PhD Program

phd in chemistry in usa

Professor Wender discusses chemistry with his graduate students.

Doctoral study in chemistry at Stanford University prepares students for research and teaching careers with diverse emphases in basic, life, medical, physical, energy, materials, and environmental sciences.

The Department of Chemistry offers opportunities for graduate study spanning contemporary subfields, including theoretical, organic, inorganic, physical, biophysical and biomedical chemistry and more. Much of the research defies easy classification along traditional divisions; cross-disciplinary collaborations with Stanford's many vibrant research departments and institutes is among factors distinguishing this world-class graduate program.

The Department of Chemistry is committed to providing academic advising in support of graduate student scholarly and professional development.  This advising relationship entails collaborative and sustained engagement with mutual respect by both the adviser and advisee.

  • The adviser is expected to meet at least monthly with the graduate student to discuss on-going research.
  • There should be a yearly independent development plan (IDP) meeting between the graduate student and adviser. Topics include research progress, expectations for completion of PhD, areas for both the student and adviser to improve in their joint research effort.
  • A research adviser should provide timely feedback on manuscripts and thesis chapters.
  • Graduate students are active contributors to the advising relationship, proactively seeking academic and professional guidance and taking responsibility for informing themselves of policies and degree requirements for their graduate program.
  • If there is a significant issue concerning the graduate student’s progress in research, the adviser must communicate this to the student and to the Graduate Studies Committee in writing.  This feedback should include the issues, what needs to be done to overcome these issues and by when.

Academic advising by Stanford faculty is a critical component of all graduate students' education and additional resources can be found in the  Policies and Best Practices for Advising Relationships at Stanford  and the  Guidelines for Faculty-Student Advising at Stanford .

Learn more about the program through the links below, and by exploring the research interests of the  Chemistry Faculty  and  Courtesy Faculty .

Best Chemistry Programs

Ranked in 2023, part of Best Science Schools

With a graduate degree in chemistry, scientists may find

With a graduate degree in chemistry, scientists may find jobs in laboratories, government agencies, research institutions, pharmaceutical companies, colleges and universities, and more. These are the best chemistry schools. Each school's score reflects its average rating on a scale from 1 (marginal) to 5 (outstanding), based on a survey of academics at peer institutions. Read the methodology »

  • Clear Filters

PhD in Chemistry

The PhD in chemistry is primarily a research degree. It is awarded to students who have displayed competence in planning and conducting original research in the field of chemistry, demonstrated a broad familiarity with the science of chemistry, understanding in the application of the scientific method, and gained a thorough knowledge of their field of specialization.

Students build a solid foundation in all four core areas of chemistry (analytical, inorganic, organic, and physical), and a thorough knowledge of their chosen field of specialization. In the first part of the PhD program, students take at least one formal classroom course in each the core areas of chemistry as outlined in the course requirements below. The courses must be completed successfully (B- or better) by the end of the third semester.

Since original research is the primary requirement for the PhD degree, a student selects a research supervisor and begins research before the end the first year. The student and research supervisor then select two faculty members to serve as the student's Doctoral Research Committee. The Committee, in conjunction with the student's research adviser, take over the advisory function from the graduate committee and guides the student's work to promote development as an independent investigator.

Thus, in addition to research each student must complete the following requirements:

  • Service as a teaching assistant
  • Regular progress updates with a faculty Research Committee
  • A departmental seminar
  • Defense of an original research proposal.
  • Completion of a dissertation reporting significant work of publishable quality

Course Requirements

At least one of the following analytical chemistry courses:

  • Chem 141: Instrumental Analysis
  • Chem 142: Advanced Analytical Methods
  • Chem 144: Spectroscopic Methods of Analysis
  • Chem 145: Separation Science
  • Chem 146: Electroanalytical Chemistry

At least one of the following inorganic chemistry courses: 

  • Chem 161: Advanced Inorganic Chemistry
  • Chem 162: Chemistry of Transition Elements
  • Chem 164: Bioinorganic Chemistry
  • Chem 165: Physical Methods In Inorganic Chemistry

At least one of the following organic chemistry courses:

  • Chem 150: Intermediate Organic Chemistry
  • Chem 151: Physical Organic Chemistry
  • Chem 152: Advanced Organic Synthesis

At least one of the following physical chemistry courses: 

  • Chem 131: Statistical Thermodynamics
  • Chem 132: Chemical Kinetics and Dynamics
  • Chem 133: Quantum Mechanics
  • Chem 134: Biophysical Chemistry
  • Chem 136: Spectroscopy and Molecular Structure
  • Chem 138: Atomic Scale Structure and Properties of Surfaces  
  • Two additional classroom courses, exclusive of research, must be completed satisfactorily by the end of the fourth semester

Quick links

  • Make a Gift
  • Directories

Ph.D. in Chemistry

Graduate students earn a Ph.D. through independent research in collaboration with one or more faculty members . A modest amount of graded coursework ensures a thorough grounding in the fundamentals of the chosen field, as well as breadth of knowledge in the chemical sciences. The median time to complete all requirements for the Ph.D. is about five years. Students are required to pass oral examinations in their area of specialization. There are no pre-entrance or qualifying exams.

For complete details about our doctoral program, see the pages below:

  • First Year of Study
  • Ph.D. Degree Requirements
  • Ph.D. Degree Timeline
  • 2nd Year Exam Guidelines (pdf)
  • General Exam Instructions (pdf)
  • Data Science Option (Chem-DSO)
  • Elements of Good Academic Standing
  • General Policies
  • Advising & Mentoring
  • Financial Support
  • Student Awards
  •   Facebook
  •   Twitter
  •   Newsletter
  •   News Feed

About the Chemistry Ph.D. Program

Ph.d. in chemistry faq's.

Trevor Lohrey, Arnold Research Group

The Chemistry PhD program is designed towards developing within each student the ability to do creative scientific research. Accordingly, the single most important facet of the curriculum for an individual is their own research project. In keeping with the goal of fostering an atmosphere of scholarly, independent study, formal course requirements are minimal and vary among disciplines; advisor's tailor course requirements to best prepare the student for the chosen research field.

The Doctoral program includes the following concentrations, each of which has specific degree requirements:

  • Physical Chemistry : In general, the Physical Chemistry Graduate Program encompasses analytical, nuclear, biophysical, and theoretical chemistry.
  • Synthetic Chemistry : The Synthetic Chemistry Graduate Program includes emphases in either organic or inorganic chemistry
  • Chemical Biology : The Chemical Biology Graduate Program covers a range of research areas at the interface of Chemistry and Biology.

Research. A graduate student spends a good deal of time during the first week of the first semester at Berkeley talking to various faculty members about possible research projects, studying pertinent literature references, and choosing an individual project. New graduate students meet shortly after their arrival with a faculty adviser. From the faculty adviser the student obtains a list of faculty members whose research may interest the student. After visiting these and additional faculty, if necessary, the student chooses a research director, with the consent of the faculty member and the graduate adviser. By the end of the first semester most students have made a choice and are full-fledged members of research group. Students in the Chemical Biology Graduate Program will select their thesis advisor after completion of three-ten week rotations. Thereafter, all students become involved in library research on their projects and many begin actual experimental or theoretical work.

Independent Study. A student who chooses to specialize in physical chemistry is normally expected to take two courses per semester during the first year and one or two additional semesters of coursework sometimes during the second year. These may include topics such Quantum Mechanics, Statistical Mechanics, Group Theory, Interactions of Radiation with Matter, and many more. At the other extreme, a student specializing in inorganic chemistry will concentrate more heavily on special topics seminars and take fewer courses. The course offerings in the University are varied so that individual students have the opportunity to take other courses which serve their own needs. Such as, a student working on nuclear chemistry will probably elect additional graduate physics courses, while a student working on biophysical or bio-organic problems may take courses offered by the Biochemistry Department. Students in the Chemical Biology program will take courses from both Chemistry and Molecular and Cell Biology departments.

Seminars. Because of the size and diversity of the Berkeley faculty, there are many seminars on a variety of topics which students may choose to attend. There are regular weekly seminars in several major areas, including biophysical, physical, nuclear, organic, theoretical, solid state, and inorganic chemistry. These seminars are presented by members of the Berkeley faculty, as well as distinguished visitors to the campus. These seminars allow the students to become aware of the most important current research going on in the field. In addition to these regular seminars, there are several regular department seminars devoted to presentations by graduate students. One of the doctoral program requirements is that each student delivers a departmental seminar known as a graduate research conference during the second year. Individual research groups also hold regular research seminars. The format of these small, informal seminars varies. In some cases, graduate students discuss their own current research before the other members of the research group. On other occasions, the group seminars may be devoted to group discussions of recent papers which are of interest to the particular research group. In any event, small group seminars are one of the most important ways in which students learn by organizing and interpreting their own results before their peers.

Qualifying Exam. Sometime during the second year of graduate work at Berkeley, each student takes a qualifying examination. The examining board, a committee of four faculty members, is appointed to examine the student for general competence in the area of interest. The qualifying examination is centered around the defense of the individual research project. Upon satisfactory completion of the oral qualifying examination, the student is advanced to candidacy for the Ph.D. degree. After advancement, the student completes an original, scholarly contribution to science and writes a dissertation on the subject. Most students complete their work and received their degree within five years.

Teaching. An integral part of the graduate education at Berkeley is teaching. The department requires that each doctoral candidate assist in the instructional program of the department as a teaching assistant for two semesters during their graduate careers. The faculty regard the teaching experience as highly valuable for all graduate students, especially those who plan to teach as a career.

Financial Aid. All students admitted to our graduate program receive a stipend for the duration of study in the form of teaching and research assistantships as long as they are in residence and demonstrate good progress toward the degree. Students also receive full tution, health, dental and vision insurance. Most funds for this support derive from research contracts and grants.

For more information see the Berkeley Bulletin

top of page

  • College of Arts & Sciences
  • Graduate Division
  • College of Liberal and Professional Studies

Home

  • PhD Program

Chemistry PhD Program

The University of Pennsylvania is an internationally renowned research institution that attracts the best students from the United States and around the globe. The Graduate Program is designed for students who wish to earn a Ph.D. in Chemistry while undertaking cutting edge research. The program provides students with the necessary theoretical background and hands-on training to become independent and highly successful scientists.  Graduate students achieve mastery of advanced chemistry topics through courses in different subdisciplines. Broad exposure to current research also occurs via four weekly departmental seminar programs and many interdisciplinary, university-wide lecture series.

Currently, faculty, students, and postdoctoral associates in Chemistry work in the fields of bioinorganic chemistry, bioorganic chemistry, chemical biology, biophysical chemistry, bioinformatics, materials science, laser chemistry, health related chemistry, structural and dynamical studies of biological systems, X-ray scattering/diffraction, NMR spectroscopy, applications of computing and computer graphics, as well as investigations of chemical communication and hormone-receptor interactions. Many research groups combine different techniques to explore frontier areas, such as nanomaterials applied to biology, photoactive biomolecules, and single-molecule imaging. Novel synthetic procedures are under constant development for targets ranging from super-emissive nanoparticles to highly specialized drug molecules and giant dendrimers, which are being explored, for example, as drug-delivery systems. The Research Facilities in the Department of Chemistry provide a strong technology base to enable the highest level of innovation. Graduate students are a driving, integral force at Penn Chemistry.

Chemistry, PhD

Zanvyl krieger school of arts and sciences.

Johns Hopkins University was the first American institution to emphasize graduate education and to establish a PhD program in chemistry. Founding Chair Ira Remsen initiated a tradition of excellence in research and education that has continued until this day. The Hopkins graduate program is designed for students who desire a PhD in chemistry while advancing scientific knowledge for humankind.

The graduate program provides students with the background and technical expertise required to be leaders in their field and to pursue independent research.

Graduate students’ advancement is marked by entrance exams, coursework, teaching, seminars, oral examinations, and an individual research project that culminates in a thesis dissertation. The thesis research project represents an opportunity for graduate students to make a mark on the world. Working in conjunction with a faculty member or team, individually tailored thesis projects enable students to think independently about cutting-edge research areas that are of critical importance. Thesis research is the most important step toward becoming a PhD scientist, and our program provides an outstanding base with a proven track record of success.

Graduate students make up the heart of the Chemistry Department, and the department strives to support students’ individual needs. Each student is carefully advised and classes are traditionally quite small. Multidisciplinary research and course offerings that increase scientific breadth and innovation are hallmarks of the program.  In addition to academic and technical development, our department also offers several outlets for professional and social development.

Admission Requirements

Application materials include:

  • Academic transcripts
  • Three letters of recommendation
  • Statement of Purpose
  • The GRE General Test is required.  However, this requirement can be waived for individuals for whom personal circumstances make it difficult or impossible to access the GRE General Test at this present time.  If so, please let the Academic Affairs Administrator (information below) be aware of these circumstances, and the application will be given full consideration.
  • The GRE Chemistry Subject is Test is recommended, but not required.
  • The application fee is $75. However, fee waivers may be requested for applicants that have documentation showing they are a part of SACNAS, MARCC, oSTEM and many other organizations. To access the full list to see if you qualify, go to the  Krieger Graduate Admission and Enrollment  page.

Assistance with the application process is available. Candidates with questions about the application process, or requests for a GRE General Test waiver (or on other matters related to the application) should contact the Admissions Committee’s Academic Affairs Administrator ( [email protected] ).

There are no fixed requirements for admission. Undergraduate majors in chemistry, biology, earth sciences, mathematics, or physics may apply as well as all well-qualified individuals who will have received a BA degree before matriculation. A select number of applicants will be invited to visit campus to tour our facilities and interact with our faculty members and their lab members over a weekend in March.

For further information about graduate study in chemistry visit the Chemistry Department website . 

Program Requirements

Normally, the minimum course requirement for both the M.A. and the Ph.D. degrees is six one-semester graduate courses in chemistry and related sciences. Exceptionally well-prepared students may ask for a reduction of these requirements.

Requirements for the Ph.D. degree include a research dissertation worthy of publication, and a knowledge of chemistry and related material as demonstrated in an oral examination. Each student must teach for at least one year.

Below is a list of the core Chemistry courses for graduate level students.

  • Seminars & Events -
  • Directions -
  • IT Support -
  • Search for:
  • Catalysis / Synthesis
  • Chemical Biology
  • Inorganic Chemistry
  • Spectroscopy / Physical Chemistry
  • Theoretical Chemistry
  • Andlinger Center for Energy and the Environment
  • Princeton Institute for Computational Science and Engineering
  • Princeton Materials Institute
  • Princeton Catalysis Initiative
  • Research Facilities Overview
  • Biophysics Core Facility
  • Crystallography
  • Merck Catalysis Center
  • NMR Facility
  • Mass Spectrometry
  • Other Spectroscopy
  • Small Molecule Screening Center
  • Ultrafast Laser Spectroscopy
  • Industrial Associates Program
  • Libraries & Computing
  • Frick Chemistry Laboratory
  • Administration & Staff
  • Business & Grants Office
  • Frick Event Guidelines
  • Faculty & Academic Jobs
  • Seminars & Events
  • Postdocs Overview
  • New Postdocs
  • Family-Friendly Initiatives
  • Graduate Program Overview
  • Academic Program
  • Campus Life
  • Living in Princeton
  • Graduate News
  • Undergraduate Overview
  • Summer Undergrad Research Fellows in Chemistry
  • Other Summer Research Opportunities
  • Outside Course Approval
  • PU Chemical Society
  • Our Commitment
  • Resources and Reporting
  • Visiting Faculty Research Partnership
  • Join the Department

Many voices, one future. An inclusive Princeton logo.

Important Dates:

Application Window Opens

Application Deadline

By February

Admission Decision

Admission Requirements

Please refer to Applying to Princeton for the authoritative requirements for admission to all graduate programs at Princeton University, including the Department of Chemistry.

Specific requirements for application to the Department of Chemistry may be found on the Chemistry Field of Study page.

Ultimately, all prospective graduate student must apply through the university’s Online Graduate School Application .

Upon receiving applications from the Graduate School, the Department of Chemistry’s Admissions Review Committee reviews each application in a holistic fashion, considering all aspects of the application file including prior research and coursework, letters of recommendation and standardized test scores.

Further Details and Fine Print…

Standardized scores.

The submission of GRE general test scores is strongly recommended but not required. There are no minimum test score requirements for admission. If submitted, the standardized scores are reviewed as part of the applicant’s portfolio by the faculty review committee.

Please note that some November GRE test results might not be officially submitted by ETS until after the December 1 deadline. You may self-report the test results to our graduate program manager, Patti Wallack , by email as soon as you have them. The November results are usually received by the Graduate School by mid-December allowing sufficient time for the official report to be confirmed by the admissions committee.

The application fee is established and managed by the Graduate School. The department cannot grant a fee waiver.  More information on fee waivers.

Financial Support

All students receive full financial support for the length of their course of study funded through fellowship, teaching and advisor support. This support is not a loan and does not require repayment. Students are provided tuition, health insurance and a stipend for housing and living expenses. More information about financial support, policies and rates.

Admissions Decisions and Campus Visit

Admissions decisions are shared by February . Official campus visits for accepted students are held in February and March. An invitation to attend one of our Visiting Weekends will be sent to all accepted students.

Graduate Program Who’s Who:

Patti Wallack Manager of Educational Programs, Outreach, and Events [email protected]

Contact Patti for all graduate program and admissions questions.

Sarah Mullins Graduate Program Manager [email protected]

Contact Sarah for all graduate program and admissions questions.

Susan VanderKam Associate Director, Undergraduate Program [email protected]

You may already have met Susan at a conference. Contact Susan for questions about diversity initiatives and resources.

Erik Sorensen Arthur Allan Patchett Professor in Organic Chemistry, Professor of Chemistry Director of Graduate Studies

Georgetown University.

College of Arts & Sciences

Georgetown University.

PhD Program

Interested in the chemistry phd program.

Prospective students can contact our Graduate Admissions coordinator Ms. Tabi Lemlem (202-687-6073) or the Graduate Admissions chair Prof. Travis Holman .

Office of Admissions

Graduate School of Arts and Sciences

Our PhD program guides students to attain the following goals upon graduation:

1.  Broad chemistry knowledge. The students will broaden and deepen their understanding of theories, concepts and models to enhance their success as scientists and educators.

2.  Expertise in a specific discipline.   Each student will acquire a deep working knowledge of a particular field in chemistry.

3.  Communication skills. Graduates will be able to construct and defend arguments with clarity.  They will be able to write for and speak with peers, experts and the public on a range of topics specific to their discipline.

4.  The ability to access and evaluate primary literature.   Students will have the ability to search, read and critically analyze the primary literature in order to understand and synthesize new ideas in their field.

5.  Data analysis skills.  Students will have the ability to produce, analyze and interpret meaningful chemical data and draw sound conclusions.

6.  Become independent researchers.  Graduates will be able to conceive, design and execute research projects independently.

7.  Make original scientific contributions.   Students will solve new and significant problems in their chosen field.  They will understand the importance of this work in advancing the progress of their discipline and be able to explain its relevance.  The quality and value of this work will be such that it can be published in a highly respected peer reviewed journal.

8.  Responsible conduct in research.  Graduates will understand and conduct research exhibiting the highest standards of safety, honesty and integrity.

9.  Teamwork and interdisciplinary collaboration.   Graduates will have the ability to work effectively as part of a team and to cross traditional boundaries and execute multidisciplinary research. 

10. Teaching and mentoring skills.   Students will acquire teaching skills and gain experience mentoring less experienced scientists in a research setting.

  • Future Students
  • Parents/Families
  • Alumni/Friends
  • Current Students
  • Faculty/Staff
  • MyOHIO Student Center
  • Visit Athens Campus
  • Regional Campuses
  • OHIO Online
  • Faculty/Staff Directory

College of Arts and Sciences

  • Awards & Accomplishments
  • Communications
  • Mission and Vision
  • News and Events
  • Teaching, Learning, and Assessment
  • A&S Support Team
  • Faculty Affairs
  • Human Resources
  • Promotion & Tenure
  • Centers & Institutes
  • Faculty Labs
  • Undergraduate Research
  • Environmental Majors
  • Pre-Law Majors
  • Pre-Med, Pre-Health Majors
  • Find an Internship. Get a Job.
  • Honors Programs & Pathways
  • Undergraduate Research Opportunities
  • Undergraduate Advising & Student Affairs
  • Online Degrees & Certificates
  • Ph.D. Programs
  • Master's Degrees
  • Certificates
  • Graduate Forms
  • Thesis & Dissertation
  • Departments
  • Alumni Awards
  • Giving Opportunities
  • Dean's Office
  • Department Chairs & Contacts
  • Faculty Directory
  • Staff Directory
  • Undergraduate Advising & Student Affairs Directory

Helpful Links

Navigate OHIO

Connect With Us

Ph.D. in Chemistry

John Means '07Ph.D. and Abigail Muchenditsi '09Ph.D

  • Financial Support (Teaching Assistantships)
  • Graduate Courses & Resources
  • Program Mission and Learning Objectives

Program code: PH3311

Program Overview

The department’s mission is to provide a quality education to graduate students while they pursue state-of-the-art research in chemistry. The objective of the graduate program is to educate and train students to become highly effective scientists by providing them with the interdisciplinary tools, research skills and ethical and service sensibilities needed to succeed in their future career. This includes offering a variety of rigorous graduate level courses, maintaining cutting-edge research programs within individual laboratories and compliance with the Code for Professional Ethical Conduct espoused by the American Chemical Society.

Candidates for a Ph. D. degree in Chemistry must demonstrate the ability to plan, execute, evaluate, and communicate original chemical research. The graduate program spans all five traditional disciplines of chemistry (Analytical, Biochemistry, Inorganic, Organic and Physical). Within these five areas the department boasts particular research strengths in chemometrics, forensic chemistry, mass spectrometry, medicinal chemistry, supramolecular chemistry, materials chemistry, nanoscience and nanomedicine, nucleic acid research, protein and glycoprotein engineering, and spectroscopy.

This is a full-time program. Normative time to completion is five academic years, in line with national average as reported by the American Chemical Society.

Career Opportunities

Graduates with a Ph.D. in chemistry typically pursue academic careers (typically following post-doctoral appointments) and R&D positions in chemical and pharmaceutical companies.

Graduation Requirements

  • See Chemistry Graduate Requirements for details .

Brief Overview

The requirements for a Ph.D. in chemistry consist of a combination of coursework, seminars, research proposals, and original research. Each student will be required to pass three classes (12 credits) in three different chemistry divisions (organic, inorganic, physical, analytical and biochemistry), and pass two classes (8 credits) within their major area of research. A grade of B or better must be obtained in each course attempted. Courses are selected with the assistance of a faculty adviser. Ph.D. candidates must submit and orally defend a dissertation research proposal to their dissertation committee no later than the first semester of their third year of study.

Students select a research adviser at the end of their first semester of study after rotations in several laboratories. Intensive research generally begins in the spring of the first year. The Ph.D. program culminates in the preparation of a research dissertation and a final oral examination.

  • A minimum of 90 semester hours in chemistry and approved electives.
  • Attendance at a seminar course each semester.
  • A qualifying exam must be passed for candidacy. This consists of a written research proposal and an oral defense of the proposal.
  • A written dissertation describing the results of the student's research.
  • Students must present their dissertation orally at a public meeting followed by an oral defense held before the student's dissertation committee.
  • The average period of study is five years.

Graduation Requirements  

The following minimum requirements must be satisfied to graduate.

  • Complete 90 semester hours in Chemistry and approved electives.
  • Demonstrate breadth of knowledge competency by passing at a level of B or higher one 5000-level course in three of these five areas of chemistry: Analytical, Inorganic, Organic, Physical and Biochemistry. One of the three courses must be in the student’s major area, and the other two must be in the other areas. Breadth of knowledge competency must be met during the first year of graduate studies.
  • Demonstrate depth of knowledge competency by passing two classes at the 7000-level in the student’s major area of research. A grade of B or better must be obtained in each course attempted.
  • Attend each semester the weekly departmental colloquium series.
  • Take the graduate seminar course each semester (CHEM 8960, 8970, 8980 or 8990 depending on the student’s research area).
  • Participate in the Advanced Seminar in Research Development and Leadership course each semester (CHEM 8900 or equivalent).
  • Register to the Doctoral Research and Dissertation course (CHEM 8950) any semester during which research facilities and/or resources are being used. There is no limit on the number of dissertation hours that can be counted toward the 90-hour requirement.
  • Take the Chemistry Teaching Assistant Training class (CHEM 5100) during the first semester of graduate studies.
  • Take the Graduate Chemistry Research Training class (CHEM 5710) during the first semester of graduate studies.
  • Submit and orally defend a dissertation research proposal to a dissertation committee no later than during the fifth semester of study, excluding summers.
  • Submit and orally defend a written dissertation to a dissertation committee. The defense is open to the public.
  • The student’s graduate advisor and dissertation committee determine the specific requirements for each student within the above framework.

Culminating Experience: All students will write a dissertation that presents the student’s research.

Competency is demonstrated by passing at a level of B or better one 5000 level course in three of the five areas (analytical, biochemistry, inorganic, organic, and physical). One of the three courses can be in the student's major area, but the other two must be outside of the student's major area and must be in the other areas of chemistry and biochemistry. General/review courses will be offered each fall at the 5000 level in each research area of chemistry and biochemistry. Students failing to meet the competency requirement during their first year of graduate study may lose their financial support until competency is demonstrated or may be removed from the program at the discretion of the Graduate Committee.

Program Mission

The department's mission is to provide a quality education to graduate students while they pursue state-of-the-art research in chemistry. The objective of the graduate program is to educate and train students to become highly effective scientists by providing them with the interdisciplinary tools, research skills and ethical and service sensibilities needed to succeed in their future careers. This includes offering a variety of rigorous graduate level courses, maintaining cutting-edge research programs within individual laboratories, and compliance with the Code for Professional Ethical Conduct espoused by the American Chemical Society.

Program Learning Objectives

  • To demonstrate a broad understanding of chemical concepts and an in-depth understanding of a selected topic in chemistry.
  • To demonstrate competence in identifying a significant scientific problem and solving that problem through creative scientific experimentation, data analysis, and evaluation.
  • To effectively communicate, both verbally and in writing, scientific concepts and outcomes.
  • To work effectively both as an individual and as a collaborative team member.
  • Chemistry Directory
  • Disability Accommodations
  • Diversity, Equity, and Inclusion Committee
  • Major Awards
  • Our Community Values
  • Our History
  • Quality of Life Committee
  • Areas of Research
  • Facilities and Centers
  • Instructors
  • Postdoctoral Research and Resources
  • Graduate Program
  • Undergraduate Programs
  • Chemistry Undergraduate Teaching Laboratory
  • Our Chemistry Education Office
  • Elementary Schools
  • High Schools
  • Community Relations and Outreach
  • Contact our Development Officer
  • Funds to Support
  • Meet Our Major Supporters

PhD Program Requirements

The Chemistry Department offers a flexible program that allows students to select courses tailored to their individual background and research interests. Students also teach for two semesters.

As part of the requirement for a PhD degree, MIT requires a General Examination, with both an oral and written part. The Oral Examination for the PhD in Chemistry must be passed by the end of the fourth semester of graduate study. No other general written examinations are required. In particular, no qualifying (or entrance) examinations are given.

A final oral presentation of doctoral research is scheduled after the thesis has been submitted and evaluated by a committee of faculty.

Program Requirements

Coursework and teaching.

All chemistry graduate students are required to register for the appropriate chemistry seminar subject (5.913, 5.921, 5.931, or 5.941 depending on research area) each term. This registration carries with it the expectation of seminar attendance whenever possible. These seminars provide an important component to your graduate education and professional development

All students are required to teach for two semesters in their first year. During those semesters, students are required to enroll in a class to support their teaching (5.91 Teaching Experience in the Chemical Sciences).  

2nd Year Oral & Written Exams

MIT requires that all Ph.D. candidates pass general oral and written examinations in their field of study. For chemistry students, these exams occur in the spring of the second year. The faculty committee will (i) assess whether the student has progressed sufficiently to be on-track for obtaining a Ph.D. degree in Chemistry and (ii) provide constructive feedback to help the student reach their full potential during the period of study at MIT. Thus, the overarching purpose of the examination includes fulfilling Institutional requirements for Ph.D. students and evaluating:

1. Progress towards the PhD degree (coursework, research) indicating that the student is on track to receive a doctoral degree in Chemistry 2. General knowledge and understanding in the broad field of study and specific sub-area 3. Critical thinking, including the ability to use core principles to think through unfamiliar topics 4. Ability to communicate effectively in oral and written forms, think logically and independently, and defend a point of view 5. Ability to formulate upcoming research plans and present a feasible timeline for progress towards completion of research goals 6. Overall scholarship

Thesis Committees

As the first step, second-year students meet with their research advisors to discuss which faculty might be appropriate as members of their Thesis Committee.  Thesis Committees must be composed of at least two other MIT faculty besides your advisor. Your Thesis Committee chair must be from the department of chemistry and in your area of chemistry (chemical biology, inorganic, organic, or physical). Please see the notes below if you are working in a research group outside the department and/or are co-advised. You are required to propose at least four faculty members as candidates for your committee in addition to your advisor, though you may propose up to six faculty members.  Students should fill out the online Thesis Committee Nomination Form by Friday, September 15, 2023 . Submitted forms are then reviewed by the Graduate Officer and a faculty advisory group who assign final Thesis Committees.  They will also choose one of these faculty members to be your Thesis Committee Chair.  This process is necessary to avoid the past problem of some faculty being assigned to an inordinately large number of committees. If you are listing any faculty outside the department, please contact them before submitting your form to confirm that they are willing to serve on your Thesis Committee and attend all relevant examinations and meetings. You do not need to reach out to any faculty within the department about serving on your thesis committee.

Students wishing subsequently to change their Thesis Committee, for reasons including significant changes in the direction of their research topic, should email Jennifer Weisman with the reason for requesting a change. Students must receive a positive response from the Chemistry Education Office in order for the change in committee to take effect.  Since changes in Thesis Committee membership can only be granted in unusual circumstances, students should contact the members of their committee to schedule the date for their oral defense well in advance of when they expect to complete their dissertation.

In the second year, each student’s research progress and intellectual development is evaluated through the Oral Examination. If a division requires an examination after the second year, Thesis Committee members also meet then. The thesis committee also meets for the Plan to Finish Meeting described below. Students (and research advisors) may arrange an additional meeting of the Thesis Committee in special circumstances by contacting the chair of the committee. Additionally, beginning in the second year of graduate study, each student meets with the Chair of their Thesis Committee at least once during the fall semester.

*Please note that if you are conducting research outside the department your Thesis Committee must be composed of at least two other MIT faculty besides your advisor and both must be from the Department of Chemistry. As noted above, your Thesis Committee chair must be in your area of chemistry (chemical biology, inorganic, organic, or physical).

Annual Meeting with Research Advisor

Under this system, research advisors are required to meet with each graduate student in their group who is in their second or later year to discuss the student’s intellectual and professional development over the past year and progress toward the degree. Prior to this meeting, students should complete Parts I-II of the required form on their own. Send the file to your Advisor the night before the meeting . At the meeting, students discuss their progress, future plans, and concerns with their advisor. The completed Graduate Student Annual Research Advisor Meeting form must be signed by both the student and their research advisor. Note that this is only a suggested format for the meeting. You and your advisor may choose a different format for the discussion as long as there is some written summary.

Annual Meeting with Thesis Committee Chair

Beginning in the second year of graduate student, each student meets annually with the Chair of their Thesis Committee. At these meetings, students update the Thesis Committee (TC) Chair on their on their research progress and general intellectual development in an informal and relaxed setting. The time, place, and format for this discussion is arranged between the student and Thesis Committee Chair. These meetings aim to encourage productive and stimulating discussions of science and to facilitate the development of further interactions between students and other members of the faculty besides research advisors. Students should keep in mind that these meetings are intended to focus primarily on academic and scientific matters, and that Thesis Committee Chairs are not bound by the same obligations with respect to privacy as are the Chemistry Department Mediators.

Plan to Finish Meeting

Updated October 2022

By June 1 st (and preferably before April 15 th ) of the 4 th year , each PhD student will participate in the Plan to Finish (PTF) meeting with their thesis committee. The purpose of the PTF meeting is for the student to discuss their timeline and plans for finishing a PhD.

In the 5 th year and beyond, if the student is not defending the PhD thesis by August 31 st of the 5 th year, the student will have another PTF meeting before June 1 st (and preferably before April 15 th ) of that calendar year, and the PTF meeting will be repeated annually until the year the student defends their thesis. Thus, a student who graduates in year five will have one PTF meeting, one who graduates in year six will have two, and so forth.

Before the meeting:  The student will prepare and share slides containing a summary of their research progress and their plans for research and completing the PhD thesis.

  • Projects that will be wrapped up and/or relinquished
  • Papers that will be written and/or submitted
  • Opportunities for professional development
  • Plans for after graduation
  • The presentation should be succinct, not more than 8–10 slides total. These slides should include: (1) 1–2 introductory slides, one of which must display a proposed table of contents for the PhD thesis. The TOC includes the title for each proposed chapter and state of each chapter (e.g. “Experiments complete and manuscript published”, “Experiments nearly completed and manuscript writing in progress”, “Experiments ongoing”). (2) 1–3 slides per thesis chapter and associated future work linked to each chapter. (3) 1 slide summarizing future plans with a realistic timeline for completion of all the proposed activities (the PTF timeline).  Be sure to include the status of plans for after graduation. The student should consult with their research advisor in preparing the PTF timeline.
  • The slides must be sent to the committee at least 48 hours in advance of the meeting.
  • Meetings will be scheduled at the student’s direction and be organized by the research supervisor’s administrative assistant. These meetings are intended to be in-person, but teleconference can be used in special circumstances.

During the meeting: The meeting will follow the format below.

First, the student will provide a short (10-20 minute) presentation of their research progress and future plans based on their slides. Faculty will participate in discussion of the research and plans during this presentation.

Next, the research supervisor will be asked to leave the room so that the thesis committee can confer privately with the student.

Subsequently, the student will be asked to leave the room for a short period so that the committee can confer privately with the research supervisor.

The thesis committee will offer constructive feedback during and after the presentation and following the private discussions. The committee may request changes and/or revisions to the PTF outline as part of the discussion.

The plan to finish meeting will last ~1 hour altogether.

After the meeting:  The student will write-up a brief summary of the meeting, and submit it along with the PTF timeline and a signed PTF Form to the Chemistry Education Office as proof of completion. These items can be submitted as hard copies to the Chemistry Education Office or emailed to Dr. Jennifer Weisman .

  • While the deadline to hold the PTF meeting is June 1 st , students are strongly encouraged to complete their PTF Meeting by April 15 th to avoid scheduling issues later in the spring. As a reminder, the research supervisor’s administrative assistant will schedule the meeting upon the student’s request.
  • There is no possibility of failing the PTF meeting. The purpose of the meeting is fulfilled by the process of having it.
  • Annual meetings with the research advisor are required every year, including the fourth year.

Graduate Student Exit Interviews

  • Graduating students will be sent a list of interview questions by the Chemistry Education Office when the student joins the degree list. Instructions about scheduling a time for the in-person or virtual discussion will be included with other informational correspondence from the Chemistry Education Office regarding degree completion. Graduating students will perform their exit interview after the thesis defense so as to avoid making the interview an additional burden.
  • For students departing the program without a degree, the interview questions and instructions for scheduling an in-person discussion will be sent by the Chemistry Education Office at the point in time that a date for termination of their appointment in Chemistry is determined.
  • For the majority of departing students, this interview coincides with the end of the semester, but a rolling schedule of surveys is anticipated.

Guide for Graduate Students

For md-phd students in the hst program.

Ph.D. in Chemistry

General info.

  • Faculty working with students: 30
  • Students: 130
  • Students receiving Financial Aid: 100%
  • Part time study available: No
  • Application Terms: Fall
  • Application Deadline: December 4

Kevin Welsher Director of Graduate Studies Department of Chemistry Duke University Box 90347 Durham, NC 27708-0347

Phone: (919) 660-1503

Email: [email protected]

Website:  http://www.chem.duke.edu

Program Description

The following areas of specialization are available: analytical, biological, inorganic, physical, theoretical, and organic. A wide range of interdisciplinary research programs (e.g., toxicology, biological chemistry, cell and molecular biology) involve chemistry students with those in medical sciences, engineering, the Nicholas School of the Environment and Earth Sciences, and occasionally with local industry. The French Family Science Center, totaling over 275,000 square feet, is a shared research facility with groups from Biology, Physics, Mathematics and the Medical Center occupying space, with additional research space in the adjacent Levine Science Research Center. This well-equipped chemical laboratory provides conditions conducive to research in many areas of current interest. Major shared instruments, including those for nuclear magnetic resonance and mass spectrometry, are housed in the departmental instrumentation facility and a wide array of more specialized instrumentation is available in the various research laboratories.

The doctoral program in chemistry features research programs that span the “traditional” sub-disciplines of chemistry, including analytical, biological, inorganic, organic, physical and theoretical chemistry. However, many, if not most of the research programs are interdisciplinary, either overlapping the traditional boundaries of chemistry or the boundaries between chemistry and the other sciences, for example biological, materials, and environmental sciences. Many chemistry faculty and students participate in university-wide interdisciplinary training programs and centers, including those in biological chemistry, toxicology, pharmacology, molecular biophysics, biologically inspired materials, and cellular and biosurface engineering. Research in all fields is supported by state-of-the-art equipment and facilities. Competitive stipends are provided through research and teaching assistantships, and fellowships are available for outstanding candidates.

  • Chemistry: PhD Admissions and Enrollment Statistics
  • Chemistry: PhD Time to Degree Statistics
  • Chemistry: PhD Completion Rate Statistics
  • Chemistry: PhD Career Outcomes Statistics

Application Information

Application Terms Available:  Fall

Application Deadline:  December 4

Graduate School Application Requirements See the Application Instructions page for important details about each Graduate School requirement.

  • Transcripts: Unofficial transcripts required with application submission; official transcripts required upon admission
  • Letters of Recommendation: 3 Required
  • Statement of Purpose: Required (see departmental guidance below)
  • Résumé: Required
  • GRE General: Optional
  • GRE Subject - Chemistry: Optional
  • English Language Exam: TOEFL, IELTS, or Duolingo English Test required* for applicants whose first language is not English *test waiver may apply for some applicants
  • GPA: Undergraduate GPA calculated on 4.0 scale required

Department-Specific Application Requirements (submitted through online application)

Statement of Purpose Guidelines: This is one of the most important components of your application and is the key to helping the admissions committee determine if Duke Chemistry is a good fit for your Ph.D. studies. Your statement should be well-organized and concise. It should provide clear evidence of your maturity, persistence, resilience, and motivation for pursuing a chemistry Ph.D. It should also provide evidence of how you will contribute to a diverse and inclusive community of scholars. Most of all, it should clearly articulate your research interests and explain how they overlap with faculty in the department.

Writing Sample None required

We strongly encourage you to review additional department-specific application guidance from the program to which you are applying: Departmental Application Guidance

List of Graduate School Programs and Degrees

  • Enroll & Pay
  • Prospective Students
  • Current Students
  • Degree Programs

Doctor of Philosophy (PhD) Chemistry

Graduate student works with laser table in lab

Graduate studies in Chemistry at KU are intended to prepare graduate students for any of the multitude of career pathways available to individuals who hold a doctorate in the Chemical Sciences. Graduate studies differ from the undergraduate experience in that each activity and requirement of the graduate program is designed to prepare students to become independent, creative practitioners of Chemistry.

The full list of courses required for a Chemistry Ph.D. at KU can be viewed on the KU Academic Catalog website .

Chemists at KU still make new materials and find new and exciting applications for these compounds, and study how chemical reactions occur. We apply this knowledge to developing compounds that fight disease, to creating cleaner and more efficient chemical processes for industry and to applying chemistry in other manners that benefit society. Striving for a Ph.D. or M.S. degree is about creating and completing an independent, original research project in the chemical sciences. For KU students, this experience becomes the foundation for their future careers in the increasingly diverse scientific enterprise.

Research in Chemistry graduate programs used to take place exclusively in the laboratory. At KU, students apply a broader definition of the term laboratory to include many other types of research environments:

  • Medical facilities where researchers study the efficacy of therapeutic agents and analyze the results of clinical trials,
  • Computer laboratories where the modeling of molecular structure, chemical reactions and phase changes are contributing enormously to our understanding of the complex systems around us,
  • Fields and streams where environmental chemists strive to understand how chemicals derived from natural processes and human activity impact the quality and diversity of life, and
  • Classrooms where individuals study strategies for improving student learning of scientific concepts.

KU Chemistry: A Multidisciplinary Experience

Chemistry is an incredibly multidisciplinary science at KU. As the tools we have developed to study molecular processes have become ever more powerful, chemists have been able to study more and more complicated systems. In our department, graduate students participate in projects including the location and function of neurotransmitters in the brain, how supercritical fluids can enhance the activity and selectivity of catalysts for chemical transformations, the details of what happens at the solid/liquid interface as materials begin to melt, how nuclear pore membrane proteins open to allow access to the genetic material in the nucleus of the cell, and how the HIV virus does such an effective job of evading detection by the human immune system. Chemical Sciences research at KU is an extremely exciting collaborative experience.

Chemistry Degrees

  • Chemistry Undergraduate BA
  • Chemistry Undergraduate BS
  • Chemistry Undergraduate Minor
  • Chemistry Graduate MS
  • Chemistry Graduate PhD
  • Chemistry Non-Degree
  • How to Apply
  • Program Overview
  • Prospective Student FAQ

Students & Educators  —Menu

  • Educational Resources
  • Educators & Faculty
  • College Planning
  • ACS ChemClub
  • Project SEED
  • U.S. National Chemistry Olympiad
  • Student Chapters
  • ACS Meeting Information
  • Undergraduate Research
  • Internships, Summer Jobs & Coops
  • Study Abroad Programs
  • Finding a Mentor
  • Two Year/Community College Students
  • Social Distancing Socials
  • Planning for Graduate School
  • Grants & Fellowships
  • Career Planning
  • International Students
  • Planning for Graduate Work in Chemistry
  • ACS Bridge Project
  • Graduate Student Organizations (GSOs)
  • Schedule-at-a-Glance
  • Standards & Guidelines
  • Explore Chemistry
  • Science Outreach
  • Publications
  • ACS Student Communities
  • You are here:
  • American Chemical Society
  • Students & Educators

Survey of Ph.D. Programs in Chemistry

By Joel Shulman

How does your chemistry Ph.D. program compare to others in terms of department size and student demographics? Requirements for the degree? Graduate student progression and support? Developing skills that go beyond knowledge of chemistry? Answers to these questions and many others can be gleaned from the Survey of Ph.D. Programs in Chemistry recently reported by the ACS Committee on Professional Training (CPT) . Highlights of the survey are given here.

View the full report

The primary objective of the CPT is to facilitate the maintenance and improvement of the quality of chemical education at the postsecondary level. Not only does the Committee develop and administer the guidelines that define high-quality undergraduate education, but it also produces resources such as the ACS Directory of Graduate Education and publishes data on undergraduate and graduate education. Approximately every ten years, CPT fields a survey of Ph.D. programs. The latest survey solicited data from all 196 Ph.D. programs in chemistry and received usable information (base year, 2007) from 139 of these programs.

Figure 1. Size Distribution of Ph.D. Programs

phd in chemistry in usa

Program size and demographics of students

The 139 reporting Ph.D. programs are divided for purposes of comparison into three groups of approximately equal size according to the total number of graduate students in the program: 44 small (defined as 0 to 40 total graduate students), 46 medium (41 to 105 graduate students), and 49 large programs (106+ graduate students). The number of students in Ph.D. programs ranges from 0 to 394 (see Figure 1) with a total of 13,280 students. Eighteen departments have more than 200 students, accounting for more than one-third (4,460) of the total graduate students in chemistry. The 30 largest programs account for almost 50% of graduate students. The average program size is 96 students (and 23 faculty), while the median program size is 67 students.

Of the doctoral students in responding programs, 27.4% are women, 5.2% are underrepresented minorities, and 42.3% are international students (Table 1). Small programs tend to have a higher percentage of underrepresented minority students (averaging 7.8%), while large programs have a higher percentage of women (28.5%) and a lower percentage of international students (37.3%).

Table 1. Demographics of Graduate Students by Program Size

Requirements for degree (table 2).

Of course, a doctoral dissertation is required by all Ph.D. programs. Most (71%) graduate programs require entering graduate students to take placement exams, although this requirement tends to be less prevalent as program size increases. The average program requires a minimum of 20 credits (semester hours, corrected for programs on the quarter system) of coursework, a number that does not vary significantly by program size. In addition to course work and dissertation, 96% of programs require at least one of the following: cumulative examinations (58%), an oral preliminary exam (54%), a comprehensive oral exam (50%), and/or a comprehensive written exam (31%). All four of these exams are required by 7% of programs; 17% of programs require three; 43% of programs require two; and 28% require only one. Large programs require cumulative exams less often and oral exams more often than small or medium programs. Only four programs (3%) require students to pass a language exam for the Ph.D.

Table 2. Requirement in Ph.D. Program

Graduate student progression and support (table 3).

The mean time to the Ph.D. is 5.1 years, a number that varies neither by program size nor by public vs. private institution (data not shown). Most programs place a limit on the amount of time allowed to achieve a Ph.D. (average of 7.8 years) as well as on the number of years of departmental support allowed a student (average of 5.9 years). More than 80% of students choose a research advisor within six months of entering graduate school. A significant number of programs either require or permit laboratory rotations before a final advisor is selected.

Monetary support for Ph.D. students comes from teaching assistantships more often than from research assistantships at small and medium programs, while the reverse is true in large programs. There is wide variation in TA stipends, depending on both program size and geographic location. Most programs have a range of stipends, which on average run from $18,000 to about $20,000 per year. Teaching assistants at larger programs are more likely to teach discussion (recitation) sections than those in small or medium programs.

Table 3. Student Progression and Support in Ph.D. Programs

Developing student skills.

In addition to chemistry knowledge and laboratory skills, it is important that all Ph.D. chemists develop skills in areas such as critical thinking, oral and written communication, and teamwork. Toward this end, 74% of all programs require students to create and defend an original research proposal (Table 2). All but six programs require students to make presentations (exclusive of the thesis defense) to audiences other than their research group; the average number of required presentations is 2.4, with little variation by program size. When asked whether any graduate students receive student-skills training outside of formal course work, 67% responded that at least some students receive specific training in communications; 59% in ethics/scientific integrity; 43% in grant writing; 37% in mentoring; 37% in intellectual property/patents; and 18% in business/economics. Students in large programs are more likely to receive some training in these skill areas than are students in other programs.

The data from this CPT survey provide a snapshot of graduate student demographics, requirements for the degree, and progression and support in chemistry Ph.D. programs. Survey results highlight similarities and differences among small, medium, and large programs across the country.

Dr. Joel I. Shulman retired as The Procter & Gamble Company's Manager of Doctoral Recruiting and University Relations in 2001 and is now an adjunct professor of chemistry at the University of Cincinnati. He serves the ACS as a consultant for the Office of Graduate Education and the Department of Career Management and Development and as a member of the Committee on Professional Training.

phd in chemistry in usa

Accept & Close The ACS takes your privacy seriously as it relates to cookies. We use cookies to remember users, better understand ways to serve them, improve our value proposition, and optimize their experience. Learn more about managing your cookies at Cookies Policy .

1155 Sixteenth Street, NW, Washington, DC 20036, USA |  service@acs.org  | 1-800-333-9511 (US and Canada) | 614-447-3776 (outside North America)

  • Terms of Use
  • Accessibility

Copyright © 2024 American Chemical Society

  • Analytical Chemistry

Purdue University’s analytical chemistry program is the top graduate program in the United States. With 16 faculty members and more than 100 graduate students, our program is one of the largest in the world. Analytical Chemistry at Purdue has a strong emphases on mass spectrometry (Cooks, Kenttämaa, A. Laskin, J. Laskin, McLuckey, Tao);  NMR spectroscopy (Yang);  structural biology (Drown, Metskas, Yang);  environmental chemistry (A. Laskin, Michalski); soft matter and nanostructures (Claridge, Mao);  optical spectroscopy and microscopy (Metskas, Simpson, Zhang);  machine learning and immunology (Chopra);  electrochemistry (Dick);  chemical imaging (Claridge, Dick, A. Laskin, J. Laskin, Metskas, Simpson, Zhang)

#1 in Analytical Chemistry, according to U.S. News and World Report.

Our Faculty

Gaurav Chopra

Gaurav Chopra

  • Neuroimmunology
  • Machine learning
  • Drug discovery

Shelley Claridge

Shelley Claridge

  • Nanomaterials
  • Confinement effects

Graham Cooks

Graham Cooks

  • Synthesis by mass spectrometry
  • Accelerated reactions
  • High throughput bioassays

Bryon Drown

Bryon Drown

  • Protein mass spectrometry
  • Chemical proteomics
  • Protein-drug interactions

Jeffrey Dick

Jeffrey Dick

  • Accelerated Reactions
  • Single Cell Metabolomics using Nanoelectrochemistry
  • Nanomaterial Synthesis & Characterization

Hilkka Kenttämaa

Hilkka Kenttämaa

  • Mass spectrometry
  • Analysis of complex mixtures
  • Structural characterization of polyfunctional organic compounds

Alex Laskin

Alex Laskin

  • Chemistry of atmospheric aerosols
  • Multi-modal characterization of complex mixtures
  • Environmental chemistry

Julia Laskin

Julia Laskin

  • Ion soft-landing
  • Mass spectrometry imaging
  • Instrument development

Chengde Mao

Chengde Mao

  • DNA nanotechnology
  • Self-assembly
  • Biosensing/nanomedicine

Scott McLuckey

Scott McLuckey

  • Top-down biomolecule characterization
  • Bio-complex analysis

Lauren Ann Metskas

Lauren Ann Metskas

  • Cryo electron tomography
  • Correlative microscopy
  • Protein ultrastructure

Greg Michalski

Greg Michalski

  • Stable isotope geochemistry
  • Atmospheric chemistry
  • Nitrogen cycling in aquatic and soil systems

Garth Simpson

Garth Simpson

  • Nonlinear optics
  • Chemical imaging
  • Dynamic sampling

Andy Tao

  • Molecular signaling in cancer cells
  • Identification of biomarkers for cancer and AD

Danzhou Yang

Danzhou Yang

  • NMR spectroscopy
  • Structure biology
  • Cancer-specific DNA molecular targets

Chi Zhang

  • Optical microscopy/spectroscopy
  • Opto-control
  • Cell metabolism
  • Research Areas
  • Analytical Faculty
  • Instrumentation History
  • Industrial Partnerships
  • Student Placement
  • Amy-Mellon Lecture
  • Freiser Memorial Lecture

Search

  • Graduate Programs
  • Prospective Students
  • Current Students
  • Faculty & Staff
  • Degree Programs >

PHD, Chemistry

The Department of Chemistry has as its main goal the education and training of professional chemists for entry into industry, government, or the academic world.

Degree Type: Doctoral

Degree Program Code: PHD_CHEM

Degree Program Summary:

The Department of Chemistry has as its main goal the education and training of professional chemists for entry into industry, government, or the academic world. Graduate students pursue research-oriented programs of study leading to the Ph.D. or M.S. degrees. Most graduate students directly pursue a Ph.D. without getting the M.S. degree, and they can specialize in analytical, inorganic (or bioinorganic), organic, or physical chemistry. Additionally, numerous areas of interdisciplinary research may be pursued by students, regardless of their major area in courses.

The overall mission of the chemistry graduate degree program is to train and mentor students as responsible scientists and scientifically literate professionals, involving them in all aspects of chemistry and the global chemical enterprise. The department offers Master of Science (MS) and Doctor of Philosophy (PhD) degrees. The major portion of the graduate degree involves dissertation research, typically specializing in one of many different areas of chemistry and related sciences. More details about the scope of this research can be found at our website: Dissertation and Final Defense.

Graduate students complete a program of study consisting of formal courses designed to give a broad background of knowledge, while allowing specialization in one area. The student typically chooses a research advisor by the end of the first semester in residence and at least two additional faculty members as an advisory committee by the end of the second semester in residence. During the third semester in residence, students on the PhD track in consultation with their research advisors complete a prospectus, which consists of a written and oral presentation of the proposed dissertation research project. The prospectus is not required for MS students.

Students become candidates for the PhD degree after passing preliminary examinations, which are normally taken at the end of the second year in residence. There are two parts to these examinations: a report on the student’s research progress to date and an original research proposal on a topic outside the student’s research area. The research proposal is reviewed during an oral examination of the student before the advisory committee. PhD candidates are also required to give two graded departmental seminars: one about their research project, and another on a selected literature topic. MS students are not required to take preliminary examinations and are required to give only one graded departmental seminar.

Successful candidates for the MS and PhD degrees then typically concentrate on their research projects, and, after completing their research, they write a dissertation and defend it at a final oral examination.

Locations Offered:

Athens (Main Campus)

College / School:

Franklin College of Arts & Sciences

346 Brooks Hall Athens, GA 30602

706-542-8776

Department:

Graduate Coordinator(s):

Search for another degree

Find your graduate program.

Offering 200+ degrees, certificates and programs of study, we’ll help you get started on your graduate journey.

 or 

Search by keyword, program of study, department or area of interest

Interested in earning both a bachelor’s & master’s degree in five years or less?

Learn more about Double Dawgs .

Unlocking potential. Building futures.

Apply Today

The Graduate School Brooks Hall 310 Herty Drive Athens, GA 30602 706.542.1739

  • Administration
  • Graduate Bulletin
  • Strategic Plan
  • Virtual Tour
  • Request Information
  • Requirements
  • Application Fee
  • Check Status
  • UGA Main Campus
  • UGA Gwinnett
  • UGA Griffin
  • UGA Atlanta-Buckhead

Twitter

  • Request Info
  • Check Status

Chemistry PhD Program

Doctoral Program

This PhD program is dedicated to cutting-edge research, preparing students for competitive careers that make original contributions to the field.

Start Your Bold Future

By submitting this form, I agree that UTSA may contact me by email, voice, pre-recorded message and/or text message using automated technology.

Please enable javascript in your browser

Chemistry student at UTSA writing on whiteboard in lab

Why Pursue a PhD in Chemistry

The Department of Chemistry offers opportunities for advanced study and research leading to the Doctor of Philosophy degree in Chemistry. The PhD in Chemistry is awarded to candidates who have displayed an in-depth understanding of the subject matter and demonstrated the ability to make an original contribution to knowledge in their field of specialty.

Research Opportunities

The PhD in Chemistry offers high quality research in the areas of Catalysis, Drug Discovery, Enzymology, Structural Biology, Materials Science, Surface Science, Nanoscience, Computational and Data Science across the traditional subdisciplines of Chemistry. Graduate students have access to world class core facilities, such as NMR, mass spectroscopy, X-ray diffraction, high performance computing, electron microscopy, proteomics, biophotonics, chemical pharmacology, and drug discovery.

  • Admission Requirements

Application Deadlines

Funding opportunities, career options, admission & application requirements.

Applications are submitted through the UTSA Graduate Application . Please upload all required documents (listed below) on your UTSA Graduate Application. It is the applicant’s responsibility to ensure completion and submission of the application, a nonrefundable application fee, and all required supporting documents are on file with UTSA by the appropriate application deadline.

Applicants are encouraged to have their admission file completed as early as possible. All applications, required documents and letters of recommendation, if applicable, must be submitted by 5:00 PM U.S. Central Time on the day of the deadline. Deadlines are subject to change.

Qualified students are encouraged to apply for teaching and/or research assistantships and fellowships. Requests should be sent to the Graduate Advisor of Record for chemistry when application is made for admission to UTSA.

UTSA prepares you for future careers that are in demand. The possible careers below is data pulled by a third-party tool called Emsi, which pulls information from sources like the U.S. Bureau of Labor Statistics, U.S. Census Bureau, online job postings, other government databases and more to give you regional and national career outlook related to this academic program.

Earning a Master's Degree

While in a doctoral program, a student may earn a master’s degree provided the following conditions are satisfied:

  • A student must be admitted to candidacy.
  • A student is eligible to receive a master’s degree upon completion of University-wide requirements and any additional degree requirements specific to the program.
  • The Doctoral Studies Committee, Department Chair, and the Graduate Associate Dean of the College must recommend students for the degree.
  • The student must apply for graduation by the published deadline the semester prior to awarding the doctoral degree.
  • All required coursework in the doctoral program at the time of admission to candidacy must have been taken within the previous six years.
  • If the master’s degree requires a thesis, the degree cannot be awarded on the basis of the doctoral qualifying examination.
  • Students will not be approved for an additional master’s degree in the same field in which an individual has previously received a master’s degree.

Course Offerings & Schedule

This program is housed on UTSA’s Main campus.

phd in chemistry in usa

Graduate Advisor of Record

Zachary Tonzetich, PhD

210-458-5465

  • Prospective Students
  • Current Students
  • Faculty/Staff

Moody Graduate Logo

  •            
  • Degrees Offered
  • Application Deadlines
  • Graduate School Resources
  • International Applicants
  • Forms and Policies
  • Graduate Writing Center
  • Graduate Student Lounge
  • Career Development
  • Student Services
  • Events Calendar
  • Orientation
  • Professional Development
  • Research Days
  • Three Minute Thesis
  • Student Life
  • Ph.D. Fellows
  • Ph.D. Health Insurance
  • Graduate Student Travel Grant
  • Dedman Graduate Student Assembly
  • Mission and History
  • Moody Foundation Gift
  • Administrative Handbook
  • Dean's Office
  • Messages from the Dean
  • Graduate Council
  • Graduate Student Advisory Board
  • Admissions Contacts
  • Global, Online & Continuing Education
  • Our Programs
  • Online Program Development

Southern Methodist University

Computational and theoretical chemistry at smu.

Download the Resource

Since August 2017, SMU has offered a unique PhD program that provides students a specialized, comprehensive graduate education and degree in the burgeoning field of Theoretical and Computational Chemistry (TCC). It’s based on a comprehensive four-year degree plan that includes: 

core classes, 

electives, 

research, 

workshops 

and individual mentoring. 

This guide will help you explore interdisciplinary chemistry and get to know the cutting-edge research being conducted in the department at SMU, largely made possible with access to state-of-the-art resources and institutional support. You will also meet our expert faculty and discover what current and former students have to say about their experiences in the program. 

Chemistry: The Central Science 

Chemistry has long been known as the central science because it bridges the gap between the physical and life sciences, and the applied sciences (like engineering, environmental science and medicine). It is both “the central science” and the most foundational of the sciences since every other field of science relies on chemical insights into the nature of atoms and molecules in order to understand how more complex systems operate. 

Learn more about the history of theoretical and computational chemistry.

Chemistry and Key Economic Sectors

Because of its centrality and its role in transformative innovation, Chemistry is at the heart of many key economic sectors. The energy, technology, health and materials sectors all rely on chemical insight to advance, improve and deliver high quality products that support human flourishing. In addition, Chemistry plays a central, if not to say leading, role in initiating, carrying out and supporting developments that help guarantee the sustainability of our world.

The reliance of key economic sectors on chemistry means that there is a significant federal and industry investment in the development of top-notch chemists and significant opportunity for chemists to thrive in the many roles available to them in different fields. 

Chemistry and the Human Experience of the World

Chemistry plays a central role in our world. In particular, TCC applies quantum mechanics and molecular modeling, along with modern tools, such as machine learning, to improve our lives and increase sustainability in many important areas:

Screen Shot 2022-06-27 at 11.52.12 AM

Development of new drugs to fight cancer, Alzheimer’s, Parkinson’s, Malaria

Screen Shot 2022-06-27 at 11.54.21 AM

Design of new catalysts, solar energy collector materials, hydrogen generation, biofuels

Screen Shot 2022-06-27 at 11.53.36 AM

Materials and processes for filtering and cleaning water

Screen Shot 2022-06-27 at 11.55.02 AM

Development of novel materials, nanotechnology, quantum computing, semiconductor technology, etc.

The Importance of an Interdisciplinary Approach to Chemistry Research

To fulfill its role and meet the requirements of our time, Chemistry has changed and adapted, becoming highly interdisciplinary and multidisciplinary with research topics that reach beyond traditional borders. As a result, the field is largely collaborative, making chemists ideal partners for researchers in medicine, biology, engineering, and environmental sciences. 

What Can You Do With a Chemistry PhD?

Chemists who seek jobs in TCC must have more than just a strong knowledge of basic chemistry. They should also be comfortable with various levels of chemistry programming and code development, have a good understanding of theoretical principles and be motivated problem-solvers. Additionally, familiarity with applying computer learning to research and experimental design is important.

A PhD in Chemistry from SMU opens the door for a wide range of career choices in both academia and industry, including government and national laboratories. Some potential career paths for chemistry PhDs include:

Forensic chemistry

Government (Research)

Industrial research (R&D)

IT companies

Postsecondary education

Product development

Tech/biotech start-ups

Understanding the Value of Theoretical and Computational Chemistry and its Relationship to Traditional Chemistry

What is theoretical chemistry.

Theoretical Chemistry is a branch of Chemistry that uses conceptual theories derived from physics and mathematics to explain and generalize the rules that govern all chemical systems and interactions. It involves the development of computational and theoretical methods based on quantum chemistry and mathematical procedures in order to describe the physical properties and the chemical behavior of atoms and molecules. 

Theoretical Chemistry comprises several disciplines such as:

  • Quantum Chemistry

Molecular Mechanics 

Statistical Mechanics 

Nonlinear Thermodynamics

Among these disciplines under Theoretical Chemistry, Quantum Chemistry is by far the most popular field. There are thousands of investigations and research projects carried out every year in this field.

What is Computational Chemistry?

Although the terms Theoretical Chemistry and Computational Chemistry are very often used synonymously, the fields are not identical. Computational Chemistry takes the conceptual framework of Theoretical Chemistry and allows the insights and questions of Theoretical Chemistry to be rigorously tested, modeled, and observed by running programs on high-performance super computers. 

Computational Chemistry requires a strong understanding of theory, but also the ability to translate theoretical methods into suitable computer programs so that chemical problems can be solved.

The Partnership Between Traditional and Computational Chemistry

The primary goal of Chemistry is to control chemical reactions with the purpose of generating useful, non-toxic, and non-dangerous materials with desirable properties in an economic way.

Computational Chemistry is a discipline of chemistry that can substantially contribute to all the fields of science as well as the metamorphosis of traditional to modern Chemistry. 

Computational chemistry with quantum chemistry, molecular modeling, and molecular dynamics as its major tools has matured and become an important partner of experimental chemistry in the last decades. These computational tools are used to shorten and facilitate chemical discovery processes, avoid costly and/or dangerous experiments, and obtain information not amenable to experiment.

All work of the Department of Chemistry at SMU has as a common goal to understand the electronic structure of molecules so that reliable predictions of their properties and chemical behavior can be made. These predictions become important in all those cases where chemical experiments are not conclusive, too dangerous, too costly or not possible at all.

Computational Chemistry makes advances that are beyond the possibility of traditional chemistry, but relies on input from other branches of science to inform the relevance of its modeling efforts. This is one of the major reasons the Department of Chemistry at SMU emphasizes an interdisciplinary approach to teaching and research.

Exploring Theoretical and Computational Chemistry Research Topics

The Department of Chemistry’s research at SMU focuses on the large-molecule world, concentrating on biomolecules, engaging in drug design and introducing computational nanotechnology:

  • Molecular Mechanics
  • Molecular Modeling
  • Statistical Mechanics
  • Nonlinear Thermodynamic

Current Research Interests

  • Cracking the second code of life through protein dynamics using artificial intelligence and data science approaches. Deciphering enzyme catalysis and evolution through multi-scale simulations and theoretical framework development. Employing computational methodologies to solve many more real-world chemistry and biology problems. Training a new generation of scientists and workforce with a broad range of problem solving, analytical, and computer programing skills.
  • Application of ab initio (meaning “from the beginning”) methods based on quantum mechanics and combining concepts and techniques from chemistry, physics, mathematics, and computer science to use and develop accurate theoretical methods to study molecules, reactions, clusters, and extended systems; active areas include computational spectroscopy (specifically X-ray), computational techniques for tensor contraction and factorization, and development of new theoretical methods. 
  • Enhance drug design through our novel artificial-intelligence-supported, computer-assisted platform with emphasis on covalent binder and enzyme drugs being described with our automated protein structure analysis software.

1200750_[SMU] TCC Guide Update-highres_arrow3_110321

SMU: An Ideal Home for Research of this Kind

SMU is a private, highly renowned research institution founded in 1911, committed to academic freedom and inclusivity. Because of our size, we are a community where you can build strong connections to faculty mentors and enjoy an individualized education that fits your research interests and career goals. 

Find out what life is really like in a chemistry research-intensive PhD program from a TCC graduate. 

High-Performance Computing

SMU excels in Theoretical and Computational Chemistry through a deep partnership with the Center for Research Computing which supports a state-of-the-art research computing infrastructure for SMU faculty and students. 

The cornerstone of our computational excellence is SMU’s high-performance computer cluster ManeFrame II which has a total capacity of 930 teraflops.

SMU is investing $11.5 million into a powerful new supercomputing research system featuring an NVIDIA DGX SuperPOD. The successor of ManeFrame II, ManeFrame III, is already in planning and will be launched in the Fall of 2022.

Connected with the NVIDIA Quantum InfiniBand networking platform in SMU's data center, it will produce a theoretical 100 petaflops of computing power enabling the university's network to perform "a blistering 100 quadrillion operations per second.

Competitive  Funding and the Student Experience

ipadiPhone with recorded webinar thumbnail

We'll email you a link to view the recording.

Access the Recording!

Premiere research environment.

The Department of Chemistry is a vibrant, strongly research-oriented unit in Dedman College. Chemistry faculty have secured grants totaling nearly $10 million over the last 10 years, and have been honored with four NSF CAREER awards, an impressive record for a department of this size.

Access to a Thriving and Supportive Graduate Community

SMU’s Moody School of Graduate and Advanced Studies aims to provide opportunities for professional advancement and graduate student engagement through regular workshops and events. 

Students are able to find a variety of resources that can assist them at any stage of the doctoral process, whether it is working one-on-one with our Director of Fellowships and Awards to seek external grants for your work or connecting with an on-staff writing center counselor to help you revise your paper. Just as important, students can also meet with other grad students from across campus at monthly social events whenever they need a break from the lab. 

Location, Location, Location

Because of our location in Dallas, Texas, we have easy access to a number of diverse industries that are looking for creative and ingenious researchers. Dallas is one of the fastest-growing cities in the United States and is home to several technological and industrial businesses, both established and starting up. Forbes ranks Dallas as #2 in best places for business and careers, meaning there is lots of potential for new jobs as students enter the market. 

1200750_[SMU] TCC Guide Update-highres_arrow2_110321

Our picturesque SMU campus is nestled just north of the bustling downtown area while still maintaining the feel of a small, intimate campus. From great restaurants and shopping to easily accessible public transportation near campus, the Dallas Metro area has a lot to offer graduate students who come here to take the next step in their professional career.

Discover Life in Dallas

Get to know the city of Dallas through our guide and learn what it is like to live, work, eat, study, and relax here while completing your graduate degree at SMU.

[SMU] Dallas Guide eBook_iPad mock-up

We'll email you a PDF of the eBook, so you can save it for your reference as you apply to graduate school.

Get the Graduate Student's Guide to Living in Dallas

The first rigorous theoretical and computational phd program in the us, theoretical and computational chemistry phd.

Students commit to a thorough and intensive full-time, four-year, 66-credit coursework plan that establishes the foundations of theory and computational topics and provides students the flexibility to explore their own innovative research. Teaching practicums and special topics are also incorporated into the curriculum to ensure that students are staying on top of the most recent trends and getting the practical experience necessary to be competitive candidates for both academic and industry jobs after graduation. 

Financial Support

In addition to professional support, our department is dedicated to providing substantial financial support that allows students to focus on their studies. 

Benefits include an annual stipend of $25,000, full tuition waiver, coverage of health insurance premiums, and a travel allowance for national conferences. Outstanding candidates are also eligible for competitive fellowships provided by the Moody School of Graduate and Advanced Studies and the Center for Research Computing that provide additional financial assistance. 

Get To Know the Moody School of Graduate and Advanced Studies

Access this guide to d iscover world-changing research, competitive funding, & professional and community engagement at SMU.

[Moody Guide] Mock Up

Learn More About the $100 Million Gift from the Moody Foundation

Our department has a uniquely high percentage of theoretical faculty, offering a broad and diverse spectrum of research, and leading to a unique opportunity for the TCC PhD students. We strive to create a vibrant, friendly, and supportive environment where students work on cutting-edge research with one of the four TCC faculty members. Furthermore, interdisciplinary research within the chemistry department and beyond is strongly encouraged.

Advantages in a Competitive Job Market

The demand for a highly trained computational and theoretical chemistry workforce is steadily increasing. The U.S. Bureau of Labor Statistics predicts there will be an annual increase of at least 15% for computational and theoretical chemistry positions until 2025, a faster growth rate than for all other chemistry-related jobs. SMU’s TCC PhD program provides you a pipeline to a wide range of academic and non-academic jobs requiring intellectual leadership and technical excellence. Our graduates are now at research centers such as Pacific Northwest National Labs and companies such as Google and Eli Lilly.

1200750_[SMU] TCC Guide Update_nonacademic_110321

Faculty Profiles

Professor and chair elfi kraka.

phd in chemistry in usa

Elfi Kraka leads the Computational and Theoretical Chemistry Group (CATCO) . CATCO’s research mission is to develop modern quantum chemical tools and to apply these tools to solve pending problems in chemistry, biology, materials science, and beyond. Special CATCO software includes the Local Mode Analysis (LModeA), a unique tool for decoding chemical information embedded in modern vibrational spectroscopy data, applied to both single molecules in gas phase, solution but also to periodic systems and crystals. The Unified Reaction Valley Approach (pURVA) describes a chemical reaction with an accuracy and a detail never achieved before. We have analyzed so far more than 700 homogenous catalysis reactions and the first enzyme reactions at the quantum chemical level to learn from Mother Nature how to design the next generation of catalysts. SSnet (Secondary Structure based End-to-End Learning) for protein-ligand Interaction prediction forms the basis for our new artificial intelligence supported computer assisted drug design platform stretching form screening billions of drugs candidates to the quantum chemical descriptions of the most promising candidates. Take a look at smu.edu/catco

Professor Doran Bennett

Doran Bennett heads the Mesoscience Lab, developing new computational tools at the intersection of chemistry, biology, physics, and applied mathematics. We are a tight-knit team that takes on big questions and develops new tools to accelerate scientific discovery. Intrigued by the biophysics of photosynthetic membranes? What about the role of quantum mechanics in how materials absorb and use light? You can learn more about the problems we are passionate about and the tools we develop at: www.mesosciencelab.com . 

Professor Peng Tao

The ultimate goal of Tao Research group is to decipher the deepest secrets in life science through fundamental and data-driven computational studies. The group develops advanced and novel biophysical theories and computational methods to solve challenging problems in life science to achieve this goal. They are currently exploring both functional and dynamical mechanisms of proteins using advanced machine learning methods.  This approach has led to a novel molecular evolutionary theory of enzymes. All group members work closely to form an open, friendly, supportive, and inspiring research and developing environment to help each other pursuing their career and personal goals. Webpage: faculty.smu.edu/ptao

Professor Devin Matthews

The Matthews group focuses on using and developing accurate theoretical methods to study molecules, reactions, clusters, and extended systems. We especially challenge ourselves to get “the right answer for the right reason” and to understand the Why and How of molecules and their reactions by bringing chemistry together with physics (the quantum world), biology (the molecular basis of life and health), mathematics (approximation, optimization, and analysis), and computer science (high-performance computing and machine learning). We are currently researching the use of equation-of-motion coupled cluster techniques for X-ray spectroscopies, with applications to the structure of liquids, disordered systems, and molecular dynamics, as well as ways in which highly accurate methods such as coupled cluster can be efficiently applied to large, complex molecules.  Visit us at matthewsresearchgroup.webstarts.com

1036284_-SMU- Ph.D. Guide PP Update-smumockup1_042621

Apply To Graduate School with Confidence

SMU's Graduate School is proud to offer doctoral and master’s degrees in a wide variety of fields. This resource is designed to give you an overview of the admissions requirements and processes for our Master’s and Doctoral programs.

View the Full Resource

Student Testimonial

1200750_[SMU] TCC Guide Update-highres_student_110321

Where are you from? Where and what did you study during your undergraduate years? What initially got you interested in Chemistry as a field of study?

I’m from Dallas – I’ve lived in the area practically all my life. During undergrad at the University of Texas at Dallas, I honestly tried to study everything – for a (very short) while I was considering trying for a triple major in physics, chemistry, and biology (I figured out that was a bad idea after about one semester). My degree is in biochemistry, but I put enough work into my physics minor, with a focus on quantum and statistical physics, that it’s not unreasonable to say that my education was in physical chemistry (with a touch of music, my other minor). I’ve liked chemistry since high school, and it seemed like a fun and interesting field.

Did you encounter any hesitations, obstacles or fears about pursuing a PhD in TCC? If yes, what were these dilemmas and how did you overcome them?

There would probably be something very wrong with me if I didn’t have any hesitation or fear about spending four to five years of my life more-or-less hunched over a computer, spiraling into madness as I run endless simulations, in between the hardest classes I’ll ever have to take. I mean, there definitely is something wrong with me, but a lack of anxiety is not it. In the end, I realized that five years just isn’t that big of a deal – sure, I’ll be working myself to the bone, but it’s a satisfying kind of exhaustion, and my time will go toward making the world a better place – I honestly believe that science has the power to improve the world. If I decide that I never want to so much as look at a Python IDE again at the end of this program, I can do something else. It’s not as if immersing myself in method and algorithm development and heavy mathematics will limit my options.  My fear was losing a chunk of my life, and the resolution for me was that time spent working isn’t any more or less gone than time spent any other way.

How did you hear about the TCC PhD program at SMU and what specific features attracted you to this program when you were looking at graduate schools?

During undergrad, I was in an experimental protein engineering lab with the awesome Dr. Sheel Dodani (shameless advertising for my old group, but seriously, her work and lab are super cool) when I attended a talk by Dr. Doran I. G. Bennett of the MesoScience Lab. Dr. Bennett’s work focuses on taking intractable problems – loosely speaking, those that have system sizes that are typical of classical problems or heavily approximated quantum mechanics, but dynamics dependent on full, formally-exact quantum mechanics – and making them solvable. In essence, if you’ll forgive a little romanticization, we make the impossible possible. I liked what I saw, asked Dr. Bennett if I could jump on board, and never looked back.

Now that you’ve experienced the program, what do you most appreciate about it?

I find the work meaningful and the mentors excellent. Dr. Bennett’s lab philosophy – one that is more conscious of its students as growing scientists rather than tools – is what I hope to see universally in the labs of the future.

Tell me about some of the research you’ve done over the course of your years of study. What has been your favorite research project and why did you enjoy it?

My favorite research project so far was a week of sheer sleepless intensity. We set out as a lab to, over the course of 5 days, use our code to model excitation dynamics in a membrane of light-harvesting complex 2 (LHC2). The back-and-forth between sections of the lab – one half modeling the membrane itself, the other simulating the dynamics of photoexcitation – was an incredible experience. Not only was the goal ambitious, but the sheer ridiculous intensity of the work was extremely fun. With that said, I’m not keen on repeating that level of work for a while!

What are your career dreams or plans? How has the TCC PhD program at SMU helped prepare you for your future?

I really don’t know what my career dream is! Although becoming a professor seems like a likely path, there’s a not insignificant chance that I go teach high school to get the next generation interested in science, work at a nonprofit, or just find some computer science job that pays enough and has flexible enough hours that I can go back to school to focus on music or art. But just because I don’t know my plans doesn’t mean that I don’t know how the program will help – I’ll gain a rock-solid work ethic, a better understanding of the work I most enjoy doing, and a ridiculous amount of raw math and coding skills – not to mention mentorship and organizational experience.

Why do you think Theoretical and Computational Chemistry is an important and valuable field to study?

Science consists of two halves: theory and experiment. Without one half, the other is meaningless – all the raw data in the world only tells you what is happening, never why, and even the most profound ideas about the nature of things are useless without data to back them up. Computers are perhaps the most powerful tool that theory has ever had. To produce incredible science, I think that learning to integrate computation into theory is vital.

Is there anything else you’d like to add? Any advice or wisdom you would pass along to a prospective student?

Nobody knows what they’re doing, everyone is scared all the time, and if somebody seems honestly confident it’s either because they’ve gotten so good at pretending to be confident that they’ve even convinced themselves, or they got bitten by a radioactive self-help author.

Download our Guide to Theoretical and Computational Chemistry at SMU

Access this guide at any point to make references and keep this important information at your fingertips.

Receive this resource as an eBook now!

Earn your doctorate in chemistry at smu.

Our goal is to train the next generation of theoretical and computational chemists, who will substantially contribute to solving the current and future problems of our society by using modeling and computation. In our program you will learn how to:

Perform independent methodological research, publish your results in top-tier journals, and present your research at national and international conferences.

Engage in successful collaborations in all fields of chemistry and across disciplines stretching from materials science, nanotechnology, medicinal and pharmaceutical science, to computer science and astrophysics.

Successfully compete for highly-sought research, teaching, and consulting positions at academic institutions, federal and state agencies, and leading industry firms.

If a degree in Theoretical and Computational Chemistry is in your future, SMU will help you take your potential to the next level. Contact us to learn more, or start an application today. 

Visit the TCC Program Page

Guide to Graduate Admissions

Introducing the moody school.

808758_ShannonSMULanding Page Icons_visit_082420

Explore the PhD Experience

FOR INFORMATION ABOUT OUR PROGRAMS OR ASSISTANCE WITH THE APPLICATION PROCESS, PLEASE CONTACT:

Stevie Otto Director of Recruitment and Admissions

Moody School of Graduate and Advanced Studies Southern Methodist University Telephone: 214-768-4345 Email: [email protected] Graduate application: smu.edu/gradapp

REQUEST INFORMATION

Are you curious about what the next step towards grad school should be? Want to learn more about SMU’s 32 Ph.D. programs?

Send us your information, we will be in touch!

Jump to section.

  • Should You Get a Ph.D.? Exploring the Reasons to Get a Terminal Degree
  • You’ve Decided to Go for It! Getting Started on Your Ph.D. Journey
  • Putting Together an Strong Ph.D. Application
  • Understanding How to Finance Your Ph.D. Program
  • Advice from Current Ph.D. Students
  • Looking Ahead: SMU’s Advice for the Ph.D. Years
  • Ph.D. Programs at SMU: A Look at Your Options Across the Disciplines
  • Want to Learn More?

phd in chemistry in usa

  • Department of Chemistry >
  • Graduate >
  • Graduate Overview >

PhD in Medicinal Chemistry

Student in Timothy Cook's lab holds beaker of yellow liquid.

Find your home in UB Chemistry! We're here to help you every step of the way. 

  • 3/5/24 Graduate Admissions
  • 12/7/23 Financial Aid and Funding

Student in the Prasad lab.

Already enrolled in UB? Get details about advisement, forms and other resources for current students. 

  • 5/25/23 Info for Current Students

PhD student Darleny Lizardo.

The PhD in Medicinal Chemistry  provides a unique opportunity for students to develop a strong foundation in organic and medicinal chemistry and also to broaden their knowledge in areas such as drug discovery, biochemistry, molecular biology and pharmacology.

PhD Program Requirements

  • Coursework Once admitted to the PhD in Chemistry program, students are required to complete six graduate-level lecture courses during the first two years of full-time study. Of these courses, three must be one-semester introductory core courses selected from the four traditional areas of chemistry (CHE 501 and MCH 501 are required for the Medicinal Chemistry PhD), while the other three elective courses are chosen in consultation with the student’s research advisor. 
  • Proficiency Students must also demonstrate proficiency in medicinal chemistry, as well as in three of four traditional areas of chemistry, during the first three semesters. Proficiency can be established by completing a core graduate course or by passing the ACS Placement Exam in the area. A 3.00 grade point average in lecture courses is required.
  • Research Synopsis During the fifth semester (third year) of graduate study, PhD students are required to prepare a written research synopsis summarizing research progress to date and future research plans. An oral examination with the student’s PhD committee is used to evaluate the student’s research potential.
  • Research Proposal Also during the fifth semester, the student is required to write and orally defend an independent research proposal. This proposal involves the identification of a problem from the chemical literature that is not directly related to the student’s thesis work and a proposed solution to that problem. There are no cumulative exams in the UB Department of Chemistry.
  • Public Lecture During the fourth year of graduate study, PhD students present a public lecture on their research progress. This provides the PhD committee a chance to give the student feedback prior to finishing their written dissertation.
  • Dissertation and Oral Defense The majority of a PhD student’s time is spent on creative research. At the conclusion of the research work, a dissertation must be written and orally defended before the PhD committee and the department at large.

Faculty Research Mentor

The Department of Chemistry views an advanced degree in chemistry or medicinal chemistry as primarily a research degree, so the choice of research director is an important decision for the first-year graduate student. To facilitate the selection of the research mentor, the members of the faculty engaged in research present a general overview of their research interests in a series of meetings with the new graduate students. This allows the students to become acquainted with the different research opportunities in the program in an informal setting. 

Students are also encouraged to speak informally with as many faculty members as possible before making their decision. Assistance is available to those students having difficulty with this decision. However, it is to the student’s advantage to select a research advisor at the earliest possible date. Typically, graduate research is initiated during the second semester or during the first summer within the program.

PhD Student Timeline

Upon arrival, all new graduate students are required to take standardized tests produced by the American Chemical Society to assess their preparation for graduate study. Results of these tests are used by the Graduate Curriculum Committee to help students select their first-semester courses. A typical first-semester graduate student takes three core graduate-level courses and is also engaged in TA duties. Most of the required course work is finished by the end of the second or third semester in the program.

The following table provides a typical PhD graduate student timeline:

Email  [email protected]  or contact  Prof. Timothy Cook , director of graduate studies, for more information on this program and the admissions process.

Department of Chemistry’s Eric Kohn chosen as 2024 CAS Future Leader

phd in chemistry in usa

What are you looking for?

Graduate orientation.

Orientation marks the official beginning of your graduate student career at USC. Explore the various programs and resources available to guide your transition into advanced-level studies, and introduce you to student life at the University Park and Health Sciences campuses.

Summer Orientation

This program is designed for students admitted to the following fall semester. Learn more about Welcome Trojans Orientation , as well as options for departmental orientation sessions.

Winter Orientation

This program is designed for students admitted to the following spring semester. Learn more about Welcome Trojans Orientation , as well as options for attending an orientation session offered by your department.

Connect With Us

Have questions? Contact the Office of Orientation Programs directly.

  • Search Menu
  • Advance Articles
  • Clinical Case Studies
  • Journal Club
  • Clinical Chemistry Podcasts
  • Clinical Trainee Council
  • Special Issues
  • Clinical Chemistry Guide to Scientific Writing
  • Clinical Chemistry Guide to Manuscript Review
  • Author Guidelines
  • Submission Site
  • Self-Archiving Policy
  • Call for Papers
  • Why Publish?
  • About Clinical Chemistry
  • Editorial Board
  • Advertising & Corporate Services
  • Journals on Oxford Academic
  • Books on Oxford Academic

Issue Cover

Article Contents

  • Author Contributions
  • Authors’ Disclosures or Potential Conflicts of Interest
  • < Previous

Why Gender Inequality Persists: What Nobel Prize-Winning Research on the Gender Pay Gap Can Teach Us in Pathology and Laboratory Medicine

  • Article contents
  • Figures & tables
  • Supplementary Data

Abiana Adamson, Amanda Borgen, Simone Arvisais-Anhalt, Why Gender Inequality Persists: What Nobel Prize-Winning Research on the Gender Pay Gap Can Teach Us in Pathology and Laboratory Medicine, Clinical Chemistry , Volume 70, Issue 4, April 2024, Pages 685–686, https://doi.org/10.1093/clinchem/hvad225

  • Permissions Icon Permissions

On October 9, 2023, The Royal Swedish Academy of Sciences awarded Claudia Goldin, PhD, the Nobel Memorial Prize in Economic Sciences for, “having advanced our understanding of women’s labour market outcomes” ( 1). She is the third woman to receive the Nobel Prize in economics and the first woman to receive the award solo. Dr. Goldin’s groundbreaking research has identified causes of the gender pay gap in the United States over the last 200 years by analyzing large, archival datasets, and uncovering misunderstandings of more common historical datasets. Dr. Goldin’s exploration of why women continue to earn less than men is pivotal to understanding the persistent gender pay gap in the healthcare professions.

Although there were times in US history when a gender pay gap could be attributed to occupational choices or educational attainment, the bulk of present-day earnings differences exists within the same occupations where both men and women have the same education, skills, and experience. This gap in pay is largest in high-earning occupations, such as medicine and law. Dr. Goldin identified that earnings for men and women are initially equivalent at the beginning of careers, but a gap emerges after marriage and a woman’s first child. This gap persists over time ( 2).

Email alerts

Citing articles via.

  • Recommend to Your Librarian
  • Advertising and Corporate Services
  • Journals Career Network

Affiliations

  • Online ISSN 1530-8561
  • Print ISSN 0009-9147
  • Copyright © 2024 Association for Diagnostics & Laboratory Medicine
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

IMAGES

  1. PhD in Chemistry

    phd in chemistry in usa

  2. Chemistry MS, PhD Degrees

    phd in chemistry in usa

  3. Doing a PhD in Chemistry

    phd in chemistry in usa

  4. Ph.D. in Chemistry in USA

    phd in chemistry in usa

  5. Michigan State University: A PhD in Chemistry designed to produce world

    phd in chemistry in usa

  6. PhD in Chemistry in USA with full scholarship

    phd in chemistry in usa

VIDEO

  1. FTIR-31 || FTIR spectra || IR Problem-I || How to interpret FTIR spectra || How to solve IR spectra

  2. UV-12 || Woodward-Fieser rules for Calculation of ʎmax of dienes || UV-visible spectroscopy

  3. Ph.D. in Chemistry (USA) with Full Scholarship

  4. Top 10 Unversities to do PhD in HRM from USA

  5. Admissions Open 2023

  6. FTIR-30 || How to interpret FTIR spectra? || Tips and short cuts to solve FTIR spectra

COMMENTS

  1. PhD Program

    PhD Program. Professor Wender discusses chemistry with his graduate students. Doctoral study in chemistry at Stanford University prepares students for research and teaching careers with diverse emphases in basic, life, medical, physical, energy, materials, and environmental sciences. The Department of Chemistry offers opportunities for graduate ...

  2. Best 133 Chemistry PhD Programmes in United States 2024

    Chemistry. University of Tulsa. Tulsa, Oklahoma, United States. Chemistry. University of Nevada, Las Vegas. Las Vegas, Nevada, United States. This page shows a selection of the available PhDs in United States. If you're interested in studying a Chemistry degree in United States you can view all 133 PhDs. You can also read more about Chemistry ...

  3. The Best Universities for PhDs in Chemistry in the USA (2023)

    The USA houses some of the world's most advanced research facilities and laboratories, offering PhD students the opportunity to engage in high-level studies and make significant contributions in diverse subfields of Chemistry. Strong links between US institutions and chemical industries provide graduates with promising job outlooks in sectors ...

  4. Best Chemistry Programs

    Urbana, IL. #9 in Chemistry (tie) Save. 4.5. With a graduate degree in chemistry, scientists may find jobs in laboratories, government agencies, research institutions, pharmaceutical companies ...

  5. PhD in Chemistry

    The PhD in chemistry is primarily a research degree. It is awarded to students who have displayed competence in planning and conducting original research in the field of chemistry, demonstrated a broad familiarity with the science of chemistry, understanding in the application of the scientific method, and gained a thorough knowledge of their field of specialization.

  6. University of Washington

    Graduate students earn a Ph.D. through independent research in collaboration with one or more faculty members. A modest amount of graded coursework ensures a thorough grounding in the fundamentals of the chosen field, as well as breadth of knowledge in the chemical sciences. The median time to complete all requirements for the Ph.D. is about five years.

  7. About the Chemistry Ph.D. Program

    The Chemistry PhD program is designed towards developing within each student the ability to do creative scientific research. Accordingly, the single most important facet of the curriculum for an individual is their own research project. In keeping with the goal of fostering an atmosphere of scholarly, independent study, formal course requirements are minimal and vary among disciplines; advisor ...

  8. PhD Program

    Chemistry PhD Program. The University of Pennsylvania is an internationally renowned research institution that attracts the best students from the United States and around the globe. The Graduate Program is designed for students who wish to earn a Ph.D. in Chemistry while undertaking cutting edge research. The program provides students with the ...

  9. Chemistry, PhD < Johns Hopkins University

    SA.556 (The United States) SA.600 (International Relations) SA.620 (Global Policy) SA.630/ 635 (Global Risk) SA.670 (Strategy, Cybersecurity, and Intelligence) ... The Hopkins graduate program is designed for students who desire a PhD in chemistry while advancing scientific knowledge for humankind.

  10. 133 PhD programmes in Chemistry in United States

    The Chemistry PhD program from Mississippi State University allows a student to study a wide variety of research topics in the traditional areas of chemistry (Inorganic, Analytical, Organic, and Physical) and related disciplines of Biochemistry, Chemical Education, Environmental Chemistry, Biophysics, and Chemical Biology.

  11. Admissions

    Step 3. Ultimately, all prospective graduate student must apply through the university's Online Graduate School Application. Upon receiving applications from the Graduate School, the Department of Chemistry's Admissions Review Committee reviews each application in a holistic fashion, considering all aspects of the application file including ...

  12. PhD Program

    Tabi Lemlem. Our PhD program guides students to attain the following goals upon graduation: 1. Broad chemistry knowledge. The students will broaden and deepen their understanding of theories, concepts and models to enhance their success as scientists and educators. 2.

  13. Ph.D. in Chemistry

    The Ph.D. program culminates in the preparation of a research dissertation and a final oral examination. A minimum of 90 semester hours in chemistry and approved electives. Attendance at a seminar course each semester. A qualifying exam must be passed for candidacy. This consists of a written research proposal and an oral defense of the proposal.

  14. 132 Ph.Ds in Chemistry in United States

    The Chemistry PhD program from Mississippi State University allows a student to study a wide variety of research topics in the traditional areas of chemistry (Inorganic, Analytical, Organic, and Physical) and related disciplines of Biochemistry, Chemical Education, Environmental Chemistry, Biophysics, and Chemical Biology.

  15. PhD Program Requirements

    All chemistry graduate students are required to register for the appropriate chemistry seminar subject (5.913, 5.921, 5.931, or 5.941 depending on research area) each term. This registration carries with it the expectation of seminar attendance whenever possible. These seminars provide an important component to your graduate education and ...

  16. Ph.D. in Chemistry

    A wide range of interdisciplinary research programs (e.g., toxicology, biological chemistry, cell and molecular biology) involve chemistry students with those in medical sciences, engineering, the Nicholas School of the Environment and Earth Sciences, and occasionally with local industry.

  17. Chemistry PhD

    Doctor of Philosophy (PhD) Chemistry. Graduate studies in Chemistry at KU are intended to prepare graduate students for any of the multitude of career pathways available to individuals who hold a doctorate in the Chemical Sciences. Graduate studies differ from the undergraduate experience in that each activity and requirement of the graduate ...

  18. Survey of Ph.D. Programs in Chemistry

    The number of students in Ph.D. programs ranges from 0 to 394 (see Figure 1) with a total of 13,280 students. Eighteen departments have more than 200 students, accounting for more than one-third (4,460) of the total graduate students in chemistry. The 30 largest programs account for almost 50% of graduate students.

  19. Analytical Chemistry

    Analytical Chemistry. Purdue University's analytical chemistry program is the top graduate program in the United States. With 16 faculty members and more than 100 graduate students, our program is one of the largest in the world.

  20. PHD, Chemistry

    The department offers Master of Science (MS) and Doctor of Philosophy (PhD) degrees. The major portion of the graduate degree involves dissertation research, typically specializing in one of many different areas of chemistry and related sciences. More details about the scope of this research can be found at our website: Dissertation and Final ...

  21. PhD in Chemistry

    Chemistry (PhD) Admission is only available for the Fall semester Required Degree: Bachelor's Degree from an accredited college or university in the United States or have proof of equivalent training at a foreign institution.: Minimum GPA: 3.0 (on a 4.0 scale) Departments may consider GPA of last 60 semester credit hours Coursework: 18 credit hours in an area related to this graduate degree ...

  22. Computational and Theoretical Chemistry at SMU

    The First Rigorous Theoretical and Computational PhD Program in the US Theoretical and Computational Chemistry PhD Coursework. Students commit to a thorough and intensive full-time, four-year, 66-credit coursework plan that establishes the foundations of theory and computational topics and provides students the flexibility to explore their own ...

  23. PhD in Medicinal Chemistry

    PhD Program Requirements. Coursework. Once admitted to the PhD in Chemistry program, students are required to complete six graduate-level lecture courses during the first two years of full-time study. Of these courses, three must be one-semester introductory core courses selected from the four traditional areas of chemistry (CHE 501 and MCH 501 ...

  24. Ph.D. in Chemistry in USA: Universities, Eligibility, Scholarships and

    The minimum admission requirement for Ph.D. in Chemistry in USA is getting a bachelor's degree of 4 years with a GPA of 3.0 (83-86%). The GRE scores are not essential for getting admission, however, a good GRE/GMAT score can add value to the application. The top PhD universities in USA charges a tuition fees of 33-50 lakh INR .

  25. Department of Chemistry's Eric Kohn chosen as 2024 CAS Future Leader

    Eric Kohn, a graduate student in the Martell group, has been named a CAS Future Leader. Since 2010, the program has awarded Ph.D. students and postdoctoral scholars opportunities to learn leadership skills, engage in scientific discourse, and connect with peer scientists and innovators from around the world. Currently, there are 300 alumni who represent 38 countries and regions.

  26. Graduate Orientation

    Graduate Orientation. Orientation marks the official beginning of your graduate student career at USC. Explore the various programs and resources available to guide your transition into advanced-level studies, and introduce you to student life at the University Park and Health Sciences campuses.

  27. Why Gender Inequality Persists: What Nobel Prize-Winning Research on

    Extract. On October 9, 2023, The Royal Swedish Academy of Sciences awarded Claudia Goldin, PhD, the Nobel Memorial Prize in Economic Sciences for, "having advanced our understanding of women's labour market outcomes" (1).She is the third woman to receive the Nobel Prize in economics and the first woman to receive the award solo. Dr. Goldin's groundbreaking research has identified ...