action. First, OECD countries and international financial institutions must increase their levels of concessional and private funding for adaptation, including a larger proportion of grants, rapidly and significantly. Second, leaders should increase their focus on the development and scaled-up rollout of adaptation technologies. Climate mitigation technologies receive most of the funding, attention, and support compared to adaptation technologies. At COP27, global leaders must push for a greater balance with adaptation technologies, including the localization and scaling-up of existing African solutions, including multi-hazard early warning systems combining earth observing systems and artificial intelligence with locally trusted communication channels in Africa. Importantly, the scaling up of climate-smart agriculture technologies and practices can tackle the malnutrition and stunting challenge of the region through more productive and resilient food systems. At the same time, climate-smart agricultural technologies can help store carbon in the soil and reduce the pressure on land-use change by improving efficiency and reducing food waste.

“Africa absolutely cannot afford a 2.4 o C warmer world: At that level of warming, adaptation measures in many parts of the continent may not be technically feasible or financially viable.”

Third, Africa needs a decisive push to build capacity in climate change action, not only in ministries of the environment but throughout society. The engineers and urban planners need to incorporate climate considerations in designing and constructing Africa’s infrastructure. African farmers need the best data and knowledge to make informed decisions to increase productivity in the face of a rapidly changing climate that is already impacting their crops. Low-income urban households and rural communities need to know what actions to take to better protect their lives and livelihoods against more frequent and intense climate shocks.

Fourth, leaders must pursue the win-win opportunity of rapidly deploying the global carbon market, while helping Africa enter this market, especially with programs that straddle both climate mitigation and adaptation. Nature-based solutions, energy access programs, and blue and green economy platforms can push forward the enhanced resilience of the region while supporting global emission reduction goals.

“The landmark African Continental Free Trade Agreement can provide the foundation for early agreements on free trade of agricultural products that can balance losses caused by climate shocks.”

At the same time, Africa cannot wait. It must use all its tools to mainstream adaptation in its development path. With the pandemic still causing economic and livelihood damages in every corner of the continent, this task will be harder than ever. Still, low-cost, high-return adaptation measures should be prioritized. These range from land use and simple early warning systems to infrastructure maintenance that can reduce flood damage and protection of environmental assets that protect lives and livelihoods. Importantly, the landmark African Continental Free Trade Agreement can provide the foundation for early agreements on free trade of agricultural products that can balance losses caused by climate shocks.

At Sharm el-Sheikh, at the Africa COP, the world must take advantage of the opportunity to fulfill its responsibility together with Africa. A prosperous future of hundreds of millions of Africans will depend on the decisions and actions taken at COP27. A green and resilient path for Africa’s development cannot wait.

make a presentation on the topic global warming ignou

By Jeanine Mabunda Lioko

Jeanine Mabunda Lioko offers recommendations for African policymakers looking to balance sustainable development and universal access to electricity.

make a presentation on the topic global warming ignou

By Amar Bhattacharya

Amar Bhattacharya reviews financing strategies for Africa to adapt to and mitigate the impacts of climate change.

make a presentation on the topic global warming ignou

By Yvonne Aki-Sawyerr

Freetown Mayor Yvonne Aki-Sawyerr shares examples of how African cities can implement climate change adaptation and mitigation projects.

make a presentation on the topic global warming ignou

By Amara Nwankpa

Amara Nwankpa explores the impacts of the climate crisis on food insecurity in Nigeria and offers a framework for reducing food and nutrition vulnerability while enhancing environmental resilience.

make a presentation on the topic global warming ignou

Climate migration—deepening our solutions

By Simeon K. Ehui and Kanta Kumari Rigaud

Simeon K. Ehui and Kanta Kumari Rigaud underscore the need for bold, transformative, and foresighted action to address climate-related migration in sub-Saharan Africa.

make a presentation on the topic global warming ignou

The urgency and benefits of climate adaptation for Africa’s agriculture and food security

By Holger A. Kray, Chakib Jenane, Ede Ijjasz-Vasquez, and Jamal Saghir

Kray, Jenane, Ijjasz-Vasquez, and Saghir estimate the impact of climate change on the future of food security in Africa.

Next Chapter

05 | Technological innovations

Creating and harnessing tools for improved livelihoods

Foresight Africa: Top priorities for Africa in 2022

On January 26, AGI will host a Foresight Africa launch featuring a high-level panel of leading Africa experts to offer insights on regional trends along with recommendations for national governments, regional organizations, multilateral institutions, the private sector, and civil society actors as they forge ahead in 2022.

make a presentation on the topic global warming ignou

Africa in Focus

Join the conversation on the top priorities for Africa in 2022

By ALOYSIUS UCHE ORDU

Aloysius Uche Ordu introduces the 2022 edition of Foresight Africa, which includes brand new themes and a more diverse and representative collection of contributors and reflects the dynamism and optimism of the region.

Foresight Africa Podcast

The Foresight Africa podcast celebrates Africa’s dynamism and explores strategies for broadening the benefits of growth to all people of Africa.

  • Media Relations
  • Terms and Conditions
  • Privacy Policy

What Is Climate Change?

Climate change is a long-term change in the average weather patterns that have come to define Earth’s local, regional and global climates. These changes have a broad range of observed effects that are synonymous with the term.

Changes observed in Earth’s climate since the mid-20th century are driven by human activities, particularly fossil fuel burning, which increases heat-trapping greenhouse gas levels in Earth’s atmosphere, raising Earth’s average surface temperature. Natural processes, which have been overwhelmed by human activities, can also contribute to climate change, including internal variability (e.g., cyclical ocean patterns like El Niño, La Niña and the Pacific Decadal Oscillation) and external forcings (e.g., volcanic activity, changes in the Sun’s energy output , variations in Earth’s orbit ).

Scientists use observations from the ground, air, and space, along with computer models , to monitor and study past, present, and future climate change. Climate data records provide evidence of climate change key indicators, such as global land and ocean temperature increases; rising sea levels; ice loss at Earth’s poles and in mountain glaciers; frequency and severity changes in extreme weather such as hurricanes, heatwaves, wildfires, droughts, floods, and precipitation; and cloud and vegetation cover changes.

“Climate change” and “global warming” are often used interchangeably but have distinct meanings. Similarly, the terms "weather" and "climate" are sometimes confused, though they refer to events with broadly different spatial- and timescales.

What Is Global Warming?

Global warming is the long-term heating of Earth’s surface observed since the pre-industrial period (between 1850 and 1900) due to human activities, primarily fossil fuel burning, which increases heat-trapping greenhouse gas levels in Earth’s atmosphere. This term is not interchangeable with the term "climate change."

Since the pre-industrial period, human activities are estimated to have increased Earth’s global average temperature by about 1 degree Celsius (1.8 degrees Fahrenheit), a number that is currently increasing by more than 0.2 degrees Celsius (0.36 degrees Fahrenheit) per decade. The current warming trend is unequivocally the result of human activity since the 1950s and is proceeding at an unprecedented rate over millennia.

Weather vs. Climate

“If you don’t like the weather in New England, just wait a few minutes.” - Mark Twain

Weather refers to atmospheric conditions that occur locally over short periods of time—from minutes to hours or days. Familiar examples include rain, snow, clouds, winds, floods, or thunderstorms.

Climate, on the other hand, refers to the long-term (usually at least 30 years) regional or even global average of temperature, humidity, and rainfall patterns over seasons, years, or decades.

Find Out More: A Guide to NASA’s Global Climate Change Website

This website provides a high-level overview of some of the known causes, effects and indications of global climate change:

Evidence. Brief descriptions of some of the key scientific observations that our planet is undergoing abrupt climate change.

Causes. A concise discussion of the primary climate change causes on our planet.

Effects. A look at some of the likely future effects of climate change, including U.S. regional effects.

Vital Signs. Graphs and animated time series showing real-time climate change data, including atmospheric carbon dioxide, global temperature, sea ice extent, and ice sheet volume.

Earth Minute. This fun video series explains various Earth science topics, including some climate change topics.

Other NASA Resources

Goddard Scientific Visualization Studio. An extensive collection of animated climate change and Earth science visualizations.

Sea Level Change Portal. NASA's portal for an in-depth look at the science behind sea level change.

NASA’s Earth Observatory. Satellite imagery, feature articles and scientific information about our home planet, with a focus on Earth’s climate and environmental change.

Header image is of Apusiaajik Glacier, and was taken near Kulusuk, Greenland, on Aug. 26, 2018, during NASA's Oceans Melting Greenland (OMG) field operations. Learn more here . Credit: NASA/JPL-Caltech

make a presentation on the topic global warming ignou

Integrations

make a presentation on the topic global warming ignou

Inspiration

Consideration

make a presentation on the topic global warming ignou

Go hybrid with Prezi

It’s a new world. Are you ready? Here’s how Prezi helps your team thrive in today’s hybrid workplace.

make a presentation on the topic global warming ignou

Prezi Video explained

We’ve compiled these quick, easy-to-follow tutorials to make you a Prezi Video master in no time.

make a presentation on the topic global warming ignou

The science

Learn to grab their attention and keep it with presentation advice from the pros.

Create moving, zooming presentations that grab attention and keep it.

Appear right alongside your content while presenting to your audience.

Make stunning interactive charts, reports, maps, infographics, and more.

Prezi on climate change

Climate change is the most pressing global issue we will face in our lifetime. prezi is committed to providing well-researched, standards-aligned, engaging content intended to challenge and inspire both you and your students., resources for the classroom, based on exceptional resources from nasa to the united nations, these lessons span k-12 and combine engaging video and thoughtful assignments to spark critical thinking and creativity in your students. here is an overview of the lessons., pro tip: when viewing any prezi presentation, simply click “make a copy” and edit to suit your classroom needs., best for primary & middle grades.

Non-profit Prezi presentation template overview featuring an image of a happy young girl. Theme colors are black, purple, and light green.

BEST FOR SECONDARY & MIDDLE GRADES

Non-profit Prezi presentation template overview featuring an image of a happy young girl. Theme colors are black, purple, and light green.

GENERAL INTEREST

Non-profit Prezi presentation template overview featuring an image of a happy young girl. Theme colors are black, purple, and light green.

FROM OUR TEACHER & STUDENT COMMUNITY

Non-profit Prezi presentation template overview featuring an image of a happy young girl. Theme colors are black, purple, and light green.

RESOURCES TO SUPPORT CLIMATE CHANGE IN YOUR CLASSROOM

Non-profit Prezi presentation template overview featuring an image of a happy young girl. Theme colors are black, purple, and light green.

  • Live In The D
  • Newsletters

New study finds Earth warming at record rate, but no evidence of climate change accelerating

Seth Borenstein

Associated Press

Copyright 2023 The Associated Press. All rights reserved

FILE - A woman is silhouetted against the setting sun as triple-digit heat indexes continue in the Midwest, Aug. 20, 2023, in Kansas City, Mo. The rate Earth is warming hit an all-time high in 2023 with 92% of last years surprising record-shattering heat caused by humans, top scientists calculated. (AP Photo/Charlie Riedel, File)

The rate Earth is warming hit an all-time high in 2023 with 92% of last year's surprising record-shattering heat caused by humans, top scientists calculated.

The group of 57 scientists from around the world used United Nations-approved methods to examine what's behind last year's deadly burst of heat . They said even with a faster warming rate they don't see evidence of significant acceleration in human-caused climate change beyond increased fossil fuel burning.

Recommended Videos

Last year's record temperatures were so unusual that scientists have been debating what's behind the big jump and whether climate change is accelerating or if other factors are in play.

"If you look at this world accelerating or going through a big tipping point, things aren’t doing that,” study lead author Piers Forster, a Leeds University climate scientist, said. “Things are increasing in temperature and getting worse in sort of exactly the way we predicted.”

It's pretty much explained by the buildup of carbon dioxide from rising fossil fuel use, he and a co-author said.

Last year the rate of warming hit 0.26 degrees Celsius (0.47 degrees Fahrenheit) per decade — up from 0.25 degrees Celsius (0.45 degrees Fahrenheit) the year before. That's not a significant difference, though it does make this year's rate the highest ever, Forster said.

Still, outside scientists said this report highlights an ever more alarming situation.

“Choosing to act on climate has become a political talking point but this report should be a reminder to people that in fact it is fundamentally a choice to save human lives,” said University of Wisconsin climate scientist Andrea Dutton, who wasn't part of the international study team. “To me, that is something worth fighting for.”

The team of authors — formed to provide annual scientific updates between the every seven- to eight-year major U.N. scientific assessments — determined last year was 1.43 degrees Celsius warmer than the 1850 to 1900 average with 1.31 degrees of that coming from human activity. The other 8% of the warming is due mostly to El Nino , the natural and temporary warming of the central Pacific that changes weather worldwide and also a freak warming along the Atlantic and just other weather randomness.

On a larger 10-year time frame, which scientists prefer to single years, the world has warmed about 1.19 degrees Celsius (2.14 degrees Fahrenheit) since pre-industrial times, the report in the journal Earth System Science Data found.

The report also said that as the world keeps using coal, oil and natural gas, Earth is likely to reach the point in 4.5 years that it can no longer avoid crossing the internationally accepted threshold for warming: 1.5 degrees Celsius (2.7 degrees Fahrenheit ).

That fits with earlier studies projecting Earth being committed or stuck to at least 1.5 degrees by early 2029 if emission trajectories don't change. The actual hitting of 1.5 degrees could be years later, but it would be inevitable if all that carbon is used, Forster said.

It's not the end of the world or humanity if temperatures blow past the 1.5 limit, but it will be quite bad, scientists said. Past U.N. studies show massive changes to Earth's ecosystem are more likely to kick in between 1.5 and 2 degrees Celsius of warming, including eventual loss of the planet's coral reefs, Arctic sea ice, species of plants and animals — along with nastier extreme weather events that kill people.

Last year's temperature rise was more than just a little jump. It was especially unusual in September, said study co-author Sonia Seneviratne, head of land-climate dynamics at ETH Zurich, a Swiss university.

The year was within the range of what was predicted, albeit it was at the upper edge of the range, Seneviratne said.

“Acceleration if it were to happen would be even worse, like hitting a global tipping point, it would be probably the worst scenario,” Seneviratne said. “But what is happening is already extremely bad and it is having major impacts already now. We are in the middle of a crisis.”

University of Michigan environment dean Jonathan Overpeck and Berkeley Earth climate scientist Zeke Hausfather, neither of whom were part of the study, said they still see acceleration. Hausfather pointed out the rate of warming is considerably higher than 0.18 degrees Celsius (0.32 Fahrenheit) per decade of warming that it was between 1970 and 2010.

Scientists had theorized a few explanations for the massive jump in September , which Hausfather called “gobsmacking.” Wednesday's report didn't find enough warming from other potential causes. The report said the reduction of sulfur pollution from shipping — which had been providing some cooling to the atmosphere — was overwhelmed last year by carbon particles put in the air from Canadian wildfires.

The report also said an undersea volcano that injected massive amounts of heat-trapping water vapor into the atmosphere also spewed cooling particles with both forces pretty much canceling each other out.

Texas Tech climate scientist and chief scientist at the Nature Conservancy Katharine Hayhoe said "the future is in our hands. It’s us — not physics, but humans — who will determine how quickly the world warms and by how much."

Read more of AP’s climate coverage at http://www.apnews.com/climate-and-environment

Follow Seth Borenstein on X at @borenbears

The Associated Press’ climate and environmental coverage receives financial support from multiple private foundations. AP is solely responsible for all content. Find AP’s standards for working with philanthropies, a list of supporters and funded coverage areas at AP.org .

Copyright 2024 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed without permission.

Click here to take a moment and familiarize yourself with our Community Guidelines.

Got any suggestions?

We want to hear from you! Send us a message and help improve Slidesgo

Top searches

Trending searches

make a presentation on the topic global warming ignou

26 templates

make a presentation on the topic global warming ignou

49 templates

make a presentation on the topic global warming ignou

11 templates

make a presentation on the topic global warming ignou

71 templates

make a presentation on the topic global warming ignou

15 templates

make a presentation on the topic global warming ignou

first day of school

68 templates

Global Warming

It seems that you like this template, global warming presentation, free google slides theme, powerpoint template, and canva presentation template.

Global warming has been a hot topic for decades (no pun intended) and will in all probability continue to be one for years to come. So how do you explain the phenomenon, its causes and consequences to your elementary students? You can use this Google Slides and PowerPoint template… it’s brief, to the point and covers everything young kids need to know about global warming. The contents are ready to be used in class, fully editable and even available in different languages!

Features of this template

  • Designed for elementary
  • 100% editable and easy to modify
  • 12 different slides to impress your audience
  • Contains easy-to-edit graphics such as graphs, maps, tables, timelines and mockups
  • Includes 500+ icons and Flaticon’s extension for customizing your slides
  • Designed to be used in Google Slides, Canva, and Microsoft PowerPoint
  • A4 format optimized for printing
  • Includes information about fonts, colors, and credits of the resources used
  • Available in different languages

How can I use the template?

Am I free to use the templates?

How to attribute?

Attribution required If you are a free user, you must attribute Slidesgo by keeping the slide where the credits appear. How to attribute?

Available in, related posts on our blog.

How to Add, Duplicate, Move, Delete or Hide Slides in Google Slides | Quick Tips & Tutorial for your presentations

How to Add, Duplicate, Move, Delete or Hide Slides in Google Slides

How to Change Layouts in PowerPoint | Quick Tips & Tutorial for your presentations

How to Change Layouts in PowerPoint

How to Change the Slide Size in Google Slides | Quick Tips & Tutorial for your presentations

How to Change the Slide Size in Google Slides

Related presentations.

Causes of Global Warming Lesson for Elementary presentation template

Premium template

Unlock this template and gain unlimited access

Global Warming Facts presentation template

share this!

June 3, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

peer-reviewed publication

trusted source

Centering relationships between people and place: A critical step towards improving science's contributions to society

by Smithsonian Tropical Research Institute

Centering relationships between people and place: A critical step towards improving science's contributions to society

Slowing down the pace may not be common in academia, but it could lead to better science to support our planet through the current climate, biodiversity and social justice crises. This is one approach suggested by a diverse group of marine conservation scientists who were brought together in 2021 by the COMPASS Leaders for Sea Change Science Communication program. In a new paper published in Proceedings of the National Academy of Sciences (PNAS) , the co-authors consider three pathways to better connect with the places they study.

Frequently, scientific expertise to address the global change crisis comes from a place of privilege. Research findings often come from the Global South but are disseminated, debated, and championed by well-funded institutions and experts in the Global North. Despite much of the science being conducted in the places most vulnerable to the pressing challenges of our times, the knowledge, histories, and Indigenous wisdom of local communities are often overlooked or undervalued by the scientific community .

The co-authors of the paper "Centering relationships to place for more meaningful research and engagement" argue that this type of knowledge "extractivism" may occur because of time, capacity, funding, or personal constraints. However, they also contend that extractive human behavior toward the natural world and each other is what has led us to our current global crises in the first place.

They argue that building relationships to places of study and their people would lead to more fair science and more accurate and meaningful research outcomes, and present three pathways aimed at building deeper connections between natural scientists and the places they study.

The first pathway is to deepen reflection and communication about relationships with places. For example, this pathway can be practiced by immersing oneself in local communities , learning about the historical and social-ecological narratives of the places of study, and allowing these experiences to shift perspectives, refine research goals and expand the societal relevance of research findings.

This pathway also encourages expanded land acknowledgements. Researchers are encouraged to seek guidance from local and Indigenous resources to precede public communications with recognition of past and present Indigenous presence in these spaces. An additional suggestion is to expand positionality statements beyond mere disclosure of personal and professional backgrounds to include a broader spectrum of influences shaping the research process , such as the geographic, socioeconomic, institutional, and cultural contexts of the scientists involved, to show where their perspectives come from.

The second pathway is to strengthen collaboration among research teams and partners, which entails building a foundation of mutual respect, trust and knowledge exchange between scientists and individuals who may be local or Indigenous to the place of research. Understanding their worldviews and expertise may lead to new ways of thinking about and relating to a place.

This pathway encourages collaboration and engagement with partners outside of academia and project co-creation with local partners, a common practice in the social sciences. This could result in research outcomes that are meaningful and transformative to those who may be impacted by research processes, improve public trust in research findings and make knowledge more accessible.

Centering relationships between people and place: A critical step towards improving science's contributions to society

"Change must happen, and this is one way we can contribute toward a cultural shift to make the research process more equitable and relational, as a way to move away from extractive paradigms," said lead author Fiona Beaty, an early-career scientist from the University of British Columbia.

Recognizing that developing these deeper relationships to place takes time and energy, and that a majority of natural sciences institutions or research systems do not currently incentivize this type of work, co-authors of the PNAS paper propose transforming systems of knowledge creation to foster place-based roots as a third pathway.

They recommend that institutions consider restructuring training, evaluation, and funding systems throughout various career stages. A critical area would be to revise training and research opportunities within both undergraduate and graduate programs. Hiring and evaluation processes could also be transformed to encourage the development of deep relationships with places of study.

Finally, funding systems could support collaboration outside of academic systems by incentivizing public research dissemination activities and community engagement alongside traditional metrics of academic success, such as peer-reviewed publications.

"Natural science institutions throughout the world and particularly in the global north could reshape their reward systems, which impacts researchers' lives, promoting place-based and deeply rooted research," said Beaty. "It's really hard for individuals to make changes if they're constantly battling the system."

The authors also propose the development of site-based research capacity, which may look like many things; for example, empowering local scientists to lead research aligned with community needs or creating site-specific centers that employ local experts or collaborate with community organizations to produce knowledge that is tailored to their specific contexts.

Centering relationships between people and place: A critical step towards improving science's contributions to society

"These perspectives are the result of multi-year conversations where we shared experiences among one another and recognized the outstanding value of and complications involved in genuine and impactful engagement," said co-author Katharine Bear Nalven, from Oregon State University.

Beaty hopes this paper inspires early career researchers by giving them a range of options and offering guidance. She also seeks to encourage established researchers to see how they can contribute to change within academia.

"We do not expect everyone to take up all our suggestions, because it can be overwhelming, but different people may have different entry points," said Beaty.

Ana K. Spalding, co-author and director of the Adrienne Arsht Community-Based Resilience Solutions Initiative at STRI, views this paper as a testament to the effectiveness of training programs such as Leaders for Sea Change.

"Our aspiration is for initiatives like this, focused on capacity building and leadership training, to gain momentum and underscore the significance of collaboration," she said.

Journal information: Proceedings of the National Academy of Sciences

Provided by Smithsonian Tropical Research Institute

Explore further

Feedback to editors

make a presentation on the topic global warming ignou

Rate of global warming caused by humans is at an all-time high, say scientists

58 minutes ago

make a presentation on the topic global warming ignou

Giant viruses discovered on Greenland ice sheet could reduce ice melt

2 hours ago

make a presentation on the topic global warming ignou

New study confirms presence of benzene in natural gas and potential for undetectable indoor leaks

3 hours ago

make a presentation on the topic global warming ignou

Chasing down a cellular 'short circuit' sheds light on how certain diseases begin

make a presentation on the topic global warming ignou

Remarkable new plant species steals nutrients from underground fungi

5 hours ago

make a presentation on the topic global warming ignou

Others' words, not firsthand experience, shape scientific and religious belief formation, study finds

6 hours ago

make a presentation on the topic global warming ignou

Earliest cattle herds in northern Europe found in the Netherlands

make a presentation on the topic global warming ignou

Real-time flood risk visualization via server-based mixed reality enhances accessibility and public safety

7 hours ago

make a presentation on the topic global warming ignou

Rocky shores of Pacific Northwest show low resilience to changes in climate

make a presentation on the topic global warming ignou

Researchers discover disordered clock protein that sheds new light on circadian rhythms

Relevant physicsforums posts, jacchia atmospheric model.

23 hours ago

Is it possible to transform an electric thunderstorm into an EMP storm?

Jun 3, 2024

Iceland warming up again - quakes swarming

Mount ibu, indonesia erupts.

May 29, 2024

Adirondack Mountains and earthquakes

May 23, 2024

The Secrets of Prof. Verschure's Rosetta Stones

More from Earth Sciences

Related Stories

make a presentation on the topic global warming ignou

Scientists call for equitable research partnerships to advance microbiome research

May 24, 2024

make a presentation on the topic global warming ignou

How to strengthen community resilience in a world plagued by crises

Jan 15, 2024

make a presentation on the topic global warming ignou

There is an urgent need for democratizing knowledge to revolutionize global food systems, researchers argue

May 10, 2024

make a presentation on the topic global warming ignou

Using research to solve societal problems starts with building connections and making space for young people

Apr 10, 2024

make a presentation on the topic global warming ignou

Research gaps exist in links between Indigenous health and climate change

Mar 20, 2024

make a presentation on the topic global warming ignou

Five ways to better build community with international students in Canada

Recommended for you.

make a presentation on the topic global warming ignou

Climate change projected to warm shallow groundwater by up to 3.5°C by 2099

8 hours ago

make a presentation on the topic global warming ignou

Will the climate transition be a battle of materials?

make a presentation on the topic global warming ignou

Researchers develop instrument to measure lava viscosity in the field

9 hours ago

Let us know if there is a problem with our content

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

IMAGES

  1. Global warming ppt

    make a presentation on the topic global warming ignou

  2. Global Warming PPT Template

    make a presentation on the topic global warming ignou

  3. Global Warming PowerPoint Template and Google Slides

    make a presentation on the topic global warming ignou

  4. Global warming climate change infographics Vector Image

    make a presentation on the topic global warming ignou

  5. Global warming infographics Royalty Free Vector Image

    make a presentation on the topic global warming ignou

  6. global warming

    make a presentation on the topic global warming ignou

VIDEO

  1. UGC NET paper first topic global warming and climate change

  2. Workers fix GLOBAL WARMING 🌎🔥

  3. 10C10

  4. Global Warming Topic Presentation by MCA student Anushka Pandey from 9th

  5. Webinar 1: Climate Change Negotiations and Health

  6. CSS Essay Outline On Global Warming

COMMENTS

  1. eGyanKosh: Unit-18 Climate Change: Global Warming

    DSpace JSPUI eGyanKosh preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

  2. Introduction to Climate Change

    Global Climate -Past, Present and Future. 5. Account of past climate. 6. Environmental indicators and instrumental records. 7. Human Footprints on global warming. 8. Predicting future climates. 9. Temperature regime. 10. Extreme climate events. 6. The Past Climate- Part 1. 7. The Past Climate- Part 2. Week-5. Module-2. Global Climate -Past ...

  3. Global Warming

    Global warming is the increase in the world's average temperature, believed to be the result from the release of carbon dioxide and other gases into the atmosphere by burning fossil fuels. . This increase in greenhouse gases is causing an increase in the rate of the greenhouse effect. The Greenhouse Effect. The earth is warming rather like ...

  4. Global warming

    Modern global warming is the result of an increase in magnitude of the so-called greenhouse effect, a warming of Earth's surface and lower atmosphere caused by the presence of water vapour, carbon dioxide, methane, nitrous oxides, and other greenhouse gases. In 2014 the IPCC first reported that concentrations of carbon dioxide, methane, and ...

  5. PDF BEGAE 182: English Communication Skills

    2. Make a presentation on the topic (any one). (10) (i) Online Education (ii) Education during Pandemic (iii) Effect of Pollution on Health (iv) Global Warming Section C 1. How can one be an active participant in a meeting? Discuss some of the etiquettes that must be followed while attending a meeting. (10) 2.

  6. Global Warming

    Global warming is the long-term warming of the planet's overall temperature. Though this warming trend has been going on for a long time, its pace has significantly increased in the last hundred years due to the burning of fossil fuels.As the human population has increased, so has the volume of . fossil fuels burned.. Fossil fuels include coal, oil, and natural gas, and burning them causes ...

  7. 9 questions about climate change you were too embarrassed to ask

    4) There are other human fingerprints that suggest increased greenhouse gases are warming the planet. For instance, back in the 1960s, simple climate models predicted that global warming caused by ...

  8. A review of the global climate change impacts, adaptation, and

    Abstract. Climate change is a long-lasting change in the weather arrays across tropics to polls. It is a global threat that has embarked on to put stress on various sectors. This study is aimed to conceptually engineer how climate variability is deteriorating the sustainability of diverse sectors worldwide.

  9. IGNOU BEGAE-182

    Write a series of 8 (eight) dialogues exchanged between the two of you introducing yourself, your country and the socio-political situation of your countries during Pandemic. 2. Make a presentation on the topic (any one). (i) Online Education (ii) Education during Pandemic (iii) Effect of Pollution on Health (iv) Global Warming Section C 1.

  10. Climate Change

    Climate change is the long-term alteration of temperature and typical weather patterns in a place. Climate change could refer to a particular location or the planet as a whole. Climate change may cause weather patterns to be less predictable. These unexpected weather patterns can make it difficult to maintain and grow crops in regions that rely ...

  11. 4 climate topics we should be talking about

    With a vision to scale-up climate efforts and accelerate emissions reductions, the summit will focus on four central objectives: mitigation and reducing emissions; adaptation and enhancing resilience; the $100 billion promised by developed nations; and the urgent need for collaboration. With that in mind, we've highlighted key climate issues ...

  12. New Presentation: Our Changing Climate

    Download Full Presentation (PPT, 148MB) Updated: April 2021. Climate Central is presenting a new outreach and education resource for meteorologists, journalists, and others—a climate change ...

  13. 14 Global warming English ESL powerpoints

    The greenhouse effect #1. Used to teach (japanese) esl students about the greenhouse effect, in achievable steps. This powerpoint should go along with the worksheet under the same nam... 56 uses. A selection of English ESL global warming ppt slides.

  14. Global Warming: A Very Short Introduction

    Collection: Very Short Introductions. Global warming is one of the few scientific theories that makes us examine the whole basis of modern society. It is a theory that has politicians arguing, sets nations against each other, queries individual choices of lifestyle, and ultimately asks questions about humanity's relationship with the rest of ...

  15. Climate change: Tackling a global challenge

    A new agreement on global carbon trading was achieved, adding a much-needed tool to the fight against climate change. Negotiators reached other significant agreements in Glasgow, notably 65 ...

  16. What Is Climate Change?

    Image credit: true. Global warming is the long-term heating of Earth's surface observed since the pre-industrial period (between 1850 and 1900) due to human activities, primarily fossil fuel burning, which increases heat-trapping greenhouse gas levels in Earth's atmosphere. This term is not interchangeable with the term "climate change."

  17. Explainers and presentations

    1.1Introduction and scope of the report. 1.1.1Objectives and scope of the assessment. 1.1.2Status and dynamics of the (global) land system. 1.1.2.11.1.2.1 Land ecosystems and climate change. 1.1.2.2Current patterns of land use and land cover. 1.1.2.3Past and ongoing trends. 1.2Key challenges related to land use change.

  18. Presentations and Multimedia

    Climate Change 2022: Impacts, Adaptation & Vulnerability - Full video. Climate change • Climate change refers to long-term shifts in temperatures and weather patterns. Human activities have been the main driver of climate change, primarily due to the burning of fossil fuels like coal, oil and gas. Watch on.

  19. Prezi on climate change: Find lesson plans and Prezi videos

    Inspiration. Recommended videos See how other users use Prezi Video to engage their audiences. Reusable presentations Browse some of our favorite presentations and copy them to use as templates. Reusable infographics Customize the content in these infographics to create your own works of art. Presentation templates Get a big head start when creating your own videos, presentations, or infographics.

  20. Global Warming I: The Science and Modeling of Climate Change

    This class describes the science of global warming and the forecast for humans' impact on Earth's climate. Intended for an audience without much scientific background but a healthy sense of curiosity, the class brings together insights and perspectives from physics, chemistry, biology, earth and atmospheric sciences, and even some economics—all based on a foundation of simple mathematics ...

  21. Presentations and Multimedia

    IPCC Sixth Assessment Report - Climate Change 2021: The Physical Science Basis (Trailer) Climate change • Climate change refers to long-term shifts in temperatures and weather patterns. Human activities have been the main driver of climate change, primarily due to the burning of fossil fuels like coal, oil and gas. Watch on.

  22. New study finds Earth warming at record rate, but no evidence of

    The rate Earth is warming hit an all-time high in 2023 with 92% of last year's surprising record-shattering heat caused by humans, top scientists calculated. The group of 57 scientists from around ...

  23. Global Warming

    Global warming has been a hot topic for decades (no pun intended) and will in all probability continue to be one for years to come. So how do you explain the phenomenon, its causes and consequences to your elementary students? You can use this Google Slides and PowerPoint template… it's brief, to the point and covers everything young kids ...

  24. Centering relationships between people and place: A critical step

    Frequently, scientific expertise to address the global change crisis comes from a place of privilege. Research findings often come from the Global South but are disseminated, debated, and ...

  25. All About Global Warming PowerPoint (Teacher-Made)

    Global Warming is the long-term heating of Earth's climate system observed since the pre-industrial period (between 1850 and 1900) due to human activities. It is caused by increased concentrations of greenhouse gases in the atmosphere, mainly from human activities such as burning fossil fuels, and farming.