116 Renewable Energy Essay Topics

🏆 best essay topics on renewable energy, 🌶️ hot renewable energy essay topics, 👍 good renewable energy research topics & essay examples, 💡 simple renewable energy essay ideas, ❓ renewable energy research questions.

  • Solving the Climate Change Crisis by Using Renewable Energy Sources
  • How Wind Turbines Convert Wind Energy into Electrical Energy?
  • Renewable Energy Technology in Egypt
  • Discussion of Renewable Energy Resources
  • Siemens Energy: Renewable Energy System
  • The Use of Renewable Energy: Advantages and Disadvantages
  • Renewable Energy: Why Do We Need It?
  • Solar Energy: Advantages and Disadvantages Renewable energy sources are being supported and invested in by governments to instigate a new environment-friendly technology.
  • Wind Energy as an Alternative Source While energy is a must for our survival, wind energy as a seemingly perpetual source of energy is the potential answer to the energy security of our generations to come.
  • Solar Energy and Its Impact on Environment The purpose of this paper is to determine the impact of solar energy on the environment. The major positive impact is the minimal emission of greenhouse gases.
  • Renewable Energy Sources: Popularity and Benefits Renewable fuels are not as pollutive as fossil fuels; they can be reproduced quickly from domestic resources. They became popular because of the decreasing amount of fossil fuels.
  • Utilization of Solar Energy for Thermal Desalination The following research is set to outline the prospects of utilization of solar energy for thermal desalination technologies.
  • Renewable Energy Sources for Saudi Arabia This paper will provide background information on the Kingdom of Saudi Arabia, its energy resources, and how it may become more modern and efficient.
  • The G20 Countries’ Competitiveness in Renewable Energy Resources “Assessing national renewable energy competitiveness of the G20” by Fang et al. presents an assessment of competitiveness in renewable energy resources among G20 countries.
  • Discussion of Realization of Solar Energy Company ABC is interested in creating a “solar” project which will fully install and staff solar panels to ensure the safe transformation of solar energy into electricity.
  • Solar Power as the Best Source of Energy The concepts of environmental conservation and sustainability have forced many countries and organizations to consider the best strategies or processes for generating electricity.
  • Sunburst Renewable Energy Corporation: Business Structuring The proposed Sunburst Renewable Energy Corporation will function on a captivating value statement in product strategy and customer relationships as the core instruments of sustainable operations.
  • Renewable Energy Sources: Definition, Types and Stocks This research report analyzes the growing interest of the use renewable energy as an alternative to the non-renewable energy.
  • The Concept of Sustainability in Energy Plan for 2030-2040 The paper discusses the concept of sustainability takes a central role in the global discussion and presents of environment safety plan.
  • Full Renewable Energy Plan Feasibility for 2030-2040 This paper argues that green energy in its current state will struggle to meet humanity’s demand and the development of better hybrid, integrated grids is required.
  • Environmental Degradation and Renewable Energy The global community relies on the surrounding environment for food production, transport, and economic development.
  • Renewable Energy in Japan: Clean Energy Transition Renewable energy in Japan became significantly important after the Fukushima Daiichi tsunami that struck Japan in 2011.
  • Future of 100% Renewable Energy This article explores the future of renewable green energy and a review the topical studies related to 100% renewable energy.
  • Profitability of Onshore and Offshore Wind Energy in Australia Undoubtedly, the recent increase in popularity of campaigns to decarbonize the globe proves renewable energy to be a current and future trend globally.
  • Renewable Energy: The Use of Fossil Fuel The paper states that having a combination of renewable energy sources is becoming critical in the global effort to reduce the use of fossil fuels.
  • Is Nuclear Power Renewable Energy? Renewable energy is obtained from the naturally-occurring elements, implying that it can be easily accessed, cheaply generated, and conveniently supplied to consumers.
  • Solar Energy in China and Its Influence on Climate Change The influence of solar energy on climate change has impacted production, the advancement of solar energy has impacted climate change in the geography of China.
  • Full Renewable Energy Plan Feasibility: 2030-2040 The paper argues that green energy in its current state will struggle to meet the humanity’s demand and the development of better hybrid, integrated grids is required.
  • Energy Efficiency and Renewable Energy Utilization This paper aims at expounding the effectiveness of renewable energy and the utilization of energy efficiency in regard to climate change.
  • A World With 100% Renewable Energy Large corporations, countries, and separate states have already transferred or put a plan into action to transfer to 100% renewable energy in a couple of decades.
  • Renewable Energy Programs in Five Countries Energy production is vital for the drive of the economy. The world at large should diversify the sources to reduce the over-usage of fossil energy that is a threat of depletion.
  • Wind Works Ltd.: Wind Energy Development Methodology Wind Works Ltd, as the company, which provides the alternative energy sources, and makes them available for the wide range of the population needs to resort to a particular assessment strategies.
  • Installing Solar Panels to Reduce Energy Costs The purpose of the proposal is to request permission for research to install solar panels to reduce energy costs, which represent a huge part of the company’s expenses.
  • Renewable Energy: Economic and Health Benefits The US should consider the adoption of renewable sources of energy, because of the high cost of using fossil fuels and expenses related to health problems due to pollution.
  • Renewable Energy Systems Group and Toyota Company The application of the Lean Six Sigma to the key company processes, creates prerequisites for stellar success, as the examples of Toyota and the Renewable Energy Systems Group have shown.
  • Renewable Energy Usage: Advantages and Disadvantages This treatise attempts to support the statement that there are both advantages and disadvantages to the use of renewable energy with focus on hydroelectric power.
  • Renewable Energy Systems: Australia’s Electricity
  • Accelerating Renewable Energy Electrification and Rural Economic Development With an Innovative Business Model
  • Renewable Energy Systems: Role of Grid Connection
  • Breaking Barriers Towards Investment in Renewable Energy
  • California Dreaming: The Economics of Renewable Energy
  • Marine Renewable Energy Clustering in the Mediterranean Sea: The Case of the PELAGOS Project
  • Differences Between Fossil Fuel and Renewable Energy
  • Addressing the Renewable Energy Financing Gap in Africa to Promote Universal Energy Access: Integrated Renewable Energy Financing in Malawi
  • Causality Between Public Policies and Exports of Renewable Energy Technologies
  • Achieving the Renewable Energy Target for Jamaica
  • Economic Growth and the Transition From Non-renewable to Renewable Energy
  • Between Innovation and Industrial Policy: How Washington Succeeds and Fails at Renewable Energy
  • Increasing Financial Incentive for Renewable Energy in the Third World
  • Does Financial Development Matter for Innovation in Renewable Energy?
  • Financing Rural Renewable Energy: A Comparison Between China and India
  • Alternative Energy for Renewable Energy Sources
  • Low-Carbon Transition: Private Sector Investment in Renewable Energy Projects in Developing Countries
  • Effective Renewable Energy Activities in Bangladesh
  • China’s Renewable Energy Policy: Commitments and Challenges
  • Analyzing the Dynamic Impact of Electricity Futures on Revenue and Risk of Renewable Energy in China
  • Driving Energy: The Enactment and Ambitiousness of State Renewable Energy Policy
  • Carbon Lock-Out: Advancing Renewable Energy Policy in Europe
  • Big Oil vs. Renewable Energy: A Detrimental Conflict With Global Consequences
  • Efficient Feed-In-Tariff Policies for Renewable Energy Technologies
  • Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans
  • Active and Reactive Power Control for Renewable Energy Generation Engineering
  • Mainstreaming New Renewable Energy Technologies
  • Carbon Pricing and Innovation of Renewable Energy
  • Economic Growth, Carbon Dioxide Emissions, Renewable Energy and Globalization
  • Figuring What’s Fair: The Cost of Equity Capital for Renewable Energy in Emerging Markets
  • Distributed Generation: The Definitive Boost for Renewable Energy in Spain
  • Biodiesel From Green Rope and Brown Algae: Future Renewable Energy
  • Electricity Supply Security and the Future Role of Renewable Energy Sources in Brazil
  • Contracting for Biomass: Supply Chain Strategies for Renewable Energy
  • Advanced Education and Training Programs to Support Renewable Energy Investment in Africa
  • Domestic Incentive Measures for Renewable Energy With Possible Trade Implications
  • Affordable and Clean Renewable Energy
  • Catalyzing Investment for Renewable Energy in Developing Countries
  • Better Health, Environment, and Economy With Renewable Energy Sources
  • Afghanistan Renewable Energy Development Issues and Options
  • How Economics Can Change the World With Renewable Energy?
  • Are Green Hopes Too Rosy? Employment and Welfare Impacts of Renewable Energy Promotion
  • Marketing Strategy for Renewable Energy Development in Indonesia Context Today
  • Biomass Residue From Palm Oil Industries is Used as Renewable Energy Fuel in Southeast Asia
  • Assessing Renewable Energy Policies in Palestine
  • Chinese Renewable Energy Technology Exports: The Role of Policy, Innovation, and Markets
  • Business Models for Model Businesses: Lessons From Renewable Energy Entrepreneurs in Developing Countries
  • Economic Impacts From the Promotion of Renewable Energy Technologies: The German Experience
  • Key Factors and Recommendations for Adopting Renewable Energy Systems by Families and Firms
  • Improving the Investment Climate for Renewable Energy
  • How Will Renewable Energy Play a Role in Future Economies?
  • What Are the Advantages of Renewable Energy?
  • What Is the Term for a Renewable Energy Source That Taps Into Heat Produced Deep Below Ground?
  • What Are the Basic Problems of Renewable Energy?
  • Why Is Solar Energy the Best Resource of Renewable Energy?
  • How Can You Make a Potentially Renewable Energy Resource Sustainable?
  • What Is a Possible Cost of Using Renewable Energy Resources?
  • What Is the Contribution of Renewable Energy Sources to Global Energy Consumption?
  • How Do Renewable Energy Resources Work?
  • What Is the Most Viable Renewable Energy Source for the US to Invest In?
  • Why Isn’t Renewable Energy More Widely Used Than It Is?
  • Is Coal Still a Viable Resource Versus Windpower Being Renewable Energy?
  • What Is the Difference Between Non-renewable and Renewable Energy?
  • Why Is It Necessary to Emphasize Renewable Energy Sources in Order to Achieve a Sustainable Society?
  • Is Aluminum an Example of a Renewable Energy Resource?
  • What Fraction of Our Energy Currently Comes From Renewable Energy Sources?
  • What Are the Disadvantages of Renewable Energy?
  • What Would Have to Happen to Completely Abandon Non-renewable Energy Sources?
  • Why Are Renewable Energy Better Than Fossil Fuels?
  • How Could a Renewable Energy Resource Become Non-renewable?
  • How Have Renewable Energy Resources Replaced a Percentage of Fossil Fuels in Different Countries?
  • How Can Water Be Used as a Renewable Energy Resource?
  • What Is the Most Practical Renewable Energy Source?
  • What Steps Are Necessary to Further the Use of Renewable Energy Resources in THE US?
  • Why Is Renewable Energy Use Growing?
  • What Type of Renewable Energy Should Businesses in Your Region Invest In?
  • How Does Renewable Energy Reduce Climate Change?
  • Can the Development of Renewable Energy Sources Lead To Increased International Tensions?
  • How Do Renewable Energy Resources Affect the Environment?
  • Why Have So Many Governments Decided to Subsidize Renewable Energy Initiatives?

Cite this post

  • Chicago (N-B)
  • Chicago (A-D)

StudyCorgi. (2022, October 26). 116 Renewable Energy Essay Topics. https://studycorgi.com/ideas/renewable-energy-essay-topics/

"116 Renewable Energy Essay Topics." StudyCorgi , 26 Oct. 2022, studycorgi.com/ideas/renewable-energy-essay-topics/.

StudyCorgi . (2022) '116 Renewable Energy Essay Topics'. 26 October.

1. StudyCorgi . "116 Renewable Energy Essay Topics." October 26, 2022. https://studycorgi.com/ideas/renewable-energy-essay-topics/.

Bibliography

StudyCorgi . "116 Renewable Energy Essay Topics." October 26, 2022. https://studycorgi.com/ideas/renewable-energy-essay-topics/.

StudyCorgi . 2022. "116 Renewable Energy Essay Topics." October 26, 2022. https://studycorgi.com/ideas/renewable-energy-essay-topics/.

These essay examples and topics on Renewable Energy were carefully selected by the StudyCorgi editorial team. They meet our highest standards in terms of grammar, punctuation, style, and fact accuracy. Please ensure you properly reference the materials if you’re using them to write your assignment.

This essay topic collection was updated on December 28, 2023 .

Towards Sustainable Energy: A Systematic Review of Renewable Energy Sources, Technologies, and Public Opinions

Ieee account.

  • Change Username/Password
  • Update Address

Purchase Details

  • Payment Options
  • Order History
  • View Purchased Documents

Profile Information

  • Communications Preferences
  • Profession and Education
  • Technical Interests
  • US & Canada: +1 800 678 4333
  • Worldwide: +1 732 981 0060
  • Contact & Support
  • About IEEE Xplore
  • Accessibility
  • Terms of Use
  • Nondiscrimination Policy
  • Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2024 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

renewable energy research paper ideas

Sustainable Development with Renewable Energy

The 10th International Conference on Energy and Environment Research—ICEER 2023

  • Conference proceedings
  • © 2024
  • Nídia S. Caetano 0

Departamento de Engenharia Química, Instituto Superior de Engenharia do Porto, Porto, Portugal

You can also search for this editor in PubMed   Google Scholar

  • Addresses energy decarbonization
  • Discusses how and why renewable energy can be more sustainable
  • Includes case studies relevant to renewable energy production systems

Part of the book series: Environmental Science and Engineering (ESE)

Included in the following conference series:

  • ICEER: International Conference on Energy and Environment Research

Conference proceedings info: ICEER 2023.

642 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this book

  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (38 papers)

Front matter.

  • Renewable Energy

Agrivoltaic System Development Barriers from European Legislative Framework Perspective

Approach to short-term planning of the development of distribution electrical networks.

  • Stefka Nedelcheva, Petya Tsvetkova

Influence of the Neutral Grounding Mode on the Reliability of Actively Adaptive Electric Grids

  • Hristo Ilchev

Technical Feasibility and Optimization of Photovoltaic Solar Panels in the Central Area of Peru

  • Kattia Eliana Melgar Dionicio, Cesar Augusto Ravines Salazar, Anieval Peña-Rojas, Frans Carhuamaca Castro, Geraldine Yupanqui Fernandez

Gasification of Animal Fat Using Dolomite as Particle Bed in a Downdraft Fixed Bed Reactor

  • A. L. Araujo, F. T. Silva, A. Ribeiro, J. B. L. M. Campos, R. M. Pilão

Energy Production from Agro-Wastes: Comparative Studies for Wine Vinasse and Pig Slurry

  • Andreia D. Santos, Rosa M. Quinta-Ferreira, Luís M. Castro

Energy Recovery and Greenhouse Gas Emission Reduction Potential of Bio-Waste in South American Countries

  • H. Romero, M. Farias, G. Armijos, W. Torres, A. Castillo

Modelling, Simulation and Forecasting of Energy and Carbon Markets

The effect of blade curvature on the pico scale undershot water wheel performance.

  • Warjito, Rafi Adhi Pranata, Budiarso, Muhammad Mizan, Kevin Geraldo, Farhan Rizqi Syahnakri

Variation of Blade Angle on the Performance of the Undershot Waterwheel on the Pico Scale

  • Warjito, Kevin Geraldo, Budiarso, Muhammad Mizan, Rafi Adhi Pranata, Farhan Rizqi Syahnakri

Investigation of Coconut Methyl Ester (CME)-Palm Oil Methyl Ester (POME)-Diesel Blends Volatility

  • Natalina Damanik, Iswan Prahastono, Tatang Hernas Soerawidjaja, Iman Kartolaksono Reksowardojo, Tubagus Ahmad Fauzi Soelaiman, Handrea Bernando Tambunan

Hardware-in-the-Loop Simulation Based on Internet of Things: An Energy Community Digital Twin Case Study

  • Modar Zheiry, Luis Gomes, Pedro Faria, Zita Vale

Mathematical Modeling of a Sustainable Dewatering Process for Blueberries and Raspberries Preservation

  • Sérgio Lopes, Rafael Santos, Dulcineia Wessel, Isabel Brás, Maria Elisabete Silva, Tânia Ferreira et al.
  • Energy Efficiency

Thermal Comfort, Solar Exposure, Energy Production, and Carbon Reduction of Court-Yarded Clustered Sustainable Housing in Arid Regions

  • Mohammad Fahmy, Hatem Mahmoud, Ibrahim Elwy, Marwa Abdelalim, Bassel Essam

Supercritical Carbon Dioxide Recovery System for Potential Application in the European Cement Industry

  • G. Cevolani, G. Messina, C. Salvini, A. Giovannelli

Comparison Between Centrifugal and Inward Radial Turbines for Organic Rankine Cycle Plants

  • E. M. Archilei, C. Salvini, A. Giovannelli

Preliminary Results from the Use of Pear Waste in Single-Chamber Microbial Fuel Cells

  • Segundo Rojas-Flores, Renny Nazario-Naveda, Santiago M. Benites, Moisés Gallozzo-Cardenas

Other volumes

  • Sustainable Buildings
  • Advanced Energy Technologies
  • Modelling, Simulation

About this book

This proceedings book contains the full papers of the 10th edition of the International Conference on Energy and Environment Research, ICEER 2023, that took place in Madrid, Spain during October 7–9, 2023. ICEER 2023 is a joint organization of the School of Engineering (ISEP) of the Polytechnic of Porto (P.Porto) and the SCIEI, with collaboration of the Dipartimento di Ingegneria of the Università degli studi "Roma Tre", CIETI and LEPABE research groups. This book includes all the well prepared full papers presented at ICEER 2023.

Editors and Affiliations

Nídia S. Caetano

About the editor

She was the Sub-Director of the Chemical Engineering Department of ISEP for the Infrastructures and Facilities (2014-2016), Course Director of the MSc in Sustainable Energies of the Mechanical Engineering Department of ISEP (March 2013 to June 2018) and Sub-Director of the same MSc (September 2010 to March 2013 and June2018 to June 2022).

Nídia Caetano was the Advisor of the President of ISEP for Environment/Sustainability (2007 to 2018); Vice-President of APESB (Portuguese Association of Sanitary and Environmental Engineering) from 2019-2020 and from 2022; President of the Fiscal Board of the OERN (Order of the Engineers the Northern Region) from 2022.

Nídia Caetano is External Researcher with LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal, and ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal, and Collaborator at CIETI/ISEP/P.Porto. She funded and is the Coordinator of the Microalgae research laboratory of ISEP in 2008. She was the supervisor of several post-doctoral researchers, PhD and Master students. She has intense activity as project evaluator of national and international agencies.

Nídia Caetano is Associate Editor for Biomass of Renewable Energy (Elsevier), Member of the Editorial Advisory Board of  Algal Research (Elsevier), Review Editor in Sustainable Energy Systems and Policies (Frontiers) and Member of the Editorial Board of Green Technology, Resilience, and Sustainability (Springer). She Guest Edited 20 Special Issues in several international journals (Elsevier, Frontiers, Springer, MDPI), and Guest Edited one book of the Environmental Science and Engineering book series (Springer) has authored or co-authored +250 conference and journal papers with peer review, 20 book chapters, and was the Keynote Speaker or Invited Lecturer of several international conferences.

She has organized and been the conference or program chair of international conferences (ICEER series, from 2016, TEEM, JTIR, ISWA/APESB Beacon conference in Luanda and in Lobito, among others).

Bibliographic Information

Book Title : Sustainable Development with Renewable Energy

Book Subtitle : The 10th International Conference on Energy and Environment Research—ICEER 2023

Editors : Nídia S. Caetano

Series Title : Environmental Science and Engineering

DOI : https://doi.org/10.1007/978-3-031-54394-4

Publisher : Springer Cham

eBook Packages : Engineering , Engineering (R0)

Copyright Information : The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

Hardcover ISBN : 978-3-031-54393-7 Published: 30 April 2024

Softcover ISBN : 978-3-031-54396-8 Due: 31 May 2024

eBook ISBN : 978-3-031-54394-4 Published: 29 April 2024

Series ISSN : 1863-5520

Series E-ISSN : 1863-5539

Edition Number : 1

Number of Pages : XXXIV, 498

Number of Illustrations : 33 b/w illustrations, 158 illustrations in colour

Topics : Mechanical Engineering , Industrial Chemistry/Chemical Engineering

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research
  • Open access
  • Published: 07 January 2020

Renewable energy for sustainable development in India: current status, future prospects, challenges, employment, and investment opportunities

  • Charles Rajesh Kumar. J   ORCID: orcid.org/0000-0003-2354-6463 1 &
  • M. A. Majid 1  

Energy, Sustainability and Society volume  10 , Article number:  2 ( 2020 ) Cite this article

422k Accesses

259 Citations

83 Altmetric

Metrics details

The primary objective for deploying renewable energy in India is to advance economic development, improve energy security, improve access to energy, and mitigate climate change. Sustainable development is possible by use of sustainable energy and by ensuring access to affordable, reliable, sustainable, and modern energy for citizens. Strong government support and the increasingly opportune economic situation have pushed India to be one of the top leaders in the world’s most attractive renewable energy markets. The government has designed policies, programs, and a liberal environment to attract foreign investments to ramp up the country in the renewable energy market at a rapid rate. It is anticipated that the renewable energy sector can create a large number of domestic jobs over the following years. This paper aims to present significant achievements, prospects, projections, generation of electricity, as well as challenges and investment and employment opportunities due to the development of renewable energy in India. In this review, we have identified the various obstacles faced by the renewable sector. The recommendations based on the review outcomes will provide useful information for policymakers, innovators, project developers, investors, industries, associated stakeholders and departments, researchers, and scientists.

Introduction

The sources of electricity production such as coal, oil, and natural gas have contributed to one-third of global greenhouse gas emissions. It is essential to raise the standard of living by providing cleaner and more reliable electricity [ 1 ]. India has an increasing energy demand to fulfill the economic development plans that are being implemented. The provision of increasing quanta of energy is a vital pre-requisite for the economic growth of a country [ 2 ]. The National Electricity Plan [NEP] [ 3 ] framed by the Ministry of Power (MoP) has developed a 10-year detailed action plan with the objective to provide electricity across the country, and has prepared a further plan to ensure that power is supplied to the citizens efficiently and at a reasonable cost. According to the World Resource Institute Report 2017 [ 4 , 5 ], India is responsible for nearly 6.65% of total global carbon emissions, ranked fourth next to China (26.83%), the USA (14.36%), and the EU (9.66%). Climate change might also change the ecological balance in the world. Intended Nationally Determined Contributions (INDCs) have been submitted to the United Nations Framework Convention on Climate Change (UNFCCC) and the Paris Agreement. The latter has hoped to achieve the goal of limiting the rise in global temperature to well below 2 °C [ 6 , 7 ]. According to a World Energy Council [ 8 ] prediction, global electricity demand will peak in 2030. India is one of the largest coal consumers in the world and imports costly fossil fuel [ 8 ]. Close to 74% of the energy demand is supplied by coal and oil. According to a report from the Center for monitoring Indian economy, the country imported 171 million tons of coal in 2013–2014, 215 million tons in 2014–2015, 207 million tons in 2015–2016, 195 million tons in 2016–2017, and 213 million tons in 2017–2018 [ 9 ]. Therefore, there is an urgent need to find alternate sources for generating electricity.

In this way, the country will have a rapid and global transition to renewable energy technologies to achieve sustainable growth and avoid catastrophic climate change. Renewable energy sources play a vital role in securing sustainable energy with lower emissions [ 10 ]. It is already accepted that renewable energy technologies might significantly cover the electricity demand and reduce emissions. In recent years, the country has developed a sustainable path for its energy supply. Awareness of saving energy has been promoted among citizens to increase the use of solar, wind, biomass, waste, and hydropower energies. It is evident that clean energy is less harmful and often cheaper. India is aiming to attain 175 GW of renewable energy which would consist of 100 GW from solar energy, 10 GW from bio-power, 60 GW from wind power, and 5 GW from small hydropower plants by the year 2022 [ 11 ]. Investors have promised to achieve more than 270 GW, which is significantly above the ambitious targets. The promises are as follows: 58 GW by foreign companies, 191 GW by private companies, 18 GW by private sectors, and 5 GW by the Indian Railways [ 12 ]. Recent estimates show that in 2047, solar potential will be more than 750 GW and wind potential will be 410 GW [ 13 , 14 ]. To reach the ambitious targets of generating 175 GW of renewable energy by 2022, it is essential that the government creates 330,000 new jobs and livelihood opportunities [ 15 , 16 ].

A mixture of push policies and pull mechanisms, accompanied by particular strategies should promote the development of renewable energy technologies. Advancement in technology, proper regulatory policies [ 17 ], tax deduction, and attempts in efficiency enhancement due to research and development (R&D) [ 18 ] are some of the pathways to conservation of energy and environment that should guarantee that renewable resource bases are used in a cost-effective and quick manner. Hence, strategies to promote investment opportunities in the renewable energy sector along with jobs for the unskilled workers, technicians, and contractors are discussed. This article also manifests technological and financial initiatives [ 19 ], policy and regulatory framework, as well as training and educational initiatives [ 20 , 21 ] launched by the government for the growth and development of renewable energy sources. The development of renewable technology has encountered explicit obstacles, and thus, there is a need to discuss these barriers. Additionally, it is also vital to discover possible solutions to overcome these barriers, and hence, proper recommendations have been suggested for the steady growth of renewable power [ 22 , 23 , 24 ]. Given the enormous potential of renewables in the country, coherent policy measures and an investor-friendly administration might be the key drivers for India to become a global leader in clean and green energy.

Projection of global primary energy consumption

An energy source is a necessary element of socio-economic development. The increasing economic growth of developing nations in the last decades has caused an accelerated increase in energy consumption. This trend is anticipated to grow [ 25 ]. A prediction of future power consumption is essential for the investigation of adequate environmental and economic policies [ 26 ]. Likewise, an outlook to future power consumption helps to determine future investments in renewable energy. Energy supply and security have not only increased the essential issues for the development of human society but also for their global political and economic patterns [ 27 ]. Hence, international comparisons are helpful to identify past, present, and future power consumption.

Table 1 shows the primary energy consumption of the world, based on the BP Energy Outlook 2018 reports. In 2016, India’s overall energy consumption was 724 million tons of oil equivalent (Mtoe) and is expected to rise to 1921 Mtoe by 2040 with an average growth rate of 4.2% per annum. Energy consumption of various major countries comprises commercially traded fuels and modern renewables used to produce power. In 2016, India was the fourth largest energy consumer in the world after China, the USA, and the Organization for economic co-operation and development (OECD) in Europe [ 29 ].

The projected estimation of global energy consumption demonstrates that energy consumption in India is continuously increasing and retains its position even in 2035/2040 [ 28 ]. The increase in India’s energy consumption will push the country’s share of global energy demand to 11% by 2040 from 5% in 2016. Emerging economies such as China, India, or Brazil have experienced a process of rapid industrialization, have increased their share in the global economy, and are exporting enormous volumes of manufactured products to developed countries. This shift of economic activities among nations has also had consequences concerning the country’s energy use [ 30 ].

Projected primary energy consumption in India

The size and growth of a country’s population significantly affects the demand for energy. With 1.368 billion citizens, India is ranked second, of the most populous countries as of January 2019 [ 31 ]. The yearly growth rate is 1.18% and represents almost 17.74% of the world’s population. The country is expected to have more than 1.383 billion, 1.512 billion, 1.605 billion, 1.658 billion people by the end of 2020, 2030, 2040, and 2050, respectively. Each year, India adds a higher number of people to the world than any other nation and the specific population of some of the states in India is equal to the population of many countries.

The growth of India’s energy consumption will be the fastest among all significant economies by 2040, with coal meeting most of this demand followed by renewable energy. Renewables became the second most significant source of domestic power production, overtaking gas and then oil, by 2020. The demand for renewables in India will have a tremendous growth of 256 Mtoe in 2040 from 17 Mtoe in 2016, with an annual increase of 12%, as shown in Table 2 .

Table 3 shows the primary energy consumption of renewables for the BRIC countries (Brazil, Russia, India, and China) from 2016 to 2040. India consumed around 17 Mtoe of renewable energy in 2016, and this will be 256 Mtoe in 2040. It is probable that India’s energy consumption will grow fastest among all major economies by 2040, with coal contributing most in meeting this demand followed by renewables. The percentage share of renewable consumption in 2016 was 2% and is predicted to increase by 13% by 2040.

How renewable energy sources contribute to the energy demand in India

Even though India has achieved a fast and remarkable economic growth, energy is still scarce. Strong economic growth in India is escalating the demand for energy, and more energy sources are required to cover this demand. At the same time, due to the increasing population and environmental deterioration, the country faces the challenge of sustainable development. The gap between demand and supply of power is expected to rise in the future [ 32 ]. Table 4 presents the power supply status of the country from 2009–2010 to 2018–2019 (until October 2018). In 2018, the energy demand was 1,212,134 GWh, and the availability was 1,203,567 GWh, i.e., a deficit of − 0.7% [ 33 ].

According to the Load generation and Balance Report (2016–2017) of the Central Electricity Authority of India (CEA), the electrical energy demand for 2021–2022 is anticipated to be at least 1915 terawatt hours (TWh), with a peak electric demand of 298 GW [ 34 ]. Increasing urbanization and rising income levels are responsible for an increased demand for electrical appliances, i.e., an increased demand for electricity in the residential sector. The increased demand in materials for buildings, transportation, capital goods, and infrastructure is driving the industrial demand for electricity. An increased mechanization and the shift to groundwater irrigation across the country is pushing the pumping and tractor demand in the agriculture sector, and hence the large diesel and electricity demand. The penetration of electric vehicles and the fuel switch to electric and induction cook stoves will drive the electricity demand in the other sectors shown in Table 5 .

According to the International Renewable Energy Agency (IRENA), a quarter of India’s energy demand can be met with renewable energy. The country could potentially increase its share of renewable power generation to over one-third by 2030 [ 35 ].

Table 6 presents the estimated contribution of renewable energy sources to the total energy demand. MoP along with CEA in its draft national electricity plan for 2016 anticipated that with 175 GW of installed capacity of renewable power by 2022, the expected electricity generation would be 327 billion units (BUs), which would contribute to 1611 BU energy requirements. This indicates that 20.3% of the energy requirements would be fulfilled by renewable energy by 2022 and 24.2% by 2027 [ 36 ]. Figure 1 shows the ambitious new target for the share of renewable energy in India’s electricity consumption set by MoP. As per the order of revised RPO (Renewable Purchase Obligations, legal act of June 2018), the country has a target of a 21% share of renewable energy in its total electricity consumption by March 2022. In 2014, the same goal was at 15% and increased to 21% by 2018. It is India’s goal to reach 40% renewable sources by 2030.

figure 1

Target share of renewable energy in India’s power consumption

Estimated renewable energy potential in India

The estimated potential of wind power in the country during 1995 [ 37 ] was found to be 20,000 MW (20 GW), solar energy was 5 × 10 15 kWh/pa, bioenergy was 17,000 MW, bagasse cogeneration was 8000 MW, and small hydropower was 10,000 MW. For 2006, the renewable potential was estimated as 85,000 MW with wind 4500 MW, solar 35 MW, biomass/bioenergy 25,000 MW, and small hydropower of 15,000 MW [ 38 ]. According to the annual report of the Ministry of New and Renewable Energy (MNRE) for 2017–2018, the estimated potential of wind power was 302.251 GW (at 100-m mast height), of small hydropower 19.749 GW, biomass power 17.536 GW, bagasse cogeneration 5 GW, waste to energy (WTE) 2.554 GW, and solar 748.990 GW. The estimated total renewable potential amounted to 1096.080 GW [ 39 ] assuming 3% wasteland, which is shown in Table 7 . India is a tropical country and receives significant radiation, and hence the solar potential is very high [ 40 , 41 , 42 ].

Gross installed capacity of renewable energy in India

As of June 2018 reports, the country intends to reach 225 GW of renewable power capacity by 2022 exceeding the target of 175 GW pledged during the Paris Agreement. The sector is the fourth most attractive renewable energy market in the world. As in October 2018, India ranked fifth in installed renewable energy capacity [ 43 ].

Gross installed capacity of renewable energy—according to region

Table 8 lists the cumulative installed capacity of both conventional and renewable energy sources. The cumulative installed capacity of renewable sources as on the 31 st of December 2018 was 74081.66 MW. Renewable energy (small hydropower, wind, biomass, WTE, solar) accounted for an approximate 21% share of the cumulative installed power capacity, and the remaining 78.791% originated from other conventional sources (coal, gas diesel, nuclear, and large hydropower) [ 44 ]. The best regions for renewable energy are the southern states that have the highest solar irradiance and wind in the country. When renewable energy alone is considered for analysis, the Southern region covers 49.121% of the cumulative installed renewable capacity, followed by the Western region (29.742%), the Northern region (18.890%), the Eastern region (1.836%), the North-Easter region 0.394%, and the Islands (0.017%). As far as conventional energy is concerned, the Western region with 33.452% ranks first and is followed by the Northern region with 28.484%, the Southern region (24.967%), the Eastern region (11.716%), the Northern-Eastern (1.366%), and the Islands (0.015%).

Gross installed capacity of renewable energy—according to ownership

State government, central government, and private players drive the Indian energy sector. The private sector leads the way in renewable energy investment. Table 9 shows the installed gross renewable energy and conventional energy capacity (percentage)—ownership wise. It is evident from Fig. 2 that 95% of the installed renewable capacity derives from private companies, 2% from the central government, and 3% from the state government. The top private companies in the field of non-conventional energy generation are Tata Power Solar, Suzlon, and ReNew Power. Tata Power Solar System Limited are the most significant integrated solar power players in the country, Suzlon realizes wind energy projects, and ReNew Power Ventures operate with solar and wind power.

figure 2

Gross renewable energy installed capacity (percentage)—Ownership wise as per the 31.12.2018 [ 43 ]

Gross installed capacity of renewable energy—state wise

Table 10 shows the installed capacity of cumulative renewable energy (state wise), out of the total installed capacity of 74,081.66 MW, where Karnataka ranks first with 12,953.24 MW (17.485%), Tamilnadu second with 11,934.38 MW (16%), Maharashtra third with 9283.78 MW (12.532%), Gujarat fourth with 10.641 MW (10.641%), and Rajasthan fifth with 7573.86 MW (10.224%). These five states cover almost 66.991% of the installed capacity of total renewable. Other prominent states are Andhra Pradesh (9.829%), Madhya Pradesh (5.819%), Telangana (5.137%), and Uttar Pradesh (3.879%). These nine states cover almost 91.655%.

Gross installed capacity of renewable energy—according to source

Under union budget of India 2018–2019, INR 3762 crore (USD 581.09 million), was allotted for grid-interactive renewable power schemes and projects. As per the 31.12.2018, the installed capacity of total renewable power (excluding large hydropower) in the country amounted to 74.08166 GW. Around 9.363 GW of solar energy, 1.766 GW of wind, 0.105 GW of small hydropower (SHP), and biomass power of 8.7 GW capacity were added in 2017–2018. Table 11 shows the installed capacity of renewable energy over the last 10 years until the 31.12.2018. Wind energy continues to dominate the countries renewable energy industry, accounting for over 47% of cumulative installed renewable capacity (35,138.15 MW), followed by solar power of 34% (25,212.26 MW), biomass power/cogeneration of 12% (9075.5 MW), and small hydropower of 6% (4517.45 MW). In the renewable energy country attractiveness index (RECAI) of 2018, India ranked in fourth position. The installed renewable energy production capacity has grown at an accelerated pace over the preceding few years, posting a CAGR of 19.78% between 2014 and 2018 [ 45 ] .

Estimation of the installed capacity of renewable energy

Table 12 gives the share of installed cumulative renewable energy capacity, in comparison with the installed conventional energy capacity. In 2022 and 2032, the installed renewable energy capacity will account for 32% and 35%, respectively [ 46 , 47 ]. The most significant renewable capacity expansion program in the world is being taken up by India. The government is preparing to boost the percentage of clean energy through a tremendous push in renewables, as discussed in the subsequent sections.

Gross electricity generation from renewable energy in India

The overall generation (including the generation from grid-connected renewable sources) in the country has grown exponentially. Between 2014–2015 and 2015–2016, it achieved 1110.458 BU and 1173.603 BU, respectively. The same was recorded with 1241.689 BU and 1306.614 BU during 2015–2016 and 1306.614 BU from 2016–2017 and 2017–2018, respectively. Figure 3 indicates that the annual renewable power production increased faster than the conventional power production. The rise accounted for 6.47% in 2015–2016 and 24.88% in 2017–2018, respectively. Table 13 compares the energy generation from traditional sources with that from renewable sources. Remarkably, the energy generation from conventional sources reached 811.143 BU and from renewable sources 9.860 BU in 2010 compared to 1.206.306 BU and 88.945 BU in 2017, respectively [ 48 ]. It is observed that the price of electricity production using renewable technologies is higher than that for conventional generation technologies, but is likely to fall with increasing experience in the techniques involved [ 49 ].

figure 3

The annual growth in power generation as per the 30th of November 2018

Gross electricity generation from renewable energy—according to regions

Table 14 shows the gross electricity generation from renewable energy-region wise. It is noted that the highest renewable energy generation derives from the southern region, followed by the western part. As of November 2018, 50.33% of energy generation was obtained from the southern area and 29.37%, 18.05%, 2%, and 0.24% from Western, Northern, North-Eastern Areas, and the Island, respectively.

Gross electricity generation from renewable energy—according to states

Table 15 shows the gross electricity generation from renewable energy—region-wise. It is observed that the highest renewable energy generation was achieved from Karnataka (16.57%), Tamilnadu (15.82%), Andhra Pradesh (11.92%), and Gujarat (10.87%) as per November 2018. While adding four years from 2015–2016 to 2018–2019 Tamilnadu [ 50 ] remains in the first position followed by Karnataka, Maharashtra, Gujarat and Andhra Pradesh.

Gross electricity generation from renewable energy—according to sources

Table 16 shows the gross electricity generation from renewable energy—source-wise. It can be concluded from the table that the wind-based energy generation as per 2017–2018 is most prominent with 51.71%, followed by solar energy (25.40%), Bagasse (11.63%), small hydropower (7.55%), biomass (3.34%), and WTE (0.35%). There has been a constant increase in the generation of all renewable sources from 2014–2015 to date. Wind energy, as always, was the highest contributor to the total renewable power production. The percentage of solar energy produced in the overall renewable power production comes next to wind and is typically reduced during the monsoon months. The definite improvement in wind energy production can be associated with a “good” monsoon. Cyclonic action during these months also facilitates high-speed winds. Monsoon winds play a significant part in the uptick in wind power production, especially in the southern states of the country.

Estimation of gross electricity generation from renewable energy

Table 17 shows an estimation of gross electricity generation from renewable energy based on the 2015 report of the National Institution for Transforming India (NITI Aayog) [ 51 ]. It is predicted that the share of renewable power will be 10.2% by 2022, but renewable power technologies contributed a record of 13.4% to the cumulative power production in India as of the 31st of August 2018. The power ministry report shows that India generated 122.10 TWh and out of the total electricity produced, renewables generated 16.30 TWh as on the 31st of August 2018. According to the India Brand Equity Foundation report, it is anticipated that by the year 2040, around 49% of total electricity will be produced using renewable energy.

Current achievements in renewable energy 2017–2018

India cares for the planet and has taken a groundbreaking journey in renewable energy through the last 4 years [ 52 , 53 ]. A dedicated ministry along with financial and technical institutions have helped India in the promotion of renewable energy and diversification of its energy mix. The country is engaged in expanding the use of clean energy sources and has already undertaken several large-scale sustainable energy projects to ensure a massive growth of green energy.

1. India doubled its renewable power capacity in the last 4 years. The cumulative renewable power capacity in 2013–2014 reached 35,500 MW and rose to 70,000 MW in 2017–2018.

2. India stands in the fourth and sixth position regarding the cumulative installed capacity in the wind and solar sector, respectively. Furthermore, its cumulative installed renewable capacity stands in fifth position globally as of the 31st of December 2018.

3. As said above, the cumulative renewable energy capacity target for 2022 is given as 175 GW. For 2017–2018, the cumulative installed capacity amounted to 70 GW, the capacity under implementation is 15 GW and the tendered capacity was 25 GW. The target, the installed capacity, the capacity under implementation, and the tendered capacity are shown in Fig. 4 .

4. There is tremendous growth in solar power. The cumulative installed solar capacity increased by more than eight times in the last 4 years from 2.630 GW (2013–2014) to 22 GW (2017–2018). As of the 31st of December 2018, the installed capacity amounted to 25.2122 GW.

5. The renewable electricity generated in 2017–2018 was 101839 BUs.

6. The country published competitive bidding guidelines for the production of renewable power. It also discovered the lowest tariff and transparent bidding method and resulted in a notable decrease in per unit cost of renewable energy.

7. In 21 states, there are 41 solar parks with a cumulative capacity of more than 26,144 MW that have already been approved by the MNRE. The Kurnool solar park was set up with 1000 MW; and with 2000 MW the largest solar park of Pavagada (Karnataka) is currently under installation.

8. The target for solar power (ground mounted) for 2018–2019 is given as 10 GW, and solar power (Rooftop) as 1 GW.

9. MNRE doubled the target for solar parks (projects of 500 MW or more) from 20 to 40 GW.

10. The cumulative installed capacity of wind power increased by 1.6 times in the last 4 years. In 2013–2014, it amounted to 21 GW, from 2017 to 2018 it amounted to 34 GW, and as of 31st of December 2018, it reached 35.138 GW. This shows that achievements were completed in wind power use.

11. An offshore wind policy was announced. Thirty-four companies (most significant global and domestic wind power players) competed in the “expression of interest” (EoI) floated on the plan to set up India’s first mega offshore wind farm with a capacity of 1 GW.

12. 682 MW small hydropower projects were installed during the last 4 years along with 600 watermills (mechanical applications) and 132 projects still under development.

13. MNRE is implementing green energy corridors to expand the transmission system. 9400 km of green energy corridors are completed or under implementation. The cost spent on it was INR 10141 crore (101,410 Million INR = 1425.01 USD). Furthermore, the total capacity of 19,000 MVA substations is now planned to be complete by March 2020.

14. MNRE is setting up solar pumps (off-grid application), where 90% of pumps have been set up as of today and between 2014–2015 and 2017–2018. Solar street lights were more than doubled. Solar home lighting systems have been improved by around 1.5 times. More than 2,575,000 solar lamps have been distributed to students. The details are illustrated in Fig. 5 .

15. From 2014–2015 to 2017–2018, more than 2.5 lakh (0.25 million) biogas plants were set up for cooking in rural homes to enable families by providing them access to clean fuel.

16. New policy initiatives revised the tariff policy mandating purchase and generation obligations (RPO and RGO). Four wind and solar inter-state transmission were waived; charges were planned, the RPO trajectory for 2022 and renewable energy policy was finalized.

17. Expressions of interest (EoI) were invited for installing solar photovoltaic manufacturing capacities associated with the guaranteed off-take of 20 GW. EoI indicated 10 GW floating solar energy plants.

18. Policy for the solar-wind hybrid was announced. Tender for setting up 2 GW solar-wind hybrid systems in existing projects was invited.

19. To facilitate R&D in renewable power technology, a National lab policy on testing, standardization, and certification was announced by the MNRE.

20. The Surya Mitra program was conducted to train college graduates in the installation, commissioning, operations, and management of solar panels. The International Solar Alliance (ISA) headquarters in India (Gurgaon) will be a new commencement for solar energy improvement in India.

21. The renewable sector has become considerably more attractive for foreign and domestic investors, and the country expects to attract up to USD 80 billion in the next 4 years from 2018–2019 to 2021–2022.

22. The solar power capacity expanded by more than eight times from 2.63 GW in 2013–2014 to 22 GW in 2017–2018.

23. A bidding for 115 GW renewable energy projects up to March 2020 was announced.

24. The Bureau of Indian Standards (BIS) acting for system/components of solar PV was established.

25. To recognize and encourage innovative ideas in renewable energy sectors, the Government provides prizes and awards. Creative ideas/concepts should lead to prototype development. The Name of the award is “Abhinav Soch-Nayi Sambhawanaye,” which means Innovative ideas—New possibilities.

figure 4

Renewable energy target, installed capacity, under implementation and tendered [ 52 ]

figure 5

Off-grid solar applications [ 52 ]

Solar energy

Under the National Solar Mission, the MNRE has updated the objective of grid-connected solar power projects from 20 GW by the year 2021–2022 to 100 GW by the year 2021–2022. In 2008–2009, it reached just 6 MW. The “Made in India” initiative to promote domestic manufacturing supported this great height in solar installation capacity. Currently, India has the fifth highest solar installed capacity worldwide. By the 31st of December 2018, solar energy had achieved 25,212.26 MW against the target of 2022, and a further 22.8 GW of capacity has been tendered out or is under current implementation. MNRE is preparing to bid out the remaining solar energy capacity every year for the periods 2018–2019 and 2019–2020 so that bidding may contribute with 100 GW capacity additions by March 2020. In this way, 2 years for the completion of projects would remain. Tariffs will be determined through the competitive bidding process (reverse e-auction) to bring down tariffs significantly. The lowest solar tariff was identified to be INR 2.44 per kWh in July 2018. In 2010, solar tariffs amounted to INR 18 per kWh. Over 100,000 lakh (10,000 million) acres of land had been classified for several planned solar parks, out of which over 75,000 acres had been obtained. As of November 2018, 47 solar parks of a total capacity of 26,694 MW were established. The aggregate capacity of 4195 MW of solar projects has been commissioned inside various solar parks (floating solar power). Table 18 shows the capacity addition compared to the target. It indicates that capacity addition increased exponentially.

Wind energy

As of the 31st of December 2018, the total installed capacity of India amounted to 35,138.15 MW compared to a target of 60 GW by 2022. India is currently in fourth position in the world for installed capacity of wind power. Moreover, around 9.4 GW capacity has been tendered out or is under current implementation. The MNRE is preparing to bid out for A 10 GW wind energy capacity every year for 2018–2019 and 2019–2020, so that bidding will allow for 60 GW capacity additions by March 2020, giving the remaining two years for the accomplishment of the projects. The gross wind energy potential of the country now reaches 302 GW at a 100 m above-ground level. The tariff administration has been changed from feed-in-tariff (FiT) to the bidding method for capacity addition. On the 8th of December 2017, the ministry published guidelines for a tariff-based competitive bidding rule for the acquisition of energy from grid-connected wind energy projects. The developed transparent process of bidding lowered the tariff for wind power to its lowest level ever. The development of the wind industry has risen in a robust ecosystem ensuring project execution abilities and a manufacturing base. State-of-the-art technologies are now available for the production of wind turbines. All the major global players in wind power have their presence in India. More than 12 different companies manufacture more than 24 various models of wind turbines in India. India exports wind turbines and components to the USA, Europe, Australia, Brazil, and other Asian countries. Around 70–80% of the domestic production has been accomplished with strong domestic manufacturing companies. Table 19 lists the capacity addition compared to the target for the capacity addition. Furthermore, electricity generation from the wind-based capacity has improved, even though there was a slowdown of new capacity in the first half of 2018–2019 and 2017–2018.

The national energy storage mission—2018

The country is working toward a National Energy Storage Mission. A draft of the National Energy Storage Mission was proposed in February 2018 and initiated to develop a comprehensive policy and regulatory framework. During the last 4 years, projects included in R&D worth INR 115.8 million (USD 1.66 million) in the domain of energy storage have been launched, and a corpus of INR 48.2 million (USD 0.7 million) has been issued. India’s energy storage mission will provide an opportunity for globally competitive battery manufacturing. By increasing the battery manufacturing expertise and scaling up its national production capacity, the country can make a substantial economic contribution in this crucial sector. The mission aims to identify the cumulative battery requirements, total market size, imports, and domestic manufacturing. Table 20 presents the economic opportunity from battery manufacturing given by the National Institution for Transforming India, also called NITI Aayog, which provides relevant technical advice to central and state governments while designing strategic and long-term policies and programs for the Indian government.

Small hydropower—3-year action agenda—2017

Hydro projects are classified as large hydro, small hydro (2 to 25 MW), micro-hydro (up to 100 kW), and mini-hydropower (100 kW to 2 MW) projects. Whereas the estimated potential of SHP is 20 GW, the 2022 target for India in SHP is 5 GW. As of the 31st of December 2018, the country has achieved 4.5 GW and this production is constantly increasing. The objective, which was planned to be accomplished through infrastructure project grants and tariff support, was included in the NITI Aayog’s 3-year action agenda (2017–2018 to 2019–2020), which was published on the 1st of August 2017. MNRE is providing central financial assistance (CFA) to set up small/micro hydro projects both in the public and private sector. For the identification of new potential locations, surveys and comprehensive project reports are elaborated, and financial support for the renovation and modernization of old projects is provided. The Ministry has established a dedicated completely automatic supervisory control and data acquisition (SCADA)—based on a hydraulic turbine R&D laboratory at the Alternate Hydro Energy Center (AHEC) at IIT Roorkee. The establishment cost for the lab was INR 40 crore (400 million INR, 95.62 Million USD), and the laboratory will serve as a design and validation facility. It investigates hydro turbines and other hydro-mechanical devices adhering to national and international standards [ 54 , 55 ]. Table 21 shows the target and achievements from 2007–2008 to 2018–2019.

National policy regarding biofuels—2018

Modernization has generated an opportunity for a stable change in the use of bioenergy in India. MNRE amended the current policy for biomass in May 2018. The policy presents CFA for projects using biomass such as agriculture-based industrial residues, wood produced through energy plantations, bagasse, crop residues, wood waste generated from industrial operations, and weeds. Under the policy, CFA will be provided to the projects at the rate of INR 2.5 million (USD 35,477.7) per MW for bagasse cogeneration and INR 5 million (USD 70,955.5) per MW for non-bagasse cogeneration. The MNRE also announced a memorandum in November 2018 considering the continuation of the concessional customs duty certificate (CCDC) to set up projects for the production of energy using non-conventional materials such as bio-waste, agricultural, forestry, poultry litter, agro-industrial, industrial, municipal, and urban wastes. The government recently established the National policy on biofuels in August 2018. The MNRE invited an expression of interest (EOI) to estimate the potential of biomass energy and bagasse cogeneration in the country. A program to encourage the promotion of biomass-based cogeneration in sugar mills and other industries was also launched in May 2018. Table 22 shows how the biomass power target and achievements are expected to reach 10 GW of the target of 2022 before the end of 2019.

The new national biogas and organic manure program (NNBOMP)—2018

The National biogas and manure management programme (NBMMP) was launched in 2012–2013. The primary objective was to provide clean gaseous fuel for cooking, where the remaining slurry was organic bio-manure which is rich in nitrogen, phosphorus, and potassium. Further, 47.5 lakh (4.75 million) cumulative biogas plants were completed in 2014, and increased to 49.8 lakh (4.98 million). During 2017–2018, the target was to establish 1.10 lakh biogas plants (1.10 million), but resulted in 0.15 lakh (0.015 million). In this way, the cost of refilling the gas cylinders with liquefied petroleum gas (LPG) was greatly reduced. Likewise, tons of wood/trees were protected from being axed, as wood is traditionally used as a fuel in rural and semi-urban households. Biogas is a viable alternative to traditional cooking fuels. The scheme generated employment for almost 300 skilled laborers for setting up the biogas plants. By 30th of May 2018, the Ministry had issued guidelines for the implementation of the NNBOMP during the period 2017–2018 to 2019–2020 [ 56 ].

The off-grid and decentralized solar photovoltaic application program—2018

The program deals with the energy demand through the deployment of solar lanterns, solar streetlights, solar home lights, and solar pumps. The plan intended to reach 118 MWp of off-grid PV capacity by 2020. The sanctioning target proposed outlay was 50 MWp by 2017–2018 and 68 MWp by 2019–2020. The total estimated cost amounted to INR 1895 crore (18950 Million INR, 265.547 million USD), and the ministry wanted to support 637 crores (6370 million INR, 89.263 million USD) by its central finance assistance. Solar power plants with a 25 KWp size were promoted in those areas where grid power does not reach households or is not reliable. Public service institutions, schools, panchayats, hostels, as well as police stations will benefit from this scheme. Solar study lamps were also included as a component in the program. Thirty percent of financial assistance was provided to solar power plants. Every student should bear 15% of the lamp cost, and the ministry wanted to support the remaining 85%. As of October 2018, lantern and lamps of more than 40 Lakhs (4 million), home lights of 16.72 lakhs (1.672 million) number, street lights of 6.40 lakhs (0.64 million), solar pumps of 1.96 lakhs (0.196 million), and 187.99 MWp stand-alone devices had been installed [ 57 , 58 ].

Major government initiatives for renewable energy

Technological initiatives.

The Technology Development and Innovation Policy (TDIP) released on the 6th of October 2017 was endeavored to promote research, development, and demonstration (RD&D) in the renewable energy sector [ 59 ]. RD&D intended to evaluate resources, progress in technology, commercialization, and the presentation of renewable energy technologies across the country. It aimed to produce renewable power devices and systems domestically. The evaluation of standards and resources, processes, materials, components, products, services, and sub-systems was carried out through RD&D. A development of the market, efficiency improvements, cost reductions, and a promotion of commercialization (scalability and bankability) were achieved through RD&D. Likewise, the percentage of renewable energy in the total electricity mix made it self-sustainable, industrially competitive, and profitable through RD&D. RD&D also supported technology development and demonstration in wind, solar, wind-solar hybrid, biofuel, biogas, hydrogen fuel cells, and geothermal energies. RD&D supported the R&D units of educational institutions, industries, and non-government organizations (NGOs). Sharing expertise, information, as well as institutional mechanisms for collaboration was realized by use of the technology development program (TDP). The various people involved in this program were policymakers, industrial innovators, associated stakeholders and departments, researchers, and scientists. Renowned R&D centers in India are the National Institute of Solar Energy (NISE), Gurgaon, the National Institute of Bio-Energy (NIBE), Kapurthala, and the National Institute of Wind Energy (NIWE), Chennai. The TDP strategy encouraged the exploration of innovative approaches and possibilities to obtain long-term targets. Likewise, it efficiently supported the transformation of knowledge into technology through a well-established monitoring system for the development of renewable technology that meets the electricity needs of India. The research center of excellence approved the TDI projects, which were funded to strengthen R&D. Funds were provided for conducting training and workshops. The MNRE is now preparing a database of R&D accomplishments in the renewable energy sector.

The Impacting Research Innovation and Technology (IMPRINT) program seeks to develop engineering and technology (prototype/process development) on a national scale. IMPRINT is steered by the Indian Institute of Technologies (IITs) and Indian Institute of science (IISCs). The expansion covers all areas of engineering and technology including renewable technology. The ministry of human resource development (MHRD) finances up to 50% of the total cost of the project. The remaining costs of the project are financed by the ministry (MNRE) via the RD&D program for renewable projects. Currently (2018–2019), five projects are under implementation in the area of solar thermal systems, storage for SPV, biofuel, and hydrogen and fuel cells which are funded by the MNRE (36.9 million INR, 0.518426 Million USD) and IMPRINT. Development of domestic technology and quality control are promoted through lab policies that were published on the 7th of December 2017. Lab policies were implemented to test, standardize, and certify renewable energy products and projects. They supported the improvement of the reliability and quality of the projects. Furthermore, Indian test labs are strengthened in line with international standards and practices through well-established lab policies. From 2015, the MNRE has provided “The New and Renewable Energy Young Scientist’s Award” to researchers/scientists who demonstrate exceptional accomplishments in renewable R&D.

Financial initiatives

One hundred percent financial assistance is granted by the MNRE to the government and NGOs and 50% financial support to the industry. The policy framework was developed to guide the identification of the project, the formulation, monitoring appraisal, approval, and financing. Between 2012 and 2017, a 4467.8 million INR, 62.52 Million USD) support was granted by the MNRE. The MNRE wanted to double the budget for technology development efforts in renewable energy for the current three-year plan period. Table 23 shows that the government is spending more and more for the development of the renewable energy sector. Financial support was provided to R&D projects. Exceptional consideration was given to projects that worked under extreme and hazardous conditions. Furthermore, financial support was applied to organizing awareness programs, demonstrations, training, workshops, surveys, assessment studies, etc. Innovative approaches will be rewarded with cash prizes. The winners will be presented with a support mechanism for transforming their ideas and prototypes into marketable commodities such as start-ups for entrepreneur development. Innovative projects will be financed via start-up support mechanisms, which will include an investment contract with investors. The MNRE provides funds to proposals for investigating policies and performance analyses related to renewable energy.

Technology validation and demonstration projects and other innovative projects with regard to renewables received a financial assistance of 50% of the project cost. The CFA applied to partnerships with industry and private institutions including engineering colleges. Private academic institutions, accredited by a government accreditation body, were also eligible to receive a 50% support. The concerned industries and institutions should meet the remaining 50% expenditure. The MNRE allocated an INR 3762.50 crore (INR 37625 million, 528.634 million USD) for the grid interactive renewable sources and an INR 1036.50 crore (INR 10365 million, 145.629 million USD) for off-grid/distributed and decentralized renewable power for the year 2018–2019 [ 60 ]. The MNRE asked the Reserve Bank of India (RBI), attempting to build renewable power projects under “priority sector lending” (priority lending should be done for renewable energy projects and without any limit) and to eliminate the obstacles in the financing of renewable energy projects. In July 2018, the Ministry of Finance announced that it would impose a 25% safeguard duty on solar panels and modules imported from China and Malaysia for 1 year. The quantum of tax might be reduced to 20% for the next 6 months, and 15% for the following 6 months.

Policy and regulatory framework initiatives

The regulatory interventions for the development of renewable energy sources are (a) tariff determination, (b) defining RPO, (c) promoting grid connectivity, and (d) promoting the expansion of the market.

Tariff policy amendments—2018

On the 30th of May 2018, the MoP released draft amendments to the tariff policy. The objective of these policies was to promote electricity generation from renewables. MoP in consultation with MNRE announced the long-term trajectory for RPO, which is represented in Table 24 . The State Electricity Regulatory Commission (SERC) achieved a favorable and neutral/off-putting effect in the growth of the renewable power sector through their RPO regulations in consultation with the MNRE. On the 25th of May 2018, the MNRE created an RPO compliance cell to reach India’s solar and wind power goals. Due to the absence of implementation of RPO regulations, several states in India did not meet their specified RPO objectives. The cell will operate along with the Central Electricity Regulatory Commission (CERC) and SERCs to obtain monthly statements on RPO compliance. It will also take up non-compliance associated concerns with the relevant officials.

Repowering policy—2016

On the 09th of August 2016, India announced a “repowering policy” for wind energy projects. An about 27 GW turnaround was possible according to the policy. This policy supports the replacing of aging wind turbines with more modern and powerful units (fewer, larger, taller) to raise the level of electricity generation. This policy seeks to create a simplified framework and to promote an optimized use of wind power resources. It is mandatory because the up to the year 2000 installed wind turbines were below 500 kW in sites where high wind potential might be achieved. It will be possible to obtain 3000 MW from the same location once replacements are in place. The policy was initially applied for the one MW installed capacity of wind turbines, and the MNRE will extend the repowering policy to other projects in the future based on experience. Repowering projects were implemented by the respective state nodal agencies/organizations that were involved in wind energy promotion in their states. The policy provided an exception from the Power Purchase Agreement (PPA) for wind farms/turbines undergoing repowering because they could not fulfill the requirements according to the PPA during repowering. The repowering projects may avail accelerated depreciation (AD) benefit or generation-based incentive (GBI) due to the conditions appropriate to new wind energy projects [ 61 ].

The wind-solar hybrid policy—2018

On the 14th of May 2018, the MNRE announced a national wind-solar hybrid policy. This policy supported new projects (large grid-connected wind-solar photovoltaic hybrid systems) and the hybridization of the already available projects. These projects tried to achieve an optimal and efficient use of transmission infrastructure and land. Better grid stability was achieved and the variability in renewable power generation was reduced. The best part of the policy intervention was that which supported the hybridization of existing plants. The tariff-based transparent bidding process was included in the policy. Regulatory authorities should formulate the necessary standards and regulations for hybrid systems. The policy also highlighted a battery storage in hybrid projects for output optimization and variability reduction [ 62 ].

The national offshore wind energy policy—2015

The National Offshore Wind Policy was released in October 2015. On the 19th of June 2018, the MNRE announced a medium-term target of 5 GW by 2022 and a long-term target of 30 GW by 2030. The MNRE called expressions of Interest (EoI) for the first 1 GW of offshore wind (the last date was 08.06.2018). The EoI site is located in Pipavav port at the Gulf of Khambhat at a distance of 23 km facilitating offshore wind (FOWIND) where the consortium deployed light detection and ranging (LiDAR) in November 2017). Pipavav port is situated off the coast of Gujarat. The MNRE had planned to install more such equipment in the states of Tamil Nadu and Gujarat. On the 14 th of December 2018, the MNRE, through the National Institute of Wind Energy (NIWE), called tender for offshore environmental impact assessment studies at intended LIDAR points at the Gulf of Mannar, off the coast of Tamil Nadu for offshore wind measurement. The timeline for initiatives was to firstly add 500 MW by 2022, 2 to 2.5 GW by 2027, and eventually reaching 5 GW between 2028 and 2032. Even though the installation of large wind power turbines in open seas is a challenging task, the government has endeavored to promote this offshore sector. Offshore wind energy would add its contribution to the already existing renewable energy mix for India [ 63 ] .

The feed-in tariff policy—2018

On the 28th of January 2016, the revised tariff policy was notified following the Electricity Act. On the 30th May 2018, the amendment in tariff policy was released. The intentions of this tariff policy are (a) an inexpensive and competitive electricity rate for the consumers; (b) to attract investment and financial viability; (c) to ensure that the perceptions of regulatory risks decrease through predictability, consistency, and transparency of policy measures; (d) development in quality of supply, increased operational efficiency, and improved competition; (e) increase the production of electricity from wind, solar, biomass, and small hydro; (f) peaking reserves that are acceptable in quantity or consistently good in quality or performance of grid operation where variable renewable energy source integration is provided through the promotion of hydroelectric power generation, including pumped storage projects (PSP); (g) to achieve better consumer services through efficient and reliable electricity infrastructure; (h) to supply sufficient and uninterrupted electricity to every level of consumers; and (i) to create adequate capacity, reserves in the production, transmission, and distribution that is sufficient for the reliability of supply of power to customers [ 64 ].

Training and educational initiatives

The MHRD has developed strong renewable energy education and training systems. The National Council for Vocational Training (NCVT) develops course modules, and a Modular Employable Skilling program (MES) in its regular 2-year syllabus to include SPV lighting systems, solar thermal systems, SHP, and provides the certificate for seven trades after the completion of a 2-year course. The seven trades are plumber, fitter, carpenter, welder, machinist, and electrician. The Ministry of Skill Development and Entrepreneurship (MSDE) worked out a national skill development policy in 2015. They provide regular training programs to create various job roles in renewable energy along with the MNRE support through a skill council for green jobs (SCGJ), the National Occupational Standards (NOS), and the Qualification Pack (QP). The SCGJ is promoted by the Confederation of Indian Industry (CII) and the MNRE. The industry partner for the SCGJ is ReNew Power [ 65 , 66 ].

The global status of India in renewable energy

Table 25 shows the RECAI (Renewable Energy Country Attractiveness Index) report of 40 countries. This report is based on the attractiveness of renewable energy investment and deployment opportunities. RECAI is based on macro vitals such as economic stability, investment climate, energy imperatives such as security and supply, clean energy gap, and affordability. It also includes policy enablement such as political stability and support for renewables. Its emphasis lies on project delivery parameters such as energy market access, infrastructure, and distributed generation, finance, cost and availability, and transaction liquidity. Technology potentials such as natural resources, power take-off attractiveness, potential support, technology maturity, and forecast growth are taken into consideration for ranking. India has moved to the fourth position of the RECAI-2018. Indian solar installations (new large-scale and rooftop solar capacities) in the calendar year 2017 increased exponentially with the addition of 9629 MW, whereas in 2016 it was 4313 MW. The warning of solar import tariffs and conflicts between developers and distribution firms are growing investor concerns [ 67 ]. Figure 6 shows the details of the installed capacity of global renewable energy in 2016 and 2017. Globally, 2017 GW renewable energy was installed in 2016, and in 2017, it increased to 2195 GW. Table 26 shows the total capacity addition of top countries until 2017. The country ranked fifth in renewable power capacity (including hydro energy), renewable power capacity (not including hydro energy) in fourth position, concentrating solar thermal power (CSP) and wind power were also in fourth position [ 68 ].

figure 6

Globally installed capacity of renewable energy in 2017—Global 2018 status report with regard to renewables [ 68 ]

The investment opportunities in renewable energy in India

The investments into renewable energy in India increased by 22% in the first half of 2018 compared to 2017, while the investments in China dropped by 15% during the same period, according to a statement by the Bloomberg New Energy Finance (BNEF), which is shown in Table 27 [ 69 , 70 ]. At this rate, India is expected to overtake China and become the most significant growth market for renewable energy by the end of 2020. The country is eyeing pole position for transformation in renewable energy by reaching 175 GW by 2020. To achieve this target, it is quickly ramping up investments in this sector. The country added more renewable capacity than conventional capacity in 2018 when compared to 2017. India hosted the ISA first official summit on the 11.03.2018 for 121 countries. This will provide a standard platform to work toward the ambitious targets for renewable energy. The summit will emphasize India’s dedication to meet global engagements in a time-bound method. The country is also constructing many sizeable solar power parks comparable to, but larger than, those in China. Half of the earth’s ten biggest solar parks under development are in India.

In 2014, the world largest solar park was the Topaz solar farm in California with a 550 MW facility. In 2015, another operator in California, Solar Star, edged its capacity up to 579 MW. By 2016, India’s Kamuthi Solar Power Project in Tamil Nadu was on top with 648 MW of capacity (set up by the Adani Green Energy, part of the Adani Group, in Tamil Nadu). As of February 2017, the Longyangxia Dam Solar Park in China was the new leader, with 850 MW of capacity [ 71 ]. Currently, there are 600 MW operating units and 1400 MW units under construction. The Shakti Sthala solar park was inaugurated on 01.03.2018 in Pavagada (Karnataka, India) which is expected to become the globe’s most significant solar park when it accomplishes its full potential of 2 GW. Another large solar park with 1.5 GW is scheduled to be built in the Kadappa region [ 72 ]. The progress in solar power is remarkable and demonstrates real clean energy development on the ground.

The Kurnool ultra-mega solar park generated 800 million units (MU) of energy in October 2018 and saved over 700,000 tons of CO 2 . Rainwater was harvested using a reservoir that helps in cleaning solar panels and supplying water. The country is making remarkable progress in solar energy. The Kamuthi solar farm is cleaned each day by a robotic system. As the Indian economy expands, electricity consumption is forecasted to reach 15,280 TWh in 2040. With the government’s intent, green energy objectives, i.e., the renewable sector, grow considerably in an attractive manner with both foreign and domestic investors. It is anticipated to attract investments of up to USD 80 billion in the subsequent 4 years. The government of India has raised its 175 GW target to 225 GW of renewable energy capacity by 2022. The competitive benefit is that the country has sun exposure possible throughout the year and has an enormous hydropower potential. India was also listed fourth in the EY renewable energy country attractive index 2018. Sixty solar cities will be built in India as a section of MNRE’s “Solar cities” program.

In a regular auction, reduction in tariffs cost of the projects are the competitive benefits in the country. India accounts for about 4% of the total global electricity generation capacity and has the fourth highest installed capacity of wind energy and the third highest installed capacity of CSP. The solar installation in India erected during 2015–2016, 2016–2017, 2017–2018, and 2018–2019 was 3.01 GW, 5.52 GW, 9.36 GW, and 6.53 GW, respectively. The country aims to add 8.5 GW during 2019–2020. Due to its advantageous location in the solar belt (400 South to 400 North), the country is one of the largest beneficiaries of solar energy with relatively ample availability. An increase in the installed capacity of solar power is anticipated to exceed the installed capacity of wind energy, approaching 100 GW by 2022 from its current levels of 25.21226 GW as of December 2018. Fast falling prices have made Solar PV the biggest market for new investments. Under the Union Budget 2018–2019, a zero import tax on parts used in manufacturing solar panels was launched to provide an advantage to domestic solar panel companies [ 73 ].

Foreign direct investment (FDI) inflows in the renewable energy sector of India between April 2000 and June 2018 amounted to USD 6.84 billion according to the report of the department of industrial policy and promotion (DIPP). The DIPP was renamed (gazette notification 27.01.2019) the Department for the Promotion of Industry and Internal Trade (DPIIT). It is responsible for the development of domestic trade, retail trade, trader’s welfare including their employees as well as concerns associated with activities in facilitating and supporting business and startups. Since 2014, more than 42 billion USD have been invested in India’s renewable power sector. India reached US$ 7.4 billion in investments in the first half of 2018. Between April 2015 and June 2018, the country received USD 3.2 billion FDI in the renewable sector. The year-wise inflows expanded from USD 776 million in 2015–2016 to USD 783 million in 2016–2017 and USD 1204 million in 2017–2018. Between January to March of 2018, the INR 452 crore (4520 Million INR, 63.3389 million USD) of the FDI had already come in. The country is contributing with financial and promotional incentives that include a capital subsidy, accelerated depreciation (AD), waiver of inter-state transmission charges and losses, viability gap funding (VGF), and FDI up to 100% under the automated track.

The DIPP/DPIIT compiles and manages the data of the FDI equity inflow received in India [ 74 ]. The FDI equity inflow between April 2015 and June 2018 in the renewable sector is illustrated in Fig. 7 . It shows that the 2018–2019 3 months’ FDI equity inflow is half of that of the entire one of 2017–2018. It is evident from the figure that India has well-established FDI equity inflows. The significant FDI investments in the renewable energy sectors are shown in Table 28 . The collaboration between the Asian development bank and Renew Power Ventures private limited with 44.69 million USD ranked first followed by AIRRO Singapore with Diligent power with FDI equity inflow of 44.69 USD million.

figure 7

The FDI equity inflow received between April 2015 and June 2018 in the renewable energy sector [ 73 ]

Strategies to promote investments

Strategies to promote investments (including FDI) by investors in the renewable sector:

Decrease constraints on FDI; provide open, transparent, and dependable conditions for foreign and domestic firms; and include ease of doing business, access to imports, comparatively flexible labor markets, and safeguard of intellectual property rights.

Establish an investment promotion agency (IPA) that targets suitable foreign investors and connects them as a catalyst with the domestic economy. Assist the IPA to present top-notch infrastructure and immediate access to skilled workers, technicians, engineers, and managers that might be needed to attract such investors. Furthermore, it should involve an after-investment care, recognizing the demonstration effects from satisfied investors, the potential for reinvestments, and the potential for cluster-development due to follow-up investments.

It is essential to consider the targeted sector (wind, solar, SPH or biomass, respectively) for which investments are required.

Establish the infrastructure needed for a quality investor, including adequate close-by transport facilities (airport, ports), a sufficient and steady supply of energy, a provision of a sufficiently skilled workforce, the facilities for the vocational training of specialized operators, ideally designed in collaboration with the investor.

Policy and other support mechanisms such as Power Purchase Agreements (PPA) play an influential role in underpinning returns and restricting uncertainties for project developers, indirectly supporting the availability of investment. Investors in renewable energy projects have historically relied on government policies to give them confidence about the costs necessary for electricity produced—and therefore for project revenues. Reassurance of future power costs for project developers is secured by signing a PPA with either a utility or an essential corporate buyer of electricity.

FiT have been the most conventional approach around the globe over the last decade to stimulate investments in renewable power projects. Set by the government concerned, they lay down an electricity tariff that developers of qualifying new projects might anticipate to receive for the resulting electricity over a long interval (15–20 years). These present investors in the tax equity of renewable power projects with a credit that they can manage to offset the tax burden outside in their businesses.

Table 29 presents the 2018 renewable energy investment report, source-wise, by the significant players in renewables according to the report of the Bloomberg New Energy Finance Report 2018. As per this report, global investment in renewable energy was USD of 279.8 billion in 2017. The top ten in the total global investments are China (126.1 $BN), the USA (40.5 $BN), Japan (13.4 $BN), India (10.9 $BN), Germany (10.4 $BN), Australia (8.5 $BN), UK (7.6 $BN), Brazil (6.0 $BN), Mexico (6.0 $BN), and Sweden (3.7 $BN) [ 75 ]. This achievement was possible since those countries have well-established strategies for promoting investments [ 76 , 77 ].

The appropriate objectives for renewable power expansion and investments are closely related to the Nationally Determined Contributions (NDCs) objectives, the implementation of the NDC, on the road to achieving Paris promises, policy competence, policy reliability, market absorption capacity, and nationwide investment circumstances that are the real purposes for renewable power expansion, which is a significant factor for the investment strategies, as is shown in Table 30 .

The demand for investments for building a Paris-compatible and climate-resilient energy support remains high, particularly in emerging nations. Future investments in energy grids and energy flexibility are of particular significance. The strategies and the comparison chart between China, India, and the USA are presented in Table 31 .

Table 32 shows France in the first place due to overall favorable conditions for renewables, heading the G20 in investment attractiveness of renewables. Germany drops back one spot due to a decline in the quality of the global policy environment for renewables and some insufficiencies in the policy design, as does the UK. Overall, with four European countries on top of the list, Europe, however, directs the way in providing attractive conditions for investing in renewables. Despite high scores for various nations, no single government is yet close to growing a role model. All countries still have significant room for increasing investment demands to deploy renewables at the scale required to reach the Paris objectives. The table shown is based on the Paris compatible long-term vision, the policy environment for renewable energy, the conditions for system integration, the market absorption capacity, and general investment conditions. India moved from the 11th position to the 9th position in overall investments between 2017 and 2018.

A Paris compatible long-term vision includes a de-carbonization plan for the power system, the renewable power ambition, the coal and oil decrease, and the reliability of renewables policies. Direct support policies include medium-term certainty of policy signals, streamlined administrative procedures, ensuring project realization, facilitating the use of produced electricity. Conditions for system integration include system integration-grid codes, system integration-storage promotion, and demand-side management policies. A market absorption capacity includes a prior experience with renewable technologies, a current activity with renewable installations, and a presence of major renewable energy companies. General investment conditions include non-financial determinants, depth of the financial sector as well, as an inflation forecast.

Employment opportunities for citizens in renewable energy in India

Global employment scenario.

According to the 2018 Annual review of the IRENA [ 78 ], global renewable energy employment touched 10.3 million jobs in 2017, an improvement of 5.3% compared with the quantity published in 2016. Many socio-economic advantages derive from renewable power, but employment continues to be exceptionally centralized in a handful of countries, with China, Brazil, the USA, India, Germany, and Japan in the lead. In solar PV employment (3.4 million jobs), China is the leader (65% of PV Jobs) which is followed by Japan, USA, India, Bangladesh, Malaysia, Germany, Philippines, and Turkey. In biofuels employment (1.9 million jobs), Brazil is the leader (41% of PV Jobs) followed by the USA, Colombia, Indonesia, Thailand, Malaysia, China, and India. In wind employment (1.1 million jobs), China is the leader (44% of PV Jobs) followed by Germany, USA, India, UK, Brazil, Denmark, Netherlands, France, and Spain.

Table 33 shows global renewable energy employment in the corresponding technology branches. As in past years, China maintained the most notable number of people employed (3880 million jobs) estimating for 43% of the globe’s total which is shown in Fig. 8 . In India, new solar installations touched a record of 9.6 GW in 2017, efficiently increasing the total installed capacity. The employment in solar PV improved by 36% and reached 164,400 jobs, of which 92,400 represented on-grid use. IRENA determines that the building and installation covered 46% of these jobs, with operations and maintenance (O&M) representing 35% and 19%, individually. India does not produce solar PV because it could be imported from China, which is inexpensive. The market share of domestic companies (Indian supplier to renewable projects) declined from 13% in 2014–2015 to 7% in 2017–2018. If India starts the manufacturing base, more citizens will get jobs in the manufacturing field. India had the world’s fifth most significant additions of 4.1 GW to wind capacity in 2017 and the fourth largest cumulative capacity in 2018. IRENA predicts that jobs in the wind sector stood at 60,500.

figure 8

Renewable energy employment in selected countries [ 79 ]

The jobs in renewables are categorized into technological development, installation/de-installation, operation, and maintenance. Tables 34 , 35 , 36 , and 37 show the wind industry, solar energy, biomass, and small hydro-related jobs in project development, component manufacturing, construction, operations, and education, training, and research. As technology quickly evolves, workers in all areas need to update their skills through continuing training/education or job training, and in several cases could benefit from professional certification. The advantages of moving to renewable energy are evident, and for this reason, the governments are responding positively toward the transformation to clean energy. Renewable energy can be described as the country’s next employment boom. Renewable energy job opportunities can transform rural economy [ 79 , 80 ]. The renewable energy sector might help to reduce poverty by creating better employment. For example, wind power is looking for specialists in manufacturing, project development, and construction and turbine installation as well as financial services, transportation and logistics, and maintenance and operations.

The government is building more renewable energy power plants that will require a workforce. The increasing investments in the renewable energy sector have the potential to provide more jobs than any other fossil fuel industry. Local businesses and renewable sectors will benefit from this change, as income will increase significantly. Many jobs in this sector will contribute to fixed salaries, healthcare benefits, and skill-building opportunities for unskilled and semi-skilled workers. A range of skilled and unskilled jobs are included in all renewable energy technologies, even though most of the positions in the renewable energy industry demand a skilled workforce. The renewable sector employs semi-skilled and unskilled labor in the construction, operations, and maintenance after proper training. Unskilled labor is employed as truck drivers, guards, cleaning, and maintenance. Semi-skilled labor is used to take regular readings from displays. A lack of consistent data on the potential employment impact of renewables expansion makes it particularly hard to assess the quantity of skilled, semi-skilled, and unskilled personnel that might be needed.

Key findings in renewable energy employment

The findings comprise (a) that the majority of employment in the renewable sector is contract based, and that employees do not benefit from permanent jobs or security. (b) Continuous work in the industry has the potential to decrease poverty. (c) Most poor citizens encounter obstacles to entry-level training and the employment market due to lack of awareness about the jobs and the requirements. (d) Few renewable programs incorporate developing ownership opportunities for the citizens and the incorporation of women in the sector. (e) The inadequacy of data makes it challenging to build relationships between employment in renewable energy and poverty mitigation.

Recommendations for renewable energy employment

When building the capacity, focus on poor people and individuals to empower them with training in operation and maintenance.

Develop and offer training programs for citizens with minimal education and training, who do not fit current programs, which restrict them from working in renewable areas.

Include women in the renewable workforce by providing localized training.

Establish connections between training institutes and renewable power companies to guarantee that (a) trained workers are placed in appropriate positions during and after the completion of the training program and (b) training programs match the requirements of the renewable sector.

Poverty impact assessments might be embedded in program design to know how programs motivate poverty reduction, whether and how they influence the community.

Allow people to have a sense of ownership in renewable projects because this could contribute to the growth of the sector.

The details of the job being offered (part time, full time, contract-based), the levels of required skills for the job (skilled, semi-skilled and unskilled), the socio-economic status of the employee data need to be collected for further analysis.

Conduct investigations, assisted by field surveys, to learn about the influence of renewable energy jobs on poverty mitigation and differences in the standard of living.

Challenges faced by renewable energy in India

The MNRE has been taking dedicated measures for improving the renewable sector, and its efforts have been satisfactory in recognizing various obstacles.

Policy and regulatory obstacles

A comprehensive policy statement (regulatory framework) is not available in the renewable sector. When there is a requirement to promote the growth of particular renewable energy technologies, policies might be declared that do not match with the plans for the development of renewable energy.

The regulatory framework and procedures are different for every state because they define the respective RPOs (Renewable Purchase Obligations) and this creates a higher risk of investments in this sector. Additionally, the policies are applicable for just 5 years, and the generated risk for investments in this sector is apparent. The biomass sector does not have an established framework.

Incentive accelerated depreciation (AD) is provided to wind developers and is evident in developing India’s wind-producing capacity. Wind projects installed more than 10 years ago show that they are not optimally maintained. Many owners of the asset have built with little motivation for tax benefits only. The policy framework does not require the maintenance of the wind projects after the tax advantages have been claimed. There is no control over the equipment suppliers because they undertake all wind power plant development activities such as commissioning, operation, and maintenance. Suppliers make the buyers pay a premium and increase the equipment cost, which brings burden to the buyer.

Furthermore, ready-made projects are sold to buyers. The buyers are susceptible to this trap to save income tax. Foreign investors hesitate to invest because they are exempted from the income tax.

Every state has different regulatory policy and framework definitions of an RPO. The RPO percentage specified in the regulatory framework for various renewable sources is not precise.

RPO allows the SERCs and certain private firms to procure only a part of their power demands from renewable sources.

RPO is not imposed on open access (OA) and captive consumers in all states except three.

RPO targets and obligations are not clear, and the RPO compliance cell has just started on 22.05.2018 to collect the monthly reports on compliance and deal with non-compliance issues with appropriate authorities.

Penalty mechanisms are not specified and only two states in India (Maharashtra and Rajasthan) have some form of penalty mechanisms.

The parameter to determine the tariff is not transparent in the regulatory framework and many SRECs have established a tariff for limited periods. The FiT is valid for only 5 years, and this affects the bankability of the project.

Many SERCs have not decided on adopting the CERC tariff that is mentioned in CERCs regulations that deal with terms and conditions for tariff determinations. The SERCs have considered the plant load factor (PLF) because it varies across regions and locations as well as particular technology. The current framework does not fit to these issues.

Third party sale (TPS) is not allowed because renewable generators are not allowed to sell power to commercial consumers. They have to sell only to industrial consumers. The industrial consumers have a low tariff and commercial consumers have a high tariff, and SRCS do not allow OA. This stops the profit for the developers and investors.

Institutional obstacles

Institutes, agencies stakeholders who work under the conditions of the MNRE show poor inter-institutional coordination. The progress in renewable energy development is limited by this lack of cooperation, coordination, and delays. The delay in implementing policies due to poor coordination, decrease the interest of investors to invest in this sector.

The single window project approval and clearance system is not very useful and not stable because it delays the receiving of clearances for the projects ends in the levy of a penalty on the project developer.

Pre-feasibility reports prepared by concerned states have some deficiency, and this may affect the small developers, i.e., the local developers, who are willing to execute renewable projects.

The workforce in institutes, agencies, and ministries is not sufficient in numbers.

Proper or well-established research centers are not available for the development of renewable infrastructure.

Customer care centers to guide developers regarding renewable projects are not available.

Standards and quality control orders have been issued recently in 2018 and 2019 only, and there are insufficient institutions and laboratories to give standards/certification and validate the quality and suitability of using renewable technology.

Financial and fiscal obstacles

There are a few budgetary constraints such as fund allocation, and budgets that are not released on time to fulfill the requirement of developing the renewable sector.

The initial unit capital costs of renewable projects are very high compared to fossil fuels, and this leads to financing challenges and initial burden.

There are uncertainties related to the assessment of resources, lack of technology awareness, and high-risk perceptions which lead to financial barriers for the developers.

The subsidies and incentives are not transparent, and the ministry might reconsider subsidies for renewable energy because there was a sharp fall in tariffs in 2018.

Power purchase agreements (PPA) signed between the power purchaser and power generators on pre-determined fixed tariffs are higher than the current bids (Economic survey 2017–2018 and union budget on the 01.02.2019). For example, solar power tariff dropped to 2.44 INR (0. 04 USD) per unit in May 2017, wind power INR 3.46 per unit in February 2017, and 2.64 INR per unit in October 2017.

Investors feel that there is a risk in the renewable sector as this sector has lower gross returns even though these returns are relatively high within the market standards.

There are not many developers who are interested in renewable projects. While newly established developers (small and local developers) do not have much of an institutional track record or financial input, which are needed to develop the project (high capital cost). Even moneylenders consider it risky and are not ready to provide funding. Moneylenders look exclusively for contractors who have much experience in construction, well-established suppliers with proven equipment and operators who have more experience.

If the performance of renewable projects, which show low-performance, faces financial obstacles, they risks the lack of funding of renewable projects.

Financial institutions such as government banks or private banks do not have much understanding or expertise in renewable energy projects, and this imposes financial barriers to the projects.

Delay in payment by the SERCs to the developers imposes debt burden on the small and local developers because moneylenders always work with credit enhancement mechanisms or guarantee bonds signed between moneylenders and the developers.

Market obstacles

Subsidies are adequately provided to conventional fossil fuels, sending the wrong impression that power from conventional fuels is of a higher priority than that from renewables (unfair structure of subsidies)

There are four renewable markets in India, the government market (providing budgetary support to projects and purchase the output of the project), the government-driven market (provide budgetary support or fiscal incentives to promote renewable energy), the loan market (taking loan to finance renewable based applications), and the cash market (buying renewable-based applications to meet personal energy needs by individuals). There is an inadequacy in promoting the loan market and cash market in India.

The biomass market is facing a demand-supply gap which results in a continuous and dramatic increase in biomass prices because the biomass supply is unreliable (and, as there is no organized market for fuel), and the price fluctuations are very high. The type of biomass is not the same in all the states of India, and therefore demand and price elasticity is high for biomass.

Renewable power was calculated based on cost-plus methods (adding direct material cost, direct labor cost, and product overhead cost). This does not include environmental cost and shields the ecological benefits of clean and green energy.

There is an inadequate evacuation infrastructure and insufficient integration of the grid, which affects the renewable projects. SERCs are not able to use all generated power to meet the needs because of the non-availability of a proper evacuation infrastructure. This has an impact on the project, and the SERCs are forced to buy expensive power from neighbor states to fulfill needs.

Extending transmission lines is not possible/not economical for small size projects, and the seasonality of generation from such projects affect the market.

There are few limitations in overall transmission plans, distribution CapEx plans, and distribution licenses for renewable power. Power evacuation infrastructure for renewable energy is not included in the plans.

Even though there is an increase in capacity for the commercially deployed renewable energy technology, there is no decline in capital cost. This cost of power also remains high. The capital cost quoted by the developers and providers of equipment is too high due to exports of machinery, inadequate built up capacity, and cartelization of equipment suppliers (suppliers join together to control prices and limit competition).

There is no adequate supply of land, for wind, solar, and solar thermal power plants, which lead to poor capacity addition in many states.

Technological obstacles

Every installation of a renewable project contributes to complex risk challenges from environmental uncertainties, natural disasters, planning, equipment failure, and profit loss.

MNRE issued the standardization of renewable energy projects policy on the 11th of December 2017 (testing, standardization, and certification). They are still at an elementary level as compared to international practices. Quality assurance processes are still under starting conditions. Each success in renewable energy is based on concrete action plans for standards, testing and certification of performance.

The quality and reliability of manufactured components, imported equipment, and subsystems is essential, and hence quality infrastructure should be established. There is no clear document related to testing laboratories, referral institutes, review mechanism, inspection, and monitoring.

There are not many R&D centers for renewables. Methods to reduce the subsidies and invest in R&D lagging; manufacturing facilities are just replicating the already available technologies. The country is dependent on international suppliers for equipment and technology. Spare parts are not manufactured locally and hence they are scarce.

Awareness, education, and training obstacles

There is an unavailability of appropriately skilled human resources in the renewable energy sector. Furthermore, it faces an acute workforce shortage.

After installation of renewable project/applications by the suppliers, there is no proper follow-up or assistance for the workers in the project to perform maintenance. Likewise, there are not enough trained and skilled persons for demonstrating, training, operation, and maintenance of the plant.

There is inadequate knowledge in renewables, and no awareness programs are available to the general public. The lack of awareness about the technologies is a significant obstacle in acquiring vast land for constructing the renewable plant. Moreover, people using agriculture lands are not prepared to give their land to construct power plants because most Indians cultivate plants.

The renewable sector depends on the climate, and this varying climate also imposes less popularity of renewables among the people.

The per capita income is low, and the people consider that the cost of renewables might be high and they might not be able to use renewables.

The storage system increases the cost of renewables, and people believe it too costly and are not ready to use them.

The environmental benefits of renewable technologies are not clearly understood by the people and negative perceptions are making renewable technologies less prevalent among them.

Environmental obstacles

A single wind turbine does not occupy much space, but many turbines are placed five to ten rotor diameters from each other, and this occupies more area, which include roads and transmission lines.

In the field of offshore wind, the turbines and blades are bigger than onshore wind turbines, and they require a substantial amount of space. Offshore installations affect ocean activities (fishing, sand extraction, gravel extraction, oil extraction, gas extraction, aquaculture, and navigation). Furthermore, they affect fish and other marine wildlife.

Wind turbines influence wildlife (birds and bats) because of the collisions with them and due to air pressure changes caused by wind turbines and habitat disruption. Making wind turbines motionless during times of low wind can protect birds and bats but is not practiced.

Sound (aerodynamic, mechanical) and visual impacts are associated with wind turbines. There is poor practice by the wind turbine developers regarding public concerns. Furthermore, there are imperfections in surfaces and sound—absorbent material which decrease the noise from turbines. The shadow flicker effect is not taken as severe environmental impact by the developers.

Sometimes wind turbine material production, transportation of materials, on-site construction, assembling, operation, maintenance, dismantlement, and decommissioning may be associated with global warming, and there is a lag in this consideration.

Large utility-scale solar plants require vast lands that increase the risk of land degradation and loss of habitat.

The PV cell manufacturing process includes hazardous chemicals such as 1-1-1 Trichloroethene, HCL, H 2 SO 4 , N 2 , NF, and acetone. Workers face risks resulting from inhaling silicon dust. The manufacturing wastes are not disposed of properly. Proper precautions during usage of thin-film PV cells, which contain cadmium—telluride, gallium arsenide, and copper-indium-gallium-diselenide are missing. These materials create severe public health threats and environmental threats.

Hydroelectric power turbine blades kill aquatic ecosystems (fish and other organisms). Moreover, algae and other aquatic weeds are not controlled through manual harvesting or by introducing fish that can eat these plants.

Discussion and recommendations based on the research

Policy and regulation advancements.

The MNRE should provide a comprehensive action plan or policy for the promotion of the renewable sector in its regulatory framework for renewables energy. The action plan can be prepared in consultation with SERCs of the country within a fixed timeframe and execution of the policy/action plan.

The central and state government should include a “Must run status” in their policy and follow it strictly to make use of renewable power.

A national merit order list for renewable electricity generation will reduce power cost for the consumers. Such a merit order list will help in ranking sources of renewable energy in an ascending order of price and will provide power at a lower cost to each distribution company (DISCOM). The MNRE should include that principle in its framework and ensure that SERCs includes it in their regulatory framework as well.

SERCs might be allowed to remove policies and regulatory uncertainty surrounding renewable energy. SERCs might be allowed to identify the thrust areas of their renewable energy development.

There should be strong initiatives from municipality (local level) approvals for renewable energy-based projects.

Higher market penetration is conceivable only if their suitable codes and standards are adopted and implemented. MNRE should guide minimum performance standards, which incorporate reliability, durability, and performance.

A well-established renewable energy certificates (REC) policy might contribute to an efficient funding mechanism for renewable energy projects. It is necessary for the government to look at developing the REC ecosystem.

The regulatory administration around the RPO needs to be upgraded with a more efficient “carrot and stick” mechanism for obligated entities. A regulatory mechanism that both remunerations compliance and penalizes for non-compliance may likely produce better results.

RECs in India should only be traded on exchange. Over-the-counter (OTC) or off-exchange trading will potentially allow greater participation in the market. A REC forward curve will provide further price determination to the market participants.

The policymakers should look at developing and building the REC market.

Most states have defined RPO targets. Still, due to the absence of implemented RPO regulations and the inadequacy of penalties when obligations are not satisfied, several of the state DISCOMs are not complying completely with their RPO targets. It is necessary that all states adhere to the RPO targets set by respective SERCs.

The government should address the issues such as DISCOM financials, must-run status, problems of transmission and evacuation, on-time payments and payment guarantees, and deemed generation benefits.

Proper incentives should be devised to support utilities to obtain power over and above the RPO mandated by the SERC.

The tariff orders/FiTs must be consistent and not restricted for a few years.

Transmission requirements

The developers are worried that transmission facilities are not keeping pace with the power generation. Bays at the nearest substations are occupied, and transmission lines are already carrying their full capacity. This is due to the lack of coordination between MNRE and the Power Grid Corporation of India (PGCIL) and CEA. Solar Corporation of India (SECI) is holding auctions for both wind and solar projects without making sure that enough evacuation facilities are available. There is an urgent need to make evacuation plans.

The solution is to develop numerous substations and transmission lines, but the process will take considerably longer time than the currently under-construction projects take to get finished.

In 2017–2018, transmission lines were installed under the green energy corridor project by the PGCIL, with 1900 circuit km targeted in 2018–2019. The implementation of the green energy corridor project explicitly meant to connect renewable energy plants to the national grid. The budget allocation of INR 6 billion for 2018–2019 should be increased to higher values.

The mismatch between MNRE and PGCIL, which are responsible for inter-state transmission, should be rectified.

State transmission units (STUs) are responsible for the transmission inside the states, and their fund requirements to cover the evacuation and transmission infrastructure for renewable energy should be fulfilled. Moreover, STUs should be penalized if they fail to fulfill their responsibilities.

The coordination and consultation between the developers (the nodal agency responsible for the development of renewable energy) and STUs should be healthy.

Financing the renewable sector

The government should provide enough budget for the clean energy sector. China’s annual budget for renewables is 128 times higher than India’s. In 2017, China spent USD 126.6 billion (INR 9 lakh crore) compared to India’s USD 10.9 billion (INR 75500 crore). In 2018, budget allocations for grid interactive wind and solar have increased but it is not sufficient to meet the renewable target.

The government should concentrate on R&D and provide a surplus fund for R&D. In 2017, the budget allotted was an INR 445 crore, which was reduced to an INR 272.85 crore in 2016. In 2017–2018, the initial allocation was an INR 144 crore that was reduced to an INR 81 crore during the revised estimates. Even the reduced amounts could not be fully used, there is an urgent demand for regular monitoring of R&D and the budget allocation.

The Goods and Service Tax (GST) that was introduced in 2017 worsened the industry performance and has led to an increase in costs and poses a threat to the viability of the ongoing projects, ultimately hampering the target achievement. These GST issues need to be addressed.

Including the renewable sector as a priority sector would increase the availability of credit and lead to a more substantial participation by commercial banks.

Mandating the provident funds and insurance companies to invest the fixed percentage of their portfolio into the renewable energy sector.

Banks should allow an interest rebate on housing loans if the owner is installing renewable applications such as solar lights, solar water heaters, and PV panels in his house. This will encourage people to use renewable energy. Furthermore, income tax rebates also can be given to individuals if they are implementing renewable energy applications.

Improvement in manufacturing/technology

The country should move to domestic manufacturing. It imports 90% of its solar cell and module requirements from Malaysia, China, and Taiwan, so it is essential to build a robust domestic manufacturing basis.

India will provide “safeguard duty” for merely 2 years, and this is not adequate to build a strong manufacturing basis that can compete with the global market. Moreover, safeguard duty would work only if India had a larger existing domestic manufacturing base.

The government should reconsider the safeguard duty. Many foreign companies desiring to set up joint ventures in India provide only a lukewarm response because the given order in its current form presents inadequate safeguards.

There are incremental developments in technology at regular periods, which need capital, and the country should discover a way to handle these factors.

To make use of the vast estimated renewable potential in India, the R&D capability should be upgraded to solve critical problems in the clean energy sector.

A comprehensive policy for manufacturing should be established. This would support capital cost reduction and be marketed on a global scale.

The country should initiate an industry-academia partnership, which might promote innovative R&D and support leading-edge clean power solutions to protect the globe for future generations.

Encourage the transfer of ideas between industry, academia, and policymakers from around the world to develop accelerated adoption of renewable power.

Awareness about renewables

Social recognition of renewable energy is still not very promising in urban India. Awareness is the crucial factor for the uniform and broad use of renewable energy. Information about renewable technology and their environmental benefits should reach society.

The government should regularly organize awareness programs throughout the country, especially in villages and remote locations such as the islands.

The government should open more educational/research organizations, which will help in spreading knowledge of renewable technology in society.

People should regularly be trained with regard to new techniques that would be beneficial for the community.

Sufficient agencies should be available to sell renewable products and serve for technical support during installation and maintenance.

Development of the capabilities of unskilled and semiskilled workers and policy interventions are required related to employment opportunities.

An increase in the number of qualified/trained personnel might immediately support the process of installations of renewables.

Renewable energy employers prefer to train employees they recruit because they understand that education institutes fail to give the needed and appropriate skills. The training institutes should rectify this issue. Severe trained human resources shortages should be eliminated.

Upgrading the ability of the existing workforce and training of new professionals is essential to achieve the renewable goal.

Hybrid utilization of renewables

The country should focus on hybrid power projects for an effective use of transmission infrastructure and land.

India should consider battery storage in hybrid projects, which support optimizing the production and the power at competitive prices as well as a decrease of variability.

Formulate mandatory standards and regulations for hybrid systems, which are lagging in the newly announced policies (wind-solar hybrid policy on 14.05.2018).

The hybridization of two or more renewable systems along with the conventional power source battery storage can increase the performance of renewable technologies.

Issues related to sizing and storage capacity should be considered because they are key to the economic viability of the system.

Fiscal and financial incentives available for hybrid projects should be increased.

The renewable sector suffers notable obstacles. Some of them are inherent in every renewable technology; others are the outcome of a skewed regulative structure and marketplace. The absence of comprehensive policies and regulation frameworks prevent the adoption of renewable technologies. The renewable energy market requires explicit policies and legal procedures to enhance the attention of investors. There is a delay in the authorization of private sector projects because of a lack of clear policies. The country should take measures to attract private investors. Inadequate technology and the absence of infrastructure required to establish renewable technologies should be overcome by R&D. The government should allow more funds to support research and innovation activities in this sector. There are insufficiently competent personnel to train, demonstrate, maintain, and operate renewable energy structures and therefore, the institutions should be proactive in preparing the workforce. Imported equipment is costly compared to that of locally manufactured; therefore, generation of renewable energy becomes expensive and even unaffordable. Hence, to decrease the cost of renewable products, the country should become involve in the manufacturing of renewable products. Another significant infrastructural obstacle to the development of renewable energy technologies is unreliable connectivity to the grid. As a consequence, many investors lose their faith in renewable energy technologies and are not ready to invest in them for fear of failing. India should work on transmission and evacuation plans.

Inadequate servicing and maintenance of facilities and low reliability in technology decreases customer trust in some renewable energy technologies and hence prevent their selection. Adequate skills to repair/service the spare parts/equipment are required to avoid equipment failures that halt the supply of energy. Awareness of renewable energy among communities should be fostered, and a significant focus on their socio-cultural practices should be considered. Governments should support investments in the expansion of renewable energy to speed up the commercialization of such technologies. The Indian government should declare a well-established fiscal assistance plan, such as the provision of credit, deduction on loans, and tariffs. The government should improve regulations making obligations under power purchase agreements (PPAs) statutorily binding to guarantee that all power DISCOMs have PPAs to cover a hundred percent of their RPO obligation. To accomplish a reliable system, it is strongly suggested that renewables must be used in a hybrid configuration of two or more resources along with conventional source and storage devices. Regulatory authorities should formulate the necessary standards and regulations for hybrid systems. Making investments economically possible with effective policies and tax incentives will result in social benefits above and beyond the economic advantages.

Availability of data and materials

Not applicable.

Abbreviations

Accelerated depreciation

Billion units

Central Electricity Authority of India

Central electricity regulatory commission

Central financial assistance

Expression of interest

Foreign direct investment

Feed-in-tariff

Ministry of new and renewable energy

Research and development

Renewable purchase obligations

State electricity regulatory

Small hydropower

Terawatt hours

Waste to energy

Chr.Von Zabeltitz (1994) Effective use of renewable energies for greenhouse heating. Renewable Energy 5:479-485.

Article   Google Scholar  

Charles Rajesh Kumar. J, Vinod Kumar.D, M.A. Majid (2019) Wind energy programme in India: emerging energy alternatives for sustainable growth. Energy & Environment 30(7):1135-1189.

National electricity plan (2016), Volume 1, Generation, Central Electricity Authority (CEA),Ministry of Power, GOI . Available at http://www.cea.nic.in/reports/committee/nep/nep_dec.pdf .Accessed 31 Jan 2018.

Canadian environmental sustainability indicators (2017), Global greenhouse gas emissions. Available at http://www.ec.gc.ca/indicateurs-indicators/54C061B5-44F7-4A93-A3EC-5F8B253A7235/GlobalGHGEmissions_EN.pdf . Accessed 27 June.2017.

Pappas D (2017) Energy and Industrial Growth in India: The Next Emissions Superpower? Energy procedia 105:3656–3662

Agreement P (2015) Available at ttps://unfccc.int/sites/default/files/english_paris_agreement.pdf.Accessed 20. Aug 2017

Aggarwal P (2017) 2 °C target, India’s climate action plan and urban transport sector. Travel Behavior and Society 6:110–116

World Energy Scenarios Composing energy futures to 2050 (2013), World energy Council. https://www.worldenergy.org/wp-content/uploads/2013/09/World-Energy-Scenarios_Composing-energy-futures-to-2050_Full-report.pdf .Accessed 01 Jan 2017.

Blondeel M, Van de Graaf T (2018) Toward a global coal mining moratorium? A comparative analysis of coal mining policies in the USA, China, India and Australia. Climatic Change 150(1-2):89–101

Kumar S (2016) CO2 emission reduction potential assessment using renewable energy in India. Energy 97:273–282

Charles Rajesh Kumar. J, Mary Arunsi. B, Jenova. R, M.A.Majid (2019) Sustainable waste management through waste to energy technologies in India—opportunities and environmental impacts .International journal of renewable energy research 9(1): 309-342.

National Institution for Transforming India(2015), Government of India, Report of the Expert group on 175 GW RE by 2022,Available at http://niti.gov.in/writereaddata/files/writereaddata/files/document_publication/report-175-GW-RE.pdf.Accessed 31 Dec 2016.

Sholapurkar RB, Mahajan YS (2015) Review of wind energy development and policy in India. Energy Technology & Policy 2:122–132

India Energy scenarios 2047 (2015), ISGF for planning commission. Available at http://www.indiaenvironmentportal.org.in/files/file/ISGF_IES%202047%20Documentation.pdf.Accessed 01 Jan 2017].

Harrison T, Kostka G (2014) Balancing priorities, aligning interests: developing mitigation capacity in China and India. Comparative Political Studies 47:450-480

Akash KumarShukl (2017) Renewable energy resources in South Asian countries: challenges, policy and recommendations.Resource-Efficient Technologies 3: 342-346.

Schmid G (2012) The development of renewable energy power in India: which policies have been effective? Energy Policy 45:317–326

Vikas Khare, SavitaNema,PrashantBareda (2013) Status of solar wind renewable energy in India, Renewable and Sustainable Energy Reviews. 27: 1-10

Singh R (2015) India's renewable energy targets: How to overcome a $200 billion funding gap. Renewable Energy Focus. 16(4):60–61

T.Blenkinsopp, S.RColes ,K.Kirwan (2013) Renewable energy for rural communities in Maharashtra, India, Energy Policy .60:192-199

Kandp TC, Garg HP (1998) Renewable energy education for technicians/mechanics. Renewable Energy . (14(1–4):393–400

Subhes C,Bhattacharyya , Shaping a sustainable energy future for India: management challenges, Energy Policy .38(8):4173-4185

Swaran Singh, BoparaiK.C.Secretary, India and renewable energy: a future challenge, Renewable Energy . 15(1–4 ): 16-21.

Rehman S, Hussain Z (2017) Renewable energy governance in India: challenges and prospects for achieving the 2022 energy goals Journal of Resources, Energy and Development . 14(1):13–22

K Kaygusuz, S. BilgenEnergy related environmental policies in Turkey Energy Sources Part B, 3 (2008), pp. 396-410.

Y Chang, J Lee, H. Yoon Alternative projection of the world energy consumption-in comparison with the 2010 international energy outlook Energy Policy, 50 (2010), pp. 154-160.

Wang W (2014) M Zhang. P. Li Exploring temporal and spatial evolution of global energy production and consumption Renew Sustain Energy Rev 30:943–949

Google Scholar  

BP Energy Outlook country and regional insights-India (2018) https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/energy-outlook/bp-energy-outlook-2018-country-insight-india.pdf.Accessed 30 Jun 2018.

EIA Energy outlook 2019 with projections to 2050 (2019), Available at https://www.eia.gov/outlooks/aeo/pdf/aeo2019.pdf . .

International energy outlook 2018 (IEO2018), EIA Energy outlook 2018(2018), Available at https://www.eia.gov/pressroom/presentations/capuano_07242018.pdf .Accessed 30.07.2018.

World meters (2019).Available at http://www.worldometers.info/world-population/india-population.Accessed 24 Jan 2019.

Inaki Arto (2016) The energy requirements of a developed world", Energy for Sustainable Development.33: 1-13.

Power sector at a glance all India (2019), Ministry of Power, Government of India. Available at https://powermin.nic.in/en/content/power-sector-glance-all-india.Accessed 31 Oct 2018

VikasKhare (2013) Status of solar wind renewable energy in India Renewable and Sustainable Energy Reviews.27:1-10.

REMAP, renewable energy prospects for India (2017), The International renewable energy agency (IRENA). Available at https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2017/May/IRENA_REmap_India_paper_2017.pdf.Accessed 23 Aug 2017.

Draft national electricity plan, Volume 1, Generation, Central Electricity Authority (CEA), Ministry of Power, GOI Report 2016. http://www.cea.nic.in/reports/committee/nep/nep_dec.pdf .Accessed 26.06.2017.

BSK Naidu,Indian scenario of renewable energy for sustainable development, Energy policy ,Vol 24 ,N0 6,pp 575-581,1996.

Ashwani Kumar,Kapil Kumar, Naresh Kaushik, Satyawati Sharma,Saroj Mishra, Renewable energy in India:Current status and future potentials,Journal of renewable and sustainable energy reviews,14(2010),2434-2442

Bandyopadhyay S (2017) Renewable targets for India. Clean Technologies and Environmental Policy 19(2):293–294

Ministry of New and Renewable Energy (2017),Annual report 2016-17,Available at http://mnre.gov.in/file-manager/annual-report/2016-2017/EN/pdf/1.pdf.Accessed 31 April 2017.

Nimish Kumar, Nitai Pal, The existence of barriers and proposed recommendations for the development of renewable energy in Indian perspective, Environment, Development and Sustainability ,pp1-19.2018.

Yearend review (2017), Government of India, Ministry of New and Renewable Energy. Available at https://mnre.gov.in/file-manager/akshay-urja/april-2018/Images/44-45.pdf.Accessed 27 Jan 2018.

Central Electricity authority of India (2018), Government of India. Available at http://www.cea.nic.in/reports/monthly/executivesummary/2018/exe_summary-12.pdf.Accessed 31 Jan 2018.

The growth of Electricity sector in India from 1947-2017(2017), Central Electricity Authority of India, Government of India. Available at http://www.cea.nic.in/reports/others/planning/pdm/growth_2017.pdf . Accessed 31 June 2017.

Renewable energy, Indian brand equity foundation (2018). Available at https://www.ibef.org/download/renewable-energy-dec-2018.pdf.Accessed 05 Jan 2019.

Prayas energy group (2018) .Available at http://www.prayaspune.org/peg/re-capacity.html.Accessed 31 June 2018.

Subhojit Dawn, Prashant Kumar Tiwari, Arup Kumar Goswami, Ankit Kumar, Singh Rajesh Panda (2019) Wind power: Existing status, achievements and government's initiative towards renewable power dominating India Energy Strategy Reviews.23:178-199.

Generation monthly reports, Central electricity Authority of India (2018) Available at http://www.cea.nic.in/reports/monthly/renewable/2018/overview-11.pdf . .

Ian Partridge (2013) Renewable electricity generation in India—a learning rate analysis Energy Policy.60:906:915.

J. Jeslin Drusila Nesamalar, P. Venkatesh, S. Charles Raja (2017) The drive of renewable energy in Tamilnadu: Status, barriers and future prospect Renewable and Sustainable Energy Reviews.73:115-124.

A Report on Energy Efficiency and Energy Mix in the Indian Energy System (2030) Using India Energy Security Scenarios 2047 (2017), Available at http://niti.gov.in/writereaddata/files/document_publication/Energy_Efficiency.pdf.Accessed 06 April 2017.

Initiatives and achievements, MNRE (2018).Available at https://mnre.gov.in/sites/default/files/uploads/MNRE-4-Year-Achievement-Booklet.pdf . .

Acheievements of ministry of new and renewable energy during 2018. (2019).Available at https://pibindia.wordpress.com/2018/12/11/achievements-of-ministry-of-new-renewable-energy-during-2018/.Accessed 09 Jan 2019.

Standing committee on energy (2017-18), sixteenth lok sabha, MNRE, demands for grands (2018-19), 39th (2018). Available at http://164.100.47.193/lsscommittee/Energy/16_Energy_39.pdf . .

Mukesh KumarMishra, NilayKhare,Alka BaniAgrawa (2015) Small hydro power in India: Current status and future perspectives Renewable and Sustainable Energy Reviews .51:101-115.

Tara Chandra Kandpal, Bharati Joshi , Chandra ShekharSinha (1991) Economics of family sized biogas plants in India Energy Conversion and Management .32:101-113.

Sravanthi Choragudi (2013) Off-grid solar lighting systems: a way align India's sustainable and inclusive development goals Renewable and Sustainable Energy Reviews .28:890-899.

Abhigyan Singh,Alex T.Stratin,N.A.Romero Herrera,Debotosh Mahato,David V.Keyson,Hylke W.van Dijk (2018) Exploring peer-to-peer returns in off-grid renewable energy systems in rural India: an anthropological perspective on local energy sharing and trading Energy Research & Social Science .46:194-213.

Draft Technology Development and Innovation Policy (TDIP) for New &Renewable Energy, MNRE (2017). Available at https://mnre.gov.in/file-manager/UserFiles/Draft-TDIP_RE.pdf .Accessed 31 Jan 2018.

Demands for grants (2018-19), MNRE, Standing committee on energy, 16 th lok sabha, 39th Report (2018). Available at http://164.100.47.193/lsscommittee/Energy/16_Energy_39.pdf.Accessed 31 Oct 2018.

Mohit Goyal (2010) Repowering—next big thing in India Renewable and Sustainable Energy Reviews.1 4(5):1400-1409.

B.N.Prashanth,R.Pramod,G.B. VeereshKumar (2018) Design and development of hybrid wind and solar energy system for power generation. 5(5):11415-11422.

Swaminathan mani,Tarun Dhingra (2013) Policies to accelerate the growth of offshore wind energy sector in India Renewable and Sustainable Energy Reviews . 24 : 473-482

Draft amendments to tariff policy, MNRE (2018). Available at https://powermin.nic.in/sites/default/files/webform/notices/Proposed_amendments_in_Tariff_Policy_0.pdf . .

T.C.Kandpal, H.P.Garg (1998) Renewable energy education for technicians/mechanics Renewable Energy . Volume 14(1–4 ): 393-400.

T.Blenkinsopp, S.RColes K.Kirwan (2013) Renewable energy for rural communities in Maharashtra, India Energy policy.60:192-199.

Renewable Energy Country Attractiveness Index (RECAI) (2018), Available at https://www.ey.com/Publication/vwLUAssets/ey-recai-issue-52-index-scores/$File/ey-recai-issue-52-index-scores.pdf . .

Renewables 2018, global status report, Renewable energy policy network for the 21 st century (REN21) (2018). Available at http://www.ren21.net/wp-content/uploads/2018/06/17-8652_GSR2018_FullReport_web_final_.pdf . .

Clean Energy Investment trends, 2Q 2018, BloombergNEF (2018) .Available at https://data.bloomberglp.com/bnef/sites/14/2018/07/BNEF-Clean-Energy-Investment-Trends-1H-2018.pdf .Accessed 12 Dec 2018.

Rolf Wüstenhagen, Emanuela Menichetti (2012) Strategic choices for renewable energy investment: conceptual framework and opportunities for further research Energy Policy.40:1-10.

Longayanxia dam solar park, earth observatory (NASA) (2017). Available at https://earthobservatory.nasa.gov/images/89668/longyangxia-dam-solar-park . .

Dawn, Subhojit Dawn, Prashant Kumar Tiwari,Arup Kumar Goswami, Manash Kumar Mishra. (2016).Recent developments of solar energy in India: perspectives, strategies and future goals. Renewable and Sustainable Energy Reviews.62:215-235.

Press information Bureau, MNRE FDI in renewable energy sector (2018). Available at http://pib.nic.in/newsite/PrintRelease.aspx?relid=186849.Accessed 01 Feb 2019.

Renewable energy, India brand equity foundation, Report August 2018. https://www.ibef.org/download/Renewable-Energy-Report-August-2018.pdf . Accessed 31.12.2018.

Global trends in renewable energy investment 2018, Bloomberg new energy (2018).Available at http://www.iberglobal.com/files/2018/renewable_trends.pdf . .

Deep dive –Allianz climate and energy monitor (2017).Available at https://newclimate.org/wp-content/uploads/2017/04/allianz-climate-and-energy-monitor-deep-dive-2017.pdf . .

Allianz climate and energy monitor (2018), Available at https://www.allianz.com/content/dam/onemarketing/azcom/Allianz_com/sustainability/documents/Allianz_Climate_and_Energy_Monitor_2018.pdf . .

Renewable energy and Jobs –Annual review 2018 (2018). Available at https://irena.org/-/media/Files/IRENA/Agency/Publication/2018/May/IRENA_RE_Jobs_Annual_Review_2018.pdf .Accessed Jan 2019.

A. Bergmann, N. Hanley, R. Wright Valuing the attributes of renewable energy investments .Energy Policy, 34 (9) (2006), pp. 1004-1014

József Benedek, Tihamér-Tibor Sebestyén, BlankaBartók (2018) Evaluation of renewable energy sources in peripheral areas and renewable energy-based rural development Renewable and Sustainable Energy Reviews . 90 :516-535.

Download references

Acknowledgments

The authors gratefully acknowledge the support provided by the Research Consultancy Institute (RCI) and the department of Electrical and Computer Engineering of Effat University, Saudi Arabia.

Author information

Authors and affiliations.

Department of Electrical and Computer Engineering, College of Engineering, Effat University, Box 34689, Jeddah, PO, 21478, Saudi Arabia

Charles Rajesh Kumar. J & M. A. Majid

You can also search for this author in PubMed   Google Scholar

Contributions

CRK conceptualized the research, undertook fieldwork, analyzed the data, and wrote the manuscript. MAM conceptualized the research, wrote the manuscript, and supervised the research. Both authors have read and approved the final manuscript.

Corresponding author

Correspondence to Charles Rajesh Kumar. J .

Ethics declarations

Ethics approval and consent to participate, consent for publication, competing interests.

The authors declared that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Cite this article.

Kumar. J, C.R., Majid, M.A. Renewable energy for sustainable development in India: current status, future prospects, challenges, employment, and investment opportunities. Energ Sustain Soc 10 , 2 (2020). https://doi.org/10.1186/s13705-019-0232-1

Download citation

Received : 15 September 2018

Accepted : 27 November 2019

Published : 07 January 2020

DOI : https://doi.org/10.1186/s13705-019-0232-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Sustainable
  • Renewable energy
  • Achievements
  • Initiatives
  • Recommendations
  • Policymakers

Energy, Sustainability and Society

ISSN: 2192-0567

renewable energy research paper ideas

Banner

  • MJC Library & Learning Center
  • Research Guides

Renewable Energy

Start learning about your topic, create research questions to focus your topic, using and finding books, recommended books, find articles in library databases, find videos on renewable energy, find web resources, cite your sources, key search words.

Use the words below to search for useful information in books and articles .

  • biomass / biofuel
  • geo-thermal energy
  • green energy
  • hydropower / hydroelectricity
  • solar power / solar energy
  • sustainable energy

Background Reading:

It's important to begin your research learning something about your subject; in fact, you won't be able to create a focused, manageable thesis unless you already know something about your topic.

This step is important so that you will:

  • Begin building your core knowledge about your topic
  • Be able to put your topic in context
  • Create research questions that drive your search for information
  • Create a list of search terms that will help you find relevant information
  • Know if the information you’re finding is relevant and useful

If you're working from off campus , you'll need to sign in. Once you click on the name of a database, simply enter your student ID (without the W) and your six-digit birth date.

All of these resources are free for MJC students, faculty, & staff. 

  • CQ Researcher Online This link opens in a new window This is the resource for finding original, comprehensive reporting and analysis to get background information on issues in the news. It provides overviews of topics related to health, social trends, criminal justice, international affairs, education, the environment, technology, and the economy in America.
  • Issues & Controversies This link opens in a new window This is a great database to use when you want to explore different viewpoints on controversial or hot-button issues. It includes reports on more than 800 hot topics in business, politics, government, education, and popular culture. Use the search or browse topics by subject or A to Z.
  • Gale eBooks This link opens in a new window Use this database for preliminary reading as you start your research. You'll learn about your topic by reading authoritative topic overviews on a wide variety of subjects.
  • Gale In Context: Global Issues This link opens in a new window Use this database when you want to explore your topic from a global perspective or to analyze and understand the most important issues of the modern world with a global awareness. You'll find news, global viewpoints, reference materials, country information, primary source documents, videos, statistics, and more.
  • Alternative Energy This 3-volume encyclopedia is available as an eBook. Use the search box to find articles on specific alternative energy topics
  • What is renewable energy?
  • What are the different types of renewable energy?
  • What is the difference between renewable energy and clean energy?
  • What is the history of renewable energy in the United States?
  • What are the advantages of renewable energy?
  • What are the disadvantages of renewable energy?
  • What are the economic arguments for and against renewable energy?
  • What are the political arguments for and against renewable energy?
  • How should research into renewable energy be funded?
  • Should the U.S. government provide subsidies or tax breaks to renewable energy companies?
  • Based on what I have learned from my research, what do I think about the issue of renewable energy?

Why Use Books:

Use books to read broad overviews and detailed discussions of your topic. You can also use books to find  primary sources , which are often published together in collections.  

Where Do I Find Books?

You'll use the library catalog to search for books, ebooks, articles, and more.  

What if MJC Doesn't Have What I Need?

If you need materials (books, articles, recordings, videos, etc.) that you cannot find in the library catalog , use our  interlibrary loan service .

Cover Art

All of these resources are free for MJC students, faculty, & staff.

If you're working from off campus , you'll need to sign in. Once you click on the name of a database, simply enter your student ID (without the W) and your six-digit birth date.

  • GreenFILE This link opens in a new window Well-researched information covering all aspects of human impact to the environment. This collection of scholarly, government and general-interest titles includes content on global warming, green building, pollution, sustainable agriculture, renewable energy, recycling, and more.
  • Today's Science This link opens in a new window Covers a full range of current scientific developments.
  • Gale Databases This link opens in a new window Search over 35 databases simultaneously that cover almost any topic you need to research at MJC. Gale databases include articles previously published in journals, magazines, newspapers, books, and other media outlets.
  • Access World News This link opens in a new window Search the full-text of editions of record for local, regional, and national U.S. newspapers as well as full-text content of key international sources. This is your source for The Modesto Bee from January 1989 to the present. Also includes in-depth special reports and hot topics from around the country. To access The Modesto Bee , limit your search to that publication. more... less... Watch this short video to learn how to find The Modesto Bee .

Find videos and documentaries about renewable energy in Films on Demand.  These film resources are free for MJC students, faculty, & staff.  If you're working from off campus, you'll need to sign in , using your student ID (without the W) and your six-digit birth date.

Type renewable energy  in the search box to access videos on this topic.

  • Films on Demand This link opens in a new window Use Films on Demand when you want educational video content. This streaming video collection contains unlimited, 24/7 access to thousands of videos. Teachers can embed videos in Canvas. In addition, there are mobile options for iPad and Android. more... less... Instructions for embedding Films on Demand into Canvas .
  • Kanopy This link opens in a new window Kanopy is a video streaming database with a broad selection of over 26,000 documentaries, feature films and training videos from thousands of producers. Instructions for embedding Kanopy into Canvas .

Use Google Scholar to find scholarly literature on the Web:

Google Scholar Search

Browse Featured Web sites:

  • Modesto Irrigation District Electrical power and water utility
  • MIT Energy Initiative Use the search box or click on the Research and Studies tab to find information on energy from the Massachusetts Institute of Technology.
  • United States Department of Energy The U.S. Department of Energy's site has information on all aspects of energy use and production. Use the search box at the top of the page to access specific information.

Your instructor should tell you which citation style they want you to use. Click on the appropriate link below to learn how to format your paper and cite your sources according to a particular style.

  • Chicago Style
  • ASA & Other Citation Styles
  • Last Updated: Apr 25, 2024 1:28 PM
  • URL: https://libguides.mjc.edu/renewable_energy

Except where otherwise noted, this work is licensed under CC BY-SA 4.0 and CC BY-NC 4.0 Licenses .

National Renewable Energy Laboratory Logo

Grand Challenges: Wind Energy Research Needs for a Global Energy Transition

  • Mechanical and Thermal Engineering Sciences
  • Technical University of Denmark
  • Delft University of Technology
  • University of Florence
  • University of Stuttgart
  • enviConnect
  • National Center for Atmospheric Research
  • National Renewable Energy Laboratory
  • University of Colorado Boulder
  • University College Dublin
  • Pacific Northwest National Laboratory
  • United States Department of the Interior

Research output : Contribution to journal › Article

Bibliographical note

Nrel publication number.

  • NREL/JA-5A00-82859
  • energy transition
  • Grand Challenges
  • wind energy

Access to Document

  • 10.5194/wes-2022-66

Fingerprint

  • Wind Power Engineering 100%
  • Research Need Engineering 100%
  • Global Energy Engineering 100%
  • Energy Transition Engineering 100%
  • Windpower Utilization Earth and Planetary Sciences 100%
  • Fossil Fuel Material Science 100%
  • Renewables Engineering 50%
  • Carbon Neutral Energy Earth and Planetary Sciences 33%

T1 - Grand Challenges: Wind Energy Research Needs for a Global Energy Transition

AU - Veers, Paul

AU - Dykes, Katherine

AU - Basu, Sukanta

AU - Bianchini, Alessandro

AU - Clifton, Andrew

AU - Green, Peter

AU - Holttinen, Hannele

AU - Kitzing, Lena

AU - Kosovic, Branko

AU - Lundquist, Julie

AU - Meyers, Johan

AU - O'Malley, Mark

AU - Shaw, William

AU - Straw, Bethany

N1 - See NREL/JA-4A00-85183 for final paper as published in Wind Energy Science

N2 - Wind energy is anticipated to play a central role in enabling a rapid transition from fossil fuels to a system based largely on renewable power. For wind power to fulfill its expected role as the backbone - providing nearly half of the electrical energy - of a renewable-based, carbon-neutral energy system, critical challenges around design, development, and deployment of land and offshore technologies must be addressed. During the past three years, the wind research community has invested significant effort toward understanding the nature and implications of these challenges and identifying associated gaps. The outcomes of these efforts are summarized in a series of ten articles, some under review by Wind Energy Science (WES) and others planned for submission during the coming months. This letter explains the genesis, significance, and impacts of these efforts.

AB - Wind energy is anticipated to play a central role in enabling a rapid transition from fossil fuels to a system based largely on renewable power. For wind power to fulfill its expected role as the backbone - providing nearly half of the electrical energy - of a renewable-based, carbon-neutral energy system, critical challenges around design, development, and deployment of land and offshore technologies must be addressed. During the past three years, the wind research community has invested significant effort toward understanding the nature and implications of these challenges and identifying associated gaps. The outcomes of these efforts are summarized in a series of ten articles, some under review by Wind Energy Science (WES) and others planned for submission during the coming months. This letter explains the genesis, significance, and impacts of these efforts.

KW - energy transition

KW - Grand Challenges

KW - research

KW - wind energy

U2 - 10.5194/wes-2022-66

DO - 10.5194/wes-2022-66

M3 - Article

SN - 2366-7621

JO - Wind Energy Science Discussions

JF - Wind Energy Science Discussions

Renewable Energy

Renewable energy comes from sources that will not be used up in our lifetimes, such as the sun and wind.

Earth Science, Experiential Learning, Engineering, Geology

Wind Turbines in a Sheep Pasture

Wind turbines use the power of wind to generate energy. This is just one source of renewable energy.

Photograph by Jesus Keller/ Shutterstock

Wind turbines use the power of wind to generate energy. This is just one source of renewable energy.

The wind, the sun, and Earth are sources of  renewable energy . These energy sources naturally renew, or replenish themselves.

Wind, sunlight, and the planet have energy that transforms in ways we can see and feel. We can see and feel evidence of the transfer of energy from the sun to Earth in the sunlight shining on the ground and the warmth we feel when sunlight shines on our skin. We can see and feel evidence of the transfer of energy in wind’s ability to pull kites higher into the sky and shake the leaves on trees. We can see and feel evidence of the transfer of energy in the geothermal energy of steam vents and geysers .

People have created different ways to capture the energy from these renewable sources.

Solar Energy

Solar energy can be captured “actively” or “passively.”

Active solar energy uses special technology to capture the sun’s rays. The two main types of equipment are photovoltaic cells (also called PV cells or solar cells) and mirrors that focus sunlight in a specific spot. These active solar technologies use sunlight to generate electricity , which we use to power lights, heating systems, computers, and televisions.

Passive solar energy does not use any equipment. Instead, it gets energy from the way sunlight naturally changes throughout the day. For example, people can build houses so their windows face the path of the sun. This means the house will get more heat from the sun. It will take less energy from other sources to heat the house.

Other examples of passive solar technology are green roofs , cool roofs, and radiant barriers . Green roofs are completely covered with plants. Plants can get rid of pollutants in rainwater and air. They help make the local environment cleaner.

Cool roofs are painted white to better reflect sunlight. Radiant barriers are made of a reflective covering, such as aluminum. They both reflect the sun’s heat instead of absorbing it. All these types of roofs help lower the amount of energy needed to cool the building.

Advantages and Disadvantages There are many advantages to using solar energy. PV cells last for a long time, about 20 years.

However, there are reasons why solar power cannot be used as the only power source in a community. It can be expensive to install PV cells or build a building using passive solar technology.

Sunshine can also be hard to predict. It can be blocked by clouds, and the sun doesn’t shine at night. Different parts of Earth receive different amounts of sunlight based on location, the time of year, and the time of day.

Wind Energy

People have been harnessing the wind’s energy for a long, long time. Five-thousand years ago, ancient Egyptians made boats powered by the wind. In 200 B.C.E., people used windmills to grind grain in the Middle East and pump water in China.

Today, we capture the wind’s energy with wind turbines . A turbine is similar to a windmill; it has a very tall tower with two or three propeller-like blades at the top. These blades are turned by the wind. The blades turn a generator (located inside the tower), which creates electricity.

Groups of wind turbines are known as wind farms . Wind farms can be found near farmland, in narrow mountain passes, and even in the ocean, where there are steadier and stronger winds. Wind turbines anchored in the ocean are called “ offshore wind farms.”

Wind farms create electricity for nearby homes, schools, and other buildings.

Advantages and Disadvantages Wind energy can be very efficient . In places like the Midwest in the United States and along coasts, steady winds can provide cheap, reliable electricity.

Another great advantage of wind power is that it is a “clean” form of energy. Wind turbines do not burn fuel or emit any pollutants into the air.

Wind is not always a steady source of energy, however. Wind speed changes constantly, depending on the time of day, weather , and geographic location. Currently, it cannot be used to provide electricity for all our power needs.

Wind turbines can also be dangerous for bats and birds. These animals cannot always judge how fast the blades are moving and crash into them.

Geothermal Energy

Deep beneath the surface is Earth’s core . The center of Earth is extremely hot—thought to be over 6,000 °C (about 10,800 °F). The heat is constantly moving toward the surface.

We can see some of Earth’s heat when it bubbles to the surface. Geothermal energy can melt underground rocks into magma and cause the magma to bubble to the surface as lava . Geothermal energy can also heat underground sources of water and force it to spew out from the surface. This stream of water is called a geyser.

However, most of Earth’s heat stays underground and makes its way out very, very slowly.

We can access underground geothermal heat in different ways. One way of using geothermal energy is with “geothermal heat pumps.” A pipe of water loops between a building and holes dug deep underground. The water is warmed by the geothermal energy underground and brings the warmth aboveground to the building. Geothermal heat pumps can be used to heat houses, sidewalks, and even parking lots.

Another way to use geothermal energy is with steam. In some areas of the world, there is underground steam that naturally rises to the surface. The steam can be piped straight to a power plant. However, in other parts of the world, the ground is dry. Water must be injected underground to create steam. When the steam comes to the surface, it is used to turn a generator and create electricity.

In Iceland, there are large reservoirs of underground water. Almost 90 percent of people in Iceland use geothermal as an energy source to heat their homes and businesses.

Advantages and Disadvantages An advantage of geothermal energy is that it is clean. It does not require any fuel or emit any harmful pollutants into the air.

Geothermal energy is only avaiable in certain parts of the world. Another disadvantage of using geothermal energy is that in areas of the world where there is only dry heat underground, large quantities of freshwater are used to make steam. There may not be a lot of freshwater. People need water for drinking, cooking, and bathing.

Biomass Energy

Biomass is any material that comes from plants or microorganisms that were recently living. Plants create energy from the sun through photosynthesis . This energy is stored in the plants even after they die.

Trees, branches, scraps of bark, and recycled paper are common sources of biomass energy. Manure, garbage, and crops , such as corn, soy, and sugar cane, can also be used as biomass feedstocks .

We get energy from biomass by burning it. Wood chips, manure, and garbage are dried out and compressed into squares called “briquettes.” These briquettes are so dry that they do not absorb water. They can be stored and burned to create heat or generate electricity.

Biomass can also be converted into biofuel . Biofuels are mixed with regular gasoline and can be used to power cars and trucks. Biofuels release less harmful pollutants than pure gasoline.

Advantages and Disadvantages A major advantage of biomass is that it can be stored and then used when it is needed.

Growing crops for biofuels, however, requires large amounts of land and pesticides . Land could be used for food instead of biofuels. Some pesticides could pollute the air and water.

Biomass energy can also be a nonrenewable energy source. Biomass energy relies on biomass feedstocks—plants that are processed and burned to create electricity. Biomass feedstocks can include crops, such as corn or soy, as well as wood. If people do not replant biomass feedstocks as fast as they use them, biomass energy becomes a non-renewable energy source.

Hydroelectric Energy

Hydroelectric energy is made by flowing water. Most hydroelectric power plants are located on large dams , which control the flow of a river.

Dams block the river and create an artificial lake, or reservoir. A controlled amount of water is forced through tunnels in the dam. As water flows through the tunnels, it turns huge turbines and generates electricity.

Advantages and Disadvantages Hydroelectric energy is fairly inexpensive to harness. Dams do not need to be complex, and the resources to build them are not difficult to obtain. Rivers flow all over the world, so the energy source is available to millions of people.

Hydroelectric energy is also fairly reliable. Engineers control the flow of water through the dam, so the flow does not depend on the weather (the way solar and wind energies do).

However, hydroelectric power plants are damaging to the environment. When a river is dammed, it creates a large lake behind the dam. This lake (sometimes called a reservoir) drowns the original river habitat deep underwater. Sometimes, people build dams that can drown entire towns underwater. The people who live in the town or village must move to a new area.

Hydroelectric power plants don’t work for a very long time: Some can only supply power for 20 or 30 years. Silt , or dirt from a riverbed, builds up behind the dam and slows the flow of water.

Other Renewable Energy Sources

Scientists and engineers are constantly working to harness other renewable energy sources. Three of the most promising are tidal energy , wave energy , and algal (or algae) fuel.

Tidal energy harnesses the power of ocean tides to generate electricity. Some tidal energy projects use the moving tides to turn the blades of a turbine. Other projects use small dams to continually fill reservoirs at high tide and slowly release the water (and turn turbines) at low tide.

Wave energy harnesses waves from the ocean, lakes, or rivers. Some wave energy projects use the same equipment that tidal energy projects do—dams and standing turbines. Other wave energy projects float directly on waves. The water’s constant movement over and through these floating pieces of equipment turns turbines and creates electricity.

Algal fuel is a type of biomass energy that uses the unique chemicals in seaweed to create a clean and renewable biofuel. Algal fuel does not need the acres of cropland that other biofuel feedstocks do.

Renewable Nations

These nations (or groups of nations) produce the most energy using renewable resources. Many of them are also the leading producers of nonrenewable energy: China, European Union, United States, Brazil, and Canada

Articles & Profiles

Media credits.

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Last Updated

March 18, 2024

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

Quality Signaling and Demand for Renewable Energy Technology: Evidence from a Randomized Field Experiment

Solar technologies have been associated with private and social returns, but their technological potential often remains unachieved because of persistently low demand for high-quality products. In a randomized field experiment in Senegal, we assess the potential of three types of quality signaling to increase demand for high-quality solar lamps. We find no effect on demand when consumers are offered a money-back guarantee but increased demand with a third-party certification or warranty, consistent with the notion that consumers are uncertain about product durability rather than their utility. However, despite the higher willingness to pay, the prices they would pay are still well below market prices for the average household, suggesting that reducing information asymmetries alone is insufficient to encourage wider adoption. Surprisingly, we also find that the effective quality signals in our setting stimulate demand for low-quality products by creating product-class effects among those least familiar with the product.

The team is grateful to the joint Lighting Africa program of the World Bank and International Finance Cooperation and to the World Bank Energy & Extractives Global Practice for financial support and feedback during the impact-evaluation design and implementation. In particular, we thank Raihan Elahi and Olivier Gallou for their review of the initial design and guidance on Lighting Africa and Lighting Global materials and objectives. We also thank Ousmane Sarr (ASER), Michele Laleye (Total Senegal), and the World Bank Senegal Country Office team—including Chris Trimble, Manuel Berlengiero, Eric Dacosta, Micheline Moreira, and Aminata Ndiaye Bob—for support and recommendations throughout the project. The work was made possible by the excellent field and research assistance led by Marco Valenza and supported by Amadou Racine Dia. We also thank Kevin Winseck and seminar participants at Leibniz University Hannover, University of Passau, KDI School-World Bank DIME Conference (online), German Development Economics Conference (Stuttgart), NOVAFRICA Conference on Economic Development (Lisbon), and London School of Economics for valuable comments and suggestions. The findings, interpretations, and conclusions expressed in this paper are entirely those of the authors. They do not necessarily represent the views of the World Bank and its affiliated organizations, nor those of the executive directors of the World Bank, nor the governments they represent, nor the National Bureau of Economic Research.

MARC RIS BibTeΧ

Download Citation Data

More from NBER

In addition to working papers , the NBER disseminates affiliates’ latest findings through a range of free periodicals — the NBER Reporter , the NBER Digest , the Bulletin on Retirement and Disability , the Bulletin on Health , and the Bulletin on Entrepreneurship  — as well as online conference reports , video lectures , and interviews .

15th Annual Feldstein Lecture, Mario Draghi, "The Next Flight of the Bumblebee: The Path to Common Fiscal Policy in the Eurozone cover slide

The Precourt Institute for Energy is now part of the Stanford Doerr School of Sustainability .

ENERGY

Research Areas

Main navigation, renewable energy.

Field of sunflowers with wind turbine

  • Fusion Energy
  • Renewable Fuels

Energy Conversion & Storage

Photovoltaics with energy storage unit

  • Large-Scale Storage

Global Carbon Management

Two large trees with sun shining between them

  • CO2 Capture & Sequestration
  • CO2 Conversion & Use
  • Direct Air Capture
  • Methane Leakage
  • Natural Climate Solutions

Electric Grid Modernization

Single electric grid in evening with dark blue skies

  • Digitization, Control, & Optimization
  • Grid Reliability
  • Power Electronics
  • Superconductors

Policy, Economics & Society

Sacramento government building

  • Energy Equity & Just Transitions
  • Finance, Markets, & Business Models
  • Legislation, Regulation, & Taxation
  • National Security
  • Public Opinion

Environmental Impacts

Drought landscape with bushes in the background

  • Air Quality
  • Human Health

Energy Efficiency

Close up of power button

  • Energy-Efficient Computing & Electronics
  • Human Behavior & Energy Use
  • Water Systems

Industrial Decarbonization

Pallet of plastic bottles

  • Additive/3D Printing
  • Circular Economy

Sustainable Transportation

Train on train tracks in urban area

  • Electric Vehicles
  • Heavy-duty transport

Conventional Energy

Nuclear power plant with smoke billowing from stack

  • Natural Gas

Energy Systems

Close-up of photovoltaics

  • Energy Systems Analysis
  • Energy Transition Pathways
  • Zero-Emission Energy Solutions
  • ENVIRONMENT

Renewable energy, explained

Solar, wind, hydroelectric, biomass, and geothermal power can provide energy without the planet-warming effects of fossil fuels.

In any discussion about climate change , renewable energy usually tops the list of changes the world can implement to stave off the worst effects of rising temperatures. That's because renewable energy sources such as solar and wind don't emit carbon dioxide and other greenhouse gases that contribute to global warming .

Clean energy has far more to recommend it than just being "green." The growing sector creates jobs , makes electric grids more resilient, expands energy access in developing countries, and helps lower energy bills. All of those factors have contributed to a renewable energy renaissance in recent years, with wind and solar setting new records for electricity generation .

For the past 150 years or so, humans have relied heavily on coal, oil, and other fossil fuels to power everything from light bulbs to cars to factories. Fossil fuels are embedded in nearly everything we do, and as a result, the greenhouse gases released from the burning of those fuels have reached historically high levels .

As greenhouse gases trap heat in the atmosphere that would otherwise escape into space, average temperatures on the surface are rising . Global warming is one symptom of climate change, the term scientists now prefer to describe the complex shifts affecting our planet’s weather and climate systems. Climate change encompasses not only rising average temperatures but also extreme weather events, shifting wildlife populations and habitats, rising seas , and a range of other impacts .

Of course, renewables—like any source of energy—have their own trade-offs and associated debates. One of them centers on the definition of renewable energy. Strictly speaking, renewable energy is just what you might think: perpetually available, or as the U.S. Energy Information Administration puts it, " virtually inexhaustible ." But "renewable" doesn't necessarily mean sustainable, as opponents of corn-based ethanol or large hydropower dams often argue. It also doesn't encompass other low- or zero-emissions resources that have their own advocates, including energy efficiency and nuclear power.

Types of renewable energy sources

Hydropower: For centuries, people have harnessed the energy of river currents, using dams to control water flow. Hydropower is the world's biggest source of renewable energy by far, with China, Brazil, Canada, the U.S., and Russia the leading hydropower producers . While hydropower is theoretically a clean energy source replenished by rain and snow, it also has several drawbacks.

For Hungry Minds

Large dams can disrupt river ecosystems and surrounding communities , harming wildlife and displacing residents. Hydropower generation is vulnerable to silt buildup, which can compromise capacity and harm equipment. Drought can also cause problems. In the western U.S., carbon dioxide emissions over a 15-year period were 100 megatons higher than they normally would have been, according to a 2018 study , as utilities turned to coal and gas to replace hydropower lost to drought. Even hydropower at full capacity bears its own emissions problems, as decaying organic material in reservoirs releases methane.

Dams aren't the only way to use water for power: Tidal and wave energy projects around the world aim to capture the ocean's natural rhythms. Marine energy projects currently generate an estimated 500 megawatts of power —less than one percent of all renewables—but the potential is far greater. Programs like Scotland’s Saltire Prize have encouraged innovation in this area.

Wind: Harnessing the wind as a source of energy started more than 7,000 years ago . Now, electricity-generating wind turbines are proliferating around the globe, and China, the U.S., and Germany are the leading wind energy producers. From 2001 to 2017 , cumulative wind capacity around the world increased to more than 539,000 megawatts from 23,900 mw—more than 22 fold.

Some people may object to how wind turbines look on the horizon and to how they sound, but wind energy, whose prices are declining , is proving too valuable a resource to deny. While most wind power comes from onshore turbines, offshore projects are appearing too, with the most in the U.K. and Germany. The first U.S. offshore wind farm opened in 2016 in Rhode Island, and other offshore projects are gaining momentum . Another problem with wind turbines is that they’re a danger for birds and bats, killing hundreds of thousands annually , not as many as from glass collisions and other threats like habitat loss and invasive species, but enough that engineers are working on solutions to make them safer for flying wildlife.

You May Also Like

renewable energy research paper ideas

Can energy harnessed from Earth’s interior help power the world?

renewable energy research paper ideas

How the historic climate bill will dramatically reduce U.S. emissions

renewable energy research paper ideas

5 environmental victories from 2021 that offer hope

Solar: From home rooftops to utility-scale farms, solar power is reshaping energy markets around the world. In the decade from 2007 and 2017 the world's total installed energy capacity from photovoltaic panels increased a whopping 4,300 percent .

In addition to solar panels, which convert the sun's light to electricity, concentrating solar power (CSP) plants use mirrors to concentrate the sun's heat, deriving thermal energy instead. China, Japan, and the U.S. are leading the solar transformation, but solar still has a long way to go, accounting for around two percent of the total electricity generated in the U.S. in 2017. Solar thermal energy is also being used worldwide for hot water, heating, and cooling.

Biomass: Biomass energy includes biofuels such as ethanol and biodiesel , wood and wood waste, biogas from landfills, and municipal solid waste. Like solar power, biomass is a flexible energy source, able to fuel vehicles, heat buildings, and produce electricity. But biomass can raise thorny issues.

Critics of corn-based ethanol , for example, say it competes with the food market for corn and supports the same harmful agricultural practices that have led to toxic algae blooms and other environmental hazards. Similarly, debates have erupted over whether it's a good idea to ship wood pellets from U.S. forests over to Europe so that it can be burned for electricity. Meanwhile, scientists and companies are working on ways to more efficiently convert corn stover , wastewater sludge , and other biomass sources into energy, aiming to extract value from material that would otherwise go to waste.

Geothermal: Used for thousands of years in some countries for cooking and heating, geothermal energy is derived from the Earth’s internal heat . On a large scale, underground reservoirs of steam and hot water can be tapped through wells that can go a mile deep or more to generate electricity. On a smaller scale, some buildings have geothermal heat pumps that use temperature differences several feet below ground for heating and cooling. Unlike solar and wind energy, geothermal energy is always available, but it has side effects that need to be managed, such as the rotten egg smell that can accompany released hydrogen sulfide.

Ways to boost renewable energy

Cities, states, and federal governments around the world are instituting policies aimed at increasing renewable energy. At least 29 U.S. states have set renewable portfolio standards —policies that mandate a certain percentage of energy from renewable sources, More than 100 cities worldwide now boast at least 70 percent renewable energy, and still others are making commitments to reach 100 percent . Other policies that could encourage renewable energy growth include carbon pricing, fuel economy standards, and building efficiency standards. Corporations are making a difference too, purchasing record amounts of renewable power in 2018.

Wonder whether your state could ever be powered by 100 percent renewables? No matter where you live, scientist Mark Jacobson believes it's possible. That vision is laid out here , and while his analysis is not without critics , it punctuates a reality with which the world must now reckon. Even without climate change, fossil fuels are a finite resource, and if we want our lease on the planet to be renewed, our energy will have to be renewable.

Related Topics

  • SUSTAINABILITY
  • RENEWABLE ENERGY
  • GEOTHERMAL ENERGY
  • SOLAR POWER
  • HYDROELECTRIC POWER
  • CLIMATE CHANGE

renewable energy research paper ideas

Activists fear a new threat to biodiversity—renewable energy

renewable energy research paper ideas

How the Ukraine war is accelerating Germany's renewable energy transition

renewable energy research paper ideas

We took the Great American Road Trip—in electric cars

renewable energy research paper ideas

What’s at stake at COP26—the crucial global climate summit

renewable energy research paper ideas

3 ways COVID-19 is making us rethink energy and emissions

  • Environment
  • Perpetual Planet

History & Culture

  • History & Culture
  • History Magazine
  • Gory Details
  • Mind, Body, Wonder
  • Paid Content
  • Terms of Use
  • Privacy Policy
  • Your US State Privacy Rights
  • Children's Online Privacy Policy
  • Interest-Based Ads
  • About Nielsen Measurement
  • Do Not Sell or Share My Personal Information
  • Nat Geo Home
  • Attend a Live Event
  • Book a Trip
  • Inspire Your Kids
  • Shop Nat Geo
  • Visit the D.C. Museum
  • Learn About Our Impact
  • Support Our Mission
  • Advertise With Us
  • Customer Service
  • Renew Subscription
  • Manage Your Subscription
  • Work at Nat Geo
  • Sign Up for Our Newsletters
  • Contribute to Protect the Planet

Copyright © 1996-2015 National Geographic Society Copyright © 2015-2024 National Geographic Partners, LLC. All rights reserved

How renewable energy serves as a catalyst to broader social change

A farmhouse in India with solar panels on its roof generating renewable energy

Renewable energy boosts livelihoods worldwide Image:  Unsplash/VD Photography

.chakra .wef-1c7l3mo{-webkit-transition:all 0.15s ease-out;transition:all 0.15s ease-out;cursor:pointer;-webkit-text-decoration:none;text-decoration:none;outline:none;color:inherit;}.chakra .wef-1c7l3mo:hover,.chakra .wef-1c7l3mo[data-hover]{-webkit-text-decoration:underline;text-decoration:underline;}.chakra .wef-1c7l3mo:focus,.chakra .wef-1c7l3mo[data-focus]{box-shadow:0 0 0 3px rgba(168,203,251,0.5);} Jennifer Rosen

A hand holding a looking glass by a lake

.chakra .wef-1nk5u5d{margin-top:16px;margin-bottom:16px;line-height:1.388;color:#2846F8;font-size:1.25rem;}@media screen and (min-width:56.5rem){.chakra .wef-1nk5u5d{font-size:1.125rem;}} Get involved .chakra .wef-9dduvl{margin-top:16px;margin-bottom:16px;line-height:1.388;font-size:1.25rem;}@media screen and (min-width:56.5rem){.chakra .wef-9dduvl{font-size:1.125rem;}} with our crowdsourced digital platform to deliver impact at scale

  • From fostering innovation to job creation, renewable energy solutions drive progress towards a more equitable and sustainable world.
  • Many renewable energy solutions create opportunities for economic development while reducing greenhouse gas emissions.
  • Here are some examples of how renewable energy solutions are changing lives all over the world.

Renewable energy solutions mitigate climate change and promote a healthier environment and they often serve as catalysts for broader social change. From fostering innovation and job creation to promoting gender equality or making civic participation more accessible, renewable energy solutions drive progress towards a more equitable and sustainable world.

With support from the Skoll Foundation, the Solutions Insights Lab (SIL), a new initiative of the Solutions Journalism Network (SJN), created What’s Working . This is a searchable portal that combines published solutions journalism and interviews with a wide array of leaders whose work has been supported by the Skoll Foundation over the past 20 years to uncover insights that can help address social problems worldwide.

Have you read?

A new study reveals how renewables could power africa by 2040.

The SIL is a targeted research and analysis service focused on identifying and interrogating what’s working and what’s not in a particular sector or field. It employs interviewing techniques drawn from the solutions journalism approach but is not a work of journalism and is appropriately separated with a firewall from SJN’s core journalism work.

The interviews are not works of journalism themselves. The interviewing approach was standardized and the over 200 individuals interviewed were specifically selected as part of a project supported by the Skoll Foundation. They do not represent any form of endorsement by SJN, which is an independent, non-partisan organization that does not advocate for any particular approach to social change.

The interviews follow a solutions framework to explore how successful approaches work. They look at evidence of impact and replicable insights and their limitations. We analyzed these interviews, in combination with relevant stories within SJN’s Solutions Story Tracker , to distil the lessons learned by those doing this work on the ground and surface insights related to the role renewable energy solutions play in mitigating climate change and making progress on several other Sustainable Development Goals, from eradicating poverty to achieving gender equality.

Solutions for multiple problems

We’ve consistently seen that changemakers can and do successfully design solutions to address more than one issue. This is perhaps most evident among renewable energy solutions that seek to create opportunities for economic development while reducing greenhouse gas emissions. Bringing affordable and clean renewable energy to rural and underdeveloped communities benefits the health of their environment and their economy, creating jobs and providing resources that foster innovation and entrepreneurship.

Lifeline Energy , for example, designs, manufactures and distributes solar-powered and wind-up media players across sub-Saharan Africa to connect communities to important information. Classrooms can listen to school lessons, farmers can listen to agricultural radio broadcasts about pesticides, frontline health workers can listen to pre-recorded health content and villagers can access information that allows them to participate in their communities in more informed ways.

Moving to clean energy is key to combating climate change, yet in the past five years, the energy transition has stagnated.

Energy consumption and production contribute to two-thirds of global emissions, and 81% of the global energy system is still based on fossil fuels, the same percentage as 30 years ago. Plus, improvements in the energy intensity of the global economy (the amount of energy used per unit of economic activity) are slowing. In 2018 energy intensity improved by 1.2%, the slowest rate since 2010.

Effective policies, private-sector action and public-private cooperation are needed to create a more inclusive, sustainable, affordable and secure global energy system.

Benchmarking progress is essential to a successful transition. The World Economic Forum’s Energy Transition Index , which ranks 115 economies on how well they balance energy security and access with environmental sustainability and affordability, shows that the biggest challenge facing energy transition is the lack of readiness among the world’s largest emitters, including US, China, India and Russia. The 10 countries that score the highest in terms of readiness account for only 2.6% of global annual emissions.

renewable energy research paper ideas

To future-proof the global energy system, the Forum’s Centre for Energy & Materials is working on initiatives including Clean Power and Electrification , Energy and Industry Transition Intelligence, Industrial Ecosystems Transformation , and Transition Enablers to encourage and enable innovative energy investments, technologies and solutions.

Additionally, the Mission Possible Partnership (MPP) is working to assemble public and private partners to further the industry transition to set heavy industry and mobility sectors on the pathway towards net-zero emissions. MPP is an initiative created by the World Economic Forum and the Energy Transitions Commission.

Is your organisation interested in working with the World Economic Forum? Find out more here .

The more of these solutions I looked at, the more I saw that their benefits often have third and fourth layers. They are improving women’s lives and reducing gender inequalities, for example, or making it easier for communities to access information and services, like healthcare. Solutions that address multiple needs are the most powerful and cost-effective. They also bridge the silos that so many solutions exist in.

How to finance the transition to climate-smart agriculture

Earth day: we are almost certainly all eating plastics, says report, and other nature and climate stories you need to read this week, powering up gender equality.

Barefoot College International , for example, uses clean energy to promote socio-economic development, protect the environment and improve women’s lives. Its theory of change places women at the centre as key changemakers. CEO Rodrigo París told us that putting resources towards women is key because “Women have roots in the communities, they have the knowledge... They have a good understanding about the past, about family and the roots, but they have a clear vision on how to solve problems.”

The organization trains mostly older women with little to no formal education in over 90 countries to install, repair and maintain solar lighting units in their villages. Women like Jullietta, a 69-year-old mother of seven and grandmother of 30 in Guatemala, receive the skills and resources they need to electrify homes and schools with solar energy. In doing so, they earn an income for themselves, better the environment and expand economic development opportunities for their entire village.

As one of the 20 trained 'solar mamas' in Guatemala (there are over 3,500 across the world), Jullietta brought power to 35 families in her village and is helping increase the status of women more broadly. The women’s new skills and financial independence puts them at the centre of important community-wide changes too and give them more agency to impact decision-making.

Global Gender Gap Report 2023

Transforming agriculture.

Almost 10,000 miles away, a group of women farmers in Harpur, India purchased and installed solar pumps that use affordable and clean energy to irrigate their crops. The pumps have increased their yields and enabled more diverse crops, which has led to greater profits. They also make a profit by selling irrigation services to others.

Despite facing discrimination, their increased financial independence and greater self-reliance has challenged gender norms in the traditionally male-dominated village. The women report deciding how to use the money they’ve earned and having more control over their economic well-being. The state government in Bihar has also used solar-operated pump projects as a means to improve livelihoods among rural women and is looking to replicate the model in other districts.

Solar lights, in particular, have expanded opportunities for women to improve their livelihoods. From women in Kenya leaving the sex trade once they had lights to fish at night to women in a rural Pakistani village being able to earn money making pottery after the sun goes down and women in Mali creating cooking solutions that don’t produce harmful indoor pollutants , renewable energy solutions have expanded choices and resources for women across the world.

Improving access to healthcare

Other renewable energy solutions seek to alleviate poverty by increasing access to information and services, like healthcare, which also impact women. To reduce high maternal mortality rates among women in rural Zimbabwe, Mobility for Africa uses Hambas , electric three-wheel tricycles that run on rechargeable batteries. Hambas transport pregnant women and new mothers to health facilities for pre- and post-natal care. The clean and renewable energy source mitigates harm to the environment.

Many solutions use renewable energy to expand health services, which is a foundational step in reducing poverty. From the Selco Foundation using solar panels to increase treatment capacities of rural health facilities to using mini solar grids for lighting homes to avoid venomous snake bites , these creative solutions address multiple issues in a single package.

An important aspect of the solutions framework is acknowledging the limitations of a solution. While renewable energy solutions have the potential to provide benefits across three or more areas of people’s lives, they are not without challenges. The biggest hurdle is the upfront costs of purchasing and installing the infrastructure, as well as ensuring there is a system in place to maintain it.

Renewable energy sources, such as solar, can also be less reliable than traditional energy sources, so the power may be more intermittent. But solutions that combine renewable energy with other important issues clearly play important roles in achieving several Sustainable Development Goals, from climate action to eradicating poverty to achieving gender equality. Clean, affordable and renewable energy stands as a pivotal solution with the potential to create a more equitable and healthy future for all.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Related topics:

The agenda .chakra .wef-n7bacu{margin-top:16px;margin-bottom:16px;line-height:1.388;font-weight:400;} weekly.

A weekly update of the most important issues driving the global agenda

.chakra .wef-1dtnjt5{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;} More on Energy Transition .chakra .wef-17xejub{-webkit-flex:1;-ms-flex:1;flex:1;justify-self:stretch;-webkit-align-self:stretch;-ms-flex-item-align:stretch;align-self:stretch;} .chakra .wef-nr1rr4{display:-webkit-inline-box;display:-webkit-inline-flex;display:-ms-inline-flexbox;display:inline-flex;white-space:normal;vertical-align:middle;text-transform:uppercase;font-size:0.75rem;border-radius:0.25rem;font-weight:700;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;line-height:1.2;-webkit-letter-spacing:1.25px;-moz-letter-spacing:1.25px;-ms-letter-spacing:1.25px;letter-spacing:1.25px;background:none;padding:0px;color:#B3B3B3;-webkit-box-decoration-break:clone;box-decoration-break:clone;-webkit-box-decoration-break:clone;}@media screen and (min-width:37.5rem){.chakra .wef-nr1rr4{font-size:0.875rem;}}@media screen and (min-width:56.5rem){.chakra .wef-nr1rr4{font-size:1rem;}} See all

renewable energy research paper ideas

Boosting renewable energy growth through responsible value chains: A case study from China

Vee Li and Zhang Xun

May 13, 2024

renewable energy research paper ideas

4 strategies to decarbonize existing buildings

Jesse Saldivar, Alaina Ladner, Marc Starkey and Brittany Syz

renewable energy research paper ideas

Why realism is key as we balance the energy transition with global growth

Fahad Al-Dhubaib

May 10, 2024

renewable energy research paper ideas

How to finance battery energy storage and ensure constant clean energy

Prasad Thakur and Labanya Prakash Jena

renewable energy research paper ideas

G7 countries agree phaseout for unabated coal power – and other top energy stories

Roberto Bocca

May 8, 2024

renewable energy research paper ideas

These are the world’s busiest airports

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts

Renewable energy articles within Scientific Reports

Article 12 May 2024 | Open Access

Numerical study on solar photovoltaic/thermal system with tesla valve

  • , Jianxin Zou
  •  &  Ping Zhong

Enhancing renewable energy certificate transactions through reinforcement learning and smart contracts integration

  • , Jingsong Wang
  •  &  Muqing Wu

Article 06 May 2024 | Open Access

Reservoir temperature prediction based on characterization of water chemistry data—case study of western Anatolia, Turkey

  • , Yanjun Zhang
  •  &  Yunxing Yang

Article 02 May 2024 | Open Access

Magnetic integrated double-trap filter utilizing the mutual inductance for reducing current harmonics in high-speed railway traction inverters

  • Maged Al-Barashi
  • , Yongjun Wang
  •  &  Muhammad Shoaib Bhutta

Control strategy for current limitation and maximum capacity utilization of grid connected PV inverter under unbalanced grid conditions

  • Jyoti Joshi
  • , Vibhu Jately
  •  &  Brian Azzopardi

Article 01 May 2024 | Open Access

Novel risk index integrating practical operation limits enhances probabilistic contingency ranking for large-scale photovoltaic plant planning

  • Rasha Elazab
  • , Mohamed K. El-Aser
  •  &  Adel A. El-samahy

Article 26 April 2024 | Open Access

Synergistic catalytic mechanism of red mud in the co-gasification of spirit-based distillers’ grains and sewage sludge

  • , Junliang Wang
  •  &  Yang Cao

Article 25 April 2024 | Open Access

Analogical environmental cost assessment of silicon flows used in solar panels by the US and China

  • Saeed Rahimpour Golroudbary
  • , Mari Lundström
  •  &  Benjamin P. Wilson

Article 24 April 2024 | Open Access

An adapted model predictive control MPPT for validation of optimum GMPP tracking under partial shading conditions

  • Muhammad Abu Bakar Siddique
  • , Dongya Zhao
  •  &  Habib Hamam

Modelling interest in co-adoption of electric vehicles and solar photovoltaics in Australia to identify tailored policy needs

  • Elham Hajhashemi
  • , Patricia Sauri Lavieri
  •  &  Neema Nassir

Article 15 April 2024 | Open Access

Impact of using glucose as a sole carbon source to analyze the effect of biochar on the kinetics of biomethane production

  • Marvin T. Valentin
  •  &  Andrzej Białowiec

Article 06 April 2024 | Open Access

Performance optimization of interleaved boost converter with ANN supported adaptable stepped-scaled P&O based MPPT for solar powered applications

  • K. Krishnaram
  • , T. Suresh Padmanabhan
  •  &  S. Senthilkumar

Article 27 March 2024 | Open Access

Experimental investigation on utilization of Sesbania grandiflora residues through thermochemical conversion process for the production of value added chemicals and biofuels

  • Kedri Janardhana
  • , C. Sowmya Dhanalakshmi
  •  &  Melvin Victor De Poures

Article 22 March 2024 | Open Access

Hybrid off-grid energy systems optimal sizing with integrated hydrogen storage based on deterministic balance approach

  • , Mohamed El-shimy
  •  &  Josep M. Guerrero

Article 19 March 2024 | Open Access

Larger wind turbines as a solution to reduce environmental impacts

  • Naveed Akhtar
  • , Beate Geyer
  •  &  Corinna Schrum

Article 18 March 2024 | Open Access

Stability enhancement of perovskite solar cells using multifunctional inorganic materials with UV protective, self cleaning, and high wear resistance properties

  • Seyyedeh Sedigheh Azad
  • , Reza Keshavarzi
  •  &  Iraj Mohammadpoor-Baltork

An efficient data sheet based parameter estimation technique of solar PV

  • K. M. Charu
  • , Padmanabh Thakur
  •  &  Mukesh Kumar

A novel MPPT technology based on dung beetle optimization algorithm for PV systems under complex partial shade conditions

  • Chunliang Mai
  • , Lixin Zhang
  •  &  Jing Li

Article 15 March 2024 | Open Access

Analysis of the potential application of a residential composite energy storage system based on a double-layer optimization model

  • Xueyuan Zhao
  • , Xiaoyu Ying
  •  &  Jing Xie

Article 14 March 2024 | Open Access

A novel solution to optimal power flow problems using composite differential evolution integrating effective constrained handling techniques

  • , Ali Hassan
  •  &  Amr Yousef

A 17-level quadruple boost switched-capacitor inverter with reduced devices and limited charge current

  • Majid Hosseinpour
  • , Masoumeh Derakhshandeh
  •  &  Mahdi Shahparasti

Article 11 March 2024 | Open Access

Co-densification of rice straw and cow dung in different food-to-microorganism ratios for biogas production

  • Prakash Singh
  • , Pallavi Dogra
  •  &  Ajay S. Kalamdhad

Article 08 March 2024 | Open Access

A stochastic model of preventive maintenance strategies for wind turbine gearboxes considering the incomplete maintenance

  • Hongsheng Su
  •  &  Qian Cao

Article 07 March 2024 | Open Access

Data-driven assisted real-time optimal control strategy of submerged arc furnace via intelligent energy terminals considering large-scale renewable energy utilization

  • Bowen Zheng
  • , Mingming Pan
  •  &  Yongjun Li

Article 05 March 2024 | Open Access

Development of a distributed group control strategy for pumping well groups connected by multisource DC microgrids

  • Jixiang Yue
  • , Zhenhua Sun
  •  &  Zhenjie Wang

Interface engineering and defect passivation for enhanced hole extraction, ion migration, and optimal charge dynamics in both lead-based and lead-free perovskite solar cells

  • Muhammad Noman
  • , Abdul Haseeb Hassan Khan
  •  &  Shayan Tariq Jan

Article 01 March 2024 | Open Access

Physics-informed W-Net GAN for the direct stochastic inversion of fullstack seismic data into facies models

  • Roberto Miele
  •  &  Leonardo Azevedo

Article 27 February 2024 | Open Access

Location selection for offshore wind power station using interval-valued intuitionistic fuzzy distance measure-RANCOM-WISP method

  • Pratibha Rani
  • , Arunodaya Raj Mishra
  •  &  Adel Fahad Alrasheedi

Article 24 February 2024 | Open Access

A comparative study of advanced evolutionary algorithms for optimizing microgrid performance under dynamic pricing conditions

  • , Ahmed T. Abdelnaby
  •  &  A.A. Ali

Article 21 February 2024 | Open Access

Enhancing soot oxidation using microtextured surfaces

  • , Gordon McTaggart-Cowan
  •  &  Sami Khan

Article 19 February 2024 | Open Access

A low-carbon economic dispatch method for regional integrated energy system based on multi-objective chaotic artificial hummingbird algorithm

  • , Yuanbo Yang
  •  &  Yunchang Dong

Welding of thin stainless-steel sheets using a QCW green laser source

  • , F. Poggenburg
  •  &  A. Olowinsky

Article 17 February 2024 | Open Access

An efficient energy management scheme using rule-based swarm intelligence approach to support pulsed load via solar-powered battery-ultracapacitor hybrid energy system

  • Muhammad Shahid Wasim
  • , Muhammad Amjad
  •  &  Baseem Khan

Article 12 February 2024 | Open Access

Exergy-energy, sustainability, and emissions assessment of Guizotia abyssinica (L.) fuel blends with metallic nano additives

  • M. S. Abishek
  • , Sabindra Kachhap
  •  &  Ali ELrashidi

Article 07 February 2024 | Open Access

Capacitor based topology of cross-square-switched T-type multi-level inverter

  • , Seyed Hossein Hosseini
  •  &  Majid Hosseinpour

Article 01 February 2024 | Open Access

Energy storage and catalytic behaviour of cmWave assisted BZT and flexible electrospun BZT fibers for energy harvesting applications

  • Avanish Babu Thirumalasetty
  • , Siva Pamula
  •  &  Madhuri Wuppulluri

Article 29 January 2024 | Open Access

Optimization of building integrated energy scheduling using an improved genetic whale algorithm

  •  &  Guoqing An

Formal optimization techniques select hydrogen to decarbonize California

  • Clinton Thai
  •  &  Jack Brouwer

Condition-based opportunistic maintenance strategy for multi-component wind turbines by using stochastic differential equations

  •  &  Yuqi Li

Article 24 January 2024 | Open Access

Thermogravimetric and thermo-kinetic analysis of sugarcane bagasse pith: a comparative evaluation with other sugarcane residues

  • Hamidreza Najafi
  • , Ahmad Golrokh Sani
  •  &  Mohammad Amin Sobati

Article 23 January 2024 | Open Access

A new approach to three-dimensional microstructure reconstruction of a polycrystalline solar cell using high-efficiency Cu(In,Ga)Se 2

  • Chang-Yun Song
  • , Matthias Maiberg
  •  &  Ali Gholinia

Article 18 January 2024 | Open Access

Stochastic energy management of a microgrid incorporating two-point estimation method, mobile storage, and fuzzy multi-objective enhanced grey wolf optimizer

  • Serajuddin Habibi
  • , Reza Effatnejad
  •  &  Payman Hajihosseini

AI-based shape optimization of galloping micro-power generators: exploring the benefits of curved surfaces

  • Hussam Alhussein
  • , Ahmed S. Dalaq
  •  &  Mohammed Daqaq

Article 17 January 2024 | Open Access

Highly efficient emerging Ag 2 BaTiSe 4 solar cells using a new class of alkaline earth metal-based chalcogenide buffers alternative to CdS

  • Kaviya Tracy Arockiya Dass
  • , M. Khalid Hossain
  •  &  Latha Marasamy

Article 10 January 2024 | Open Access

Experimental, predictive and RSM studies of H 2 production using Ag-La-CaTiO 3 for water-splitting under visible light

  • Safaa Ragab
  • , Marwa R. Elkatory
  •  &  Ahmed El Nemr

Non-isolated high gain DC–DC converter with ripple-free source current

  • A. S. Valarmathy
  •  &  M. Prabhakar

Article 04 January 2024 | Open Access

Analytical study of integrating downhole thermoelectric power generation with a coaxial borehole heat exchanger in geothermal wells

  • , Kaiyuan Shi
  •  &  Junrong Liu

Article 02 January 2024 | Open Access

Renewable and high-purity hydrogen from lignocellulosic biomass in a biorefinery approach

  • Majd Elsaddik
  • , Ange Nzihou
  •  &  Michel Delmas

Experimental study on alkali reduction of film-coated porous ecological concrete by microbial calcium carbonate precipitation technology

  • Bingxia Wang
  •  &  Xiaolei Wu

Article 19 December 2023 | Open Access

CFD modeling and simulation of benzyl alcohol oxidation coupled with hydrogen production in a continuous-flow photoelectrochemical reactor

  • Thorfhan Hanamorn
  •  &  Paravee Vas-Umnuay

Advertisement

Browse broader subjects

  • Green chemistry
  • Energy science and technology

Browse narrower subjects

  • Geothermal energy
  • Hydroelectricity
  • Hydrogen energy
  • Solar energy
  • Wind energy

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

renewable energy research paper ideas

renewable energy research paper ideas

Special Features

Vendor voice.

renewable energy research paper ideas

FYI... Renewable energy sources behind 30% of the world's electricity in 2023

It ain't all sunshine and windmills – and guess who's in the lead china.

Thirty percent of the world's electricity in 2023 was generated by renewable energy sources, according to a think tank.

The data comes from the Global Electricity Review 2024 report [PDF] authored by Ember Climate. While the 165-page document covers lots of topics, the headliner was the share of global electricity created by renewables, which for the first time ever was just above 30 percent last year.

Hitting that percentage mark was thanks to continued expansion in wind and solar energy, which represented 13.4 percent of energy generated in 2023, up from 11.9 percent in 2022. The EU, US, and Brazil accounted for much of the boost in wind and solar, but China was by far the leader, having created 60 percent and 51 percent of new sources of wind and solar respectively.

Although a new milestone has been reached for the renewable energy sector, the figures apparently fell short of expectations. Growth in wind energy declined for the second year in a row; 2021 saw wind energy increase by roughly 250 TWh while 2023 clocked in a relatively small 206 TWh boost. The combined energy rise from wind and solar at 513 TWh was just slightly lower than the 517 TWh gain seen in 2022.

renewable energy research paper ideas

In the case of solar energy, though, there are some caveats. China saw less sunlight in 2023, which limited the impact of its new solar panels, and some countries underreported their expansion of solar energy. The report says these are temporary factors, and had they not occurred, the actual increase for solar could have been around 387 TWh instead of 307.

Additionally, hydro power fell to a five-year low, dropping its share of global energy to just 14.3 percent and offsetting some of the gains made by wind and solar. Although new dams were brought online in 2023, droughts continue to make hydro energy collection much less efficient. Mexico was hit especially hard, seeing 42 percent of its hydroelectric power drop.

Wind, solar, hydro, other renewables, and nuclear together now make up 39.4 percent of the world's electricity supply. It might not be too much longer until most energy in the world is generated by low-carbon sources.

Renewable energy can't meet all of new demand

The Ember report also points out that while renewable and other clean energy sources made substantial gains in 2023, it wasn't quite enough to satisfy demand, which stood at an additional 627 TWh. The lower-than-expected growth in wind and solar, the decline in hydroelectric power, and the small gain in other sources like bioenergy meant a 135 TWh increase in fossil fuels was necessary to meet demand.

This was despite the fact that the relative increase in power demand in 2023 was just 2.2 percent, a little lower than the 2.5 percent average seen from 2012 to 2022.

The vast majority of increased demand came from China, at 606 TWh, well ahead of India at 99 TWh. Meanwhile, power demand in the US, EU, Asia-Pacific, and Africa fell somewhat. Of course, China also built lots of wind and solar infrastructure to meet its own demand.

  • Undersea bit-barn biz offers 90-day trial of submerged server system
  • Digital Realty wants to turn Irish datacenters into grid-stabilizing power jugglers
  • Digital Realty ditches diesel for salad dressing in US to cut datacenter emissions
  • Intel's green dream is chips without any dips in Mother Nature's health

2023 may have seen a drop in global carbon emissions if wind and solar had met expectations, if there hadn't been droughts, or if demand was lower. A small increase in coal and natural gas usage resulted in 1 percent higher emissions in 2023. However, both fossil fuels saw their relative usage decline slightly as clean energy grew much more, and 2023 did see a 1.2 percent decline in the carbon intensity of power generation.

The beginning of lower carbon emissions

Ember predicts 2023 was the high watermark for the fossil fuel industry, and that from here on out emissions will fall, assuming that wind and solar continue on their current trajectory. The report predicts for 2024 that solar energy will rise to 600 TWh, wind 289 TWh, hydro 332 TWh, and nuclear and others a combined 80 TWh. This would be far more than the projected 968 TWh of demand for the year, leading to a fall in fossil fuel energy generation.

The prediction is optimistic, something the report acknowledges. If droughts persist and demand is even higher than Ember forecasts, both of which it says are a possibility, then a decline in fossil fuel energy could turn into another slight increase. AI datacenters could certainly throw off predictions, if the warnings about power usage prove to be true.

In the longer term, Ember forecasts that tripling renewable energy by 2030 would nearly cut emissions in half. This would add 14,000 TWh to the global power supply, more than meeting the predicted 9,000 TWh of demand. Combined with additional power from nuclear and cutting-edge hydrogen power generation, fossil fuel power could drop by 37 percent, most of which would be coal, thus dropping emissions by 45 percent.

A doubling of renewable energy might be more realistic, however, as the report notes: "Ember's research shows that government plans to 2030 already align with a doubling of global renewable capacity." These plans would need to be updated for tripling renewables by 2030 to be a possibility.

Longer-term plans like US cities transitioning to green power by 2050 are already on the rocks, so it's not guaranteed by any means that Ember's hypothetical 2030 will become reality. ®

  • Electricity

Narrower topics

  • China Mobile
  • China telecom
  • China Unicom
  • Cyberspace Administration of China
  • Fusion Power
  • Great Firewall
  • Nuclear Power
  • Semiconductor Manufacturing International Corporation
  • Uyghur Muslims

Broader topics

  • Environment

Send us news

Other stories you might like

America will make at least quarter of advanced chips in 2032, compared to china’s 2%, hypothetical tsmc invasion 'absolutely devastating' says raimondo, us tariffs on chinese evs may grow from around 25% to 100%, the next step up for high-impact identity authorization.

renewable energy research paper ideas

China 'the most competitive market in the world' for the iPhone says Tim Cook

A tale of two chinas: our tech governance isn't perfect, but we still get to say no, tesla maps out new territory in china with baidu deal, huawei's latest smartphone features mostly made-in-china components, eu duties might not be enough to hold off flood of chinese evs, us, china agree to meet in switzerland to discuss most pressing issue of all: ai use, musk schmoozes chinese premier as tesla full self-driving remains parked, china to launch sample return mission to the far side of the moon – maybe next week.

icon

  • Advertise with us

Our Websites

  • The Next Platform
  • Blocks and Files

Your Privacy

  • Cookies Policy
  • Privacy Policy
  • Ts & Cs

Situation Publishing

Copyright. All rights reserved © 1998–2024

no-js

IMAGES

  1. ≫ Renewable Energy Development Free Essay Sample on Samploon.com

    renewable energy research paper ideas

  2. Growing Significance of Renewable Energy

    renewable energy research paper ideas

  3. IRJET- Design And Analysis Of Integrated Solar Panel, 51% OFF

    renewable energy research paper ideas

  4. Top 7 Renewable Energy Working Model of Science Fair Project:

    renewable energy research paper ideas

  5. Research Unit

    renewable energy research paper ideas

  6. Top 7 Renewable Energy Working Model of Science Fair Project:

    renewable energy research paper ideas

VIDEO

  1. Renewable Energy Revitalized By New Project

  2. Renewable Energy: Topic ideas, Grammar, Vocabulary and Sample Answers

  3. How Can I Choose the Right Major for a Career in Renewable Energy Research?

  4. The Latest Breakthroughs in Renewable Energy Technology

  5. Renewable Energy and Energy Harvesting B.Sc. 3rd Year Physics Question Paper 2023 HPU

  6. KAPSARC Receives Two OPEC Awards for Research Achievements

COMMENTS

  1. 116 Renewable Energy Essay Topics & Research Titles at StudyCorgi

    This research report analyzes the growing interest of the use renewable energy as an alternative to the non-renewable energy. The Concept of Sustainability in Energy Plan for 2030-2040 The paper discusses the concept of sustainability takes a central role in the global discussion and presents of environment safety plan.

  2. Is renewable energy sustainable? Potential relationships between

    While the transition from fossil fuels to renewable energy sources is strongly associated with positive impacts on climate action (SDG 13), there can also be a number of inhibiting relationships ...

  3. Renewable energy

    Lightweight and flexible thin crystalline silicon solar cells have huge market potential but remain relatively unexplored. Here, authors present a thin silicon structure with reinforced ring to ...

  4. Machine learning for a sustainable energy future

    Nature Reviews Materials (2024) Transitioning from fossil fuels to renewable energy sources is a critical global challenge; it demands advances — at the materials, devices and systems levels ...

  5. Towards Sustainable Energy: A Systematic Review of Renewable Energy

    The use of renewable energy resources, such as solar, wind, and biomass will not diminish their availability. Sunlight being a constant source of energy is used to meet the ever-increasing energy need. This review discusses the world's energy needs, renewable energy technologies for domestic use, and highlights public opinions on renewable energy. A systematic review of the literature was ...

  6. Sustainable Energy Transition for Renewable and Low Carbon Grid

    The greatest sustainability challenge facing humanity today is the greenhouse gas emissions and the global climate change with fossil fuels led by coal, natural gas and oil contributing 61.3% of global electricity generation in the year 2020. The cumulative effect of the Stockholm, Rio, and Johannesburg conferences identified sustainable energy development (SED) as a very important factor in ...

  7. Frontiers

    The influences of renewable and conventional energy consumption on ecological sustainability remain unclear because of the dynamic economic and innovative framework. This investigation gives a new perception by exploring the association between the production of various sources of renewable energies (e.g., hydroelectric, wind, solar PV, geothermal, and biomass power) and economic growth ...

  8. Research Topics

    EERE's Solar Energy Technologies Office (SETO) is seeking to support postdoctoral researchers to apply and advance cutting-edge data science to drive toward the national solar cost reduction goals. Areas of interest include: Novel analysis of Green Button (smart meter) and PV performance data with the Durable Module Materials (DuraMAT) Consortium.

  9. Frontiers in Energy Research

    Quantifying the Ecosystem Impacts of Energy Systems. Yi Jin. Rong Yuan. Xiaoyang Zhong. 225 views. Explores sustainable and environmental developments in energy. It focuses on technological advances supporting Sustainable Development Goal 7: access to affordable, reliable, sustainable and modern...

  10. Sustainable Development with Renewable Energy

    This proceedings book contains the full papers of the 10th edition of the International Conference on Energy and Environment Research ... Nídia Caetano is Associate Editor for Biomass of Renewable Energy (Elsevier), Member of the Editorial Advisory Board of Algal Research (Elsevier), Review Editor in Sustainable Energy Systems and Policies ...

  11. Introduction

    Renewable energy makes up 12% of primary energy use in the United States and 11% worldwide. 4 While there is still a strong dependence on fossil fuels for heating, electricity and transportation, the oil crises of the 1970s pushed for stronger investment into alternative energy sources.

  12. PDF Research Projects in Renewable Energy for High School Student

    RESEARCH PROJECTS IN RENEWABLE ENERGY FOR HIGH SCHOOL STUDENTS National Renewable Energy Laboratory ... and experimenting with scientific ideas. If you have questions, please call the Education Office at (303) 275-3044 or e-mail: ... research is about without reading the paper. • Abstract - a brief condensation of the entire

  13. Renewable energy for sustainable development in India: current status

    The primary objective for deploying renewable energy in India is to advance economic development, improve energy security, improve access to energy, and mitigate climate change. Sustainable development is possible by use of sustainable energy and by ensuring access to affordable, reliable, sustainable, and modern energy for citizens. Strong government support and the increasingly opportune ...

  14. Renewable Energy

    Publication Date: 2021. Examines the history, politics, and economics of alternative energy. Renewable Energy by Bruce Usher. Call Number: eBook. Publication Date: 2019. A primer on the coming energy transition and its global consequences.

  15. Climate change impacts on renewable energy supply

    Since climate processes fuel most renewable energy resources, the impact of climate change on renewable energy supply has been identified as a key area for further research 7,8,9,10,11,12,13,14,15 ...

  16. Grand Challenges: Wind Energy Research Needs for a Global Energy

    National Center for Atmospheric Research; National Renewable Energy Laboratory; University of Colorado Boulder ... See NREL/JA-4A00-85183 for final paper as published in Wind Energy Science. NREL Publication Number. ... Access to Document. 10.5194/wes-2022-66. Fingerprint Dive into the research topics of 'Grand Challenges: Wind Energy Research ...

  17. PDF Renewable Energy Research

    Renewable Energy Research Dr. Rama Venkat Dean, College of Engineering. Phone: (702) 895-1094. ... have addressed questions related to many topics, including solar and wind energies, fuel cells and ... Education and Research" (Conference Paper) IEEE Power and Energy Society General Meeting (2018), 8586424. ...

  18. Renewable Energy

    The wind, the sun, and Earth are sources of renewable energy . These energy sources naturally renew, or replenish themselves. Wind, sunlight, and the planet have energy that transforms in ways we can see and feel. We can see and feel evidence of the transfer of energy from the sun to Earth in the sunlight shining on the ground and the warmth we ...

  19. Quality Signaling and Demand for Renewable Energy Technology: Evidence

    Solar technologies have been associated with private and social returns, but their technological potential often remains unachieved because of persistently low demand for high-quality products. In a randomized field experiment in Senegal, we assess the potential of three types of quality signaling ...

  20. Research Areas

    The Precourt Institute for Energy is now part of the Stanford Doerr School of Sustainability.

  21. Research Proposals

    The EERE Postdoctoral Research Awards are intended to be an avenue for significant energy efficiency and renewable energy innovation. To enable the participants' creativity as they conduct their postdoctoral research, the Research Awards have been designed to follow the "Innovation Time Out" model so that participants allot roughly 80% of their time to their core project research tasks and 20% ...

  22. Publications

    This list includes NREL publications released from Jan. 1 to Mar. 31, 2024. It is updated quarterly and based on publication downloads. Visit the research program sites for recent publications by topic. Technical Potential and Meaningful Benefits of Community Solar in the United States, NREL Technical Report (2024)

  23. Clean energy can fuel the future

    More energy efficiency means less pollution, and energy efficiency has increased by around 2% annually in the past few years. But meeting the target for 2030 — to double the rate of the 1990 ...

  24. Renewable energy, facts and information

    Hydropower: For centuries, people have harnessed the energy of river currents, using dams to control water flow. Hydropower is the world's biggest source of renewable energy by far, with China ...

  25. PDF Science Projects in Renewable Energy and Energy Efficiency

    Printed on paper containing at least 50% wastepaper, including 20% postconsumer waste. 1 ... secondary, pre-service, and experienced teachers came to NREL to do real research in renewable energy sciences. As part of their research responsibilities, each teacher ... ideas from the unique perspective of being involved in both education and laboratory

  26. Reinforcement Learning control strategies for Electric ...

    This fascinating working principle introduces the wider concept of an interconnected, shared, decentralized grid of energy. This research on Reinforcement Learning control strategies for Electric Vehicles and Renewable energy sources Virtual Power Plants focuses on providing solutions for such energy supply optimization models.

  27. Artificial intelligence-based methods for renewable power system

    The large variabilities in renewable energy (RE) generation can make it challenging for renewable power systems to provide stable power supplies; however, artificial intelligence (AI)-based ...

  28. How renewable energy solutions drive broader social change

    Here are some examples of how renewable energy solutions are changing lives all over the world. Renewable energy solutions mitigate climate change and promote a healthier environment and they often serve as catalysts for broader social change. From fostering innovation and job creation to promoting gender equality or making civic participation ...

  29. Renewable energy

    An efficient energy management scheme using rule-based swarm intelligence approach to support pulsed load via solar-powered battery-ultracapacitor hybrid energy system. Muhammad Shahid Wasim ...

  30. Renewable energy provided 30% of world's electricity in 2023

    Thirty percent of the world's electricity in 2023 was generated by renewable energy sources, according to a think tank. The data comes from the Global Electricity Review 2024 report [PDF] authored by Ember Climate. While the 165-page document covers lots of topics, the headliner was the share of global electricity created by renewables, which for the first time ever was just above 30 percent ...