Stephen Hawking biography: Theories, books & quotes

A brief history of theoretical physicist Stephen Hawking.

Professor Stephen Hawking speaks about

  • Scientific achievements
  • Filmography
  • Quotes and controversial statements

Additional resources

Stephen Hawking is regarded as one of the most brilliant theoretical physicists in history. 

His work on the origins and structure of the universe, from the Big Bang to black holes, revolutionized the field, while his best-selling books have appealed to readers who may not have Hawking's scientific background. Hawking died on March 14, 2018 , at the age of 76.

Stephen Hawking was seen by many as the world's smartest person, though he never revealed his IQ score. When asked about his IQ score by a New York Times reporter he replied, "I have no idea, people who boast about their IQ are losers," according to the news site The Atlantic .  

Related: 4 bizarre Stephen Hawking theories that turned out to be right (and 6 we're not sure about)

In this brief biography, we look at Hawking's education and career — ranging from his discoveries to the popular books he's written — and the disease that robbed him of mobility and speech.   

The early life of Stephen Hawking

British cosmologist Stephen William Hawking was born in Oxford, England on Jan. 8, 1942  — 300 years to the day after the death of the astronomer Galileo Galilei . He attended University College, Oxford, where he studied physics, despite his father's urging to focus on medicine. Hawking went on to Cambridge to research cosmology , the study of the universe as a whole. 

In early 1963, just shy of his 21st birthday, Hawking was diagnosed with motor neuron disease, more commonly known as Lou Gehrig's disease or amyotrophic lateral sclerosis (ALS) . Doctors told Hawkings that he would likely not survive more than two years with the disease. Completing his doctorate did not appear likely, but Hawking defied the odds. He also obtained his PhD in 1966 for his thesis entitled " Properties of expanding universes ". In that same year, Hawking also won the prestigious Adams Prize for his essay entitled "Singularities and the Geometry of Space-Time".

From then Hawking went on to forge new roads into the understanding of the universe in the decades since. 

As the disease spread, Hawking became less mobile and began using a wheelchair. Talking grew more challenging and, in 1985, an emergency tracheotomy caused his total loss of speech. A speech-generating device constructed at Cambridge, combined with a software program, served as his electronic voice, allowing Hawking to select his words by moving the muscles in his cheek.

Just before his diagnosis, Hawking met Jane Wilde, and the two were married in 1965. The couple had three children before separating in 1990. Hawking remarried in 1995 to Elaine Mason but divorced in 2006.

Stephen Hawking's greatest scientific achievements

Stephen Hawking pictured in Princeton, New Jersey, in 1979

Throughout his career, Hawking proposed several theories regarding astronomical anomalies, posed curious questions about the cosmos and enlightened the world about the origin of everything. Here are just some of the many milestones Hawking made in the name of science. 

In 1970, Hawkings and fellow physicist and Oxford classmate, Roger Penrose, published a joint paper entitled " The singularities of gravitational collapse and cosmology ". In this paper, Hawking and Penrose proposed a new theory of spacetime singularities — a breakdown in the fabric of the universe found in one of Hawking's later discoveries, the black hole. This early work not only challenged concepts in physics but also supported the concept of the Big Bang as the birth of the universe, as outlined in Albert Einstein's theory of general relativity in the 1940s. 

Over the course of his career, Hawking studied the basic laws governing the universe. In 1974, Hawking published another paper called " Black hole explosions? ", in which he outlined a theorem that united Einstein's theory of general relativity, with quantum theory — which explains the behavior of matter and energy on an atomic level. In this new paper, Hawking hypothesized that matter not only fell into the gravitational pull of black holes but that photons radiated from them — which has now been confirmed in laboratory experiments by the Technion-Israel Institute of Technology in Israel — aptly named "Hawking radiation". 

Professor Stephen Hawking experiences the freedom of weightlessness during a zero gravity flight.

In 1974, Hawking was inducted into the Royal Society, a worldwide fellowship of scientists. Five years later, he was appointed Lucasian Professor of Mathematics at Cambridge, the most famous academic chair in the world (the second holder was Sir Isaac Newton , also a member of the Royal Society).

During the 1980s, Hawking turned his attention to the Big Bang and the uncertainties about the beginning of the universe. "Events before the Big Bang are simply not defined, because there’s no way one could measure what happened at them. Since events before the Big Bang have no observational consequences, one may as well cut them out of the theory and say that time began at the Big Bang," he said during his lecture called The Beginning of Time . In 1983, Hawking, along with scientists James Harlte, published a paper outlining their " no-boundary proposal " for the universe. In their paper, Hawking and Hartle describe the shape of the universe as reminiscent of a shuttlecock — with the Big Bang at the narrowest point and the expanding universe emerging from it.

Related: Can we time travel? A theoretical physicist provides some answers

Books by Stephen Hawking

In the last three decades of Hawking's life, he not only continued to publish academic literature, but he also published several popular science books to share his theories of the history of the universe with the layperson. His most popular book " A Brief History of Time " (10th-anniversary edition: Bantam, 1998) was first published in 1988 and became an international bestseller. It has sold almost 10 million copies and has been translated into 40 different languages.

Hawking went on to write other nonfiction books aimed at non-scientists. These include " A Briefer History of Time ," " The Universe in a Nutshell ," " The Grand Design " and " On the Shoulders of Giants ." 

Along with his many successful books about the inner workings of the universe, Hawking also began a series of science fiction books called " George and the Big Bang ", with his daughter Lucy Hawking in 2011. Aimed at middle school children, the series follows George's adventures as he travels through space. 

Stephen Hawking's filmography

Hawking has made several television appearances, including a playing hologram of himself on "Star Trek: The Next Generation" and a cameo on the television show "Big Bang Theory." He has also voiced himself in several episodes of the animated series "Futurama" and "The Simpson". In 1997, PBS also presented an educational miniseries titled " Stephen Hawking's Universe ," which probes the theories of the cosmologist. 

 In 2014, a movie based on Hawking's life was released. Called "The Theory of Everything," the film drew praise from Hawking , who said it made him reflect on his own life. "Although I'm severely disabled, I have been successful in my scientific work," Hawking wrote on Facebook in November 2014. "I travel widely and have been to Antarctica and Easter Island, down in a submarine and up on a zero-gravity flight. One day, I hope to go into space." 

Related: The Theory of Everything: Searching for the universal rules of physics

Stephen Hawking's quotes and controversial statements

Hawking's quotes range from notable to poetic to controversial. Among them: 

  • "Even if there is only one possible unified theory, it is just a set of rules and equations. What is it that breathes fire into the equations and makes a universe for them to describe? The usual approach of science of constructing a mathematical model cannot answer the questions of why there should be a universe for the model to describe. Why does the universe go to all the bother of existing? "— A Brief History of Time: From the Big Bang to Black Holes , 1988 
  • "All of my life, I have been fascinated by the big questions that face us, and have tried to find scientific answers to them. If, like me, you have looked at the stars, and tried to make sense of what you see, you too have started to wonder what makes the universe exist."— Stephen Hawking's Universe , 1997.  
  • "Science predicts that many different kinds of universe will be spontaneously created out of nothing. It is a matter of chance which we are in." — The Guardian, 2011 .
  • "We should seek the greatest value of our action." — The Guardian, 2011. 
  • "The whole history of science has been the gradual realization that events do not happen in an arbitrary manner, but that they reflect a certain underlying order, which may or may not be divinely inspired. "— A Brief History of Time: From the Big Bang to Black Holes , 1988.   
  • "The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge."  
  • "It is not clear that intelligence has any long-term survival value." — Life in the Universe , 1996.  
  • "One cannot really argue with a mathematical theorem." — A Brief History of Time: From the Big Bang to Black Holes , 1988.  
  • "It is a waste of time to be angry about my disability. One has to get on with life and I haven't done badly. People won't have time for you if you are always angry or complaining." — The Guardian, 2005 . 
  • "I relish the rare opportunity I've been given to live the life of the mind. But I know I need my body and that it will not last forever." — Stem Cell Universe , 2014. 

Stephen Hawking in front of a projection with a starry background and the text

A list of Hawking quotes would be incomplete without mentioning some of his more controversial statements.

He frequently said that humans must leave Earth if we wished to survive. 

  • "It will be difficult enough to avoid disaster in the next hundred years, let alone the next thousand or million...Our only chance of long-term survival is not to remain inward-looking on planet Earth, but to spread out into space," he said during an interview with video site Big Think , 2010. 
  • "[W]e must … continue to go into space for the future of humanity…I don't think we will survive another 1,000 years without escaping beyond our fragile planet,"  Hawking said during a lecture at the Oxford Union debating society , 2016. 
  • "We are running out of space and the only places to go to are other worlds. It is time to explore other solar systems. Spreading out may be the only thing that saves us from ourselves. I am convinced that humans need to leave Earth," he said during a speech at the Starmus Festival in Norway, 2017. 

He also said time travel should be possible, and that we should explore space for the romance of it. 

"Time travel used to be thought of as just science fiction, but Einstein's general theory of relativity allows for the possibility that we could warp space-time so much that you could go off in a rocket and return before you set out. I was one of the first to write about the conditions under which this would be possible. I showed it would require matter with negative energy density, which may not be available. Other scientists took courage from my paper and wrote further papers on the subject," he told the new site Parade in 2010. "Science is not only a disciple of reason, but, also, one of romance and passion," he adds.

The theoretical physicist was also concerned that robots could not only have an impact on the economy but also mean doom for humanity.

"The automation of factories has already decimated jobs in traditional manufacturing, and the rise of artificial intelligence is likely to extend this job destruction deep into the middle classes, with only the most caring, creative or supervisory roles remaining," he wrote in a 2016 column in The Guardian .

"The development of full artificial intelligence could spell the end of the human race," he told the BBC in 2014. Hawking added, however, that AI developed to date has been helpful. It's more the self-replication potential that worries him. "It would take off on its own, and re-design itself at an ever-increasing rate. Humans, who are limited by slow biological evolution, couldn't compete, and would be superseded."

"The genie is out of the bottle. I fear that AI may replace humans altogether," Hawking told WIRED in November 2017.

An avowed atheist, Hawking also occasionally waded into the topic of religion.

  • "Because there is a law such as gravity, the universe can and will create itself from nothing. Spontaneous creation is the reason there is something rather than nothing, why the universe exists, why we exist. It is not necessary to invoke God to light the blue touch paper and set the universe going." — The Grand Design, by Stephen Hawking and Leonard Mlodinow. 
  • "I regard the brain as a computer which will stop working when its components fail…There is no heaven or afterlife for broken down computers; that is a fairy story for people afraid of the dark," he said during a 2011 interview with The Guardian .
  • "Before we understand science, it is natural to believe that God created the universe. But now science offers a more convincing explanation. What I meant by 'we would know the mind of God' is, we would know everything that God would know, if there were a God, which there isn't. I'm an atheist," Hawking said in a 2014 interview with the news site El Mundo .  

For more information about Stephen Hawking, his theories and read through the many transcriptions of his influential lectures, check out his official website . You can also watch Hawking probe the origins of the cosmos in his extraordinary TED talk .  

Bibliography

#5: Stephen Hawking’s warning: Abandon earth-or face extinction . Big Think. (2010, July 27). https://bigthink.com/surprising-science/5-stephen-hawkings-warning-abandon-earth-or-face-extinction/

Beck, J. (2017, October 11). “people who boast about their IQ are losers.” The Atlantic. https://www.theatlantic.com/science/archive/2017/10/trump-tillerson-iq-brag-boast-psychology-study/542544/

The beginning of time . Stephen Hawking. (n.d.-c). https://www.hawking.org.uk/in-words/lectures/the-beginning-of-time

Guardian News and Media. (2005, September 27). Interview: Stephen Hawking . The Guardian. https://www.theguardian.com/science/2005/sep/27/scienceandnature.highereducationprofile

Guardian News and Media. (2011a, May 15). Stephen Hawking: “there is no heaven; it’s a Fairy story.” The Guardian. https://www.theguardian.com/science/2011/may/15/stephen-hawking-interview-there-is-no-heaven

Guardian News and Media. (2011b, May 15). Stephen Hawking: “there is no heaven; it’s a Fairy story.” The Guardian. https://www.theguardian.com/science/2011/may/15/stephen-hawking-interview-there-is-no-heaven

Guardian News and Media. (2016, December 1). This is the most dangerous time for our planet | Stephen Hawking . The Guardian. https://www.theguardian.com/commentisfree/2016/dec/01/stephen-hawking-dangerous-time-planet-inequality

Hartle, J. B., & Hawking, S. W. (1983, December 15). Wave function of the universe . Physical Review D. https://journals.aps.org/prd/abstract/10.1103/PhysRevD.28.2960

Hawking radiation and the sonic black hole - technion - israel institute of technology . Technion. (2021, February 17). https://www.technion.ac.il/en/2021/02/hawking-radiation-and-the-sonic-black-hole/

Hawking, S. W. (1974, March 1). Black Hole Explosions? . Nature News. https://www.nature.com/articles/248030a0

Life in the universe . Stephen Hawking. (n.d.-a). https://www.hawking.org.uk/in-words/lectures/life-in-the-universe

Medeiros, J. (2017, November 28). Stephen Hawking: “I fear ai may replace humans altogether.” WIRED UK. https://www.wired.co.uk/article/stephen-hawking-interview-alien-life-climate-change-donald-trump

Oxford Union Speech . Stephen Hawking. (n.d.-b). https://www.hawking.org.uk/in-words/speeches/speech-5

Pablo Jáuregui, Enviado especial Guía de Isora (Tenerife), & Chocolatillo. (2018, March 14). Stephen Hawking: “no hay ningún dios. soy ateo.” ELMUNDO. https://www.elmundo.es/ciencia/2014/09/21/541dbc12ca474104078b4577.html

The singularities of gravitational collapse and cosmology . Royal Society Publishing. (1970, January 27). https://royalsocietypublishing.org/doi/10.1098/rspa.1970.0021

Hawking, S. W. (1966). Properties of expanding universes. https://doi.org/10.17863/CAM.11283

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: [email protected].

Get the Space.com Newsletter

Breaking space news, the latest updates on rocket launches, skywatching events and more!

Nola Taylor Tillman

Nola Taylor Tillman is a contributing writer for Space.com. She loves all things space and astronomy-related, and enjoys the opportunity to learn more. She has a Bachelor’s degree in English and Astrophysics from Agnes Scott college and served as an intern at Sky & Telescope magazine. In her free time, she homeschools her four children. Follow her on Twitter at @NolaTRedd

  • Scott Dutfield Contributor

China launches Chang'e 6 sample-return mission to moon's far side (video)

A Switzerland-size hole opened in Antarctica's sea ice in 2016-17. Now we know why

Where will the annular solar eclipse on Oct. 2, 2024 be visible?

Most Popular

  • 2 Boeing Starliner rolls out to launch pad for 1st astronaut flight on May 6 (photos)
  • 3 The history of the Jedi Order in 'Star Wars'
  • 4 Star Wars Day 2024: 'Star Wars: Tales of the Empire' premieres today on Disney+
  • 5 Free Comic Book Day 2024: Get Marvel Comics 'Star Wars #1' for free

stephen hawking biography in english matter

Stephen Hawking

Stephen Hawking was a scientist known for his work with black holes and relativity, and the author of popular science books like 'A Brief History of Time.'

stephen hawking

(1942-2018)

Who Was Stephen Hawking?

Stephen Hawking was a British scientist, professor and author who performed groundbreaking work in physics and cosmology, and whose books helped to make science accessible to everyone.

Hawking was born on January 8, 1942, in Oxford, England. His birthday was also the 300th anniversary of the death of Galileo — long a source of pride for the noted physicist.

The eldest of Frank and Isobel Hawking's four children, Hawking was born into a family of thinkers.

His Scottish mother earned her way into Oxford University in the 1930s — a time when few women were able to go to college. His father, another Oxford graduate, was a respected medical researcher with a specialty in tropical diseases.

Hawking's birth came at an inopportune time for his parents, who didn't have much money. The political climate was also tense, as England was dealing with World War II and the onslaught of German bombs in London, where the couple was living as Frank Hawking undertook research in medicine.

In an effort to seek a safer place, Isobel returned to Oxford to have the couple's first child. The Hawkings would go on to have two other children, Mary and Philippa. And their second son, Edward, was adopted in 1956.

The Hawkings, as one close family friend described them, were an "eccentric" bunch. Dinner was often eaten in silence, each of the Hawkings intently reading a book. The family car was an old London taxi, and their home in St. Albans was a three-story fixer-upper that never quite got fixed. The Hawkings also housed bees in the basement and produced fireworks in the greenhouse.

In 1950, Hawking's father took work to manage the Division of Parasitology at the National Institute of Medical Research, and spent the winter months in Africa doing research. He wanted his eldest child to go into medicine, but at an early age, Hawking showed a passion for science and the sky.

That was evident to his mother, who, along with her children, often stretched out in the backyard on summer evenings to stare up at the stars. "Stephen always had a strong sense of wonder," she remembered. "And I could see that the stars would draw him."

Hawking was also frequently on the go. With his sister Mary, Hawking, who loved to climb, devised different entry routes into the family home. He loved to dance and also took an interest in rowing, becoming a team coxswain in college.

Early in his academic life, Hawking, while recognized as bright, was not an exceptional student. During his first year at St. Albans School , he was third from the bottom of his class.

But Hawking focused on pursuits outside of school; he loved board games, and he and a few close friends created new games of their own. During his teens, Hawking, along with several friends, constructed a computer out of recycled parts for solving rudimentary mathematical equations.

Hawking entered University College at the University of Oxford at the age of 17. Although he expressed a desire to study mathematics, Oxford didn't offer a degree in that specialty, so Hawking gravitated toward physics and, more specifically, cosmology.

By his own account, Hawking didn't put much time into his studies. He would later calculate that he averaged about an hour a day focusing on school. And yet he didn't really have to do much more than that. In 1962, he graduated with honors in natural science and went on to attend Trinity Hall at the University of Cambridge for a Ph.D. in cosmology.

In 1968, Hawking became a member of the Institute of Astronomy in Cambridge. The next few years were a fruitful time for Hawking and his research. In 1973, he published his first, highly-technical book, The Large Scale Structure of Space-Time , with G.F.R. Ellis.

In 1979, Hawking found himself back at the University of Cambridge, where he was named to one of teaching's most renowned posts, dating back to 1663: the Lucasian Professor of Mathematics.

DOWNLOAD BIOGRAPHY'S STEPHEN HAWKING FACT CARD

Stephen Hawking Fact Card

Wife and Children

At a New Year's party in 1963, Hawking met a young languages undergraduate named Jane Wilde. They were married in 1965. The couple gave birth to a son, Robert, in 1967, and a daughter, Lucy, in 1970. A third child, Timothy, arrived in 1979.

In 1990, Hawking left his wife Jane for one of his nurses, Elaine Mason. The two were married in 1995. The marriage put a strain on Hawking's relationship with his own children, who claimed Elaine closed off their father from them.

In 2003, nurses looking after Hawking reported their suspicions to police that Elaine was physically abusing her husband. Hawking denied the allegations, and the police investigation was called off. In 2006, Hawking and Elaine filed for divorce.

In the following years, the physicist reportedly grew closer to his family. He reconciled with Jane, who had remarried. And he published five science-themed novels for children with his daughter, Lucy.

Stephen Hawking: Books

Over the years, Hawking wrote or co-wrote a total of 15 books. A few of the most noteworthy include:

'A Brief History of Time'

In 1988 Hawking catapulted to international prominence with the publication of A Brief History of Time . The short, informative book became an account of cosmology for the masses and offered an overview of space and time, the existence of God and the future.

The work was an instant success, spending more than four years atop the London Sunday Times' best-seller list. Since its publication, it has sold millions of copies worldwide and been translated into more than 40 languages.

‘The Universe in a Nutshell’

A Brief History of Time also wasn't as easy to understand as some had hoped. So in 2001, Hawking followed up his book with The Universe in a Nutshell , which offered a more illustrated guide to cosmology's big theories.

‘A Briefer History of Time’

In 2005, Hawking authored the even more accessible A Briefer History of Time , which further simplified the original work's core concepts and touched upon the newest developments in the field like string theory.

Together these three books, along with Hawking's own research and papers, articulated the physicist's personal search for science's Holy Grail: a single unifying theory that can combine cosmology (the study of the big) with quantum mechanics (the study of the small) to explain how the universe began.

This kind of ambitious thinking allowed Hawking, who claimed he could think in 11 dimensions, to lay out some big possibilities for humankind. He was convinced that time travel is possible, and that humans may indeed colonize other planets in the future.

‘The Grand Design’

In September 2010, Hawking spoke against the idea that God could have created the universe in his book The Grand Design . Hawking previously argued that belief in a creator could be compatible with modern scientific theories.

In this work, however, he concluded that the Big Bang was the inevitable consequence of the laws of physics and nothing more. "Because there is a law such as gravity, the universe can and will create itself from nothing," Hawking said. "Spontaneous creation is the reason there is something rather than nothing, why the universe exists, why we exist."

The Grand Design was Hawking's first major publication in almost a decade. Within his new work, Hawking set out to challenge Isaac Newton 's belief that the universe had to have been designed by God, simply because it could not have been born from chaos. "It is not necessary to invoke God to light the blue touch paper and set the universe going," Hawking said.

Stephen Hawking

At the age of 21, Hawking was diagnosed with amyotrophic lateral sclerosis (ALS, or Lou Gehrig 's disease). In a very simple sense, the nerves that controlled his muscles were shutting down. At the time, doctors gave him two and a half years to live.

Hawking first began to notice problems with his physical health while he was at Oxford — on occasion he would trip and fall, or slur his speech — but he didn't look into the problem until 1963, during his first year at Cambridge. For the most part, Hawking had kept these symptoms to himself.

But when his father took notice of the condition, he took Hawking to see a doctor. For the next two weeks, the 21-year-old college student made his home at a medical clinic, where he underwent a series of tests.

"They took a muscle sample from my arm, stuck electrodes into me, and injected some radio-opaque fluid into my spine, and watched it going up and down with X-rays, as they tilted the bed," he once said. "After all that, they didn't tell me what I had, except that it was not multiple sclerosis, and that I was an atypical case."

Eventually, however, doctors did diagnose Hawking with the early stages of ALS. It was devastating news for him and his family, but a few events prevented him from becoming completely despondent.

The first of these came while Hawking was still in the hospital. There, he shared a room with a boy suffering from leukemia. Relative to what his roommate was going through, Hawking later reflected, his situation seemed more tolerable.

Not long after he was released from the hospital, Hawking had a dream that he was going to be executed. He said this dream made him realize that there were still things to do with his life.

In a sense, Hawking's disease helped turn him into the noted scientist he became. Before the diagnosis, Hawking hadn't always focused on his studies. "Before my condition was diagnosed, I had been very bored with life," he said. "There had not seemed to be anything worth doing."

With the sudden realization that he might not even live long enough to earn his Ph.D., Hawking poured himself into his work and research.

As physical control over his body diminished (he'd be forced to use a wheelchair by 1969), the effects of his disease started to slow down. Over time, however, Hawking's ever-expanding career was accompanied by an ever-worsening physical state.

How Did Stephen Hawking Talk?

By the mid-1970s, the Hawking family had taken in one of Hawking's graduate students to help manage his care and work. He could still feed himself and get out of bed, but virtually everything else required assistance.

In addition, his speech had become increasingly slurred, so that only those who knew him well could understand him. In 1985 he lost his voice for good following a tracheotomy. The resulting situation required 24-hour nursing care for the acclaimed physicist.

It also put in peril Hawking's ability to do his work. The predicament caught the attention of a California computer programmer, who had developed a speaking program that could be directed by head or eye movement. The invention allowed Hawking to select words on a computer screen that were then passed through a speech synthesizer.

At the time of its introduction, Hawking, who still had use of his fingers, selected his words with a handheld clicker. Eventually, with virtually all control of his body gone, Hawking directed the program through a cheek muscle attached to a sensor.

Through the program, and the help of assistants, Hawking continued to write at a prolific rate. His work included numerous scientific papers, of course, but also information for the non-scientific community.

Hawking's health remained a constant concern—a worry that was heightened in 2009 when he failed to appear at a conference in Arizona because of a chest infection. In April, Hawking, who had already announced he was retiring after 30 years from the post of Lucasian Professor of Mathematics at Cambridge, was rushed to the hospital for being what university officials described as "gravely ill," though he later made a full recovery.

Stephen Hawking

Research on the Universe and Black Holes

In 1974, Hawking's research turned him into a celebrity within the scientific world when he showed that black holes aren't the information vacuums that scientists had thought they were.

In simple terms, Hawking demonstrated that matter, in the form of radiation, can escape the gravitational force of a collapsed star. Another young cosmologist, Roger Penrose, had earlier discovered groundbreaking findings about the fate of stars and the creation of black holes, which tapped into Hawking's own fascination with how the universe began.

The pair then began working together to expand upon Penrose’s earlier work, setting Hawking on a career course marked by awards, notoriety and distinguished titles that reshaped the way the world thinks about black holes and the universe.

When Hawking’s radiation theory was born, the announcement sent shock waves of excitement through the scientific world. Hawking was named a fellow of the Royal Society at the age of 32, and later earned the prestigious Albert Einstein Award, among other honors. He also earned teaching stints at Caltech in Pasadena, California, where he served as visiting professor, and at Gonville and Caius College in Cambridge.

In August 2015, Hawking appeared at a conference in Sweden to discuss new theories about black holes and the vexing "information paradox." Addressing the issue of what becomes of an object that enters a black hole, Hawking proposed that information about the physical state of the object is stored in 2D form within an outer boundary known as the "event horizon." Noting that black holes "are not the eternal prisons they were once thought," he left open the possibility that the information could be released into another universe.

Beginning of the Universe

In a March 2018 interview on Neil deGrasse Tyson 's Star Talk , Hawking addressed the topic of "what was around before the Big Bang" by stating there was nothing around. He said by applying a Euclidean approach to quantum gravity, which replaces real time with imaginary time, the history of the universe becomes like a four-dimensional curved surface, with no boundary.

He suggested picturing this reality by thinking of imaginary time and real time as beginning at the Earth's South Pole, a point of space-time where the normal laws of physics hold; as there is nothing "south" of the South Pole, there was also nothing before the Big Bang.

Hawking and Space Travel

In 2007, at the age of 65, Hawking made an important step toward space travel. While visiting the Kennedy Space Center in Florida, he was given the opportunity to experience an environment without gravity.

Over the course of two hours over the Atlantic, Hawking, a passenger on a modified Boeing 727, was freed from his wheelchair to experience bursts of weightlessness. Pictures of the freely floating physicist splashed across newspapers around the globe.

"The zero-G part was wonderful, and the high-G part was no problem. I could have gone on and on. Space, here I come!" he said.

Hawking was scheduled to fly to the edge of space as one of Sir Richard Branson 's pioneer space tourists. He said in a 2007 statement, "Life on Earth is at the ever-increasing risk of being wiped out by a disaster, such as sudden global warming , nuclear war, a genetically engineered virus or other dangers. I think the human race has no future if it doesn't go into space. I therefore want to encourage public interest in space."

Stephen Hawking and Jim Parsons as Sheldon on The Big Bang Theory

Stephen Hawking Movie and TV Appearances

If there is such a thing as a rock-star scientist, Hawking embodied it. His forays into popular culture included guest appearances on The Simpsons , Star Trek: The Next Generation , a comedy spoof with comedian Jim Carrey on Late Night with Conan O'Brien , and even a recorded voice-over on the Pink Floyd song "Keep Talking."

In 1992, Oscar-winning filmmaker Errol Morris released a documentary about Hawking's life, aptly titled A Brief History of Time . Other TV and movie appearances included:

'The Big Bang Theory'

In 2012, Hawking showed off his humorous side on American television, making a guest appearance on The Big Bang Theory . Playing himself on this popular comedy about a group of young, geeky scientists, Hawking brings the theoretical physicist Sheldon Cooper ( Jim Parsons ) back to Earth after finding an error in his work. Hawking earned kudos for this light-hearted effort.

'The Theory of Everything'

In November of 2014, a film about the life of Hawking and Jane Wilde was released. The Theory of Everything stars Eddie Redmayne as Hawking and encompasses his early life and school days, his courtship and marriage to Wilde, the progression of his crippling disease and his scientific triumphs.

In May 2016, Hawking hosted and narrated Genius , a six-part television series which enlists volunteers to tackle scientific questions that have been asked throughout history. In a statement regarding his series, Hawking said Genius is “a project that furthers my lifelong aim to bring science to the public. It’s a fun show that tries to find out if ordinary people are smart enough to think like the greatest minds who ever lived. Being an optimist, I think they will.”

Stephen Hawking

In 2011, Hawkings had participated in a trial of a new headband-styled device called the iBrain. The device is designed to "read" the wearer's thoughts by picking up "waves of electrical brain signals," which are then interpreted by a special algorithm, according to an article in The New York Times . This device could be a revolutionary aid to people with ALS.

Hawking on AI

In 2014, Hawking, among other top scientists, spoke out about the possible dangers of artificial intelligence, or AI, calling for more research to be done on all of possible ramifications of AI. Their comments were inspired by the Johnny Depp film Transcendence , which features a clash between humanity and technology.

"Success in creating AI would be the biggest event in human history," the scientists wrote. "Unfortunately, it might also be the last, unless we learn how to avoid the risks." The group warned of a time when this technology would be "outsmarting financial markets, out-inventing human researchers, out-manipulating human leaders, and developing weapons we cannot even understand."

Hawking reiterated this stance while speaking at a technology conference in Lisbon, Portugal, in November 2017. Noting how AI could potentially make gains in wiping out poverty and disease, but could also lead to such theoretically destructive actions as the development of autonomous weapons, he said, "We cannot know if we will be infinitely helped by AI, or ignored by it and sidelined, or conceivably destroyed by it."

Hawking and Aliens

In July 2015, Hawking held a news conference in London to announce the launch of a project called Breakthrough Listen. Funded by Russian entrepreneur Yuri Milner, Breakthrough Listen was created to devote more resources to the discovery of extraterrestrial life.

Breaking the Internet

In October 2017, Cambridge University posted Hawking's 1965 doctoral thesis, "Properties of Expanding Universes," to its website. An overwhelming demand for access promptly crashed the university server, though the document still fielded a staggering 60,000 views before the end of its first day online.

When Did Stephen Hawking Die?

On March 14, 2018, Hawking finally died of ALS, the disease that was supposed to have killed him more than 50 years earlier. A family spokesman confirmed that the iconic scientist died at his home in Cambridge, England.

The news touched many in his field and beyond. Fellow theoretical physicist and author Lawrence Krauss tweeted: "A star just went out in the cosmos. We have lost an amazing human being. Hawking fought and tamed the cosmos bravely for 76 years and taught us all something important about what it truly means to celebrate about being human."

Hawking's children followed with a statement: "We are deeply saddened that our beloved father passed away today. He was a great scientist and an extraordinary man whose work and legacy will live on for many years. His courage and persistence with his brilliance and humor inspired people across the world. He once said, 'It would not be much of a universe if it wasn’t home to the people you love.' We will miss him forever."

Later in the month, it was announced that Hawking's ashes would be interred at Westminster Abbey in London, alongside other scientific luminaries like Isaac Newton and Charles Darwin .

On May 2, 2018, his final paper, titled "A smooth exit from eternal inflation?" was published in the Journal of High Energy Physics . Submitted 10 days before his death, the new report, co-authored by Belgian physicist Thomas Hertog, disputes the idea that the universe will continue to expand.

QUICK FACTS

  • Name: Stephen Hawking
  • Birth Year: 1942
  • Birth date: January 8, 1942
  • Birth City: Oxford, England
  • Birth Country: United Kingdom
  • Gender: Male
  • Best Known For: Stephen Hawking was a scientist known for his work with black holes and relativity, and the author of popular science books like 'A Brief History of Time.'
  • Science and Medicine
  • Astrological Sign: Capricorn
  • University of Cambridge
  • Gonville & Caius College
  • Oxford University
  • California Institute of Technology
  • Interesting Facts
  • As an author, Stephen Hawking was best known for his best seller 'A Brief History of Time.'
  • At the age of 21, Stephen Hawking was diagnosed with amyotrophic lateral sclerosis (ALS, or Lou Gehrig's disease).
  • Death Year: 2018
  • Death date: March 14, 2018
  • Death City: Cambridge, England
  • Death Country: United Kingdom

We strive for accuracy and fairness. If you see something that doesn't look right , contact us !

  • My goal is simple. It is a complete understanding of the universe, why it is as it is and why it exists at all.
  • Not only does God definitely play dice, but He sometimes confuses us by throwing them where they can't be seen.
  • Intelligence is the ability to adapt to change.
  • Before my condition was diagnosed, I had been very bored with life. There had not seemed to be anything worth doing.
  • I believe that life on Earth is at an ever increasing risk of being wiped out by a disaster such as sudden global warming, nuclear war, a genetically engineered virus, or other dangers. I think the human race has no future if it doesn't go into space.
  • Because there is a law such as gravity, the universe can and will create itself from nothing. Spontaneous creation is the reason there is something rather than nothing, why the universe exists, why we exist.
  • It is not necessary to invoke God to light the blue touch paper and set the universe going.
  • It is not clear that intelligence has any long-term survival value.
  • If, like me, you have looked at the stars, and tried to make sense of what you see, you too have started to wonder what makes the universe exist.
  • I regard the brain as a computer which will stop working when its components fail. There is no heaven or afterlife for broken down computers; that is a fairy story for people afraid of the dark.
  • Science is beautiful when it makes simple explanations of phenomena or connections between different observations. Examples include the double helix in biology, and the fundamental equations of physics.
  • People who boast about their I.Q. are losers.
  • We shouldn't be surprised that conditions in the universe are suitable for life, but this is not evidence that the universe was designed to allow for life. We could call order by the name of God, but it would be an impersonal God. There's not much personal about the laws of physics.

Famous British People

idris elba smiles at the camera, he wears a black shirt and flowers and lights are hanging from the ceiling behind him

Mick Jagger

agatha christie looks at the camera as she leans her head against on hand, she wears a dark top and rings on her fingers

Agatha Christie

alexander mcqueen personal appearance at saks fifth ave

Alexander McQueen

julianne moore and nicholas galitzine sitting in a wooden pew and looking up and to the right out of frame in a tv scene

The Real Royal Scheme Depicted in ‘Mary & George’

painting of william shakespeare

William Shakespeare

anya taylor joy wearing a dior dress for a photocall and posing in front of a marble staircase

Anya Taylor-Joy

kate middleton smiles and looks left of the camera, she wears a white jacket over a white sweater with dangling earrings, she stands outside with blurred lights in the background

Kate Middleton, Princess of Wales

the duke and duchess of rothesay visit scotland

Kensington Palace Shares an Update on Kate

amy winehouse smiles at the camera, she wears a black strapless top with large white hoop earrings and a red rose in her beehive hairdo

Amy Winehouse

prince william smiles he walks outside, he holds one hand close to his chest and wears a navy suit jacket, white collared shirt and green tie

Prince William

bletchley, united kingdom may 14 embargoed for publication in uk newspapers until 24 hours after create date and time catherine, duchess of cambridge visits the d day interception, intelligence, invasion exhibition at bletchley park on may 14, 2019 in bletchley, england the d day exhibition marks the 75th anniversary of the d day landings photo by max mumbyindigogetty images

Where in the World Is Kate Middleton?

Biography Online

Biography

Stephen Hawking Biography

Stephen_Hawking

Early life Stephen Hawking

Stephen William Hawking was born on 8 January 1942 in Oxford, England. His family had moved to Oxford to escape the threat of V2 rockets over London. As a child, he showed prodigious talent and unorthodox study methods. On leaving school, he got a place at University College, Oxford University where he studied Physics. His physics tutor at Oxford, Robert Berman, later said that Stephen Hawking was an extraordinary student. He used few books and made no notes, but could work out theorems and solutions in a way other students couldn’t.

“My goal is simple. It is a complete understanding of the universe, why it is as it is and why it exists at all.”

– Stephen Hawking’s Universe (1985) by John Boslough, Ch. 7

stephen hawking

It was in Cambridge that Stephen Hawking first started to develop symptoms of neuro-muscular problems – a type of motor neuron disease. This quickly started to hamper his physical movements. His speech became slurred, and he became unable to even to feed himself. At one stage, the doctors gave him a lifespan of three years. However, the progress of the disease slowed down, and he has managed to overcome his severe disability to continue his research and active public engagements. At Cambridge, a fellow scientist developed a synthetic speech device which enabled him to speak by using a touchpad. This early synthetic speech sound has become the ‘voice’ of Stephen Hawking, and as a result, he has kept the original sound of this early model – despite technological advancements.

Nevertheless, despite the latest technology, it can still be a time-consuming process for him to communicate. Stephen Hawking has taken a pragmatic view to his disability:

“It is a waste of time to be angry about my disability. One has to get on with life and I haven’t done badly. People won’t have time for you if you are always angry or complaining. ” The Guardian (27 September 2005)

Stephen Hawking’s principal fields of research have been involved in theoretical cosmology and quantum gravity.

Amongst many other achievements, he developed a mathematical model for Albert Einstein’s General Theory of Relativity. He has also undertaken a lot of work on the nature of the Universe, The Big Bang and Black Holes.

In 1974, he outlined his theory that black holes leak energy and fade away to nothing. This became known as “Hawking radiation” in 1974. With mathematicians Roger Penrose he demonstrated that Einstein’s General Theory of Relativity implies space and time would have a beginning in the Big Bang and an end in black holes.

Despite being one of the best physicists of his generation, he has also been able to translate difficult physics models into a general understanding for the general public. His books – A Brief History of Time and The Universe in A Nutshell have both became runaway bestsellers – with a Brief History of Time staying in the Bestsellers lists for over 230 weeks and selling over 10 million copies. In his books, Hawking tries to explain scientific concepts in everyday language and give an overview to the workings behind the cosmos.

“The whole history of science has been the gradual realization that events do not happen in an arbitrary manner, but that they reflect a certain underlying order, which may or may not be divinely inspired.”

–  A Brief History Of Time (1998) ch. 8

Stephen Hawking has become one of the most famous scientists of his generation. He makes frequent public engagements and his portrayed himself in popular media culture from programmes, such as The Simpsons to Star Trek.

Hawking had the capacity to relate the most complex physics to relateable incidents in everyday life.

“The message of this lecture is that black holes ain’t as black as they are painted. They are not the eternal prisons they were once thought. Things can get out of a black hole both on the outside and possibly to another universe. So if you feel you are in a black hole, don’t give up – there’s a way out.”

Stephen Hawking. 7 January 2016 –  Reith lecture at the Royal Institute in London.

In the late 1990s, he was reportedly offered a knighthood, but 10 years later revealed he had turned it down over issues with the government’s funding for science

He married Jane Wilde, a language student in 1965. He said this was a real turning point for him at a time when he was fatalistic because of his illness. They later divorced but had three children.

Stephen Hawking passed away on 14 March 2018 at his home in Cambridge.

Citation: Pettinger, Tejvan . “ Biography of Stephen Hawking ”, Oxford, UK – www.biographyonline.net . Last updated 15 January 2018.

A Brief History Of Time

Book Cover

A Brief History Of Time by Stephen Hawking at Amazon

Quotes of Stephen Hawking

“If we do discover a complete theory, it should in time be understandable in broad principle by everyone, not just a few scientists. Then we shall all, philosophers, scientists, and just ordinary people, be able to take part in the discussion of the question of why it is that we and the universe exist. If we find the answer to that, it would be the ultimate triumph of human reason — for then we would know the mind of God.”

– Black Holes and Baby Universes and Other Essays (1993)

“Even if there is only one possible unified theory, it is just a set of rules and equations. What is it that breathes fire into the equations and makes a universe for them to describe? The usual approach of science of constructing a mathematical model cannot answer the questions of why there should be a universe for the model to describe. Why does the universe go to all the bother of existing?”

– A Brief History of Time (1988)

“One, remember to look up at the stars and not down at your feet. Two, never give up work. Work gives you meaning and purpose and life is empty without it. Three, if you are lucky enough to find love, remember it is there and don’t throw it away.”

– Stephen Hawking

“For millions of years, mankind lived just like the animals. Then something happened which unleashed the power of our imagination. We learned to talk and we learned to listen. Speech has allowed the communication of ideas, enabling human beings to work together to build the impossible. Mankind’s greatest achievements have come about by talking, and its greatest failures by not talking. It doesn’t have to be like this. Our greatest hopes could become reality in the future. With the technology at our disposal, the possibilities are unbounded. All we need to do is make sure we keep talking.”

– Stephen Hawking (BT advert 1993)

Related pages

scientis

  • Stephen Hawking.org.uk

Stephen hawkings amazing scientist

  • February 20, 2019 5:18 AM
  • By Rambharat Singh

Very interesting and helpful to know the supernova of physics

  • April 16, 2018 2:34 PM
  • By Jiji nixon

web analytics

Biography of Stephen Hawking, Physicist and Cosmologist

Karwai Tang/Getty Images

  • Important Physicists
  • Physics Laws, Concepts, and Principles
  • Quantum Physics
  • Thermodynamics
  • Cosmology & Astrophysics
  • Weather & Climate

stephen hawking biography in english matter

  • M.S., Mathematics Education, Indiana University
  • B.A., Physics, Wabash College

Stephen Hawking (January 8, 1942–March 14, 2018) was a world-renowned cosmologist and physicist, especially esteemed for overcoming an extreme physical disability to pursue his groundbreaking scientific work. He was a bestselling author whose books made complex ideas accessible to the general public. His theories provided deep insights into the connections between quantum physics and relativity, including how those concepts might be united in explaining fundamental questions related to the development of the universe and the formation of black holes.

Fast Facts: Stephen Hawking

  • Known For : Cosmologist, physicist, best-selling science writer
  • Also Known As : Steven William Hawking
  • Born : January 8, 1942 in Oxfordshire, England
  • Parents : Frank and Isobel Hawking
  • Died: March 14, 2018 in Cambridge, England
  • Education : St Albans School, B.A., University College, Oxford, Ph.D., Trinity Hall, Cambridge, 1966
  • Published Works :  A Brief History of Time: From the Big Bang to Black Holes, The Universe in a Nutshell, On the Shoulders of Giants, A Briefer History of Time, The Grand Design, My Brief History
  • Awards and Honors : Fellow of the Royal Society, the Eddington Medal, the Royal Society's Hughes Medal, the Albert Einstein Medal, the Gold Medal of the Royal Astronomical Society, Member of the Pontifical Academy of Sciences, the Wolf Prize in Physics, the Prince of Asturias Awards in Concord, the Julius Edgar Lilienfeld Prize of the American Physical Society, the Michelson Morley Award of Case Western Reserve University, the Copley Medal of the Royal Society
  • Spouses : Jane Wilde, Elaine Mason
  • Children : Robert, Lucy, Timothy
  • Notable Quote : “Most of the threats we face come from the progress we’ve made in science and technology. We are not going to stop making progress, or reverse it, so we must recognize the dangers and control them. I’m an optimist, and I believe we can.”

Stephen Hawking was born on January 8, 1942, in Oxfordshire, England, where his mother had been sent for safety during the German bombings of London of World War II. His mother Isobel Hawking was an Oxford graduate and his father Frank Hawking was a medical researcher.

After Stephen's birth, the family reunited in London, where his father headed the division of parasitology at the National Institute for Medical Research. The family then moved to St. Albans so that Stephen's father could pursue medical research at the nearby Institute for Medical Research in Mill Hill.

Education and Medical Diagnosis

Stephen Hawking attended school in St. Albans, where he was an unexceptional student. His brilliance was much more apparent in his years at Oxford University. He specialized in physics and graduated with first-class honors despite his relative lack of diligence. In 1962, he continued his education at Cambridge University, pursuing a Ph.D. in cosmology.

At age 21, a year after beginning his doctoral program, Stephen Hawking was diagnosed with amyotrophic lateral sclerosis (also known as motor neuron disease, ALS, and Lou Gehrig's disease). Given only three years to live, he has written that this prognosis helped motivate him in his physics work .

There is little doubt that his ability to remain actively engaged with the world through his scientific work helped him persevere in the face of the disease. The support of family and friends were equally key. This is vividly portrayed in the dramatic film "The Theory of Everything."

The ALS Progresses

As his illness progressed, Hawking became less mobile and began using a wheelchair. As part of his condition, Hawking eventually lost his ability to speak, so he utilized a device capable of translating his eye movements (since he could no longer utilize a keypad) to speak in a digitized voice.

In addition to his keen mind within physics, he gained respect throughout the world as a science communicator. His achievements are deeply impressive on their own, but some of the reason he is so universally respected was his ability to accomplish so much while suffering the severe debility caused by ALS.

Marriage and Children

Just before his diagnosis, Hawking met Jane Wilde, and the two were married in 1965. The couple had three children before separating. Hawking later married Elaine Mason in 1995 and they divorced in 2006.

Career as Academic and Author

Hawking stayed on at Cambridge after his graduation, first as a research fellow and then as a professional fellow. For most of his academic career, Hawking served as the Lucasian Professor of Mathematics at the University of Cambridge, a position once held by Sir Isaac Newton .

Following a long tradition, Hawking retired from this post at age 67, in the spring of 2009, though he continued his research at the university's cosmology institute. In 2008 he also accepted a position as a visiting researcher at Waterloo, Ontario's Perimeter Institute for Theoretical Physics.

In 1982 Hawking began work on a popular book on cosmology. By 1984 he had produced the first draft of "A Brief History of Time," which he published in 1988 after some medical setbacks. This book remained on the Sunday Times bestsellers list for 237 weeks. Hawking's even more accessible "A Briefer History of Time" was published in 2005.

Fields of Study

Hawking's major research was in the areas of theoretical cosmology , focusing on the evolution of the universe as governed by the laws of general relativity . He is most well-known for his work in the study of black holes . Through his work, Hawking was able to:

  • Prove that singularities are general features of spacetime.
  • Provide mathematical proof that information which fell into a black hole was lost.
  • Demonstrate that black holes evaporate through Hawking radiation .

On March 14, 2018, Stephen Hawking died in his home in Cambridge, England. He was 76. His ashes were placed in London’s Westminster Abbey between the final resting places of Sir Isaac Newton and Charles Darwin.

Stephen Hawking made large contributions as a scientist, science communicator, and as a heroic example of how enormous obstacles can be overcome. The Stephen Hawking Medal for Science Communication is a prestigious award that "recognizes the merit of popular science on an international level."

Thanks to his distinctive appearance, voice, and popularity, Stephen Hawking is often represented in popular culture. He made appearances on the television shows "The Simpsons" and "Futurama," as well as having a cameo on "Star Trek: The Next Generation" in 1993.

"The Theory of Everything," a biographical drama film about Hawking's life, was released in 2014.

  • “ Stephen Hawking .”  Famous Scientists .
  • Redd, Nola Taylor. “ Stephen Hawking Biography (1942-2018) .”  Space.com , Space, 14 Mar. 2018.
  • “ Stephen William Hawking .”  Stephen Hawking (1942-2018) .
  • Biography of Brian Cox
  • Biography of Subrahmanyan Chandrasekhar
  • What Is Astronomy and Who Does It?
  • Leonard Susskind Bio
  • Life and Work of Fred Hoyle, British Astronomer
  • Biography of John Bardeen, Nobel Prize-Winning Physicist
  • Understanding Cosmology and Its Impact
  • Biography of Isaac Newton, Mathematician and Scientist
  • Niels Bohr and the Manhattan Project
  • Biography of Physicist Paul Dirac
  • Biography of Charles Wheatstone, British Inventor and Entrepreneur
  • Biography of Max Born, Nobel Prize-Winning Physicist
  • Biography of Ernest Rutherford
  • Biography of Jagadish Chandra Bose, Modern-Day Polymath
  • Biography of Humphry Davy, Prominent English Chemist
  • The Basics of Physics in Scientific Study

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • 14 March 2018

Stephen Hawking (1942–2018)

  • Martin Rees 0

Martin Rees is Astronomer Royal of the United Kingdom. He was a student in Dennis Sciama’s research group at the University of Cambridge at the same time as Stephen Hawking.

You can also search for this author in PubMed   Google Scholar

You have full access to this article via your institution.

Stephen Hawking in 1993.

Stephen Hawking in Cambridge, January 1993. Credit: David Montgomery/Getty

When Stephen Hawking was diagnosed with motor-neuron disease at the age of 21, it wasn’t clear that he would finish his PhD. Against all expectations, he lived on for 55 years, becoming one of the world’s most celebrated scientists.

Hawking, who died on 14 March 2018, was born in Oxford, UK, in 1942 to a medical-researcher father and a philosophy-graduate mother. After attending St Albans School near London, he earned a first-class degree in physics from the University of Oxford. He began his research career in 1962, enrolling as a graduate student in a group at the University of Cambridge led by one of the fathers of modern cosmology, Dennis Sciama.

The general theory of relativity was at that time undergoing a renaissance, initiated in part by Roger Penrose at Birkbeck College, London, who had introduced new mathematical techniques. These showed that generic gravitational collapse would lead to singularities — infinities that signal the need for new physics.

stephen hawking biography in english matter

Stephen Hawking: A life in science

The implications for black holes and the Big Bang were developed by Hawking in a series of papers collated in the 1973 monograph The Large Scale Structure of Space-Time (Cambridge University Press), co-authored with George Ellis, a near-contemporary who had also been a student of Sciama. Especially important was the realization that the area of black holes’ horizons (‘one-way membranes’ that shroud the singularities, and from within which nothing can escape) could never decrease. The analogy with entropy — a measure of disorder that likewise can never decrease — was developed further by physicist Jacob Bekenstein.

These findings gained Hawking election to the Royal Society in London in 1974, at the age of 32. By then, he was so frail that both movement and speech were difficult, and most of us suspected that his days in front-line research were numbered. But in that same year, he came up with his most distinctive contribution to science: Hawking radiation.

By linking quantum theory and gravity, Hawking showed that a black hole would not be completely black, but would radiate with a well-defined temperature that depended inversely on its mass ( S. W. Hawking Nature 248, 30–31; 1974 ). Black-hole entropy was more than just an analogy. The implication was that the radiation would cause black holes to ‘evaporate’. This process would be unobservably slow, except in ‘mini-holes’ the size of atoms — and these are thought not to exist. Yet Hawking radiation — and the related issue of whether information that falls into a black hole is lost or is somehow recoverable from the radiation — was a profound issue, and one that still engenders controversy among theoretical physicists. Indeed, theorist Andrew Strominger at Harvard University in Cambridge, Massachusetts, said in 2016 that one of Hawking’s papers on the subject ( S. W. Hawking Phys. Rev. D 14, 2460–2473; 1976 ) had caused “more sleepless nights among theoretical physicists than any paper in history”.

By the end of the 1970s, Hawking had been appointed to the Lucasian Chair of Mathematics at Cambridge (former incumbents include Isaac Newton and Paul Dirac); he held the post until he retired in 2009. During these years, in which his focus shifted to the quantum aspects of the Big Bang, the issue of information loss in black holes continued to challenge him.

In 1985, Stephen underwent a tracheotomy, which removed his already limited powers of speech. He was able to control a cursor on a screen and type out sentences — albeit with increasingly painful slowness (first with his hand, and eventually only with a cheek muscle). A speech synthesizer processed his words and generated the androidal accent that became his trademark. In this way, he completed his best-selling book A Brief History of Time (Bantam, 1988), which propelled him to celebrity status.

Had Hawking achieved equal distinction in any other branch of science besides cosmology, it probably would not have had the same resonance with a worldwide public. As I put it in The Telegraph newspaper in 2007, “the concept of an imprisoned mind roaming the cosmos” grabbed people’s imagination.

In 1965, Stephen married Jane Wilde. After 25 years of marriage, and three children, the strain of Stephen’s illness and of sharing their home with a team of nurses became too much and they separated, divorcing in 1995. Jane wrote a book about their life together, Travelling to Infinity (Alma, 2008), and both she and Stephen were happy with the telling of their story in the 2014 film The Theory of Everything (although it elides and conflates Stephen’s science). After a second, briefer marriage, Stephen was supported by an entourage of assistants, as well as his family.

Stephen remained remarkably positive throughout his life, despite the immense frustration that his condition clearly caused. He enjoyed theatre and opera trips, and he seemed energized rather than exhausted by his travels to all parts of the world, as well as by his regular trips to the California Institute of Technology in Pasadena. He retained robust common sense and a sense of humour, expressed forceful opinions, supported political causes and was happy to engage with the media, despite its insistent attention. His comments gained outsized attention even on subjects in which he was not a specialist, such as philosophy and the dangers of artificial intelligence.

Stephen’s expectations when he was diagnosed dropped to zero; he said that everything that had happened since had been a bonus. And what a bonus — for physics, for the millions enlightened by his books and for the even larger number inspired by his achievement against all the odds.

Nature 555 , 444 (2018)

doi: https://doi.org/10.1038/d41586-018-02839-9

Related Articles

stephen hawking biography in english matter

Dark energy is tearing the Universe apart. What if the force is weakening?

News Feature 03 MAY 24

Could JWST solve cosmology’s big mystery? Physicists debate Universe-expansion data

Could JWST solve cosmology’s big mystery? Physicists debate Universe-expansion data

News 15 APR 24

‘Best view ever’: observatory will map Big Bang’s afterglow in new detail

‘Best view ever’: observatory will map Big Bang’s afterglow in new detail

News 22 MAR 24

Quantum control of a cat qubit with bit-flip times exceeding ten seconds

Quantum control of a cat qubit with bit-flip times exceeding ten seconds

Article 06 MAY 24

Intel brings quantum-computing microchips a step closer

Intel brings quantum-computing microchips a step closer

News & Views 01 MAY 24

Allen J. Bard obituary: electrochemist whose techniques underpin clinical diagnostics, materials discovery and more

Allen J. Bard obituary: electrochemist whose techniques underpin clinical diagnostics, materials discovery and more

Obituary 01 MAY 24

Young talents in the fields of natural science and engineering technology

Apply for the 2024 Science Fund Program for Distinguished Young Scholars of the National Natural Science Foundation of China (Overseas).

Shenyang, Liaoning, China

Northeastern University, China

stephen hawking biography in english matter

Calling for Application! Tsinghua Shenzhen International Graduate School Global Recruitment

To reshape graduate education as well as research and development to better serve local, national, regional, and global sustainable development.

Shenzhen, Guangdong, China

Tsinghua Shenzhen International Graduate School

stephen hawking biography in english matter

Chief Editor, Physical Review X

The Chief Editor of PRX, you will build on this reputation and shape the journal’s scope and direction for the future.

United States (US) - Remote

American Physical Society

stephen hawking biography in english matter

Assistant/Associate Professor, New York University Grossman School of Medicine

The Department of Biochemistry and Molecular Pharmacology at the NYUGSoM in Manhattan invite applications for tenure-track positions.

New York (US)

NYU Langone Health

stephen hawking biography in english matter

Deputy Director. OSP

The NIH Office of Science Policy (OSP) is seeking an expert candidate to be its next Deputy Director. OSP is the agency’s central policy office an...

Bethesda, Maryland (US)

National Institutes of Health/Office of Science Policy (OSP)

stephen hawking biography in english matter

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies
  • Twitter Icon
  • Facebook Icon
  • Reddit Icon
  • LinkedIn Icon

stephen hawking biography in english matter

Stephen Hawking (1942–2018)

Colleagues remember the leading cosmologist, whose influence expanded beyond the physics community.

 alt=

Editor’s note: This article was last updated on 22 March.

Famed theoretical cosmologist Stephen Hawking died on 14 March at age 76, a remarkable 55 years after he was diagnosed with amyotrophic lateral sclerosis.

Born on 8 January 1942 in Oxford, England, Hawking studied physics at Oxford University and astrophysics at Cambridge University. Much of Hawking’s research examined the interplay between general relativity and quantum mechanics. In 1974 he derived one of his most famous results: that quantum effects near a black hole’s event horizon will lead to the black hole’s emission of black body radiation. His 1988 book,  A Brief History of Time , remains one of the most successful attempts to make modern cosmology accessible. James L. Anderson, in a review of the book for Physics Today , wrote that Hawking’s “exposition is usually so clear that one feels the missing equations [there is only one in the whole book] can be derived with just a bit of effort.”

Rather than have one person write an obituary, we asked many of Hawking’s colleagues to share remembrances. Their responses are below. If you would like to share a story about Hawking, please leave a comment or send us an email . We’d also love to hear from scientists whose early interest in STEM was sparked by Hawking’s popular writing.

  • Marika Taylor
  • John Preskill
  • Thomas Hertog
  • George Ellis
  • William Unruh
  • Andrew Strominger
  • Martin Rocek
  • Christophe Galfard
  • Gordon Berry
  • Bernard Carr
  • James Hartle

Don Page Distinguished University Professor, University of Alberta

Stephen Hawking was a brilliant scientist who proved that, under appropriate conditions that seem to be true for our universe, classical general relativity would imply that the universe had a singular beginning and that the area of the event horizon of a black hole would never shrink. Later Hawking showed that, going beyond classical physics, quantum theory implies that black holes would emit particles (now called Hawking radiation) and shrink, and that the universe might not in fact have a precise beginning. The latter idea, the Hartle–Hawking no-boundary wavefunction for the universe, though almost certainly not the last word on the subject, was an ingenious proposal for going beyond the dynamical laws of physics to a theory for the boundary conditions of the universe. I was highly privileged to have had Hawking as my PhD co-supervisor (along with Kip Thorne, my main supervisor at Caltech) and as my postdoctoral supervisor at the University of Cambridge from 1976 to 1979. During that time I lived in his home and helped him get up, get dressed, eat breakfast, and go by wheelchair to the Department of Applied Mathematics and Theoretical Physics. He was a wonderful mentor and a close friend, as was his entire family. I shall miss him greatly.

Marika Taylor Professor of Theoretical Physics and Head of Applied Mathematics, University of Southampton

Stephen lived with the debilitating disease of ALS for over 50 years and struggled with increasing disability and discomfort. Working with him, one could not fail to be influenced by his immense determination to carry on with his research and everyday life. And for him just carrying on was not enough: he wanted to enjoy all that life has to offer and to reach for the skies in everything he did. As a student of his, many of my memories of him inevitably relate to physics discussions. He had an insatiable intellectual curiosity and a determination to solve longstanding physics puzzles such as information loss in black holes. Looking back, I appreciate how much he treated me as an intellectual equal even when I was a beginning graduate student. He did once joke that I wouldn’t get my PhD if I didn’t come around to his views on information loss, but he both allowed me and encouraged me to work on ideas in string theory that were quite far from his own interests. He and I would have long discussions about what I was doing in string theory—often while journalists and others waited outside, as Stephen liked to make the point that physics was his highest priority. Nobody can talk about memories of Stephen without mentioning his impish sense of humor. He was the master of pithy one-liners and he had a wonderful smile (captured remarkably by Eddie Redmayne in The Theory of Everything ). Stephen’s response when somebody called his office to say that God needed his help: “God has managed fine for over 13 billion years, so could God please wait until after lunch?”

John Preskill Richard P. Feynman Professor of Theoretical Physics, Caltech

Stephen wrote one of his most famous papers (on the black hole information loss problem) while at Caltech during his sabbatical year in 1974–75, and began making regular visits here in 1991. What I’ll remember best about my time with Stephen is that we could make each other laugh. I sensed when we first met that he would enjoy being treated irreverently. So in the middle of a scientific discussion I could interject, “And what makes you so sure of that, Mr. Know-It-All?” knowing that Stephen would respond with his eyes twinkling: “Wanna bet?” Our bets were facilitated by our friend Kip Thorne, and we were all quite surprised by how famous they became. Stephen conceded a bet about naked singularities in 1997 on a very public occasion, when I was giving a public lecture at Caltech. Stephen paid up by offering T-shirts to Kip and me, which carried a “suitable concessionary message.” I put on my shirt and wore it during my lecture, partially covered by my suit jacket. Finding it politically incorrect, I’ve been too embarrassed to wear it ever again; Stephen found my reluctance very, very funny. Stephen conceded an even more famous bet (regarding whether black holes destroy information) in 2004, before an audience of 700 scientists in Dublin. He presented me with Total Baseball: The Ultimate Baseball Encyclopedia . You can’t buy one of those in Ireland, so Stephen’s assistant had arranged to have it shipped overnight just in time. Not knowing what else to do, I held the book over my head as though I had just won the Wimbledon final, while a million flashbulbs were popping (it seemed like a million anyway). One of those pictures wound up in Time magazine. The bets were for fun, but the scientific issues in question are ones many physicists deeply care about, founded on some of Stephen’s most far-reaching contributions to physics. That combination of extraordinary depth of thought with an irrepressible sense of play, that’s what I’ll remember best about Stephen.

Thomas Hertog Professor of Theoretical Physics, KU Leuven, Belgium

I first met Stephen in the late 1990s. I had come to Cambridge from Belgium to study theoretical cosmology. Stephen took me on as his PhD student to study what kind of universe comes out of his no-boundary model of the Big Bang. What followed was a very special collaboration, a dialogue as it were, about the origin of the universe, which continued for almost 20 years. It turned out there are many universes coming out of his Big Bang model. We were led to the multiverse. But Stephen was not satisfied with this. “Let’s control the multiverse,” he said. So we set out to develop methods to transform the idea of a multiverse into a coherent testable scientific framework. This was Stephen: “to boldly go where Star Trek fears to tread,” as the screensaver on his old desktop used to read. Stephen was an adventurer, and science was his greatest adventure of all. Over the years I came to know Stephen as a warm and generous friend. He had a dream. He wanted humankind to aim for the stars and for all of us to become cosmic citizens, agents of the universe. He paved the way for us through his brilliant science, his sparkling outreach, and above all his enormous courage.

George Ellis Professor Emeritus, University of Cape Town

Stephen Hawking lived a life of extraordinary achievement, both scientifically and in terms of courage in facing a huge physical disability. His scientific success came from a combination of great technical ability and imagination, an inquiring mind always searching for answers to important issues, and extraordinary determination and focus. As to his disability, he was a huge inspiration to disabled people worldwide through his great achievements in the face of motor neuron disease. His scientific work had three major epochs. I had the privilege of being one of his first collaborators, working together with him on the issue of whether there had been a start to the universe or not, which was a major issue at the time. We worked together on whether Bianchi (spatially homogenous) universe models were singular, and we were able to show there was indeed a start to the universe in those cases if suitable energy conditions held. The highlight of this part of Stephen’s career was his series of cosmological singularity theorems, developed from the highly innovative work of Roger Penrose on black-hole singularities, that transformed the field by using global methods and introducing the idea of closed trapped surfaces. Through these theorems, Stephen showed that when time-reversed closed trapped surfaces exist and suitable energy conditions hold, classical general relativity implies that there was indeed an initial singularity at the start of the universe, beyond which normal physics would not apply. He and I then showed that simply the existence of the cosmic microwave background radiation implies the existence of such closed trapped surfaces. The later discovery of the inflationary universe, however, showed that the required energy conditions will not in general be satisfied! These beautiful theorems in fact show that either a quantum-gravity era, or at least an era in which quantum fields dominated, occurred in the very early universe. The technical tour de force of these singularity theorems was followed by Stephen’s developing a series of theorems about the behavior of black holes, one of the most unexpected and interesting outcomes of Albert Einstein’s theory of general relativity. Especially important was Stephen’s realization that the area of a black hole’s event horizon could never decrease, just like entropy in classical physics. The work was informed by ongoing discussions with Penrose and Bob Geroch in London, visitors John Wheeler and Charles Misner from the US, students and then colleagues Brandon Carter and me, and our mentor Dennis Sciama. With this solid work, Stephen built his scientific reputation. He then worked on important theorems regarding black-hole geometry and uniqueness, and with Brandon Carter and James Bardeen established the four laws of black-hole thermodynamics. With Gary Gibbons he wrote one of the first papers on the analysis of gravitational-wave signals—Stephen’s famous area theorem had stemmed from his interest in gravitational waves that might be given off by colliding black holes. Stephen’s close friend Kip Thorne won the Nobel Prize in Physics last year for work in gravitational-wave astronomy. The second epoch, from 1973 to 1979, saw Stephen’s adventurous and initially controversial—but later vindicated—work on quantum field theory in a curved spacetime. The core is his innovative paper integrating quantum field theory, general relativity, and thermodynamics to establish that black holes emit blackbody radiation—Hawking radiation—because of quantum effects. Although the paper developed from earlier work on black-hole thermodynamics, particularly by Jacob Bekenstein, the unexpected result is uniquely Stephen’s. It is his major achievement, one that has stood the test of time and served as the basis for a huge amount of further work. Initially rejected by major figures in the scientific community, Stephen’s seminal result has since become universally accepted, in particular because there are now many different ways to prove it. However, it raises major conundrums that physicists are still puzzling today: What happens when this radiation radiates away all the mass of a black hole? Does the black hole pop out of existence with a bang, or does it leave a remnant behind? Does information that falls in disappear, or does it somehow re-emerge? To fully answer those questions, we need a consistent theory of quantum gravity. We still do not have one. Not as celebrated but just as important are Stephen’s contributions to studying the beginnings of the growth of structure during the inflationary expansion of the early universe. A key issue for cosmologists is to understand the origin of the primordial seeds that eventually developed into galaxies. Stephen and Viatcheslav Mukhanov independently proposed that the seeds formed via quantum fluctuations analogous to those involved in Hawking radiation from black holes. Stephen and colleagues in Cambridge hosted an important meeting in 1982 where such ideas were thoroughly discussed and a consensus view on the origin of structure emerged. That was a key development in modern cosmology. The third epoch, from 1980 on, was more speculative and less rigorous. Stephen tested big ideas about the start of the universe in a creative way. With James Hartle he developed the no-boundary proposal, hypothesizing that the universe would start without a singularity in a timeless state: a domain in which only space existed. Stephen also introduced proposals for spacetime wormholes. Those ideas sparked a lot of interest and stimulated much activity, but they have not achieved the same level of acceptance in the scientific community as has Hawking radiation. One of Stephen’s most important contributions was supervising and working with 40 research students who, while not enjoying the same eminence as he did, have become major figures in the field in their own right. Stephen also played a key role as a popularizer of science through the phenomenal success of A Brief History of Time , which has helped inspire young men and women to go into science. Overall, Stephen had an extraordinary life that was full of extraordinary achievement. He lived as long as he did through sheer willpower, of which he had plenty. His impish humor will be much missed.

Alan Guth Victor F. Weisskopf Professor of Physics, MIT

I first met Stephen Hawking in the summer of 1982, at the Nuffield Workshop on the Very Early Universe, which was organized by Stephen and Gary Gibbons. It was easily the most exciting conference that I have ever attended in my life. At that time I was totally in awe of Stephen Hawking, and in some ways that has remained the case for my whole life. The workshop was a three-week program in Cambridge, UK, involving about 30 physicists. A key topic of discussion was the calculation of the density perturbations that would arise from a quantum mechanical treatment of cosmic inflation. Is it possible, we were all asking, that the vast tapestry of cosmic structures was actually the consequence of quantum fluctuations? Stephen was certainly one of the first people to take this idea seriously, and I first learned of the idea from hearing about a talk that he had given. When Paul Steinhardt and I tried together to understand Stephen’s calculation, about a month before the workshop, we found that the description of the evolution of density perturbations was beyond us, but it nonetheless appeared that Stephen had made a trivial error at the end of the calculation. While Stephen found that the density perturbations would have just the desired amplitude, it looked to us that he was underestimating by a factor of about 10 4 . We would have preferred Stephen’s answer, but could not see any way to justify it. At Nuffield we had a chance to discuss it briefly with Stephen, but he held rigidly to his calculation. Stephen’s conference talk was in the middle of the second week. He impishly used an ambiguous title, “The End of Inflation,” which could maybe refer to how the period of inflation ended . . . or maybe to the death of the theory. Paul and I were anxiously awaiting the chance to raise our objections to Stephen’s calculations, but we were blindsided. When Stephen reached the part of the calculation that we disagreed with, he inconspicuously did an about-face, presenting the same result that we would have, without any indication that he had ever advocated anything different! Paul and I had a hard time knowing what to make of this turn of events, but at least in hindsight, I think it shows two important aspects of Stephen’s personality. First, it showed his love of suspense, surprise, and showmanship. To Stephen, physics was always fun, and the fun was increased by building in elements of drama. Second, it showed his willingness to change his opinions when he saw convincing reasons to do so. (That may sound like something scientists should take for granted, but in my experience it seems rather special.) All in all, Stephen Hawking’s contributions to physics are immense, including his impressive contributions to cosmology, and most importantly his discovery of black-hole radiation. Black-hole radiation continues to be a central theme in efforts to unify quantum theory and gravity, and the paradoxes it raises have caused us to view the nature of space and time as a wide open question. Stephen was also a monument to the strength of human persistence and determination. Despite his disabilities, Stephen managed to write as many papers, to make as many important contributions, and to travel the world and give as many talks as anyone I know. And he never lost his ability to smile. I was always amazed by Stephen, and I will miss him.

William Unruh Professor of Physics, University of British Columbia

I first met Stephen Hawking in the early 1970s at a variety of UK conferences, including at a talk at the Rutherford lab where he first talked about his discovery that black holes have a temperature. In 1984 my wife, Pat, and I were in Cambridge for a three-month sabbatical stay. That got extended to five months when our son, Daniel, was born by Caesarean. Jane Hawking advised us, based on their own travel experiences shortly after Robert was born, that the most important thing was for Pat to conserve her energy and not to go on to Paris so soon after the operation. I also remember Stephen playing football (soccer) with his 4-year-old son, Timmy, in their big back garden. Timmy would kick the ball to Stephen, and he would push it back with his wheelchair. About a year later we were all in Cambridge again. Stephen had just come back from Switzerland, where he had had a tracheotomy, and he could no longer speak at all. He was still in the hospital, and Pat, Daniel, and I went to visit him in his hospital room. Stephen had a large Perspex sheet with letters and numbers on it for communication. When he saw Daniel, he smiled and immediately began to blow spit bubbles to him to amuse him—such was his delight to amuse a child, despite the collapse of his ability to communicate. Stephen was a person who lived on will. Despite not having a working body, he was able to bend the world around him to his will and to live and see more than most. The biggest shame was that his inability for quick communication meant that he could not participate in those arguments, those disagreements, that we all need to refine and test our ideas. I recall in the late 1970s, just after he and Gary Gibbons had extended my work on accelerated detectors to de Sitter space, we were alone in his office arguing. Suddenly there was one word in the explanation he gave that I did not understand. He repeated the phrase at least five times, growing more and more frustrated, but my mind was simply unable to convert the sounds into words. To have accomplished as much as he did and more than almost all other physicists and despite such handicaps all around him was astonishing. It was amazing to have known him.

Andrew Strominger Gwill E. York Professor of Physics, Harvard University

Hawking and Strominger in 1998. Credit: Strominger

In 1974 Stephen Hawking derived an astonishingly simple formula for the number of gigabytes, or equivalently the maximal entropy, of a quantum black hole. The Hawking–Bekenstein area/information law reads S B H = k B Area c 3 4 G N ħ Here Area is the surface area of the black hole, c is the speed of light, G N is Newton’s gravitational constant, ħ is Planck’s quantum constant, and k B is Boltzmann’s constant for statistical mechanics. If the information storage capacity on the right-hand side is measured in gigabytes, then k B = 10 –9 / 3 log 2. Stephen wanted this equation inscribed on his gravestone. The S BH equation is an enormous storage capacity. Black holes are probably the most space-efficient storage devices in the universe (of course once in, the information is hard to get out!). If we assume Moore’s law for the exponential growth in computer chip capacity, in three centuries all chips will be black holes. All the data now in the Google storage banks could be stored in a 10 –25 cm black hole. Sagittarius A*, the black hole at the center of our galaxy, can store 10 80 gigabytes! The S BH equation stands alongside the Einstein equation and the Schrödinger equation among the most important equations of 20th-century physics. However, unlike the other equations, which describe distinct areas of physics, the area/information law unites disparate areas, as indicated by the striking appearance of nearly all the most basic constants of nature. Also unlike the Einstein and Schrödinger equations, the area/information law has paradoxical features and is not well-understood. The basic paradox is the apparent absence of any quantum chips in which black holes store information. The Einsteinian description of a black hole as a curved spacetime provides no obvious place for the quantum chips to hide. It is striking that the storage capacity grows like the area, rather than the volume, of the black hole. Unravelling the mysteries springing from Stephen’s equation holds the promise of a revolution in our conception of spacetime and the universe as profound as those produced by relativity or quantum mechanics. A giant of physics and humanity has left our world. The equation he gave us will remain forever.

Martin Rocek Professor of Theoretical Physics, State University of New York at Stony Brook

I was Stephen Hawking’s postdoctoral fellow for two and half years, and so I am able to comment a bit both on his work and on other aspects of his life. Stephen’s first big breakthrough was the realization that Roger Penrose’s theorems about the inevitability of singularities in black holes in Albert Einstein’s theory of gravitation could be applied in reverse to imply the inevitability of the Big Bang singularity and the beginning of time. His next, and most important, breakthrough was the realization that due to quantum effects, black holes are not black—they emit what is now called Hawking radiation. This shocking discovery implied that, despite the many orders of magnitude of scale that separated them, Einstein’s theory could not ignore the quantum world. In 1979 Stephen hired me to teach him about supergravity, the remarkable extension of Einstein’s theory that Peter van Nieuwenhuizen, Daniel Freedman, and Sergio Ferrara had discovered two years earlier at Stony Brook—later I learned that Stephen hired me on Peter’s recommendation. Though I failed to teach Stephen supergravity, it was nevertheless a very productive time for Stephen. During this time, among many other projects, he explored the effects of gravitational instantons and performed calculations developing the consequences of his then recently proposed information paradox. Though his argument that Hawking radiation implied the breakdown of quantum mechanics is generally not accepted today (Stephen himself rejected it later in life), it stimulated a wealth of important research, some of which is described in Leonard Susskind’s entertaining book The Black Hole War: My Battle with Stephen Hawking to Make the World Safe for Quantum Mechanics . My time with Stephen’s group let me see some things that are not as well known. Stephen always had a number of students and postdocs with him. He would work with them by asking them to write equations on the blackboard. At that time he was already confined to a motorized wheel chair and could not write himself, but he could still speak, albeit with such difficulty that only those who spent a lot of time with him could understand him. Nonetheless, he had a sharp sense of humor, and despite the effort it took, made jokes and displayed his knowledge in areas outside of physics. At a dinner where I was feeding him, he explained to me the proper way to fillet a braised trout; since a bone could have been quite dangerous to him, I had to be a quick learner. He tried to lead a normal life, with the necessary accommodation for his physical condition. Thus driving his wheelchair by himself was “walking,” etc. He spent time with his children, he went with the group for lunch at the “grad-pad,” went to the pub with us, and so on. All the students and postdocs did their part in helping to make this possible; Stephen would tell us what we should and shouldn’t do to help him. Stephen would go on to propose that the universe began with a quantum fluctuation that replaced the singularity of the Big Bang, along with many other important and thought-provoking ideas. He was a great mentor—many of his students and postdocs went on to very successful academic careers. He was a role model for those overcoming physical adversity, and through his many books, a great popularizer of physics and science in general. He will be missed.

Christophe Galfard Popular science writer

Stephen took me as his PhD student in 2000 to work on the so-called black hole information paradox. I had met him a couple of times during the preceding year, at Cambridge’s Department of Applied Mathematics and Theoretical Physics, and I still remember being struck by the depth of his gaze. His charisma was such that he could convince a student like me to spend the next five years of his life away from the world, buried inside black holes, looking for information. And to be happy about it. The information paradox came about in the mid 1970s, when Stephen discovered that contrary to what everyone thought, black holes weren’t that black. Quantum effects, he showed, made black holes radiate their energy away and shine. This result, one of the most beautiful I’ve ever seen (if only because it mixed, for the first time ever, gravitational, quantum, and thermodynamics physics), was extraordinary. And puzzling. This radiation, today called the Hawking radiation, led to a rather deep problem: Stephen had shown that whatever came out of a black hole through his radiation was, at first sight, completely independent of what made the black hole in the first place. This may not sound that bad, but as Stephen immediately realized, it was. It meant that black holes bleached away some of our universe’s history. It meant that physics as it is known could not pretend accounting for the past: Anything that ever fell in a black hole (and there is plenty out there) was as good as erased from our universe’s memory. Forever. Obviously, if we could not know the past, it also meant that physics would never be able to forecast the future. This became known as the black hole information paradox. Do black holes really erase our universe’s past? And if they don’t, where does the information go? Back then, the physicists who understood the problem obviously thought about the first possibility with great fear. One could joke that since the very power of physics was being questioned, their careers were at stake. But most did not pay much attention to such a heretic thought: Nothing could beat physics at understanding nature anyway, and Stephen’s calculation, after all, was only an approximation. It was widely believed that a more complete analysis of quantum effects around black holes should recover that lost information and physicists would then live happily ever after. But Stephen could always see farther, and he understood that to recover the lost information would have to mean giving up something equally dear to physicists such as, for instance, causality. Stephen believed the problem to be of such a fundamental importance that he had to raise the community’s awareness of it. So he made a bet. In 1997, he and Kip Thorne bet John Preskill that information really was lost through the black hole evaporation process. About a year later, theoretical physicist Juan Maldacena came up with a way to look at gravity as a quantum theory, and vice versa: the AdS/CFT correspondance. In 2004 a huge conference was organized in Dublin for Stephen to announce his conclusion: Information could be retrieved from black holes after all. He conceded to Preskill. And funnily enough, even though Stephen knew I did not agree with his conclusion (nor did Thorne, who did not concede), he asked me to answer whatever questions the audience might have after his announcement. There were hundreds of people in the audience, most of them famed scientists. There was the BBC, CNN, and most television stations from around the world. I had never spoken in front of an audience before, let alone one of that caliber. I don’t think I have ever been so scared in my entire life. That’s, in essence, a good way to understand how Stephen was challenging his research students. Subsequently, Stephen asked me to help him write some of his public talks. As I was finishing my PhD and toured the world with him, I discovered the impact he had on the general public. Even though his first passion was pure theoretical research, I understood why he found equally important to spread modern scientific knowledge to the rest of the world: it was for humanity’s sake. Scientific knowledge belongs to the whole of humanity, and Stephen not only was one of the brightest theoretical physicists of the past half century, he also was a champion of the people. Millions throughout the world have dreamt about what is known and unknown thanks to him. He reached, and warned, and made us aware and alive. He showed us the best humanity can be. He gave hope. He gave me hope and the will to work and spread that knowledge. I am forever indebted to him for this, and for everything else he has done for humanity, as I believe many are.

Gordon Berry Emeritus Professor of Physics, University of Notre Dame

I first met Stephen Hawking during the final experimental part of the entrance exam to University College, Oxford in March 1959. Only students who had done well on the written part took the experimental part. The experiment involved dropping ball bearings of different diameters down a long glass tube filled with oil and timing them as a function of the distance they fell. I suppose we then graphed the variables to see if the balls obeyed Stokes’s law. Lots of “professors” came around inundating two of us with questions: me and also a fellow at the next lab table. I later discovered that he was Stephen. We met again in college in the autumn at the introductory beer bash for freshmen. There were only four of us entering University College as physics students. During the next three years, Steve and I shared many experiences. We became tutorial partners, the two of us meeting weekly with Robert Berman and later Patrick Sandars for physics, and with a Dr. G. in New College (his name I forget) for mathematics tutorials. Berman was a thermodynamics specialist, the first person to map the interface of diamond and carbon at very low temperatures, which led to the industrial production of synthetic diamonds. During our tutorials Steve and I had to cover every detail of Mark Zemansky’s book Heat and Thermodynamics . This knowledge certainly helped as Steve later developed his thermodynamic interpretation of black holes and discovered Hawking radiation. When we began work on general relativity, Steve and the tutor completely left me in the dust. He took to it like a fish (not just like a duck!) to water, and that topic became his life’s work. Credit: Gordon Berry Outside the physics department, Stephen and I assembled together most evenings to play bridge or poker (pennies and shillings changed hands, and several bottles of port were consumed), or we just went down to the High Street Inn for darts and drinks (where the “prayer books” had handles on them, according to our college staff). We were both coxes on the river, almost every weekday afternoon, for the University College crews. Our first visit to Cambridge was as members of the Oxford coxswains’ annual challenge with their Cambridge equivalents—unfortunately, Cambridge won. Stephen was not famous at that time, so a Cambridge paper spelled his name as “Hawkong.” Can you imagine an athletic Steve rowing in a race in an eight? He and I infrequently would row on the Isis in a “coxless pair”—we never wanted to be following orders from another cox! I have always claimed that the only thing I could do better than Steve was to cox the University College first eight; he coxed the second eight. Steve and I both took the theory option for the Oxford examination finals in June 1962. Thus, we had just one year of laboratory physics to complete, which we took together as partners. We had to complete six separate experiments, essentially one per week. Since we were both coxing every afternoon on the river, we would complete each experiment in one three-hour morning and then write it up later. Most students would spend several days in the lab each week, so the graders—physics doctoral students—would be surprised when Stephen and I came in on Fridays to get our completed experimental reports approved. Admittedly, we did everything very rapidly, and the graders asked us lots of tricky questions, not quite believing that we had actually made the measurements. We passed! It is also true that neither of us went to many physics lectures during our three undergraduate years. The only set that we found valuable was “Quantum Mechanics” by a visiting American professor from Yale: Willis Lamb, of Lamb shift fame. The story of Steve falling downstairs, hitting his head, and losing his memory has been described many times. There followed many hours of questioning with his friends, me among them, lasting until daylight the following morning. It was the beginning of the subsequent diagnosis of his debilitating illness. Successfully passing the Mensa test was an early verification that his brain was unharmed. The final diagnosis of ALS took place about 12 months later. It is important to note that Steve has said he was fairly lonely and bored in his early undergraduate years. However, his 100 or so peers at University College recognized that he was the most intelligent person we had ever met; the rest of us were “just ordinary people.” Especially after the first year, he joined us in many College activities. He was after all two years younger than most of us, and we mostly did not have his strongly intellectual family background, which perhaps restrained him initially in all the non-physics adventuring of typical undergraduates. Credit: Gordon Berry Steve went on to his first choice for graduate work, Cambridge, then the mecca for cosmology. The rest is well-known history. As physicists, we will be always grateful for his efforts in both developing detailed theories of our universe and driving our understanding of the cosmos forward. His explanations, which could be mostly understood by non-scientists, were able to excite the imaginations of the general population, making people value the sense that they could better understand the immensity of the universe and their place in it. Steve was the human “supernova of our time.” We last met about four years ago in Cambridge in his office and home. It was delightful to find that Steve’s strong sense of humor was undiminished, which I think was a strong force in helping him overcome his health adversities. He immediately decided that the four 1959 University College physics undergraduates—Derek Powney, Richard Bryan, Steve and me—should get together again. We began the process, but tracking down Powney and Bryan took more time than we had available to us—the meeting never happened. I close with a photo of our meeting in his office, soon after the release of the movie Hawking (2013).

Bernard Carr Professor of Mathematics and Astronomy, Queen Mary University of London

I was one of Stephen’s first PhD students, having worked with him from 1972 to 1976. He was not so famous in those days, but his brilliance was already clear to his peers. I found it rather daunting when, on becoming his research student, I was informed by one of my tutors that he was the brightest person in the department. The tutor was Jeffrey Goldstone, who might himself have been a contender for that position. My relationship with Stephen was not the usual type of supervisor–student relationship. In those days, before he had his entourage of nurses and assistants, students would have to help him in various ways on account of his disability. That was not an arduous task, but it did mean that one’s relationship with him became quite intimate. I shared an office with him, lived with his family for a while, and accompanied him as he travelled the world giving talks and collecting medals. People sometimes ask me if working with Stephen was the high point of my career. I hope not—that would imply that it has been downhill since the start—but it was certainly a tremendous privilege. I was fortunate to be working with Stephen when he discovered black hole radiation, surely one of the most important results in 20th-century physics. Even though it has not been confirmed experimentally—otherwise he surely would have added the Nobel Prize to his long list of awards—it is such a beautiful idea that most physicists agree that it must be true. John Wheeler once told me that just talking about it was like “rolling candy on the tongue.” I recall one tea-time conversation with Stephen when he mentioned that he was puzzled to be finding a large quantum flux from a black hole. I rather regret that I didn’t spot the implication and remark, “Obviously, Stephen, they’re radiating thermally.” Nevertheless, having a ringside seat during those developments was tremendously exciting and also enabled me to be one of the first people to study the cosmological consequences of the effect. On matters of physics, I always regarded Stephen as an oracle, with just a few words from him yielding insights that would have taken weeks to work out on my own. However, Stephen was only human, and not all encounters led to illumination. Once I asked a question about something that was puzzling me. He thought about it silently for several minutes, and I was quite impressed with myself for asking something that Stephen couldn’t answer immediately. His eyes then closed, and I was even more impressed with myself because he was clearly having to think about it very deeply. Only after some time did it become clear that he had fallen asleep! Nowadays I also sometimes fall asleep while talking to students, so I recall this incident with amusement. In 1975 Stephen visited Caltech for a year as a Fairchild scholar. I was in my final year as a PhD student and was invited to accompany him there. I also lived with his family for the year, which was an ideal arrangement because I paid no rent in exchange for helping Stephen at work and home. More importantly, the Hawkings welcomed me as a member of their family, and I’ve remained close to them ever since. After the rather cloistered life at Cambridge, I found Caltech exhilarating, and I know Stephen felt the same. In some ways the facilities were much better, since they provided him with a house and built ramps everywhere. It was quite a battle to get ramps in Cambridge. One of the great excitements of visiting Caltech was meeting Richard Feynman, who was regarded almost like a god there. He used to visit our office quite often. Since Stephen’s voice was already quite weak, I would act as interpreter. On one occasion, I recall Stephen remarking that something was only a matter of a sign; Feynman retorted that he’d only became famous because he’d sorted out a sign! Stephen gave his first proper seminar about Hawking radiation at Caltech, and Feynman was in the audience. I was at the front helping Stephen show his slides, and afterward someone told me that Feynman had been drawing my portrait on the back of an envelope. So I contacted his secretary, only to discover that he’d thrown the envelope away. However, she kindly retrieved it for me from the garbage bin, and it now sits framed on my mantelpiece at home. My head is at the center, surrounded by Feynman’s notes on the seminar and some Feynman diagrams. In due course, Stephen became even more famous than Feynman, which made my envelope even more valuable. Credit: Bernard Carr My PhD was about black holes that might form in the early universe. Stephen wrote a pioneering paper about such primordial black holes (PBHs) in 1971. But there was a problem because it was thought that any PBHs would grow enormously and by today would have attained a huge mass. However, the usual argument neglected the cosmological expansion. Stephen and I were able to show that such growth was impossible, thereby allowing the possibility that PBHs may have existed after all. We each made the discovery independently. I recall rushing excitedly to his office to give the good news and being rather dismayed to find that he had just come to the same conclusion by doing the calculation in his head! Perhaps the most important aspect of the conclusion that PBHs might have formed was that it motivated Stephen to consider the quantum effects of small black holes—only primordial ones can be small enough for this to be important. After 40 years we still don’t know for sure whether PBHs formed, but this illustrates that it can be important to think about things in physics even if they may not exist. Of course, it will be even more interesting if PBHs do exist. There’s a lot of current interest in the possibility that the large (unevaporated) ones provide the dark matter. The period in which I worked with Stephen was also interesting because it saw his transition from a brilliant physicist known only to professional colleagues to an international superstar. He clearly enjoyed his fame and valued the opportunity it brought him to popularize physics and highlight various sociopolitical issues. I recall one lunch at Caltech in 1975 when we were debating the nature of fame. He finally defined it as being a state in which one is known by more people than one knows. On the way back to the office, a passing stranger said hi. When I asked who that was, he answered, “That was fame”—a nice illustration of his quick wit. Ten years later the number of people who knew him was probably a million times the number he knew, so he probably modified his definition!

James Hartle Research Professor and Professor of Physics Emeritus, University of California, Santa Barbara

With the death of Stephen Hawking, physicists have lost one of their greatest colleagues, and the world has witnessed the conclusion of an inspiring story of triumph over adversity. Personally I have lost a dear friend and matchless collaborator. Stephen’s major contributions to science are well known, and there is no need for me to review them; I confine myself to a few personal remarks. My association with Stephen began some 46 years ago during a many-month visit I made to Fred Hoyle’s Institute of Theoretical Astronomy (as it was known then). In residence were Brandon Carter, Martin Rees, Paul Davies, and Stephen—colleagues with whom I maintained lifelong personal and scientific contacts. In Cambridge I was warmly welcomed by Stephen and Jane. From that time on, I always felt that Stephen and I were on the same wavelength—not the same in ability or insight, of course—but rather similar in style and in views of what is important. Ten more joint papers were to follow that visit. For me, the high point of our joint efforts is the paper on the no-boundary wavefunction of the universe. Stephen wanted to understand the universe in scientific terms. His deep interest in cosmology runs from his very first papers around 1965 to his last paper with Thomas Hertog in 2017. To understand the universe, it is necessary to understand how it began. The classical singularity theorems of Stephen and Roger Penrose showed that the universe could not begin with a classical Lorentzian geometry with one time and three spatial dimensions. An earlier joint paper with Stephen demonstrated the power of Euclidean geometry to help understand the Hawking radiation from black holes. If the universe couldn’t begin classically with a Lorentzian geometry, perhaps it could begin quantum mechanically with a Euclidean geometry. Perhaps it could start with four spatial dimensions and later make a quantum transition to a Lorentzian spacetime. The result was the no-boundary proposal for the quantum state of the universe. I have often thought that the signature of a great problem in physics is that its solution generates more great problems. Certainly that is the case with the no-boundary wavefunction. The no-boundary wavefunction of the universe led me to numerous specific calculations, many with Hertog and Stephen, of what it predicts for our observations of the universe on the largest scales of space and time. It also motivated a new vision which I formulated with Murray Gell-Mann of how usual textbook quantum mechanics can be generalized to apply to cosmology. We called it decoherent histories quantum theory. Working with Stephen was a wonderful experience. He had remarkably clear scientific insight. He always knew the right question to ask. He was able to cut through the clutter that characterizes theoretical physics and focus clearly on the essential points. Stephen also had the courage to discard cherished old ideas that are obstacles to progress, like the idea that black holes are black. Later, when looked at in the right way, these seem inevitable. But that was his genius . How lucky then was my decision as a young assistant professor to take a long leave from Santa Barbara to work at the Institute of Theoretical Astronomy. As a consequence, many years later, I consider myself as most fortunate to have been able to count one of the great scientific figures of the age as a friend, and to have been able to work with him on something like an equal basis. I do not expect to meet his like again.

Back to top

Subscribe to Physics Today

  • Online ISSN 1945-0699
  • Print ISSN 0031-9228
  • For Researchers
  • For Librarians
  • For Advertisers
  • Our Publishing Partners  
  • Physics Today
  • Conference Proceedings
  • Special Topics

pubs.aip.org

  • Privacy Policy
  • Terms of Use

Connect with AIP Publishing

This feature is available to subscribers only.

Sign In or Create an Account

Advertisement

Comment and Physics

A brief history of stephen hawking: a legacy of paradox.

By Stuart Clark

14 March 2018

Stephen Hawking

Gemma Levine/Getty

Stephen Hawking, the world-famous theoretical physicist, has died at the age of 76.

Hawking’s children, Lucy, Robert and Tim said in a statement: “We are deeply saddened that our beloved father passed away today.

“He was a great scientist and an extraordinary man whose work and legacy will live on for many years. His courage and persistence with his brilliance and humour inspired people across the world.

“He once said: ‘It would not be much of a universe if it wasn’t home to the people you love.’ We will miss him for ever.”

Stephen Hawking dies aged 76

Tributes flow in following the death of world-famous theoretical physicist stephen hawking.

The most recognisable scientist of our age, Hawking holds an iconic status. His genre-defining book, A Brief History of Time , has sold more than 10 million copies since its publication in 1988, and has been translated into more than 35 languages. He appeared on Star Trek: The Next Generation , The Simpsons and The Big Bang Theory . His early life was the subject of an Oscar-winning performance by Eddie Redmayne in the 2014 film  The Theory of Everything . He was routinely consulted for oracular pronouncements on everything from time travel and alien life to Middle Eastern politics and nefarious robots . He had an endearing sense of humour and a daredevil attitude – relatable human traits that, combined with his seemingly superhuman mind, made Hawking eminently marketable.

But his cultural status – amplified by his disability and the media storm it invoked – often overshadowed his scientific legacy. That’s a shame for the man who discovered what might prove to be the key clue to the theory of everything , advanced our understanding of space and time, helped shape the course of physics for the last four decades and whose insight continues to drive progress in fundamental physics today.

Beginning with the big bang

Hawking’s research career began with disappointment. Arriving at the University of Cambridge in 1962 to begin his PhD, he was told that Fred Hoyle , his chosen supervisor, already had a full complement of students. The most famous British astrophysicist at the time, Hoyle was a magnet for the more ambitious students. Hawking didn’t make the cut. Instead, he was to work with Dennis Sciama, a physicist Hawking knew nothing about. In the same year, Hawking was diagnosed with amyotrophic lateral sclerosis, a degenerative motor neurone disease that quickly robs people of the ability to voluntarily move their muscles. He was told he had two years to live.

Although Hawking’s body may have weakened, his intellect stayed sharp. Two years into his PhD, he was having trouble walking and talking, but it was clear that the disease was progressing more slowly than the doctors had initially feared. Meanwhile, his engagement to Jane Wilde – with whom he later had three children, Robert, Lucy and Tim – renewed his drive to make real progress in physics.

Stephen and Lucy Hawking

Stephen and Lucy Hawking

James Veysey/Camera Press

Working with Sciama had its advantages. Hoyle’s fame meant that he was seldom in the department, whereas Sciama was around and eager to talk. Those discussions stimulated the young Hawking to pursue his own scientific vision. Hoyle was vehemently opposed to the big bang theory (in fact, he had coined the name “big bang” in mockery). Sciama, on the other hand, was happy for Hawking to investigate the beginning of time.

Time’s arrow

Hawking was studying the work of Roger Penrose , which proved that if Einstein’s general theory of relativity is correct, at the heart of every black hole must be a point where space and time themselves break down – a singularity. Hawking realised that if time’s arrow were reversed, the same reasoning would hold true for the universe as a whole. Under Sciama’s encouragement, he worked out the maths and was able to prove it: the universe according to general relativity began in a singularity.

Hawking was well aware, however, that Einstein didn’t have the last word. General relativity, which describes space and time on a large scale, doesn’t take into account quantum mechanics , which describes matter’s strange behaviour at much smaller scales. Some unknown “theory of everything” was needed to unite the two. For Hawking, the singularity at the universe’s origin did not signal the breakdown of space and time; it signalled the need for quantum gravity .

Luckily, the link that he forged between Penrose’s singularity and the singularity at the big bang provided a key clue for finding such a theory. If physicists wanted to understand the origin of the universe, Hawking had just shown them exactly where to look: a black hole .

Black holes were a subject ripe for investigation in the early 1970s. Although Karl Schwarzschild had found such objects lurking in the equations of general relativity back in 1915, theoreticians viewed them as mere mathematical anomalies and were reluctant to believe they could actually exist.

Albeit frightening, their action is reasonably straightforward: black holes have such strong gravitational fields that nothing, not even light, can escape their grip. Any matter that falls into one is forever lost to the outside world. This, however, is a dagger in the heart of thermodynamics.

Stephen Hawking's final theorem turns time and causality inside out

In his final years, Stephen Hawking tackled the question of why the universe appears fine-tuned for life. His collaborator Thomas Hertog explains the radical solution they came up with

Thermodynamic threat

The second law of thermodynamics is one of the most well-established laws of nature. It states that the entropy, or level of disorder in a system, always increases. The second law gives form to the observation that ice cubes will melt into a puddle, but a puddle of water will never spontaneously turn into a block of ice. All matter contains entropy, so what happens when it is dropped into a black hole? Is entropy lost along with it? If so, the total entropy of the universe goes down and black holes would violate the second law of thermodynamics.

Hawking thought that this was fine. He was happy to discard any concept that stood in the way to a deeper truth. And if that meant the second law, then so be it.

Bekenstein and breakthrough

But Hawking met his match at a 1972 physics summer school in the French ski resort of Les Houches, France. Princeton University graduate student Jacob Bekenstein thought that the second law of thermodynamics should apply to black holes too. Bekenstein had been studying the entropy problem and had reached a possible solution thanks to an earlier insight of Hawking’s .

A black hole hides its singularity with a boundary known as the event horizon. Nothing that crosses the event horizon can ever return to the outside. Hawking’s work had shown that the area of a black hole’s event horizon never decreases over time. What’s more, when matter falls into a black hole, the area of its event horizon grows.

Bekenstein realised this was key to the entropy problem. Every time a black hole swallows matter, its entropy appears to be lost, and at the same time, its event horizon grows. So, Bekenstein suggested, what if – to preserve the second law – the area of the horizon is itself a measure of entropy?

Hawking immediately disliked the idea and was angry that his own work had been used in support of a concept so flawed. With entropy comes heat, but the black hole couldn’t be radiating heat – nothing can escape its pull of gravity. During a break from the lectures, Hawking got together with colleagues Brandon Carter, who also studied under Sciama, and James Bardeen, of the University of Washington, and confronted Bekenstein.

The disagreement bothered Bekenstein. “These three were senior people. I was just out of my PhD. You worry whether you are just stupid and these guys know the truth,” he recalls.

Back in Cambridge, Hawking set out to prove Bekenstein wrong. Instead, he discovered the precise form of the mathematical relationship between entropy and the black hole’s horizon. Rather than destroying the idea, he had confirmed it. It was Hawking’s greatest breakthrough.

Hawking radiation

Hawking now embraced the idea that thermodynamics played a part in black holes. Anything that has entropy, he reasoned, also has a temperature – and anything that has a temperature can radiate.

His original mistake, Hawking realised, was in only considering general relativity, which says that nothing – no particles, no heat – can escape the grip of a black hole. That changes when quantum mechanics comes into play. According to quantum mechanics, fleeting pairs of particles and antiparticles are constantly appearing out of empty space, only to annihilate and disappear in the blink of an eye. When this happens in the vicinity of an event horizon, a particle-antiparticle pair can be separated – one falls behind the horizon while one escapes, leaving them forever unable to meet and annihilate. The orphaned particles stream away from the black hole’s edge as radiation. The randomness of quantum creation becomes the randomness of heat.

“I think most physicists would agree that Hawking’s greatest contribution is the prediction that black holes emit radiation,” says Sean Carroll , a theoretical physicist at the California Institute of Technology. “While we still don’t have experimental confirmation that Hawking’s prediction is true, nearly every expert believes he was right.”

Experiments to test Hawking’s prediction are so difficult because the more massive a black hole is, the lower its temperature. For a large black hole – the kind astronomers can study with a telescope – the temperature of the radiation is too insignificant to measure. As Hawking himself often noted, it was for this reason that he was never awarded a Nobel Prize. Still, the prediction was enough to secure him a prime place in the annals of science, and the quantum particles that stream from the black hole’s edge would forever be known as Hawking radiation .

Some have suggested that they should more appropriately be called Bekenstein-Hawking radiation, but Bekenstein himself rejects this. “The entropy of a black hole is called Bekenstein-Hawking entropy, which I think is fine. I wrote it down first, Hawking found the numerical value of the constant, so together we found the formula as it is today. The radiation was really Hawking’s work. I had no idea how a black hole could radiate. Hawking brought that out very clearly. So that should be called Hawking radiation.”

Theory of everything

The Bekenstein-Hawking entropy equation is the one Hawking asked to have engraved on his tombstone. It represents the ultimate mash-up of physical disciplines because it contains Newton’s constant, which clearly relates to gravity; Planck’s constant, which betrays quantum mechanics at play; the speed of light, the talisman of Einstein’s relativity; and the Boltzmann constant, the herald of thermodynamics.

The presence of these diverse constants hinted at a theory of everything, in which all physics is unified. Furthermore, it strongly corroborated Hawking’s original hunch that understanding black holes would be key in unlocking that deeper theory.

Hawking’s breakthrough may have solved the entropy problem, but it raised an even more difficult problem in its wake. If black holes can radiate, they will eventually evaporate and disappear. So what happens to all the information that fell in? Does it vanish too? If so, it will violate a central tenet of quantum mechanics. On the other hand, if it escapes from the black hole, it will violate Einstein’s theory of relativity. With the discovery of black hole radiation, Hawking had pit the ultimate laws of physics against one another. The black hole information loss paradox had been born.

Hawking staked his position in another ground-breaking and even more contentious paper entitled Breakdown of predictability in gravitational collapse, published in Physical Review D in 1976. He argued that when a black hole radiates away its mass, it does take all of its information with it – despite the fact that quantum mechanics expressly forbids information loss. Soon other physicists would pick sides, for or against this idea, in a debate that continues to this day. Indeed, many feel that information loss is the most pressing obstacle in understanding quantum gravity.

“Hawking’s 1976 argument that black holes lose information is a towering achievement, perhaps one of the most consequential discoveries on the theoretical side of physics since the subject was invented,” says Raphael Bousso of the University of California, Berkeley.

By the late 1990s, results emerging from string theory had most theoretical physicists convinced that Hawking was wrong about information loss, but Hawking, known for his stubbornness, dug in his heels. It wasn’t until 2004 that he would change his mind. And he did it with flair – dramatically showing up at a conference in Dublin and announcing his updated view : black holes cannot lose information.

Today, however, a new paradox known as the firewall has thrown everything into doubt (see “Hawking’s paradox”, below). It is clear that the question Hawking raised is at the core of the quest for quantum gravity.

“Black hole radiation raises serious puzzles we are still working very hard to understand,” says Carroll . “It’s fair to say that Hawking radiation is the single biggest clue we have to the ultimate reconciliation of quantum mechanics and gravity, arguably the greatest challenge facing theoretical physics today.”

Hawking’s legacy, says Bousso, will be “having put his finger on the key difficulty in the search for a theory of everything”.

Hawking continued pushing the boundaries of theoretical physics at a seemingly impossible pace for the rest of his life. He made important inroads towards understanding how quantum mechanics applies to the universe as a whole, leading the way in the field known as quantum cosmology. His progressive disease pushed him to tackle problems in novel ways, which contributed to his remarkable intuition for his subject. As he lost the ability to write out long, complicated equations, Hawking found new and inventive methods to solve problems in his head, usually by reimagining them in geometric form. But, like Einstein before him, Hawking never produced anything quite as revolutionary as his early work.

“Hawking’s most influential work was done in the 1970s, when he was younger,” says Carroll, “but that’s completely standard even for physicists who aren’t burdened with a debilitating neurone disease.”

Stephen Hawking's black hole paradox may finally have a solution

Black holes may not destroy all information about what they were originally made of, according to a new set of quantum calculations, which would solve a major physics paradox first described by Stephen Hawking

Hawking the superstar

Stephen Hawking floating in zero g inside an aircraft

In the meantime, the publication of A Brief History of Time catapulted Hawking to cultural stardom and gave a fresh face to theoretical physics. He never seemed to mind. “In front of the camera, Hawking played the character of Hawking. He seemed to play with his cultural status,” says Hélène Mialet, an anthropologist from the University of California, Berkeley, who courted controversy in 2012 with the publication of her book Hawking Incorporated. In it, she investigated the way the people around Hawking helped him build and maintain his public image .

That public image undoubtedly made his life easier than it might otherwise have been. As Hawking’s disease progressed, technologists gladly provided increasingly complicated machines to allow him to communicate. This, in turn, let him continue doing the thing for which he should ultimately be remembered: his science.

“Stephen Hawking has done more to advance our understanding of gravitation than anyone since Einstein,” Carroll says. “He was a world-leading theoretical physicist, clearly the best in the world for his time among those working at the intersection of gravity and quantum mechanics, and he did it all in the face of a terrible disease. He is an inspirational figure, and history will certainly remember him that way.”

Hawking's paradox

In 2012, four physicists at the University of California, Santa Barbara – Ahmed Almheiri, Donald Marolf, Joseph Polchinski and James Sully, known collectively by physicists as AMPS – shocked the physics community with the results of a thought experiment .

When pairs of particles and antiparticles spawn near a black hole's event horizon, each pair shares a connection called entanglement. But what happens to this link and the information it holds when one of the pair falls in, leaving its twin to become a particle of Hawking radiation (see main story)?

One school of thought holds that the information is preserved as the hole evaporates, and that it is placed into subtle correlations among these particles of Hawking radiation.

But, AMPS asked, what does it look like to observers inside and outside the black hole? Enter Alice and Bob.

According to Bob, who remains outside the black hole, that particle has been separated from its antiparticle partner by the horizon. In order to preserve information, it must become entangled with another particle of Hawking radiation.

But what's happening from the point of view of Alice, who falls into the black hole? General relativity says that for a free-falling observer, gravity disappears, so she doesn't see the event horizon. According to Alice, the particle in question remains entangled with its antiparticle partner, because there is no horizon to separate them. The paradox is born.

So who is right? Bob or Alice? If it's Bob, then Alice will not encounter empty space at the horizon as general relativity claims. Instead she will be burned to a crisp by a wall of Hawking radiation – a firewall. If it's Alice who's right, then information will be lost, breaking a fundamental rule of quantum mechanics. "The fervent controversy surrounding Hawking's paradox reflects the stakes his work has raised: in quantising gravity, what gives? And how much?" says Raphael Bousso of the University of California, Berkeley. The answer awaits us in the theory of everything. Amanda Gefter

Article amended on 14 March 2018

  • Stephen Hawking

Sign up to our weekly newsletter

Receive a weekly dose of discovery in your inbox! We'll also keep you up to date with New Scientist events and special offers.

More from New Scientist

Explore the latest news, articles and features

We finally know why Stephen Hawking's black hole equation works

Subscriber-only

The sun could contain a tiny black hole that formed in the big bang

Stephen hawking’s parting shot is a fresh challenge to cosmologists, popular articles.

Trending New Scientist articles

  • International edition
  • Australia edition
  • Europe edition

Stephen Hawking at his office at the department of applied mathematics and theoretical physics at Cambridge University in 2005.

'Mind over matter': Stephen Hawking – obituary by Roger Penrose

Theoretical physicist who made revolutionary contributions to our understanding of the nature of the universe

  • Stephen Hawking dies aged 76

The image of Stephen Hawking – who has died aged 76 – in his motorised wheelchair, with head contorted slightly to one side and hands crossed over to work the controls, caught the public imagination, as a true symbol of the triumph of mind over matter. As with the Delphic oracle of ancient Greece, physical impairment seemed compensated by almost supernatural gifts, which allowed his mind to roam the universe freely, upon occasion enigmatically revealing some of its secrets hidden from ordinary mortal view.

Of course, such a romanticised image can represent but a partial truth. Those who knew Hawking would clearly appreciate the dominating presence of a real human being, with an enormous zest for life, great humour, and tremendous determination, yet with normal human weaknesses, as well as his more obvious strengths. It seems clear that he took great delight in his commonly perceived role as “the No 1 celebrity scientist”; huge audiences would attend his public lectures, perhaps not always just for scientific edification.

The scientific community might well form a more sober assessment. He was extremely highly regarded, in view of his many greatly impressive, sometimes revolutionary, contributions to the understanding of the physics and the geometry of the universe.

Hawking had been diagnosed shortly after his 21st birthday as suffering from an unspecified incurable disease, which was then identified as the fatal degenerative motor neurone disease amyotrophic lateral sclerosis, or ALS. Soon afterwards, rather than succumbing to depression, as others might have done, he began to set his sights on some of the most fundamental questions concerning the physical nature of the universe. In due course, he would achieve extraordinary successes against the severest physical disabilities. Defying established medical opinion, he managed to live another 55 years.

His background was academic, though not directly in mathematics or physics. His father, Frank, was an expert in tropical diseases and his mother, Isobel (nee Walker), was a free-thinking radical who had a great influence on him. He was born in Oxford and moved to St Albans, Hertfordshire, at eight. Educated at St Albans school, he won a scholarship to study physics at University College, Oxford. He was recognised as unusually capable by his tutors, but did not take his work altogether seriously. Although he obtained a first-class degree in 1962, it was not a particularly outstanding one.

He decided to continue his career in physics at Trinity Hall, Cambridge, proposing to study under the distinguished cosmologist Fred Hoyle . He was disappointed to find that Hoyle was unable to take him, the person available in that area being Dennis Sciama, unknown to Hawking at the time. In fact, this proved fortuitous, for Sciama was becoming an outstandingly stimulating figure in British cosmology, and would supervise several students who were to make impressive names for themselves in later years (including the future astronomer royal Lord Rees of Ludlow ).

Sciama seemed to know everything that was going on in physics at the time, especially in cosmology, and he conveyed an infectious excitement to all who encountered him. He was also very effective in bringing together people who might have things of significance to communicate with one another.

When Hawking was in his second year of research at Cambridge, I (then at Birkbeck College in London) had established a certain mathematical theorem of relevance. This showed, on the basis of a few plausible assumptions (by the use of global/topological techniques largely unfamiliar to physicists at the time) that a collapsing over-massive star would result in a singularity in space-time – a place where it would be expected that densities and space-time curvatures would become infinite – giving us the picture of what we now refer to as a “black hole”. Such a space-time singularity would lie deep within a “horizon”, through which no signal or material body can escape. (This picture had been put forward by J Robert Oppenheimer and Hartland Snyder in 1939, but only in the special circumstance where exact spherical symmetry was assumed. The purpose of this new theorem was to obviate such unrealistic symmetry assumptions.) At this central singularity, Einstein’s classical theory of general relativity would have reached its limits.

Meanwhile, Hawking had also been thinking about this kind of problem with George Ellis , who was working on a PhD at St John’s College, Cambridge. The two men had been working on a more limited type of “singularity theorem” that required an unreasonably restrictive assumption. Sciama made a point of bringing Hawking and me together, and it did not take Hawking long to find a way to use my theorem in an unexpected way, so that it could be applied (in a time-reversed form) in a cosmological setting, to show that the space-time singularity referred to as the “big bang” was also a feature not just of the standard highly symmetrical cosmological models, but also of any qualitatively similar but asymmetrical model.

Some of the assumptions in my original theorem seem less natural in the cosmological setting than they do for collapse to a black hole. In order to generalise the mathematical result so as to remove such assumptions, Hawking embarked on a study of new mathematical techniques that appeared relevant to the problem.

A powerful body of mathematical work known as Morse theory had been part of the machinery of mathematicians active in the global (topological) study of Riemannian spaces. However, the spaces that are used in Einstein’s theory are really pseudo-Riemannian and the relevant Morse theory differs in subtle but important ways. Hawking developed the necessary theory for himself (aided, in certain respects, by Charles Misner , Robert Geroch and Brandon Carter) and was able to use it to produce new theorems of a more powerful nature, in which the assumptions of my theorem could be considerably weakened, showing that a big-bang-type singularity was a necessary implication of Einstein’s general relativity in broad circumstances.

A few years later (in a paper published by the Royal Society in 1970, by which time Hawking had become a fellow “for distinction in science” of Gonville and Caius College, Cambridge), he and I joined forces to publish an even more powerful theorem which subsumed almost all the work in this area that had gone before.

In 1967, Werner Israel published a remarkable paper that had the implication that non-rotating black holes, when they had finally settled down to become stationary, would necessarily become completely spherically symmetrical. Subsequent results by Carter, David Robinson and others generalised this to include rotating black holes, the implication being that the final space-time geometry must necessarily accord with an explicit family of solutions of Einstein’s equations found by Roy Kerr in 1963. A key ingredient to the full argument was that if there is any rotation present, then there must be complete axial symmetry. This ingredient was basically supplied by Hawking in 1972.

The very remarkable conclusion of all this is that the black holes that we expect to find in nature have to conform to this Kerr geometry. As the great theoretical astrophysicist Subrahmanyan Chandrasekhar subsequently commented, black holes are the most perfect macroscopic objects in the universe, being constructed just out of space and time; moreover, they are the simplest as well, since they can be exactly described by an explicitly known geometry (that of Kerr).

Following his work in this area, Hawking established a number of important results about black holes, such as an argument for its event horizon (its bounding surface) having to have the topology of a sphere. In collaboration with Carter and James Bardeen, in work published in 1973, he established some remarkable analogies between the behaviour of black holes and the basic laws of thermodynamics, where the horizon’s surface area and its surface gravity were shown to be analogous, respectively, to the thermodynamic quantities of entropy and temperature. It would be fair to say that in his highly active period leading up to this work, Hawking’s research in classical general relativity was the best anywhere in the world at that time.

Hawking, Bardeen and Carter took their “thermodynamic” behaviour of black holes to be little more than just an analogy, with no literal physical content. A year or so earlier, Jacob Bekenstein had shown that the demands of physical consistency imply – in the context of quantum mechanics – that a black hole must indeed have an actual physical entropy (“entropy” being a physicist’s measure of “disorder”) that is proportional to its horizon’s surface area, but he was unable to establish the proportionality factor precisely. Yet it had seemed, on the other hand, that the physical temperature of a black hole must be exactly zero, inconsistently with this analogy, since no form of energy could escape from it, which is why Hawking and his colleagues were not prepared to take their analogy completely seriously.

Hawking had then turned his attention to quantum effects in relation to black holes, and he embarked on a calculation to determine whether tiny rotating black holes that might perhaps be created in the big bang would radiate away their rotational energy. He was startled to find that irrespective of any rotation they would radiate away their energy – which, by Einstein’s E=mc 2 , means their mass. Accordingly, any black hole actually has a non-zero temperature, agreeing precisely with the Bardeen-Carter-Hawking analogy. Moreover, Hawking was able to supply the precise value “one quarter” for the entropy proportionality constant that Bekenstein had been unable to determine.

This radiation coming from black holes that Hawking predicted is now, very appropriately, referred to as Hawking radiation. For any black hole that is expected to arise in normal astrophysical processes, however, the Hawking radiation would be exceedingly tiny, and certainly unobservable directly by any techniques known today. But he argued that very tiny black holes could have been produced in the big bang itself, and the Hawking radiation from such holes would build up into a final explosion that might be observed. There appears to be no evidence for such explosions, showing that the big bang was not so accommodating as Hawking wished, and this was a great disappointment to him.

These achievements were certainly important on the theoretical side. They established the theory of black-hole thermodynamics: by combining the procedures of quantum (field) theory with those of general relativity, Hawking established that it is necessary also to bring in a third subject, thermodynamics. They are generally regarded as Hawking’s greatest contributions. That they have deep implications for future theories of fundamental physics is undeniable, but the detailed nature of these implications is still a matter of much heated debate.

Hawking himself was able to conclude from all this (though not with universal acceptance by particle physicists) that those fundamental constituents of ordinary matter – the protons – must ultimately disintegrate, although with a decay rate that is beyond present-day techniques for observing it. He also provided reasons for suspecting that the very rules of quantum mechanics might need modification, a viewpoint that he seemed originally to favour. But later (unfortunately, in my own opinion) he came to a different view, and at the Dublin international conference on gravity in July 2004, he publicly announced a change of mind (thereby conceding a bet with the Caltech physicist John Preskill) concerning his originally predicted “information loss” inside black holes.

Following his black-hole work, Hawking turned his attentions to the problem of quantum gravity, developing ingenious ideas for resolving some of the basic issues. Quantum gravity, which involves correctly imposing the quantum procedures of particle physics on to the very structure of space-time, is generally regarded as the most fundamental unsolved foundational issue in physics. One of its stated aims is to find a physical theory that is powerful enough to deal with the space-time singularities of classical general relativity in black holes and the big bang.

Hawking’s work, up to this point, although it had involved the procedures of quantum mechanics in the curved space-time setting of Einstein’s general theory of relativity, did not provide a quantum gravity theory. That would require the “quantisation” procedures to be applied to Einstein’s curved space-time itself, not just to physical fields within curved space-time.

With James Hartle, Hawking developed a quantum procedure for handling the big-bang singularity. This is referred to as the “no-boundary” idea, whereby the singularity is replaced by a smooth “cap”, this being likened to what happens at the north pole of the Earth, where the concept of longitude loses meaning (becomes singular) while the north pole itself has a perfectly good geometry.

To make sense of this idea, Hawking needed to invoke his notion of “imaginary time” (or “Euclideanisation”), which has the effect of converting the “pseudo-Riemannian” geometry of Einstein’s space-time into a more standard Riemannian one. Despite the ingenuity of many of these ideas, grave difficulties remain (one of these being how similar procedures could be applied to the singularities inside black holes, which is fundamentally problematic).

There are many other approaches to quantum gravity being pursued worldwide, and Hawking’s procedures, though greatly respected and still investigated, are not the most popularly followed, although all others have their share of fundamental difficulties also.

To the end of his life, Hawking continued with his research into the quantum-gravity problem, and the related issues of cosmology. But concurrently with his strictly research interests, he became increasingly involved with the popularisation of science, and of his own ideas in particular. This began with the writing of his astoundingly successful book A Brief History of Time (1988), which was translated into some 40 languages and sold over 25m copies worldwide.

Undoubtedly, the brilliant title was a contributing factor to the book’s phenomenal success. Also, the subject matter is something that grips the public imagination. And there is a directness and clarity of style, which Hawking must have developed as a matter of necessity when trying to cope with the limitations imposed by his physical disabilities. Before needing to rely on his computerised speech, he could talk only with great difficulty and expenditure of effort, so he had to do what he could with short sentences that were directly to the point. In addition, it is hard to deny that his physical condition must itself have caught the public’s imagination.

Although the dissemination of science among a broader public was certainly one of Hawking’s aims in writing his book, he also had the serious purpose of making money. His financial needs were considerable, as his entourage of family, nurses, healthcare helpers and increasingly expensive equipment demanded. Some, but not all, of this was covered by grants.

To invite Hawking to a conference always involved the organisers in serious calculations. The travel and accommodation expenses would be enormous, not least because of the sheer number of people who would need to accompany him. But a popular lecture by him would always be a sell-out, and special arrangements would be needed to find a lecture hall that was big enough. An additional factor would be the ensuring that all entrances, stairways, lifts, and so on would be adequate for disabled people in general, and for his wheelchair in particular.

He clearly enjoyed his fame, taking many opportunities to travel and to have unusual experiences (such as going down a mine shaft, visiting the south pole and undergoing the zero-gravity of free fall), and to meet other distinguished people.

The presentational polish of his public lectures increased with the years. Originally, the visual material would be line drawings on transparencies, presented by a student. But in later years impressive computer-generated visuals were used. He controlled the verbal material, sentence by sentence, as it would be delivered by his computer-generated American-accented voice. High-quality pictures and computer-generated graphics also featured in his later popular books The Illustrated Brief History of Time (1996) and The Universe in a Nutshell (2001). With his daughter Lucy he wrote the expository children’s science book George’s Secret Key to the Universe (2007), and he served as an editor, co-author and commentator for many other works of popular science.

He received many high accolades and honours. In particular, he was elected a fellow of the Royal Society at the remarkably early age of 32 and received its highest honour, the Copley medal, in 2006. In 1979, he became the 17th holder of the Lucasian chair of natural philosophy in Cambridge, some 310 years after Sir Isaac Newton became its second holder. He became a Companion of Honour in 1989. He made a guest appearance on the television programme Star Trek: The Next Generation, appeared in cartoon form on The Simpsons and was portrayed in the movie The Theory of Everything (2014).

It is clear that he owed a great deal to his first wife, Jane Wilde, whom he married in 1965, and with whom he had three children, Robert, Lucy and Timothy. Jane was exceptionally supportive of him in many ways. One of the most important of these may well have been in allowing him to do things for himself to an unusual extent.

He was an extraordinarily determined person. He would insist that he should do things for himself. This, in turn, perhaps kept his muscles active in a way that delayed their atrophy, thereby slowing the progress of the disease. Nevertheless, his condition continued to deteriorate, until he had almost no movement left, and his speech could barely be made out at all except by a very few who knew him well.

He contracted pneumonia while in Switzerland in 1985, and a tracheotomy was necessary to save his life. Strangely, after this brush with death, the progress of his degenerative disease seemed to slow to a virtual halt. His tracheotomy prevented any form of speech, however, so that acquiring a computerised speech synthesiser came as a necessity at that time.

In the aftermath of his encounter with pneumonia, the Hawkings’ home was almost taken over by nurses and medical attendants, and he and Jane drifted apart. They were divorced in 1995. In the same year, Hawking married Elaine Mason, who had been one of his nurses. Her support took a different form from Jane’s. In his far weaker physical state, the love, care and attention that she provided sustained him in all his activities. Yet this relationship also came to an end, and he and Elaine were divorced in 2007.

Despite his terrible physical circumstance, he almost always remained positive about life. He enjoyed his work, the company of other scientists, the arts, the fruits of his fame, his travels. He took great pleasure in children, sometimes entertaining them by swivelling around in his motorised wheelchair. Social issues concerned him. He promoted scientific understanding. He could be generous and was very often witty. On occasion he could display something of the arrogance that is not uncommon among physicists working at the cutting edge, and he had an autocratic streak. Yet he could also show a true humility that is the mark of greatness.

Hawking had many students, some of whom later made significant names for themselves. Yet being a student of his was not easy. He had been known to run his wheelchair over the foot of a student who caused him irritation. His pronouncements carried great authority, but his physical difficulties often caused them to be enigmatic in their brevity. An able colleague might be able to disentangle the intent behind them, but it would be a different matter for an inexperienced student.

To such a student, a meeting with Hawking could be a daunting experience. Hawking might ask the student to pursue some obscure route, the reason for which could seem deeply mysterious. Clarification was not available, and the student would be presented with what seemed indeed to be like the revelation of an oracle – something whose truth was not to be questioned, but which if correctly interpreted and developed would surely lead onwards to a profound truth. Perhaps we are all left with this impression now.

Hawking is survived by his children.

  • Stephen Hawking
  • People in science
  • Motor neurone disease

More on this story

stephen hawking biography in english matter

Stephen Hawking’s former nurse struck off for failings in his care

stephen hawking biography in english matter

Stephen Hawking PhD thesis and wheelchair to sell in online auction

stephen hawking biography in english matter

Essays reveal Stephen Hawking predicted race of 'superhumans'

stephen hawking biography in english matter

Stephen Hawking's ashes interred at Westminster Abbey

stephen hawking biography in english matter

Stephen Hawking's voice to be beamed into space at final sendoff

stephen hawking biography in english matter

Locals share their memories at Stephen Hawking’s funeral

stephen hawking biography in english matter

Stephen Hawking's ashes to be buried near Newton at Westminster Abbey

stephen hawking biography in english matter

Cambridge colleagues pay tribute to 'inspirational' Hawking

stephen hawking biography in english matter

‘I would not have survived’: Stephen Hawking lived long life thanks to NHS

stephen hawking biography in english matter

'We still don’t have the technology to verify Stephen Hawking's big ideas'

Comments (…), most viewed.

stephen hawking biography in english matter

Professor Stephen Hawking

stephen hawking biography in english matter

Credit: Andre Pattenden

Friends and colleagues from the University of Cambridge have paid tribute to Professor Stephen Hawking, who died today at the age of 76.

Widely regarded as one of the world’s most brilliant minds, he was known throughout the world for his contributions to science, his books, his television appearances, his lectures and through biographical films. He leaves three children and three grandchildren.

Professor Hawking broke new ground on the basic laws which govern the universe, including the revelation that black holes have a temperature and produce radiation, now known as Hawking radiation. At the same time, he also sought to explain many of these complex scientific ideas to a wider audience through popular books, most notably his bestseller A Brief History of Time .

He was awarded the CBE in 1982, was made a Companion of Honour in 1989, and was awarded the US Presidential Medal of Freedom in 2009. He was the recipient of numerous awards, medals and prizes, including the Copley Medal of the Royal Society, the Albert Einstein Award, the Gold Medal of the Royal Astronomical Society, the Fundamental Physics Prize, and the BBVA Foundation Frontiers of Knowledge Award for Basic Sciences. He was a Fellow of The Royal Society, a Member of the Pontifical Academy of Sciences, and a Member of the US National Academy of Sciences.

He achieved all this despite a decades-long battle with motor neurone disease, with which he was diagnosed while a student, and eventually led to him being confined to a wheelchair and to communicating via his instantly recognisable computerised voice. His determination in battling with his condition made him a champion for those with a disability around the world.

Professor Hawking came to Cambridge in 1962 as a PhD student, and rose to become the Lucasian Professor of Mathematics, a position once held by Isaac Newton, in 1979. In 2009, he retired from this position and was the Dennis Stanton Avery and Sally Tsui Wong-Avery Director of Research in the Department of Applied Mathematics and Theoretical Physics until his death. He was also a member of the University's  Centre for Theoretical Cosmology , which he founded in 2007. He was active scientifically and in the media until the end of his life.

Professor Stephen Toope, Vice-Chancellor of the University of Cambridge, paid tribute, saying, “Professor Hawking was a unique individual who will be remembered with warmth and affection not only in Cambridge but all over the world. His exceptional contributions to scientific knowledge and the popularisation of science and mathematics have left an indelible legacy. His character was an inspiration to millions. He will be much missed.”

stephen hawking biography in english matter

Stephen William Hawking was born on January 8, 1942 in Oxford although his family was living in north London at the time. In 1959, the family moved to St Albans where he attended St Albans School. Despite the fact that he was always ranked at the lower end of his class by teachers, his school friends nicknamed him ‘Einstein’ and seemed to have encouraged his interest in science. In his own words, “physics and astronomy offered the hope of understanding where we came from and why we are here. I wanted to fathom the depths of the Universe.”

His ambition brought him a scholarship to University College Oxford to read Natural Science. There he studied physics and graduated with a first class honours degree.

He then moved to Trinity Hall , Cambridge and was supervised by Dennis Sciama at the Department of Applied Mathematics and Theoretical Physics for his PhD; his thesis was titled  Properties of Expanding Universes . In 2017, he made his PhD thesis freely available online via the  University of Cambridge’s Open Access repository . There have been over a million attempts to download the thesis, demonstrating the enduring popularity of Hawking and his academic legacy.

On completion of his PhD Hawking became a research fellow at Gonville and Caius College where he remained a fellow for the rest of his life. During his early years at Cambridge, he was influenced by Roger Penrose and developed the singularity theorems which show that the Universe began with the Big Bang.

An interest in singularities naturally led to an interest in black holes and his subsequent work in this area laid the foundations for the modern understanding of black holes. He proved that when black holes merge, the surface area of the final black hole must exceed the sum of the areas of the initial black holes, and he showed that this places limits on the amount of energy that can be carried away by gravitational waves in such a merger. He found that there were parallels to be drawn between the laws of thermodynamics and the behaviour of black holes. This eventually led, in 1974, to the revelation that black holes have a temperature and produce radiation, now known as Hawking radiation, a discovery which revolutionised theoretical physics.

He also realised that black holes must have an entropy – often described as a measure of how much disorder is present in a given system – equal to one quarter of the area of their event horizon: – the ‘point of no return’, where the gravitational pull of a black hole becomes so strong that escape is impossible. Some forty odd years later, the precise nature of this entropy is still a puzzle. However, these discoveries led to Hawking formulating the ‘information paradox’ which illustrates a fundamental conflict between quantum mechanics and our understanding of gravitational physics. This is probably the greatest mystery facing theoretical physicists today.

stephen hawking biography in english matter

To understand black holes and cosmology requires one to develop a theory of quantum gravity. Quantum gravity is an unfinished project which is attempting to unify general relativity, the theory of gravitation and of space and time with the ideas of quantum mechanics. Hawking’s work on black holes started a new chapter in this quest and most of his subsequent achievements centred on these ideas.

Hawking recognised that quantum mechanical effects in the very early universe might provide the primordial gravitational seeds around which galaxies and other large-scale structures could later form.  This theory of inflationary fluctuations, developed along with others in the early 1980s, is now supported by strong experimental evidence from the COBE, WMAP and Planck satellite observations of the cosmic microwave sky. Another influential idea was Hawking’s ‘no boundary’ proposal which resulted from the application of quantum mechanics to the entire universe. This idea allows one to explain the creation of the universe in a way that is compatible with laws of physics as we currently understand them. 

Professor Hawking’s influential books included The Large Scale Structure of Spacetime , with G F R Ellis; General Relativity: an Einstein centenary survey , with W Israel; Superspace and Supergravity , with M Rocek (1981); The Very Early Universe , with G Gibbons and S Siklos, and 300 Years of Gravitation , with W Israel.

However, it was his popular science books which took Professor Hawking beyond the academic world and made him a household name. The first of these, A Brief History of Time , was published in 1988 and became a surprise bestseller, remaining on the Sunday Times best-seller list for a record-breaking 237 weeks. Later popular books included Black Holes and Baby Universes , The Universe in a Nutshell , A Briefer History of Time , and My Brief History . He also collaborated with his daughter Lucy on a series of books for children about a character named George who has adventures in space.

In 2014, a film of his life, The Theory of Everything , was released. Based on the book by his first wife Jane, the film follows the story of their life together, from first meeting in Cambridge in 1964, with his subsequent academic successes and his increasing disability. The film was met with worldwide acclaim and Eddie Redmayne, who played Stephen Hawking, won the Academy Award for Best Actor at the 2015 ceremony.

stephen hawking biography in english matter

Travel was one of Professor Hawking’s pastimes. One of his first adventures was to be caught up in the 7.1 magnitude Bou-in-Zahra earthquake in Iran in 1962. In 1997 he visited the Antarctic. He has plumbed the depths in a submarine and in 2007 he experienced weightlessness during a zero-gravity flight, routine training for astronauts. On his return to ground he quipped “Space, here I come.”

Writing years later on his website, Professor Hawking said: “I have had motor neurone disease for practically all my adult life. Yet it has not prevented me from having a very attractive family and being successful in my work. I have been lucky that my condition has progressed more slowly than is often the case. But it shows that one need not lose hope.”

At a conference In Cambridge held in celebration of his 75th birthday in 2017, Professor Hawking said “It has been a glorious time to be alive and doing research into theoretical physics. Our picture of the Universe has changed a great deal in the last 50 years, and I’m happy if I’ve made a small contribution.”

And he said he wanted others to feel the passion he has for understanding the universal laws that govern us all. “I want to share my excitement and enthusiasm about this quest. So remember to look up at the stars and not down at your feet. Try to make sense of what you see and wonder about what makes the universe exist. Be curious, and however difficult life may seem, there is always something you can do, and succeed at. It matters that you don’t just give up.”

Words: Tom Kirk, Sarah Collins

Images: Alan Fersht, Graham CopeKoga, Andre Pattenden, Sir Cam, Dan White

stephen hawking biography in english matter

Stephen Hawking

Toggle-div#toggle"> 1940s: birth and childhood.

stephen hawking biography in english matter

It is a curious fact that Stephen William Hawking was born on 8th January 1942, exactly 300 years after the death of the Italian astronomer, Galileo Galilei. Perhaps it seems a fitting symmetry. Often referred to as ‘the father of observational astronomy,’ Galileo was one of Stephen’s inspirations during his long career as a theoretical physicist and cosmologist. 

Stephen was born in Oxford during WWII, the eldest of four children to parents Dr Frank Hawking and Eileen Isobel Hawking. With his siblings, Stephen had a happy childhood mostly spent in Highgate, London and then in St. Albans, Hertfordshire. Stephen admitted to being a late developer and recalled that he was never more than halfway up the class at St Albans School. However, he developed an early curiosity as to how things work, saying later, ‘If you understand how the universe operates, you control it, in a way.’ His classmates called him ‘Einstein’ as they clearly saw the signs of genius in him, missed by his teachers.  While still at school, Stephen speculated about the origin of the universe with his friends and wondered whether God created it – “I wanted to fathom the depths of the universe.” This spirit of enquiry set the pattern for his academic career.

toggle-div#toggle"> 1960s: graduation from Oxford and the move to Cambridge

stephen hawking biography in english matter

Somewhat reluctantly, Stephen agreed to apply to his father’s college, University College, Oxford . Stephen wanted to read mathematics but his father, tropical medicine specialist Dr Frank Hawking, was adamant that there would be no jobs for mathematicians and Stephen should read medicine. They compromised on Natural Sciences and Stephen went up to Oxford at the young age of 17 in 1959. Despite claiming to do very little work, Stephen performed well enough in his written examinations to be called for a ‘viva’ (an interview) to determine which class of degree he should receive. Stephen told the examiners that if they awarded him a first-class degree he would leave Oxford and go to Cambridge but if he got a second, he would stay in Oxford. They duly gave him a first, as of course, he hoped they would. Stephen went to Trinity Hall, Cambridge in 1962.    However, while still an undergraduate, Stephen had begun to realise all was not well. He had become increasingly clumsy, was struggling with small tasks such as doing up his shoelaces and his movements were erratic and ungainly. After an accident at a skating lake in St Albans, his mother took him to Guy’s Hospital in London for tests. Soon after Stephen’s 21st birthday, these tests showed he had a progressive and incurable illness. These tests were exhaustive although primitive by today’s standards. Even after these were completed, oddly Stephen was not told his diagnosis. Eventually, he discovered he had motor neurone disease which slowly and inexorably erodes muscle control but leaves the brain intact. He was given only two years to live. Stephen later recalled that he became desperately demoralised at this time but he did find two sources of inspiration and solace: the intense music of Wagner (a subsequent lifelong passion) and falling in love with Jane Wilde, the woman who would become his wife. The young couple vowed to fight Stephen’s illness together. Stephen now had someone to live for, and in the manner typical of his stubbornness, he threw himself into his research – “To my surprise I found I liked it”, he said later. 

Despite his renewed enthusiasm, Stephen’s early career progressed erratically. In Cambridge, he had hoped to study under the most famous astronomer of the time, Fred Hoyle, but Professor Hoyle had too many students already and sent him to physicist and cosmologist Dennis Sciama instead.  Later, Stephen recognised this as a piece of luck which laid the foundation of his later career and said that he would have been unlikely to flourish under Hoyle’s supervision. In fact, the two clashed in public in 1964 when Stephen interrupted Fred Hoyle, during a lecture, to tell the famous scientist he had got something wrong. When Hoyle asked how he knew this, Stephen said, ‘Because I have worked it out’.  Sciama also introduced Stephen to Roger Penrose in 1965 when Penrose gave a talk on singularity theorems in Cambridge.  In that same year, Stephen received his Ph.D for his thesis entitled ‘Properties of Expanding Universes.’  This thesis was released in 2017 on the University of Cambridge’s website, causing the site to crash almost immediately due to the extraordinarily high demand.

In 1965, Stephen applied for a research fellowship at Gonville & Caius College in Cambridge and was accepted. He was to remain a fellow there for the rest of his life. Marriage to Jane and children followed; Robert (1967), Lucy (1970) and Timothy (1979). Supported and cared for by his wife, his loyal PhD students, friends, family, colleagues and his children, Stephen settled into day to day academic life, and continued working right up until his death in March 2018.

toggle-div#toggle"> Mid-60s to early-70s: serious career work

stephen hawking biography in english matter

The accolades began. In 1966 Stephen won the Adams Prize  for his essay entitled, ‘Singularities and the Geometry of Space-Time’, and which formed the basis for his first academic book, co-authored with George Ellis, The Large Scale Structure of Space-Time . This book remains in print today.

In 1969, during a trip to the USA, Stephen observed Joseph Weber’s early and rudimentary experiments for detecting gravitational waves. Stephen would have loved to conduct his own experiments in this new and exciting scientific area but understood that his disability was a barrier in that era. As ever, Stephen made an advantage out of what other people would perceive as a setback, arguing that a theorist can conclude an argument in an afternoon: an experiment can take years. “I was glad I remained a theorist”, he admitted afterwards. 

Against the background of increasing and fervent scientific discovery, Stephen began working on the basic laws that govern the universe – the field he had been obsessed with since he was a young schoolboy. Since their first meeting in 1965, Stephen and Roger Penrose had many discussions about singularity theorems which culminated in their joint paper in 1970. In that paper, Stephen showed that Einstein’s general theory of relativity implied space and time would have a beginning in the Big Bang and an end in black holes. Together, Hawking and Penrose  developed a singularity theorem proving this theory and this led to Stephen’s ensuing fascination with black holes. His subsequent work in this area laid the foundations for today’s understanding of the universe and how it began.

toggle-div#toggle"> 1970s: ‘I was writing the rulebook for black holes’

stephen hawking biography in english matter

The 1970s were a prolific period of work. In 1970, shortly after the birth of his daughter and in a ‘eureka’ moment, Stephen realized, almost in an instant:  ●    that when black holes merge, the surface area of the final black hole must exceed the sum of the areas of the initial black holes,  ●    that this places limits on the amount of energy that can be carried away by gravitational waves in such a merger, ●    there are parallels to be drawn between the laws of thermodynamics and the behaviour of black holes.

In 1973, and at a bit of a loose end after the publication of his first book, The Large Scale Structure of Space-Time , Stephen decided the next step in his research would be to combine general relativity (the theory of the very large) with quantum theory (the theory of the very small). To his disbelief, it seemed that emissions could emanate from a black hole, that particles could escape, i.e. ‘radiate’ from a black hole’s event horizon, a revolutionary quantum effect that appeared to make a mockery of the laws of physics.  This research was published in 1974 by Nature as  ‘Black hole explosions?’ . However, when announced at a conference in Oxford, his theory was seen as controversial and angrily disputed. Now widely accepted and known as Hawking radiation , Stephen’s proposal unifies the seemingly impossible – general relativity with quantum theory, the large with the small. 

Despite their names becoming joined in a formula, Stephen and Jacob Bekenstein never actually worked together. In 1972, Bekenstein proposed that black holes have an entropy.  Bekenstein had a formula for entropy that said the entropy was proportional to the area of the event horizon but his numerical co-efficient was incorrect. Stephen did not believe this because black holes were thought to have zero temperatures. It was not until Stephen discovered black hole temperature that he came to believe that black holes have entropy. Stephen was able thereby to confirm the idea that black holes have entropy and fix the coefficient in Bekenstein’s formula.

S = Entropy A = The area of the horizon c = The speed of light G = Newton’s constant of gravitation  k = Boltzmann’s constant ħ = Planck’s constant

Stephen’s equation reveals a ‘deep and previously unexpected relationship between gravity and thermodynamics, the science of heat’. But it also raises questions – where does the information about the previously existing matter go when matter ‘disappears’ into a hole? And if information is lost, this is incompatible with quantum mechanics at least in its usual form. This is Stephen’s black hole ‘Information Paradox’ that violates a fundamental tenet of quantum mechanics and has led to decades of furious debate. 

The late 1970s were a golden age for Stephen’s academic career and for the field of theoretical physics in general. After being promoted to Reader in Gravitational Physics at Cambridge in 1975, and subsequently Professor of Gravitational Physics in 1977, in 1979 he was appointed as the Lucasian Professor of Mathematics , a position he held until 2009. The chair was founded in 1663 with money left in the will of the Reverend Henry Lucas who had been the Member of Parliament for the University. Previously held by Isaac Newton in 1669, this chair was awarded to Stephen in recognition of his ground-breaking scientific work on black holes. In 1979 Stephen was also awarded the first, prestigious Albert Einstein medal, in recognition of ‘scientific findings, works or publications related to Albert Einstein’.  This was a period of intense speculation in physics and growing public interest in black holes. Journalists for print and television regularly interviewed Stephen - his name was becoming known.

toggle-div#toggle"> 1980s: A health crisis, and authorial success

stephen hawking biography in english matter

Stephen sought to understand the whole universe in scientific terms. As he said famously, ‘My goal is simple. It is a complete understanding of the universe.’ The singularity theorems proved by Stephen and Penrose had shown conclusively that the universe had a beginning in a Big Bang. But the singularity theorems did not say how the universe had begun. Rather, they showed something more sweeping: Einstein’s general relativity breaks down at the Big Bang, and quantum theory becomes important. Working with Jim Hartle, Stephen set out to use the techniques he had developed to understand the quantum dynamics of black holes, to describe the quantum birth of the universe. Stephen first put forward a proposal along these lines at a conference in the Vatican in 1981, where he suggested that the universe began with four space dimensions curled up as a sphere, without any boundary, which through a quantum transition gave rise to the universe with three space dimensions and one time dimension that we have today. Asking what came before the Big Bang, he famously said, `is like asking what lies South of the South Pole’.  Stephen and Hartle aptly called their model the no boundary wave function, or no boundary proposal, the first scientific model of the origin of the universe. 

Stephen continued to study the no boundary proposal throughout his career. He discovered that there was a profound connection between the no boundary wave function and cosmic inflation – the idea that our universe started with a rapid burst of expansion. In a series of papers over many years Stephen and his students consolidated this connection, showing that the no boundary proposal predicts an early period of inflation.  But the scientific importance of the no boundary proposal is not just as a successful theory of the origin of the basic structure of the universe. Perhaps even more important is the impact it has had on how we think about the universe, and our place in it. The no boundary proposal describes an ensemble of universes. Working with Thomas Hertog, Stephen showed this leads to what he called a `top-down approach to cosmology’, reconstructing the universe’s history backwards in time starting from our position within it. ‘The history of the universe depends on the question we ask,’ he used to say.

In 1982, a letter from Buckingham Palace arrived at Stephen’s family home in Cambridge to tell him he had been honoured with the award of a CBE - Commander of the British Empire. Stephen, despite his anti-establishment leanings, still felt proud to accept it as a mark of his outstanding achievement. The award also heralded the first of what would turn out to be many meetings with Her Majesty the Queen over the decades to come. But neither Stephen nor his family could have known that at the time, as the great scientist was constantly aware that each day could be his last.

Despite his condition, Stephen was an enthusiastic traveller, although his journeys did not always go smoothly. In 1985 Stephen contracted pneumonia on a trip to a science conference near Geneva. The Swiss doctors advised his wife, Jane, that recovery was impossible, and she should switch off Stephen’s ventilator which would have brought about his immediate death. Jane flatly refused and arranged for Stephen to be flown home to Addenbrooke’s Hospital in Cambridge. In order to save Stephen’s life, a tracheostomy was performed, which had the difficult side effect of taking away his natural speaking voice. After a frustrating period where he was only able to communicate with a spelling card and eyebrow movements, Stephen was relieved and delighted when technology came to his rescue. He worked closely with computer developers, latterly at Intel, to devise a computerised communication system and voice synthesiser that, with its famously flat American accent, quickly became his trademark. Stephen learned the art of brevity, of expressing complicated ideas and opinions in very few words. Using this system, Stephen not only wrote seven books and a number of scientific papers but developed his own style of dry, unanswerable wit. It was during this challenging period that Stephen began working on A Brief History of Time , an idea he first had in 1982.

Determined to write a book about physics that would sell at airport book shops, sharing the excitement of science with a general audience, Stephen toiled over A Brief History of Time for six years. His hard work paid off as this book became a surprise runaway best seller which also propelled him into an ever-widening public sphere with, at times, intense media speculation. A Newsweek cover at the time described him as a ‘Master of the Universe’. Helpfully, A Brief History of Time turns complicated scientific theories and projections into (mostly) everyday language: as Stephen said, “I think it is important for scientists to explain their work, particularly in cosmology”. Its resounding success led to a spot on the UK best-selling list for a record-breaking 4.5 years, translation into over 40 languages and sales of over 20 million copies. It was said that Stephen had answered the most fundamental questions of existence. Stephen had always firmly believed that everyone should have a basic understanding of science in this increasingly scientific and technological world and dedicated an enormous amount of time and effort in order to engage the general public with science. He has also co-authored  a series of six adventure novels about science with his daughter, Lucy Hawking, in order to make science entertaining and accessible to a young readership.  

toggle-div#toggle"> 1990s: Publishing success and a party no-one came to

stephen hawking biography in english matter

The 1990s were another period of relentless work academically and now, increasingly, as a popular author and celebrity. In 1993 he published Black Holes and Baby Universes and Other Essays , a collection of works exploring ways in which the universe may be governed. This was followed in 1998 by Universe: The Cosmos Explained , clarifying the basis of our existence with more following in the 2000s – Universe in a Nutshell (2001), On the Shoulders of giants (2002) and The Theory of Everything: The Origin and Fate of the Universe (2002). While these did not achieve the global accolade of A Brief History of Time , they all successfully contributed to our general body of scientific knowledge.

Academically, Stephen continued his work in physics and in 1993 co-edited a book on Euclidean quantum gravity with Gary Gibbons. In 1994 Stephen and Roger Penrose delivered a series of six lectures that were subsequently published in 1996 as The Nature of Space and Time , and Stephen enjoyed several of his now-famous scientific ‘bets’ he had with colleagues, notably with Kip Thorne and John Preskill at Caltech, and Peter Higgs over the existence of the Higgs Boson (Stephen lost that one). Stephen also married again in 1995 to Elaine Mason, a former nurse.

In 1990, with lifelong friend, the physicist Kip Thorne, Stephen approached the controversial notion of whether time travel is allowed by the laws of physics utilising the concept of wormholes, hypothetical tubes of space-time. Stephen concluded this serious analysis with the finding that although it may turn out that time travel is impossible, “… it is important that we understand why it is impossible.” As a later aside to this, nearly 20 years later Stephen planned a party for time travellers. He wrote invitations, set a date, time and venue and provided precise GPS coordinates. But he did not send out the invitations until after the party date was over. That way, only those who could genuinely travel back in time would know of it and be able to attend. On the due day Stephen sat politely and waited. But no-one came. And that was the point. “I have experimental evidence that time travel is not possible”, he said afterwards. And the champagne went back on ice.   

toggle-div#toggle"> 2000s: Debates and bets

stephen hawking biography in english matter

In a sensational scientific U-turn in 2004, Stephen announced he had solved the black hole information paradox he had identified in 1974, stating that black holes do not destroy all that is sucked into them and that information can be retrieved.  Conceding a bet with fellow scientists when he had previously argued to the contrary, Stephen and Kip Thorne awarded their American colleague, John Preskill, an encyclopaedia on baseball saying, that ‘(baseball) information can be retrieved at will’. At the time, Stephen confessed that saying information was lost in black holes was his biggest blunder. However, physicists continue to argue about whether information is lost in black holes or not. It is perhaps a tribute to Stephen’s genius that the discussion is still going on after almost half a century.

The marriage to Elaine broke down and the couple divorced in 2006. In April 2007, Stephen undertook a zero-gravity flight in a Boeing 727 jet in order to promote public interest in space travel and raise money for research into ALS. He had been invited by space pioneer and entrepreneur Peter Diamandis who founded the X Prize. A keen advocate of the need for space travel to find alternative planets for human habitation, Stephen remained in the air for two hours and underwent eight zero-gravity dives, allowing him to experience weightlessness and to be freed from the frustrating restrictions of his wheelchair. One of the most iconic of all the images of Stephen shows him floating, weightless, with an apple hovering above his shoulder and a huge smile on this face. He quipped afterwards, “Space, here I come. A zero-gravity flight is the first step towards space travel.” Stephen always hoped to make it into space himself one day. He was invited by Richard Branson to travel on Branson’s first space flight. Such was Stephen’s pioneering spirit, he accepted immediately. Sadly, Stephen never got the chance to fly in space.

Also in 2007, Stephen founded the Centre for Theoretical Cosmology , based in the Centre for Mathematical Sciences, University of Cambridge, and set up to, ‘advance the scientific understanding of our universe, taking forward the vision of its founder.’ More recently, the Centre launched the Stephen Hawking Programme , a campaign to celebrate and memorialise Stephen's life and work through a programme of teaching, research and outreach. The programme will perpetuate Stephen's legacy and will ensure the vitality and excellence of its ongoing research in cosmology and gravitation.

In 2009, Stephen was awarded the US Presidential Medal of Freedom by President Barack Obama, the highest civilian award in the United States. Received by very few scientists, it was given in recognition of his ‘persistence and dedication [which] has unlocked new pathways of discovery and inspired everyday citizens.’

toggle-div#toggle"> 2010s: ‘It has been a glorious time to be alive…’

stephen hawking biography in english matter

In  2012, in a dazzling, star-lit ceremony, Stephen opened the  Paralympics  in London’s Docklands to a packed stadium. Entitled ‘Enlightenment’, Stephen compared the entire event with some 3,000 performers promising an ‘evening of exploration’, as he exhorted the 62,000 spectators to ‘look up at the stars’.  As an addition to the fun-fest of the splendidly choreographed display by disabled athletes, Stephen’s appearance received loud applause when he said, “However difficult life may seem there is always something you can do and succeed at. Good luck to you all…”.

In 2013, Stephen won one of the two  Breakthrough Prizes in Fundamental Physics  for his discovery of Hawking radiation from black holes, and for ‘his deep contributions to quantum gravity and quantum aspects of the early universe’. This award was especially treasured by Stephen as it validated his lifelong discoveries without the need for experimental confirmation that, in this case, is very difficult to achieve.  So difficult in fact, that this lack of experimental confirmation of Hawking radiation and other of his theories excluded Stephen from winning the Nobel prize for physics – the major disappointment in his academic life and career. 

In 2014, Stephen revised his theory about the information paradox, even writing that, ‘there are no black holes’ – or at least in the way that cosmologists traditionally understand them. His theory removed the existence of an ‘event horizon’, the point where nothing can escape. Instead, he proposed that there would be an ‘apparent horizon’ that would alter according to quantum changes within the black hole. But the theory, too, remains controversial.

That same year saw the release of  The Theory of Everything , the film of Stephen’s life which opened to great critical acclaim. Based on the personal memoir of Stephen’s wife, Jane, the film garnered major awards, resulting in an Oscar for actor, Eddie Redmayne, who perfectly captured not only Stephen’s declining health but his wit, determination, stubbornness and single-minded pursuit of scientific knowledge. Stephen was initially cautious about the film but once he met Redmayne and read the script, he changed his view and allowed the film to use his synthesised voice. Overall both Stephen and Jane were pleased with the film although Stephen would have liked it to contain more physics. Its success brought Stephen’s academic discoveries to a wider public and further underlined his innate humanity. 

Stephen celebrated his 75th birthday in January 2017, an incredible achievement for someone who was told he had two years to live in 1962. Cambridge University marked this august occasion with an international conference entitled  ‘Gravity and Black Holes’ , held in July at the Centre for Mathematical Sciences. Twenty renowned scientists gave papers at the three-day conference. At the time, Stephen said, “It has been a glorious time to be alive and doing research into theoretical physics. Our picture of the Universe has changed a great deal in the last 50 years, and I’m happy if I’ve made a small contribution.” And he said he wanted others to feel the passion he has for understanding the universal laws that govern us all. “I want to share my excitement and enthusiasm about this quest. So, remember to look up at the stars and not down at your feet. Try to make sense of what you see and wonder about what makes the universe exist. Be curious, and however difficult life may seem, there is always something you can do, and succeed at. It matters that you don’t just give up.”

Also in 2017 Stephen co-authored a paper with Malcolm Perry (Cambridge) and Professor Andrew Strominger (Harvard) entitled ‘Soft Hair on Black Holes’ , purporting to make progress towards an ultimate solution to the black hole information paradox. Refuting Stephen’s earlier argument claiming that information was irretrievably lost in black holes the paper identifies how information is not lost but is ‘contained’ within strands surrounding the black hole’s edge, the event horizon.

In November 2017, Stephen made what would become his last public appearance to a packed Union chamber when he gave the inaugural speech for the Cambridge Union Society’s announcement of its Professor Hawking Fellowship. The Fellowship is designed to celebrate STEM disciplines and acknowledges those individuals who, according to Lord Smith of Finsbury, chair of the Union’s trustees, ‘… have changed the world through the application of science and technology’. In 2019, the choice of Hawking Fellow was Bill Gates.

On 14th March 2018, Professor Stephen Hawking died peacefully at his home in Cambridge (in a strange tribute, this date is also the birthday of Albert Einstein). At the private funeral in Cambridge, the streets thronged with admirers and fans who saw Stephen as very much ‘one of their own’. His impressive but poignant  memorial service  held on 15th June 2018 in Westminster Abbey was a more formal affair with luminaries from academia around the world paying tribute to Stephen’s scientific legacy. However, at both ceremonies, there was much emphasis on Stephen’s humanity, his humour, his family (he was a devoted family man with three much-loved children and grandchildren) and his charitable work, mostly for the disabled community and education. His ashes are interred next to Sir Isaac Newton and Charles Darwin. The words on Stephen’s grave stone are a direct translation from the Latin of those on Isaac Newton’s grave – ‘Here lies what was mortal of…..’

There is a postscript. In October 2018,  John Murray published Stephen’s posthumous popular book, Brief Answers to the Big Questions. This book was a project that Stephen had begun in his lifetime, to bring his writings for a general audience together into one definitive volume. While the manuscript remained unfinished at the time of Stephen’s death, his colleagues, family and friends collaborated in order to publish this collection of short essays on the questions that Stephen was so frequently asked during his lifetime. It felt important to those who had been close to Stephen for so many years that his theories, thoughts and ideas were published in order that he himself should define his legacy. Brief Answers to the Big Questions has been a best seller in 45 countries and sold 2.5 million copies since publication, showing that Stephen’s influence and brilliance remain undimmed, even though he is no longer with us.

Finally, two posthumous papers appeared. The first in April 2018 was written with Thomas Hertog. Stephen details his last theory on the origin of the Universe, based on the concept of eternal inflation which lays the ground for the existence of parallel universes. It argues there are many universes other than our own. The paper is entitled “A Smooth Exit From Inflation” and its latest revisions were made on 4th March, ten days before Stephen died.

When Stephen died, there was a paper in preparation with Sasha Haco, a graduate students, Malcolm Perry and Andrew Strominger. In this paper, an explanation of how black hole entropy arises at the microscopic level is proposed. If the ideas in this paper hold water, then it gives insight into the information paradox and how it might be resolved. As Stephen’s lifelong friend, the physicist Kip Thorne said at Stephen’s memorial service at Westminster Abbey ‘Stephen gave us big questions.” As more work is done on Stephen’s theories over the decades and centuries to come, we may find that Stephen gave us the answers as well. We just need to be smart enough to find them.

toggle-div#toggle"> Career

Research Fellow, Gonville and Caius Coll., 1965–69; Fellow for distinction in science, 1969–; Mem. Inst. of Theoretical Astronomy, Cambridge, 1968–72; Research Asst, Inst. of Astronomy, Cambridge, 1972–73; Cambridge University: Research Asst, Dept of Applied Maths and Theoretical Physics, 1973–75; Reader in Gravitational Physics, 1975–77, Professor, 1977–79. Fairchild Distinguished Schol., Calif Inst. of Technol., 1974–75. Reith Lectr, 2015. Mem., Pontical Acad. of Scis, 1986–; Foreign Mem., Amer. Acad. of Arts and Scis, 1984; Internat. Mem. (formerly Foreign Mem.), Amer. Philosophical Soc., 1985. Hon. Mem., RAS (Can), 1985. Hon. DSc: Oxon, 1978; Newcastle, Leeds, 1987; Cambridge, 1989; hon. degrees: Chicago, 1981; Leicester, New York, Notre Dame, Princeton, 1982; Tufts, Yale, 1989; Harvard, 1990. (Jtly) Eddington Medal, RAS, 1975; Pius XI Gold Medal, Pontical Acad. of Scis, 1975; Dannie Heinemann Prize for Math. Phys., Amer. Phys. Soc. and Amer. Inst. of Physics, 1976; William Hopkins Prize, Cambridge Philosoph. Soc., 1976; Maxwell Medal, Inst. of Physics, 1976; Hughes Medal, Royal Soc., 1976; Albert Einstein Award, 1978; Albert Einstein Medal, Albert Einstein Soc., Berne, 1979; Franklin Medal, Franklin Inst., USA, 1981; Gold Medal, RAS, 1985; Paul Dirac Medal and Prize, Inst. of Physics, 1987; (jtly) Wolf Foundn Prize for Physics, 1988; Britannica Award, 1989; Prince of Asturias Foundn Award, Spain, 1989; Julius Edgar Lilienfeld Prize, 1999; Klein Medal, Nobel Inst., 2003; Michelson Award, Case Western Univ., 2003; James Smithson Bicentennial Medal, Smithsonian Inst., Washington, 2005; Copley Medal, Royal Soc., 2006; Fonseca Prize, Univ. of Santiago de Compostela, Spain, 2008; US Presidential Medal of Freedom, 2009; Cosmos Award for outstanding public presentation of Science, Planetary Soc., 2010; Special Fundamental Physics Prize, Fundamental Physics Prize Foundn, 2012

We will keep fighting for all libraries - stand with us!

Internet Archive Audio

stephen hawking biography in english matter

  • This Just In
  • Grateful Dead
  • Old Time Radio
  • 78 RPMs and Cylinder Recordings
  • Audio Books & Poetry
  • Computers, Technology and Science
  • Music, Arts & Culture
  • News & Public Affairs
  • Spirituality & Religion
  • Radio News Archive

stephen hawking biography in english matter

  • Flickr Commons
  • Occupy Wall Street Flickr
  • NASA Images
  • Solar System Collection
  • Ames Research Center

stephen hawking biography in english matter

  • All Software
  • Old School Emulation
  • MS-DOS Games
  • Historical Software
  • Classic PC Games
  • Software Library
  • Kodi Archive and Support File
  • Vintage Software
  • CD-ROM Software
  • CD-ROM Software Library
  • Software Sites
  • Tucows Software Library
  • Shareware CD-ROMs
  • Software Capsules Compilation
  • CD-ROM Images
  • ZX Spectrum
  • DOOM Level CD

stephen hawking biography in english matter

  • Smithsonian Libraries
  • FEDLINK (US)
  • Lincoln Collection
  • American Libraries
  • Canadian Libraries
  • Universal Library
  • Project Gutenberg
  • Children's Library
  • Biodiversity Heritage Library
  • Books by Language
  • Additional Collections

stephen hawking biography in english matter

  • Prelinger Archives
  • Democracy Now!
  • Occupy Wall Street
  • TV NSA Clip Library
  • Animation & Cartoons
  • Arts & Music
  • Computers & Technology
  • Cultural & Academic Films
  • Ephemeral Films
  • Sports Videos
  • Videogame Videos
  • Youth Media

Search the history of over 866 billion web pages on the Internet.

Mobile Apps

  • Wayback Machine (iOS)
  • Wayback Machine (Android)

Browser Extensions

Archive-it subscription.

  • Explore the Collections
  • Build Collections

Save Page Now

Capture a web page as it appears now for use as a trusted citation in the future.

Please enter a valid web address

  • Donate Donate icon An illustration of a heart shape

The Cambridge lectures : life works

Bookreader item preview, share or embed this item, flag this item for.

  • Graphic Violence
  • Explicit Sexual Content
  • Hate Speech
  • Misinformation/Disinformation
  • Marketing/Phishing/Advertising
  • Misleading/Inaccurate/Missing Metadata

[WorldCat (this item)]

plus-circle Add Review comment Reviews

40 Previews

5 Favorites

Better World Books

DOWNLOAD OPTIONS

No suitable files to display here.

PDF access not available for this item.

IN COLLECTIONS

Uploaded by station07.cebu on October 12, 2022

SIMILAR ITEMS (based on metadata)

Subscribe to this podcast

Listen&Learn: Stephen Hawking

Stephen Hawking

Pre-listening vocabulary

  • physicist: a scientist who studies physics
  • diagnose: to identify an illness by studying a person’s symptoms
  • condition: a medical issue
  • black hole: a region of space where gravity is so strong that nothing can escape
  • speech synthesizer: a machine used to produce human speech

Listening activity

Podcast: Play in new window | Download (Duration: 1:26 — 1.3MB)

Subscribe: Apple Podcasts | More

Gapfill exercise

Comprehension questions, discussion/essay questions.

  • Stephen Hawking once had a party for time travellers. He didn’t send the invitations out until the day after the party, so that only people from the future could show up. It was an experiment that was meant to show that time travel to the past was unlikely to be possible. Do you think that time travel could ever be possible? Why or why not?

Stephen Hawking was an English physicist. He was born in 1942 in Oxford, England. Growing up, Hawking was always very interested in math and science, and at age 17, he decided to pursue a physics degree. However, at age 21, Hawking was diagnosed with ALS, a serious condition that weakens nerves and muscles. His doctor didn’t expect him to live more than two years after his diagnosis, but Hawking was determined to get his degree. He achieved his goal, and he is now well-known for his research on black holes. Throughout his life, he also published several books about the universe. His most famous book, titled A Brief History of Time, was written to help ordinary people understand complex scientific concepts. Hawking lived much longer than expected, but his condition worsened as his life went on. Eventually, he had to use a wheelchair to move around, and a speech synthesizer to communicate. Hawking died at the age of 76, after living a full and accomplished life.

RSS Feed

20 comments

With my amyotrophic lateral sclerosis (ALS), the first thing that happened almost 2 years ago now, was speaking as if I were drunk. I wasn’t. I initially did improve speech (articulating clearly but slow) but now I can no longer speak in an acceptable way. Then, a year later eating became problematic, I was biting my tongue and lips, and chewing became weak and less controlled. Soon after that some fingers started to fail me and things would drop out of my hands. Somewhere at that time bulbar ALS was diagnosed. The Rilutek (riluzole) did very little to help me. The medical team did even less. My decline was rapid and devastating.. We tried every shot available but nothing was working. There has been little if any progress in finding a reliable treatment, Our care provider introduced us to Kycuyu Health Clinic ALS/MND herbal treatment.

Very interested and easy

People who are not born will disappear

No, Time-Travelling is not possible. If humans try to make one, I am sure it will take at least 100 years. Even if they succeed to make one, it is against Nature’s Law. And, it won’t always work properly. If it goes wrong, the person who traveled will be the reason for many people’s disappearance as the person is stuck in the time, Dead will become alive and people whose relatives are dead will become alive, and people who are born in that year will disappear.

I found this lesson very helpful to improve my English conversation

No, I don’t think it’s possible. Once I read a theory that says Spacetime is a single four-dimensional manifold; so we cann’t travel to the past because would have to decrease the space that already exists, and we can’t travel to future because that space doesn’t exist at this moment.

Sure,I believe it can be possible.because we already known about parallel universe.maybe just a little bit.

A good article for learning English and also an inspiring story for self improvement.

It is a easy and pretty text about a great scientist.

A short history about Stephen Hawking, but the reader can make himself an idea, who was this famous and important scientific.

A short history about Stephen Hawking, but the reader can make himself a idea, who was this scientific.

Awesome! Very helpful in my process of listening and writing . thank you.

Your exercise is so much good

It was very useful. Thank you so much for this exercise

Very useful

How was a great spirit for struggling.

good morning

I find this dynamic excellent, it is helping me a lot for my learning in the part of reading, listening and reading comprehension

wonderful!!

Leave a comment

Email * (not published)

  • Scientific Methods
  • Famous Physicists
  • Stephen Hawking

Stephen William Hawking

Stephen Hawking is one of the most precious gems in the world of physics, who was ahead of his time. His disability of having unsteady feet and being diagnosed with degenerative disease couldn’t stop Stephen Hawking from becoming the world’s most famous and acclaimed scientist. Even his survival would have been a marvel to this world, but he lived amazingly till 76.

Table of Contents

  • Who was Stephen Hawking?
  • Stephen Hawking’s Education Awards & Achievements
  • The Black Hole Theory

The Big Bang

Hawking radiation, the multiverse, who was stephen william hawking.

Stephen William Hawking was a British physicist, born on 8th January 1942. He is considered the most brilliant theoretical physicist of all time. He revolutionized the field of physics through his work on the origin of the universe and the black hole explosion theory. From the big bang to black holes, all his best-selling books appealed to physics lovers across the globe.

The English theoretical physicist whose theory of the explosion of black holes illustrated upon the theory of relativity and quantum mechanics. He also worked in the field of space-time singularities.

Stephen William Hawking

Stephen Hawking’s Education Awards & Achievements

Stephen William Hawking studied physics in 1962 at the University College, Cambridge and in 1966 in the Trinity Hall, Cambridge,. His contributions in physics are unparalleled, which often left other scientists scratching their heads.

Professor Stephen William Hawking holds 13 honorary degrees. He was bestowed CBE (1982), Fellow of Honor (1989) and the Presidential Medal of Freedom (2009).

He has received the Fundamental Physics Award (2013), the Copley Medal (2006) and the Wolf Foundation Award (1988). Along with a bunch of other honours awards and medals, he won the Adams Prize in 1966 for his essay Singularities and the Space-time Geometry.

He was also a member of the Royal Society, the National Academy of Sciences of the United States and the Pontifical Academy of Sciences.

The physics of black hole.

Stephen William Hawking’s name has always been associated with the black hole. He put forward his stroke of genius combining Einstein’s Theory of Relativity , which has already aroused curiosity and has been under debate for decades, and the theory of quantum mechanics. In the early 1970s, Hawkins turned his attention to both of these theories, and later on, Stephen William Hawking’s most famous thesis on black holes was proven right.

Hawking’s doctoral thesis was written at a critical time when there was an argument between two cosmological theories: the Big Bang theory and the Steady State theory. Both these theories were considered to be opposing each other at that time. However, both theories accepted that the universe is expanding, but the first one explains that the universe is expanding from an ultra-compact, super-dense state at a finite time in the past, and the second one assumes that the universe has been intensifying forever.

Hawking showed in his thesis that the Steady State theory is mathematically self-contradictory. He reasoned instead that the universe began as a dense point called a singularity which was infinitely small. His description has been accepted worldwide today.

The photons or the particles of light can’t escape from the black holes because of their intense and strong gravity. But Stephen Hawking argued on it, explaining the truth, which was more complex than the assumed fact. He applied quantum theory, especially the idea of “virtual photons”; he realized that some of these photons could appear to be radiated from the black hole . At a laboratory experiment in the Technion-Israel Institute of Technology, it has recently been confirmed that this theory is correct and is named Hawking Radiation.

Instead of a real black hole, the researchers used a “sonic black hole” from which sound waves cannot outflow.

Stephen Hawking was also involved in the most exciting topics toward the conclusion of his life was the multiverse theory. He proposed the idea that our universe, with its start in the Big Bang, is just one of an infinite number of contemporaneous bubble universes. In his very last paper in 2018, he proposed a novel mathematical framework and tried to seek out the universe in his own words. But as with any assumption concerning parallel universes, we do not have any idea if his ideas are right now. Maybe the scientists will be able to test his belief in the coming times.

Not only an amazing physicist but Stephen Hawking was an amazing and inspiring personality too, he left behind his great research theories and thoughts as his legacy to us, which is truly a gift in physics.

Stay tuned to BYJU’S for more such interesting articles. Also, register to “BYJU’S – The Learning App” for loads of interactive, engaging Physics-related videos and unlimited academic assistance.

Frequently Asked Questions

What stephen hawking is famous for.

Apart from one of the most brilliant British physicists Stephen Hawking is famous for his theories on the Big Bang and the black hole concept.

What is Stephen Hawking’s IQ

Stephen Hawking has tried to keep his IQ a secret but it was estimated that his IQ is around 160.

When did Stephen Hawking write his first book?

In 1973 Stephen Hawking wrote his first book which is named as “The Large Scale Structure of Space-TIme”

How many types of Black holes are there?

There are four types of black holes:

  • Intermediate
  • Supermassive

What is Big Bang Theory?

The Big Bang theory is the prevailing cosmological model explaining the existence of the observable universe from the earliest known periods through its subsequent large-scale evolution.

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

stephen hawking biography in english matter

Knowledgable & inspiring.

stephen hawking biography in english matter

  • Share Share

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

close

Stephen Hawking

1942-2018 English Theoretical Physicist, Cosmologist and Author

Search This Blog

Stephen hawking biography, stephen hawking facts, stephen hawking quotes, the large scale structure of space time 1973, a brief history of time 1988, black holes and baby universes and other essays 1993, the universe in a nutshell 2001.

  • Biographies
  • Science Today
  • G Knowledge
  • Psychologists
  • Business Legends
  • Cinematic Legends
  • Music Legends
  • Inspiring Lives
  • Animal Kingdom
  • Entertainment

Stephen Hawking

  • Introduction
  • Born in the midst of ice and fire
  • Boyhood tales
  • The first choice
  • Oxford ahoy
  • Cosmology calling…
  • And so it began…
  • Roses in the air
  • Shuttling between the humdrum and the glorious
  • Black holes, here I come
  • The master of black holes
  • Honours galore
  • Of personal upheavals
  • The British Physicist with an American accent
  • Bestsellers anyone?
  • The parting of ways
  • Stephen – The superstar
  • Of books, kids and scientists
  • The impossible is possible
  • God, ETs and a certain Mr. Hawking
  • A Man of Many Faces

Ever tried blowing up a balloon? Breathing and puffing away to make it bigger…. remember how your cheeks ached with the effort? Now just imagine how it would feel to blow fifty balloons at one go? Or  hundred? Sounds crazy, right? Doesn’t seem worth the effort, you might say. So you can leave the matter aside, you have a choice. But what if you didn’t have an option? What if you were solely dependent on twitching your cheeks to have any kind of contact with the outside world? Suppose it took ages for you to communicate a single ‘hi’ to someone. What if you couldn’t talk, walk or even move on your own your entire life. Can’t do much with a life like that, right? Wrong!

Sky is the limit for someone who possesses an indomitable spirit. And these aren’t just empty words. Not convinced… well… let me then introduce you to one such man. A man who has defied all odds and survived; someone who is living a life so rich, so spectacular, so full of successes that it deserves a salute. This man has written books, appeared on television and also has a movie based on his life…But who is he? Any guesses? Ladies and gentleman, this person is none other than the world renowned physicist, Stephen Hawking.

Afflicted by Amyotrophic Lateral Sclerosis (ALS) since his youth, he has gradually lost control over all his limbs, so much so, that he can’t speak even a single word on his own. ALS cost him his voice, his ability to move, but thankfully neither his brains and nor his will. There have been countless scientists through the ages and their discoveries have indeed been astounding. But what sets Stephen Hawking apart from the rest is his ability to achieve all that he has, inspite of his disability. This physicist wanders all over the universe while his body stays immobile in his wheelchair. But does our knowledge stretch beyond the wheelchair and the universe? Who is he? Has the wheelchair always been a part of him? Is there more to him than the bestseller ‘A Brief History of Time’? Read on to discover more about the mysterious Stephen Hawking.

It was the winter of 1942. The sleepy city of Oxford lay covered in a cloak of security; World War II was underway but so far, Oxford and Cambridge, England’s centres of educational excellence had remained unscathed. On a cold January day, a very pregnant young woman could be seen strolling through the streets of Oxford. The young woman Isobel and her husband Frank Hawking had fled from their home in Highgate, London in search of a safe place for the birth of their first child and had fixed upon Oxford. Their son, Stephen, was born on January 8, 1942, exactly 300 years after the death of Galileo (an Italian physicist, mathematician, astronomer and philosopher). The timing couldn’t have been more auspicious; this much was clear, the stars had destined great things for the little baby.

Little Stephen was born into a family of thinkers. Both his parents came from humble backgrounds yet had gone on to study at Oxford. Isobel attended the famous university at a time when women were just beginning to pursue higher education. At Oxford, she studied Politics, Economics and Philosophy and after holding a slew of unsatisfactory posts, ended up as a secretary at a medical research institute. Meanwhile, Frank studied Medicine, specialising in tropical diseases and became a medical researcher at an institute in Hampstead. Here, the shy Frank fell in love with fellow Oxford student Isobel and the two were married. The Hawking family grew during the war, daughter Mary was born in 1943, a year after Stephen’s birth and Phillipa, five years later.

As a boy, Stephen was awkward and skinny with clothes that always bordered on messy. He did not shine in sports or handwriting nor did he learn to read properly until the age of 8. Frank’s work as a researcher took him annually to Africa where he would conduct first hand research on tropical diseases. Mary, Stephen’s sister, believed that fathers were “ like migratory birds. They were there for Christmas, and then they vanished until the weather got warm.” Their father became the head of the Division of Parasitology at the National Institute for Medical Research, and in 1950 the family moved to St. Albans, Hertfordshire.

Here, the Hawkings bought a sprawling three storey brick house which was badly in need of repairs. The house boasted of peeling wallpaper, broken glass panes and a cool clime, thanks to the absence of a central heater. But whatever else the house lacked, it never lacked books. Piled in stacks throughout the house, books were the Hawkings’ most loved possession. Callers to the house recounted that the Hawkings were inseparable from their books; dinner time at their home was a very silent affair, with every one of the Hawkings eating with their noses buried in books.

They soon earned the tag of being an eccentric family. Their car was a second hand taxi; they kept bees in their basement and made fireworks in their greenhouse. The father spoke with a noticeable stutter and the children talked so very fast that they seemed to stumble on their words. Friends named their particular dialect as ‘Hawkingese’ . Young Stephen also had an imaginary house in a place called Drane and he was forever trying to jump on buses to try and search for this fabled house.

At St. Albans, the 8 year old Stephen attended the High School for Girls which took boys up to the age of 10. One of the younger girls there was Jane Wilde; although they never met while in school, Jane would go on to play a major part in the boy’s life. At the age of 11, Stephen shifted to a free education at St. Albans school by scoring highly on his eleven plus examination. By this time, Stephen’s fascination with science and the sky had already begun. He would take apart clocks and radios to see how they worked, although he couldn’t always put them back together again. His mother, who along with her children often lay down in the backyard on summer evenings to look up at the stars, recounted, “ Stephen always had a strong sense of wonder…And I could see the stars would draw him.”

In school, he was recognised as clever but never especially brilliant. In one year, he was third from the bottom of his class. However, his classmates called him ‘Einstein’ , a prophecy of things to come. He used to delight in creating complex board games which would last for hours and sometimes days. His friend, Michael Church believed that Stephen ‘loved the fact that he had created the world and then created the laws that governed it.’ His friends were divided over his ability to become a genius and one of his friends Basil bet another of his friends John a packet of sweets that ‘ Stephen will turn out to be unusually capable.’

Meanwhile, Frank wanted to send his son to the esteemed Westminster School but private education was expensive and the Hawkings were not very rich. A scholarship was the only option available to Stephen; unfortunately, he fell ill around the time of the exam and had to continue at St. Albans school, where according to him, he received as good an education or better than I would have at Westminster. The illness was prolonged and he had to stay in bed for a long time. This ‘glandular fever’ was perhaps the first indication of the monstrous disease which would attack Stephen in his early adulthood. When he was 14, his parents adopted a son named Edward, who could never quite adjust with his elder siblings and his strange family, but Stephen opined that adopting Edward was ‘probably good for us. He was a rather difficult child, but one couldn’t help liking him.’

During his teenage years, Stephen graduated to building model boats and aeroplanes with his friend John McClenahan. They also explored mystic topics like extra sensory perception (ESP) but always with a scientific eye. In 1958, Stephen along with his friends, developed a basic computer called the Uniselector Computing Engine (LUCE) out of foraged parts from objects such as clocks and telephone switchboards, among others. In their last year of high school, they put together an improved version but even this could perform only the simplest mathematical functions. Unfortunately, LUCE was thrown away in the trash many years later by the school’s new, unsuspicious head of computing.

Time sped by on wings and soon Stephen was facing the decision of which college to attend and more importantly, which subjects to study. Much to his father’s disappointment, Stephen showed no inclination to follow in his medical footsteps. The youngster was decided that science was the field he wanted to study. However, a difficult choice loomed in front of him: which branch of science should he specialise in – Biology or Physics? He thought Biology to be too inexact, too descriptive while Physics was the most fundamental of all the sciences. Then again there was the class issue, Biology was supposed to be the territory of less capable students while Physics was earmarked for the intellectually elite. He was also interested in studying Mathematics, influenced by an inspiring teacher, Mr. Tahta from his school. Frank had his doubts about Stephen taking up a course in Mathematics as he felt that it would lead to a future of unemployment. Also, there was the question of which college he should attend. Frank was resolute that his son must attend his old college, the University College at Oxford University. Unfortunately, this college did not offer a major in Mathematics. Finally, Stephen worked out a compromise; he would study Physics and Chemistry at University College with some Mathematics on the side. Young Stephen was completely oblivious about the amount of trouble this arrangement would give him in the future.

The college was decided but the means to study there were lacking. Both of Stephen’s parents’ families could testify to the fact that an Oxford education did not come cheap; so it again came down to a scholarship, winning which, was crucial. Unfortunately, around this time, Frank was given a long-term exchange assignment to India for a year. The family left for India while Stephen stayed with family friends, the Humphreys and worked for his scholarship. His St. Albans’s headmaster believed that he should wait for another year as he was just 17 at the time. But Stephen was adamant; he would sit for the exams the same year. Determined, he gave the exams and scored quite well on all written work. He performed well in his interviews as well and in October 1959, at the young age of 17, Stephen headed for Oxford, scholarship in hand following in the path of both his proud parents

The young man from St. Albans arrived at Oxford at the beginning of the October term; at 17 he was far younger than the bulk of students in his year. This was owing to the fact that he had given his exams a year early and passed it and also because, most of his fellow students had completed the compulsory military service before joining; this draft had just been abolished and so Stephen was not required to undergo it. In those days, the culture at Oxford was not very conducive to knowledge. As Stephen recounts, “the prevailing attitude at Oxford at that time was very anti-work. You were supposed to be brilliant without effort, or accept your limitations and get a fourth-class degree. To work hard to get a better class of degree was regarded as the mark of a grey man – the worst epithet in the Oxford vocabulary.”

 Friendless and surrounded by an all pervading atmosphere of boredom, Stephen was lonely and miserable during the first of his three years at Oxford. Everything seemed to conspire to keep him locked in a bubble of loneliness.

Even the Physics program of his year contained only four students. Soon, Stephen became close friends with his Physics tutorial partner, Gordon Berry. But then something happened in his second year, which completely transformed his college existence. He and Gordon entered the ‘ The Boat Club’ , the rowing team of the college as coxswains (the person who sits at the front of the boat and issues orders to the rowers). The members of The Boat Club were popular and Stephen soon found himself part of the hip crowd. Things changed for young Stephen and his Oxford friends remember him as lively, buoyant and adaptable. He wore his hair long, was famous for his wit and liked classical music and science fiction. So much different from the lonely, sad 17 year old who had entered the university only a year back!

The social side of Stephen’s life had started to look up and the study side did not give him much trouble either. Stephen found his Physics program ridiculously easy. One could get through without going to any lectures, just by going to one or two tutorials a week. You did not need to remember many facts, just a few equations. But his classmates vehemently disagreed. Derek Powney, his Physics classmate remembered an incident: once the four of them had been given thirteen homework problems in an Electricity and Magnetism course; their tutor Robert Berman had encouraged them to do as many as they could. After the end of a week, his fellow classmates had not completed more than two problems each; Stephen himself had not even made a start on them. But the next day, he skipped his lectures and completed ten problems on his own by lunch. Powney acknowledged that at that time they realized that it was not just that they weren’t in the same street, but weren’t on the same planet. Their tutor Robert Berman remembered Stephen as the most brilliant student he ever had. He recounted how Stephen would not bother buying many of the text books and also that he never took notes. He reminisces that “ It was only necessary for him to know that something could be done, and he could do it without looking to see how other people did it…his mind was completely different from all of his contemporaries.”

Time passed on and soon Stephen was in his final year at Oxford, facing yet another major decision – the area of specialisation for his Ph.D. He would continue in Physics, that much was certain, but what area should he specialise in? Should he go for Cosmology, the study of the universe at its most majestic or particle Physics, which looked at the universe on an infinitesimal scale? Stephen decided on Cosmology as he felt that particle Physics seemed like Botany; there were all these particles, but no theory.

On the other hand, Cosmology was built on a well-defined theory. Yet again, he was set on the subject, but the matter of the university remained undecided. There were no cosmologists on staff at Oxford. On the other hand, Cambridge could boast of the brilliant Fred Hoyle, an internationally reputed scientist who had become a household name through a series of radio talks on scientific topics. However, for a course at Cambridge, Stephen would have to receive a ‘first’ on his final exams. Stephen who had sadly neglected his studies over the past three years was unsure whether he would be able to qualify. Nonetheless, he sat for the exams but believed that he had not performed too well.

As a contingency plan, the young graduate student had applied for a job with the Ministry of Works. Unfortunately, he overslept (as usual) on the day of the exams and ended up missing them. But perhaps this was just as well, for he had underestimated his performance in his college exams. Far from failing, he achieved a borderline grade between a first and a second. So far, so good but this grade wasn’t final; there was supposed to be an interview which would determine his final grade. At this fateful interview he was asked about his plans after graduation to which Stephen replied matter-of-factly: “If I get a first, I shall go to Cambridge. If I receive a second, I will remain at Oxford. So I expect that you will give me a first.” His tutor Berman noted that the examiners then were intelligent enough to realize they were talking to someone far more clever than most of themselves. So , Stephen got his first and decided to join Cambridge in the fall term.

Life was perfect for the young man from St. Albans or so it seemed to him; but lady luck had other plans. During his last year at Oxford, he observed that he seemed to be getting clumsier and he fell over once or twice for no apparent reason. Though he did not disclose this to his family, he couldn’t hide it from his friends. Towards the end of his last term, he fell down a flight of stairs and landed on his head. He reportedly lost consciousness for a short time and also suffered from temporary memory loss.

Anxious, he took a Mensa intelligence test which proved that he had not suffered mentally. A trip to the doctor drew a blank on any physical injury; and Stephen decided to forget all about it.

Full of high hopes, the young graduate began his term at Cambridge in the fall of 1962. Much to his disappointment, he was not able to study under the renowned Fred Hoyle who already had sufficient number of students under him. He was assigned to Dennis Sciama, another Physicist at Cambridge.

 In the end, it all turned out for the best. Sciama, unlike Hoyle, was a homebody and was always available for discussion and direction. He was also known for his warmth and had a habit of putting his students’ needs before his own. But, Stephen had a tough time initially, partly due to his lack of grounding in Mathematics compared to other students and partly because of the absence of some problem on which he could work. Sciama suggested that he work on Astrophysics but Stephen refused; he was resolute to work on Cosmology and General Relativity (Albert Einstein’s theory which deals with the bending/warping of space-time because of the presence of matter and energy). He read up on the topic on his own and routinely commuted to London to attend the famous cosmologist Herman Bondi’s lectures on General Relativity. One more thing compounded the problem; the cryptic symptoms which had begun in Oxford came knocking again.

On returning home for Christmas, Stephen could no longer hide his growing clumsiness from his family and friends. Once during an ice skating trip with his mother, he fell down on the ice and couldn’t get up again. His panicked mother took him to a local café and wormed the whole story out of him. On his parent’s insistence he visited their family doctor who couldn’t find anything wrong with him but made an appointment for him with a specialist after the holidays. In the meantime, Stephen made the most of his break, attending parties and enjoying life with his friends. He attended one such party hosted by his old friend Basil King ; also invited to this party was a shy girl called Jane Wilde . Jane listened avidly to the flamboyant graduate’s recital of Cambridge tales and at the end of the party the two exchanged names and addresses. She did not expect anything to come out of it and was vastly surprised when she received an invite for a party at the Hawkings house on January 8; Stephen’s birthday. Jane went to the party, nervous and flustered; she felt out of her depth at the celebration which comprised mostly of Stephen’s older graduate friends.

Why had Stephen invited her, a shy undergraduate to his birthday party? Jane did not know The New Year brought new worries for the Hawkings household. Soon after his birthday, Stephen had his appointment with the specialist and was admitted to St. Bartholomew’s Hospital, where his sister Mary was training to become a doctor. He spent two long agonizing weeks there, undergoing a battery of tests. In the end, the alarmed family was given the shocking news – Stephen was suffering from Amyotrophic Lateral Sclerosis (ALS). ALS – what is it? The ALS or Lou Gehrig’s disease is a baffling, incurable ailment which involves steady deterioration of the ability of the motor neurons to control the voluntary muscles of the body. Motor neurons are nerve cells in the brain, brain stem and spinal cord which function as the body’s control units and as important communication links.

Messages from motor neurons in the brain are transmitted to motor neurons in the spinal cord and from there they are transferred to the specific muscles. In ALS, the motor neuron cells wither or die and the communication between the neurons and the muscles comes to a dead end. Without any messages coming to them, the muscles cannot function and they slowly weaken and waste away. Eventually, the brain loses its ability to control voluntary movement. What Stephen had been suffering for over a year, the stumbling, the tripping, the slurring of the speech were all early symptoms of the onslaught of the disease.

The sufferers of this disease face a grim future. Arms and hands become weaker, making even simple tasks like turning a key or writing a chore extremely agonizing. Walking becomes progressively difficult and wheelchairs become a must. Speaking and swallowing also become painful and in the later stages even breathing becomes a fight. However, the involuntary muscles function as before and the heart, the sexual organs and the muscles involved in digestion and waste elimination remain untouched. Most importantly, the patients mind is unaffected. However, most of them die within two years; though some have been known to live for years, with younger and male patients living the longest.

The doctors painted a grim future to the stunned graduate and his family. Stephen was in shock and went into depression. “Why should this happen to me?” he would ask himself. “Why should I be cut off like this?” However, while he was lying in the hospital, listless and depressed, he watched a young boy die of leukaemia in a nearby bed. It made him realize that there were others whose fate was even harder than his. It also made him feel something akin to panic, there was such a lot to do, his life had been one of boredom and he suddenly realized that if he were reprieved, there were a lot of worthwhile things he could do. Several times he thought of giving himself away for others as he thought if he was going to die anyway, it might do some good. But a deep lethargy had him in his grip and he couldn’t find anything to interest him in life. His doctors encouraged him to continue with his studies but what was the point? ‘ If I am going to die anyway, what difference does it make if I study or not?’ he would think. Life had become a nightmare for the bright young man and what was more, it was soon about to end. Couldn’t anyone save him? Powerless and terrified, Stephen turned to his father, the expert in tropical diseases. Frank Hawking investigated every conceivable lead, every link, however obscure, but his search was in vain. Defeated, Stephen decided to return to Cambridge, studies and death.

Meanwhile, Jane had taken up a secretarial course in London where she used to commute every day. Near the end of Stephen’s stay in the hospital, she met a friend of hers, Diana King, who was now a nursing student. Diana told her about Stephen’s ailment; Jane was shocked to hear about the sad plight of the young man whom she had found so fascinating. The news affected her with a strange intensity; she became silent, hugging her grief to herself. Her altered behaviour was detected by her mother who told her to pray for Stephen as there was nothing else they could do for him.

One day, Jane met Stephen unexpectedly at the train station; she was commuting to London for her secretarial classes and Stephen was on the same train returning to Cambridge. Jane was surprised to find that not only did Stephen seem glad to see her but he was also in a relatively sunny mood. She did not have time to ponder about it as she was completely absorbed in him as he was in her.

London came too soon for the couple; there was so much still left to talk about. The two unwillingly parted ways but not before making plans for their first date – dinner at an upmarket Italian restaurant and tickets to the theatre. And so began a gradual courtship; the young couple would go out on dates, each followed by a period of absence. Every time that Jane met Stephen, she would silently despair at his continuously deteriorating condition, yet, at the same time realize how deeply she had come to care for this young man with the unruly golden brown hair. She knew she would most likely end up with a broken heart but she just couldn’t get him out of her mind.

She burned to help him out of his tragic fate; she tried researching on ALS but it proved fruitless. She would pray for him, worrying that his lack of faith would destroy them both. In the end, she grew philosophical; after all, there was no guarantee to anyone’s life. Disheartened, she prepared for her first term at Westfield College, London, where she planned to study Spanish and French. Their dating continued and they would meet in London sometimes when Stephen came for the general relativity seminars; Jane would also visit Cambridge on several weekends. Stephen refused to discuss his disease with Jane and understandably he never thought about their relationship in the long-term. With her relationship on rocky grounds, Jane left for a term in Spain in April 1963. While there, she frequently wrote to Stephen but he never answered her letters.

The summer of 1963 found Jane holidaying in Europe with her parents while Stephen was attending the celebrated Wagner festival in Germany with his younger sister Philippa . Absence makes the heart grow fonder and the young couple was no exception…their relationship blossomed swiftly once they both returned to St. Albans at the end of the summer. So much so, that in October, Stephen proposed to Jane who gladly accepted and cheerfully gave up her career plans for the sake of their future together. As was customary in those times, Stephen formally asked George Wilde, Jane’s father, for his daughter’s hand in marriage; George consented but put in the condition that Stephen would not make unreasonable demands on his daughter. Frank Hawking, in turn, warned Jane that Stephen had not long to live; but Jane was resolved to marry Stephen and was willing to accept the responsibility of handling the household duties and taking care of Stephen single-handedly. In return, all she wanted from her future husband was that he should love her. Stephen was blissfully happy and often acknowledged that the engagement “changed my life. It gave me something to live for.”

So far, so good; the young couple had managed to allay their parent’s fears but there were still two major obstacles to be overcome before they could get married. One, Westfield, the college where Jane was studying, did not generally allow its undergraduates to get married. But a special concession was made for her as there was a possibility that Stephen might not live till after her graduation. Second, Stephen needed to find a job to support them. That meant deciding on a research topic, completing his research and applying for a job. So, for the first time in his life, Stephen would have to actually work hard at his studies. To his surprise, he found that he quite liked it.

Where there is a will, there is a way; with life beckoning him forward, Stephen soon found his elusive research topic quite unexpectedly. In January 1965, he learned about a theory proposed by Robert Penrose, a Physicist, on dying stars. As per Penrose’s research, when a massive star dies, it collapses into a black hole. (Black holes are objects with such strong gravity fields that not even light can escape from them). Stephen had always thought differently than those around him. Now he set to thinking ‘What if he reversed this theory? What if at the beginning of the universe, space, time and the entire mass was concentrated into a single point or a singularity? Suppose it exploded and gradually expanded into the universe that we know today?’ The young Physicist went to work and using Penrose’s techniques he developed several models of the universe. For once, he remembered the practical side of life as well and applied for a research fellowship at Gonville and Caius College (part of Cambridge) in February 1965. Hermann Bondi and Fred Hoyle provided the necessary references and Stephen began his duties as a research fellow in October 1965. Stephen and Jane were wed in a civil ceremony on July 14, 1965, followed by a religious service at the chapel of Trinity Hall, Cambridge. After a brief inexpensive honeymoon in Suffolk, the young couple began their married life.

The couple rented a small house near Stephen’s office so that he could walk to office on his own. During the weekdays, Stephen stayed alone in their house while his student wife boarded at her rented room at Westfield. Jane would return home for the weekends and would get right to work, putting things in order and typing out Stephen’s thesis. Meanwhile, Stephen had started feeling the lack of his mathematical education sorely; he put his brains to work and soon came up with a novel way to improve his mathematical knowledge while earning some money at the same time. He began supervising an undergraduate math course for the college, teaching himself what he lacked on the way!

In the meantime, Jane completed her graduation and decided that if she was to be of any help to her husband she needed to first find some identity and purpose to her own life. With this in mind, she decided to pursue a Ph.D. Knowing her husband’s condition, she selected a topic which could be easily researched through secondary sources. This was just as well, for in the autumn of 1966, she found that she was pregnant. Stephen’s condition was also worsening steadily; his fingers had started to curl, making writing a difficult task. At his father’s urging, he started taking vitamin B injections once every week. His old mentor, Dennis Sciama convinced the Institute of Physics to fund physical therapy twice in a week at the Hawking home in order to control the steady debilitation of Stephen’s health. Between caring for Stephen and the imminent arrival of their child, Jane found little time to work on her thesis. On May 28, 1967, the Hawkings welcomed their first child, Robert George Hawking, into the world.

The baby brought good fortune along with it; Stephen’s research fellowship was renewed for another two years and his reputation as a Physicist also grew steadily. Stephen began working on the Big Bang (a theory dealing with the creation of the universe as a result of huge explosion some 14 billion years ago) with his colleagues and realized that it could be proved that the entire universe had emerged from a singularity.

The young Physicist was completely absorbed in his work and later recalled that it was a “glorious feeling having a whole field virtually to ourselves.” He, along with the famous mathematical physicist Roger Penrose, wrote an essay on the beginning of time which was awarded second place in Gravity Research Foundation Award, 1968. But trouble managed to keep up with the family. In 1969, Stephen’s research fellowship which had already been renewed once was about to be terminated. With his incoherent speech and his physical condition, he could not hope to get a teaching job anywhere. A rumour started doing the rounds that King’s College was about to offer Stephen a Senior Research Fellowship. This worked as a blessing in disguise for Stephen as Gonville and Caius, not wanting to let go of its rising star, hurriedly offered him a special Fellowship for Distinction in Science with a six year contract

On the home front, in early 1970, Jane found herself pregnant once again. Her thesis work took a backseat yet again as family matters took centre stage. On November 2, 1970, the second Hawking child, Lucy was born. Jane was a harried young housewife now; to care for a toddler, a new-born and a disabled husband single-handedly was not an easy task. Stephen’s condition needed more assistance day by day.

He could still climb up the stairs by pulling himself up using the banisters but his gait had become so unstable that he was soon relegated to a wheelchair. Dressing in the morning and undressing at night had become major tasks but he still insisted on doing them himself.

Stephen’s fascination with black holes led him in deeper and deeper into discovering their mysteries. He revolutionised the thinking about black holes and came up with what was called by some as the ‘black holes have no hair’ principle. Simply said, it meant that whatever the initial material which went into making a black hole, once created, it could be described entirely by only three properties – its mass, overall electric charge and rotation . So, technically speaking, a black hole created out of an elephant, a young girl and a bar of soap would appear identical – there would be no way of distinguishing the original material. On the basis of his research, Stephen wrote a paper on black holes for the annual Gravity Research Foundation Award in January 1971 and was awarded the top prize.                      

The pleased Physicist used the prize money to buy a new car.However, not everything was as rosy as his life at work. The Hawkings struggled against the physical and emotional barriers in the British society against the disabled. The high curbs, the endless stairs, the lack of wheelchair accessible places, all schemed against letting the family live a normal life. Jane and Stephen actively fought for the rights of the disabled and they also won victories, for example, the university gradually made the campus more wheelchair-friendly and the Arts Theatre and Cinema added seating areas for wheelchairs.

Jane later noted that by a curious coincidence, the attitude of the City Council towards access for the disabled mellowed rapidly as Stephen’s fame grew. The Hawking children were growing up as well. Robert had started school and although he shined in Mathematics, he had problems with reading, just like his father. Jane suspected that her child was dyslexic and that he should be enrolled into a private school where he would receive education better suited to his needs. But where was the money going to come from? The Hawkings certainly could not afford a private school education on Stephen’s college salary. Luckily, Stephen’s father stepped in with a family inheritance and Jane and Stephen used this money to buy another house which they let out on rent.

Stephen’s research was also moving in a new direction, that of quantum gravity – the uncomfortable, elusive coupling of General Relativity with Quantum Mechanics (the study of matter at the atomic or minute scale). Scientists world over were puzzled over the unresolved quantum gravity theory, thought to be ‘the theory of everything’. In the meantime, a trip to Russia along with Jane and friend Kip Thorne and a meeting with famous Russian theorist Yakov Zeldovich led Stephen to ponder on the question, “Do black holes radiate?” Stephen’s mind had found a new toy to play with but while his mind was busy roaming the unexplored realms of the universe, his body was deteriorating day by day. Many people now were unable to understand his increasingly slurred speech. Slowly, he was becoming dependent on others for every small physical activity. Even the stairs which he earlier used to manage on his own, had now become an impossibly tough task.

Undaunted, Stephen pressed on with his research. He had earlier rebuffed claims of Jacob Bekenstein , a graduate student at Princeton University regarding black hole radiation. Now he found that this was indeed the case. What was more, he found that the rate of radiation was inversely proportional to the mass of the black hole, which meant, that smaller the black hole, the faster will it radiate away. As the black hole got smaller and smaller, a time would come when it would burst into a shower of gamma rays releasing energy equivalent to a million megaton thermonuclear weapon! This discovery put Stephen on the international research map. What was even more astonishing was the fact that most of his ground-breaking calculations were done in his head. Kip Thorne explained, “because the loss of control over his hands was so gradual, Hawking has had plenty of time to adapt. He has gradually trained his mind to think in a manner different from the minds of other Physicists. He thinks in new types of intuitive mental pictures and mental equations that, for him, have replaced paper-and-pen drawings and written equations.” Stephen himself put it more modestly; he believed that, most people have the mistaken impression that Mathematics is just equation. In fact, equations are just the boring part of Mathematics. And he attempts to see things in terms of geometry.

The year 1974 proved to be an auspicious one for the Hawkings. In May 1974, shortly after his work on black hole radiation, Stephen was inducted to the prestigious Royal Society (a very old learned society for science based in London which acts as scientific advisor to the British government). He was one of the youngest members in its history. It was a tradition that new inductees walk to the podium and sign their name in the official roll book; however, Stephen’s physical condition made it extremely difficult for him to perform either of these tasks. The President, Sir Alan Hodgkin, a Noble laureate in Biology, himself brought the book to Stephen who signed it with great difficulty. In the spring, the young Physicist also received an invitation from California Institute of Technology (Caltech) offering him the ‘Sherman Fairchild Distinguished Scholar’ visiting professorship for the academic year 1974-75. The position proved to be a godsend as it not only included a healthy salary but also an electric wheelchair for Stephen, facility for all other medical needs as well as appropriate schooling for the children. Everything was taken care of except for Stephen’s general care. Jane was finding it increasingly difficult to care single handed for a severely disabled husband and their children. No one was offering to help them and they couldn’t afford paid help. Also, she knew that she could not ask for help from others as that would force Stephen to let his guard down and allow others to see the gravity of his condition and his courage might fail him.

Jane hit on an ingenious way out; if one or more of Stephen’s graduate students moved in with them, her load would lessen and Stephen would always be in the care of someone he trusted. This was decided and the Hawkings set off for sunny Caltech with Bernard Carr in tow. Stephen’s fascination with black holes led him to what was to become the driving force of his entire career – the unification of general theory of relativity with the theory of Quantum Mechanics, something that had eluded even the great Albert Einstein. Stephen’s goal was a complete understanding of the universe, why it is as it is and why it exists at all. The warm and sunny Caltech offered the perfect foil for this work and it was here that Stephen proposed another of his controversial ideas – the black hole paradox. We know that black holes have no hair and after its creation a black hole can be defined only by its mass, electric charge and rotation. Information about the material which formed the black hole must be securely locked away inside the black hole, though it would be inaccessible to an outside observer. But what if a black hole radiated and eventually exploded?

Stephen showed that the information contained in the black hole would die with it and as such it would be forever lost to the universe. This was in direct contradiction to the predictions of Quantum Mechanics. This work created a lot of uproar in the scientific community. There were many who believed that it was our incomplete understanding of nature which made it seem that there was a paradox, but Stephen was adamant and maintained that there was an inherent flaw in Quantum Mechanics. However, not all time in Caltech was spent in disagreements and differences. While there, Stephen and Kip entered into a friendly gamble which went on to become legendary. The bet was made on Stephen’s favourite creatures – the black holes. Countless scientists had been theorizing on black holes but so far there had been no observational evidence to support the existence of these dark monsters. In 1971, sighting of one Cygnus X-1 supported the probability of it being a black hole. By the mid-1970s, there were many who were willing to bet that Cygnus X-1 was indeed a black hole. Stephen and Kip went one further and actually made a written bet which was printed and signed by both parties on December 10, 1974, and kept at Kip’s office at Caltech. The wager read:

“Whereas Stephen Hawking has such a large investment in General Relativity and Black Holes and desires an insurance policy, and whereas Kip Thorne likes to live dangerously without an insurance policy,

Therefore be it resolved that Stephen Hawking bets 1 year’s subscription to ‘Penthouse’ as against Kip Thorne’s wager of a 4 year subscription to ‘Private Eye’ that Cygnus X.1 does not contain a black hole of mass above the Chandrashekhar limit.”

Stephen bet against Cygnus X.1 because if it did prove to be a black hole, he would have the satisfaction of knowing that his work had not been in vain and if it wasn’t, he would at least get the magazine subscription.

Stephen’s popularity continued to soar and he received several awards while at Caltech. One of these was the Pius XI Gold Medal for Science from Pope Paul VI which was awarded to young scientists who had done notable work. It was ironical that in 1663 Galileo was condemned by the Church as ‘vehemently suspected of heresy’ when he had supported the findings of Copernicus who believed that the earth was not the centre of the universe. Surprisingly, now, a scientist born exactly 300 years after Galileo’s death was being awarded by the Vatican for work which would prove to be every bit as revolutionary. The irony was not lost on the young physicist but he used this opportunity to make a special plea for the rehabilitation of Galileo’s memory . Stephen’s appeal did not go in vain, though it took some time. Four years later, Pope John Paul II announced the Vatican’s decision to reopen the case of Galileo. Meanwhile, California’s sunny atmosphere had brushed off on Jane as well; she joined a chorus and found the experience to be an intoxicating compulsion to my generally banal existence.

At the end of the year, the Hawkings returned to Cambridge. Stephen had grown accustomed to the fast electric wheelchair which he had used in Caltech and he found it to be an extremely liberating experience. Back in Cambridge, as was within his rights, he applied for the same to the Department of Health. The department refused his request and asked him to apply for the three wheel electric chair which he had used earlier. However, Stephen’s physical condition had worsened since then and he was not strong enough to operate such a device now. Helpless, the Hawkings had to dive into their personal savings and purchase the much needed electric wheelchair on their own.

However, to compensate, other rewarding things took place. There had been rumours that Stephen planned to permanently settle in California now that his six year fellowship contract with Cambridge had come to an end. Just as before, the university hastened to offer him a job, this time his first official post, that of a readership (an academic rank above senior lecturer awarded for a distinguished record in original research). At home, Jane had resumed work on her long neglected thesis. She also managed to squeeze in time to attend voice lessons once in a week. Spring 1976 saw both children down with chicken pox and the parents bogged down by severe sore throats and fever. Stephen’s condition worsened but he resisted seeing a doctor. However, as a birthday present to his wife, he hesitantly allowed a visit by the family doctor. The doctor came and Stephen was speedily whisked off to the hospital. Although he returned back in a few days, he was very weak and was constantly plagued by choking fits. Jane fell into depression; she could see no way how the family could continue to care for Stephen without any outside help.

 Somehow, she willed herself to go on.

During this time, Don Page, a graduate student who had worked with Stephen at Caltech, shifted to Cambridge and moved in with the Hawkings. Though Don and Stephen were compatible in Physics they were poles apart in everything else. While Stephen was a die-hard atheist, Don was a devout Christian. When he first moved in with the Hawkings, Don tried to change Stephen’s thoughts about religion but he quickly gave it up as a lost cause. However, having Don at home proved to be a blessing for Jane. It left her free to stay at home while Don accompanied Stephen on his work related trips. During the summer of 1977, Stephen went back to Caltech for several weeks and continued his work on quantum gravity. When he returned home, he was promoted to a special chair in gravitational Physics. He was now a professor and was given a salary raise in consequence. Jane joined the local St. Mark’s church choir which was directed by one Jonathan Hellyer Jones. Jonathan who had lost his wife 18 months earlier to leukaemia soon became good friends with Jane and began visiting the Hawking home. He taught Lucy to play the piano and also volunteered to help Jane with Stephen’s needs. Jane was happy; she had found a much needed friend and also another pair of willing hands to help with Stephen.

Accolades continued to pour on Stephen and with the awards came increased public recognition and scrutiny. The media was as interested in Stephen Hawking - the man with the ALS as in Stephen Hawking - the Physicist. In September, Jane was pregnant once again; she was determined to complete her thesis before the baby’s arrival the following spring. Having Jonathan to help her made this at least a remote possibility. In April 1976, on Easter Sunday, the Hawkings welcomed their third child into the world, Timothy. The joy of the baby was followed by more good news. Stephen was appointed to the esteemed Lucasian Chair in Mathematics at Cambridge, recognised as being one of the most honoured academic posts in the world. This chair of which Stephen was the 17 th holder was once held by none other than Sir Isaac Newton. The chair came with a strange but rather fitting decree – the holder must not be active in the church!

1980 arrived on a gloomy note when Stephen went down with a stubborn cold which quickly turned serious. Jane was not well either, caring for her new-born baby and her ill husband were taking a toll on her health. On the advice of their family doctor, Stephen was taken away to a nursing home so that both Stephen and Jane could have some time to rest and recuperate. While his health was recovering, the then Plumian Professor of Astronomy, Martin Rees, had a meeting with Jane regarding Stephen’s worrying condition. He offered to find funding to provide some nursing care for him. At first, Stephen was annoyed at this increasing lack of privacy but later he came to realize that it would actually make him independent of his family and they would also get some rest. Though Jane tried her hardest to keep things as normal as possible for her children, they were always painfully aware that their family was different from other families. Their father was a permanent fixture in his wheelchair since their childhood and he could never perform activities that a normal father could, like playing with them or indulging in a bout of rough and tumble. It was considered a special treat, if their father could be persuaded to wiggle one of his ears. Also, they had to contend with rude stares of passer-by’s and Lucy would counter by staring back at them to see how they liked it.

On April 29, 1980, Stephen took his seat as Lucasian Professor of Mathematics. As was the tradition there, he made an inaugural speech which was read by one of his students “Is the end in sight for Theoretical Physics?”, wherein he stated that he expected a complete unification between Quantum Mechanics and General Relativity by the end of the twentieth century. More than a year after he had taken office, it was realized that he hadn’t signed a ‘big book’ which every university teaching officer was meant to sign. The book was brought to Stephen’s office and he signed it laboriously. He reminisces, “That was the last time I signed my name.” Meanwhile, Jane officially graduated in April 1981 and took up a part time job at Cambridge Centre where she readied students for their university entrance exams. Finally, she had found an activity which utilized her skills and also let her find time for her husband and children.

In 1981, Stephen received the Benjamin Franklin Medal in Physics in Philadelphia; previous awardees included Albert Einstein and Edwin Hubble. In his speech, he talked about the pileup of nuclear weapons in the US and USSR and of the dangers they posed to human life. In February 1982, Stephen became a Commander of the British Empire. The ceremony was held at Buckingham palace with Queen Elizabeth doing the honours while Stephen’s son Robert acted as his father’s assistant.

In the spring of 1982, the Physicist gave a few lectures at Harvard on gravitational collapse, the implosion or internal collapse of a star or any other celestial body as a result of its own gravity. It set him to thinking, why couldn’t he write a popular level book on his research? He was confident that “nearly everyone was interested in how the universe operates but most people cannot follow mathematical equations. I don’t care much for equations myself. This is partly because it is difficult for me to write them down.” However, there was a practical reason behind this decision as well. Their daughter Lucy was now 11 years old and she, like her brother Robert before her was sure to benefit from attending a private school. But private schools were expensive; the prospective book might just provide the much needed money. To this end, Stephen began working on the manuscript and concluded the first draft in 1984. Then started the quest for a suitable publisher. All his previous books had been published by the elite Cambridge University Press. But this was not going to be a heavy academic tome; it was to be lighter, more suited for the general public. Stephen wanted a publisher who had experience in marketing popular level works and after much searching, he finally decided on Bantam books.

Around this time, Stephen found his personal life suddenly turned upside down. Jane confided to him that her relationship with Jonathan had moved on from friendship to love. But she had no plans of disrupting their family life. She later wrote about this period: “Stephen said he would not object so long as I continued to love him. I could not fail to love him when he showed such understanding…At the time I felt very guilty but [Jonathan] was a godsend. We were rarely alone together and tried to maintain our code of conduct in front of Stephen and the children, suppressing displays of close affection…Jonathan and I had struggled with our own consciences and had decided that the greater good – the survival of the family unit, Stephen’s right to live at home within that family unit and the welfare of the children – outweighed the importance of our relationship.”

Everyone involved were so discreet that few outsiders came to know about this arrangement. That summer the whole family travelled to Europe. Stephen, his secretary Laura Gentry and several students and nurses were heading to the Conseil European pour la Recherché Nucleaire (CERN) at Geneva while the rest of the family holidayed at Lake Geneva. Robert was the exception; he was on his way to Iceland for a Venture Scouts expedition. Jane, Jonathan and the two younger children would be camping their way across Belgium and Germany and meeting up with Stephen’s team at Bayreuth, Germany. On her way, Jane called up Stephen to check on him and was horrified to hear from Laura that her husband was seriously ill and was in the hospital on life support.

The family rushed to the hospital to find that the persistent cough which had started when Stephen was on a trip to China had developed into pneumonia. The doctor had put him into a drug induced coma and he was breathing through a respirator. Jane was beside herself with worry, misery and guilt. “How could I have ever let Stephen go off alone with his entourage, deprived of my intimate knowledge of his condition, his needs, medicines, dislikes, allergies and fears?” The doctor, unaware of Stephen’s zest for life asked Jane if she wanted him to be disconnected from life support and allowed to die. Jane was horrified and was adamant that no such thing should be done. The doctor then discussed the alternative. Stephen would have to undergo a tracheotomy; this would mean a permanent hole being cut in his trachea below his vocal chords. On the plus side, his coughing spells would end but the operation would take away whatever muddled speech he had left to him. Also, he would require constant nursing for the rest of his life.

When Stephen’s health stabilised, the university paid for an air ambulance to fly him back to Cambridge. Once there, the ailing physicist was admitted to Addenbrookes Hospital where several unsuccessful attempts were made to wean him off the respirator, but in the end the tracheotomy had to be performed. During these times, Stephen used to have vivid dreams of flying away in a hot air balloon which seemed a hopeful sign to him. The operation was a success and Stephen’s health started improving. But there was a big price to pay…how would Stephen communicate with anyone when he couldn’t speak or write? At first, he would spell out words slowly and painfully one word at a time by raising his eyebrows when someone pointed out the correct letter on an alphabet card. But this was not easy and he later recalled that it was “pretty difficult to carry on a conversation like that, let alone write a scientific paper.”

Fortunately, science came to the rescue. Walt Woltosz, a computer expert from California had developed a program for his disabled mother-in-law which selected words from a dictionary menu and had a built-in speech synthesizer. Walt sent this program to Stephen; a few tweakings later it was ready for Stephen. This was a giant leap for the physicist as for the first time in years he could write and speak, albeit in a robotic, emotionless voice and with an American accent. But this was not the end of their troubles, a mammoth problem still persisted. All day round nursing would be a huge expense and the Hawkings really couldn’t afford it.

However, help was on its way; friend Kip Thorne suggested that they contact the famed John D. and Catherine T. MacArthur Foundation, which was one of the largest charitable organisations in the United States. One of the committee members was the well-known particle physicist, Murray Gell-Mann. The foundation granted the Hawkings request but on a trial basis, providing just enough funds to cover the continuous nursing care. The family now had the money and Jane and Laura set about putting together a team of nurses to cover three shifts per day. The work was demanding and many nurses came and went. Finally, a team of long-term nurses emerged; one among them was Elaine Mason. It was her husband, David, a computer engineer who dexterously mounted Stephen’s computer, screen and speech synthesizer on to his wheelchair.

By Christmas, Stephen was able to return to his work. Much to his joy, he found that now he could communicate with his colleagues and students much more effectively than before. Public appearances which earlier meant sitting passively while one of his students read his prepared talk suddenly became much more fun. Stephen realized that he could become a successful public speaker, addressing large audiences. As he said, “ I enjoy explaining science and answering questions.” Admittedly, it was an arduous task to compose sentences one selected word at a time but Stephen adapted to it and did not fell into the habit of leaving out even small words such as ‘the’ . His daughter Lucy described him as “incredibly tenacious; a very stubborn person…He’s defied the disease. He’s defied perceptions of a disabled man. I think what he’s done is amazing.” But then tragedy struck yet again. Stephen’s father, who had been ill for several months, passed away in March 1986. Stephen was devastated by the death of his father. His mother described him as “very upset by the death of his father – it was rather a dreadful thing….He was very fond of his father, but they had grown apart rather and hadn’t seen a great deal of each other in the late years.”

Gradually, Stephen started travelling again. His first trip was to Sweden for a conference. There, Gell-Mann personally saw how the money was being used not only to support the Physicist’s home life but also his important scientific work. Later, the foundation agreed to fund Stephen’s expenses on an on-going basis. Back at work, Stephen returned to many incomplete projects which he had left, chief among them being the direction of the arrows of time. He had lightly brushed upon this topic during his Cambridge thesis days but had given it up declaring that he needed something more definite and less airy fairy for his thesis topic. The question was: “Why do the three arrows of time, psychological, thermodynamic and cosmological, point in the same direction and will this always be true?” The psychological arrow of time is the way we humans experience time, the way we continuously grow older, and the way we remember the past and have no idea about our future. The thermodynamic arrow of time refers to the fact that things grow more disordered with time. For example, the way houses need repair and the way a room gets progressively messier if it is not cleaned for a few days. The cosmological arrow of time refers to the growth of the universe from the Big Bang.

Stephen believed that when the universe’s expansion period would come to an end and it would start contracting, the thermodynamic and psychological arrows of time would also change directions. Things would become more ordered instead of messier, people would grow younger instead of aging; we would remember our future but have no clue about our past. Many scientists were sceptical about these results. Don Page and Raymond LaFlamme, a student of Stephen, got completely opposite results from their mentor. It took a month of discussions and calculations to convince him that they were right. He was convinced in the end and later said that this was his “greatest mistake or at least my greatest mistake in science. I once thought there ought to be a journal of recantations, in which scientists could admit their mistakes. But it might not have many contributors.”

Another important incomplete project was the popular book on the universe that Stephen had begun writing. The editor of Bantam Publications, Peter Guzzardi, had given Stephen pages upon pages of suggestions and appraisals. Though irritated by the sheer magnitude of the changes which were to be made, Stephen later acknowledged that ‘it is a better book as a result of his keeping my nose to the grindstone.’ The second draft was finalised in the spring of 1987. Next year spring, Stephen and Jane flew to Jerusalem where he was awarded the Wolf Prize in Physics, recognised as being second only to the Noble Prize in Physics. Stephen took this opportunity to speak again about world peace. “The progress of science has shown us that we are a very small part of the vast universe, which is governed by rational laws. It is to be hoped that we can also govern our affairs by rational laws, but the same scientific progress threatens to destroy us as all…Let us do all we can to promote peace and so ensure that we will survive till the next century and beyond.”

During this trip, a reporter asked Stephen about his thoughts on religion. Stephen quipped that he “did not believe in God and there was no room for God in his universe.” Jane was infuriated with Stephen’s strong refutation about everything that she believed in. It was her faith that had made it possible for her to stand rock like and serene, whatever the privations, in their years together. Stephen’s atheism drew yet another nail into the coffin of their marriage. In the meantime, the book, A Brief History of Time , was launched in London on June 16, 1988, and soon became an international success. It was on the best seller list for countless weeks and its stay of over four years on the London Sunday Times bestseller list landed the book in the Guinness Book of Records.

It’s ironical that though the book quickly found its way to the best seller list, not many people ever read it. Stephen himself acknowledged that the book was not an easy read. He noted that imaginary time was “the thing in the book with which people have the most trouble. However, it is not really necessary to understand exactly what imaginary time is – just that it is different from what we call real time.”

How did the book become such a success then? Did people buy it because they were interested in science or purely because of their interest in the author? The professor admitted that some of the sales were due to people’s curiosity about himself but he maintained that he had written it “as a history of the universe, not of me.” But those who read the book to the end, found something well worth their pains. There was a much quoted passage towards the end which said that if and when the true unified theory in Physics is found, “we shall all, philosophers, scientists, and just ordinary people, be able to take part in the discussion of the question of why it is that we and the universe exist. If we find the answer to that, it would be the ultimate triumph of human reason – for then we would know the mind of God.”

On the domestic front, Jane decided that they now had enough money to buy a second house. Stephen wanted to buy a property in Cambridge but Jane dreamed of buying an old farmhouse in France and renovating it. She along with Timothy, travelled to France where she fell in love with an old mill house which she named ‘The Moulin’. Unknown to Jane, this house would soon become her haven in the midst of the personal storm that was about to break loose around them. With the international success of his book, Stephen Hawking had become a household name. Wherever he went, people treated him like a celebrity. Jane observed that so much attention was gratifying and disturbing at one and the same time. Fame came with its own set of problems one of which was the constant influx of would-be physicists to the family home to have a word with Stephen. One caller even proposed marriage to Lucy on the condition that her father read his thesis.

Stephen was named one of the ‘Twenty-Five Most Intriguing People’ of 1988 by People magazine. Accolades came from official quarters as well. He was given an honorary doctorate in science by the University of Cambridge in 1989. Also, Queen Elizabeth named him a Companion of Honour, a title ranking above even a knighthood. Fame did not seem to bother Stephen and he shrugged of comparisons between himself and Albert Einstein but Jane was distraught by the constant media attention and exclaimed, “Nowadays I was there to appease the media desire for comforting personal detail (about Stephen’s life) by performing like a well-behaved circus animal.” She would actively fight back against the fabrications put forth by the media. She worried that the other disabled families would be negatively perceived and censored that they did not live up to the heroism of the Hawkings.

But the façade of a perfect life was soon to be rudely shattered. Stephen had fallen in love with one of his nurses, Elaine Mason.

Jane, for her part, was ready to accept this relationship in the same way that Stephen had accepted her relationship with Jonathan with the proviso that they remain discreet, it does not affect their family and children and that it does not negate her relationship with Stephen. However, this was not to be; in October 1989, the Physicist presented Jane with a letter of intent proclaiming his intention to leave her and move in with Elaine. The press did not get to know about the separation until the summer of 1989 and then all hell broke loose. Jane described the reporters ‘clustering around the gates, like a pack of baying hounds…We were being hunted.’ Rumours abounded about infidelity and religious differences. But why such shock and disapproval if the Hawkings had separated? After all, such things were common and the divorce rates among the disabled were even higher than among the general population. Then why the outrage? The problem was that the Hawkings had attained a legendary status and people everywhere thought them to be above the frailties of mere mortals.

One unfinished business from the past still remained to be settled. It had been over 15 years since Stephen’s bet with Kip Thorne regarding whether Cygnus X.1 was a black hole or not. Odds against his winning were rising as new evidences kept coming in. In June 1990, while Kip was away in Moscow, Stephen broke into his office along with his staff, found the framed bet, and wrote a concessionary note on it with validation by Stephen’s thumbprint. Stephen said, “…there is now so much other observational evidence in favour of black holes that I have conceded the bet. I paid the specified penalty, which was a one year subscription to Penthouse, to the outrage of Kip’s liberated wife.” In 1991, friend Kip Thorne and his graduate students were researching on the existence of wormholes. These are tunnels that connect two different regions of space-time in one universe or two universes to each other. If such things as wormholes existed, it would allow humans to travel in space as well as in time. After much research, Kip concluded that creation of a wormhole machine was not possible currently but there were still hopes that a more advanced society might just succeed in creating such a time machine.

However, Stephen flatly disagreed with Thorne who clarified that “There is little politeness in our community when one of us believes the other is wrong.” The professor created the chronology protection conjecture which said that the laws of nature prevent the appearances of closed time like curves. With his wry sense of humour he stated that “there seems to be a chronology protection agency which protects the appearance of closed time like curves and so makes the universe safe for historians”. He added, “the best evidence we have that time travel is not possible, and never will be is that we have not been invaded by hordes of tourists from the future.” For Kip’s 60 th birthday, Stephen calculated the probability of a working wormhole time machine and arrived with a probability of 1 part in 10 60.8.

The name Stephen Hawking had attained an iconic status, one proof of which was the movie version of ‘A Brief History of Time’ which premiered on August 14, 1992.

When it started out, Stephen made it clear that the movie should be more like the book and must focus on science and not the scientist. But the movie eventually turned out to be part biography. Although some criticized the blatant omission of Stephen’s separation from Jane in the movie, it was overall highly acclaimed. Stephen himself did not seem to mind the fact that it had turned out to be quite biographical and even thanked the director Morris for turning his mother into a movie star. But this was just Stephen’s first step into the realm of entertainment. Soon, he appeared as a holographic version of himself in one of the episodes of ‘Star Trek: The Next Generation’ where he played poker with holographic versions of Albert Einstein and Isaac Newton.

His computerised voice (with credit) also appeared in the song ‘Keep Talking’ by Pink Floyd. In 1993, the Physicist’s second popular level book titled ‘Black Holes and Baby Universes and Other Essays’ was released which was considered by far to be a much easier read than ‘A Brief History of Time.’

Stephen and Jane were finally divorced in the spring of 1995 and Jane set off to Seattle to spend some time with her eldest child Robert who was working there with Microsoft. Meanwhile, the press was digging its nose into Stephen’s private life yet again and were questioning Elaine’s motive for marrying Stephen. Some said it was motivated by the fortune that the Physicist had amassed through royalties from A Brief History of Time. Indifferent to the media, Stephen went ahead and married Elaine in a private civil ceremony on September 16, 1995. It was at this time that Jane who had been pondering on writing a book about her life, set to work on her autobiography.

In November 1996, ‘The Illustrated A Brief History of Time’ was released; the text was livened by coloured illustrations and photographs and apart from some revisions, it also contained an added chapter on wormholes and time travel. In March 1997, daughter Lucy made a surprising announcement; her family was informed that she and her boyfriend Alex Mackenzie Smith, a member of the United Nations Peace Corps in Bosnia were expecting a child and that they would be living together in London. On July 4, 1997, Jane and Jonathan were married. Some months later, Lucy gave birth to her parent’s first grandchild, William. In the meantime, Stephen’s television debut on Star Trek paved the way for other roles. He appeared in a 1999 episode of The Simpsons ‘They Save Lisa’s Brain’. He also appeared in the comic strip Dilbert as well as in Futurama, an animated science fiction sitcom. In early 1999, he went through an operation of his larynx to ensure that food would not fall down the wrong pipe and into his lungs.

In August 1999, Jane’s autobiography ‘Music to Move the Stars – A Life with Stephen Hawking’ was released. The book created a lot of uproar and the media went wild perceiving it to be a ‘tell all’ about the life of the world’s most famous scientist. Stephen himself remained silent as he claimed that he did not read biographies of himself. The wild public interest in Jane’s autobiography shows just how much the word Stephen Hawking had become ingrained in public consciousness. Stephen had become a force to reckon with. In spite of all this negativity, he did not shy away from the media glare. In 1999, in an interview with CNN’s Larry King he was asked how he planned to spend New Year’s Eve.

 In trademark Hawking style he replied that he was going to have a Simpson’s character party and the best part was that he could go as himself. Meanwhile, the Cambridge University was benefitting hugely through its association with Stephen Hawking. By 2000, they had a brand new, $177 million building with a swanky wheelchair accessible office for Stephen. He continued to use his status for the benefit of the disabled. To raise public awareness of the technology available for the disabled, he displayed his new Quantum Jazzy 1400 which was provided to him by Pride Mobility, the world leader in mobility products.

He compared it to a Ferrari and added that it “will also keep my nurses fit as they try to keep up.” His tailor made license plate read: T4SWH (Tea for Stephen W. Hawking) – a tribute to his favourite drink.

Amongst all his other activities, the professor managed to find time for his children. He enjoyed Formula One racing and music concerts with his younger son Timothy. His daughter Lucy adored his father’s uncanny ability of buying her gifts of beautiful clothes which invariably fit perfectly. She added that it “means more to me that he knows what size I am, and not just what size galaxies are.” Stephen had become the darling of the media and the general public. Everything that he said was eagerly lapped up by the public. He had become science’s unofficial spokesman. In 2001, he told German magazine ‘Focus’ that humans will have to modify their DNA so as to keep up with the computers, else there was a significant chance that intelligent machines will take over the world. Another time, he said that humans must start creating space colonies so as to ensure their own survival.

Stephen had won over the public but the clan of scientists thought differently. In a poll by the Physics World magazine as to who was the top scientist of all time, most physicists rooted for Einstein who received 119 votes whereas Stephen received one. In another survey by Physics Web, Isaac Newton was ranked first while Hawking lagged behind at 16. Peter Coles, an astronomy professor at the University of Nottingham puts it interestingly as “coffee time talks in Physics departments often come up with the same topic: it’s very difficult to get anybody to say anything critical of him. But to have somebody like that in an establishment that runs on peer review isn’t healthy. The trouble is, people fear that they will be thought of as jealous.”

The success of A Brief History of Time made many people clamour for a sequel. At that time, Stephen wanted to focus on his research and so the book remained unwritten. With the start of the 21 st century, however, it dawned on him that there is room for a different kind of book that might be easier to understand. With this in mind, he started work on a new book which he called ‘The Universe in a Nutshell ’.

Learning from his past experience, he decided to arrange the book into independent, separate topics which could be read in any order. The book was launched in Munich, Germany in October 2001. The book became a bestseller though it was not as big a success as its predecessor. In June 2002, Stephen was awarded the Aventis Book Prize for distinction in popular science writing. The prize came as a surprise to him and he said, “my previous book did not win any prizes, despite selling millions. But I am very pleased to have had better luck this time.”

On January 8, 2002, Stephen celebrated his sixtieth birthday; a remarkable feat for someone expected to die ever since he grew up. Stephen had now become the British record holder for survival. Long-term friend and colleague Robert Penrose declared that the physicist had officially become an old man and now could get away with saying such outrageous things. A massive celebration was held, which included Stephen’s current and past graduate students and also his ex-wife. Jane was especially pleased to be involved and said, “because I still think that, with the exception of our children, the greatest achievement of my life was helping keep him alive.” But Stephen almost couldn’t attend this celebration. Just after Christmas, he had an argument with ‘a wall’ and ‘the wall won.’ While travelling on a cobbled street, he lost control of his wheelchair and crashed into a wall.

This year also saw the publication of another Stephen Hawking book, ‘On the Shoulders of Giants’ which contained biographies of scientific big-wigs Copernicus, Galileo and Newton along with extracts of their major works.

That April, Stephen told a reporter “I suggested we might find a complete unified theory by the end of the century.” He laughingly added “ Ok I was wrong” . He revised his prediction then and said that “there’s a 50-50 chance that we will find a complete unified theory in the next 20 years.” However, several months later at a talk at Cambridge he said, “ Maybe it is not possible to formulate the theory of the universe in a finite number of statements…Some people will be very disappointed if there is not an ultimate theory that can be formulated as a finite number of principles. I used to belong to that camp, but I have changed my mind.” Once again Stephen had proved that he was not afraid to own up if he was wrong.

Meanwhile, the television appearances continued and in spring 2003, Stephen appeared in the television show ‘Late Night with Conan O’Brien’ along with Jim Carrey.

The public curiosity about Stephen refused to be sated and in April of 2004, BBC premiered its television drama ‘Hawking’.

The movie narrated the two years in Stephen’s life when he was diagnosed with ALS, met Jane and conducted his thesis on singularity theorems. Ex-wife Jane noted that the movie captured “ the sense that we had that, despite it all, everything was going to be possible.” As expected, the movie was much liked and received viewership of more than four million. The author in Stephen was working overtime as well and in 2005, the book ‘A Briefer History of Time’ was released which was jointly written by Stephen Hawking

and author-physicist Leonard Mlodinow. The book provided an abridged yet clear picture of the universe to the average reader.

2006 was a year marked with a major personal disturbance. Stephen got divorced from his second wife Elaine. The 11 year marriage had always been under the public scrutiny and dogged by accusations that Elaine physically abused her wheelchair bound husband. Twice, criminal investigations had been launched by the police after Stephen received unexplained injuries which included broken bones, but on both the occasions the professor remained non-committal and the inquiries had to be dropped. Ex-wife Jane claimed that Elaine had intentionally driven a wedge between her and Stephen while many friends claimed that the nurse had ‘brainwashed’ her patient. The grounds for the divorce remained a mystery; Stephen chose not to comment on his divorce and the only statement from Stephen’s camp was that “He is far too busy. This is just a distraction which is really annoying. We don’t have time for any of this.”

The unpleasantness of 2006 was soon forgotten and in 2007, the author-physicist was back with his first book for children ‘George’s Secret Key to the Universe’ co-authored with daughter Lucy and Christophe Galfard, a former research student of his. The book which was an adventure story explained the mysteries of the universe in a way which could be understood by children. The book received favourable reviews and was followed by ‘George’s Cosmic Treasure Hunt’ in 2009 and ‘George and the Big Bang’ in 2011.

On Thursday, April 26, 2007, the intrepid physicist charted another first by becoming the first person with a disability to experience zero gravity in a flight. Before the flight he told reporters that “I have wanted to fly in space all of my life….for someone like me whose muscles don’t work very well, it will be bliss to be weightless.” Florida based Zero Gravity Corp which runs such flights, offered it to Stephen Hawking as a courtesy. The zero gravity flight is dubbed as the Vomit Comet by NASA astronauts because of its tendency to make one retch due to its stomach churning manoeuvres. In anticipation, Stephen was given a pre-flight motion sickness pill and was also attended by two doctors and three nurses. It was decided that the professor have a single zero gravity run but they needn’t have feared; Stephen lapped up the experience and at his insistence the dives were extended to a total of eight. An apple was floated free in the aircraft along with Stephen as a tribute to Isaac Newton. Peter Diamandis, Chairman of Zero Gravity told about Stephen “he was doing gold medal gymnastics in zero-g. It was incredible…his eyebrows went up and there was a big grin…he was grinning the entire time.” After the flight, Stephen said “It was amazing. The zero-g bit was wonderful….I could have gone on and on. Space, here I come.”

In March 2008, Stephen featured in the documentary television series ‘Stephen Hawking: Master of the Universe’ produced by television broadcaster Channel 4.

 The series consisted of two 48 minutes episodes dealing with his life and work. The series was a huge success and commanded viewership of more than 1.5 million viewers. In September 2010, Stephen returned to the public eye with the release of yet another of his controversial offerings, this time, the book ‘The Grand Design’. Co-authored by Stephen and Leonard Mlodinow,

the book delved on the controversial topic of the existence of God. As per the book, it was not necessary to resort to the concept of God to explain the origins of the universe; Big Bang was a direct derivation of the laws of Physics. In response to criticism of the book, Stephen countered, “One can’t prove that God doesn’t exist, but science makes God unnecessary.” The authors added, “ Because there is a law such as gravity, the universe can and will create itself from nothing. Spontaneous creation is the reason there is something rather than nothing, why the universe exists, why we exist. It is not necessary to invoke God to light the blue touch paper and set the universe going.” Despite the criticisms, the book was a success.

A self-confessed atheist and never afraid of speaking his mind, Stephen likens human brain to a computer. In an interview in May 2011, he stated “I regard the brain as a computer which will stop working when its components fail. There is no heaven or afterlife for broken down computers; that is a fairy story for people afraid of the dark.” In October, the flamboyant professor was on TV once again, this time in a science documentary series titled ‘Brave New World with Stephen Hawking.’

The series focused on scientific breakthroughs which had the potential to transform our world. It also touched on the theme of space exploration as the only hope of survival for human beings in the future. Before the series’ premiere Stephen warned, “We are entering an increasingly dangerous period of our history…But our genetic code still carries the selfish and aggressive instincts that were our survival advantage in the past. It will be difficult enough to avoid disaster in the next hundred years, let alone the next thousand or million. Our only chance of long-term survival is not to remain lurking on planet Earth, but to spread out into space.” On the same subject he added, that if there is intelligent life out in the universe, maybe we have been overlooked by it. “ If we should pick up signals from alien civilizations” he cautions “we should be wary of answering back, until we have evolved more.’ He believes that meeting a more advanced society at this stage “might be like the original inhabitants of America meeting Columbus. I don’t think they were better off for it.”

On January 8, 2012, the poster boy for I.M.Possible celebrated his 70 th birthday. A public symposium was held at Cambridge University on the occasion but unfortunately Stephen couldn’t attend it due to ill health. A recorded speech of the physicist was played at the event instead which was attended by the world’s leading cosmologists. In his speech, the professor talked about his childhood and the highlights of his career. He finished the speech to a standing ovation from the audience

 with the words “Our picture of the universe has changed a great deal in the past 40 years and I’m happy if I’ve made a small contribution. The fact that we humans – who are ourselves mere collections of fundamental particles of nature – have been able to come this close to an understanding of the laws governing us and our universe is a great triumph.”

Meanwhile, the master of the universe is fast becoming a master actor as well. In April 2012, the professor made another of his celebrated guest appearances on television, this time on the popular sitcom ‘The Big Bang Theory’.

According to his co-star Simon Helberg, Stephen’s comic timing is quite good. He displayed his comic genius once again in July when he held a party for time travellers but did not send out the invitations till after the party. The professor sat waiting for his guests to come complete with balloons and champagne but unfortunately no one turned up. In an interview to Ars Technica, a technology news and information website, Stephen said about his party “I have experimental evidence that time travel is not possible.”

In July, Stephen, whose only vice is that he occasionally gambles, was in the news again , this time for a wager made 10 years ago on the Higgs particle or the ‘God particle’ as it is sometimes called. The Physicist had made a $100 bet against fellow scientist, Gordon Kane, that such a particle will never be found. But with news coming in July from scientists in Geneva that the elusive particle has almost been hunted down, he cheerfully conceded the bet. Stephen was pleased that the Higgs particle had been discovered and recommended Peter Higgs, the man who gave his name to the Higgs boson particle, for a Nobel Prize. In typical Hawking style he joked that the discovery had cost him $100!

So, finally what does one make of Stephen Hawking – the living legend? Has Cosmology become famous because of Stephen Hawking or does the cosmologist owe his fame to science? Difficult to answer but perhaps it’s a bit of both. A fact which cannot be denied though is, that there is no other scientist quite as famous, as appealing, as interesting, as mysterious as Stephen W. Hawking. And how could it be any different? Courage, fortitude, perseverance, determination, humour and a dash of stubbornness…Stephen has them all.

The professor loves to teach science to people but there are many valuable lessons which can be learned from his life as well. The fact that he is alive is in itself worth a salute. It teaches us to live life in the present and make the most of our time on this earth. That is the motto by which Stephen lives his life to seek the greatest value of our action. The normalcy which he exudes is uncanny – a wheelchair bound man who cannot speak, write, walk or even eat on his own, is doing brilliantly in his field of work and is a father and grandfather as well.

Stephen Hawking makes us redefine our perceptions about courage. A soldier fighting at the battlefield or an activist fighting for social issues are indeed men of valour. But fighting the unknown every single day, not knowing whether this would be your last breath and yet being a brilliant scientist takes bravery of a different kind. Ever played dumb charades? Remember how difficult it gets to express what we want to say without the comfort of speaking out? Now imagine not being able to talk throughout your life, not even the use of your hands to express yourself. Imagine having only your cheek muscles to select for communicating, for selecting words from a whole dictionary on the computer. Imagine that it takes you a whole twenty minutes to reply to someone. Imagine the way Sir Hawking communicates….by sheer grit and determination. What’s more, just think of the amount of perseverance that the man possesses to churn out book after book with only the aid of his cheek muscles!

The professor’s quirky sense of humour is well-known. Not for him the character of a gruff and stuffy old gentleman. People who know him describe him as an incurable flirt and a party animal who loves to dance in his wheelchair.

Battling such a life threatening disease and yet not being melancholy and gloomy…now that’s strange. Twice married, when asked what he thinks about the most throughout the day, bang comes the reply – women, who are in Stephen’s eyes, a complete mystery. Indeed, the man is every bit as remarkable as his ground-breaking work. What better way to end this than with a quote of Mr. Hawking

“Remember to look up at the stars and not down at your feet…Try to make sense of what you see and about what makes the universe exist. Be curious. And however difficult life may seem, there is always something you can do, and succeed at. It matters that you don’t just give up.”

Brave words from a brave man…let’s each of us try to live up to them.

{{quote.quote[0].title}}

Next Biography

Subscribe to our newsletter, new users register.

IMAGES

  1. Biography of Stephen Hawking, English theoretical physicist, cosmologist and inspiring author

    stephen hawking biography in english matter

  2. Stephen Hawking A Short Biography

    stephen hawking biography in english matter

  3. Stephen Hawking Biography

    stephen hawking biography in english matter

  4. Biography of Theoretical Physicist Stephen Hawking

    stephen hawking biography in english matter

  5. Stephen Hawking Biography

    stephen hawking biography in english matter

  6. All About Stephen Hawking

    stephen hawking biography in english matter

VIDEO

  1. Stephen Hawking biography in english. #the_up_and_up #biography

  2. 🌠 Stephen Hawking's documentary: A Cosmic Biography 🌠

  3. STEPHEN HAWKING BIOGRAPHY

  4. STEPHEN HAWKING

  5. Stephen Hawking's predictions of universe and his last Message to humanity

  6. How Has Stephen Hawking Lived Past 70 with ALS ? || Unknown Facts Tamil

COMMENTS

  1. Stephen Hawking

    Stephen Hawking (born January 8, 1942, Oxford, Oxfordshire, England—died March 14, 2018, Cambridge, Cambridgeshire) was an English theoretical physicist whose theory of exploding black holes drew upon both relativity theory and quantum mechanics. He also worked with space-time singularities.

  2. Stephen Hawking

    Physical cosmology. Stephen William Hawking (8 January 1942 - 14 March 2018) was an English theoretical physicist, cosmologist, and author who was director of research at the Centre for Theoretical Cosmology at the University of Cambridge. [6] [17] [18] Between 1979 and 2009, he was the Lucasian Professor of Mathematics at Cambridge, widely ...

  3. Stephen Hawking biography: Theories, books & quotes

    British cosmologist Stephen William Hawking was born in Oxford, England on Jan. 8, 1942 — 300 years to the day after the death of the astronomer Galileo Galilei. He attended University College ...

  4. Stephen Hawking: Biography, Scientist, Relativity, ALS

    Stephen Hawking was a British scientist, professor and author who performed groundbreaking work in physics and cosmology, and whose books helped to make science accessible to everyone. At age 21 ...

  5. Stephen Hawking Biography

    Stephen Hawking (1942 - 2018) is an English theoretical physicist, cosmologist and author. He is best known for his attempts to explain in clear terms the origins of the universe and some of the most complicated aspects of the cosmos and physics. Hawking was the first scientist to offer a theory of cosmology explained by […]

  6. Biography of Stephen Hawking, Physicist and Cosmologist

    Updated on July 12, 2019. Stephen Hawking (January 8, 1942-March 14, 2018) was a world-renowned cosmologist and physicist, especially esteemed for overcoming an extreme physical disability to pursue his groundbreaking scientific work. He was a bestselling author whose books made complex ideas accessible to the general public.

  7. Stephen Hawking

    Stephen Hawking is an English scientist. He is a cosmologist, or someone who studies the universe as a whole. He is known for his work on black holes . Hawking has also written a number of best-selling books, including A Brief History of Time: From the Big Bang to Black Holes (1988).

  8. Stephen Hawking (1942-2018)

    Hawking, who died on 14 March 2018, was born in Oxford, UK, in 1942 to a medical-researcher father and a philosophy-graduate mother. After attending St Albans School near London, he earned a first ...

  9. Stephen Hawking

    Stephen Hawking. Born: January 8, 1942 Oxford, England English scientist, physicist, and mathematician. British physicist and mathematician Stephen Hawking has made fundamental contributions to the science of cosmology — the study of the origins, structure, and space-time relationships of the universe.. Early life. Stephen William Hawking was born on January 8, 1942, in Oxford, England.

  10. Stephen Hawking (1942-2018)

    Stephen Hawking's achievements as a scientist, communicator, and public figure were commensurate with his great fame. Stephen was born in Oxford on 8 January 1942 (which, as he enjoyed pointing out, was the 300th anniversary of Galileo's death) and entered the University of Oxford in 1959. Although his mathematical aptitude was quickly ...

  11. Stephen Hawking (1942-2018)

    Famed theoretical cosmologist Stephen Hawking died on 14 March at age 76, a remarkable 55 years after he was diagnosed with amyotrophic lateral sclerosis. Born on 8 January 1942 in Oxford, England, Hawking studied physics at Oxford University and astrophysics at Cambridge University. Much of Hawking's research examined the interplay between ...

  12. A brief history of Stephen Hawking: A legacy of paradox

    Gemma Levine/Getty. Stephen Hawking, the world-famous theoretical physicist, has died at the age of 76. Hawking's children, Lucy, Robert and Tim said in a statement: "We are deeply saddened ...

  13. 'Mind over matter': Stephen Hawking

    Wed 14 Mar 2018 04.42 EDT. First published on Wed 14 Mar 2018 00.10 EDT. The image of Stephen Hawking - who has died aged 76 - in his motorised wheelchair, with head contorted slightly to one ...

  14. Stephen Hawking

    29 others [2] Website. hawking .org .uk. Signature. Stephen William Hawking CH CBE FRS FRSA (8 January 1942 - 14 March 2018) was a British theoretical physicist and mathematician. He was born in Oxford. In 1950, he moved to St Albans, Hertfordshire. He was one of the world's leading theoretical physicists. [17]

  15. Professor Stephen Hawking

    In memoriam Professor Stephen Hawking 1942 - 2018. Travel was one of Professor Hawking's pastimes. One of his first adventures was to be caught up in the 7.1 magnitude Bou-in-Zahra earthquake in Iran in 1962. In 1997 he visited the Antarctic. He has plumbed the depths in a submarine and in 2007 he experienced weightlessness during a zero ...

  16. Stephen Hawking Estate

    The accolades began. In 1966 Stephen won the Adams Prize for his essay entitled, 'Singularities and the Geometry of Space-Time', and which formed the basis for his first academic book, co-authored with George Ellis, The Large Scale Structure of Space-Time.This book remains in print today. In 1969, during a trip to the USA, Stephen observed Joseph Weber's early and rudimentary experiments ...

  17. The Cambridge lectures : life works : Hawking, Stephen, 1942-2018

    xii, 176 pages ; 22 cm + Read by the author Includes index Unabridged Subtitle on cassettes: Stephen W. Hawking's life works First Lecture: Ideas About the Universe -- Second Lecture: The Expanding Universe -- Third Lecture: Black Holes -- Fourth Lecture: Black Holes Ain't So Black -- Fifth Lecture: The Origin and Fate of the Universe -- Sixth Lecture: The Direction of Time -- Seventh Lecture ...

  18. A Brief History of Time

    A Brief History of Time: From the Big Bang to Black Holes is a book on theoretical cosmology by English physicist Stephen Hawking. It was first published in 1988. Hawking wrote the book for readers who had no prior knowledge of physics. In A Brief History of Time, Hawking writes in non-technical terms about the structure, origin, development ...

  19. Listen&Learn: Stephen Hawking

    Stephen Hawking was an English physicist. He was born in 1942 in Oxford, England. Growing up, Hawking was always very interested in math and science, and at age 17, he decided to pursue a physics degree. However, at age 21, Hawking was diagnosed with ALS, a serious condition that weakens nerves and muscles. His doctor didn't expect him to ...

  20. Stephen William Hawking CH CBE. 8 January 1942—14 March 2018

    Stephen Hawking's contributions to the understanding of gravity, black holes and cosmology were truly immense. ... which Stephen developed as a matter of necessity when trying to cope with the limitations imposed by his physical disabilities. He could communicate only with great difficulty and expenditure of effort, and so had to make do with ...

  21. Stephen William Hawking

    Stephen William Hawking was a British physicist, born on 8th January 1942. He is considered the most brilliant theoretical physicist of all time. He revolutionized the field of physics through his work on the origin of the universe and the black hole explosion theory. From the big bang to black holes, all his best-selling books appealed to ...

  22. Stephen Hawking

    Stephen Hawking's birthday (January 8, 1942) is the 300th anniversary of the death of astronomer and physicist Galileo Galilei. He is the 17th Lucasian Professor of Mathematics, an academic chair at Cambridge University. From 1669 to 1702, the position was held by Sir Isaac Newton. Has guest-starred, as himself, on "The Big Bang Theory ...

  23. Biography of Stephen Hawking

    The Hawking family grew during the war, daughter Mary was born in 1943, a year after Stephen's birth and Phillipa, five years later. As a boy, Stephen was awkward and skinny with clothes that always bordered on messy. He did not shine in sports or handwriting nor did he learn to read properly until the age of 8.