GCFGlobal Logo

  • Get started with computers
  • Learn Microsoft Office
  • Apply for a job
  • Improve my work skills
  • Design nice-looking docs
  • Getting Started
  • Smartphones & Tablets
  • Typing Tutorial
  • Online Learning
  • Basic Internet Skills
  • Online Safety
  • Social Media
  • Zoom Basics
  • Google Docs
  • Google Sheets
  • Career Planning
  • Resume Writing
  • Cover Letters
  • Job Search and Networking
  • Business Communication
  • Entrepreneurship 101
  • Careers without College
  • Job Hunt for Today
  • 3D Printing
  • Freelancing 101
  • Personal Finance
  • Sharing Economy
  • Decision-Making
  • Graphic Design
  • Photography
  • Image Editing
  • Learning WordPress
  • Language Learning
  • Critical Thinking
  • For Educators
  • Translations
  • Staff Picks
  • English expand_more expand_less

Critical Thinking and Decision-Making  - What is Critical Thinking?

Critical thinking and decision-making  -, what is critical thinking, critical thinking and decision-making what is critical thinking.

GCFLearnFree Logo

Critical Thinking and Decision-Making: What is Critical Thinking?

Lesson 1: what is critical thinking, what is critical thinking.

Critical thinking is a term that gets thrown around a lot. You've probably heard it used often throughout the years whether it was in school, at work, or in everyday conversation. But when you stop to think about it, what exactly is critical thinking and how do you do it ?

Watch the video below to learn more about critical thinking.

Simply put, critical thinking is the act of deliberately analyzing information so that you can make better judgements and decisions . It involves using things like logic, reasoning, and creativity, to draw conclusions and generally understand things better.

illustration of the terms logic, reasoning, and creativity

This may sound like a pretty broad definition, and that's because critical thinking is a broad skill that can be applied to so many different situations. You can use it to prepare for a job interview, manage your time better, make decisions about purchasing things, and so much more.

The process

illustration of "thoughts" inside a human brain, with several being connected and "analyzed"

As humans, we are constantly thinking . It's something we can't turn off. But not all of it is critical thinking. No one thinks critically 100% of the time... that would be pretty exhausting! Instead, it's an intentional process , something that we consciously use when we're presented with difficult problems or important decisions.

Improving your critical thinking

illustration of the questions "What do I currently know?" and "How do I know this?"

In order to become a better critical thinker, it's important to ask questions when you're presented with a problem or decision, before jumping to any conclusions. You can start with simple ones like What do I currently know? and How do I know this? These can help to give you a better idea of what you're working with and, in some cases, simplify more complex issues.  

Real-world applications

illustration of a hand holding a smartphone displaying an article that reads, "Study: Cats are better than dogs"

Let's take a look at how we can use critical thinking to evaluate online information . Say a friend of yours posts a news article on social media and you're drawn to its headline. If you were to use your everyday automatic thinking, you might accept it as fact and move on. But if you were thinking critically, you would first analyze the available information and ask some questions :

  • What's the source of this article?
  • Is the headline potentially misleading?
  • What are my friend's general beliefs?
  • Do their beliefs inform why they might have shared this?

illustration of "Super Cat Blog" and "According to survery of cat owners" being highlighted from an article on a smartphone

After analyzing all of this information, you can draw a conclusion about whether or not you think the article is trustworthy.

Critical thinking has a wide range of real-world applications . It can help you to make better decisions, become more hireable, and generally better understand the world around you.

illustration of a lightbulb, a briefcase, and the world

/en/problem-solving-and-decision-making/why-is-it-so-hard-to-make-decisions/content/

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o’clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68–69; 1933: 91–92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot’s position, it must appear to project far out in front of the boat. Moreover, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69–70; 1933: 92–93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond lane from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses. As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009, 2021), others on the resulting judgment (Facione 1990a), and still others on responsiveness to reasons (Siegel 1988). Kuhn (2019) takes critical thinking to be more a dialogic practice of advancing and responding to arguments than an individual ability.

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in spacing in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the spacing of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016a) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Facione (1990a: 25) divides “affective dispositions” of critical thinking into approaches to life and living in general and approaches to specific issues, questions or problems. Adapting this distinction, one can usefully divide critical thinking dispositions into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking. In three studies, Haran, Ritov, & Mellers (2013) found that actively open-minded thinking, including “the tendency to weigh new evidence against a favored belief, to spend sufficient time on a problem before giving up, and to consider carefully the opinions of others in forming one’s own”, led study participants to acquire information and thus to make accurate estimations.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), Black (2012), and Blair (2021).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work. It is also helpful to be aware of the prevalence of “noise” (unwanted unsystematic variability of judgments), of how to detect noise (through a noise audit), and of how to reduce noise: make accuracy the goal, think statistically, break a process of arriving at a judgment into independent tasks, resist premature intuitions, in a group get independent judgments first, favour comparative judgments and scales (Kahneman, Sibony, & Sunstein 2021). It is helpful as well to be aware of the concept of “bounded rationality” in decision-making and of the related distinction between “satisficing” and optimizing (Simon 1956; Gigerenzer 2001).

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? In a comprehensive meta-analysis of experimental and quasi-experimental studies of strategies for teaching students to think critically, Abrami et al. (2015) found that dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), Bailin et al. (1999b), and Willingham (2019).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016a, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • –––, 2016b, Reason in the Balance: An Inquiry Approach to Critical Thinking , Indianapolis: Hackett, 2nd edition.
  • –––, 2021, “Inquiry: Teaching for Reasoned Judgment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 31–46. doi: 10.1163/9789004444591_003
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Blair, J. Anthony, 2021, Studies in Critical Thinking , Windsor, ON: Windsor Studies in Argumentation, 2nd edition. [Available online at https://windsor.scholarsportal.info/omp/index.php/wsia/catalog/book/106]
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Boardman, Frank, Nancy M. Cavender, and Howard Kahane, 2018, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Boston: Cengage, 13th edition.
  • Browne, M. Neil and Stuart M. Keeley, 2018, Asking the Right Questions: A Guide to Critical Thinking , Hoboken, NJ: Pearson, 12th edition.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cleghorn, Paul. 2021. “Critical Thinking in the Elementary School: Practical Guidance for Building a Culture of Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessmen t, Leiden: Brill, pp. 150–167. doi: 10.1163/9789004444591_010
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; last accessed 2022 07 16.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; last accessed 2022 07 16.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; last accessed 2022 07 16.
  • ––– (coord.), 2018c, The CRITHINKEDU European Course on Critical Thinking Education for University Teachers: From Conception to Delivery , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU03; last accessed 2022 07 16.
  • Dominguez Caroline and Rita Payan-Carreira (eds.), 2019, Promoting Critical Thinking in European Higher Education Institutions: Towards an Educational Protocol , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU04; last accessed 2022 07 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”, Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; last accessed 2022 07 16.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Gigerenzer, Gerd, 2001, “The Adaptive Toolbox”, in Gerd Gigerenzer and Reinhard Selten (eds.), Bounded Rationality: The Adaptive Toolbox , Cambridge, MA: MIT Press, pp. 37–50.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Groarke, Leo A. and Christopher W. Tindale, 2012, Good Reasoning Matters! A Constructive Approach to Critical Thinking , Don Mills, ON: Oxford University Press, 5th edition.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://pdfcoffee.com/hcta-test-manual-pdf-free.html; last accessed 2022 07 16.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haran, Uriel, Ilana Ritov, and Barbara A. Mellers, 2013, “The Role of Actively Open-minded Thinking in Information Acquisition, Accuracy, and Calibration”, Judgment and Decision Making , 8(3): 188–201.
  • Hatcher, Donald and Kevin Possin, 2021, “Commentary: Thinking Critically about Critical Thinking Assessment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 298–322. doi: 10.1163/9789004444591_017
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Haynes, Ada and Barry Stein, 2021, “Observations from a Long-Term Effort to Assess and Improve Critical Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 231–254. doi: 10.1163/9789004444591_014
  • Hiner, Amanda L. 2021. “Equipping Students for Success in College and Beyond: Placing Critical Thinking Instruction at the Heart of a General Education Program”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 188–208. doi: 10.1163/9789004444591_012
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • –––, 2021, “Seven Philosophical Implications of Critical Thinking: Themes, Variations, Implications”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 9–30. doi: 10.1163/9789004444591_002
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kahneman, Daniel, Olivier Sibony, & Cass R. Sunstein, 2021, Noise: A Flaw in Human Judgment , New York: Little, Brown Spark.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • –––, 2019, “Critical Thinking as Discourse”, Human Development, 62 (3): 146–164. doi:10.1159/000500171
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • –––, 2003, Thinking in Education , Cambridge: Cambridge University Press, 2nd edition.
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Makaiau, Amber Strong, 2021, “The Good Thinker’s Tool Kit: How to Engage Critical Thinking and Reasoning in Secondary Education”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 168–187. doi: 10.1163/9789004444591_011
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Moore, Brooke Noel and Richard Parker, 2020, Critical Thinking , New York: McGraw-Hill, 13th edition.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Past papers available at https://pastpapers.co/ocr/?dir=A-Level/Critical-Thinking-H052-H452; last accessed 2022 07 16.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; last accessed 2022 07 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2013c, “A Fatal Flaw in the Collegiate Learning Assessment Test”, Assessment Update , 25 (1): 8–12.
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • –––, 2020, “CAT Scan: A Critical Review of the Critical-Thinking Assessment Test”, Informal Logic , 40 (3): 489–508. [Available online at https://informallogic.ca/index.php/informal_logic/article/view/6243]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rear, David, 2019, “One Size Fits All? The Limitations of Standardised Assessment in Critical Thinking”, Assessment & Evaluation in Higher Education , 44(5): 664–675. doi: 10.1080/02602938.2018.1526255
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; last accessed 2022 07 16.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simon, Herbert A., 1956, “Rational Choice and the Structure of the Environment”, Psychological Review , 63(2): 129–138. doi: 10.1037/h0042769
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2018, Curriculum for the Compulsory School, Preschool Class and School-age Educare , Stockholm: Skolverket, revised 2018. Available at https://www.skolverket.se/download/18.31c292d516e7445866a218f/1576654682907/pdf3984.pdf; last accessed 2022 07 15.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Vincent-Lancrin, Stéphan, Carlos González-Sancho, Mathias Bouckaert, Federico de Luca, Meritxell Fernández-Barrerra, Gwénaël Jacotin, Joaquin Urgel, and Quentin Vidal, 2019, Fostering Students’ Creativity and Critical Thinking: What It Means in School. Educational Research and Innovation , Paris: OECD Publishing.
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Willingham, Daniel T., 2019, “How to Teach Critical Thinking”, Education: Future Frontiers , 1: 1–17. [Available online at https://prod65.education.nsw.gov.au/content/dam/main-education/teaching-and-learning/education-for-a-changing-world/media/documents/How-to-teach-critical-thinking-Willingham.pdf.]
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2022 by David Hitchcock < hitchckd @ mcmaster . ca >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2024 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

Critical Thinking Academy

What is Critical thinking? 

There are many definitions of Critical thinking. Some of them very long and comprehensive in coverage of everything critical thinking includes, while others are short definitions but  very succintly summarize what Critical thinking is and what leads to becoming a critical thinker. Here are three of them.

1. "Critical thinking is the process of making clear reasoned judgments" ...Beyer, 1995

2. “Critical thinking is the ability to look at a situation and clearly understand it from multiple perspectives while separating facts from opinions, myths, prejudices, hunches (intuition) and assumptions”….. Pearsons

3. "It involves the ability to questions assumptions etc. in order to make logical decisions based on consideration of the options and evaluation of all facts". … Pearsons

What do you need to learn to become a critical thinker? 

All of us know critical thinking by its absence or critical thinking traits that we see in a person. When someone makes a foolish decision or applies the first solution that comes to their mind in problem-solving, we know that critical thinking has not been exercised. But critical thinking itself has not been defined for  most of us -either in our education or later in the workplace.

Maybe we see Critical thinking as applied common sense. Critical thinking may also be defined as the process of making clear reasoned judgments about any claim, issue, or solution to a problem. Some also define it as the process of determining whether a claim is true or false. There are more complex definitions such as Critical thinking is skilled and active participation and evaluation of observations and communications, information, and argumentation (Fisher and Scriven). 

None of the academic definitions manage to communicate what Critical thinking is, its elements, and how it could be useful in the workplace, education, or life. To better understand what Critical thinking is, it is useful to look at the actual elements that go into Critical thinking, and see how they apply in various situations at work and in life.

Critical thinking is the process of making clear reasoned judgements. 

Elements of critical thinking

There are three elements that aid in critical thinking, and another three that obstruct critical thinking.

Logical reasoning: You would not expect an accountant to draw up a balance sheet without the knowledge of the debit/credit system. However, we are expected to be absolutely logical in our reasoning about problems and decision making. The absence of a formal introduction to logical reasoning results in even the most intelligent people miss a few steps in their reasoning. There are three main types of reasoning: Deductive reasoning, Inductive reasoning, and Causal reasoning. Of these, Inductive reasoning and Causal reasoning as the most commonly applied systems of logic in the workplace, education, and our daily life.

Clear thinking and communication: Discussions often end up at cross-purposes and pointless due to a lack of clear communication, and this lack of clarity is often due to a lack of definition of terms, ambiguity, and deliberated or unintended use of vague language.

Credibility: We are often required to evaluate suppliers and people to decide whether to work with them or not. We also rely on the opinions of others to make a varying range of decisions for the business, in education and life. How do we know how much credibility we should attach to the advice we get from these people, or how do we determine whether a supplier will be dependable or not? There are some simple principles that we can use to help us in our process of making judgments about credibility.

Elements that obstruct 

  Rhetoric: In the context of Critical thinking, rhetoric is the use of language to evoke emotions in us and persuade us into belief or action. Words have the power to express, elicit images, and evoke emotions in us. They have tremendous persuasive power or what can be called rhetoric force or emotive force. When a leader calls on soldiers to sacrifice lives for the sake of their country, or when citizens are passionately asked to join a protest to protect freedom, these are appeals to our emotions and not our logical reasoning. Rhetorical language and devices can cloud our ability to reason logically.  

Cognitive biases: A cognitive bias is a systematic error in our thinking and judgment and can be due to a number of different reasons such as faulty memory or perception and processing errors of our brains. There could be a number of other reasons, and scientists are still researching the causes of these cognitive biases. A cognitive bias is different from Fallacies in the sense that these errors are based on our incorrect perception and processing of information by our brains, whereas fallacies are simple errors in reasoning. Knowledge of fallacies can help us avoid reasoning errors, but cognitive biases may arise even if we have knowledge of these biases. Often the only way to mitigate errors due to cognitive biases is to rely on data or seek third party opinions.

hidden traps of persuasion banner

Critical Thinking Academy is founded with an intention of disseminating Critical thinking skills to executives…

University of Louisville

  • Programs & Services
  • Delphi Center

Ideas to Action (i2a)

  • What is Critical Thinking?

The ability to think critically calls for a higher-order thinking than simply the ability to recall information.

Definitions of critical thinking, its elements, and its associated activities fill the educational literature of the past forty years. Critical thinking has been described as an ability to question; to acknowledge and test previously held assumptions; to recognize ambiguity; to examine, interpret, evaluate, reason, and reflect; to make informed judgments and decisions; and to clarify, articulate, and justify positions (Hullfish & Smith, 1961; Ennis, 1962; Ruggiero, 1975; Scriven, 1976; Hallet, 1984; Kitchener, 1986; Pascarella & Terenzini, 1991; Mines et al., 1990; Halpern, 1996; Paul & Elder, 2001; Petress, 2004; Holyoak & Morrison, 2005; among others).

After a careful review of the mountainous body of literature defining critical thinking and its elements, UofL has chosen to adopt the language of Michael Scriven and Richard Paul (2003) as a comprehensive, concise operating definition:

Critical thinking is the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication, as a guide to belief and action.

Paul and Scriven go on to suggest that critical thinking is based on: "universal intellectual values that transcend subject matter divisions: clarity, accuracy, precision, consistency, relevance, sound evidence, good reasons, depth, breadth, and fairness. It entails the examination of those structures or elements of thought implicit in all reasoning: purpose, problem, or question-at-issue, assumptions, concepts, empirical grounding; reasoning leading to conclusions, implication and consequences, objections from alternative viewpoints, and frame of reference. Critical thinking - in being responsive to variable subject matter, issues, and purposes - is incorporated in a family of interwoven modes of thinking, among them: scientific thinking, mathematical thinking, historical thinking, anthropological thinking, economic thinking, moral thinking, and philosophical thinking."

This conceptualization of critical thinking has been refined and developed further by Richard Paul and Linder Elder into the Paul-Elder framework of critical thinking. Currently, this approach is one of the most widely published and cited frameworks in the critical thinking literature. According to the Paul-Elder framework, critical thinking is the:

  • Analysis of thinking by focusing on the parts or structures of thinking ("the Elements of Thought")
  • Evaluation of thinking by focusing on the quality ("the Universal Intellectual Standards")
  • Improvement of thinking by using what you have learned ("the Intellectual Traits")

Selection of a Critical Thinking Framework

The University of Louisville chose the Paul-Elder model of Critical Thinking as the approach to guide our efforts in developing and enhancing our critical thinking curriculum. The Paul-Elder framework was selected based on criteria adapted from the characteristics of a good model of critical thinking developed at Surry Community College. The Paul-Elder critical thinking framework is comprehensive, uses discipline-neutral terminology, is applicable to all disciplines, defines specific cognitive skills including metacognition, and offers high quality resources.

Why the selection of a single critical thinking framework?

The use of a single critical thinking framework is an important aspect of institution-wide critical thinking initiatives (Paul and Nosich, 1993; Paul, 2004). According to this view, critical thinking instruction should not be relegated to one or two disciplines or departments with discipline specific language and conceptualizations. Rather, critical thinking instruction should be explicitly infused in all courses so that critical thinking skills can be developed and reinforced in student learning across the curriculum. The use of a common approach with a common language allows for a central organizer and for the development of critical thinking skill sets in all courses.

  • SACS & QEP
  • Planning and Implementation
  • Why Focus on Critical Thinking?
  • Paul-Elder Critical Thinking Framework
  • Culminating Undergraduate Experience
  • Community Engagement
  • Frequently Asked Questions
  • What is i2a?

Copyright © 2012 - University of Louisville , Delphi Center

Michael W. Austin Ph.D.

Standards of Critical Thinking

Thinking towards truth..

Posted June 11, 2012 | Reviewed by Ekua Hagan

  • What Is Cognition?
  • Find a therapist near me

What is critical thinking? According to my favorite critical thinking text , it is disciplined thinking that is governed by clear intellectual standards.

This involves identifying and analyzing arguments and truth claims, discovering and overcoming prejudices and biases, developing your own reasons and arguments in favor of what you believe, considering objections to your beliefs, and making rational choices about what to do based on your beliefs.

Clarity is an important standard of critical thought. Clarity of communication is one aspect of this. We must be clear in how we communicate our thoughts, beliefs, and reasons for those beliefs.

Careful attention to language is essential here. For example, when we talk about morality , one person may have in mind the conventional morality of a particular community, while another may be thinking of certain transcultural standards of morality. Defining our terms can greatly aid us in the quest for clarity.

Clarity of thought is important as well; this means that we clearly understand what we believe, and why we believe it.

Precision involves working hard at getting the issue under consideration before our minds in a particular way. One way to do this is to ask the following questions: What is the problem at issue? What are the possible answers? What are the strengths and weaknesses of each answer?

Accuracy is unquestionably essential to critical thinking. In order to get at or closer to the truth, critical thinkers seek accurate and adequate information. They want the facts because they need the right information before they can move forward and analyze it.

Relevance means that the information and ideas discussed must be logically relevant to the issue being discussed. Many pundits and politicians are great at distracting us away from this.

Consistency is a key aspect of critical thinking. Our beliefs should be consistent. We shouldn’t hold beliefs that are contradictory. If we find that we do hold contradictory beliefs, then one or both of those beliefs are false. For example, I would likely contradict myself if I believed both that " Racism is always immoral" and "Morality is entirely relative." This is a logical inconsistency.

There is another form of inconsistency, called practical inconsistency, which involves saying you believe one thing while doing another. For example, if I say that I believe my family is more important than my work, but I tend to sacrifice their interests for the sake of my work, then I am being practically inconsistent.

The last three standards are logical correctness, completeness, and fairness. Logical correctness means that one is engaging in correct reasoning from what we believe in a given instance to the conclusions that follow from those beliefs. Completeness means that we engage in deep and thorough thinking and evaluation, avoiding shallow and superficial thought and criticism. Fairness involves seeking to be open-minded, impartial, and free of biases and preconceptions that distort our thinking.

Like any skill or set of skills, getting better at critical thinking requires practice. Anyone wanting to grow in this area might think through these standards and apply them to an editorial in the newspaper or on the web, a blog post, or even their own beliefs. Doing so can be a useful and often meaningful exercise.

Michael W. Austin Ph.D.

Michael W. Austin, Ph.D. , is a professor of philosophy at Eastern Kentucky University.

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Online Therapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Self Tests NEW
  • Therapy Center
  • Diagnosis Dictionary
  • Types of Therapy

May 2024 magazine cover

At any moment, someone’s aggravating behavior or our own bad luck can set us off on an emotional spiral that threatens to derail our entire day. Here’s how we can face our triggers with less reactivity so that we can get on with our lives.

  • Emotional Intelligence
  • Gaslighting
  • Affective Forecasting
  • Neuroscience

major critical thinking

Work Life is Atlassian’s flagship publication dedicated to unleashing the potential of every team through real-life advice, inspiring stories, and thoughtful perspectives from leaders around the world.

Kelli María Korducki

Contributing Writer

Dominic Price

Work Futurist

Dr. Mahreen Khan

Senior Quantitative Researcher, People Insights

Kat Boogaard

Principal Writer

major critical thinking

How to build critical thinking skills for better decision-making

It’s simple in theory, but tougher in practice – here are five tips to get you started.

Get stories like this in your inbox

Have you heard the riddle about two coins that equal thirty cents, but one of them is not a nickel? What about the one where a surgeon says they can’t operate on their own son?

Those brain teasers tap into your critical thinking skills. But your ability to think critically isn’t just helpful for solving those random puzzles – it plays a big role in your career. 

An impressive 81% of employers say critical thinking carries a lot of weight when they’re evaluating job candidates. It ranks as the top competency companies consider when hiring recent graduates (even ahead of communication ). Plus, once you’re hired, several studies show that critical thinking skills are highly correlated with better job performance.

So what exactly are critical thinking skills? And even more importantly, how do you build and improve them? 

What is critical thinking?

Critical thinking is the ability to evaluate facts and information, remain objective, and make a sound decision about how to move forward.

Does that sound like how you approach every decision or problem? Not so fast. Critical thinking seems simple in theory but is much tougher in practice, which helps explain why 65% of employers say their organization has a need for more critical thinking. 

In reality, critical thinking doesn’t come naturally to a lot of us. In order to do it well, you need to:

  • Remain open-minded and inquisitive, rather than relying on assumptions or jumping to conclusions
  • Ask questions and dig deep, rather than accepting information at face value
  • Keep your own biases and perceptions in check to stay as objective as possible
  • Rely on your emotional intelligence to fill in the blanks and gain a more well-rounded understanding of a situation

So, critical thinking isn’t just being intelligent or analytical. In many ways, it requires you to step outside of yourself, let go of your own preconceived notions, and approach a problem or situation with curiosity and fairness.

It’s a challenge, but it’s well worth it. Critical thinking skills will help you connect ideas, make reasonable decisions, and solve complex problems.

7 critical thinking skills to help you dig deeper

Critical thinking is often labeled as a skill itself (you’ll see it bulleted as a desired trait in a variety of job descriptions). But it’s better to think of critical thinking less as a distinct skill and more as a collection or category of skills. 

To think critically, you’ll need to tap into a bunch of your other soft skills. Here are seven of the most important. 

Open-mindedness

It’s important to kick off the critical thinking process with the idea that anything is possible. The more you’re able to set aside your own suspicions, beliefs, and agenda, the better prepared you are to approach the situation with the level of inquisitiveness you need. 

That means not closing yourself off to any possibilities and allowing yourself the space to pull on every thread – yes, even the ones that seem totally implausible.

As Christopher Dwyer, Ph.D. writes in a piece for Psychology Today , “Even if an idea appears foolish, sometimes its consideration can lead to an intelligent, critically considered conclusion.” He goes on to compare the critical thinking process to brainstorming . Sometimes the “bad” ideas are what lay the foundation for the good ones. 

Open-mindedness is challenging because it requires more effort and mental bandwidth than sticking with your own perceptions. Approaching problems or situations with true impartiality often means:

  • Practicing self-regulation : Giving yourself a pause between when you feel something and when you actually react or take action.
  • Challenging your own biases: Acknowledging your biases and seeking feedback are two powerful ways to get a broader understanding. 

Critical thinking example

In a team meeting, your boss mentioned that your company newsletter signups have been decreasing and she wants to figure out why.

At first, you feel offended and defensive – it feels like she’s blaming you for the dip in subscribers. You recognize and rationalize that emotion before thinking about potential causes. You have a hunch about what’s happening, but you will explore all possibilities and contributions from your team members.

Observation

Observation is, of course, your ability to notice and process the details all around you (even the subtle or seemingly inconsequential ones). Critical thinking demands that you’re flexible and willing to go beyond surface-level information, and solid observation skills help you do that.

Your observations help you pick up on clues from a variety of sources and experiences, all of which help you draw a final conclusion. After all, sometimes it’s the most minuscule realization that leads you to the strongest conclusion.

Over the next week or so, you keep a close eye on your company’s website and newsletter analytics to see if numbers are in fact declining or if your boss’s concerns were just a fluke. 

Critical thinking hinges on objectivity. And, to be objective, you need to base your judgments on the facts – which you collect through research. You’ll lean on your research skills to gather as much information as possible that’s relevant to your problem or situation. 

Keep in mind that this isn’t just about the quantity of information – quality matters too. You want to find data and details from a variety of trusted sources to drill past the surface and build a deeper understanding of what’s happening. 

You dig into your email and website analytics to identify trends in bounce rates, time on page, conversions, and more. You also review recent newsletters and email promotions to understand what customers have received, look through current customer feedback, and connect with your customer support team to learn what they’re hearing in their conversations with customers.

The critical thinking process is sort of like a treasure hunt – you’ll find some nuggets that are fundamental for your final conclusion and some that might be interesting but aren’t pertinent to the problem at hand.

That’s why you need analytical skills. They’re what help you separate the wheat from the chaff, prioritize information, identify trends or themes, and draw conclusions based on the most relevant and influential facts. 

It’s easy to confuse analytical thinking with critical thinking itself, and it’s true there is a lot of overlap between the two. But analytical thinking is just a piece of critical thinking. It focuses strictly on the facts and data, while critical thinking incorporates other factors like emotions, opinions, and experiences. 

As you analyze your research, you notice that one specific webpage has contributed to a significant decline in newsletter signups. While all of the other sources have stayed fairly steady with regard to conversions, that one has sharply decreased.

You decide to move on from your other hypotheses about newsletter quality and dig deeper into the analytics. 

One of the traps of critical thinking is that it’s easy to feel like you’re never done. There’s always more information you could collect and more rabbit holes you could fall down.

But at some point, you need to accept that you’ve done your due diligence and make a decision about how to move forward. That’s where inference comes in. It’s your ability to look at the evidence and facts available to you and draw an informed conclusion based on those. 

When you’re so focused on staying objective and pursuing all possibilities, inference can feel like the antithesis of critical thinking. But ultimately, it’s your inference skills that allow you to move out of the thinking process and onto the action steps. 

You dig deeper into the analytics for the page that hasn’t been converting and notice that the sharp drop-off happened around the same time you switched email providers.

After looking more into the backend, you realize that the signup form on that page isn’t correctly connected to your newsletter platform. It seems like anybody who has signed up on that page hasn’t been fed to your email list. 

Communication

3 ways to improve your communication skills at work

3 ways to improve your communication skills at work

If and when you identify a solution or answer, you can’t keep it close to the vest. You’ll need to use your communication skills to share your findings with the relevant stakeholders – like your boss, team members, or anybody who needs to be involved in the next steps.

Your analysis skills will come in handy here too, as they’ll help you determine what information other people need to know so you can avoid bogging them down with unnecessary details. 

In your next team meeting, you pull up the analytics and show your team the sharp drop-off as well as the missing connection between that page and your email platform. You ask the web team to reinstall and double-check that connection and you also ask a member of the marketing team to draft an apology email to the subscribers who were missed. 

Problem-solving

Critical thinking and problem-solving are two more terms that are frequently confused. After all, when you think critically, you’re often doing so with the objective of solving a problem.

The best way to understand how problem-solving and critical thinking differ is to think of problem-solving as much more narrow. You’re focused on finding a solution.

In contrast, you can use critical thinking for a variety of use cases beyond solving a problem – like answering questions or identifying opportunities for improvement. Even so, within the critical thinking process, you’ll flex your problem-solving skills when it comes time to take action. 

Once the fix is implemented, you monitor the analytics to see if subscribers continue to increase. If not (or if they increase at a slower rate than you anticipated), you’ll roll out some other tests like changing the CTA language or the placement of the subscribe form on the page.

5 ways to improve your critical thinking skills

Beyond the buzzwords: Why interpersonal skills matter at work

Beyond the buzzwords: Why interpersonal skills matter at work

Think critically about critical thinking and you’ll quickly realize that it’s not as instinctive as you’d like it to be. Fortunately, your critical thinking skills are learned competencies and not inherent gifts – and that means you can improve them. Here’s how:

  • Practice active listening: Active listening helps you process and understand what other people share. That’s crucial as you aim to be open-minded and inquisitive.
  • Ask open-ended questions: If your critical thinking process involves collecting feedback and opinions from others, ask open-ended questions (meaning, questions that can’t be answered with “yes” or “no”). Doing so will give you more valuable information and also prevent your own biases from influencing people’s input.
  • Scrutinize your sources: Figuring out what to trust and prioritize is crucial for critical thinking. Boosting your media literacy and asking more questions will help you be more discerning about what to factor in. It’s hard to strike a balance between skepticism and open-mindedness, but approaching information with questions (rather than unquestioning trust) will help you draw better conclusions. 
  • Play a game: Remember those riddles we mentioned at the beginning? As trivial as they might seem, games and exercises like those can help you boost your critical thinking skills. There are plenty of critical thinking exercises you can do individually or as a team . 
  • Give yourself time: Research shows that rushed decisions are often regrettable ones. That’s likely because critical thinking takes time – you can’t do it under the wire. So, for big decisions or hairy problems, give yourself enough time and breathing room to work through the process. It’s hard enough to think critically without a countdown ticking in your brain. 

Critical thinking really is critical

The ability to think critically is important, but it doesn’t come naturally to most of us. It’s just easier to stick with biases, assumptions, and surface-level information. 

But that route often leads you to rash judgments, shaky conclusions, and disappointing decisions. So here’s a conclusion we can draw without any more noodling: Even if it is more demanding on your mental resources, critical thinking is well worth the effort.

Advice, stories, and expertise about work life today.

Library Home

Introduction to Logic and Critical Thinking

(10 reviews)

major critical thinking

Matthew Van Cleave, Lansing Community College

Copyright Year: 2016

Publisher: Matthew J. Van Cleave

Language: English

Formats Available

Conditions of use.

Attribution

Learn more about reviews.

Reviewed by "yusef" Alexander Hayes, Professor, North Shore Community College on 6/9/21

Formal and informal reasoning, argument structure, and fallacies are covered comprehensively, meeting the author's goal of both depth and succinctness. read more

Comprehensiveness rating: 5 see less

Formal and informal reasoning, argument structure, and fallacies are covered comprehensively, meeting the author's goal of both depth and succinctness.

Content Accuracy rating: 5

The book is accurate.

Relevance/Longevity rating: 5

While many modern examples are used, and they are helpful, they are not necessarily needed. The usefulness of logical principles and skills have proved themselves, and this text presents them clearly with many examples.

Clarity rating: 5

It is obvious that the author cares about their subject, audience, and students. The text is comprehensible and interesting.

Consistency rating: 5

The format is easy to understand and is consistent in framing.

Modularity rating: 5

This text would be easy to adapt.

Organization/Structure/Flow rating: 5

The organization is excellent, my one suggestion would be a concluding chapter.

Interface rating: 5

I accessed the PDF version and it would be easy to work with.

Grammatical Errors rating: 5

The writing is excellent.

Cultural Relevance rating: 5

This is not an offensive text.

Reviewed by Susan Rottmann, Part-time Lecturer, University of Southern Maine on 3/2/21

I reviewed this book for a course titled "Creative and Critical Inquiry into Modern Life." It won't meet all my needs for that course, but I haven't yet found a book that would. I wanted to review this one because it states in the preface that it... read more

Comprehensiveness rating: 4 see less

I reviewed this book for a course titled "Creative and Critical Inquiry into Modern Life." It won't meet all my needs for that course, but I haven't yet found a book that would. I wanted to review this one because it states in the preface that it fits better for a general critical thinking course than for a true logic course. I'm not sure that I'd agree. I have been using Browne and Keeley's "Asking the Right Questions: A Guide to Critical Thinking," and I think that book is a better introduction to critical thinking for non-philosophy majors. However, the latter is not open source so I will figure out how to get by without it in the future. Overall, the book seems comprehensive if the subject is logic. The index is on the short-side, but fine. However, one issue for me is that there are no page numbers on the table of contents, which is pretty annoying if you want to locate particular sections.

Content Accuracy rating: 4

I didn't find any errors. In general the book uses great examples. However, they are very much based in the American context, not for an international student audience. Some effort to broaden the chosen examples would make the book more widely applicable.

Relevance/Longevity rating: 4

I think the book will remain relevant because of the nature of the material that it addresses, however there will be a need to modify the examples in future editions and as the social and political context changes.

Clarity rating: 3

The text is lucid, but I think it would be difficult for introductory-level students who are not philosophy majors. For example, in Browne and Keeley's "Asking the Right Questions: A Guide to Critical Thinking," the sub-headings are very accessible, such as "Experts cannot rescue us, despite what they say" or "wishful thinking: perhaps the biggest single speed bump on the road to critical thinking." By contrast, Van Cleave's "Introduction to Logic and Critical Thinking" has more subheadings like this: "Using your own paraphrases of premises and conclusions to reconstruct arguments in standard form" or "Propositional logic and the four basic truth functional connectives." If students are prepared very well for the subject, it would work fine, but for students who are newly being introduced to critical thinking, it is rather technical.

It seems to be very consistent in terms of its terminology and framework.

Modularity rating: 4

The book is divided into 4 chapters, each having many sub-chapters. In that sense, it is readily divisible and modular. However, as noted above, there are no page numbers on the table of contents, which would make assigning certain parts rather frustrating. Also, I'm not sure why the book is only four chapter and has so many subheadings (for instance 17 in Chapter 2) and a length of 242 pages. Wouldn't it make more sense to break up the book into shorter chapters? I think this would make it easier to read and to assign in specific blocks to students.

Organization/Structure/Flow rating: 4

The organization of the book is fine overall, although I think adding page numbers to the table of contents and breaking it up into more separate chapters would help it to be more easily navigable.

Interface rating: 4

The book is very simply presented. In my opinion it is actually too simple. There are few boxes or diagrams that highlight and explain important points.

The text seems fine grammatically. I didn't notice any errors.

The book is written with an American audience in mind, but I did not notice culturally insensitive or offensive parts.

Overall, this book is not for my course, but I think it could work well in a philosophy course.

major critical thinking

Reviewed by Daniel Lee, Assistant Professor of Economics and Leadership, Sweet Briar College on 11/11/19

This textbook is not particularly comprehensive (4 chapters long), but I view that as a benefit. In fact, I recommend it for use outside of traditional logic classes, but rather interdisciplinary classes that evaluate argument read more

Comprehensiveness rating: 3 see less

This textbook is not particularly comprehensive (4 chapters long), but I view that as a benefit. In fact, I recommend it for use outside of traditional logic classes, but rather interdisciplinary classes that evaluate argument

To the best of my ability, I regard this content as accurate, error-free, and unbiased

The book is broadly relevant and up-to-date, with a few stray temporal references (sydney olympics, particular presidencies). I don't view these time-dated examples as problematic as the logical underpinnings are still there and easily assessed

Clarity rating: 4

My only pushback on clarity is I didn't find the distinction between argument and explanation particularly helpful/useful/easy to follow. However, this experience may have been unique to my class.

To the best of my ability, I regard this content as internally consistent

I found this text quite modular, and was easily able to integrate other texts into my lessons and disregard certain chapters or sub-sections

The book had a logical and consistent structure, but to the extent that there are only 4 chapters, there isn't much scope for alternative approaches here

No problems with the book's interface

The text is grammatically sound

Cultural Relevance rating: 4

Perhaps the text could have been more universal in its approach. While I didn't find the book insensitive per-se, logic can be tricky here because the point is to evaluate meaningful (non-trivial) arguments, but any argument with that sense of gravity can also be traumatic to students (abortion, death penalty, etc)

No additional comments

Reviewed by Lisa N. Thomas-Smith, Graduate Part-time Instructor, CU Boulder on 7/1/19

The text covers all the relevant technical aspects of introductory logic and critical thinking, and covers them well. A separate glossary would be quite helpful to students. However, the terms are clearly and thoroughly explained within the text,... read more

The text covers all the relevant technical aspects of introductory logic and critical thinking, and covers them well. A separate glossary would be quite helpful to students. However, the terms are clearly and thoroughly explained within the text, and the index is very thorough.

The content is excellent. The text is thorough and accurate with no errors that I could discern. The terminology and exercises cover the material nicely and without bias.

The text should easily stand the test of time. The exercises are excellent and would be very helpful for students to internalize correct critical thinking practices. Because of the logical arrangement of the text and the many sub-sections, additional material should be very easy to add.

The text is extremely clearly and simply written. I anticipate that a diligent student could learn all of the material in the text with little additional instruction. The examples are relevant and easy to follow.

The text did not confuse terms or use inconsistent terminology, which is very important in a logic text. The discipline often uses multiple terms for the same concept, but this text avoids that trap nicely.

The text is fairly easily divisible. Since there are only four chapters, those chapters include large blocks of information. However, the chapters themselves are very well delineated and could be easily broken up so that parts could be left out or covered in a different order from the text.

The flow of the text is excellent. All of the information is handled solidly in an order that allows the student to build on the information previously covered.

The PDF Table of Contents does not include links or page numbers which would be very helpful for navigation. Other than that, the text was very easy to navigate. All the images, charts, and graphs were very clear

I found no grammatical errors in the text.

Cultural Relevance rating: 3

The text including examples and exercises did not seem to be offensive or insensitive in any specific way. However, the examples included references to black and white people, but few others. Also, the text is very American specific with many examples from and for an American audience. More diversity, especially in the examples, would be appropriate and appreciated.

Reviewed by Leslie Aarons, Associate Professor of Philosophy, CUNY LaGuardia Community College on 5/16/19

This is an excellent introductory (first-year) Logic and Critical Thinking textbook. The book covers the important elementary information, clearly discussing such things as the purpose and basic structure of an argument; the difference between an... read more

This is an excellent introductory (first-year) Logic and Critical Thinking textbook. The book covers the important elementary information, clearly discussing such things as the purpose and basic structure of an argument; the difference between an argument and an explanation; validity; soundness; and the distinctions between an inductive and a deductive argument in accessible terms in the first chapter. It also does a good job introducing and discussing informal fallacies (Chapter 4). The incorporation of opportunities to evaluate real-world arguments is also very effective. Chapter 2 also covers a number of formal methods of evaluating arguments, such as Venn Diagrams and Propositional logic and the four basic truth functional connectives, but to my mind, it is much more thorough in its treatment of Informal Logic and Critical Thinking skills, than it is of formal logic. I also appreciated that Van Cleave’s book includes exercises with answers and an index, but there is no glossary; which I personally do not find detracts from the book's comprehensiveness.

Overall, Van Cleave's book is error-free and unbiased. The language used is accessible and engaging. There were no glaring inaccuracies that I was able to detect.

Van Cleave's Textbook uses relevant, contemporary content that will stand the test of time, at least for the next few years. Although some examples use certain subjects like former President Obama, it does so in a useful manner that inspires the use of critical thinking skills. There are an abundance of examples that inspire students to look at issues from many different political viewpoints, challenging students to practice evaluating arguments, and identifying fallacies. Many of these exercises encourage students to critique issues, and recognize their own inherent reader-biases and challenge their own beliefs--hallmarks of critical thinking.

As mentioned previously, the author has an accessible style that makes the content relatively easy to read and engaging. He also does a suitable job explaining jargon/technical language that is introduced in the textbook.

Van Cleave uses terminology consistently and the chapters flow well. The textbook orients the reader by offering effective introductions to new material, step-by-step explanations of the material, as well as offering clear summaries of each lesson.

This textbook's modularity is really quite good. Its language and structure are not overly convoluted or too-lengthy, making it convenient for individual instructors to adapt the materials to suit their methodological preferences.

The topics in the textbook are presented in a logical and clear fashion. The structure of the chapters are such that it is not necessary to have to follow the chapters in their sequential order, and coverage of material can be adapted to individual instructor's preferences.

The textbook is free of any problematic interface issues. Topics, sections and specific content are accessible and easy to navigate. Overall it is user-friendly.

I did not find any significant grammatical issues with the textbook.

The textbook is not culturally insensitive, making use of a diversity of inclusive examples. Materials are especially effective for first-year critical thinking/logic students.

I intend to adopt Van Cleave's textbook for a Critical Thinking class I am teaching at the Community College level. I believe that it will help me facilitate student-learning, and will be a good resource to build additional classroom activities from the materials it provides.

Reviewed by Jennie Harrop, Chair, Department of Professional Studies, George Fox University on 3/27/18

While the book is admirably comprehensive, its extensive details within a few short chapters may feel overwhelming to students. The author tackles an impressive breadth of concepts in Chapter 1, 2, 3, and 4, which leads to 50-plus-page chapters... read more

While the book is admirably comprehensive, its extensive details within a few short chapters may feel overwhelming to students. The author tackles an impressive breadth of concepts in Chapter 1, 2, 3, and 4, which leads to 50-plus-page chapters that are dense with statistical analyses and critical vocabulary. These topics are likely better broached in manageable snippets rather than hefty single chapters.

The ideas addressed in Introduction to Logic and Critical Thinking are accurate but at times notably political. While politics are effectively used to exemplify key concepts, some students may be distracted by distinct political leanings.

The terms and definitions included are relevant, but the examples are specific to the current political, cultural, and social climates, which could make the materials seem dated in a few years without intentional and consistent updates.

While the reasoning is accurate, the author tends to complicate rather than simplify -- perhaps in an effort to cover a spectrum of related concepts. Beginning readers are likely to be overwhelmed and under-encouraged by his approach.

Consistency rating: 3

The four chapters are somewhat consistent in their play of definition, explanation, and example, but the structure of each chapter varies according to the concepts covered. In the third chapter, for example, key ideas are divided into sub-topics numbering from 3.1 to 3.10. In the fourth chapter, the sub-divisions are further divided into sub-sections numbered 4.1.1-4.1.5, 4.2.1-4.2.2, and 4.3.1 to 4.3.6. Readers who are working quickly to master new concepts may find themselves mired in similarly numbered subheadings, longing for a grounded concepts on which to hinge other key principles.

Modularity rating: 3

The book's four chapters make it mostly self-referential. The author would do well to beak this text down into additional subsections, easing readers' accessibility.

The content of the book flows logically and well, but the information needs to be better sub-divided within each larger chapter, easing the student experience.

The book's interface is effective, allowing readers to move from one section to the next with a single click. Additional sub-sections would ease this interplay even further.

Grammatical Errors rating: 4

Some minor errors throughout.

For the most part, the book is culturally neutral, avoiding direct cultural references in an effort to remain relevant.

Reviewed by Yoichi Ishida, Assistant Professor of Philosophy, Ohio University on 2/1/18

This textbook covers enough topics for a first-year course on logic and critical thinking. Chapter 1 covers the basics as in any standard textbook in this area. Chapter 2 covers propositional logic and categorical logic. In propositional logic,... read more

This textbook covers enough topics for a first-year course on logic and critical thinking. Chapter 1 covers the basics as in any standard textbook in this area. Chapter 2 covers propositional logic and categorical logic. In propositional logic, this textbook does not cover suppositional arguments, such as conditional proof and reductio ad absurdum. But other standard argument forms are covered. Chapter 3 covers inductive logic, and here this textbook introduces probability and its relationship with cognitive biases, which are rarely discussed in other textbooks. Chapter 4 introduces common informal fallacies. The answers to all the exercises are given at the end. However, the last set of exercises is in Chapter 3, Section 5. There are no exercises in the rest of the chapter. Chapter 4 has no exercises either. There is index, but no glossary.

The textbook is accurate.

The content of this textbook will not become obsolete soon.

The textbook is written clearly.

The textbook is internally consistent.

The textbook is fairly modular. For example, Chapter 3, together with a few sections from Chapter 1, can be used as a short introduction to inductive logic.

The textbook is well-organized.

There are no interface issues.

I did not find any grammatical errors.

This textbook is relevant to a first semester logic or critical thinking course.

Reviewed by Payal Doctor, Associate Professro, LaGuardia Community College on 2/1/18

This text is a beginner textbook for arguments and propositional logic. It covers the basics of identifying arguments, building arguments, and using basic logic to construct propositions and arguments. It is quite comprehensive for a beginner... read more

This text is a beginner textbook for arguments and propositional logic. It covers the basics of identifying arguments, building arguments, and using basic logic to construct propositions and arguments. It is quite comprehensive for a beginner book, but seems to be a good text for a course that needs a foundation for arguments. There are exercises on creating truth tables and proofs, so it could work as a logic primer in short sessions or with the addition of other course content.

The books is accurate in the information it presents. It does not contain errors and is unbiased. It covers the essential vocabulary clearly and givens ample examples and exercises to ensure the student understands the concepts

The content of the book is up to date and can be easily updated. Some examples are very current for analyzing the argument structure in a speech, but for this sort of text understandable examples are important and the author uses good examples.

The book is clear and easy to read. In particular, this is a good text for community college students who often have difficulty with reading comprehension. The language is straightforward and concepts are well explained.

The book is consistent in terminology, formatting, and examples. It flows well from one topic to the next, but it is also possible to jump around the text without loosing the voice of the text.

The books is broken down into sub units that make it easy to assign short blocks of content at a time. Later in the text, it does refer to a few concepts that appear early in that text, but these are all basic concepts that must be used to create a clear and understandable text. No sections are too long and each section stays on topic and relates the topic to those that have come before when necessary.

The flow of the text is logical and clear. It begins with the basic building blocks of arguments, and practice identifying more and more complex arguments is offered. Each chapter builds up from the previous chapter in introducing propositional logic, truth tables, and logical arguments. A select number of fallacies are presented at the end of the text, but these are related to topics that were presented before, so it makes sense to have these last.

The text is free if interface issues. I used the PDF and it worked fine on various devices without loosing formatting.

1. The book contains no grammatical errors.

The text is culturally sensitive, but examples used are a bit odd and may be objectionable to some students. For instance, President Obama's speech on Syria is used to evaluate an extended argument. This is an excellent example and it is explained well, but some who disagree with Obama's policies may have trouble moving beyond their own politics. However, other examples look at issues from all political viewpoints and ask students to evaluate the argument, fallacy, etc. and work towards looking past their own beliefs. Overall this book does use a variety of examples that most students can understand and evaluate.

My favorite part of this book is that it seems to be written for community college students. My students have trouble understanding readings in the New York Times, so it is nice to see a logic and critical thinking text use real language that students can understand and follow without the constant need of a dictionary.

Reviewed by Rebecca Owen, Adjunct Professor, Writing, Chemeketa Community College on 6/20/17

This textbook is quite thorough--there are conversational explanations of argument structure and logic. I think students will be happy with the conversational style this author employs. Also, there are many examples and exercises using current... read more

This textbook is quite thorough--there are conversational explanations of argument structure and logic. I think students will be happy with the conversational style this author employs. Also, there are many examples and exercises using current events, funny scenarios, or other interesting ways to evaluate argument structure and validity. The third section, which deals with logical fallacies, is very clear and comprehensive. My only critique of the material included in the book is that the middle section may be a bit dense and math-oriented for learners who appreciate the more informal, informative style of the first and third section. Also, the book ends rather abruptly--it moves from a description of a logical fallacy to the answers for the exercises earlier in the text.

The content is very reader-friendly, and the author writes with authority and clarity throughout the text. There are a few surface-level typos (Starbuck's instead of Starbucks, etc.). None of these small errors detract from the quality of the content, though.

One thing I really liked about this text was the author's wide variety of examples. To demonstrate different facets of logic, he used examples from current media, movies, literature, and many other concepts that students would recognize from their daily lives. The exercises in this text also included these types of pop-culture references, and I think students will enjoy the familiarity--as well as being able to see the logical structures behind these types of references. I don't think the text will need to be updated to reflect new instances and occurrences; the author did a fine job at picking examples that are relatively timeless. As far as the subject matter itself, I don't think it will become obsolete any time soon.

The author writes in a very conversational, easy-to-read manner. The examples used are quite helpful. The third section on logical fallacies is quite easy to read, follow, and understand. A student in an argument writing class could benefit from this section of the book. The middle section is less clear, though. A student learning about the basics of logic might have a hard time digesting all of the information contained in chapter two. This material might be better in two separate chapters. I think the author loses the balance of a conversational, helpful tone and focuses too heavily on equations.

Consistency rating: 4

Terminology in this book is quite consistent--the key words are highlighted in bold. Chapters 1 and 3 follow a similar organizational pattern, but chapter 2 is where the material becomes more dense and equation-heavy. I also would have liked a closing passage--something to indicate to the reader that we've reached the end of the chapter as well as the book.

I liked the overall structure of this book. If I'm teaching an argumentative writing class, I could easily point the students to the chapters where they can identify and practice identifying fallacies, for instance. The opening chapter is clear in defining the necessary terms, and it gives the students an understanding of the toolbox available to them in assessing and evaluating arguments. Even though I found the middle section to be dense, smaller portions could be assigned.

The author does a fine job connecting each defined term to the next. He provides examples of how each defined term works in a sentence or in an argument, and then he provides practice activities for students to try. The answers for each question are listed in the final pages of the book. The middle section feels like the heaviest part of the whole book--it would take the longest time for a student to digest if assigned the whole chapter. Even though this middle section is a bit heavy, it does fit the overall structure and flow of the book. New material builds on previous chapters and sub-chapters. It ends abruptly--I didn't realize that it had ended, and all of a sudden I found myself in the answer section for those earlier exercises.

The simple layout is quite helpful! There is nothing distracting, image-wise, in this text. The table of contents is clearly arranged, and each topic is easy to find.

Tiny edits could be made (Starbuck's/Starbucks, for one). Otherwise, it is free of distracting grammatical errors.

This text is quite culturally relevant. For instance, there is one example that mentions the rumors of Barack Obama's birthplace as somewhere other than the United States. This example is used to explain how to analyze an argument for validity. The more "sensational" examples (like the Obama one above) are helpful in showing argument structure, and they can also help students see how rumors like this might gain traction--as well as help to show students how to debunk them with their newfound understanding of argument and logic.

The writing style is excellent for the subject matter, especially in the third section explaining logical fallacies. Thank you for the opportunity to read and review this text!

Reviewed by Laurel Panser, Instructor, Riverland Community College on 6/20/17

This is a review of Introduction to Logic and Critical Thinking, an open source book version 1.4 by Matthew Van Cleave. The comparison book used was Patrick J. Hurley’s A Concise Introduction to Logic 12th Edition published by Cengage as well as... read more

This is a review of Introduction to Logic and Critical Thinking, an open source book version 1.4 by Matthew Van Cleave. The comparison book used was Patrick J. Hurley’s A Concise Introduction to Logic 12th Edition published by Cengage as well as the 13th edition with the same title. Lori Watson is the second author on the 13th edition.

Competing with Hurley is difficult with respect to comprehensiveness. For example, Van Cleave’s book is comprehensive to the extent that it probably covers at least two-thirds or more of what is dealt with in most introductory, one-semester logic courses. Van Cleave’s chapter 1 provides an overview of argumentation including discerning non-arguments from arguments, premises versus conclusions, deductive from inductive arguments, validity, soundness and more. Much of Van Cleave’s chapter 1 parallel’s Hurley’s chapter 1. Hurley’s chapter 3 regarding informal fallacies is comprehensive while Van Cleave’s chapter 4 on this topic is less extensive. Categorical propositions are a topic in Van Cleave’s chapter 2; Hurley’s chapters 4 and 5 provide more instruction on this, however. Propositional logic is another topic in Van Cleave’s chapter 2; Hurley’s chapters 6 and 7 provide more information on this, though. Van Cleave did discuss messy issues of language meaning briefly in his chapter 1; that is the topic of Hurley’s chapter 2.

Van Cleave’s book includes exercises with answers and an index. A glossary was not included.

Reviews of open source textbooks typically include criteria besides comprehensiveness. These include comments on accuracy of the information, whether the book will become obsolete soon, jargon-free clarity to the extent that is possible, organization, navigation ease, freedom from grammar errors and cultural relevance; Van Cleave’s book is fine in all of these areas. Further criteria for open source books includes modularity and consistency of terminology. Modularity is defined as including blocks of learning material that are easy to assign to students. Hurley’s book has a greater degree of modularity than Van Cleave’s textbook. The prose Van Cleave used is consistent.

Van Cleave’s book will not become obsolete soon.

Van Cleave’s book has accessible prose.

Van Cleave used terminology consistently.

Van Cleave’s book has a reasonable degree of modularity.

Van Cleave’s book is organized. The structure and flow of his book is fine.

Problems with navigation are not present.

Grammar problems were not present.

Van Cleave’s book is culturally relevant.

Van Cleave’s book is appropriate for some first semester logic courses.

Table of Contents

Chapter 1: Reconstructing and analyzing arguments

  • 1.1 What is an argument?
  • 1.2 Identifying arguments
  • 1.3 Arguments vs. explanations
  • 1.4 More complex argument structures
  • 1.5 Using your own paraphrases of premises and conclusions to reconstruct arguments in standard form
  • 1.6 Validity
  • 1.7 Soundness
  • 1.8 Deductive vs. inductive arguments
  • 1.9 Arguments with missing premises
  • 1.10 Assuring, guarding, and discounting
  • 1.11 Evaluative language
  • 1.12 Evaluating a real-life argument

Chapter 2: Formal methods of evaluating arguments

  • 2.1 What is a formal method of evaluation and why do we need them?
  • 2.2 Propositional logic and the four basic truth functional connectives
  • 2.3 Negation and disjunction
  • 2.4 Using parentheses to translate complex sentences
  • 2.5 “Not both” and “neither nor”
  • 2.6 The truth table test of validity
  • 2.7 Conditionals
  • 2.8 “Unless”
  • 2.9 Material equivalence
  • 2.10 Tautologies, contradictions, and contingent statements
  • 2.11 Proofs and the 8 valid forms of inference
  • 2.12 How to construct proofs
  • 2.13 Short review of propositional logic
  • 2.14 Categorical logic
  • 2.15 The Venn test of validity for immediate categorical inferences
  • 2.16 Universal statements and existential commitment
  • 2.17 Venn validity for categorical syllogisms

Chapter 3: Evaluating inductive arguments and probabilistic and statistical fallacies

  • 3.1 Inductive arguments and statistical generalizations
  • 3.2 Inference to the best explanation and the seven explanatory virtues
  • 3.3 Analogical arguments
  • 3.4 Causal arguments
  • 3.5 Probability
  • 3.6 The conjunction fallacy
  • 3.7 The base rate fallacy
  • 3.8 The small numbers fallacy
  • 3.9 Regression to the mean fallacy
  • 3.10 Gambler's fallacy

Chapter 4: Informal fallacies

  • 4.1 Formal vs. informal fallacies
  • 4.1.1 Composition fallacy
  • 4.1.2 Division fallacy
  • 4.1.3 Begging the question fallacy
  • 4.1.4 False dichotomy
  • 4.1.5 Equivocation
  • 4.2 Slippery slope fallacies
  • 4.2.1 Conceptual slippery slope
  • 4.2.2 Causal slippery slope
  • 4.3 Fallacies of relevance
  • 4.3.1 Ad hominem
  • 4.3.2 Straw man
  • 4.3.3 Tu quoque
  • 4.3.4 Genetic
  • 4.3.5 Appeal to consequences
  • 4.3.6 Appeal to authority

Answers to exercises Glossary/Index

Ancillary Material

About the book.

This is an introductory textbook in logic and critical thinking. The goal of the textbook is to provide the reader with a set of tools and skills that will enable them to identify and evaluate arguments. The book is intended for an introductory course that covers both formal and informal logic. As such, it is not a formal logic textbook, but is closer to what one would find marketed as a “critical thinking textbook.”

About the Contributors

Matthew Van Cleave ,   PhD, Philosophy, University of Cincinnati, 2007.  VAP at Concordia College (Moorhead), 2008-2012.  Assistant Professor at Lansing Community College, 2012-2016. Professor at Lansing Community College, 2016-

Contribute to this Page

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Humanities LibreTexts

1: Introduction to Critical Thinking, Reasoning, and Logic

  • Last updated
  • Save as PDF
  • Page ID 29580

  • Golden West College via NGE Far Press

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

What is thinking? It may seem strange to begin a logic textbook with this question. ‘Thinking’ is perhaps the most intimate and personal thing that people do. Yet the more you ‘think’ about thinking, the more mysterious it can appear. It is the sort of thing that one intuitively or naturally understands, and yet cannot describe to others without great difficulty. Many people believe that logic is very abstract, dispassionate, complicated, and even cold. But in fact the study of logic is nothing more intimidating or obscure than this: the study of good thinking.

  • 1.1: Prelude to Chapter
  • 1.2: Introduction and Thought Experiments- The Trolley Problem
  • 1.3: Truth and Its Role in Argumentation - Certainty, Probability, and Monty Hall Only certain sorts of sentences can be used in arguments. We call these sentences propositions, statements or claims.
  • 1.4: Distinction of Proof from Verification; Our Biases and the Forer Effect
  • 1.5: The Scientific Method The procedure that scientists use is also a standard form of argument. Its conclusions only give you the likelihood or the probability that something is true (if your theory or hypothesis is confirmed), and not the certainty that it’s true. But when it is done correctly, the conclusions it reaches are very well-grounded in experimental evidence.
  • 1.6: Diagramming Thoughts and Arguments - Analyzing News Media
  • 1.7: Creating a Philosophical Outline

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • PMC10607682

Logo of jintell

Critical Thinking: Creating Job-Proof Skills for the Future of Work

Daniela dumitru.

1 Teacher Training Department, Bucharest University of Economic Studies, 010374 Bucharest, Romania

2 Doctoral School of Psychology and Educational Sciences, University of Bucharest, 050663 Bucharest, Romania

Diane F. Halpern

3 Department of Psychology, Claremont McKenna College, Claremont, CA 91711, USA; moc.liamg@nreplahfenaid

In this study, we explore the transformative impact of artificial intelligence (AI) on the job market and argue for the growing importance of critical thinking skills in the face of job automation and changing work dynamics. Advancements in AI have the potential to disrupt various professions, including, for example, programming, legal work, and radiology. However, solely relying on AI systems can lead to errors and misjudgments, emphasizing the need for human oversight. The concept of “job-proof skills” is introduced, highlighting the importance of critical thinking, problem-solving, empathy, ethics, and other human attributes that machines cannot replicate with the same standards and agility. We maintain that critical thinking can be taught and learned through appropriate classroom instruction and transfer-focused approaches. The need for critical thinking skills is further reinforced by the influx of information and the spread of misinformation in the age of social media. Moreover, employers increasingly value critical thinking skills in their workforce, yet there exists a gap between the demand for these skills and the preparedness of college graduates. Critical thinking is not only essential for the future of work, but also for informed citizenship in an increasingly complex world. The potential impact of AI on job disruption, wages, and employment polarization is discussed, highlighting the correlation between jobs requiring critical thinking skills and their resistance to automation. We conclude by discussing collaborative efforts between universities and labor market organizations to adapt curricula and promote the development of critical thinking skills, drawing on examples from European initiatives. The need to prioritize critical thinking skills in education and address the evolving demands of the labor market is emphasized as a crucial step for navigating the future of work and opportunities for workers.

1. Introduction: Critical Thinking: Creating Job-Proof Skills for the Future of Work

The rapid evolution of online technologies has ushered in a paradigm shift in employment, redefining the nature of work and the skills required to succeed in the digital age. This transformative landscape, characterized by the ubiquitous presence of the Internet, social media platforms, and advanced artificial intelligence systems, has created a plethora of new opportunities and challenges in the labor market. As we navigate this digital frontier, it is becoming increasingly clear that traditional employment paradigms are undergoing a profound transformation. The convergence of online technologies with the demands of a networked world has not only created new job opportunities, but it has also disrupted established industries, rendering some job roles obsolete while creating demand for previously unforeseen skills. In this era of unprecedented connectivity and innovation, examining the intricate interplay between online technologies and jobs is paramount as it holds the key to understanding the dynamics of our rapidly evolving workforce.

Artificial intelligence (AI) is disrupting many jobs and promises “to change the way the world works” ( adminGPT 2023, para. 13 ). The number and range of AI programs are increasing at a rapid pace, and they are likely to continually improve to meet user demands. Consider, for example, ChatGPT, which can respond to questions and requests in a way that seems to come from a human rather than a computer program. GPT stands for “generative pretrained transformer”. It is generative in that it can provide responses that it never “learned”; it is pretrained with a large language model ( Bushwick et al. 2023 ). Newer versions can describe visual images, although thus far, they cannot create visual images. Its uses are seemingly endless. It is easy to imagine how such programs can change the lives of blind individuals. In fact, it can and will change the lives of all of us.

In this paper, we argue that these advances in online technologies will make critical thinking (CT) more important than ever before. Many who are preparing to enter the job market, and many who are already employed, will need to adapt to new forms of job automation and different ways of working.

Consider, for example, that an early achievement of ChatGPT was its generation of Python code (a computer language) to compute various tasks, such as data analysis. Apparently, getting ChatGPT to generate code is so easy that several YouTube videos have popped up claiming that they can teach novice users to use ChatGPT to generate code in 90 s. ( Data Professor 2023 ). The benefits are obvious, but so are the potential job losses for people who work in Python. Python coders will need to upgrade their skills, perhaps first becoming experts in the use of ChatGPT and similar programs, but this also has a positive side--they can spend more time working on larger questions such as which analyses are needed, and, of course, carefully reviewing the work produced by AI to ensure that it is accurate and understandable. Early versions of ChatGPT responses often contained errors. A New York lawyer learned the hard way: Steven A. Schwartz, a lawyer for 30 years, used ChatGPT to create a legal document ( Weiser and Schweber 2023 ). It was filled with fake citations and bogus judicial opinions. Sadly, Mr. Schwartz never checked the accuracy of the document he filed in court. The judge was not amused. This highly public and embarrassing event should be a lesson for all of us. Current AI programs cannot be trusted to take over our work, though they may be able to aid or supplement it. However, other AI programs can “read” radiographs more accurately than human radiologists, which provides a benefit to both radiologists and patients. There is an immediate positive effect for this advancement: Radiologists will have more time to directly work with patients, and yes, they must also check the accuracy of the outputs from their programs when presenting diagnoses.

For the rest of us, whether we are students or early or late in our careers, we need to focus on the development of “job-proof skills” in the face of AI advances. A report from the United Nations defines job-proof skills as “conceptual and strategic thinking, problem-solving, empathy, optimism, ethics, emotional intelligence, and judgments are the future-proof skills and attributes that machines will not be able to replicate with the same standards and agility as qualified human beings” ( Elkeiy 2022, para. 5 ). In other words, critical thinking skills will always be needed.

2. What Is Critical Thinking?

Although some scholars in the field of critical thinking have emphasized differences among various definitions, we believe that the commonalities are evident (c.f., Dwyer 2017 ; Nisbett 2015 ; Lipman 1991 ; Fisher 2001 ). There are some differences in the use of terms and several skills might be more important, but all of the definitions (more or less) conform to our preferred definition: “Critical thinking is the use of those cognitive skills and abilities that increase the probability of a desirable outcome. It is purposeful, reasoned, and goal directed. It is the kind of thinking involved in solving problems, formulating inferences, calculating likelihoods, and making decisions. Critical thinkers use these skills appropriately, without prompting, and usually with conscious intent, in a variety of settings. That is, they are predisposed to think critically. When we think critically, we are evaluating the outcomes of our thought processes--how good a decision is or how well a problem is solved. Critical thinking also involves evaluating the thinking process--the reasoning that went into the conclusion we’ve arrived at, or the kinds of factors considered in making a decision” ( Halpern and Dunn 2023, pp. 6–7 ). The reason we need a common definition of critical thinking is that, without it, instructors can and have passed almost anything off as instruction in critical thinking. However, common ground is to be found concerning CT definitions. In a European project, which we shall refer to in Section 4.3 , the critical thinking definition is based on the works of Halpern and Dunn ( 2023 ), Facione ( 1990 ), Paul and Elder ( 2008 ), and Kuhn ( 1999 ). During two debate sessions, 33 international participants from higher education and the labor market defined critical thinking as a deliberate cognitive process guided by conscious, dynamic, self-directed, self-monitored, and self-correcting thought ( Rebelo et al. 2023 ). It relies on both disciplinary and procedural knowledge, along with metacognitive aspects (including metacognitive, meta-strategic, and epistemological dimensions). Critical thinking can be cultivated and enhanced through the development of competencies, and it is facilitated by various attitudes, such as systematic thinking, open-mindedness, empathy, flexibility, and cognitive maturity. Additionally, it encompasses intellectual skills such as reflection, self-regulation, analysis, inference, explanation, synthesis, and systematic thought. Critical thinking not only stimulates problem-solving capabilities but also facilitates effective communication, fosters independent and holistic thinking, and bolsters decision-making and active citizenship ( Pnevmatikos et al. 2021 ).

2.1. Can Critical Thinking Be Learned?

We teach writing, oral communication, and mathematics with the (often implicit) belief that these skills will be learned and transferred to multiple settings both inside and outside of the classroom. There is a large and growing research literature showing that, with appropriate classroom instruction in critical thinking, including specific instruction designed for transfer, the skills will spontaneously transfer and in uncued (i.e., there are no reminders to use the critical thinking skill that was learned in class) situations ( Dumitru 2012 ; Heijltjes et al. 2014 ; Tiruneh 2019 ). Several such studies were presented by Dwyer ( 2017 ) and Halpern and Dunn ( 2023 ). For the sake of brevity, we review just one recent study. The study was designed to counteract the effects of conspiracy theories. When people believe conspiracy theories, they often act in harmful ways–such as refusing to get the COVID-19 vaccine, which resulted in the death of large numbers of people around the world, or attacking the United State Capitol Building on 6 January 2021 in the belief that there was a conspiracy afoot designed to steal the United States 2020 presidential election from Donald Trump. In a review of the research literature on the efficacy of interventions, the researchers found “there was one intervention which was characteristically different to the rest” ( O’Mahony et al. 2023, para. 23 ). It was a semester-long university course in critical thinking that was designed to teach students the difference between good scientific practices and pseudoscience. These courses require effort and commitment, but they are effective. The same conclusion applies to all interventions designed to enhance critical thinking. There are no fast and easy “once and done” strategies that work. This is why we recommend continuous and pervasive coursework to make sure that the learning of CT skills “sticks.”

2.2. The Need for Critical Thinking Skills

Online technologies-related (including AI) job loss and redesign are not the only reasons why we need to concentrate on teaching and learning the skills of critical thinking. COVID-19 left 140 million people out of work, and many of their jobs will never return ( Roslansky 2021 ). We are drowning in a tsunami of information, confronted with advertisements online, in news reports, social media, podcasts, and more. The need to be able to distinguish good information from bad is critical. In addition, employers want to hire people with critical thinking skills. In a recent report by Hart Research Associated ( 2018 ), they found that in an employer survey of 501 business executives, 78% said that critical thinking/analytic reasoning is the most important skill they want in their employees, but they also added that only 34% of college graduates arrive well prepared in critical thinking. This gap between what employers want and their perception of the preparedness of the workforce was larger for critical thinking than for any other area. In fact, every report on the future of work made this same point. Consider this quote from The World Economic Forum ( 2020 ) on the future of jobs: “Skills gaps continue to be high as in-demand skills across jobs change in the next five years. The top skills and skill groups which employers see as rising in prominence in the lead up to 2025 include groups such as critical thinking and analysis as well as problem-solving.” (p. 5). In a report from the Office of the European Union: Key Competences for Lifelong Learning, the commissioner wrote “Critical thinking, media literacy, and communication skills are some of the requirements to navigate our increasingly complex world” ( Navracsics 2019, p. 3 ). Of course, critical thinking is not just needed in the world of work. A true democracy requires an educated citizenry with citizens who can think critically about world social issues, such as the use/threat of AI, war, poverty, climate change, and so much more. Irrational voters are a threat to all of us—and to themselves.

The need to think critically is not new, but it has taken on a new urgency as social media and other forms of communication have made the deliberate spread of misinformation move at the speed of light. There is nothing new about the use of lies, half-truths, and innuendos to get people to believe something that is not true. Anyone can post anything on popular media sites, and this “fake news” is often copied and shared thousands of times. Sometimes the information is spread with a deliberate attempt to mislead; other times, it is copied and spread by people who believe it is true. These messages are often used to discredit political adversaries, create social unrest, and incite fear. It can be a difficult task to determine what to believe and what to discard. Vosoughi et al. ( 2018 ) analyzed data from 126,000 tweets that were spread by approximately 3 million people. How did the researchers discriminate true data from false data? The same way we all should. They used several different fact-checking sites and found 95% to 98% agreement regarding the truth or falsehood of information. They found that false data spread more quickly and more widely than true data because the false data tended to be novel and sensational, rendering it salient and seductive.

In today’s landscape, the imperative to foster critical thinking skills is becoming increasingly apparent as we grapple with the rapid rise of social media and artificial intelligence technologies and their profound impact on the future of work. The confluence of these transformative forces has ushered in a new era characterized by the potential for significant job disruption. As online technologies advance and automation becomes more widespread, certain traditional job roles may become obsolete, requiring the development of innovative skills and adaptability in the workforce. In this context, critical thinking emerges as a central element in preparing individuals to navigate the evolving job market. It equips individuals with the ability to analyze complex information, discern credible sources from the proliferation of social media information, and make informed decisions in an era of blurring boundaries between human and machine contributions to the workforce. Cultivating critical thinking skills will be essential to ensuring that individuals can take advantage of the opportunities presented by new technologies while mitigating the challenges of job disruption in this AI-driven future.

3. Critical Thinking Skills and Job Disruption and Replacement

Eloundou et al. in 2023 estimated that about 15% of all U.S. workers’ jobs could be accomplished much faster and at the same level of quality with currently available AI. There are large differences in the extent to which various occupations and industries will be affected by advancements in AI. For example, tasks that require a high degree of human interaction, highly specialized domain knowledge, or creating innovative technologies will be minimally affected; whereas, other occupations such as providing captions for images or answering questions about a text or document are more likely to be affected. Routine-based jobs in general are more likely to be dislodged by advanced technologies ( Acemoglu 2002 ). Using the basic definitions of skills that are standard in O*Net, Eloundou et al. ( 2023 ) found a clear negative correlation between jobs requiring knowledge of science and critical thinking skills and the likelihood that AI will “take over” the job. These findings reinforce our main point—the best way to gain job-proof skills is with critical thinking.

The effect of online technologies on wages is complicated because of the large number of factors that come together to determine earnings. Acemoglu and Autor ( 2011 ) advocated for a model that simultaneously considers the level of the tasks required for any job (low, medium, and high), where a high level of skill is defined as one that allows employees to perform a variety of tasks, the demand for the tasks, and technological changes that can complement a task or replace it. They assert that employment has become increasingly polarized with the growth in both high education, high wage occupations and low education, and low wage occupations in the United States and the European Union. To understand and predict which occupations will be most disrupted by AI (and other developing technologies), an investigator will need to simultaneously consider all of these variables. Technological advancements can generate shifts in demand, favoring either high- or low-skilled workers. According to Acemoglu and Autor ( 2011 ), we can expect some of the largest disruptive effects at the middle level of skills, where some of the tasks performed at this level can be more easily replaced by new technologies, with widespread employment growth in high- and low-skilled occupations.

4. Business-University Collaborations

The pursuit of promoting high standards of critical thinking in university students across various academic disciplines is a challenging endeavor that should be leveraged through collaboration with stakeholders. In such collaborations, stakeholders can contribute to refining the skills required by learners and bring their own perspectives to academic instruction. This close partnership between universities and stakeholders helps minimize gaps and mismatches in the transition to the labor market, facilitates research collaboration, and increases student motivation.

Collaborations between businesses and universities have gained increasing importance in today’s rapidly evolving educational and economic landscape. These partnerships are instrumental in bridging the gap between academic learning and the real-world skills demanded by the job market. One key aspect of business-university collaboration (BUC) is the alignment of curricula with the dynamic needs of industries. This entails the joint effort of higher education institutions (HEIs) and industry experts to design, develop, and deliver educational programs that equip students with practical, job-ready skills. The curriculum design phase involves tailoring study programs, courses, and modules to address skills gaps and align with the specific requirements of employers.

Moreover, BUC extends beyond the classroom. Collaborations often involve business engagement in educational activities, including guest lectures, internships, co-op programs, and research projects. These interactions provide students with invaluable exposure to real-world scenarios, allowing them to apply theoretical knowledge in practical settings.

In essence, BUC is a multifaceted partnership that benefits both students and businesses. It ensures that educational programs remain relevant, fostering a seamless transition from academia to the workforce. This collaborative approach not only enhances students’ employability but also contributes to the overall growth and innovation of industries.

Operationalizing the collaboration implicates a particular focus on curriculum design, development, and delivery. These involve the collaboration between higher education institutions and labor market partners to create or enhance undergraduate or postgraduate study programs, courses, or modules. This collaborative effort aims to address skills gaps, align curricula with employers’ needs, integrate training initiatives, and improve graduates’ employability. Additionally, curriculum delivery includes various forms of business involvement, such as guest lectures, placements, supervision, mentoring, and work-based learning activities.

While the existing literature often discusses the barriers and motivations for university-business collaboration ( Healy et al. 2014 ; Orazbayeva et al. 2020 ), there is a need for more empirical insights into the roles and responsibilities of each party engaged in joint curriculum design, development, and delivery, as well as lessons learned from these collaborations ( Rebelo et al. 2023 ).

4.1. Why Do We Need Higher Education’s Help?

In the preceding sections of this paper, we delved into the disruptive forces of artificial intelligence (AI) on the job market and the critical need for individuals to adapt to these changes by developing “job-proof skills”. The rise of online technologies such as ChatGPT presents both opportunities and challenges, particularly in fields where middle-level skills are required. To effectively tackle these challenges, we must turn our attention to the pivotal role of education and the cultivation of essential skills such as critical thinking.

We highlighted how AI is rapidly transforming various industries and the need for individuals to adapt to these changes. Moreover, we explored the question of whether critical thinking can be learned, showcasing research evidence that supports the teachability of this skill. Now, we shall explore practical strategies for fostering critical thinking skills through collaborations between universities and businesses. The idea here is to create an educational framework that equips students with the capabilities needed to thrive in the evolving workforce.

Building upon the success of two European projects, “Critical thinking across higher education curricula—CRITHINKEDU” and “Critical thinking for successful jobs—THINK4JOBS”, we argue that incorporating practical experience and CT development through apprenticeships is a possible action for better higher education classes. This collaborative approach between HEI and LMO designed to address the differing perspectives and terminologies used by these two entities regarding critical thinking could be an important curriculum design for the better adaptation of job market technology disruptions.

Research conducted by Eloundou et al. ( 2023 ), which shows that critical thinking skills and science skills are less likely to be taken by AI, compels us to sustain the THINK4JOBS apprenticeship curricula as a possible teaching protocol for critical thinking enhancement to face challenges posed by AI at work.

The results from these projects demonstrate significant progress in students’ critical thinking skills and dispositions. These improvements, as highlighted below in Section 4.3 , underscore the effectiveness of embedding critical thinking in the curriculum. The guidelines formulated for implementing Critical Thinking Blended Apprenticeship Curricula provide a roadmap for educators to follow when effectively integrating critical thinking into their courses.

As we ponder the possibility of a world where critical thinking is widespread, we can envision a future where individuals are equipped to confront the ideological fanaticism that threatens global stability. Critical thinking, as both a cognitive skill and a disposition, has the potential to shape a workforce capable of adapting to the ever-changing landscape of work, making informed decisions, and contributing to a more rational and democratic world. The THINK4JOBS project emphasizes the practical steps taken to prepare students for the future job market and sets the stage for further exploration of the role of critical thinking in addressing global challenges, including AI presence in the job market.

4.2. CRITHINKEDU Proctocol for Critical Thinking Education across Curricula

Given that the best education for the future of work is the acquisition of critical thinking skills, how can we facilitate this sort of education? One way to obtain a job-proof education is to create classes with the help of labor market organizations. Two projects funded by the European Union were designed to bring to life the idea that better communication and collaboration between universities and employers result in a better adaptation of the curriculum, especially a curriculum involving critical thinking skill development.

Between 2016 and 2019, the project “Critical thinking across the European higher education curriculum—CRITHINKEDU” focused on how CT is taught in various academic domains. The CRITHINKEDU project, involving universities across Europe, exemplifies how academia and industry can join forces to bridge the gap between classroom learning and real-world job demands. This initiative aimed to enhance the curriculum by explicitly emphasizing critical thinking skill development. It revealed that employers across various fields value critical thinking, and they perceive it as essential for recent graduates entering the workforce.

The participants were eleven universities from nine European countries (Belgium, Czech Republic, Greece, Italy, Spain, Portugal, Romania, Lithuania, and Ireland; Dominguez 2018). Qualitative research was conducted with 32 focus groups comprised of professionals from various European countries and fields. The findings align with previous studies: “CT is a set of interconnected skills (interpretation, inference, analysis, explanation, evaluation, self-regulation”, see Payan-Carreira et al. ( 2023, p. 16 ), and dispositions (open-mindedness, refection, attentiveness, organization, perseverance, intrinsic goal motivation ( Payan-Carreira et al. 2023 ), essential for recent graduates in response to labor market demands. However, an important consideration is that the practical application of CT varies across professional fields. The participants in this study defined the ideal critical thinker as someone with a cultivated mindset, motivated to learn and improve, and equipped with cognitive and behavioral tools to anticipate, regulate, and monitor their thinking. CT is associated with problem-solving and decision-making and is intertwined with other skills such as proactivity, adaptability, creativity, emotional intelligence, communication, and teamwork. The report from this project also introduced “a European collection of the Critical Thinking skills and dispositions needed in different professional fields for the 21st century” ( Dominguez 2018 ), which categorizes CT skills and dispositions based on professional fields and offers a basis for defining learning objectives and adapting university curricula. This study provides valuable insights from 189 European employers into CT needs in the labor market for new graduates. The interviewed professionals had an obvious preference for CT skills in STEM fields and an obvious preference for dispositions in the Humanities. Social Sciences and bio-medical sciences professionals were equally interested in CT skills and dispositions, with a slight preference for dispositions ( Dominguez 2018, p. 28 ).

4.3. Next Steps: THINK4JOBS Blended Appreticeship Curricula

After the termination of the CRITHINKEDU project, partners from Romania, Greece, Lithuania, and Portugal, with the addition of a new partner from Germany, proposed a new research application: “Critical Thinking for Successful Jobs—THINK4JOBS” ( www.think4jobs.uowm.gr ). The idea was to utilize the results from the previous project and, together with labor market organizations, create new courses that are more adapted to the reality of the future of work. The core element of the classes was explicit teaching of critical thinking, using real-life cases and methods. In an apprenticeship model, critical thinking skills are embedded in a relevant context. The value of realistic contexts is that students can see the need for the skills being taught in a workplace scenario. Relevant contexts enhance student engagement and motivation to learn. Dumitru et al. ( 2021 ) focused on improving students’ critical thinking skills and dispositions through collaboration between Higher Education Institutions (HEIs) and Labor Market Organizations (LMOs). The aim was to bridge the gap between HEI curricula and the expectations of the labor market by incorporating apprenticeships that provide practical experience and CT development.

The process of mapping responses from those in the labor market organizations onto college curricula involved the use of research methods such as observation, focus groups, and documentary analysis, with stakeholders from HEIs and LMOs participating. The findings indicated that while there were no definitive “gaps” between HEIs and LMOs, there were contextual differences in the approach to CT. HEIs focus on long-term career preparation, while LMOs emphasize short-term learning strategies. The terminology and expression of CT also differed between the two contexts. Based on the findings, ten work-based scenarios were created, with one from each discipline involved in the project. Overall, the report ( Dumitru et al. 2021 ) highlighted the different goals and perspectives of HEIs and LMOs regarding CT, emphasizing the need for collaboration and a common understanding of which skills should be included in the college curriculum.

There is a different context in the approach to CT, since HEIs usually use different learning activities, focusing more on career preparation with long-term goals, while LMOs follow compact and short-term learning and teaching strategies. Furthermore, the findings suggest that CT is a new workplace requirement and that HEIs and LMOs do not choose the same terminology when referring to the concept, with HEIs usually choosing scientific terms. Another element that emerged is that CT is generally expressed in a declarative way in higher education institutions, while in LMOs the application to specific cases follows a more procedural approach. Put another way, LMOs are focused on making a profit, while HEI is focused on being socially responsible.

In the second phase of the project, partners ( Pnevmatikos et al. 2021 ) focused on the development of a collaborative training curriculum for Higher Education Instructors and LMO tutors. The purpose of the training was to enhance comprehension and knowledge of critical thinking for both sides of this collaboration, since previous research indicated a potential lack of conceptual and procedural understanding between these two entities. Additionally, the training aimed to facilitate the promotion, support, and evaluation of students’ CT skills within apprenticeship curricula, as well as the creation of blended curricula utilizing an open-source learning platform. The training course encompassed workshops that delved into various aspects of CT, including analyzing and reassembling ideas about CT, formulating a working definition of CT, instructional methodologies, blended learning techniques, usage of a learning platform, CT assessment, and the development of a Memorandum of Understanding (MoU) between higher education institutions and LMOs. The participants’ knowledge about these topics was assessed through pre- and post-training online questionnaires. Although data analysis showed various predicted trends, only perceived self-confidence in the topics covered during the training obtained statistical significance ( Pnevmatikos et al. 2021 ).

In the final report from this project, Payan-Carreira et al. ( 2023 ) presented the results of the implementation of the critical thinking Blended Apprenticeships Curricula (CTBAC) and discussed the improvements in critical thinking skills and dispositions observed in students. The study involved cross-disciplinary analysis and assessed changes before and after the piloting activities. A total of 609 students participated, and their critical thinking skills and dispositions were evaluated.

The consortium chose the Critical Thinking Self-Assessment Scale (CTSAS) developed by Nair ( 2011 ) as an instrument to assess CT skills based on an earlier conceptualization ( Facione 1990 ). The questionnaire has been tested in various geographic and cultural contexts, demonstrating good reliability, internal consistency, and confirmatory factor analysis results. However, the original CTSAS was considered too long to complete, consisting of 115 items, so a shorter version was specifically developed for this project. The short form of the questionnaire (CTSAS-SF) was created through a two-step process. Items with loading weights below .500 were eliminated, resulting in 84 remaining items. Redundant and non-cognitive-focused items were marked for elimination, leaving 60 items. The short form maintained the original scale’s framework and utilized a seven-point Likert scale ranging from 0 (Never) to 6 (Always) for students to respond to items assessing various dimensions and subdimensions of CT skills.

The CTSAS-SF validation process, with confirmatory factor analysis, resulted in two models with equivalent satisfactory goodness-of-fit indices. Model 4, the second-order factor model (RMSEA = .051; TLI = .924; CFI = .927), had a chi-square/df ratio of 2.33. The Cronbach alpha of the overall instrument was excellent (α = .969). Sample items are shown in Table 1 .

Sample items forming Critical Thinking Self-Assessment Scale (CTSAS), Nair ( 2011 ).

Compared to instruments for assessing CT skills, the availability of instruments for measuring critical thinking (CT) dispositions is limited. However, one of the instruments adopted by the consortium to assess CT dispositions is the Student-Educator Negotiated Critical Thinking Dispositions Scale (SENCTDS), which was developed by Quinn et al. ( 2020 ). The scale was validated with a mixed population of Irish and American undergraduate students. The scale considers a variety of CT dispositions that the authors consider important for the labor market and real-world decision-making. Some of the items in the scale combine Facione ’s ( 1990 ) original CT dispositions into new dimensions that are relevant to academic and labor market success, such as organization, perseverance, and intrinsic goal motivation. The scale consists of six dimensions (Reflection, Attentiveness, Open-mindedness, Organization, Perseverance, and Intrinsic Goal Motivation) and presents statements for students to respond to using a 7-point Likert scale. The Likert scale ranges from 1 (strongly disagree) to 7 (strongly agree). The original version of the SENCTDS contains 21 items. The validation process, with confirmatory factor analysis, identified only one model presenting a satisfactory goodness-of-fit index—model 3, comprised of six correlated factors (RMSEA = .054; TLI = .974; CFI = .969) with a chi-square/df ratio of 2.57. The instrument presented a high Cronbach alpha (α = .842), suggesting a strong internal consistency of the instrument. Sample items are presented in Table 2 .

Sample items from Student-Educator Negotiated Critical Thinking Dispositions Scale (SENCTDS), developed by Quinn et al. ( 2020 ).

The analysis showed gains in critical thinking skills and indicated that changes were more prominent in skills than dispositions. All skills (interpretation, analysis, inference, explanation, self-regulation, and evaluation) obtained significant differences between the pretest and posttest, with p ≤ .0001 to all skills, plus the integrated critical thinking skills score was t = 9.705 and p ≤ .0001, which demonstrates strong significant difference between pre- and the posttest. Dispositions displayed no significant differences regarding the integrated score, but showed significant differences in reflection (t = 1.766, p = .079), open-mindedness (t = 2.636, p = .009), organization (t = 2.568, p = .011), and intrinsic goal motivation (t = 1.712, p = .088).

Based on the findings from the implementation of the blended apprenticeship curricula, the following guidelines were formulated for implementing Critical Thinking Blended Apprenticeship Curricula ( Payan-Carreira et al. 2023 ):

  • Provide an explanation of the importance of critical thinking—Clearly communicate to students why critical thinking is a vital skill in today’s workforce and how it is valued in specific professions. Explicitly incorporate the development of critical thinking as an outcome of the course.
  • Emphasize continuous and pervasive CT training—To achieve success, there should be a concerted effort across disciplinary curricula to foster students’ critical thinking skills and dispositions. Skills require training, and dispositions necessitate the internalization of desired attitudes. Therefore, sufficient time and a collaborative approach at the disciplinary level are necessary for consistent and significant progress.
  • Allocate dedicated time—Building on the previous point, it is essential to allocate specific time within the course to work on the proposed critical thinking goals. Students and educators need to schedule activities and create opportunities for preparation, development, and feedback exchange. This ensures that the intervention leads to meaningful, lasting learning.
  • Establish connections with real-world scenarios—Foster student engagement and improve their perception of learning experiences by incorporating case studies that reflect situations professionals encounter in their daily work. By grounding the learning content in reality, students are more likely to be motivated and actively participate in the educational process.

Foster reflection on CT skills and dispositions—Offer students the chance to reflect on their reasoning processes and the attitudes they have developed throughout their learning experiences. Encouraging reflective thinking enhances the effectiveness of learning interventions and helps cultivate a deeper understanding of one’s experiences.

These steps aim to guide educators in effectively implementing the critical thinking blended apprenticeship curricula while also maximizing the impact of critical thinking development in students.

The two European projects made a great start in integrating the skills that employers want employees to learn from university curricula, but the results are nonetheless provisional. There is not a clear agreement among participating universities regarding how best to teach critical thinking, nor any regarding its importance for future jobs. We urge that more work should be done to nurture critical thinking within university curricula in order to provide our current students—who represent the future of the workforce—the much-wanted job-proof skills they need.

5. European Recommendations and Good Practices

Critical thinking stands as a pivotal goal for European Higher Education Institutions. To facilitate the attainment of this objective, we present an educational protocol that draws from comprehensive research and practical experiences, including insights from the CRITHINKEDU project. This protocol amalgamates insights from both theoretical and empirical studies on critical thinking with practical strategies for its cultivation.

Recommendations go toward signing memorandums of understanding between universities and labor market organizations to cultivate strong partnerships ( Rebelo et al. 2023 ). Effective collaboration between universities and businesses is crucial in fostering critical thinking. This partnership thrives on the synergy that results when academic institutions and businesses combine their expertise, resources, and perspectives. Strategies such as aligning goals, fostering long-term commitment, and promoting a culture of collaboration can strengthen these partnerships and ensure that academic research is harmoniously aligned with real-world needs.

Another recommendation relates to the formulation of compelling goals . Accurate and transparent goals are fundamental to the successful implementation of university-industry collaborations to promote critical thinking. These goals must be clearly defined and easily understood at multiple levels, from the institutional to the program and course levels. Recognition of critical thinking as an overarching goal implies its integration into assessment and evaluation processes.

Another recommendation is to develop flexible curricula . To effectively foster critical thinking, curricula must demonstrate adaptability and responsiveness to emerging trends and market demands. The use of agile curriculum design methodologies and the involvement of business partners in curriculum development is of great value. Approaches such as problem-based and case-based learning facilitate rapid adaptation to evolving market needs, such as the use of AI-powered software to solve work tasks better and faster. Regular feedback mechanisms and ongoing collaboration with business partners ensure that curricula remain relevant and flexible.

Incorporating real-world challenges and case studies into curricula bridges the gap between academia and the business world, creating an environment that encourages experiential learning. The active involvement of business stakeholders in providing relevant challenges plays a key role. Students’ problem-solving skills are enhanced by shifting from traditional teaching methods to project-based, problem-based, or case-based learning. Engaging students through apprenticeships, internships, guest lectures, and seminars immerses them in authentic work environments and fosters their professional development.

Ongoing, multi-faceted evaluation is a cornerstone of the collaboration between higher education and the business community to cultivate critical thinking. Assessment includes measuring learners’ progress in critical thinking, the effectiveness of curricula, and the impact of partnerships through the use of key performance indicators.

Regarding how to implement a critical thinking curriculum, pedagogical research ( Elen et al. 2019 ) suggests that in the development of critical thinking, whether it is regarded as a skill, disposition, or a combination of both, three categories of supportive measures can be identified: modeling, induction, and declaration.

Modeling: Support the development of critical thinking skills by demonstrating what it means to think critically at the institutional, programmatic, and course levels, considering multiple perspectives and alternative viewpoints.

Induction: Support critical thinking development by provoking critical thinking through the presentation of open-ended questions, unstructured tasks, complex problems, and real-world issues. The exact nature of “induction” and how it is implemented may vary across fields and disciplines. Induction can be carried out in a variety of ways; for example, presenting unstructured problems, providing authentic tasks, encouraging constructive controversy, asking “why” questions, or encouraging student autonomy.

Explanation: Promote the development of critical thinking by articulating or explicitly stating what is at stake, what strategies can be used, and what criteria must be met. This explanation can take the form of oral or written communication and should always be explicit and specific. Declaring and making things explicit can be accomplished in a variety of ways, including using critical thinking rubrics, developing elaborate concept maps, providing feedback on critical thinking, and engaging in discussion and reflection on critical issues.

This integrated approach, encompassing university-business collaboration and an educational protocol, underscores the significance of critical thinking in higher education. It provides a structured framework for nurturing this essential skill by aligning objectives, fostering partnerships, adapting curricula, and implementing ongoing evaluation practices. In doing so, educational institutions are better poised to equip students with the critical thinking skills needed to thrive in a rapidly evolving world.

6. Concluding Remarks or Can Critical THINKING Save the World?

In summary, the dynamic interaction between universities, businesses, and the evolving technology landscape, including the rise of artificial intelligence (AI) and online technologies, underscore the critical need to nurture and develop students’ critical thinking skills. As we navigate the challenges posed by AI and the ever-expanding digital realm, collaborative efforts between academia and industry have proven to be instrumental in preparing students for the future job market.

Incorporating real-world experiences, such as apprenticeships, into the curriculum is an important step toward improving students’ critical thinking skills in real-world contexts. Projects such as “Critical thinking across higher education curricula—CRITHINKEDU” and “Critical thinking for successful jobs—THINK4JOBS” have demonstrated the potential of these collaborations to bridge the gap between classroom learning and industry needs. In addition, the development of flexible curricula that can adapt to the evolving needs of the job market, especially considering online technologies, is essential. By integrating real-world challenges and case studies into the curriculum, students gain valuable problem-solving skills and are better prepared to navigate the complexities of the digital age.

Ongoing assessment and evaluation are critical components of this collaborative effort, ensuring that critical thinking remains a central focus and that students are making meaningful progress in acquiring this essential skill.

With the disruption of AI and the ubiquity of online technologies, the integration of critical thinking into higher education curricula is more important than ever. It enables students not only to thrive in a technology-driven world, but also to contribute to a rational, democratic, and globally interconnected society. The partnerships forged between universities and businesses, along with a well-defined educational protocol, provide a roadmap for cultivating these essential skills and preparing students for the challenges and opportunities of the future job market. The imperative to foster critical thinking in university curricula remains a fundamental step in equipping tomorrow’s workforce to navigate the complexities of an AI-influenced job market and a rapidly changing world.

Lilienfeld ( 2007, para. 3 ) said it well: “The greatest threat to the world is ideological fanaticism, by ideological fanaticism I mean the unshakeable conviction that one’s belief system and that of other in-group members is always right and righteous and that others’ belief systems are always wrong and wrong-headed”. Imagine a world where (most or even many) people use the skills of critical thinking. Just maybe, CT could save the world.

The job market will require a psychologically adaptable toolkit, and we propose that critical thinking is an essential component therein. The disruptions imposed by new technological advances such as AI will require students to learn new employable skills because we will need not just an engineer, but a critical thinking engineer; not just a programmer, but a critical thinking programmer; and not just a journalist, but a critical thinking journalist. The dignity of workers—their humanity and our collective survival—may well depend on CT, a very human creation.

Acknowledgments

We sincerely thank Dana Dunn, Moravian University, for comments on an earlier version of this manuscript.

Funding Statement

Daniela Dumitru received funding from European Commission/EACEA, through the ERASMUS+ Programme, “Critical Thinking for Successful Jobs—Think4Jobs” Project, with the reference number 2020-1-EL01-KA203-078797.

Author Contributions

Conceptualization, D.F.H. and D.D.; investigation, D.F.H. and D.D.; resources, D.F.H. and D.D.; writing—original draft preparation, D.F.H. and D.D.; writing—review and editing, D.F.H. and D.D. All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

  • Acemoglu Daron. Technical Change, Inequality, and the Labor Market. [(accessed on 15 May 2023)]; Journal of Economic Literature. 2002 40 :7–72. doi: 10.1257/jel.40.1.7. Available online: http://www.jstor.org/stable/2698593 [ CrossRef ] [ Google Scholar ]
  • Acemoglu Daron, Autor David. Skills, Tasks and Technologies: Implications for Employment and Earnings. In: Ashenfelter Orley, Card David., editors. Handbook of Labor Economics. 1st ed. North Holland-Elsevier; San Diego: 2011. pp. 1043–71. [ Google Scholar ]
  • adminGPT The Future Is Here: Analytics and Artificial Intelligence in Every Industry. May 22, 2023. [(accessed on 2 June 2023)]. @utopost. Available online: https://chatgpt.com/27739697/the-future-is-here-analytics-and-artificial-intelligence-in-every-industry#/
  • Bushwick Sophie, Harper Kelso, Bose Tulika. What You Need to Know about GPT-4. Scientific American Podcasts. 2023. [(accessed on 31 May 2023)]. Available online: https://www.scientificamerican.com/podcast/episode/what-you-need-to-know-about-gpt-4/
  • Data Professor How to Use ChatGPT to Generate Code in 90 Seconds. 2023. [(accessed on 31 May 2023)]. Available online: https://www.youtube.com/watch?v=ELJzUcYrAIQ
  • Dominguez Caroline. (coord.) A European Collection of the Critical Thinking SKILLS and Dispositions Needed in Different Professional Fields for the 21st Century. UTAD; Vila Real: 2018. [(accessed on 2 June 2023)]. Available online: https://crithinkedu.utad.pt/en/intellectual-outputs/ [ Google Scholar ]
  • Dumitru Daniela. Critical Thinking and Integrated Programs. [(accessed on 15 May 2023)]; The Problem of Transferability. Procedia-Social and Behavioral Sciences. 2012 33 :143–7. doi: 10.1016/j.sbspro.2012.01.100. Available online: http://www.sciencedirect.com/science/article/pii/S1877042812001085 [ CrossRef ] [ Google Scholar ]
  • Dumitru Daniela, Christodoulou Panagiota, Lithoxoidou Angeliki, Georgiadou Triantafyllia, Pnevmatikos Dimtrios, MarinDrămnescu Aurel, Enachescu Vladimir, Stăiculescu Camelia, Lăcătuş Maria Liana, Paduraru Monica Elisabeta, et al. Think4Jobs Toolkit: Ten Work-Based Learning Scenarios. University of Western Macedonia; Greece: 2021. [(accessed on 22 May 2023)]. Available online: https://think4jobs.uowm.gr/results/intellectualoutput1 [ Google Scholar ]
  • Dwyer Cristopher P. Critical Thinking: Conceptual Perspectives and Practical Guidelines. Cambridge University Press; Cambridge: 2017. [ Google Scholar ]
  • Elen Jan, Jiang Lai, Huyghe Steven, Evers Marleen, Verburgh Ann, Dumitru Daniela, Palaigeorgiou George. In: Promoting Critical Thinking in European Higher Education Institutions: Towards an Educational Protocol. Dominguez C., Payan-Carreira R., editors. UTAD; Vila Real: 2019. [(accessed on 30 August 2023)]. Available online: https://repositorio.utad.pt/bitstream/10348/9227/1/CRITHINKEDU%20O4%20%28ebook%29_FINAL.pdf [ Google Scholar ]
  • Elkeiy Gabriel. Future-Proof Skills can Help Balance Individual and Societal Progress. United Nations, UN Chronicle. Aug 5, 2022. [(accessed on 25 May 2023)]. Available online: https://www.un.org/en/un-chronicle/future-proof-skills-can-help-balance-individual-and-societal-progress#:~:text=Conceptual%20and%20strategic%20thinking%2C%20creativity,agility%20as%20qualified%20human%20beings
  • Eloundou Tyna, Manning Sam, Mishkin Pamela, Rock Daniel. GPTs are GPTs: An Early Look at the Labor Market Impact Potential of Large Language Models. 2023. [(accessed on 1 June 2023)]. Available online: https://arxiv.org/pdf/2303.10130.pdf
  • Facione Peter A. Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction. Research Findings and Recommendations. [(accessed on 10 May 2023)]; 1990 Available online: http://files.eric.ed.gov/fulltext/ED315423.pdf
  • Fisher Alec. Critical Thinking: An Introduction. Cambridge University Press; Cambridge: 2001. [ Google Scholar ]
  • Halpern Diane F., Dunn Dana S. Thought and Knowledge: An Introduction to Critical Thinking. 6th ed. Routledge Taylor & Francis; New York: 2023. [ Google Scholar ]
  • Hart Research Associated Fulfilling the America Dream: Liberal Education and the Future of Work. 2018. [(accessed on 20 June 2023)]. Conducted on Behalf of Association of American Colleges and Universities. Available online: https://dgmg81phhvh63.cloudfront.net/content/user-photos/Research/PDFs/2018EmployerResearchReport.pdf
  • Healy Adrian, Perkmann Markus, Goddard John, Kempton Louise. Directorate General for Education and Culture, European Commission. European Union; Brussels: 2014. Measuring the Impact of University Business Cooperation. [ Google Scholar ]
  • Heijltjes Anita, Gog Tamara, Paas Fred. Improving Students’ Critical Thinking: Empirical Support for Explicit Instructions Combined with Practice. Applied Cognitive Psychology. 2014; 28 :518–30. doi: 10.1002/acp.3025. [ CrossRef ] [ Google Scholar ]
  • Kuhn Deanna. A Developmental Model of Critical Thinking. Educational Researcher. 1999; 28 :16–46. doi: 10.3102/0013189X028002016. [ CrossRef ] [ Google Scholar ]
  • Lilienfeld Scott. Can Psychology Change the World? The British Psychological Society, Research Digest. 2007. [(accessed on 31 May 2023)]. Available online: http://bps-research-digest.blogspot.com/2007/09/can-psychology-save-world.html
  • Lipman Matthew. Thinking in Education. Cambridge University Press; New York: 1991. [ Google Scholar ]
  • Nair Girija. Preliminary Psychometric Characteristics of the Critical Thinking Self-Assessment Scale. University of Saskatchewan; Saskatoon: 2011. [(accessed on 18 May 2023)]. Available online: https://harvest.usask.ca/bitstream/handle/10388/ETD-2011-09-103/girija.nair.phd.thesis.pdf;jsessionid=F19CA2ACBE3978E8DF9E19C77CB3198E?sequence=3 [ Google Scholar ]
  • Navracsics Tibor. Key Competences for Lifelong Learning. 2019. [(accessed on 22 May 2023)]. Foreword. European Commission, Directorate-General for Education, Youth, Sport and Culture. Publications Office. Available online: https://data.europa.eu/doi/10.2766/569540 [ Google Scholar ]
  • Nisbett Richard. Mindware Tools for Smart Thinking. Doubleday Canada; Toronto: 2015. [ Google Scholar ]
  • O’Mahony Cian, Brassil Maryanne, Murphy Gillian, Linehan Conor. The efficacy of interventions in reducing belief in conspiracy theories: A systematic review. PLoS ONE. 2023; 18 :e0280902. doi: 10.1371/journal.pone.0280902. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Orazbayeva Balzhan, Daveyb Todd, Plewa Carolin, Galán-Muros Victoria. Engagement of academics in education-driven university-business cooperation: A motivation-based perspective. Studies in Higher Education. 2020; 45 :1723–36. doi: 10.1080/03075079.2019.1582013. [ CrossRef ] [ Google Scholar ]
  • Paul Richard, Elder Linda. The Miniature Guide to Critical Thinking Concepts and Tools. Foundation for Critical Thinking Press; Santa Barbara: 2008. [ Google Scholar ]
  • Payan-Carreira Rita, Rebelo Hugo, Sebastião Luis, Sacau Ana, Ferreira David, Simões Margarida, Pnevmatikos Dimitrios, Christodoulou Panagiota, Lithoxoidou Angeliki, Georgiadou Triantafyllia, et al. THINK4JOBS Guidelines: A Protocol for Critical Thinking Transfer from Curricula to Labour Market. University of Western Macedonia; Greece: 2023. [(accessed on 2 June 2023)]. Available online: https://think4jobs.uowm.gr/results/intellectualoutput4 [ Google Scholar ]
  • Pnevmatikos Dimitios, Christodoulou Panagiota, Georgiadou Triantafyllia, Lithoxoidou Angeliki, Dimitriadou Catherine, Carreira Rita Payan, Simões Margarida, Ferreira David, Rebelo Hugo, Sebastião Luis. THINK4JOBS TRAINING: Critical Thinking Training Packages for Higher Education Instructors and Labour Market Tutors. University of Western Macedonia; Greece: 2021. [(accessed on 10 June 2023)]. Available online: https://think4jobs.uowm.gr/results/intellectualoutput2 [ Google Scholar ]
  • Quinn Sarah, Hogan Michael, Dwyer Cristopher, Finn Patrick, Fogarty Emer. Development and Validation of the Student-Educator Negotiated Critical Thinking Dispositions Scale (SENCTDS) Thinking Skills and Creativity. 2020; 38 :100710. doi: 10.1016/j.tsc.2020.100710. [ CrossRef ] [ Google Scholar ]
  • Rebelo Hugo, Christodoulou Panagiota, Payan-Carreira Rita, Dumitru Daniela, Mäkiö Elena, Mäkiö Juho, Pnevmatikos Dimitrios. University-Business Collaboration for the Design, Development and Delivery of Critical Thinking Blended Apprenticeships Curricula: Lessons Learned from a Three-Year Project. Education Sciences. 2023; 2023 :2023081992. doi: 10.20944/preprints202308.1992.v1. [ CrossRef ] [ Google Scholar ]
  • Roslansky Ryan. You Need a Skills-Based Approach to Hiring and Developing Talent. Harvard Business Review. 2021. [(accessed on 1 June 2023)]. Available online: https://hbr.org/2021/06/you-need-a-skills-based-approach-to-hiring-and-developing-talent
  • Tiruneh Dawit. Transfer of Critical Thinking Skills Across Domains: Implicit or Explicit Instructional Approaches?; Paper presented at 2019 AERA Annual Meeting; Toronto, ON, Canada. June 4; 2019. [ CrossRef ] [ Google Scholar ]
  • Vosoughi Soroush, Roy Deb, Aral Sinan. The spread of true and false news online. Science. 2018; 359 :1146–51. doi: 10.1126/science.aap9559. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Weiser Benjamin, Schweber Nate. The ChatGPT Lawyer Explains Himself. The New York Times. 2023. [(accessed on 11 June 2023)]. Available online: https://www.nytimes.com/2023/06/08/nyregion/lawyer-chatgpt-sanctions.html
  • World Economic Forum The Future of Jobs Report 2020. 2020. [(accessed on 31 May 2023)]. Available online: https://www3.weforum.org/docs/WEF_Future_of_Jobs_2020.pdf

More From Forbes

Is critical thinking a superpower in the ai era.

  • Share to Facebook
  • Share to Twitter
  • Share to Linkedin

Critical thinking skills are crucial for AI.

AI, particularly generative AI, is having an immediate and dramatic impact on our lives, both personally and professionally. AI enables everyone to become better writers, content creators, coders, and artists. Interestingly, to derive effective value from AI systems, we must also develop our "soft skills”, of which critical thinking becomes one of the most important.

Just a few years ago, to get real benefit from AI, you needed to build and train AI systems which required “hard” skills such as math, programming, or data engineering skills. Now, because of generative AI, you no longer need to be an expert in statistics & probability, calculus, or linear algebra to get value from using Generative AI. You also don’t need knowledge of different algorithms & modeling skills. Instead, you need to use soft skills such as communication, curiosity, problem solving, adaptability, and critical thinking.

Why Critical Thinking is Crucial for AI

There’s no doubt that in today's fast-paced business environment, workers will need to use AI tools to stay ahead in the market. While AI systems will let anyone get a basic grasp of hard skills, the soft skills are proving to be the most important to get value from AI systems. In particular, the soft skill of critical thinking is proving indispensable. Put simply, critical thinking is the ability to get a solid, reliable, and as truthful as possible understanding of information, and then use that understanding to make sound decisions based on that knowledge. This means scrutinizing information, questioning assumptions, and ensuring that conclusions are supported by solid evidence.

When it comes to using generative AI systems, being able to observe, analyze, discern, and ask the right questions is what not only allows you to get the required results from the AI, but also to determine if the outputs are credible, lack bias, and truthful. Critical thinking approaches provide the necessary mental tools to iteratively refine prompts and hone in to get more effective results. Trying different approaches using thinking skills leads to clearer, more accurate results. The ability to analyze complex requirements helps in designing effective prompts and assessing the quality of AI-generated responses.

How To Develop Critical Thinking Skills

Critical thinking skills will only become more important in our AI-driven organizations. This means that people of all ages will need to make sure to develop and use critical thinking skills to be able to stay ahead of the pack. A key approach to develop and refine critical thinking skills is to always approach interactions with AI systems with a healthy dose of skepticism, and question assumptions, especially your own. Ask yourself whether the information going into and out of AI systems make sense and what assumptions are being made. Look for evidence to support or refute these assumptions.

Apple Loop iPhone 16 Pro Details iOS 18 s AI Plans iPhone 14 Pro Special Offer

Zendaya tennis movie challengers gets streaming release date, a promising new update on silo season 2 on apple tv plus.

Additionally, you’ll want to seek evidence. It goes without saying that especially in an AI-generated world, you can’t take what you see, hear, or read at face value. Large language models are known to hallucinate, or confidently provide you with the wrong information. Verify the sources of your information and ensure that your conclusions are backed by solid proof, research, or findings, and dive deeper to find supporting evidence.

Critical thinking also requires you to be aware of potential informational and data biases. Those biases could be represented in your thinking, data, analyses, outputs of LLM systems, or the way in which you utilize or scrutinize AI outputs. Work to observe and identify patterns and trends in data. This involves not just looking at the data, but understanding the context and relationships between different variables.

Key Benefits Of Critical Thinking in an AI-Centric World

As you continue to work on your critical thinking skills, you’ll see many key benefits, especially as more people make use of AI to augment or assist their work. Professionals are often required to make decisions based on various data points and pieces of information. Critical thinking enables you to sift through the mountains of AI-generated information, identify what is relevant, and then make decisions based on accurate interpretations. This is especially the case with generative AI. Without critical thinking, there is a risk of making decisions based on incomplete or incorrect information, which can lead to erroneous, suboptimal, or misleading results.

A key to critical thinking is problem solving skills. Critical thinking helps professionals approach problems systematically, considering all possible solutions and their implications before making decisions. This thorough approach reduces the likelihood of overlooking important factors and increases the chances of finding effective solutions. It also helps you become a better prompt engineer as you’ll not stop until you get a satisfactory response. You are able to evaluate complex situations to make informed decisions. This analytical ability helps in designing effective prompts and assessing the quality of AI-generated responses.

Setting Yourself Apart With Critical Thinking

Individuals who excel in critical thinking will stand out when it comes to the use of AI. These individuals can navigate complex information landscapes, create better results and responses from LLMs, make better informed decisions, iterate more effectively to get desired outcomes, and be more effective when it comes to communicating and sharing results.

The ability to critically evaluate and interpret information is a strategic advantage for those who are working with AI systems. As AI becomes an increasing part of our every day business processes, tools, and interactions, those with strong critical thinking abilities will be better equipped to harness AI’s full potential, driving innovation, better insights, and answers.

Kathleen Walch

  • Editorial Standards
  • Reprints & Permissions

Join The Conversation

One Community. Many Voices. Create a free account to share your thoughts. 

Forbes Community Guidelines

Our community is about connecting people through open and thoughtful conversations. We want our readers to share their views and exchange ideas and facts in a safe space.

In order to do so, please follow the posting rules in our site's  Terms of Service.   We've summarized some of those key rules below. Simply put, keep it civil.

Your post will be rejected if we notice that it seems to contain:

  • False or intentionally out-of-context or misleading information
  • Insults, profanity, incoherent, obscene or inflammatory language or threats of any kind
  • Attacks on the identity of other commenters or the article's author
  • Content that otherwise violates our site's  terms.

User accounts will be blocked if we notice or believe that users are engaged in:

  • Continuous attempts to re-post comments that have been previously moderated/rejected
  • Racist, sexist, homophobic or other discriminatory comments
  • Attempts or tactics that put the site security at risk
  • Actions that otherwise violate our site's  terms.

So, how can you be a power user?

  • Stay on topic and share your insights
  • Feel free to be clear and thoughtful to get your point across
  • ‘Like’ or ‘Dislike’ to show your point of view.
  • Protect your community.
  • Use the report tool to alert us when someone breaks the rules.

Thanks for reading our community guidelines. Please read the full list of posting rules found in our site's  Terms of Service.

Bookmark this page

Translate this page from English...

*Machine translated pages not guaranteed for accuracy. Click Here for our professional translations.

A Brief History of the Idea of Critical Thinking

TechRepublic

Male system administrator of big data center typing on laptop computer while working in server room. Programming digital operation. Man engineer working online in database center. Telecommunication.

8 Best Data Science Tools and Software

Apache Spark and Hadoop, Microsoft Power BI, Jupyter Notebook and Alteryx are among the top data science tools for finding business insights. Compare their features, pros and cons.

AI act trilogue press conference.

EU’s AI Act: Europe’s New Rules for Artificial Intelligence

Europe's AI legislation, adopted March 13, attempts to strike a tricky balance between promoting innovation and protecting citizens' rights.

Concept image of a woman analyzing data.

10 Best Predictive Analytics Tools and Software for 2024

Tableau, TIBCO Data Science, IBM and Sisense are among the best software for predictive analytics. Explore their features, pricing, pros and cons to find the best option for your organization.

Tableau logo.

Tableau Review: Features, Pricing, Pros and Cons

Tableau has three pricing tiers that cater to all kinds of data teams, with capabilities like accelerators and real-time analytics. And if Tableau doesn’t meet your needs, it has a few alternatives worth noting.

Futuristic concept art for big data solution for enterprises.

Top 6 Enterprise Data Storage Solutions for 2024

Amazon, IDrive, IBM, Google, NetApp and Wasabi offer some of the top enterprise data storage solutions. Explore their features and benefits, and find the right solution for your organization's needs.

Latest Articles

major critical thinking

TechRepublic Premium Editorial Calendar: Policies, Checklists, Hiring Kits and Glossaries for Download

TechRepublic Premium content helps you solve your toughest IT issues and jump-start your career or next project.

European Union flag colors and symbols on a printed circuit board.

What is the EU’s AI Office? New Body Formed to Oversee the Rollout of General Purpose Models and AI Act

The AI Office will be responsible for enforcing the rules of the AI Act, ensuring its implementation across Member States, funding AI and robotics innovation and more.

Audience at conference hall.

Top Tech Conferences & Events to Add to Your Calendar in 2024

A great way to stay current with the latest technology trends and innovations is by attending conferences. Read and bookmark our 2024 tech events guide.

Data science abstract vector background.

What is Data Science? Benefits, Techniques and Use Cases

Data science involves extracting valuable insights from complex datasets. While this process can be technically challenging and time-consuming, it can lead to better business decision-making.

Glowing circuit grid forming a cloud and trickling binary values on a dark background.

Gartner’s 7 Predictions for the Future of Australian & Global Cloud Computing

An explosion in AI computing, a big shift in workloads to the cloud, and difficulties in gaining value from hybrid cloud strategies are among the trends Australian cloud professionals will see to 2028.

major critical thinking

OpenAI Adds PwC as Its First Resale Partner for the ChatGPT Enterprise Tier

PwC employees have 100,000 ChatGPT Enterprise seats. Plus, OpenAI forms a new safety and security committee in their quest for more powerful AI, and seals media deals.

Contact management vector illustration. 2 people managing their client's contact information.

What Is Contact Management? Importance, Benefits and Tools

Contact management ensures accurate, organized and accessible information for effective communication and relationship building.

Laptop computer displaying logo of Tableau Software.

How to Use Tableau: A Step-by-Step Tutorial for Beginners

Learn how to use Tableau with this guide. From creating visualizations to analyzing data, this guide will help you master the essentials of Tableau.

Hubspot vs Mailchimp

HubSpot CRM vs. Mailchimp (2024): Which Tool Is Right for You?

HubSpot and Mailchimp can do a lot of the same things. In most cases, though, one will likely be a better choice than the other for a given use case.

Cloud computing trends.

Top 5 Cloud Trends U.K. Businesses Should Watch in 2024

TechRepublic identified the top five emerging cloud technology trends that businesses in the U.K. should be aware of this year.

Versus graphic featuring the logos of Pipedrive and monday.com

Pipedrive vs. monday.com (2024): CRM Comparison

Find out which CRM platform is best for your business by comparing Pipedrive and Monday.com. Learn about their features, pricing and more.

Close up view of a virtual project management software interface.

Celoxis: Project Management Software Is Changing Due to Complexity and New Ways of Working

More remote work and a focus on resource planning are two trends driving changes in project management software in APAC and around the globe. Celoxis’ Ratnakar Gore explains how PM vendors are responding to fast-paced change.

SAP versus Oracle.

SAP vs. Oracle (2024): Which ERP Solution Is Best for You?

Explore the key differences between SAP and Oracle with this in-depth comparison to determine which one is the right choice for your business needs.

Customer relationship management concept.

How to Create Effective CRM Strategy in 8 Steps

Learn how to create an effective CRM strategy that will help you build stronger customer relationships, improve sales and increase customer satisfaction.

Data Breach inscription on digital globe and abstract technology background.

CISOs in Australia Urged to Take a Closer Look at Data Breach Risks

A leading cyber expert in Australia has warned CISOs and other IT leaders their organisations and careers could be at stake if they do not understand data risk and data governance practices.

Create a TechRepublic Account

Get the web's best business technology news, tutorials, reviews, trends, and analysis—in your inbox. Let's start with the basics.

* - indicates required fields

Sign in to TechRepublic

Lost your password? Request a new password

Reset Password

Please enter your email adress. You will receive an email message with instructions on how to reset your password.

Check your email for a password reset link. If you didn't receive an email don't forgot to check your spam folder, otherwise contact support .

Welcome. Tell us a little bit about you.

This will help us provide you with customized content.

Want to receive more TechRepublic news?

You're all set.

Thanks for signing up! Keep an eye out for a confirmation email from our team. To ensure any newsletters you subscribed to hit your inbox, make sure to add [email protected] to your contacts list.

IMAGES

  1. How to Improve Critical Thinking

    major critical thinking

  2. The importance of critical thinking in education

    major critical thinking

  3. How To Improve Critical Thinking Skills at Work in 6 Steps

    major critical thinking

  4. Critical Thinking Skills for STEM Majors (and Careers)

    major critical thinking

  5. Critical Thinking eBook by Sharon M. Kaye

    major critical thinking

  6. What is critical thinking?

    major critical thinking

VIDEO

  1. Introduction to Critical Thinking

  2. Critical Thinking

  3. Create a mind map for how critical thinking is used as a nurse based on the major components of crit

  4. Sleepwalking to Success? STOP!

  5. Critical Theory and Frankfurt School

  6. Introduction to Critical Thinking

COMMENTS

  1. What Are Critical Thinking Skills and Why Are They Important?

    According to the University of the People in California, having critical thinking skills is important because they are [ 1 ]: Universal. Crucial for the economy. Essential for improving language and presentation skills. Very helpful in promoting creativity. Important for self-reflection.

  2. Critical Thinking and Decision-Making

    Simply put, critical thinking is the act of deliberately analyzing information so that you can make better judgements and decisions. It involves using things like logic, reasoning, and creativity, to draw conclusions and generally understand things better. This may sound like a pretty broad definition, and that's because critical thinking is a ...

  3. What Is Critical Thinking?

    Critical thinking is the ability to effectively analyze information and form a judgment. To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources. Critical thinking skills help you to: Identify credible sources. Evaluate and respond to arguments.

  4. Master the 3 Basics of Critical Thinking

    They carefully weigh the strengths of conflicting views and apply logical reasoning. Critical thinkers are, at once, open to the views of others and supremely independent in their judgments. If ...

  5. Critical thinking

    Critical thinking is the analysis of available facts, evidence, observations, and arguments in order to form a judgement by the application of rational, skeptical, and unbiased analyses and evaluation. The application of critical thinking includes self-directed, self-disciplined, self-monitored, and self-corrective habits of the mind, thus a critical thinker is a person who practices the ...

  6. Critical Thinking

    Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. ... Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST, ERIC Document ED326584. ---, 1992, California Critical ...

  7. What is Critical Thinking, and what are its elements

    Often the only way to mitigate errors due to cognitive biases is to rely on data or seek third party opinions. Critical thinking is the process of making reasoned judgments. Its elements include logical reasoning, critical thinking frameworks, evaluating credibility, rhetoric, clear thinking and communication, moral reasoning.

  8. 3 Core Critical Thinking Skills Every Thinker Should Have

    Critical thinking (CT) is a metacognitive process, consisting of a number of skills and dispositions, that when used through self-regulatory reflective judgment, increases the chances of producing ...

  9. Critical Thinking

    Critical Thinking is the process of using and assessing reasons to evaluate statements, assumptions, and arguments in ordinary situations. The goal of this process is to help us have good beliefs, where "good" means that our beliefs meet certain goals of thought, such as truth, usefulness, or rationality. Critical thinking is widely ...

  10. Critical Thinking: Where to Begin

    A Brief Definition: Critical thinking is the art of analyzing and evaluating thinking with a view to improving it. A well-cultivated critical thinker: communicates effectively with others in figuring out solutions to complex problems. Critical thinking is, in short, self-directed, self-disciplined, self-monitored, and self-corrective thinking.

  11. Critical thinking

    Theorists have noted that such skills are only valuable insofar as a person is inclined to use them. Consequently, they emphasize that certain habits of mind are necessary components of critical thinking. This disposition may include curiosity, open-mindedness, self-awareness, empathy, and persistence. Although there is a generally accepted set of qualities that are associated with critical ...

  12. Defining Critical Thinking

    Critical thinking is, in short, self-directed, self-disciplined, self-monitored, and self-corrective thinking. It presupposes assent to rigorous standards of excellence and mindful command of their use. It entails effective communication and problem solving abilities and a commitment to overcome our native egocentrism and sociocentrism.

  13. Our Conception of Critical Thinking

    Each major dimension of critical thinking has been carved out in intellectual debate and dispute through 2400 years of intellectual history. ... Critical thinking is self-guided, self-disciplined thinking which attempts to reason at the highest level of quality in a fair-minded way. People who think critically consistently attempt to live ...

  14. What is Critical Thinking?

    Critical thinking is the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication, as a guide to belief and action. Paul and Scriven go on to suggest that ...

  15. Standards of Critical Thinking

    Clarity is an important standard of critical thought. Clarity of communication is one aspect of this. We must be clear in how we communicate our thoughts, beliefs, and reasons for those beliefs ...

  16. How to build critical thinking skills for better decision-making

    It's a challenge, but it's well worth it. Critical thinking skills will help you connect ideas, make reasonable decisions, and solve complex problems. 7 critical thinking skills to help you dig deeper. Critical thinking is often labeled as a skill itself (you'll see it bulleted as a desired trait in a variety of job descriptions).

  17. 6 Benefits of Critical Thinking and Why They Matter

    Critical thinking capacity does all that and more. 4. It's a multi-faceted practice. Critical thinking is known for encompassing a wide array of disciplines, and cultivating a broad range of cognitive talents. One could indeed say that it's a cross-curricular activity for the mind, and the mind must be exercised just like a muscle to stay ...

  18. Introduction to Logic and Critical Thinking

    This is an introductory textbook in logic and critical thinking. The goal of the textbook is to provide the reader with a set of tools and skills that will enable them to identify and evaluate arguments. The book is intended for an introductory course that covers both formal and informal logic. As such, it is not a formal logic textbook, but is closer to what one would find marketed as a ...

  19. Learn Essential Critical Thinking Skills

    In summary, here are 10 of our most popular critical thinking courses. Introduction to Logic and Critical Thinking: Duke University. Creative Thinking: Techniques and Tools for Success: Imperial College London. Critical Thinking Skills for the Professional: University of California, Davis. Mindware: Critical Thinking for the Information Age ...

  20. 1: Introduction to Critical Thinking, Reasoning, and Logic

    It may seem strange to begin a logic textbook with this question. 'Thinking' is perhaps the most intimate and personal thing that people do. Yet the more you 'think' about thinking, the more mysterious it can appear. It is the sort of thing that one intuitively or naturally understands, and yet cannot describe to others without great ...

  21. Bridging critical thinking and transformative learning: The role of

    In recent decades, approaches to critical thinking have generally taken a practical turn, pivoting away from more abstract accounts - such as emphasizing the logical relations that hold between statements (Ennis, 1964) - and moving toward an emphasis on belief and action.According to the definition that Robert Ennis (2018) has been advocating for the last few decades, critical thinking is ...

  22. Basic Elements of Critical Thinking

    A set of information and beliefs, generating and processing skills, and the habit of using those skills to guide behavior. Critical thinkers: Ask questions. Gather relevant information. Think through solutions and conclusions. Consider alternative systems of thought. Communicate effectively. They're willing to admit when they're wrong or ...

  23. Critical Thinking: Creating Job-Proof Skills for the Future of Work

    Critical thinking, as both a cognitive skill and a disposition, has the potential to shape a workforce capable of adapting to the ever-changing landscape of work, making informed decisions, and contributing to a more rational and democratic world. The THINK4JOBS project emphasizes the practical steps taken to prepare students for the future job ...

  24. Is Critical Thinking A Superpower In The AI Era?

    Share to Linkedin. Critical thinking skills are crucial for AI. getty. AI, particularly generative AI, is having an immediate and dramatic impact on our lives, both personally and professionally ...

  25. A Brief History of the Idea of Critical Thinking

    The critical thinking of these Renaissance and post-Renaissance scholars opened the way for the emergence of science and for the development of democracy, human rights, and freedom for thought. ... Each major discipline has made some contribution to critical thought. Yet for most educational purposes, it is the summing up of base-line common ...

  26. Diesel Technology

    A major strength of this program is the strong hands-on approach to learning. ... a Social Sciences course to satisfy the Scientific Inquiry requirement should take a Humanities course to satisfy the Critical Thinking/Creativity and Social/Cultural Awareness competency.

  27. Big Data: Latest Articles, News & Trends

    Apache Spark and Hadoop, Microsoft Power BI, Jupyter Notebook and Alteryx are among the top data science tools for finding business insights. Compare their features, pros and cons. By Aminu ...