Leon Lovett

Leon Lovett

Python Variables – A Guide to Variable Assignment and Naming

a computer monitor sitting on top of a wooden desk

In Python, variables are essential elements that allow developers to store and manipulate data. When writing Python code, understanding variable assignment and naming conventions is crucial for effective programming.

Python variables provide a way to assign a name to a value and use that name to reference the value later in the code. Variables can be used to store various types of data, including numbers, strings, and lists.

In this article, we will explore the basics of Python variables, including variable assignment and naming conventions. We will also dive into the different variable types available in Python and how to use them effectively.

Key Takeaways

  • Python variables are used to store and manipulate data in code.
  • Variable assignment allows developers to assign a name to a value and reference it later.
  • Proper variable naming conventions are essential for effective programming.
  • Python supports different variable types, including integers, floats, strings, and lists.

Variable Assignment in Python

Python variables are created when a value is assigned to them using the equals sign (=) operator. For example, the following code snippet assigns the integer value 5 to the variable x :

From this point forward, whenever x is referenced in the code, it will have the value 5.

Variables can also be assigned using other variables or expressions. For example, the following code snippet assigns the value of x plus 2 to the variable y :

It is important to note that variables in Python are dynamically typed, meaning that their type can change as the program runs. For example, the following code snippet assigns a string value to the variable x , then later reassigns it to an integer value:

x = "hello" x = 7

Common Mistakes in Variable Assignment

One common mistake is trying to reference a variable before it has been assigned a value. This will result in a NameError being raised. For example:

print(variable_name) NameError: name ‘variable_name’ is not defined

Another common mistake is assigning a value to the wrong variable name. For example, the following code snippet assigns the value 5 to the variable y instead of x :

y = 5 print(x) NameError: name ‘x’ is not defined

To avoid these mistakes, it is important to carefully review code and double-check variable names and values.

Using Variables in Python

Variables are used extensively in Python code for a variety of purposes, from storing user input to performing complex calculations. The following code snippet demonstrates the basic usage of variables in a simple addition program:

number1 = input("Enter the first number: ") number2 = input("Enter the second number: ") sum = float(number1) + float(number2) print("The sum of", number1, "and", number2, "is", sum)

This program prompts the user to enter two numbers, converts them to floats using the float() function, adds them together, and prints the result using the print() function.

Variables can also be used in more complex operations, such as string concatenation and list manipulation. The following code snippet demonstrates how variables can be used to combine two strings:

greeting = "Hello" name = "Alice" message = greeting + ", " + name + "!" print(message)

This program defines two variables containing a greeting and a name, concatenates them using the plus (+) operator, and prints the result.

Variable Naming Conventions in Python

In Python, proper variable naming conventions are crucial for writing clear and maintainable code. Consistently following naming conventions makes code more readable and easier to understand, especially when working on large projects with many collaborators. Here are some commonly accepted conventions:

It’s recommended to use lowercase or snake case for variable names as they are easier to read and more commonly used in Python. Camel case is common in other programming languages, but can make Python code harder to read.

Variable names should be descriptive and meaningful. Avoid using abbreviations or single letters, unless they are commonly understood, like “i” for an iterative variable in a loop. Using descriptive names will make your code easier to understand and maintain by you and others.

Lastly, it’s a good practice to avoid naming variables with reserved words in Python such as “and”, “or”, and “not”. Using reserved words can cause errors in your code, making it hard to debug.

Scope of Variables in Python

Variables in Python have a scope, which dictates where they can be accessed and used within a code block. Understanding variable scope is important for writing efficient and effective code.

Local Variables in Python

A local variable is created within a particular code block, such as a function. It can only be accessed within that block and is destroyed when the block is exited. Local variables can be defined using the same Python variable assignment syntax as any other variable.

Example: def my_function():     x = 10     print(“Value inside function:”, x) my_function() print(“Value outside function:”, x) Output: Value inside function: 10 NameError: name ‘x’ is not defined

In the above example, the variable ‘x’ is a local variable that is defined within the function ‘my_function()’. It cannot be accessed outside of that function, which is why the second print statement results in an error.

Global Variables in Python

A global variable is a variable that can be accessed from anywhere within a program. These variables are typically defined outside of any code block, at the top level of the program. They can be accessed and modified from any code block within the program.

Example: x = 10 def my_function():     print(“Value inside function:”, x) my_function() print(“Value outside function:”, x) Output: Value inside function: 10 Value outside function: 10

In the above example, the variable ‘x’ is a global variable that is defined outside of any function. It can be accessed from within the ‘my_function()’ as well as from outside it.

When defining a function, it is possible to access and modify a global variable from within the function using the ‘global’ keyword.

Example: x = 10 def my_function():     global x     x = 20 my_function() print(x) Output: 20

In the above example, the ‘global’ keyword is used to indicate that the variable ‘x’ inside the function is the same as the global variable ‘x’. The function modifies the global variable, causing the final print statement to output ’20’ instead of ’10’.

One of the most fundamental concepts in programming is the use of variables. In Python, variables allow us to store and manipulate data efficiently. Here are some practical examples of how to use variables in Python:

Mathematical Calculations

Variables are often used to perform mathematical calculations in Python. For instance, we can assign numbers to variables and then perform operations on those variables. Here’s an example:

x = 5 y = 10 z = x + y print(z) # Output: 15

In this code, we have assigned the value 5 to the variable x and the value 10 to the variable y. We then create a new variable z by adding x and y together. Finally, we print the value of z, which is 15.

String Manipulation

Variables can also be used to manipulate strings in Python. Here is an example:

first_name = “John” last_name = “Doe” full_name = first_name + ” ” + last_name print(full_name) # Output: John Doe

In this code, we have assigned the strings “John” and “Doe” to the variables first_name and last_name respectively. We then create a new variable full_name by combining the values of first_name and last_name with a space in between. Finally, we print the value of full_name, which is “John Doe”.

Working with Data Structures

Variables are also essential when working with data structures such as lists and dictionaries in Python. Here’s an example:

numbers = [1, 2, 3, 4, 5] sum = 0 for num in numbers:     sum += num print(sum) # Output: 15

In this code, we have assigned a list of numbers to the variable numbers. We then create a new variable sum and initialize it to 0. We use a for loop to iterate over each number in the list, adding it to the sum variable. Finally, we print the value of sum, which is 15.

As you can see, variables are an essential tool in Python programming. By using them effectively, you can manipulate data and perform complex operations with ease.

Variable Types in Python

Python is a dynamically typed language, which means that variables can be assigned values of different types without explicit type declaration. Python supports a wide range of variable types, each with its own unique characteristics and uses.

Numeric Types:

Python supports several numeric types, including integers, floats, and complex numbers. Integers are whole numbers without decimal points, while floats are numbers with decimal points. Complex numbers consist of a real and imaginary part, expressed as a+bi.

Sequence Types:

Python supports several sequence types, including strings, lists, tuples, and range objects. Strings are sequences of characters, while lists and tuples are sequences of values of any type. Range objects are used to represent sequences of numbers.

Mapping Types:

Python supports mapping types, which are used to store key-value pairs. The most commonly used mapping type is the dictionary, which supports efficient lookup of values based on their associated keys.

Boolean Type:

Python supports a Boolean type, which is used to represent truth values. The Boolean type has two possible values: True and False.

Python has a special value called None, which represents the absence of a value. This type is often used to indicate the result of functions that do not return a value.

Understanding the different variable types available in Python is essential for effective coding. Each type has its own unique properties and uses, and choosing the right type for a given task can help improve code clarity, efficiency, and maintainability.

Python variables are a fundamental concept that every aspiring Python programmer must understand. In this article, we have covered the basics of variable assignment and naming conventions in Python. We have also explored the scope of variables and their different types.

It is important to remember that variables play a crucial role in programming, and their effective use can make your code more efficient and easier to read. Proper naming conventions and good coding practices can also help prevent errors and improve maintainability.

As you continue to explore the vast possibilities of Python programming, we encourage you to practice using variables in your code. With a solid understanding of Python variables, you will be well on your way to becoming a proficient Python programmer.

Similar Posts

A Guide to Python’s String Methods

A Guide to Python’s String Methods

Python is a powerful programming language for text processing, thanks to its rich set of string methods. Python string methods are built-in functions that allow you to manipulate and transform text data in various ways. In this article, we will explore Python’s string methods in depth, discussing their functionalities and demonstrating their usage with examples….

Object Oriented Programming in Python – A Beginner’s Guide

Object Oriented Programming in Python – A Beginner’s Guide

Python is a versatile programming language that offers support for object-oriented programming (OOP). OOP is a programming paradigm that provides a modular and reusable way to design software. In this article, we will provide a beginner’s guide to object-oriented programming in Python with a focus on Python classes. Python classes are the building blocks of…

Using *args and **kwargs in Python

Using *args and **kwargs in Python

Python is a versatile language that allows for a high degree of flexibility and customization in coding. One powerful feature of Python functions is the ability to use variable arguments, which provides more flexibility in function definition and allows for a variable number of arguments to be passed to a function. This is where *args…

Coding Reusable Logic with Python Functions

Coding Reusable Logic with Python Functions

In the world of coding, efficiency and reusability are paramount. With Python functions, you can achieve both. Functions are code blocks that perform specific tasks and can be called multiple times throughout your program. This means you can write a block of code once and reuse it whenever you need it, saving you valuable time…

Python Modules and Packages Explained

Python Modules and Packages Explained

Python programming has become increasingly popular over the years, and for good reason. It is a high-level and versatile language with a wide range of applications, from web development to data analysis. One of the key features of Python that sets it apart from other programming languages is its use of modules and packages. In…

Demystifying the Python __init__ Method

Demystifying the Python __init__ Method

Python is one of the most widely used programming languages in the world, known for its simplicity and ease of use. One of the key features of Python is the __init__ method, which plays a critical role in object-oriented programming. In this article, we will explore the __init__ method in depth, starting with its syntax…

Python Variables

In Python, a variable is a container that stores a value. In other words, variable is the name given to a value, so that it becomes easy to refer a value later on.

Unlike C# or Java, it's not necessary to explicitly define a variable in Python before using it. Just assign a value to a variable using the = operator e.g. variable_name = value . That's it.

The following creates a variable with the integer value.

In the above example, we declared a variable named num and assigned an integer value 10 to it. Use the built-in print() function to display the value of a variable on the console or IDLE or REPL .

In the same way, the following declares variables with different types of values.

Multiple Variables Assignment

You can declare multiple variables and assign values to each variable in a single statement, as shown below.

In the above example, the first int value 10 will be assigned to the first variable x, the second value to the second variable y, and the third value to the third variable z. Assignment of values to variables must be in the same order in they declared.

You can also declare different types of values to variables in a single statement separated by a comma, as shown below.

Above, the variable x stores 10 , y stores a string 'Hello' , and z stores a boolean value True . The type of variables are based on the types of assigned value.

Assign a value to each individual variable separated by a comma will throw a syntax error, as shown below.

Variables in Python are objects. A variable is an object of a class based on the value it stores. Use the type() function to get the class name (type) of a variable.

In the above example, num is an object of the int class that contains integre value 10 . In the same way, amount is an object of the float class, greet is an object of the str class, isActive is an object of the bool class.

Unlike other programming languages like C# or Java, Python is a dynamically-typed language, which means you don't need to declare a type of a variable. The type will be assigned dynamically based on the assigned value.

The + operator sums up two int variables, whereas it concatenates two string type variables.

Object's Identity

Each object in Python has an id. It is the object's address in memory represented by an integer value. The id() function returns the id of the specified object where it is stored, as shown below.

Variables with the same value will have the same id.

Thus, Python optimize memory usage by not creating separate objects if they point to same value.

Naming Conventions

Any suitable identifier can be used as a name of a variable, based on the following rules:

  • The name of the variable should start with either an alphabet letter (lower or upper case) or an underscore (_), but it cannot start with a digit.
  • More than one alpha-numeric characters or underscores may follow.
  • The variable name can consist of alphabet letter(s), number(s) and underscore(s) only. For example, myVar , MyVar , _myVar , MyVar123 are valid variable names, but m*var , my-var , 1myVar are invalid variable names.
  • Variable names in Python are case sensitive. So, NAME , name , nAME , and nAmE are treated as different variable names.
  • Variable names cannot be a reserved keywords in Python.
  • Compare strings in Python
  • Convert file data to list
  • Convert User Input to a Number
  • Convert String to Datetime in Python
  • How to call external commands in Python?
  • How to count the occurrences of a list item?
  • How to flatten list in Python?
  • How to merge dictionaries in Python?
  • How to pass value by reference in Python?
  • Remove duplicate items from list in Python
  • More Python articles

python variable assignment comma

We are a team of passionate developers, educators, and technology enthusiasts who, with their combined expertise and experience, create in -depth, comprehensive, and easy to understand tutorials.We focus on a blend of theoretical explanations and practical examples to encourages hands - on learning. Visit About Us page for more information.

  • Python Questions & Answers
  • Python Skill Test
  • Python Latest Articles
  • Hands-on Python Tutorial »
  • 1. Beginning With Python »

1.6. Variables and Assignment ¶

Each set-off line in this section should be tried in the Shell.

Nothing is displayed by the interpreter after this entry, so it is not clear anything happened. Something has happened. This is an assignment statement , with a variable , width , on the left. A variable is a name for a value. An assignment statement associates a variable name on the left of the equal sign with the value of an expression calculated from the right of the equal sign. Enter

Once a variable is assigned a value, the variable can be used in place of that value. The response to the expression width is the same as if its value had been entered.

The interpreter does not print a value after an assignment statement because the value of the expression on the right is not lost. It can be recovered if you like, by entering the variable name and we did above.

Try each of the following lines:

The equal sign is an unfortunate choice of symbol for assignment, since Python’s usage is not the mathematical usage of the equal sign. If the symbol ↤ had appeared on keyboards in the early 1990’s, it would probably have been used for assignment instead of =, emphasizing the asymmetry of assignment. In mathematics an equation is an assertion that both sides of the equal sign are already, in fact, equal . A Python assignment statement forces the variable on the left hand side to become associated with the value of the expression on the right side. The difference from the mathematical usage can be illustrated. Try:

so this is not equivalent in Python to width = 10 . The left hand side must be a variable, to which the assignment is made. Reversed, we get a syntax error . Try

This is, of course, nonsensical as mathematics, but it makes perfectly good sense as an assignment, with the right-hand side calculated first. Can you figure out the value that is now associated with width? Check by entering

In the assignment statement, the expression on the right is evaluated first . At that point width was associated with its original value 10, so width + 5 had the value of 10 + 5 which is 15. That value was then assigned to the variable on the left ( width again) to give it a new value. We will modify the value of variables in a similar way routinely.

Assignment and variables work equally well with strings. Try:

Try entering:

Note the different form of the error message. The earlier errors in these tutorials were syntax errors: errors in translation of the instruction. In this last case the syntax was legal, so the interpreter went on to execute the instruction. Only then did it find the error described. There are no quotes around fred , so the interpreter assumed fred was an identifier, but the name fred was not defined at the time the line was executed.

It is both easy to forget quotes where you need them for a literal string and to mistakenly put them around a variable name that should not have them!

Try in the Shell :

There fred , without the quotes, makes sense.

There are more subtleties to assignment and the idea of a variable being a “name for” a value, but we will worry about them later, in Issues with Mutable Objects . They do not come up if our variables are just numbers and strings.

Autocompletion: A handy short cut. Idle remembers all the variables you have defined at any moment. This is handy when editing. Without pressing Enter, type into the Shell just

Assuming you are following on the earlier variable entries to the Shell, you should see f autocompleted to be

This is particularly useful if you have long identifiers! You can press Alt-/ several times if more than one identifier starts with the initial sequence of characters you typed. If you press Alt-/ again you should see fred . Backspace and edit so you have fi , and then and press Alt-/ again. You should not see fred this time, since it does not start with fi .

1.6.1. Literals and Identifiers ¶

Expressions like 27 or 'hello' are called literals , coming from the fact that they literally mean exactly what they say. They are distinguished from variables, whose value is not directly determined by their name.

The sequence of characters used to form a variable name (and names for other Python entities later) is called an identifier . It identifies a Python variable or other entity.

There are some restrictions on the character sequence that make up an identifier:

The characters must all be letters, digits, or underscores _ , and must start with a letter. In particular, punctuation and blanks are not allowed.

There are some words that are reserved for special use in Python. You may not use these words as your own identifiers. They are easy to recognize in Idle, because they are automatically colored orange. For the curious, you may read the full list:

There are also identifiers that are automatically defined in Python, and that you could redefine, but you probably should not unless you really know what you are doing! When you start the editor, we will see how Idle uses color to help you know what identifies are predefined.

Python is case sensitive: The identifiers last , LAST , and LaSt are all different. Be sure to be consistent. Using the Alt-/ auto-completion shortcut in Idle helps ensure you are consistent.

What is legal is distinct from what is conventional or good practice or recommended. Meaningful names for variables are important for the humans who are looking at programs, understanding them, and revising them. That sometimes means you would like to use a name that is more than one word long, like price at opening , but blanks are illegal! One poor option is just leaving out the blanks, like priceatopening . Then it may be hard to figure out where words split. Two practical options are

  • underscore separated: putting underscores (which are legal) in place of the blanks, like price_at_opening .
  • using camel-case : omitting spaces and using all lowercase, except capitalizing all words after the first, like priceAtOpening

Use the choice that fits your taste (or the taste or convention of the people you are working with).

Table Of Contents

  • 1.6.1. Literals and Identifiers

Previous topic

1.5. Strings, Part I

1.7. Print Function, Part I

  • Show Source

Quick search

Enter search terms or a module, class or function name.

previous episode

Python for absolute beginners, next episode, variables and assignment.

Overview Teaching: 15 min Exercises: 15 min Questions How can I store data in programs? Objectives Write scripts that assign values to variables and perform calculations with those values. Correctly trace value changes in scripts that use assignment.

Use variables to store values

Variables are one of the fundamental building blocks of Python. A variable is like a tiny container where you store values and data, such as filenames, words, numbers, collections of words and numbers, and more.

The variable name will point to a value that you “assign” it. You might think about variable assignment like putting a value “into” the variable, as if the variable is a little box 🎁

(In fact, a variable is not a container as such but more like an adress label that points to a container with a given value. This difference will become relevant once we start talking about lists and mutable data types.)

You assign variables with an equals sign ( = ). In Python, a single equals sign = is the “assignment operator.” (A double equals sign == is the “real” equals sign.)

  • Variables are names for values.
  • In Python the = symbol assigns the value on the right to the name on the left.
  • The variable is created when a value is assigned to it.
  • Here, Python assigns an age to a variable age and a name in quotation marks to a variable first_name :

Variable names

Variable names can be as long or as short as you want, but there are certain rules you must follow.

  • Cannot start with a digit.
  • Cannot contain spaces, quotation marks, or other punctuation.
  • May contain an underscore (typically used to separate words in long variable names).
  • Having an underscore at the beginning of a variable name like _alistairs_real_age has a special meaning. So we won’t do that until we understand the convention.
  • The standard naming convention for variable names in Python is the so-called “snake case”, where each word is separated by an underscore. For example my_first_variable . You can read more about naming conventions in Python here .

Use meaningful variable names

Python doesn’t care what you call variables as long as they obey the rules (alphanumeric characters and the underscore). As you start to code, you will almost certainly be tempted to use extremely short variables names like f . Your fingers will get tired. Your coffee will wear off. You will see other people using variables like f . You’ll promise yourself that you’ll definitely remember what f means. But you probably won’t.

So, resist the temptation of bad variable names! Clear and precisely-named variables will:

  • Make your code more readable (both to yourself and others).
  • Reinforce your understanding of Python and what’s happening in the code.
  • Clarify and strengthen your thinking.

Use meaningful variable names to help other people understand what the program does. The most important “other person” is your future self!

Python is case-sensitive

Python thinks that upper- and lower-case letters are different, so Name and name are different variables. There are conventions for using upper-case letters at the start of variable names so we will use lower-case letters for now.

Off-Limits Names

The only variable names that are off-limits are names that are reserved by, or built into, the Python programming language itself — such as print , True , and list . Some of these you can overwrite into variable names (not ideal!), but Jupyter Lab (and many other environments and editors) will catch this by colour coding your variable. If your would-be variable is colour-coded green, rethink your name choice. This is not something to worry too much about. You can get the object back by resetting your kernel.

Use print() to display values

We can check to see what’s “inside” variables by running a cell with the variable’s name. This is one of the handiest features of a Jupyter notebook. Outside the Jupyter environment, you would need to use the print() function to display the variable.

You can run the print() function inside the Jupyter environment, too. This is sometimes useful because Jupyter will only display the last variable in a cell, while print() can display multiple variables. Additionally, Jupyter will display text with \n characters (which means “new line”), while print() will display the text appropriately formatted with new lines.

  • Python has a built-in function called print() that prints things as text.
  • Provide values to the function (i.e., the things to print) in parentheses.
  • To add a string to the printout, wrap the string in single or double quotations.
  • The values passed to the function are called ‘arguments’ and are separated by commas.
  • When using the print() function, we can also separate with a ‘+’ sign. However, when using ‘+’ we have to add spaces in between manually.
  • print() automatically puts a single space between items to separate them.
  • And wraps around to a new line at the end.

Variables must be created before they are used

If a variable doesn’t exist yet, or if the name has been misspelled, Python reports an error (unlike some languages, which “guess” a default value).

The last line of an error message is usually the most informative. This message lets us know that there is no variable called eye_color in the script.

Variables Persist Between Cells Variables defined in one cell exist in all other cells once executed, so the relative location of cells in the notebook do not matter (i.e., cells lower down can still affect those above). Notice the number in the square brackets [ ] to the left of the cell. These numbers indicate the order, in which the cells have been executed. Cells with lower numbers will affect cells with higher numbers as Python runs the cells chronologically. As a best practice, we recommend you keep your notebook in chronological order so that it is easier for the human eye to read and make sense of, as well as to avoid any errors if you close and reopen your project, and then rerun what you have done. Remember: Notebook cells are just a way to organize a program! As far as Python is concerned, all of the source code is one long set of instructions.

Variables can be used in calculations

  • We can use variables in calculations just as if they were values. Remember, we assigned 42 to age a few lines ago.

This code works in the following way. We are reassigning the value of the variable age by taking its previous value (42) and adding 3, thus getting our new value of 45.

Use an index to get a single character from a string

  • The characters (individual letters, numbers, and so on) in a string are ordered. For example, the string ‘AB’ is not the same as ‘BA’. Because of this ordering, we can treat the string as a list of characters.
  • Each position in the string (first, second, etc.) is given a number. This number is called an index or sometimes a subscript.
  • Indices are numbered from 0 rather than 1.
  • Use the position’s index in square brackets to get the character at that position.

Use a slice to get a substring

A part of a string is called a substring. A substring can be as short as a single character. A slice is a part of a string (or, more generally, any list-like thing). We take a slice by using [start:stop] , where start is replaced with the index of the first element we want and stop is replaced with the index of the element just after the last element we want. Mathematically, you might say that a slice selects [start:stop] . The difference between stop and start is the slice’s length. Taking a slice does not change the contents of the original string. Instead, the slice is a copy of part of the original string.

Use the built-in function len() to find the length of a string

The built-in function len() is used to find the length of a string (and later, of other data types, too).

Note that the result is 6 and not 7. This is because it is the length of the value of the variable (i.e. 'helium' ) that is being counted and not the name of the variable (i.e. element )

Also note that nested functions are evaluated from the inside out, just like in mathematics. Thus, Python first reads the len() function, then the print() function.

Choosing a Name Which is a better variable name, m , min , or minutes ? Why? Hint: think about which code you would rather inherit from someone who is leaving the library: ts = m * 60 + s tot_sec = min * 60 + sec total_seconds = minutes * 60 + seconds Solution minutes is better because min might mean something like “minimum” (and actually does in Python, but we haven’t seen that yet).
Swapping Values Draw a table showing the values of the variables in this program after each statement is executed. In simple terms, what do the last three lines of this program do? x = 1.0 y = 3.0 swap = x x = y y = swap Solution swap = x # x->1.0 y->3.0 swap->1.0 x = y # x->3.0 y->3.0 swap->1.0 y = swap # x->3.0 y->1.0 swap->1.0 These three lines exchange the values in x and y using the swap variable for temporary storage. This is a fairly common programming idiom.
Predicting Values What is the final value of position in the program below? (Try to predict the value without running the program, then check your prediction.) initial = "left" position = initial initial = "right" Solution initial = "left" # Initial is assigned the string "left" position = initial # Position is assigned the variable initial, currently "left" initial = "right" # Initial is assigned the string "right" print(position) left The last assignment to position was “left”
Can you slice integers? If you assign a = 123 , what happens if you try to get the second digit of a ? Solution Numbers are not stored in the written representation, so they can’t be treated like strings. a = 123 print(a[1]) TypeError: 'int' object is not subscriptable
Slicing What does the following program print? library_name = 'social sciences' print('library_name[1:3] is:', library_name[1:3]) What does thing[low:high] do? What does thing[low:] (without a value after the colon) do? What does thing[:high] (without a value before the colon) do? What does thing[:] (just a colon) do? What does thing[number:negative-number] do? Solution library_name[1:3] is: oc It will slice the string, starting at the low index and ending an element before the high index It will slice the string, starting at the low index and stopping at the end of the string It will slice the string, starting at the beginning on the string, and ending an element before the high index It will print the entire string It will slice the string, starting the number index, and ending a distance of the absolute value of negative-number elements from the end of the string
Key Points Use variables to store values. Use meaningful variable names. Python is case-sensitive. Use print() to display values. Variables must be created before they are used. Variables persist between cells. Variables can be used in calculations. Use an index to get a single character from a string. Use a slice to get a substring. Use the built-in function len to find the length of a string.

Python Enhancement Proposals

  • Python »
  • PEP Index »

PEP 572 – Assignment Expressions

The importance of real code, exceptional cases, scope of the target, relative precedence of :=, change to evaluation order, differences between assignment expressions and assignment statements, specification changes during implementation, _pydecimal.py, datetime.py, sysconfig.py, simplifying list comprehensions, capturing condition values, changing the scope rules for comprehensions, alternative spellings, special-casing conditional statements, special-casing comprehensions, lowering operator precedence, allowing commas to the right, always requiring parentheses, why not just turn existing assignment into an expression, with assignment expressions, why bother with assignment statements, why not use a sublocal scope and prevent namespace pollution, style guide recommendations, acknowledgements, a numeric example, appendix b: rough code translations for comprehensions, appendix c: no changes to scope semantics.

This is a proposal for creating a way to assign to variables within an expression using the notation NAME := expr .

As part of this change, there is also an update to dictionary comprehension evaluation order to ensure key expressions are executed before value expressions (allowing the key to be bound to a name and then re-used as part of calculating the corresponding value).

During discussion of this PEP, the operator became informally known as “the walrus operator”. The construct’s formal name is “Assignment Expressions” (as per the PEP title), but they may also be referred to as “Named Expressions” (e.g. the CPython reference implementation uses that name internally).

Naming the result of an expression is an important part of programming, allowing a descriptive name to be used in place of a longer expression, and permitting reuse. Currently, this feature is available only in statement form, making it unavailable in list comprehensions and other expression contexts.

Additionally, naming sub-parts of a large expression can assist an interactive debugger, providing useful display hooks and partial results. Without a way to capture sub-expressions inline, this would require refactoring of the original code; with assignment expressions, this merely requires the insertion of a few name := markers. Removing the need to refactor reduces the likelihood that the code be inadvertently changed as part of debugging (a common cause of Heisenbugs), and is easier to dictate to another programmer.

During the development of this PEP many people (supporters and critics both) have had a tendency to focus on toy examples on the one hand, and on overly complex examples on the other.

The danger of toy examples is twofold: they are often too abstract to make anyone go “ooh, that’s compelling”, and they are easily refuted with “I would never write it that way anyway”.

The danger of overly complex examples is that they provide a convenient strawman for critics of the proposal to shoot down (“that’s obfuscated”).

Yet there is some use for both extremely simple and extremely complex examples: they are helpful to clarify the intended semantics. Therefore, there will be some of each below.

However, in order to be compelling , examples should be rooted in real code, i.e. code that was written without any thought of this PEP, as part of a useful application, however large or small. Tim Peters has been extremely helpful by going over his own personal code repository and picking examples of code he had written that (in his view) would have been clearer if rewritten with (sparing) use of assignment expressions. His conclusion: the current proposal would have allowed a modest but clear improvement in quite a few bits of code.

Another use of real code is to observe indirectly how much value programmers place on compactness. Guido van Rossum searched through a Dropbox code base and discovered some evidence that programmers value writing fewer lines over shorter lines.

Case in point: Guido found several examples where a programmer repeated a subexpression, slowing down the program, in order to save one line of code, e.g. instead of writing:

they would write:

Another example illustrates that programmers sometimes do more work to save an extra level of indentation:

This code tries to match pattern2 even if pattern1 has a match (in which case the match on pattern2 is never used). The more efficient rewrite would have been:

Syntax and semantics

In most contexts where arbitrary Python expressions can be used, a named expression can appear. This is of the form NAME := expr where expr is any valid Python expression other than an unparenthesized tuple, and NAME is an identifier.

The value of such a named expression is the same as the incorporated expression, with the additional side-effect that the target is assigned that value:

There are a few places where assignment expressions are not allowed, in order to avoid ambiguities or user confusion:

This rule is included to simplify the choice for the user between an assignment statement and an assignment expression – there is no syntactic position where both are valid.

Again, this rule is included to avoid two visually similar ways of saying the same thing.

This rule is included to disallow excessively confusing code, and because parsing keyword arguments is complex enough already.

This rule is included to discourage side effects in a position whose exact semantics are already confusing to many users (cf. the common style recommendation against mutable default values), and also to echo the similar prohibition in calls (the previous bullet).

The reasoning here is similar to the two previous cases; this ungrouped assortment of symbols and operators composed of : and = is hard to read correctly.

This allows lambda to always bind less tightly than := ; having a name binding at the top level inside a lambda function is unlikely to be of value, as there is no way to make use of it. In cases where the name will be used more than once, the expression is likely to need parenthesizing anyway, so this prohibition will rarely affect code.

This shows that what looks like an assignment operator in an f-string is not always an assignment operator. The f-string parser uses : to indicate formatting options. To preserve backwards compatibility, assignment operator usage inside of f-strings must be parenthesized. As noted above, this usage of the assignment operator is not recommended.

An assignment expression does not introduce a new scope. In most cases the scope in which the target will be bound is self-explanatory: it is the current scope. If this scope contains a nonlocal or global declaration for the target, the assignment expression honors that. A lambda (being an explicit, if anonymous, function definition) counts as a scope for this purpose.

There is one special case: an assignment expression occurring in a list, set or dict comprehension or in a generator expression (below collectively referred to as “comprehensions”) binds the target in the containing scope, honoring a nonlocal or global declaration for the target in that scope, if one exists. For the purpose of this rule the containing scope of a nested comprehension is the scope that contains the outermost comprehension. A lambda counts as a containing scope.

The motivation for this special case is twofold. First, it allows us to conveniently capture a “witness” for an any() expression, or a counterexample for all() , for example:

Second, it allows a compact way of updating mutable state from a comprehension, for example:

However, an assignment expression target name cannot be the same as a for -target name appearing in any comprehension containing the assignment expression. The latter names are local to the comprehension in which they appear, so it would be contradictory for a contained use of the same name to refer to the scope containing the outermost comprehension instead.

For example, [i := i+1 for i in range(5)] is invalid: the for i part establishes that i is local to the comprehension, but the i := part insists that i is not local to the comprehension. The same reason makes these examples invalid too:

While it’s technically possible to assign consistent semantics to these cases, it’s difficult to determine whether those semantics actually make sense in the absence of real use cases. Accordingly, the reference implementation [1] will ensure that such cases raise SyntaxError , rather than executing with implementation defined behaviour.

This restriction applies even if the assignment expression is never executed:

For the comprehension body (the part before the first “for” keyword) and the filter expression (the part after “if” and before any nested “for”), this restriction applies solely to target names that are also used as iteration variables in the comprehension. Lambda expressions appearing in these positions introduce a new explicit function scope, and hence may use assignment expressions with no additional restrictions.

Due to design constraints in the reference implementation (the symbol table analyser cannot easily detect when names are re-used between the leftmost comprehension iterable expression and the rest of the comprehension), named expressions are disallowed entirely as part of comprehension iterable expressions (the part after each “in”, and before any subsequent “if” or “for” keyword):

A further exception applies when an assignment expression occurs in a comprehension whose containing scope is a class scope. If the rules above were to result in the target being assigned in that class’s scope, the assignment expression is expressly invalid. This case also raises SyntaxError :

(The reason for the latter exception is the implicit function scope created for comprehensions – there is currently no runtime mechanism for a function to refer to a variable in the containing class scope, and we do not want to add such a mechanism. If this issue ever gets resolved this special case may be removed from the specification of assignment expressions. Note that the problem already exists for using a variable defined in the class scope from a comprehension.)

See Appendix B for some examples of how the rules for targets in comprehensions translate to equivalent code.

The := operator groups more tightly than a comma in all syntactic positions where it is legal, but less tightly than all other operators, including or , and , not , and conditional expressions ( A if C else B ). As follows from section “Exceptional cases” above, it is never allowed at the same level as = . In case a different grouping is desired, parentheses should be used.

The := operator may be used directly in a positional function call argument; however it is invalid directly in a keyword argument.

Some examples to clarify what’s technically valid or invalid:

Most of the “valid” examples above are not recommended, since human readers of Python source code who are quickly glancing at some code may miss the distinction. But simple cases are not objectionable:

This PEP recommends always putting spaces around := , similar to PEP 8 ’s recommendation for = when used for assignment, whereas the latter disallows spaces around = used for keyword arguments.)

In order to have precisely defined semantics, the proposal requires evaluation order to be well-defined. This is technically not a new requirement, as function calls may already have side effects. Python already has a rule that subexpressions are generally evaluated from left to right. However, assignment expressions make these side effects more visible, and we propose a single change to the current evaluation order:

  • In a dict comprehension {X: Y for ...} , Y is currently evaluated before X . We propose to change this so that X is evaluated before Y . (In a dict display like {X: Y} this is already the case, and also in dict((X, Y) for ...) which should clearly be equivalent to the dict comprehension.)

Most importantly, since := is an expression, it can be used in contexts where statements are illegal, including lambda functions and comprehensions.

Conversely, assignment expressions don’t support the advanced features found in assignment statements:

  • Multiple targets are not directly supported: x = y = z = 0 # Equivalent: (z := (y := (x := 0)))
  • Single assignment targets other than a single NAME are not supported: # No equivalent a [ i ] = x self . rest = []
  • Priority around commas is different: x = 1 , 2 # Sets x to (1, 2) ( x := 1 , 2 ) # Sets x to 1
  • Iterable packing and unpacking (both regular or extended forms) are not supported: # Equivalent needs extra parentheses loc = x , y # Use (loc := (x, y)) info = name , phone , * rest # Use (info := (name, phone, *rest)) # No equivalent px , py , pz = position name , phone , email , * other_info = contact
  • Inline type annotations are not supported: # Closest equivalent is "p: Optional[int]" as a separate declaration p : Optional [ int ] = None
  • Augmented assignment is not supported: total += tax # Equivalent: (total := total + tax)

The following changes have been made based on implementation experience and additional review after the PEP was first accepted and before Python 3.8 was released:

  • for consistency with other similar exceptions, and to avoid locking in an exception name that is not necessarily going to improve clarity for end users, the originally proposed TargetScopeError subclass of SyntaxError was dropped in favour of just raising SyntaxError directly. [3]
  • due to a limitation in CPython’s symbol table analysis process, the reference implementation raises SyntaxError for all uses of named expressions inside comprehension iterable expressions, rather than only raising them when the named expression target conflicts with one of the iteration variables in the comprehension. This could be revisited given sufficiently compelling examples, but the extra complexity needed to implement the more selective restriction doesn’t seem worthwhile for purely hypothetical use cases.

Examples from the Python standard library

env_base is only used on these lines, putting its assignment on the if moves it as the “header” of the block.

  • Current: env_base = os . environ . get ( "PYTHONUSERBASE" , None ) if env_base : return env_base
  • Improved: if env_base := os . environ . get ( "PYTHONUSERBASE" , None ): return env_base

Avoid nested if and remove one indentation level.

  • Current: if self . _is_special : ans = self . _check_nans ( context = context ) if ans : return ans
  • Improved: if self . _is_special and ( ans := self . _check_nans ( context = context )): return ans

Code looks more regular and avoid multiple nested if. (See Appendix A for the origin of this example.)

  • Current: reductor = dispatch_table . get ( cls ) if reductor : rv = reductor ( x ) else : reductor = getattr ( x , "__reduce_ex__" , None ) if reductor : rv = reductor ( 4 ) else : reductor = getattr ( x , "__reduce__" , None ) if reductor : rv = reductor () else : raise Error ( "un(deep)copyable object of type %s " % cls )
  • Improved: if reductor := dispatch_table . get ( cls ): rv = reductor ( x ) elif reductor := getattr ( x , "__reduce_ex__" , None ): rv = reductor ( 4 ) elif reductor := getattr ( x , "__reduce__" , None ): rv = reductor () else : raise Error ( "un(deep)copyable object of type %s " % cls )

tz is only used for s += tz , moving its assignment inside the if helps to show its scope.

  • Current: s = _format_time ( self . _hour , self . _minute , self . _second , self . _microsecond , timespec ) tz = self . _tzstr () if tz : s += tz return s
  • Improved: s = _format_time ( self . _hour , self . _minute , self . _second , self . _microsecond , timespec ) if tz := self . _tzstr (): s += tz return s

Calling fp.readline() in the while condition and calling .match() on the if lines make the code more compact without making it harder to understand.

  • Current: while True : line = fp . readline () if not line : break m = define_rx . match ( line ) if m : n , v = m . group ( 1 , 2 ) try : v = int ( v ) except ValueError : pass vars [ n ] = v else : m = undef_rx . match ( line ) if m : vars [ m . group ( 1 )] = 0
  • Improved: while line := fp . readline (): if m := define_rx . match ( line ): n , v = m . group ( 1 , 2 ) try : v = int ( v ) except ValueError : pass vars [ n ] = v elif m := undef_rx . match ( line ): vars [ m . group ( 1 )] = 0

A list comprehension can map and filter efficiently by capturing the condition:

Similarly, a subexpression can be reused within the main expression, by giving it a name on first use:

Note that in both cases the variable y is bound in the containing scope (i.e. at the same level as results or stuff ).

Assignment expressions can be used to good effect in the header of an if or while statement:

Particularly with the while loop, this can remove the need to have an infinite loop, an assignment, and a condition. It also creates a smooth parallel between a loop which simply uses a function call as its condition, and one which uses that as its condition but also uses the actual value.

An example from the low-level UNIX world:

Rejected alternative proposals

Proposals broadly similar to this one have come up frequently on python-ideas. Below are a number of alternative syntaxes, some of them specific to comprehensions, which have been rejected in favour of the one given above.

A previous version of this PEP proposed subtle changes to the scope rules for comprehensions, to make them more usable in class scope and to unify the scope of the “outermost iterable” and the rest of the comprehension. However, this part of the proposal would have caused backwards incompatibilities, and has been withdrawn so the PEP can focus on assignment expressions.

Broadly the same semantics as the current proposal, but spelled differently.

Since EXPR as NAME already has meaning in import , except and with statements (with different semantics), this would create unnecessary confusion or require special-casing (e.g. to forbid assignment within the headers of these statements).

(Note that with EXPR as VAR does not simply assign the value of EXPR to VAR – it calls EXPR.__enter__() and assigns the result of that to VAR .)

Additional reasons to prefer := over this spelling include:

  • In if f(x) as y the assignment target doesn’t jump out at you – it just reads like if f x blah blah and it is too similar visually to if f(x) and y .
  • import foo as bar
  • except Exc as var
  • with ctxmgr() as var

To the contrary, the assignment expression does not belong to the if or while that starts the line, and we intentionally allow assignment expressions in other contexts as well.

  • NAME = EXPR
  • if NAME := EXPR

reinforces the visual recognition of assignment expressions.

This syntax is inspired by languages such as R and Haskell, and some programmable calculators. (Note that a left-facing arrow y <- f(x) is not possible in Python, as it would be interpreted as less-than and unary minus.) This syntax has a slight advantage over ‘as’ in that it does not conflict with with , except and import , but otherwise is equivalent. But it is entirely unrelated to Python’s other use of -> (function return type annotations), and compared to := (which dates back to Algol-58) it has a much weaker tradition.

This has the advantage that leaked usage can be readily detected, removing some forms of syntactic ambiguity. However, this would be the only place in Python where a variable’s scope is encoded into its name, making refactoring harder.

Execution order is inverted (the indented body is performed first, followed by the “header”). This requires a new keyword, unless an existing keyword is repurposed (most likely with: ). See PEP 3150 for prior discussion on this subject (with the proposed keyword being given: ).

This syntax has fewer conflicts than as does (conflicting only with the raise Exc from Exc notation), but is otherwise comparable to it. Instead of paralleling with expr as target: (which can be useful but can also be confusing), this has no parallels, but is evocative.

One of the most popular use-cases is if and while statements. Instead of a more general solution, this proposal enhances the syntax of these two statements to add a means of capturing the compared value:

This works beautifully if and ONLY if the desired condition is based on the truthiness of the captured value. It is thus effective for specific use-cases (regex matches, socket reads that return '' when done), and completely useless in more complicated cases (e.g. where the condition is f(x) < 0 and you want to capture the value of f(x) ). It also has no benefit to list comprehensions.

Advantages: No syntactic ambiguities. Disadvantages: Answers only a fraction of possible use-cases, even in if / while statements.

Another common use-case is comprehensions (list/set/dict, and genexps). As above, proposals have been made for comprehension-specific solutions.

This brings the subexpression to a location in between the ‘for’ loop and the expression. It introduces an additional language keyword, which creates conflicts. Of the three, where reads the most cleanly, but also has the greatest potential for conflict (e.g. SQLAlchemy and numpy have where methods, as does tkinter.dnd.Icon in the standard library).

As above, but reusing the with keyword. Doesn’t read too badly, and needs no additional language keyword. Is restricted to comprehensions, though, and cannot as easily be transformed into “longhand” for-loop syntax. Has the C problem that an equals sign in an expression can now create a name binding, rather than performing a comparison. Would raise the question of why “with NAME = EXPR:” cannot be used as a statement on its own.

As per option 2, but using as rather than an equals sign. Aligns syntactically with other uses of as for name binding, but a simple transformation to for-loop longhand would create drastically different semantics; the meaning of with inside a comprehension would be completely different from the meaning as a stand-alone statement, while retaining identical syntax.

Regardless of the spelling chosen, this introduces a stark difference between comprehensions and the equivalent unrolled long-hand form of the loop. It is no longer possible to unwrap the loop into statement form without reworking any name bindings. The only keyword that can be repurposed to this task is with , thus giving it sneakily different semantics in a comprehension than in a statement; alternatively, a new keyword is needed, with all the costs therein.

There are two logical precedences for the := operator. Either it should bind as loosely as possible, as does statement-assignment; or it should bind more tightly than comparison operators. Placing its precedence between the comparison and arithmetic operators (to be precise: just lower than bitwise OR) allows most uses inside while and if conditions to be spelled without parentheses, as it is most likely that you wish to capture the value of something, then perform a comparison on it:

Once find() returns -1, the loop terminates. If := binds as loosely as = does, this would capture the result of the comparison (generally either True or False ), which is less useful.

While this behaviour would be convenient in many situations, it is also harder to explain than “the := operator behaves just like the assignment statement”, and as such, the precedence for := has been made as close as possible to that of = (with the exception that it binds tighter than comma).

Some critics have claimed that the assignment expressions should allow unparenthesized tuples on the right, so that these two would be equivalent:

(With the current version of the proposal, the latter would be equivalent to ((point := x), y) .)

However, adopting this stance would logically lead to the conclusion that when used in a function call, assignment expressions also bind less tight than comma, so we’d have the following confusing equivalence:

The less confusing option is to make := bind more tightly than comma.

It’s been proposed to just always require parentheses around an assignment expression. This would resolve many ambiguities, and indeed parentheses will frequently be needed to extract the desired subexpression. But in the following cases the extra parentheses feel redundant:

Frequently Raised Objections

C and its derivatives define the = operator as an expression, rather than a statement as is Python’s way. This allows assignments in more contexts, including contexts where comparisons are more common. The syntactic similarity between if (x == y) and if (x = y) belies their drastically different semantics. Thus this proposal uses := to clarify the distinction.

The two forms have different flexibilities. The := operator can be used inside a larger expression; the = statement can be augmented to += and its friends, can be chained, and can assign to attributes and subscripts.

Previous revisions of this proposal involved sublocal scope (restricted to a single statement), preventing name leakage and namespace pollution. While a definite advantage in a number of situations, this increases complexity in many others, and the costs are not justified by the benefits. In the interests of language simplicity, the name bindings created here are exactly equivalent to any other name bindings, including that usage at class or module scope will create externally-visible names. This is no different from for loops or other constructs, and can be solved the same way: del the name once it is no longer needed, or prefix it with an underscore.

(The author wishes to thank Guido van Rossum and Christoph Groth for their suggestions to move the proposal in this direction. [2] )

As expression assignments can sometimes be used equivalently to statement assignments, the question of which should be preferred will arise. For the benefit of style guides such as PEP 8 , two recommendations are suggested.

  • If either assignment statements or assignment expressions can be used, prefer statements; they are a clear declaration of intent.
  • If using assignment expressions would lead to ambiguity about execution order, restructure it to use statements instead.

The authors wish to thank Alyssa Coghlan and Steven D’Aprano for their considerable contributions to this proposal, and members of the core-mentorship mailing list for assistance with implementation.

Appendix A: Tim Peters’s findings

Here’s a brief essay Tim Peters wrote on the topic.

I dislike “busy” lines of code, and also dislike putting conceptually unrelated logic on a single line. So, for example, instead of:

instead. So I suspected I’d find few places I’d want to use assignment expressions. I didn’t even consider them for lines already stretching halfway across the screen. In other cases, “unrelated” ruled:

is a vast improvement over the briefer:

The original two statements are doing entirely different conceptual things, and slamming them together is conceptually insane.

In other cases, combining related logic made it harder to understand, such as rewriting:

as the briefer:

The while test there is too subtle, crucially relying on strict left-to-right evaluation in a non-short-circuiting or method-chaining context. My brain isn’t wired that way.

But cases like that were rare. Name binding is very frequent, and “sparse is better than dense” does not mean “almost empty is better than sparse”. For example, I have many functions that return None or 0 to communicate “I have nothing useful to return in this case, but since that’s expected often I’m not going to annoy you with an exception”. This is essentially the same as regular expression search functions returning None when there is no match. So there was lots of code of the form:

I find that clearer, and certainly a bit less typing and pattern-matching reading, as:

It’s also nice to trade away a small amount of horizontal whitespace to get another _line_ of surrounding code on screen. I didn’t give much weight to this at first, but it was so very frequent it added up, and I soon enough became annoyed that I couldn’t actually run the briefer code. That surprised me!

There are other cases where assignment expressions really shine. Rather than pick another from my code, Kirill Balunov gave a lovely example from the standard library’s copy() function in copy.py :

The ever-increasing indentation is semantically misleading: the logic is conceptually flat, “the first test that succeeds wins”:

Using easy assignment expressions allows the visual structure of the code to emphasize the conceptual flatness of the logic; ever-increasing indentation obscured it.

A smaller example from my code delighted me, both allowing to put inherently related logic in a single line, and allowing to remove an annoying “artificial” indentation level:

That if is about as long as I want my lines to get, but remains easy to follow.

So, in all, in most lines binding a name, I wouldn’t use assignment expressions, but because that construct is so very frequent, that leaves many places I would. In most of the latter, I found a small win that adds up due to how often it occurs, and in the rest I found a moderate to major win. I’d certainly use it more often than ternary if , but significantly less often than augmented assignment.

I have another example that quite impressed me at the time.

Where all variables are positive integers, and a is at least as large as the n’th root of x, this algorithm returns the floor of the n’th root of x (and roughly doubling the number of accurate bits per iteration):

It’s not obvious why that works, but is no more obvious in the “loop and a half” form. It’s hard to prove correctness without building on the right insight (the “arithmetic mean - geometric mean inequality”), and knowing some non-trivial things about how nested floor functions behave. That is, the challenges are in the math, not really in the coding.

If you do know all that, then the assignment-expression form is easily read as “while the current guess is too large, get a smaller guess”, where the “too large?” test and the new guess share an expensive sub-expression.

To my eyes, the original form is harder to understand:

This appendix attempts to clarify (though not specify) the rules when a target occurs in a comprehension or in a generator expression. For a number of illustrative examples we show the original code, containing a comprehension, and the translation, where the comprehension has been replaced by an equivalent generator function plus some scaffolding.

Since [x for ...] is equivalent to list(x for ...) these examples all use list comprehensions without loss of generality. And since these examples are meant to clarify edge cases of the rules, they aren’t trying to look like real code.

Note: comprehensions are already implemented via synthesizing nested generator functions like those in this appendix. The new part is adding appropriate declarations to establish the intended scope of assignment expression targets (the same scope they resolve to as if the assignment were performed in the block containing the outermost comprehension). For type inference purposes, these illustrative expansions do not imply that assignment expression targets are always Optional (but they do indicate the target binding scope).

Let’s start with a reminder of what code is generated for a generator expression without assignment expression.

  • Original code (EXPR usually references VAR): def f (): a = [ EXPR for VAR in ITERABLE ]
  • Translation (let’s not worry about name conflicts): def f (): def genexpr ( iterator ): for VAR in iterator : yield EXPR a = list ( genexpr ( iter ( ITERABLE )))

Let’s add a simple assignment expression.

  • Original code: def f (): a = [ TARGET := EXPR for VAR in ITERABLE ]
  • Translation: def f (): if False : TARGET = None # Dead code to ensure TARGET is a local variable def genexpr ( iterator ): nonlocal TARGET for VAR in iterator : TARGET = EXPR yield TARGET a = list ( genexpr ( iter ( ITERABLE )))

Let’s add a global TARGET declaration in f() .

  • Original code: def f (): global TARGET a = [ TARGET := EXPR for VAR in ITERABLE ]
  • Translation: def f (): global TARGET def genexpr ( iterator ): global TARGET for VAR in iterator : TARGET = EXPR yield TARGET a = list ( genexpr ( iter ( ITERABLE )))

Or instead let’s add a nonlocal TARGET declaration in f() .

  • Original code: def g (): TARGET = ... def f (): nonlocal TARGET a = [ TARGET := EXPR for VAR in ITERABLE ]
  • Translation: def g (): TARGET = ... def f (): nonlocal TARGET def genexpr ( iterator ): nonlocal TARGET for VAR in iterator : TARGET = EXPR yield TARGET a = list ( genexpr ( iter ( ITERABLE )))

Finally, let’s nest two comprehensions.

  • Original code: def f (): a = [[ TARGET := i for i in range ( 3 )] for j in range ( 2 )] # I.e., a = [[0, 1, 2], [0, 1, 2]] print ( TARGET ) # prints 2
  • Translation: def f (): if False : TARGET = None def outer_genexpr ( outer_iterator ): nonlocal TARGET def inner_generator ( inner_iterator ): nonlocal TARGET for i in inner_iterator : TARGET = i yield i for j in outer_iterator : yield list ( inner_generator ( range ( 3 ))) a = list ( outer_genexpr ( range ( 2 ))) print ( TARGET )

Because it has been a point of confusion, note that nothing about Python’s scoping semantics is changed. Function-local scopes continue to be resolved at compile time, and to have indefinite temporal extent at run time (“full closures”). Example:

This document has been placed in the public domain.

Source: https://github.com/python/peps/blob/main/peps/pep-0572.rst

Last modified: 2023-10-11 12:05:51 GMT

  • Python Basics
  • Interview Questions
  • Python Quiz
  • Popular Packages
  • Python Projects
  • Practice Python
  • AI With Python
  • Learn Python3
  • Python Automation
  • Python Web Dev
  • DSA with Python
  • Python OOPs
  • Dictionaries
  • Python Operators
  • Precedence and Associativity of Operators in Python
  • Python Arithmetic Operators
  • Difference between / vs. // operator in Python
  • Python - Star or Asterisk operator ( * )
  • What does the Double Star operator mean in Python?
  • Division Operators in Python
  • Modulo operator (%) in Python
  • Python Logical Operators
  • Python OR Operator
  • Difference between 'and' and '&' in Python
  • not Operator in Python | Boolean Logic
  • Ternary Operator in Python
  • Python Bitwise Operators

Python Assignment Operators

Assignment operators in python.

  • Walrus Operator in Python 3.8
  • Increment += and Decrement -= Assignment Operators in Python
  • Merging and Updating Dictionary Operators in Python 3.9
  • New '=' Operator in Python3.8 f-string

Python Relational Operators

  • Comparison Operators in Python
  • Python NOT EQUAL operator
  • Difference between == and is operator in Python
  • Chaining comparison operators in Python
  • Python Membership and Identity Operators
  • Difference between != and is not operator in Python

The Python Operators are used to perform operations on values and variables. These are the special symbols that carry out arithmetic, logical, and bitwise computations. The value the operator operates on is known as the Operand. Here, we will cover Different Assignment operators in Python .

Here are the Assignment Operators in Python with examples.

Assignment Operator

Assignment Operators are used to assign values to variables. This operator is used to assign the value of the right side of the expression to the left side operand.

Addition Assignment Operator

The Addition Assignment Operator is used to add the right-hand side operand with the left-hand side operand and then assigning the result to the left operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the addition assignment operator which will first perform the addition operation and then assign the result to the variable on the left-hand side.

S ubtraction Assignment Operator

The Subtraction Assignment Operator is used to subtract the right-hand side operand from the left-hand side operand and then assigning the result to the left-hand side operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the subtraction assignment operator which will first perform the subtraction operation and then assign the result to the variable on the left-hand side.

M ultiplication Assignment Operator

The Multiplication Assignment Operator is used to multiply the right-hand side operand with the left-hand side operand and then assigning the result to the left-hand side operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the multiplication assignment operator which will first perform the multiplication operation and then assign the result to the variable on the left-hand side.

D ivision Assignment Operator

The Division Assignment Operator is used to divide the left-hand side operand with the right-hand side operand and then assigning the result to the left operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the division assignment operator which will first perform the division operation and then assign the result to the variable on the left-hand side.

M odulus Assignment Operator

The Modulus Assignment Operator is used to take the modulus, that is, it first divides the operands and then takes the remainder and assigns it to the left operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the modulus assignment operator which will first perform the modulus operation and then assign the result to the variable on the left-hand side.

F loor Division Assignment Operator

The Floor Division Assignment Operator is used to divide the left operand with the right operand and then assigs the result(floor value) to the left operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the floor division assignment operator which will first perform the floor division operation and then assign the result to the variable on the left-hand side.

Exponentiation Assignment Operator

The Exponentiation Assignment Operator is used to calculate the exponent(raise power) value using operands and then assigning the result to the left operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the exponentiation assignment operator which will first perform exponent operation and then assign the result to the variable on the left-hand side.

Bitwise AND Assignment Operator

The Bitwise AND Assignment Operator is used to perform Bitwise AND operation on both operands and then assigning the result to the left operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the bitwise AND assignment operator which will first perform Bitwise AND operation and then assign the result to the variable on the left-hand side.

Bitwise OR Assignment Operator

The Bitwise OR Assignment Operator is used to perform Bitwise OR operation on the operands and then assigning result to the left operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the bitwise OR assignment operator which will first perform bitwise OR operation and then assign the result to the variable on the left-hand side.

Bitwise XOR Assignment Operator 

The Bitwise XOR Assignment Operator is used to perform Bitwise XOR operation on the operands and then assigning result to the left operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the bitwise XOR assignment operator which will first perform bitwise XOR operation and then assign the result to the variable on the left-hand side.

Bitwise Right Shift Assignment Operator

The Bitwise Right Shift Assignment Operator is used to perform Bitwise Right Shift Operation on the operands and then assign result to the left operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the bitwise right shift assignment operator which will first perform bitwise right shift operation and then assign the result to the variable on the left-hand side.

Bitwise Left Shift Assignment Operator

The Bitwise Left Shift Assignment Operator is used to perform Bitwise Left Shift Opertator on the operands and then assign result to the left operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the bitwise left shift assignment operator which will first perform bitwise left shift operation and then assign the result to the variable on the left-hand side.

Walrus Operator

The Walrus Operator in Python is a new assignment operator which is introduced in Python version 3.8 and higher. This operator is used to assign a value to a variable within an expression.

Example: In this code, we have a Python list of integers. We have used Python Walrus assignment operator within the Python while loop . The operator will solve the expression on the right-hand side and assign the value to the left-hand side operand ‘x’ and then execute the remaining code.

author

Please Login to comment...

Similar reads.

  • Python-Operators

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

Unpacking in Python: Beyond Parallel Assignment

python variable assignment comma

  • Introduction

Unpacking in Python refers to an operation that consists of assigning an iterable of values to a tuple (or list ) of variables in a single assignment statement. As a complement, the term packing can be used when we collect several values in a single variable using the iterable unpacking operator, * .

Historically, Python developers have generically referred to this kind of operation as tuple unpacking . However, since this Python feature has turned out to be quite useful and popular, it's been generalized to all kinds of iterables. Nowadays, a more modern and accurate term would be iterable unpacking .

In this tutorial, we'll learn what iterable unpacking is and how we can take advantage of this Python feature to make our code more readable, maintainable, and pythonic.

Additionally, we'll also cover some practical examples of how to use the iterable unpacking feature in the context of assignments operations, for loops, function definitions, and function calls.

  • Packing and Unpacking in Python

Python allows a tuple (or list ) of variables to appear on the left side of an assignment operation. Each variable in the tuple can receive one value (or more, if we use the * operator) from an iterable on the right side of the assignment.

For historical reasons, Python developers used to call this tuple unpacking . However, since this feature has been generalized to all kind of iterable, a more accurate term would be iterable unpacking and that's what we'll call it in this tutorial.

Unpacking operations have been quite popular among Python developers because they can make our code more readable, and elegant. Let's take a closer look to unpacking in Python and see how this feature can improve our code.

  • Unpacking Tuples

In Python, we can put a tuple of variables on the left side of an assignment operator ( = ) and a tuple of values on the right side. The values on the right will be automatically assigned to the variables on the left according to their position in the tuple . This is commonly known as tuple unpacking in Python. Check out the following example:

When we put tuples on both sides of an assignment operator, a tuple unpacking operation takes place. The values on the right are assigned to the variables on the left according to their relative position in each tuple . As you can see in the above example, a will be 1 , b will be 2 , and c will be 3 .

To create a tuple object, we don't need to use a pair of parentheses () as delimiters. This also works for tuple unpacking, so the following syntaxes are equivalent:

Since all these variations are valid Python syntax, we can use any of them, depending on the situation. Arguably, the last syntax is more commonly used when it comes to unpacking in Python.

When we are unpacking values into variables using tuple unpacking, the number of variables on the left side tuple must exactly match the number of values on the right side tuple . Otherwise, we'll get a ValueError .

For example, in the following code, we use two variables on the left and three values on the right. This will raise a ValueError telling us that there are too many values to unpack:

Note: The only exception to this is when we use the * operator to pack several values in one variable as we'll see later on.

On the other hand, if we use more variables than values, then we'll get a ValueError but this time the message says that there are not enough values to unpack:

If we use a different number of variables and values in a tuple unpacking operation, then we'll get a ValueError . That's because Python needs to unambiguously know what value goes into what variable, so it can do the assignment accordingly.

  • Unpacking Iterables

The tuple unpacking feature got so popular among Python developers that the syntax was extended to work with any iterable object. The only requirement is that the iterable yields exactly one item per variable in the receiving tuple (or list ).

Check out the following examples of how iterable unpacking works in Python:

When it comes to unpacking in Python, we can use any iterable on the right side of the assignment operator. The left side can be filled with a tuple or with a list of variables. Check out the following example in which we use a tuple on the right side of the assignment statement:

It works the same way if we use the range() iterator:

Even though this is a valid Python syntax, it's not commonly used in real code and maybe a little bit confusing for beginner Python developers.

Finally, we can also use set objects in unpacking operations. However, since sets are unordered collection, the order of the assignments can be sort of incoherent and can lead to subtle bugs. Check out the following example:

If we use sets in unpacking operations, then the final order of the assignments can be quite different from what we want and expect. So, it's best to avoid using sets in unpacking operations unless the order of assignment isn't important to our code.

  • Packing With the * Operator

The * operator is known, in this context, as the tuple (or iterable) unpacking operator . It extends the unpacking functionality to allow us to collect or pack multiple values in a single variable. In the following example, we pack a tuple of values into a single variable by using the * operator:

For this code to work, the left side of the assignment must be a tuple (or a list ). That's why we use a trailing comma. This tuple can contain as many variables as we need. However, it can only contain one starred expression .

We can form a stared expression using the unpacking operator, * , along with a valid Python identifier, just like the *a in the above code. The rest of the variables in the left side tuple are called mandatory variables because they must be filled with concrete values, otherwise, we'll get an error. Here's how this works in practice.

Packing the trailing values in b :

Packing the starting values in a :

Packing one value in a because b and c are mandatory:

Packing no values in a ( a defaults to [] ) because b , c , and d are mandatory:

Supplying no value for a mandatory variable ( e ), so an error occurs:

Packing values in a variable with the * operator can be handy when we need to collect the elements of a generator in a single variable without using the list() function. In the following examples, we use the * operator to pack the elements of a generator expression and a range object to a individual variable:

In these examples, the * operator packs the elements in gen , and ran into g and r respectively. With his syntax, we avoid the need of calling list() to create a list of values from a range object, a generator expression, or a generator function.

Notice that we can't use the unpacking operator, * , to pack multiple values into one variable without adding a trailing comma to the variable on the left side of the assignment. So, the following code won't work:

If we try to use the * operator to pack several values into a single variable, then we need to use the singleton tuple syntax. For example, to make the above example works, we just need to add a comma after the variable r , like in *r, = range(10) .

  • Using Packing and Unpacking in Practice

Packing and unpacking operations can be quite useful in practice. They can make your code clear, readable, and pythonic. Let's take a look at some common use-cases of packing and unpacking in Python.

  • Assigning in Parallel

One of the most common use-cases of unpacking in Python is what we can call parallel assignment . Parallel assignment allows you to assign the values in an iterable to a tuple (or list ) of variables in a single and elegant statement.

For example, let's suppose we have a database about the employees in our company and we need to assign each item in the list to a descriptive variable. If we ignore how iterable unpacking works in Python, we can get ourself writing code like this:

Even though this code works, the index handling can be clumsy, hard to type, and confusing. A cleaner, more readable, and pythonic solution can be coded as follows:

Using unpacking in Python, we can solve the problem of the previous example with a single, straightforward, and elegant statement. This tiny change would make our code easier to read and understand for newcomers developers.

  • Swapping Values Between Variables

Another elegant application of unpacking in Python is swapping values between variables without using a temporary or auxiliary variable. For example, let's suppose we need to swap the values of two variables a and b . To do this, we can stick to the traditional solution and use a temporary variable to store the value to be swapped as follows:

This procedure takes three steps and a new temporary variable. If we use unpacking in Python, then we can achieve the same result in a single and concise step:

In statement a, b = b, a , we're reassigning a to b and b to a in one line of code. This is a lot more readable and straightforward. Also, notice that with this technique, there is no need for a new temporary variable.

  • Collecting Multiple Values With *

When we're working with some algorithms, there may be situations in which we need to split the values of an iterable or a sequence in chunks of values for further processing. The following example shows how to uses a list and slicing operations to do so:

Check out our hands-on, practical guide to learning Git, with best-practices, industry-accepted standards, and included cheat sheet. Stop Googling Git commands and actually learn it!

Even though this code works as we expect, dealing with indices and slices can be a little bit annoying, difficult to read, and confusing for beginners. It has also the drawback of making the code rigid and difficult to maintain. In this situation, the iterable unpacking operator, * , and its ability to pack several values in a single variable can be a great tool. Check out this refactoring of the above code:

The line first, *body, last = seq makes the magic here. The iterable unpacking operator, * , collects the elements in the middle of seq in body . This makes our code more readable, maintainable, and flexible. You may be thinking, why more flexible? Well, suppose that seq changes its length in the road and you still need to collect the middle elements in body . In this case, since we're using unpacking in Python, no changes are needed for our code to work. Check out this example:

If we were using sequence slicing instead of iterable unpacking in Python, then we would need to update our indices and slices to correctly catch the new values.

The use of the * operator to pack several values in a single variable can be applied in a variety of configurations, provided that Python can unambiguously determine what element (or elements) to assign to each variable. Take a look at the following examples:

We can move the * operator in the tuple (or list ) of variables to collect the values according to our needs. The only condition is that Python can determine to what variable assign each value.

It's important to note that we can't use more than one stared expression in the assignment If we do so, then we'll get a SyntaxError as follows:

If we use two or more * in an assignment expression, then we'll get a SyntaxError telling us that two-starred expression were found. This is that way because Python can't unambiguously determine what value (or values) we want to assign to each variable.

  • Dropping Unneeded Values With *

Another common use-case of the * operator is to use it with a dummy variable name to drop some useless or unneeded values. Check out the following example:

For a more insightful example of this use-case, suppose we're developing a script that needs to determine the Python version we're using. To do this, we can use the sys.version_info attribute . This attribute returns a tuple containing the five components of the version number: major , minor , micro , releaselevel , and serial . But we just need major , minor , and micro for our script to work, so we can drop the rest. Here's an example:

Now, we have three new variables with the information we need. The rest of the information is stored in the dummy variable _ , which can be ignored by our program. This can make clear to newcomer developers that we don't want to (or need to) use the information stored in _ cause this character has no apparent meaning.

Note: By default, the underscore character _ is used by the Python interpreter to store the resulting value of the statements we run in an interactive session. So, in this context, the use of this character to identify dummy variables can be ambiguous.

  • Returning Tuples in Functions

Python functions can return several values separated by commas. Since we can define tuple objects without using parentheses, this kind of operation can be interpreted as returning a tuple of values. If we code a function that returns multiple values, then we can perform iterable packing and unpacking operations with the returned values.

Check out the following example in which we define a function to calculate the square and cube of a given number:

If we define a function that returns comma-separated values, then we can do any packing or unpacking operation on these values.

  • Merging Iterables With the * Operator

Another interesting use-case for the unpacking operator, * , is the ability to merge several iterables into a final sequence. This functionality works for lists, tuples, and sets. Take a look at the following examples:

We can use the iterable unpacking operator, * , when defining sequences to unpack the elements of a subsequence (or iterable) into the final sequence. This will allow us to create sequences on the fly from other existing sequences without calling methods like append() , insert() , and so on.

The last two examples show that this is also a more readable and efficient way to concatenate iterables. Instead of writing list(my_set) + my_list + list(my_tuple) + list(range(1, 4)) + list(my_str) we just write [*my_set, *my_list, *my_tuple, *range(1, 4), *my_str] .

  • Unpacking Dictionaries With the ** Operator

In the context of unpacking in Python, the ** operator is called the dictionary unpacking operator . The use of this operator was extended by PEP 448 . Now, we can use it in function calls, in comprehensions and generator expressions, and in displays .

A basic use-case for the dictionary unpacking operator is to merge multiple dictionaries into one final dictionary with a single expression. Let's see how this works:

If we use the dictionary unpacking operator inside a dictionary display, then we can unpack dictionaries and combine them to create a final dictionary that includes the key-value pairs of the original dictionaries, just like we did in the above code.

An important point to note is that, if the dictionaries we're trying to merge have repeated or common keys, then the values of the right-most dictionary will override the values of the left-most dictionary. Here's an example:

Since the a key is present in both dictionaries, the value that prevail comes from vowels , which is the right-most dictionary. This happens because Python starts adding the key-value pairs from left to right. If, in the process, Python finds keys that already exit, then the interpreter updates that keys with the new value. That's why the value of the a key is lowercased in the above example.

  • Unpacking in For-Loops

We can also use iterable unpacking in the context of for loops. When we run a for loop, the loop assigns one item of its iterable to the target variable in every iteration. If the item to be assigned is an iterable, then we can use a tuple of target variables. The loop will unpack the iterable at hand into the tuple of target variables.

As an example, let's suppose we have a file containing data about the sales of a company as follows:

From this table, we can build a list of two-elements tuples. Each tuple will contain the name of the product, the price, and the sold units. With this information, we want to calculate the income of each product. To do this, we can use a for loop like this:

This code works as expected. However, we're using indices to get access to individual elements of each tuple . This can be difficult to read and to understand by newcomer developers.

Let's take a look at an alternative implementation using unpacking in Python:

We're now using iterable unpacking in our for loop. This makes our code way more readable and maintainable because we're using descriptive names to identify the elements of each tuple . This tiny change will allow a newcomer developer to quickly understand the logic behind the code.

It's also possible to use the * operator in a for loop to pack several items in a single target variable:

In this for loop, we're catching the first element of each sequence in first . Then the * operator catches a list of values in its target variable rest .

Finally, the structure of the target variables must agree with the structure of the iterable. Otherwise, we'll get an error. Take a look at the following example:

In the first loop, the structure of the target variables, (a, b), c , agrees with the structure of the items in the iterable, ((1, 2), 2) . In this case, the loop works as expected. In contrast, the second loop uses a structure of target variables that don't agree with the structure of the items in the iterable, so the loop fails and raises a ValueError .

  • Packing and Unpacking in Functions

We can also use Python's packing and unpacking features when defining and calling functions. This is a quite useful and popular use-case of packing and unpacking in Python.

In this section, we'll cover the basics of how to use packing and unpacking in Python functions either in the function definition or in the function call.

Note: For a more insightful and detailed material on these topics, check out Variable-Length Arguments in Python with *args and **kwargs .

  • Defining Functions With * and **

We can use the * and ** operators in the signature of Python functions. This will allow us to call the function with a variable number of positional arguments ( * ) or with a variable number of keyword arguments, or both. Let's consider the following function:

The above function requires at least one argument called required . It can accept a variable number of positional and keyword arguments as well. In this case, the * operator collects or packs extra positional arguments in a tuple called args and the ** operator collects or packs extra keyword arguments in a dictionary called kwargs . Both, args and kwargs , are optional and automatically default to () and {} respectively.

Even though the names args and kwargs are widely used by the Python community, they're not a requirement for these techniques to work. The syntax just requires * or ** followed by a valid identifier. So, if you can give meaningful names to these arguments, then do it. That will certainly improve your code's readability.

  • Calling Functions With * and **

When calling functions, we can also benefit from the use of the * and ** operator to unpack collections of arguments into separate positional or keyword arguments respectively. This is the inverse of using * and ** in the signature of a function. In the signature, the operators mean collect or pack a variable number of arguments in one identifier. In the call, they mean unpack an iterable into several arguments.

Here's a basic example of how this works:

Here, the * operator unpacks sequences like ["Welcome", "to"] into positional arguments. Similarly, the ** operator unpacks dictionaries into arguments whose names match the keys of the unpacked dictionary.

We can also combine this technique and the one covered in the previous section to write quite flexible functions. Here's an example:

The use of the * and ** operators, when defining and calling Python functions, will give them extra capabilities and make them more flexible and powerful.

Iterable unpacking turns out to be a pretty useful and popular feature in Python. This feature allows us to unpack an iterable into several variables. On the other hand, packing consists of catching several values into one variable using the unpacking operator, * .

In this tutorial, we've learned how to use iterable unpacking in Python to write more readable, maintainable, and pythonic code.

With this knowledge, we are now able to use iterable unpacking in Python to solve common problems like parallel assignment and swapping values between variables. We're also able to use this Python feature in other structures like for loops, function calls, and function definitions.

You might also like...

  • Hidden Features of Python
  • Python Docstrings
  • Handling Unix Signals in Python
  • The Best Machine Learning Libraries in Python
  • Guide to Sending HTTP Requests in Python with urllib3

Improve your dev skills!

Get tutorials, guides, and dev jobs in your inbox.

No spam ever. Unsubscribe at any time. Read our Privacy Policy.

Leodanis is an industrial engineer who loves Python and software development. He is a self-taught Python programmer with 5+ years of experience building desktop applications with PyQt.

In this article

python variable assignment comma

Building Your First Convolutional Neural Network With Keras

Most resources start with pristine datasets, start at importing and finish at validation. There's much more to know. Why was a class predicted? Where was...

David Landup

Data Visualization in Python with Matplotlib and Pandas

Data Visualization in Python with Matplotlib and Pandas is a course designed to take absolute beginners to Pandas and Matplotlib, with basic Python knowledge, and...

© 2013- 2024 Stack Abuse. All rights reserved.

IMAGES

  1. python: comma, = assignment! (beginner

    python variable assignment comma

  2. comma separated string printing

    python variable assignment comma

  3. Variable Assignment in Python

    python variable assignment comma

  4. Variable Types in Python

    python variable assignment comma

  5. Learn Python Programming Tutorial 4

    python variable assignment comma

  6. Python Variables and Data Types

    python variable assignment comma

VIDEO

  1. #Python

  2. Lesson 1 Subprograms

  3. "Mastering Assignment Operators in Python: A Comprehensive Guide"

  4. How does Python assign Variables 🤔? #pythonprogramming #shorts #softwaredevelopment

  5. Python Simple Variable Assignment

  6. #03.Variables in Python

COMMENTS

  1. How does Python's comma operator work during assignment?

    32. Python does not have a "comma operator" as in C. Instead, the comma indicates that a tuple should be constructed. The right-hand side of. a, b = a + b, a. is a tuple with th two items a + b and a. On the left-hand side of an assignment, the comma indicates that sequence unpacking should be performed according to the rules you quoted: a will ...

  2. Python's Assignment Operator: Write Robust Assignments

    Here, variable represents a generic Python variable, while expression represents any Python object that you can provide as a concrete value—also known as a literal—or an expression that evaluates to a value. To execute an assignment statement like the above, Python runs the following steps: Evaluate the right-hand expression to produce a concrete value or object.

  3. Variable Assignment

    Variable Assignment. Think of a variable as a name attached to a particular object. In Python, variables need not be declared or defined in advance, as is the case in many other programming languages. To create a variable, you just assign it a value and then start using it. Assignment is done with a single equals sign ( = ).

  4. Python Variable Assignment. Explaining One Of The Most Fundamental

    This article aims to explain how Python variable assignment works. Photo by Arian Darvishi on Unsplash The Basics: Variables — Object Types And Scope ... Comma In Integer Variables. Commas are treated as a sequence of variables e.g. 9,8,7 are three numeric variables 3. Operations. Allows us to perform computation on variables;

  5. python: comma, = assignment! (beginner

    today I talk about the 1-ary unpacking assignment and an example and why it's useful!- variable unpackings: https://youtu.be/ObWh1AYClI0playlist: https://www...

  6. Assignments

    Assignments. One of the basic operations in any computer language is the assignment statement. The assignment statement allows us to associate a variable name with a value, so we can more easily manipulate our data. In python, like many other languages, the equal sign ( =) is used to assign a value to a variable; the variable name is put on the ...

  7. Variables in Python

    To create a variable, you just assign it a value and then start using it. Assignment is done with a single equals sign ( = ): Python. >>> n = 300. This is read or interpreted as " n is assigned the value 300 .". Once this is done, n can be used in a statement or expression, and its value will be substituted: Python.

  8. Meaning of using commas and underscores with Python assignment operator

    The _ in the Python shell also refers to the value of the last operation. Hence >>> 1 1 >>> _ 1 The commas refer to tuple unpacking. What happens is that the return value is a tuple, and so it is unpacked into the variables separated by commas, in the order of the tuple's elements.

  9. Python Variables

    Variable Assignment in Python. Python variables are created when a value is assigned to them using the equals sign (=) operator. For example, the following code snippet assigns the integer value 5 to the variable x: x = 5. From this point forward, whenever x is referenced in the code, it will have the value 5.

  10. Python Variables: A Beginner's Guide to Declaring, Assigning, and

    Just assign a value to a variable using the = operator e.g. variable_name = value. That's it. The following creates a variable with the integer value. Example: Declare a Variable in Python. num = 10. Try it. In the above example, we declared a variable named num and assigned an integer value 10 to it.

  11. How To Use Assignment Expressions in Python

    Python 3.8, released in October 2019, adds assignment expressions to Python via the := syntax. The assignment expression syntax is also sometimes called "the walrus operator" because := vaguely resembles a walrus with tusks. Assignment expressions allow variable assignments to occur inside of larger expressions.

  12. 1.6. Variables and Assignment

    A variable is a name for a value. An assignment statement associates a variable name on the left of the equal sign with the value of an expression calculated from the right of the equal sign. Enter. width. Once a variable is assigned a value, the variable can be used in place of that value. The response to the expression width is the same as if ...

  13. Variables and Assignment

    In Python, a single equals sign = is the "assignment operator." (A double equals sign == is the "real" equals sign.) Variables are names for values. In Python the = symbol assigns the value on the right to the name on the left. The variable is created when a value is assigned to it. Here, Python assigns an age to a variable age and a ...

  14. meaning of comma operator in python

    A comma forms a tuple, which in Python looks just like an immutable list. Python does destructuring assignment, found in a few other languages, e.g. modern JavaScript. In short, a single assignment can map several left-hand variables to the same number of right-hand values: foo, bar = 1, 2. This is equivalent to foo = 1 and bar = 2 done in one go.

  15. PEP 572

    Unparenthesized assignment expressions are prohibited for the value of a keyword argument in a call. Example: foo(x = y := f(x)) # INVALID foo(x=(y := f(x))) # Valid, though probably confusing. This rule is included to disallow excessively confusing code, and because parsing keyword arguments is complex enough already.

  16. What does a comma do in a python assignment

    Note that multiple assignment is really just a combination of tuple packing and sequence unpacking. Note this portion: Sequence unpacking requires that there are as many variables on the left side of the equals sign as there are elements in the sequence. The statement before,err = TG.quad(fnx, -N/2, -x) fulfills this requirement, but b,a = 5 ...

  17. Assignment Operators in Python

    The Walrus Operator in Python is a new assignment operator which is introduced in Python version 3.8 and higher. This operator is used to assign a value to a variable within an expression. Syntax: a := expression. Example: In this code, we have a Python list of integers. We have used Python Walrus assignment operator within the Python while loop.

  18. Python args and kwargs: Demystified

    When you use the unpacking operator with variable assignment, Python requires that your resulting variable is either a list or a tuple. ... However, if you want to unpack all items of the variable-length iterable into a single variable, a, then you need to add the comma (,) without naming a second variable. Python will then unpack all items ...

  19. Python: setting two variable values separated by a comma in python

    8. Your two snippets do different things: try with a, b and c equal to 7, 8 and 9 respectively. The first snippet sets the three variables to 9, 8 and 9. In other words, max(a, b) is calculated before a is assigned to the value of c. Essentially, all that a, b = c, max(a, b) does is push two values onto the stack; the variables a and b are then ...

  20. Unpacking in Python: Beyond Parallel Assignment

    Packing and Unpacking in Python. Python allows a tuple (or list) of variables to appear on the left side of an assignment operation. Each variable in the tuple can receive one value (or more, if we use the * operator) from an iterable on the right side of the assignment. For historical reasons, Python developers used to call this tuple unpacking.