Trending Articles on Technical and Non Technical topics

  • Selected Reading
  • UPSC IAS Exams Notes
  • Developer's Best Practices
  • Questions and Answers
  • Effective Resume Writing
  • HR Interview Questions
  • Computer Glossary

Diagrammatic Presentation Of Data

Introduction.

The diagrammatic representation also helps in having a bird’s eye view or overall view of the differentiation of data. It is a norm to present statistical data in the form of diagrams so that it becomes easier to comprehend and understand them. Therefore, diagrammatic representation is an important tool in statistics.

What is a Diagrammatic Presentation of Data?

Diagrammatic representation refers to a representation of statistical data in the form of diagrams. The diagrams used in representing statistical data are geometrical figures, such as lines, bars, and circles. The intention of using geometrical figures in statistical presentation is to make the study more interesting and easy to understand. Diagrammatic representations are widely used in statistics, economics, and many other fields of study.

Types of Diagrammatic Presentations of Data

Various types of diagrammatic representations of data depend on the dataset and the particular statistical elements in them. Data presentation can be made in different types and forms.

These can be broadly classified into the following one-dimensional types −

Line Diagram

In a line diagram, straight lines are used to indicate various parameters. Here, a line represents the sequence of data associated with the changing of a particular variable.

Properties of Line Diagram −

The Lines are either in vertical or horizontal directions.

There may be uniform scaling but this is not mandatory.

The lines that connect the data points offer the statistical representation of data.

The following is an example of a line diagram that shows profits in Rs crore from 2002 till 2008. Profit in 2002 was Rs 5 Crore while in 2008 it was Rs 24 Crore.

what is diagrammatic representation

Bar Diagram

Bar diagrams have rectangular shapes of equal width that represent statistical data in a straightforward manner. Bar diagrams are one of the most widely used diagrammatic representations.

Properties of Bar Diagram −

The Bars can be vertical or horizontal in directions.

All bars in a diagram have a uniform width.

All the Bars have a common and same base.

The height or width of the Bar shows the required value.

The following is an example of a Bar Chart that has time on the X axis and profits on the Y axis.

what is diagrammatic representation

Also known as a "circle chart" , the pie chart divides the circular statistical graphic into sectors or sections to illustrate the numerical data. Each sector in the circle denotes a proportionate part of the whole. Pie-chart works the best at the time when we want to denote the composition of something. In most cases, the pie chart replaces other diagrammatic representations, such as the bar graph, line plots, histograms, etc.

In practice, the various sections in a pie chart are derived according to their ratio to the total area of the circle. Then according to their individual contributions, sections are divided into parts derived from 360 degrees of the circle.

Advantages of Diagrammatic Presentation of Data

Easier to understand.

Pictorial representations are usually easier to understand than statistical text or representation in tabular form. One can easily understand which portion or part has more contribution toward the overall dataset. This helps in understanding the data better.

The creators of diagrams usually keep the simplicity of presentation in mind to offer more information to readers. That is why diagrams are easier to comprehend than texts and tables.

More attractive

Pictorial or diagrammatic representations of datasets are more attractive than normal representations. As colors and various other tools can be incorporated into diagrams, they become more attractive and comprehensible for the readers.

Moreover, as diagrams can be made more interactive with the help of computer graphics, they have become more acceptable and attractive currently.

Simpler presentations

Data can be presented more simply in diagrammatic form. Both extensive unstable data and smaller complex data can be represented by diagrammatic representations more easily. This helps statisticians offer more value to their findings.

Comparison is easier

When two or more data are compared, it is easier to do so in pictorial form. As diagrams clearly show the portion of data consumed, it can be easily understood from the diagrams which part of the data is consuming more area in the diagrams. This can help one to understand the real differences through pictorial comparison.

Universal acceptance

Diagrammatic representation of data is used in many fields of study, such as statistics, science, commerce, economics, etc. So, the diagrams are accepted universally and hence are used everywhere.

Moreover, since there are the same procedures for forming diagrams, the representations mean the same thing to everyone. So, there is nothing to alter when we obtain the diagrams to check the real values. It helps analysts solve problems universally.

Improvement in presentation

Diagrammatic representations improve the overall representation of data to a large extent. As the data is classified into several groups and presented in a systematic manner in diagrams, the whole presentation of data gets improved during the diagrammatic representation.

Moreover, as diagrams can be made more interactive than texts or tables, diagrammatic presentations are one step ahead in presenting the data in a simpler yet recognizable manner.

More organized and classified data

To represent data in diagrams, they must be organized and classified into comprehensive categories. This helps the data to be organized in a given fashion which makes them orderly and creates a sequence. This in turn helps realize diagrammatic data better than text forms.

Relevance Diagrammatic Presentation of Data

Diagrams are a great way of representing data because they are visually attractive and they can make large, complex datasets look simpler. The otherwise heavy data can be simply and easily represented by line and bar diagrams, and pie charts. This makes data organization simpler and neater.

Moreover, as data must be classified before representation, one must organize them according to the norms required. So, diagrammatic representations save lots of time and resources.

Diagrams also have universal acceptance and so can be used to express data in different forms. This provides the analysts and researchers flexibility to present data in any required form.

Diagrams also remove confusion and offer a simpler tactic to present data. As no special skill has to be learned to represent data in diagrams, they can be used by most to show statistical data and results of various types of research and experiments.

Therefore, diagrammatic representation has great relevance that can be used for the benefit of economists, statisticians, marketing analysts, and a lot of other professionals.

The diagrams are a central part of statistics and their importance can be known from the fact that almost all statistical researchers use them in one way or the other. The diagrammatical representations make inferring statistical data much simpler and easier. It is a much easier way to visualize and understand data in simpler forms too.

To represent data in diagrammatic form, only a simple understanding of Mathematics is required. So, no special skills are needed to use diagrams and this makes them very popular tools for the representation of data sets. Learning how to present data in diagrams, therefore, should be a priority for everyone.

Q1. Which is the simplest diagrammatic presentation of data?

Ans. The simplest diagrammatic presentation of data is a line diagram that shows data in terms of straight lines.

Q2. What are the two characteristics of bar diagrams?

Ans. Bar diagrams have uniform width and their base remains the same.

Q3. How are the sections in a pie chart formed?

Ans. In practice, the various sections in a pie chart are derived according to their ratio to the total area of the circle. Then according to their individual contributions, sections are divided into parts derived from 360 degrees of the circle.

For example, if a section requires 25% of the presentation, it will consume  degrees on the chart.

Bitopi Kaashyap

Related Articles

  • The Presentation Layer of OSI Model
  • Explain the functions of Presentation Layer.
  • What is Presentation Layer?
  • Share Powerpoint Presentation through Facebook
  • What is a presentation layer?
  • The best presentation tools for business
  • Antigen Presentation: A Vital Immune Process
  • Importing/Exporting ABAP packages to Presentation server
  • Difference Between Presentation Skills and Public Speaking
  • Tips for Using PowerPoint Presentation More Efficiently
  • How to add and remove encryption for MS Powerpoint Presentation?
  • How to make an impressive PPT presentation for a college activity?
  • Figure shows a diagrammatic representation of trees in the afternoon along a sea coast.State on which side is the sea; A or B? Give reasons for your choice."
  • Distribution of Test Data vs. Distribution of Training Data
  • Characteristics of Biological Data (Genome Data Management)

Kickstart Your Career

Get certified by completing the course

  • Diagrammatic Presentation of Data

Diagrams play an important role in statistical data presentation. Diagrams are nothing but geometrical figures like lines , bars, circles , squares , etc. Diagrammatic data presentation allows us to understand the data in an easier manner.

Suggested Videos

Advantages of diagrammatic data presentation.

  • Easy to understand – Diagrammatic data presentation makes it easier for a common man to understand the data. Diagrams are usually attractive and impressive and many newspapers and magazines use them frequently to explain certain facts or phenomena . Modern advertising campaigns also use diagrams.
  • Simplified Presentation – You can represent large volumes of complex data in a simplified and intelligible form using diagrams.
  • Reveals hidden facts – When you classify and tabulate data, some facts are not revealed. Diagrammatic data presentation helps in bringing out these facts and also relations .
  • Quick to grasp – Usually, when the data is represented using diagrams, people can grasp it quickly.
  • Easy to compare – Diagrams make it easier to compare data.
  • Universally accepted – Almost all fields of study like Business , economics , social institutions, administration , etc. use diagrams. Therefore, they have universal acceptability.

Browse more Topics under Descriptive Statistics

  • Definition and Characteristics of Statistics
  • Stages of Statistical Enquiry
  • Importance and Functions of Statistics
  • Nature of Statistics – Science or Art?
  • Application of Statistics
  • Law of Statistics and Distrust of Statistics
  • Meaning and Types of Data
  • Methods of Collecting Data
  • Sample Investigation
  • Classification of Data
  • Tabulation of Data
  • Frequency Distribution of Data
  • Graphic Presentation of Data
  • Measures of Central Tendency
  • Mean Median Mode
  • Measures of Dispersion
  • Standard Deviation
  • Variance Analysis

Limitations of Diagrammatic Data Presentation

data presentation

You need to exercise caution while drawing inferences from diagrams. Here are some of their limitations:

  • Provides vague ideas – While diagrams offer a vague idea about the problem, it is useful only to a common man. An expert, who seeks an exact idea of the problem cannot benefit from them.
  • Limited information – Classified and tabulated data provides more information than diagrams.
  • Low precision – Diagram offer a low level of precision of values.
  • Restricts further data analysis – Diagrams do not allow the user to analyze the data further.
  • Portrays limited characteristics – Diagrams tend to portray only a limited number of characteristics. Therefore, it is difficult to understand a large number of characteristics using diagrams.
  • A possibility of misuse – Sometimes diagrams are misused to present an illusory picture of the problem.
  • Fail to present a meaningful look in certain situations – If the data has various measurements and wide variation, then diagrams do not present a meaningful look.
  • Careful usage – If diagrams are drawn on a false baseline, then the user must analyze them carefully.

General Principles of Diagrammatic Presentation of Data

A diagrammatic presentation is a simple and effective method of presenting the information that any statistical data contains. Here are some general principles of diagrammatic presentation which can help you make them a more effective tool of understanding the data:

  • Write a suitable title on top which conveys the subject matter in a brief and unambiguous manner. If you want to provide more details about the title, then you can mention them in the footnote below the diagram.
  • You must construct a diagram in a manner that immediately impacts the viewer. Ensure that you draw it neatly with an appropriate balance between its length and breadth. Further, make sure that the diagram is neither too large nor too small. You can also use different colors or shades to emphasize different aspects of the problem.
  • Draw the diagram accurately using proper scales of measurement. You should never compromise accuracy for attractiveness.
  • Select the design of the diagram carefully keeping in view the nature of the data and also the objective of the investigation.
  • If you use different shades or colors to depict the different characteristics in the diagram, then ensure that you provide an index explaining them.
  • If you are using a secondary source, then ensure that you specify the source of data.
  • Try to keep your diagram as simple as possible.

Types of Diagrams

There are many types of diagrams which are used for data presentation. Some popular types of diagrams are explained below:

Line Diagram

In a line diagram, you can represent different values using lines of varying lengths. Further, these lines are either horizontal or vertical. Also, there is a uniform gap between successful lines. You can use this when the number of items is very large. Here is an example:

The income of 10 workers in a particular week was recorded as given below. Represent the data by a line diagram.

The diagram is as follows:

data presentation

Simple Bar Diagram

In order to draw a simple bar diagram, you construct horizontal or vertical lines who have heights proportional to the value of the item. You choose an arbitrary width of the bar but keep it constant. Also, ensure that the gaps between the bars are constant. This diagram is suitable to represent individual time-series or a spatial series. Here is an example:

Represent the following data using a bar diagram:

data presentation

Multiple Bar Diagram

You can use a multiple bar diagram or a compound bar diagram when you want to show a comparison between two or more sets of data. You can draw a set of bars side-by-side, without gaps and separate the sets of bars with a constant gap. Further, you must color or shade different bars in a different manner. Here is an example:

Represent the following data on the faculty-wise distribution of students using a multiple bar diagram:

data presentation

Component or Sub-Divided Bar Diagram

In this diagram, you divide the bar corresponding to each phenomenon into various components. Therefore, the portion that each component occupies denotes its share in the total. You must ensure that the sub-divisions follow the same order and also that you use different colors or shades to distinguish them. You can use this diagram to represent the comparative values of different components of a phenomenon. Here is an example:

The following table gives the value of (A in Crores) of contracts secured from abroad, in respect of Civil Construction, industrial turnkey projects and software consultancy in three financial years. Construct a component bar diagram to denote the share of activity in total export earnings from the three projects.

data presentation

Circular or Pie Chart

A pie chart consists of a circle in which the radii divide the area into sectors. Further, these sectors are proportional to the values of the component items under investigation. Also, the whole circle represents the entire data under investigation.

Steps to draw a Pie Chart

  • Express the different components of the given data in percentages of the whole
  • Multiply each percentage component with 3.6 (since the total angle of a circle at the center is 360°)
  • Draw a circle
  • Divide the circle into different sectors with the central angles of each component
  • Shade each sector differently

Use of Pie Chart

The use of pie charts is quite popular as the circle provides a visual concept of the whole. Pie charts are simple to use and hence are one of the most commonly used charts. However, the pie charts are sparingly used only for the following reasons:

  • They are the best chart for displaying statistical information when the number of components is not more than 6. In the case of more components, the chart becomes too complex to understand.
  • Pie charts are not useful when the values of the components are similar. This is because in the case of similarly sized sectors the viewer can find it difficult to differentiate between the slice sizes.

Here is an example:

Represent the following data, on India’s exports (Rs. in Crores) by regions from April to February 1997.

From the table we have,

Total exports = 32699 + 42516 + 23495 + 5133 = Rs. 103, 843 crores

Europe = \( \frac{32699 × 360}{103843} \) = 113°

Asia = \( \frac{42516 × 360}{103843} \) = 147°

America = \( \frac{23495 × 360}{103843} \) = 82°

Africa = \( \frac{5133 × 360}{103843} \) = 18°

data presentation

Solved Question

Q1. What are the advantages of diagrammatic data presentation?

Answer: The advantages of diagrammatic data presentation are:

  • Diagrams are easy to understand
  • You can represent huge volumes of data in a simplified manner
  • They reveal hidden facts
  • They quick to grasp and easy to compare
  • Diagrams have a universal acceptability

Customize your course in 30 seconds

Which class are you in.

tutor

Descriptive Statistics

  • Nature of Statistics – Science or Art?

2 responses to “Stages of Statistical Enquiry”

Im trying to find out if my mother ALICE Desjarlais is registered with the Red Pheasant Reserve, I applied with Metie Urban Housing and I need my Metie card. Is there anyway you can help me.

Quite useful details about statistics. I’d also like to add one point. If you need professional help with a statistics project? Find a professional in minutes!

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Statistics LibreTexts

2: Graphical Representations of Data

  • Last updated
  • Save as PDF
  • Page ID 22222

In this chapter, you will study numerical and graphical ways to describe and display your data. This area of statistics is called "Descriptive Statistics." You will learn how to calculate, and even more importantly, how to interpret these measurements and graphs.

  • 2.1: Introduction In this chapter, you will study numerical and graphical ways to describe and display your data. This area of statistics is called "Descriptive Statistics." You will learn how to calculate, and even more importantly, how to interpret these measurements and graphs. In this chapter, we will briefly look at stem-and-leaf plots, line graphs, and bar graphs, as well as frequency polygons, and time series graphs. Our emphasis will be on histograms and box plots.
  • 2.2: Stem-and-Leaf Graphs (Stemplots), Line Graphs, and Bar Graphs A stem-and-leaf plot is a way to plot data and look at the distribution, where all data values within a class are visible. The advantage in a stem-and-leaf plot is that all values are listed, unlike a histogram, which gives classes of data values. A line graph is often used to represent a set of data values in which a quantity varies with time. These graphs are useful for finding trends.  A bar graph is a chart that uses either horizontal or vertical bars to show comparisons among categories.
  • 2.3: Histograms, Frequency Polygons, and Time Series Graphs A histogram is a graphic version of a frequency distribution. The graph consists of bars of equal width drawn adjacent to each other. The horizontal scale represents classes of quantitative data values and the vertical scale represents frequencies. The heights of the bars correspond to frequency values. Histograms are typically used for large, continuous, quantitative data sets. A frequency polygon can also be used when graphing large data sets with data points that repeat.
  • 2.4: Using Excel to Create Graphs Using technology to create graphs will make the graphs faster to create, more precise, and give the ability to use larger amounts of data. This section focuses on using Excel to create graphs.
  • 2.5: Graphs that Deceive It's common to see graphs displayed in a misleading manner in social media and other instances. This could be done purposefully to make a point, or it could be accidental. Either way, it's important to recognize these instances to ensure you are not misled.
  • 2.E: Graphical Representations of Data (Exercises) These are homework exercises to accompany the Textmap created for "Introductory Statistics" by OpenStax.

Contributors and Attributions

Barbara Illowsky and Susan Dean (De Anza College) with many other contributing authors. Content produced by OpenStax College is licensed under a Creative Commons Attribution License 4.0 license. Download for free at http://cnx.org/contents/[email protected] .

Talk to our experts

1800-120-456-456

  • Diagrammatic Presentation of Data

ffImage

Introduction - Diagrammatic Presentation of Data

Diagrams are an essential operational tool for the presentation of statistical data. They are objects, mainly geometrical figures such as lines, circles, bars, etc. Statistics elaborated with the help of diagrams make it easier and simpler, thereby enhancing the representation of any type of data.

What is Diagrammatic Representation of Data?

Representation of data assisted by diagrams to increase the simplicity of the statistics surrounding the concerned data is defined as a diagrammatic representation of data. These diagrams are nothing but the use of geometrical figures to improve the overall presentation and offer visual assistance for the reader. 

What are the Types of Diagrams used in Data Presentation?

The type of diagram suitable for data presentation solely depends on the particular dataset and its statistical elements. There are multiple types of diagrams used in data presentation. They can be broadly categorized in the following types of one-dimensional diagrams –

A. Line Diagram

Line diagram is used to represent specific data across varying parameters. A line represents the sequence of data connected against a particular variable. 

Properties of Line Diagram –

The Lines can be used in vertical and horizontal directions.

They may or may not have uniform scaling 

The line connecting the data points state the statistical representation of data.

Example: Arjun, Sayak and Mainak started monitoring their time of reporting for duty for a certain week. A-Line diagram to represent their observed data on average reporting time for those days would look like –

(Image will be Uploaded Soon)

So, as per the Line Diagram, it can be easily determined that Arjun reported for work mostly at 9:30 AM while Sayak and Mainak’s most frequent times of entry at work is 10:30 AM and 10:50 AM respectively. 

B. Bar Diagram

Bar Diagram is used mostly for the comparison of statistical data. It is one of the most straightforward representations of data with the use of rectangular objects of equal width.

Properties of Bar Diagram –

The Bars can be used in vertical and horizontal directions.

These Bars all have a uniform width.

All the Bars have a common base.

The height of the Bar usually corresponds to the required value.

Example: A dataset comparing the percentile marks obtained by Shreyasi and Monika in Science subjects in the examination can be represented with the help of a Bar diagram as –

From this diagram, we can easily compare the percentile marks obtained by Shreyasi and Monika in the subjects Mathematics, Physics, Chemistry and Computer Science. 

C. Pie Chart

To know what a Pie Diagram is, it is advised to brush up on the fundamentals of the geometrical theories and formula of a Circle. For the statistical representation of data, the sectors of a circle are used as the data points of a particular dataset. A sector is the area of a circle formed by the several divisions done by the radii of the same circle.

Example: In a recent survey, a dataset was created to figure how many participants of the survey thought that Tenure or Tenor is the correct spelling in the field of Banking . A Pie Chart would present the collected data as –

With the help of this Pie Chart, it can be easily determined that the percentage of participants in the survey who chose ‘Tenor’, to be the correct spelling of the word for use in the field of banking, is 25% whereas 45% picked ‘Tenure’ as the correct answer. 20% opted for both to be correct while 10% of them were not sure with their attempt.

Advantages of Diagrammatic Presentation

There are several advantages in the presentation of data with the various types of diagrams. They are –

1. Makes it Much Easier to Understand

The presentation of data with the help of diagrams makes it easier for everybody to understand, which thereby makes it easier to grasp the statistics behind the data presented. Diagrammatic data presentation is quite common in newspapers, magazines and even in advertising campaigns so that the common mass can understand what the data is trying to reveal. 

2. Presentation is Much Simpler

With the help of diagrams, presentation of extreme values – extensive unstable data as well as small complicated data complex can be simplified exponentially. 

3. Comparison Operations are More Interactive

Datasets that require comparison of their elements use the application of diagrams for representation. Not only is the presentation attractive, but it is also ideal for showcasing a comparison in statistics.

4. Accepted Universally

Every academic and professional field, let it be Economics, Commerce, Science, Engineering, Statistics, etc. make use of diagrams across the world. Hence, this metric of data presentation is universally accepted.

5. Improves the Representation of Data as a Whole

Statistics are incomplete if diagrams are tables that are not implemented for the presentation of data. Hence, the use of diagrams helps in the overall statistical concept of data representation.

Students who are looking forward to diving deep into the theories and principles of Diagrammatic representation of data, make sure to visit the official website of Vedantu and join a live online tutoring class!

Relevance of Diagrammatic Presentation of Data

Diagrams are visually pleasing and are a great way of representing any form of data. The heavy statistics that we generate can be easily represented via diagrams such as bar charts, pie charts etc. It makes the presentation look neater and more organized. They visually aid the reader in understanding the exact situation and are also very easy to look at.  They save a lot of time and confusion and have a universal utility .  All students must learn how to represent data through diagrams so that they can present facts and figures in an organized manner.

Does Vedantu have Anything on the Diagrammatic Presentation of Data?

Vedantu has ample study material on the diagrammatic representation of data. All students can read from Diagrammatic Presentation of Data and know more. This is available completely free of cost on the platform so that the students do not hesitate before accessing them.

arrow-right

FAQs on Diagrammatic Presentation of Data

1. Which are the types of diagrams used in data representation?

The types of diagrams used in the representation of data are line diagrams, bar diagrams, pie charts and a few others. These are used to represent facts as they make it easier for the students to understand certain information. More about this has been explained in the Diagrammatic Presentation of Data. This page has relevant information that the students can use to understand these diagrams. After having gone through this page, they will know how to represent certain information in the form of diagrams.

2. Are there any merits of the diagrammatic representation of data?

There are a couple of merits of the diagrammatic representation of data. Some of which is that it makes it much easier to understand data, the presentation is simpler, it becomes easier to compare and correlate, and it is universally accepted. 

This page has all the details that are needed by the students to know. It is always better to present data in the form of diagrams as it makes it much more systematic. An organized manner of depicting figures makes anything simpler to understand. 

3. Is a pie chart an accurate way of representing data diagrammatically?

In a pie chart, the sectors of a circle are used as the data points of a particular dataset. It is indeed an accurate method of representing data as the correct percentage can be found out. All students can check out the Diagrammatic Presentation of Data on Vedantu. This page has all the information that’s needed by the participants. The other forms of diagrams that can be utilized for data presentations have also been talked about. This page has been created by expert Commerce teachers who know the topic inside out and can be read by all those who wish to do well in the tests.

4. Difference between the Diagrammatic and Graphical Presentation of Data.

All graphical representations of data can be a diagram, but all diagrams are not a graph. Graphs are represented on a scale, but diagrams are required to be constructed to a scale. Construction of graphs requires two more axes, but none is a necessity in case of diagrams.

5. What are the different Types of Diagrams in Statistics?

The different types of diagrams used in statistics are line diagram, bar diagram, and pie chart. Bar diagrams can further be classified into simple bar diagrams, multiple bar diagrams and component or sub-divided bar diagrams.

  • Accountancy
  • Business Studies
  • Commercial Law
  • Organisational Behaviour
  • Human Resource Management
  • Entrepreneurship
  • CBSE Class 11 Statistics for Economics Notes

Chapter 1: Concept of Economics and Significance of Statistics in Economics

  • Statistics for Economics | Functions, Importance, and Limitations

Chapter 2: Collection of Data

  • Data Collection & Its Methods
  • Sources of Data Collection | Primary and Secondary Sources
  • Direct Personal Investigation: Meaning, Suitability, Merits, Demerits and Precautions
  • Indirect Oral Investigation : Suitability, Merits, Demerits and Precautions
  • Difference between Direct Personal Investigation and Indirect Oral Investigation
  • Information from Local Source or Correspondents: Meaning, Suitability, Merits, and Demerits
  • Questionnaires and Schedules Method of Data Collection
  • Difference between Questionnaire and Schedule
  • Qualities of a Good Questionnaire and types of Questions
  • What are the Published Sources of Collecting Secondary Data?
  • What Precautions should be taken before using Secondary Data?
  • Two Important Sources of Secondary Data: Census of India and Reports & Publications of NSSO
  • What is National Sample Survey Organisation (NSSO)?
  • What is Census Method of Collecting Data?
  • Sample Method of Collection of Data
  • Methods of Sampling
  • Father of Indian Census
  • What makes a Sampling Data Reliable?
  • Difference between Census Method and Sampling Method of Collecting Data
  • What are Statistical Errors?

Chapter 3: Organisation of Data

  • Organization of Data
  • Objectives and Characteristics of Classification of Data
  • Classification of Data in Statistics | Meaning and Basis of Classification of Data
  • Concept of Variable and Raw Data
  • Types of Statistical Series
  • Difference between Frequency Array and Frequency Distribution
  • Types of Frequency Distribution

Chapter 4: Presentation of Data: Textual and Tabular

  • Textual Presentation of Data: Meaning, Suitability, and Drawbacks
  • Tabular Presentation of Data: Meaning, Objectives, Features and Merits
  • Different Types of Tables
  • Classification and Tabulation of Data

Chapter 5: Diagrammatic Presentation of Data

  • Diagrammatic Presentation of Data: Meaning , Features, Guidelines, Advantages and Disadvantages
  • Types of Diagrams
  • Bar Graph | Meaning, Types, and Examples
  • Pie Diagrams | Meaning, Example and Steps to Construct
  • Histogram | Meaning, Example, Types and Steps to Draw
  • Frequency Polygon | Meaning, Steps to Draw and Examples
  • Ogive (Cumulative Frequency Curve) and its Types
  • What is Arithmetic Line-Graph or Time-Series Graph?

Diagrammatic and Graphic Presentation of Data

Chapter 6: measures of central tendency: arithmetic mean.

  • Measures of Central Tendency in Statistics
  • Arithmetic Mean: Meaning, Example, Types, Merits, and Demerits
  • What is Simple Arithmetic Mean?
  • Calculation of Mean in Individual Series | Formula of Mean
  • Calculation of Mean in Discrete Series | Formula of Mean
  • Calculation of Mean in Continuous Series | Formula of Mean
  • Calculation of Arithmetic Mean in Special Cases
  • Weighted Arithmetic Mean

Chapter 7: Measures of Central Tendency: Median and Mode

  • Median(Measures of Central Tendency): Meaning, Formula, Merits, Demerits, and Examples
  • Calculation of Median for Different Types of Statistical Series
  • Calculation of Median in Individual Series | Formula of Median
  • Calculation of Median in Discrete Series | Formula of Median
  • Calculation of Median in Continuous Series | Formula of Median
  • Graphical determination of Median
  • Mode: Meaning, Formula, Merits, Demerits, and Examples
  • Calculation of Mode in Individual Series | Formula of Mode
  • Calculation of Mode in Discrete Series | Formula of Mode
  • Grouping Method of Calculating Mode in Discrete Series | Formula of Mode
  • Calculation of Mode in Continuous Series | Formula of Mode
  • Calculation of Mode in Special Cases
  • Calculation of Mode by Graphical Method
  • Mean, Median and Mode| Comparison, Relationship and Calculation

Chapter 8: Measures of Dispersion

  • Measures of Dispersion | Meaning, Absolute and Relative Measures of Dispersion
  • Range | Meaning, Coefficient of Range, Merits and Demerits, Calculation of Range
  • Calculation of Range and Coefficient of Range
  • Interquartile Range and Quartile Deviation
  • Partition Value | Quartiles, Deciles and Percentiles
  • Quartile Deviation and Coefficient of Quartile Deviation: Meaning, Formula, Calculation, and Examples
  • Quartile Deviation in Discrete Series | Formula, Calculation and Examples
  • Quartile Deviation in Continuous Series | Formula, Calculation and Examples
  • Mean Deviation: Coefficient of Mean Deviation, Merits, and Demerits
  • Calculation of Mean Deviation for different types of Statistical Series
  • Mean Deviation from Mean | Individual, Discrete, and Continuous Series
  • Mean Deviation from Median | Individual, Discrete, and Continuous Series
  • Standard Deviation: Meaning, Coefficient of Standard Deviation, Merits, and Demerits
  • Standard Deviation in Individual Series
  • Methods of Calculating Standard Deviation in Discrete Series
  • Methods of calculation of Standard Deviation in frequency distribution series
  • Combined Standard Deviation: Meaning, Formula, and Example
  • How to calculate Variance?
  • Coefficient of Variation: Meaning, Formula and Examples
  • Lorenz Curveb : Meaning, Construction, and Application

Chapter 9: Correlation

  • Correlation: Meaning, Significance, Types and Degree of Correlation
  • Methods of measurements of Correlation
  • Calculation of Correlation with Scattered Diagram
  • Spearman's Rank Correlation Coefficient
  • Karl Pearson's Coefficient of Correlation
  • Karl Pearson's Coefficient of Correlation | Methods and Examples

Chapter 10: Index Number

  • Index Number | Meaning, Characteristics, Uses and Limitations
  • Methods of Construction of Index Number
  • Unweighted or Simple Index Numbers: Meaning and Methods
  • Methods of calculating Weighted Index Numbers
  • Fisher's Index Number as an Ideal Method
  • Fisher's Method of calculating Weighted Index Number
  • Paasche's Method of calculating Weighted Index Number
  • Laspeyre's Method of calculating Weighted Index Number
  • Laspeyre's, Paasche's, and Fisher's Methods of Calculating Index Number
  • Consumer Price Index (CPI) or Cost of Living Index Number: Construction of Consumer Price Index|Difficulties and Uses of Consumer Price Index
  • Methods of Constructing Consumer Price Index (CPI)
  • Wholesale Price Index (WPI) | Meaning, Uses, Merits, and Demerits
  • Index Number of Industrial Production : Characteristics, Construction & Example
  • Inflation and Index Number

Important Formulas in Statistics for Economics

  • Important Formulas in Statistics for Economics | Class 11

Diagrammatic and graphic presentation of data means visual representation of the data. It shows a comparison between two or more sets of data and helps in the presentation of highly complex data in its simplest form. Diagrams and graphs are clear and easy to read and understand. In the diagrammatic presentation of data, bar charts, rectangles, sub-divided rectangles, pie charts, or circle diagrams are used. In the graphic presentation of data, graphs like histograms, frequency polygon, frequency curves, cumulative frequency polygon, and graphs of time series are used.

General Rules for Construction of Diagrammatic and Graphic Presentations: 

1. Chronic Number: Each outline or chart should have a chronic number. It is important to recognize one from the other.

2. Title: A title should be given to each outline or chart. From the title, one can understand what the graph or diagram is. The title ought to be brief and simple. It is normally positioned at the top.

3. Legitimate size and scale: An outline or chart ought to be of ordinary size and drawn with an appropriate scale. The scale in a chart indicates the size of the unit.

4. Neatness: Outlines should be pretty much as straightforward as could be expected. Further, they should be very perfect and clean. They ought to likewise be dropped to check out.

5. File: Each outline or chart should be joined by a record. This outlines various sorts of lines, shades or tones utilized in the graph.

6. Commentary: Commentaries might be given at the lower part of an outline. It explains specific focuses in the chart.

what is diagrammatic representation

Merits of Diagrammatic and Graphics Presentation:

The fundamental benefits or merits of a diagrammatic and graphical representation of data are as follows:

1. To simplify the data: Outlines and charts present information in a simple manner that can be perceived by anyone without any problem. Huge volume of data can be easily presented using graphs and diagrams.

2. Appealing presentation: Outlines and charts present complex information and data in an understandable and engaging manner and leave a great visual effect. In this way, the diagrammatic and graphical representation of information effectively draws the attention of users.

3. Helps with comparison of data: With the help of outlines and charts, comparison and examination data between various arrangements of information is possible.

4. Helps in forecasting: The diagrammatic and graphical representation of information has past patterns, which helps in forecasting and making various policies for the future.

5. Saves time and labour: Charts and graphs make the complex data into a simple form, which can be easily understood by anyone without having prior knowledge of the data. It gives ready to use information, and the user can use it accordingly. In this way, it saves a lot of time and labour.

6. Universally acceptable: Graphs and diagrams are used in every field and can be easily understood by anyone. Hence they are universally acceptable.

7. Helps in decision making: Diagrams and graphs give the real data about the past patterns, trends, outcomes, etc., which helps in future preparation.

Demerits of Diagrammatic and Graphics Presentation:

The demerits of diagrammatic and graphics presentation of data are as follows:

1. Handle with care: Drawing, surmising and understanding from graphs and diagrams needs proper insight and care. A person with little knowledge of statistics cannot analyze or use the data properly.

2. Specific information: Graphs and diagrams do not depict true or precise information. They are generally founded on approximations. The information provided is limited and specific.

3. Low precision: Graphs and diagrams can give misleading results, as they are mostly based on approximation of data. Personal judgement is used to study or analyze the data, which can make the information biased. Also, data can easily be manipulated.

Please Login to comment...

Similar reads.

  • Statistics for Economics

advertisewithusBannerImg

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

  • Increase Font Size

45 Presentation of data I – Diagrammatic representation

Pa . Raajeswari

INTRODUCTION

The data we collect can often be more easily understood for interpretation if it is presented graphically or pictorially. Diagrams and graphs give visual indication of magnitudes, grouping, trends and patterns in the data. The diagrams are used for facilitating comparisons between two or more sets of data. The diagrams are more suitable to illustrate the discrete data. The diagrams should be clear and easy to read and understand.

A large number of diagrams are used to present statistical data. The choice of a particular diagram to present a given set of numerical data is not an easy one. It primarily depends on the nature of the data, magnitude of the observations and the type of people for whom the diagrams are meant and requires great amount of expertise, skill and intelligence. An inappropriate choice of the diagram for the given set of data might give a distorted picture of the phenomenon under the study and might lead to wrong and fallacious interpretations and conclusions. Hence, the choice of a diagram to present the given data should be made with utmost caution and care. The diagrams do not add any meaning to the statistical facts, but they exhibit the results more clearly. Use of diagrams is becoming more and morepopular in the present scenario.

REPRESENTATION OF DATA

Besides the tabular form, the data may also be presented in some graphic or diagrammatic form. “The transformation of data through visual methods like graphs, diagrams, maps and charts is called representation of data.”

The need of representing data graphically:

Graphics, such as maps, graphs and diagrams, are used to represent large volume of data. They are necessary:

  • If the information is presented in tabular form or in a descriptive  record, it becomes difficult to draw results.
  • Diagramatic form makes it possible to easily draw visual impressions of data.
  • The diagramatic method of the representation of data enhances our understanding.
  • It makes the comparisons easy.
  • Besides, such methods create an imprint on mind for a longer time.
  • Diagrams are visual aids for presentation of statistical data and more appealing.
  • It is a time consuming task to draw inferences about whatever is being presented in non–diagramaticform.
  • It presents characteristics in a simplified way.
  • These makes it easy to understand the patterns of population growth, distribution and the density, sex ratio, age–sex composition, occupational structure, etc.

General Rules for Drawing Diagrams and Maps

1. Selection of a Suitable Diagrammatic Method

Each characteristic of the data can only be suitably represented by an appropriate diagramatic method. For example,

To show the data related to the temperature or growth of population between different periods in time line graph are used.

Similarly, bar diagrams are used for showing rainfall or the production of commodities.

The population distribution, both human and livestock, or the distribution of the crop producing areas are shown by dot maps.

The population density can be shown by choropleth maps.

Thus, it is necessary and important to select suitable diagramatic method to represent data.

2. Selection of Suitable Scale

Each diagram or map is drawn to a scale which is used to measure the data. The scale must cover the entire data that is to be represented. The scale should neither be too large nor too small.

The diagram or map should have following design:

1.  Title: The title of the diagram/map must be clear and include – o The name of the area,  Reference year of the data used and o The caption of the diagram.

These are written with different font sizes and thickness. The title, subtitle and the corresponding year is shown in the centre at the top of the map/diagram.

2.   Legend or Index : The index must clearly explain the colours, shades, symbols and signs used in the map and diagram. A legend is shown either at the lower left or lower right side of the map sheet.

3.  Direction The maps should show the direction North and properly placed on the top.

Types of Diagrams

A research should contain a large variety of diagrammatic presentations to present the data and findings of research work.

  • One dimensional diagrams – Line and Bar diagram.
  • Two dimensional diagrams – Pie diagram
  • Three dimensional diagram – Cubes,Squares,Prisms, Cylinders and Blocks.
  • Pictographs

ONE DIMENSIONAL DIAGRAMS

1.    LINE DIAGRAM

This kind of a diagram becomes suitable for representing data supplied chronologically in an ascending or descending order. It shows the behaviour of a variable over time. The line graphs are usually drawn to represent the time series data related to the temperature, rainfall, population growth, birth rates and the death rates.

Construction of a Line Graph

1st step: Round the data to be shown upto 1 digit of even numbers.

2nd step: Draw X and Y-axis. Mark the time series variables (years/months) on the X axis and the data quantity/value to be plotted on Y axis.

3rd step: Choose an appropriate scale to show data and label it on Y-axis. If the data involves a negative figure then the selected scale should also show it.

4th step: Plot the data to depict year/month-wise values according to the selected scale on Y-axis, mark the location of the plotted values by a dot and join these dots by a free hand drawn line

Construct a line graph to represent the data

Line diagrams are the simplest of all diagrams.

Line graph is most useful in displaying data or information that change continuously over time.

2. Polygraph

Polygraph is a line graph in which two or more than two variables are shown on a same diagram by different lines. It helps in comparing the data. Examples which can be shown as polygraph are:

  • The growth rate of different crops like rice, wheat, pulses in one diagram.
  • The birth rates, death rates and life expectancy in one diagram.
  • Sex ratio in different states or countries in one diagram.

Construction of a Polygraph

All steps of construction of polygraph are similar to that of line graph. But different lines are drawn to indicate different variables.

Construct a polygraph to compare the variables.

3. Bar Diagram

It is also called a columnar diagram. The bar diagrams are drawn through columns of equal width. Following rules were observed while constructing a bar diagram:

(a)  The width of all the bars or columns is similar.

(b)  All the bars should are placed on equal intervals/distance.

(c)  Bars are shaded with colours or patterns to make them distinct and attractive.

Three types of bar diagrams are used to represent different data sets:

  • The simple bar diagram
  • Compound bar diagram
  • Polybar diagram.

Simple Bar Diagram

Construction  of   a simple  bar diagram

A simple bar diagram is constructed for an immediate comparison. It is advisable to arrange the given data set in an ascending or descending order and plot the data variables accordingly. However, time series data are represented according to the sequencing of the time period.

Construction Steps:

Draw X and Y- axes on a graph paper. Take an interval and mark it on Y-axis to plot data. Divide X-axis into equal parts to draw bars. The actual values will be plotted according to the selected scale.

Line and Bar Graph

The line and bar graphs as drawn separately and may also be combined to depict the data related to some of the closely associated characteristics such as the climatic data of mean monthly temperatures and rainfall.

                                        Construct a Line and bar Graph

Construction:

  • Draw X and Y-axes of a suitable length and divide X-axis into parts to show months in a year.
  • Select a suitable scale with equal intervals on the Y-axis and label it at its right side.
  • Similarly, select a suitable scale with equal intervals on the Y-axis and label at its left side.
  • Plot data using line graph and columnar diagram.

Multiple Bar Diagram

Multiple bar diagrams are constructed to represent two or more than two variables for the purpose of comparison. For example, a multiple bar diagram may be constructed to show proportion of males and females in the total, rural and urban population or the share of canal, tube well and well irrigation in the total irrigated area in different states.

              Construct a Multiple bar Diagram.

Construction

(a) Mark time series data on X-axis and variable data on Y-axis as per the selected scale.

(b) Plot the data in closed columns.

  • Compound Bar Diagram

When different components are grouped in one set of variable or different variables of one component are put together, their representation is made by a compound bar diagram. In this method, different variables are shown in a single bar with different rectangles.

Construct a Compound Bar Diagram

  • Arrange the data in ascending or descending order.
  • A single bar will depict the set of variables by dividing the total length of the bar as per percentage.

TWO DIMENSIONAL DIAGRAMS

  • Pie Diagram

Pie diagram is another diagramatic method of the representation of data. It is drawn to depict the total value of the given attribute using a circle. Dividing the circle into corresponding degrees of angle then represent the sub– sets of the data. Hence, it is also called as Divided Circle Diagram. The angle of each variable is calculated using the following formulae.

Pie Diagram.

If data is given in percentage form, the angles are calculated using the given formulae.

Calculation of Angles:

(a) Arrange the data on percentages in an ascending order.

(b) Calculate the degrees of angles for showing the given values

(b)It could be done by multiplying percentage with a constant of 3.6 as derived by dividing the total number of degrees in a circle by 100,

                        i.  e. 360/100.

(c)Plot the data by dividing the circle into the required number of divisions to show the share different regions/countries

(a)Select a suitable radius for the circle to be drawn. A radius of 3, 4 or 5 cm may be chosen for the given data set.

(b)Draw a line from the centre of the circle to the arc as a radius.

(c)Measure the angles from the arc of the circle for each category of vehicles in an ascending order clock-wise, starting with smaller angle.

(d) Complete the diagram by adding the title, sub – title, and the legend. The legend mark be chosen for each variable/category and highlighted by distinct shades/colours.

Precautions

(a)The circle should neither be too big to fit in the space nor too small to be illegible.

(b) Starting with bigger angle will lead to accumulation of error leading to the plot of the smaller angle difficult.

THREE DIMENSIONAL DIAGRAMS

These diagrams are used when only one point is to be compared and the ratio between the highest and the lowest measurements is more than 100. For these diagrams, the cube root of various measurements is calculated and the side of each cube istaken in proportion to the cube roots

Among the three dimensional diagrams, cubes are the easiest and should be used only in cases where the figures cannot be adequately presented through bar, square or circle diagrams.In case of cubes, all three dimensions, length, width and height are taken into consideration.In case of a cylinder, the length and diameter of circle are taken into consideration. A sphere in the shape of a bell can be used in a three dimensional form.

Pictograph is a way of representing statistical data using symbolic figures to match the frequencies of different kinds of data.A pictogram is another form of pictoral bar chart. Such charts are useful in presenting data to people whocannot understand charts.Small symbols or simple figures are used to represent the size of data.

To construct pictograms, the following suggestions are made;

  • The symbols must be simple and clear.
  • The quantity represented by the symbol should be given
  • Large quantities are shown by increasing the number and not by increasing the size of symbols. A part of symbol can be used to represent a quantity smaller than the whole symbol

Major advantages of pictograms

  • First, they are farmore attractive when compared to other diagrams. As such they generate interest in audience.
  • Second, it has been observed that the facts presentedby pictograms are remembered for long time than tables, bars and other diagrams.

Limitations of pictograms

  • First, they are difficult to draw
  • we cannot show the actual data properly

Cartograms are the maps used to present the statistical data on a geographical basis. The various figures in different regions on maps are shown either by

  • Shades or colours
  • Dots or bars
  • Diagrams or pictures
  • By putting numerical figures in each geographical area.

CLASSIFIATION

There are three main types of cartograms, each have a very different way of showing attributes of geographic objects-

  • Non-contiguous,
  • Contiguous and
  • Dorling cartograms.

NON-CONTIGUOUS CARTOGRAMS

A non-contiguous cartogram is the simplest and easiest type of cartogram to make. In a non-contiguous cartogram, the geographic objects do not have to maintain connectivity with their adjacent objects. This connectivity is called topology. By freeing the objects from their adjacent objects, they can grow or shrink in size and still maintain their shape. Here is an example of two non-contiguous cartograms.

The cartogram on the left has maintained the object’s centroid (a centroid is the weighted center point of an area object.) Because the object’s center is staying in the same place, some of the objects will begin to overlap when the objects grow or shrink depending on the attribute (in this case population.) In the cartogram on the right, the objects not only shrink or grow, but they also will move one way or another to avoid overlapping with another object.

CONTIGUOUS CARTOGRAMS

In a non-contiguous cartogram topology was sacrificed in order to preserve shape. In a contiguous cartogram, the reverse is true- topology is maintained (the objects remain connected with each other) but this causes great distortion in shape.The cartographer must make the objects the appropriate size to represent the attribute value, but he or she must also maintain the shape of objects as best as possible, so that the cartogram can be easily interpreted. Here is an example of a contiguous cartogram of population in California’s countries. Compare this to the previous non-contiguous cartogram.

DORLING CARTOGRAM

A Dorling cartogram maintains neither shape, topology nor object centroids, though it has proven to be a very effective cartogram method. To create a Dorling cartogram, instead of enlarging or shrinking the objects themselves, the cartographer will replace the objects with a uniform shape, usually a circle, of the appropriate size.

Secondly, the Dorling Cartogram attempts to move the figures the shortest distance away from their true locations

Another Dorling-like cartogram is the Demers Cartogram, which is different in two ways. It uses squares rather than circles; this leaves fewer gaps between the shapes. The Demers cartogram often sacrifices distance to maintain contiguity between figures, and it will also sacrifice distance to maintain certain visual cues (The gap between figures used to represent San Francisco Bay in the Demers Cartogram below is a good example of a visual cue)

PSEUDO-CARTOGRAMS

Pseudo-cartograms (or false cartograms ) are representations that may look like cartograms but do not follow certain cartogram rules. Perhaps the most famous type of pseudo-cartogram was developed by Dr. Waldo Tobler. In this case, instead of enlarging or shrinking the objects themselves, Tobler moves the object’s connections to a reference grid such as latitude or longitude in order to give the same effect. This maintains good directional accuracy in the cartogram (if county A is directly north of county B, it will still remain directly north in the cartogram .Note in previous examples, such as the Dorling Cartogram, this is not always true) however; this is a false cartogram because it creates extensive error in the actual size of the objects

ADVANTAGES OF CARTOGRAMS

  • Cartograms are simple and easy to understand.
  • They are generally used when the regional or geographical comparisons are to be made.

LIMITATIONS

  • Cartograms are very attractive but they should be used especially where geographic comparisons are to be made and where approximate measures can serve the purpose.
  • This is understandable as the maps are unable to provide 100% accuracy.

. No single diagram is suited for all practical situations. The choice of a particular diagram for visual presentation of a given set of data is not an easy one and requires great skill, intelligence and expertise. The choice will primarily depend upon the nature of the data and object of the presentation, i.e., the type of the audience to whom the diagrams are to be presented and it should be made with utmost care and caution. A wrong or  injudicious selection of the diagram will distort the true characteristics of the phenomenon to be presented and might lead to very wrong and misleading interpretations.

  • https://gradestack.com/Class-11th-Commerce/Presentation-of-Data/Diagrammatic-Presentation/17643-3574-27365-study-wtw
  • http://www.economicsdiscussion.net/statistics/data/graphical-representation-of-statistical-data/12010
  • https://www.scribd.com/doc/41044016/Diagrammatic-Graphical-Presentation-of-Data
  • http://www.publishyourarticles.net/knowledge-hub/statistics/diagrammatic-presentation-of-data/1103/
  • https://www.youtube.com/watch?v=2TMs4-hIA04

Graphical Representation of Data

Graphical representation of data is an attractive method of showcasing numerical data that help in analyzing and representing quantitative data visually. A graph is a kind of a chart where data are plotted as variables across the coordinate. It became easy to analyze the extent of change of one variable based on the change of other variables. Graphical representation of data is done through different mediums such as lines, plots, diagrams, etc. Let us learn more about this interesting concept of graphical representation of data, the different types, and solve a few examples.

Definition of Graphical Representation of Data

A graphical representation is a visual representation of data statistics-based results using graphs, plots, and charts. This kind of representation is more effective in understanding and comparing data than seen in a tabular form. Graphical representation helps to qualify, sort, and present data in a method that is simple to understand for a larger audience. Graphs enable in studying the cause and effect relationship between two variables through both time series and frequency distribution. The data that is obtained from different surveying is infused into a graphical representation by the use of some symbols, such as lines on a line graph, bars on a bar chart, or slices of a pie chart. This visual representation helps in clarity, comparison, and understanding of numerical data.

Representation of Data

The word data is from the Latin word Datum, which means something given. The numerical figures collected through a survey are called data and can be represented in two forms - tabular form and visual form through graphs. Once the data is collected through constant observations, it is arranged, summarized, and classified to finally represented in the form of a graph. There are two kinds of data - quantitative and qualitative. Quantitative data is more structured, continuous, and discrete with statistical data whereas qualitative is unstructured where the data cannot be analyzed.

Principles of Graphical Representation of Data

The principles of graphical representation are algebraic. In a graph, there are two lines known as Axis or Coordinate axis. These are the X-axis and Y-axis. The horizontal axis is the X-axis and the vertical axis is the Y-axis. They are perpendicular to each other and intersect at O or point of Origin. On the right side of the Origin, the Xaxis has a positive value and on the left side, it has a negative value. In the same way, the upper side of the Origin Y-axis has a positive value where the down one is with a negative value. When -axis and y-axis intersect each other at the origin it divides the plane into four parts which are called Quadrant I, Quadrant II, Quadrant III, Quadrant IV. This form of representation is seen in a frequency distribution that is represented in four methods, namely Histogram, Smoothed frequency graph, Pie diagram or Pie chart, Cumulative or ogive frequency graph, and Frequency Polygon.

Principle of Graphical Representation of Data

Advantages and Disadvantages of Graphical Representation of Data

Listed below are some advantages and disadvantages of using a graphical representation of data:

  • It improves the way of analyzing and learning as the graphical representation makes the data easy to understand.
  • It can be used in almost all fields from mathematics to physics to psychology and so on.
  • It is easy to understand for its visual impacts.
  • It shows the whole and huge data in an instance.
  • It is mainly used in statistics to determine the mean, median, and mode for different data

The main disadvantage of graphical representation of data is that it takes a lot of effort as well as resources to find the most appropriate data and then represent it graphically.

Rules of Graphical Representation of Data

While presenting data graphically, there are certain rules that need to be followed. They are listed below:

  • Suitable Title: The title of the graph should be appropriate that indicate the subject of the presentation.
  • Measurement Unit: The measurement unit in the graph should be mentioned.
  • Proper Scale: A proper scale needs to be chosen to represent the data accurately.
  • Index: For better understanding, index the appropriate colors, shades, lines, designs in the graphs.
  • Data Sources: Data should be included wherever it is necessary at the bottom of the graph.
  • Simple: The construction of a graph should be easily understood.
  • Neat: The graph should be visually neat in terms of size and font to read the data accurately.

Uses of Graphical Representation of Data

The main use of a graphical representation of data is understanding and identifying the trends and patterns of the data. It helps in analyzing large quantities, comparing two or more data, making predictions, and building a firm decision. The visual display of data also helps in avoiding confusion and overlapping of any information. Graphs like line graphs and bar graphs, display two or more data clearly for easy comparison. This is important in communicating our findings to others and our understanding and analysis of the data.

Types of Graphical Representation of Data

Data is represented in different types of graphs such as plots, pies, diagrams, etc. They are as follows,

Related Topics

Listed below are a few interesting topics that are related to the graphical representation of data, take a look.

  • x and y graph
  • Frequency Polygon
  • Cumulative Frequency

Examples on Graphical Representation of Data

Example 1 : A pie chart is divided into 3 parts with the angles measuring as 2x, 8x, and 10x respectively. Find the value of x in degrees.

We know, the sum of all angles in a pie chart would give 360º as result. ⇒ 2x + 8x + 10x = 360º ⇒ 20 x = 360º ⇒ x = 360º/20 ⇒ x = 18º Therefore, the value of x is 18º.

Example 2: Ben is trying to read the plot given below. His teacher has given him stem and leaf plot worksheets. Can you help him answer the questions? i) What is the mode of the plot? ii) What is the mean of the plot? iii) Find the range.

Solution: i) Mode is the number that appears often in the data. Leaf 4 occurs twice on the plot against stem 5.

Hence, mode = 54

ii) The sum of all data values is 12 + 14 + 21 + 25 + 28 + 32 + 34 + 36 + 50 + 53 + 54 + 54 + 62 + 65 + 67 + 83 + 88 + 89 + 91 = 958

To find the mean, we have to divide the sum by the total number of values.

Mean = Sum of all data values ÷ 19 = 958 ÷ 19 = 50.42

iii) Range = the highest value - the lowest value = 91 - 12 = 79

go to slide go to slide

what is diagrammatic representation

Book a Free Trial Class

Practice Questions on Graphical Representation of Data

Faqs on graphical representation of data, what is graphical representation.

Graphical representation is a form of visually displaying data through various methods like graphs, diagrams, charts, and plots. It helps in sorting, visualizing, and presenting data in a clear manner through different types of graphs. Statistics mainly use graphical representation to show data.

What are the Different Types of Graphical Representation?

The different types of graphical representation of data are:

  • Stem and leaf plot
  • Scatter diagrams
  • Frequency Distribution

Is the Graphical Representation of Numerical Data?

Yes, these graphical representations are numerical data that has been accumulated through various surveys and observations. The method of presenting these numerical data is called a chart. There are different kinds of charts such as a pie chart, bar graph, line graph, etc, that help in clearly showcasing the data.

What is the Use of Graphical Representation of Data?

Graphical representation of data is useful in clarifying, interpreting, and analyzing data plotting points and drawing line segments , surfaces, and other geometric forms or symbols.

What are the Ways to Represent Data?

Tables, charts, and graphs are all ways of representing data, and they can be used for two broad purposes. The first is to support the collection, organization, and analysis of data as part of the process of a scientific study.

What is the Objective of Graphical Representation of Data?

The main objective of representing data graphically is to display information visually that helps in understanding the information efficiently, clearly, and accurately. This is important to communicate the findings as well as analyze the data.

  • Math Article

Graphical Representation

Graphical Representation is a way of analysing numerical data. It exhibits the relation between data, ideas, information and concepts in a diagram. It is easy to understand and it is one of the most important learning strategies. It always depends on the type of information in a particular domain. There are different types of graphical representation. Some of them are as follows:

  • Line Graphs – Line graph or the linear graph is used to display the continuous data and it is useful for predicting future events over time.
  • Bar Graphs – Bar Graph is used to display the category of data and it compares the data using solid bars to represent the quantities.
  • Histograms – The graph that uses bars to represent the frequency of numerical data that are organised into intervals. Since all the intervals are equal and continuous, all the bars have the same width.
  • Line Plot – It shows the frequency of data on a given number line. ‘ x ‘ is placed above a number line each time when that data occurs again.
  • Frequency Table – The table shows the number of pieces of data that falls within the given interval.
  • Circle Graph – Also known as the pie chart that shows the relationships of the parts of the whole. The circle is considered with 100% and the categories occupied is represented with that specific percentage like 15%, 56%, etc.
  • Stem and Leaf Plot – In the stem and leaf plot, the data are organised from least value to the greatest value. The digits of the least place values from the leaves and the next place value digit forms the stems.
  • Box and Whisker Plot – The plot diagram summarises the data by dividing into four parts. Box and whisker show the range (spread) and the middle ( median) of the data.

Graphical Representation

General Rules for Graphical Representation of Data

There are certain rules to effectively present the information in the graphical representation. They are:

  • Suitable Title: Make sure that the appropriate title is given to the graph which indicates the subject of the presentation.
  • Measurement Unit: Mention the measurement unit in the graph.
  • Proper Scale: To represent the data in an accurate manner, choose a proper scale.
  • Index: Index the appropriate colours, shades, lines, design in the graphs for better understanding.
  • Data Sources: Include the source of information wherever it is necessary at the bottom of the graph.
  • Keep it Simple: Construct a graph in an easy way that everyone can understand.
  • Neat: Choose the correct size, fonts, colours etc in such a way that the graph should be a visual aid for the presentation of information.

Graphical Representation in Maths

In Mathematics, a graph is defined as a chart with statistical data, which are represented in the form of curves or lines drawn across the coordinate point plotted on its surface. It helps to study the relationship between two variables where it helps to measure the change in the variable amount with respect to another variable within a given interval of time. It helps to study the series distribution and frequency distribution for a given problem.  There are two types of graphs to visually depict the information. They are:

  • Time Series Graphs – Example: Line Graph
  • Frequency Distribution Graphs – Example: Frequency Polygon Graph

Principles of Graphical Representation

Algebraic principles are applied to all types of graphical representation of data. In graphs, it is represented using two lines called coordinate axes. The horizontal axis is denoted as the x-axis and the vertical axis is denoted as the y-axis. The point at which two lines intersect is called an origin ‘O’. Consider x-axis, the distance from the origin to the right side will take a positive value and the distance from the origin to the left side will take a negative value. Similarly, for the y-axis, the points above the origin will take a positive value, and the points below the origin will a negative value.

Principles of graphical representation

Generally, the frequency distribution is represented in four methods, namely

  • Smoothed frequency graph
  • Pie diagram
  • Cumulative or ogive frequency graph
  • Frequency Polygon

Merits of Using Graphs

Some of the merits of using graphs are as follows:

  • The graph is easily understood by everyone without any prior knowledge.
  • It saves time
  • It allows us to relate and compare the data for different time periods
  • It is used in statistics to determine the mean, median and mode for different data, as well as in the interpolation and the extrapolation of data.

Example for Frequency polygonGraph

Here are the steps to follow to find the frequency distribution of a frequency polygon and it is represented in a graphical way.

  • Obtain the frequency distribution and find the midpoints of each class interval.
  • Represent the midpoints along x-axis and frequencies along the y-axis.
  • Plot the points corresponding to the frequency at each midpoint.
  • Join these points, using lines in order.
  • To complete the polygon, join the point at each end immediately to the lower or higher class marks on the x-axis.

Draw the frequency polygon for the following data

Mark the class interval along x-axis and frequencies along the y-axis.

Let assume that class interval 0-10 with frequency zero and 90-100 with frequency zero.

Now calculate the midpoint of the class interval.

Using the midpoint and the frequency value from the above table, plot the points A (5, 0), B (15, 4), C (25, 6), D (35, 8), E (45, 10), F (55, 12), G (65, 14), H (75, 7), I (85, 5) and J (95, 0).

To obtain the frequency polygon ABCDEFGHIJ, draw the line segments AB, BC, CD, DE, EF, FG, GH, HI, IJ, and connect all the points.

what is diagrammatic representation

Frequently Asked Questions

What are the different types of graphical representation.

Some of the various types of graphical representation include:

  • Line Graphs
  • Frequency Table
  • Circle Graph, etc.

Read More:  Types of Graphs

What are the Advantages of Graphical Method?

Some of the advantages of graphical representation are:

  • It makes data more easily understandable.
  • It saves time.
  • It makes the comparison of data more efficient.

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

what is diagrammatic representation

Very useful for understand the basic concepts in simple and easy way. Its very useful to all students whether they are school students or college sudents

Thanks very much for the information

what is diagrammatic representation

  • Share Share

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

close

Logo

Advantages and Disadvantages of Diagrammatic Representation

Looking for advantages and disadvantages of Diagrammatic Representation?

We have collected some solid points that will help you understand the pros and cons of Diagrammatic Representation in detail.

But first, let’s understand the topic:

What is Diagrammatic Representation?

A diagrammatic representation is a simple drawing that uses shapes, lines, and pictures to show information or explain an idea clearly.

What are the advantages and disadvantages of Diagrammatic Representation

The following are the advantages and disadvantages of Diagrammatic Representation:

Advantages and disadvantages of Diagrammatic Representation

Advantages of Diagrammatic Representation

  • Visualizes complex data – Turning complicated data into pictures and charts makes it easier to understand and spot patterns and trends.
  • Simplifies information interpretation – By presenting facts and figures through images, it becomes simpler for people to grasp and make sense of information.
  • Enhances memory retention – When information is shown in a visual format, like a graph or map, it helps people remember it better over time.
  • Facilitates quick comparison – Using visuals allows for side-by-side comparisons of different data sets quickly, helping to highlight similarities or differences.
  • Engages audience effectively – Attractive visuals draw in the audience, keeping their attention and making the learning process more interesting and enjoyable.

Disadvantages of Diagrammatic Representation

  • Can oversimplify complex data – Diagrams may make intricate information seem too simple, missing out on nuances and important details that could be essential for a full understanding.
  • Misinterpretation risk – There’s a chance that people might get the wrong idea from a diagram if it’s not clear or if they’re not familiar with how to read it properly.
  • Requires graphical skills – To create a meaningful diagram, you need to have the ability to draw or use design software, which not everyone has.
  • Not detailed like text – Unlike paragraphs of text that can describe concepts in depth, diagrams offer less explanation and can leave out critical information.
  • Lacks depth for analysis – While diagrams are good for a quick overview, they often don’t provide enough information for someone to deeply analyze a topic.
  • Advantages and disadvantages of Diagnostic Research Design
  • Advantages and disadvantages of Diagnostic Evaluation
  • Advantages and disadvantages of Evacuated Tube Solar Collectors

You can view other “advantages and disadvantages of…” posts by clicking here .

If you have a related query, feel free to let us know in the comments below.

Also, kindly share the information with your friends who you think might be interested in reading it.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

what is diagrammatic representation

Diagrammatic Representation and Inference

12th International Conference, Diagrams 2021, Virtual, September 28–30, 2021, Proceedings

  • Conference proceedings
  • © 2021
  • Amrita Basu 0 ,
  • Gem Stapleton   ORCID: https://orcid.org/0000-0002-6567-6752 1 ,
  • Sven Linker   ORCID: https://orcid.org/0000-0003-2913-7943 2 ,
  • Catherine Legg   ORCID: https://orcid.org/0000-0002-0231-5415 3 ,
  • Emmanuel Manalo   ORCID: https://orcid.org/0000-0001-6470-4021 4 ,
  • Petrucio Viana   ORCID: https://orcid.org/0000-0002-3517-6706 5

Jadavpur University, Kolkata, India

You can also search for this editor in PubMed   Google Scholar

University of Cambridge, Cambridge, UK

Lancaster university in leipzig, leipzig, germany, deakin university, burwood, australia, kyoto university, kyoto, japan, universidade federal fluminense, niterói, brazil.

Part of the book series: Lecture Notes in Computer Science (LNCS, volume 12909)

Part of the book sub series: Lecture Notes in Artificial Intelligence (LNAI)

Included in the following conference series:

  • Diagrams: International Conference on Theory and Application of Diagrams

Conference proceedings info: Diagrams 2021.

73k Accesses

62 Citations

9 Altmetric

This is a preview of subscription content, log in via an institution to check access.

Access this book

  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (57 papers)

Front matter, design of concrete diagrams, aesthetics and ordering in stacked area charts.

  • Steffen Strunge Mathiesen, Hans-Jörg Schulz

Interactive, Orthogonal Hyperedge Routing in Schematic Diagrams Assisted by Layout Automatisms

  • Stefan Helmke, Bernhard Goetze, Robert Scheffler, Gregor Wrobel

Evidence of Chunking in a Simple Drawing Task

  • Yanze Liu, Peter C-H. Cheng

Theory of Diagrams

Considerations in representation selection for problem solving: a review.

  • Aaron Stockdill, Daniel Raggi, Mateja Jamnik, Grecia Garcia Garcia, Peter C.-H. Cheng

Diagrams as Part of Physical Theories: A Representational Conception

  • Javier Anta

Diagrams and Mathematics

Beyond counting: measuring diagram intensity in mathematical research papers.

  • Henrik Kragh Sørensen

On the Relationship Between Geometric Objects and Figures in Euclidean Geometry

  • Mario Bacelar Valente

What Diagrams Are Considered Useful for Solving Mathematical Word Problems in Japan?

  • Hiroaki Ayabe, Emmanuel Manalo, Mari Fukuda, Norihiro Sadato

Diagrams and Logic

The search for symmetry in hohfeldian modalities.

  • Matteo Pascucci, Giovanni Sileno

Wittgenstein’s Picture-Investigations

  • Michael A. R. Biggs

What Kind of Opposition-Forming Operator is Privation?

  • José David García Cruz

Presenting Basic Graph Logic

  • Márcia R. Cerioli, Leandro Suguitani, Petrucio Viana

Schopenhauer’s Partition Diagrams and Logical Geometry

  • Jens Lemanski, Lorenz Demey

Revisiting Peirce’s Rules of Transformation for Euler-Venn Diagrams

  • Reetu Bhattacharjee, Amirouche Moktefi

Tractarian Notations

  • Francesco Bellucci

Other volumes

  • artificial intelligence
  • computer hardware
  • computer programming
  • computer systems
  • computer vision
  • formal logic
  • fuzzy logic
  • graph theory
  • graphic methods
  • Human-Computer Interaction (HCI)
  • linguistics
  • object-oriented programming
  • programming languages
  • software engineering
  • theoretical computer science
  • uml diagrams
  • unified modeling language
  • visualization

About this book

This book constitutes the refereed proceedings of the 12th International Conference on the Theory and Application of Diagrams, Diagrams 2021, held virtually in September 2021.

The 16 full papers and 25 short papers presented together with 16 posters were carefully reviewed and selected from 94 submissions. The papers are organized in the following topical sections: design of concrete diagrams; theory of diagrams; diagrams and mathematics; diagrams and logic; new representation systems; analysis of diagrams; diagrams and computation; cognitive analysis; diagrams as structural tools; formal diagrams; and understanding thought processes.

10 chapters are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Editors and Affiliations

Amrita Basu

Gem Stapleton

Sven Linker

Catherine Legg

Emmanuel Manalo

Petrucio Viana

Bibliographic Information

Book Title : Diagrammatic Representation and Inference

Book Subtitle : 12th International Conference, Diagrams 2021, Virtual, September 28–30, 2021, Proceedings

Editors : Amrita Basu, Gem Stapleton, Sven Linker, Catherine Legg, Emmanuel Manalo, Petrucio Viana

Series Title : Lecture Notes in Computer Science

DOI : https://doi.org/10.1007/978-3-030-86062-2

Publisher : Springer Cham

eBook Packages : Computer Science , Computer Science (R0)

Copyright Information : Springer Nature Switzerland AG 2021

Softcover ISBN : 978-3-030-86061-5 Published: 03 September 2021

eBook ISBN : 978-3-030-86062-2 Published: 21 September 2021

Series ISSN : 0302-9743

Series E-ISSN : 1611-3349

Edition Number : 1

Number of Pages : XXI, 568

Number of Illustrations : 182 b/w illustrations, 98 illustrations in colour

Topics : User Interfaces and Human Computer Interaction , Mathematics of Computing , Computer Imaging, Vision, Pattern Recognition and Graphics , Algorithm Analysis and Problem Complexity , Data Structures , Mathematical Logic and Formal Languages

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research
  • More from M-W
  • To save this word, you'll need to log in. Log In

Definition of diagram

 (Entry 1 of 2)

Definition of diagram  (Entry 2 of 2)

transitive verb

  • illustration

Examples of diagram in a Sentence

These examples are programmatically compiled from various online sources to illustrate current usage of the word 'diagram.' Any opinions expressed in the examples do not represent those of Merriam-Webster or its editors. Send us feedback about these examples.

Word History

Greek diagramma , from diagraphein to mark out by lines, from dia- + graphein to write — more at carve

1619, in the meaning defined at sense 1

1785, in the meaning defined above

Phrases Containing diagram

  • Argand diagram
  • block diagram
  • flow diagram
  • scatter diagram
  • Venn diagram

Dictionary Entries Near diagram

diagram factor

Cite this Entry

“Diagram.” Merriam-Webster.com Dictionary , Merriam-Webster, https://www.merriam-webster.com/dictionary/diagram. Accessed 27 Apr. 2024.

Kids Definition

Kids definition of diagram.

Kids Definition of diagram  (Entry 2 of 2)

More from Merriam-Webster on diagram

Nglish: Translation of diagram for Spanish Speakers

Britannica English: Translation of diagram for Arabic Speakers

Subscribe to America's largest dictionary and get thousands more definitions and advanced search—ad free!

Play Quordle: Guess all four words in a limited number of tries.  Each of your guesses must be a real 5-letter word.

Can you solve 4 words at once?

Word of the day.

See Definitions and Examples »

Get Word of the Day daily email!

Popular in Grammar & Usage

More commonly misspelled words, commonly misspelled words, how to use em dashes (—), en dashes (–) , and hyphens (-), absent letters that are heard anyway, how to use accents and diacritical marks, popular in wordplay, the words of the week - apr. 26, 9 superb owl words, 'gaslighting,' 'woke,' 'democracy,' and other top lookups, 10 words for lesser-known games and sports, your favorite band is in the dictionary, games & quizzes.

Play Blossom: Solve today's spelling word game by finding as many words as you can using just 7 letters. Longer words score more points.

American Mathematical Society

Publications — Over 100 years of publishing excellence

  • Book Author Resources
  • Submit a Book Proposal
  • AMS Rights, Licensing, and Permissions
  • Open Math Notes
  • Frequently asked questions
  • Member Journals
  • Research Journals
  • Translation Journals
  • Distributed Journals
  • Open Access Journals
  • Guidelines and Policies
  • Journal Author Resources

Librarian Resources

  • eBook Collections
  • COUNTER Usage Statistics
  • My Subscriptions
  • Subscription Information
  • Licensing Information

Mathematical Reviews/MathSciNet®

  • MathSciNet ®
  • Reviewer Home
  • MathSciNet ® Subscriptions

Membership — Welcome to your membership center

Join the ams, renew your membership, give a membership, individual membership.

  • Member Benefits
  • Member Directory
  • Reciprocating Societies
  • Members in Developing Countries

Institutional Membership

  • Domestic Institutions
  • International Institutions
  • Two-Year Institutions
  • Graduate Student Chapter Program

Other Member Types

  • Corporate Memberships
  • Associate Memberships

Meetings & Conferences — Engage with colleagues and the latest research

National meetings.

  • Joint Mathematics Meetings
  • Upcoming JMMs
  • Previous JMMs
  • Special Lectures
  • Professional Enhancement Programs (PEPs)

Sectional Meetings

  • Upcoming Sectionals
  • Previous Sectionals
  • Presenting Papers
  • Hosting Sectionals

Other Meetings, Conferences & Workshops

  • Mathematics Research Communities
  • Education Mini-conference
  • International Meetings
  • Mathematics Calendar
  • Short Courses
  • Workshop for Department Chairs and Leaders

Meetings Resources

  • Suggest a Speaker
  • AMS Meetings Grants
  • Submitting Abstracts
  • Welcoming Environment Policy
  • MathSafe – supporting safe meetings

News & Outreach — Explore news, images, posters, and mathematical essays

News from the ams.

  • AMS News Releases
  • Feature Stories
  • Information for Journalists
  • In Memory Of

Math Voices

  • Feature Column
  • Math in the Media
  • Column on Teaching and Learning

Explorations

  • Recognizing Diverse Mathematicians
  • AMS Posters
  • Mathematics & Music
  • Mathematical Imagery
  • Mathematical Moments

Professional Programs — Resources and opportunities to further your mathematical pursuits

Professional development.

  • Employment Services
  • Mathjobs.org
  • BEGIN Career Initiative
  • Mathprograms.org
  • Mathematical Opportunities Database
  • Research Seminars

Institutional Information and Data

  • Annual Survey of the Mathematical and Statistical Sciences
  • CBMS Survey
  • Other Sources of Data
  • Directory of Institutions in the Mathematical Sciences
  • Professional Directory

Grants & Support

  • AMS-Simons Grants for PUI Faculty
  • Travel Grants
  • Fellowships & Scholarships
  • Epsilon Fund
  • Child Care Grants

Awards & Recognition

  • AMS Prizes & Awards
  • Fellows of the AMS

Education — Resources to support advanced mathematics teaching and learning

For students.

  • Information for Undergraduate and High School Students
  • Research Experiences for Undergraduates (REUs)
  • Considering Grad School
  • Find Grad Programs
  • Applying to Grad School
  • What do Mathematicians Do?

For Teachers

  • Teaching Online
  • Teaching Resources
  • Inclusive Classrooms
  • Assessing Student Learning
  • Education Webinars

For Department Leaders & Mentors

  • Information for Department Leaders
  • paraDIGMS (Diversity in Graduate Mathematical Sciences)

Government Relations — Advocating for the mathematical sciences

Elevating mathematics in congress.

  • Our Mission
  • Letters, Statements, & Legislation
  • Congressional Briefings

Legislative Priorities

  • Federal Issues of Concern
  • Federal Budget Process

Get Involved

  • Advocacy Resources
  • Take Action

DC-Based Fellowships

  • Congressional Fellowship
  • Mass Media Fellowship
  • Catalyzing Advocacy in Science & Engineering (CASE) Fellowship

Giving to the AMS — Your gifts make great things happen for mathematics   Make a Gift

What you can support.

  • The 2020 Fund
  • Next Generation Fund
  • Birman Fellowship for Women Scholars
  • JMM Child Care Grants
  • MathSciNet for Developing Countries

Create a Legacy

  • Make a Tribute Gift
  • Create a Permanent Fund
  • Establish a Prize, Award or Fellowship
  • Bequests and Charitable Estate Planning

Honoring Your Gift

  • Donor Stories
  • Donor Wall of Honor
  • Thomas S. Fiske Society
  • AMS Contributors Society
  • AMS Gardens

Giving Resources

  • AMS Development Committee
  • AMS Gift Acceptance Policy

About the AMS — Advancing research. Connecting the mathematics community.

Our organization.

  • Executive Staff
  • Equity, Diversity, & Inclusion
  • Jobs at AMS
  • Customer Service

Our Governance

  • Board of Trustees
  • Executive Committee

Governance Operations

  • Calendar of Meetings
  • Policy Statements & Guidelines

JOURNAL OF THE AMS

Representation Theory

Published by the American Mathematical Society since 1997, this electronic-only journal is devoted to research in representation theory and seeks to maintain a high standard for exposition as well as for mathematical content. All articles are freely available to all readers and with no publishing fees for authors.

ISSN 1088-4165

The 2020 MCQ for Representation Theory is 0.71 . What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

  • All volumes

On input and Langlands parameters for epipelagic representations HTML articles powered by AMS MathViewer

  • Anne-Marie Aubert , Paul Baum , Roger Plymen , and Maarten Solleveld , Depth and the local Langlands correspondence , Arbeitstagung Bonn 2013, Progr. Math., vol. 319, Birkhäuser/Springer, Cham, 2016, pp. 17–41. MR 3618046 , DOI 10.1007/978-3-319-43648-7_{2}
  • Anne-Marie Aubert , Paul Baum , Roger Plymen , and Maarten Solleveld , The local Langlands correspondence for inner forms of $\mathrm {SL}_n$ , Res. Math. Sci. 3 (2016), Paper No. 32, 34. MR 3579297 , DOI 10.1186/s40687-016-0079-4
  • Moshe Adrian , The Langlands parameter of a simple supercuspidal representation: odd orthogonal groups , J. Ramanujan Math. Soc. 31 (2016), no. 2, 195–214. MR 3518182
  • Moshe Adrian , Guy Henniart , Eyal Kaplan , and Masao Oi , Simple supercuspidal L-packets of split special orthogonal groups over dyadic fields , arXiv: 2305.09076 (2023).
  • Moshe Adrian and Eyal Kaplan , The Langlands parameter of a simple supercuspidal representation: symplectic groups , Ramanujan J. 50 (2019), no. 3, 589–619. MR 4031300 , DOI 10.1007/s11139-018-0060-5
  • Moshe Adrian and Eyal Kaplan , On the Langlands parameter of a simple supercuspidal representation: even orthogonal groups , Israel J. Math. 246 (2021), no. 1, 459–485. MR 4358290 , DOI 10.1007/s11856-021-2259-1
  • Anne-Marie Aubert , Sergio Mendes , Roger Plymen , and Maarten Solleveld , On $L$-packets and depth for $\textrm {SL}_2(K)$ and its inner form , Int. J. Number Theory 13 (2017), no. 10, 2545–2568. MR 3713091 , DOI 10.1142/S1793042117501421
  • James Arthur , The endoscopic classification of representations , American Mathematical Society Colloquium Publications, vol. 61, American Mathematical Society, Providence, RI, 2013. Orthogonal and symplectic groups. MR 3135650 , DOI 10.1090/coll/061
  • Anne-Marie Aubert and Yujie Xu , The explicit local Langlands correspondence for $G_2$ , arXiv: 2208.12391v2 (2022).
  • Colin J. Bushnell and Guy Henniart , The local Langlands conjecture for $\rm GL(2)$ , Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 335, Springer-Verlag, Berlin, 2006. MR 2234120 , DOI 10.1007/3-540-31511-X
  • Roger W. Carter , Simple groups of Lie type , Wiley Classics Library, John Wiley & Sons, Inc., New York, 1989. Reprint of the 1972 original; A Wiley-Interscience Publication. MR 1013112
  • Jessica Fintzen , On the Moy-Prasad filtration , J. Eur. Math. Soc. (JEMS) 23 (2021), no. 12, 4009–4063. MR 4321207 , DOI 10.4171/jems/1098
  • Jessica Fintzen , Types for tame $p$-adic groups , Ann. of Math. (2) 193 (2021), no. 1, 303–346. MR 4199732 , DOI 10.4007/annals.2021.193.1.4
  • Benedict H. Gross and Mark Reeder , Arithmetic invariants of discrete Langlands parameters , Duke Math. J. 154 (2010), no. 3, 431–508. MR 2730575 , DOI 10.1215/00127094-2010-043
  • Wee Teck Gan and Gordan Savin , The local Langlands conjecture for $G_2$ , Forum Math. Pi 11 (2023), Paper No. e28, 42. MR 4658199 , DOI 10.1017/fmp.2023.27
  • Guy Henniart , Une preuve simple des conjectures de Langlands pour $\textrm {GL}(n)$ sur un corps $p$-adique , Invent. Math. 139 (2000), no. 2, 439–455 (French, with English summary). MR 1738446 , DOI 10.1007/s002220050012
  • Kaoru Hiraga , Atsushi Ichino , and Tamotsu Ikeda , Formal degrees and adjoint $\gamma$-factors , J. Amer. Math. Soc. 21 (2008), no. 1 , 283–304. MR 2350057 , DOI 10.1090/S0894-0347-07-00567-X
  • Guy Henniart and Masao Oi , Simple supercuspidal $L$-packets of symplectic groups over dyadic fields , arXiv: 2207.12985v1 (2022).
  • Kaoru Hiraga and Hiroshi Saito , On $L$-packets for inner forms of $SL_n$ , Mem. Amer. Math. Soc. 215 (2012), no. 1013, vi+97. MR 2918491 , DOI 10.1090/S0065-9266-2011-00642-8
  • Michael Harris and Richard Taylor , The geometry and cohomology of some simple Shimura varieties , Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001. With an appendix by Vladimir G. Berkovich. MR 1876802
  • N. Iwahori and H. Matsumoto , On some Bruhat decomposition and the structure of the Hecke rings of ${\mathfrak {p}}$-adic Chevalley groups , Inst. Hautes Études Sci. Publ. Math. 25 (1965), 5–48. MR 185016 , DOI 10.1007/BF02684396
  • Tasho Kaletha , Simple wild $L$-packets , J. Inst. Math. Jussieu 12 (2013), no. 1, 43–75. MR 3001735 , DOI 10.1017/S1474748012000631
  • Bertram Kostant , The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group , Amer. J. Math. 81 (1959), 973–1032. MR 114875 , DOI 10.2307/2372999
  • P. C. Kutzko , Mackey’s theorem for nonunitary representations , Proc. Amer. Math. Soc. 64 (1977), no. 1 , 173–175. MR 442145 , DOI 10.1090/S0002-9939-1977-0442145-3
  • Allen Moy and Gopal Prasad , Unrefined minimal $K$-types for $p$-adic groups , Invent. Math. 116 (1994), no. 1–3, 393–408., DOI 10.1007/BF01231566
  • Allen Moy and Gopal Prasad , Jacquet functors and unrefined minimal $K$-types , Comment. Math. Helv. 71 (1996), no. 1, 98–121., DOI 10.1007/BF02566411
  • David Mumford , Stability of projective varieties , Enseign. Math. (2) 23 (1977), no. 1-2, 39–110. MR 450272
  • Masao Oi , Endoscopic lifting of simple supercuspidal representations of $\textrm {SO}_{2n+1}$ to $\textrm {GL}_{2n}$ , Amer. J. Math. 141 (2019), no. 1, 169–217. MR 3904769 , DOI 10.1353/ajm.2019.0004
  • Masao Oi , Simple supercuspidal L-packets of quasi-split classical groups , arXiv: 1805.01400v2 (2021).
  • Dmitri I. Panyushev , On invariant theory of $\theta$-groups , J. Algebra 283 (2005), no. 2, 655–670. MR 2111215 , DOI 10.1016/j.jalgebra.2004.03.032
  • Mark Reeder , Paul Levy , Jiu-Kang Yu , and Benedict H. Gross , Gradings of positive rank on simple Lie algebras , Transform. Groups 17 (2012), no. 4, 1123–1190. MR 3000483 , DOI 10.1007/s00031-012-9196-3
  • Beth Romano , On the local Langlands correspondence: New examples from the epipelagic zone , ProQuest LLC, Ann Arbor, MI, 2016. Thesis (Ph.D.)–Boston College. MR 3517860
  • Sean Rostami , On the canonical representatives of a finite Weyl group , arXiv: 1505.07442v3 (2016).
  • Mark Reeder and Jiu-Kang Yu , Epipelagic representations and invariant theory , J. Amer. Math. Soc. 27 (2014), no. 2, 437–477. MR 3164986 , DOI 10.1090/S0894-0347-2013-00780-8
  • Jean-Pierre Serre , Cohomologie des groupes discrets , Prospects in mathematics (Proc. Sympos., Princeton Univ., Princeton, N.J., 1970) Ann. of Math. Stud., No. 70, Princeton Univ. Press, Princeton, NJ, 1971, pp. 77–169 (French). MR 385006
  • Jean-Pierre Serre , Linear representations of finite groups , Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott. MR 450380 , DOI 10.1007/978-1-4684-9458-7
  • Shaun Stevens , The supercuspidal representations of $p$-adic classical groups , Invent. Math. 172 (2008), no. 2, 289–352. MR 2390287 , DOI 10.1007/s00222-007-0099-1
  • J. Tits , Reductive groups over local fields , Proc. Sympos. Pure Math. 33 (1979), no. 1, 29–69., DOI 10.1090/pspum/033.1/546588
  • È. B. Vinberg , The Weyl group of a graded Lie algebra , Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), no. 3, 488–526, 709 (Russian). MR 430168
  • Jiu-Kang Yu , Construction of tame supercuspidal representations , J. Amer. Math. Soc. 14 (2001), no. 3 , 579–622. MR 1824988 , DOI 10.1090/S0894-0347-01-00363-0
  • Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2020): 22E50 , 11S37
  • Beth Romano
  • Affiliation: Department of Mathematics, King’s College London, WC2R 2LS, United Kingdom
  • MR Author ID: 1229203
  • Email: [email protected]
  • Received by editor(s): March 18, 2023
  • Received by editor(s) in revised form: September 29, 2023, and December 5, 2023
  • Published electronically: February 12, 2024
  • © Copyright 2024 Copyright by the Authors
  • Journal: Represent. Theory 28 (2024), 90-111
  • DOI: https://doi.org/10.1090/ert/668
  • MathSciNet review: 4704423

Help | Advanced Search

Mathematics > Representation Theory

Title: diagram model for the okada algebra and monoid.

Abstract: It is well known that the Young lattice is the Bratelli diagram of the symmetric groups expressing how irreducible representations restrict from $S_N$ to $S_{N-1}$. In 1988, Stanley discovered a similar lattice called the Young-Fibonacci lattice which was realized as the Bratelli diagram of a family of algebras by Okada in 1994. In this paper, we realize the Okada algebra and its associated monoid using a labeled version of Temperley-Lieb arc-diagrams. We prove in full generality that the dimension of the Okada algebra is $n!$. In particular, we interpret a natural bijection between permutations and labeled arc-diagrams as an instance of Fomin's Robinson-Schensted correspondence for the Young-Fibonacci lattice. We prove that the Okada monoid is aperiodic and describe its Green relations. Lifting those results to the algebra allows us to construct a cellular basis of the Okada algebra. }

Submission history

Access paper:.

  • Other Formats

license icon

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

IMAGES

  1. A diagrammatic representation of the model development and

    what is diagrammatic representation

  2. Diagrammatic Representation of an Information System

    what is diagrammatic representation

  3. PPT

    what is diagrammatic representation

  4. diagrammatic and graphical representation of data

    what is diagrammatic representation

  5. 1 Diagrammatic representation showing relationship among the members of

    what is diagrammatic representation

  6. Diagrammatic Presentation of Data

    what is diagrammatic representation

VIDEO

  1. DIAGRAMMATIC REPRESENTATION OF GEOGRAPHICAL FEATURES

  2. Diagrammatic Representation of Data #maths #data

  3. Diagrammatic representation of JDK, JRE, JVM Jn java

  4. Graphs and Diagrams in Statistics by V R Rajendra Kumar

  5. Diagrammatic representation of lymph nodes #bio #motivation #shortvideo #study #shortsclip

  6. Diagrammatic representation of L.S of lilly🌸 flower #biologyloverstatus #biology 🧬#neetaspirant

COMMENTS

  1. Diagrammatic Representations: Meaning, Advantages

    Diagrammatic Representation of Data: Meaning. Representation of any numerical data by using diagrams is known as diagrammatic representation. Diagrammatic data representations give a simple and easy understanding of any numerical data collected as compared with the tabular form of the data or textual form of the data.

  2. Diagrammatic Representation of Data: Bar Diagram, Line Graphs etc.

    Bar Diagram. This is one of the simplest techniques to do the comparison for a given set of data. A bar graph is a graphical representation of the data in the form of rectangular bars or columns of equal width. It is the simplest one and easily understandable among the graphs by a group of people.

  3. Diagrammatic Presentation Of Data

    The diagrammatic representation also helps in having a bird's eye view or overall view of the differentiation of data. It is a norm to present statistical data in the form of diagrams so that it becomes easier to comprehend and understand them. Therefore, diagrammatic representation is an important tool in statistics.

  4. Diagrammatic Presentation of Data

    Concept of Diagrammatic Presentation. It is a technique of presenting numeric data through pictograms, cartograms, bar diagrams, and pie diagrams. It is the most attractive and appealing way to represent statistical data. Diagrams help in visual comparison and they have a bird's eye view. Under pictograms, we use pictures to present data.

  5. Diagrammatic Presentation of Data: Meaning , Features, Guidelines

    Thus, the diagrammatic representation method is simple and easy to understand. General Guidelines for Diagrammatic Presentation. The construction of diagrams is an art that may be learned through practice. While drawing diagrams, the following general rules/directions should be followed:

  6. Diagrammatic Presentation of Data

    Advantages of Diagrammatic Data Presentation. Easy to understand - Diagrammatic data presentation makes it easier for a common man to understand the data. Diagrams are usually attractive and impressive and many newspapers and magazines use them frequently to explain certain facts or phenomena. Modern advertising campaigns also use diagrams.

  7. 2: Graphical Representations of Data

    A histogram is a graphic version of a frequency distribution. The graph consists of bars of equal width drawn adjacent to each other. The horizontal scale represents classes of quantitative data values and the vertical scale represents frequencies. The heights of the bars correspond to frequency values. Histograms are typically used for large ...

  8. Diagrammatic Presentation of Data

    Representation of data assisted by diagrams to increase the simplicity of the statistics surrounding the concerned data is defined as a diagrammatic representation of data. These diagrams are nothing but the use of geometrical figures to improve the overall presentation and offer visual assistance for the reader.

  9. Diagrammatic and Graphic Presentation of Data

    The fundamental benefits or merits of a diagrammatic and graphical representation of data are as follows: 1. To simplify the data: Outlines and charts present information in a simple manner that can be perceived by anyone without any problem. Huge volume of data can be easily presented using graphs and diagrams. 2.

  10. 45 Presentation of data I

    TWO DIMENSIONAL DIAGRAMS. Pie Diagram; Pie diagram is another diagramatic method of the representation of data. It is drawn to depict the total value of the given attribute using a circle. Dividing the circle into corresponding degrees of angle then represent the sub- sets of the data. Hence, it is also called as Divided Circle Diagram.

  11. Graphical Representation

    Graphical representation is a form of visually displaying data through various methods like graphs, diagrams, charts, and plots. It helps in sorting, visualizing, and presenting data in a clear manner through different types of graphs. Statistics mainly use graphical representation to show data.

  12. Diagram

    Diagram. A diagram is a symbolic representation of information using visualization techniques. Diagrams have been used since prehistoric times on walls of caves, but became more prevalent during the Enlightenment. [1] Sometimes, the technique uses a three-dimensional visualization which is then projected onto a two-dimensional surface.

  13. Notes on Types of Diagrammatic Representation

    A diagrammatic representation of data is defined as a representation of data aided by diagrams to boost the simplicity of the statistics surrounding the concerned data. These diagrams are just geometrical figures used to enhance the overall presentation and provide visual aid to the reader.

  14. Diagrammatic Representation and Reasoning

    If we have a science of diagrams it is certainly constituted from multiple disciplines, including cognitive science, psychology, artificial intelligence, logic, mathematics, and others. If there is a science of diagrams, then like other sciences there is an appli­ cations, or engineering, discipline that exists alongside the science.

  15. Graphical Representation

    Graphical Representation is a way of analysing numerical data. It exhibits the relation between data, ideas, information and concepts in a diagram. It is easy to understand and it is one of the most important learning strategies. It always depends on the type of information in a particular domain. There are different types of graphical ...

  16. Diagrammatic Representation and Inference

    The Diagrams 2022 proceedings deal with diagrammatic representation and inference, theory of diagrams, and more. Diagrammatic Representation and Inference: 13th International Conference, Diagrams 2022, Rome, Italy, September 14-16, 2022, Proceedings | SpringerLink

  17. Diagrammatic Representation and Inference

    The papers are organized in topical sections on understanding and communicating with diagrams, diagrams in mathematics, computational aspects of diagrammatic representation and reasoning, logic and diagrams, diagrams in human-computer interaction, tracing the process of diagrammatic reasoning, visualizing information with diagrams, diagrams and ...

  18. Diagrammatic reasoning

    Diagram. A diagram is a 2D geometric symbolic representation of information according to some visualization technique. Sometimes, the technique uses a 3D visualization which is then projected onto the 2D surface. The term diagram in common sense can have two meanings. Sample flowchart representing the decision process to add a new article to Wikipedia.. visual information device: Like the term ...

  19. Diagrammatic Interpretation In Statistics

    The diagrammatic representation of data is a method used in the analysis and exploration of information with the help of diagrams. It refers to different methods that convert numbers into graphic forms, such as bar graphs, circle charts, and histograms. This also includes the use of color, layout, and shape to encode data.

  20. What are Different Forms of Diagrammatic Representation

    Diagrammatic representation refers to the process of representing numerical data of any kind through the use of diagrams. Table of Content ; It is absolutely necessary to make use of diagrams for illustrating statistical data. Diagrammatic representations are by far the most effective means of conveying any kind of numerical information ...

  21. Advantages and Disadvantages of Diagrammatic Representation

    A diagrammatic representation is a simple drawing that uses shapes, lines, and pictures to show information or explain an idea clearly. What are the advantages and disadvantages of Diagrammatic Representation. The following are the advantages and disadvantages of Diagrammatic Representation:

  22. Diagrammatic Representation and Inference: 12th International

    The papers are organized in the following topical sections: design of concrete diagrams; theory of diagrams; diagrams and mathematics; diagrams and logic; new representation systems; analysis of diagrams; diagrams and computation; cognitive analysis; diagrams as structural tools; formal diagrams; and understanding thought processes.

  23. Diagrammatic Definition & Meaning

    The meaning of DIAGRAM is a graphic design that explains rather than represents; especially : a drawing that shows arrangement and relations (as of parts). How to use diagram in a sentence.

  24. AMS :: Representation Theory of the American Mathematical Society

    Representation Theory. Published by the American Mathematical Society since 1997, this electronic-only journal is devoted to research in representation theory and seeks to maintain a high standard for exposition as well as for mathematical content. All articles are freely available to all readers and with no publishing fees for authors.

  25. [2404.16733] Diagram model for the Okada algebra and monoid

    In particular, we interpret a natural bijection between permutations and labeled arc-diagrams as an instance of Fomin's Robinson-Schensted correspondence for the Young-Fibonacci lattice. We prove that the Okada monoid is aperiodic and describe its Green relations.