content analysis research sample

What Is Qualitative Content Analysis?

By: Jenna Crosley (PhD). Reviewed by: Dr Eunice Rautenbach (DTech) | February 2021

Dissertation Coaching

Overview: Qualitative Content Analysis

  • What (exactly) is qualitative content analysis
  • The two main types of content analysis
  • When to use content analysis
  • How to conduct content analysis (the process)
  • The advantages and disadvantages of content analysis

1. What is content analysis?

Content analysis is a  qualitative analysis method  that focuses on recorded human artefacts such as manuscripts, voice recordings and journals. Content analysis investigates these written, spoken and visual artefacts without explicitly extracting data from participants – this is called  unobtrusive  research.

In other words, with content analysis, you don’t necessarily need to interact with participants (although you can if necessary); you can simply analyse the data that they have already produced. With this type of analysis, you can analyse data such as text messages, books, Facebook posts, videos, and audio (just to mention a few).

The basics – explicit and implicit content

When working with content analysis, explicit and implicit content will play a role. Explicit data is transparent and easy to identify, while implicit data is that which requires some form of interpretation and is often of a subjective nature. Sounds a bit fluffy? Here’s an example:

Joe: Hi there, what can I help you with? 

Lauren: I recently adopted a puppy and I’m worried that I’m not feeding him the right food. Could you please advise me on what I should be feeding? 

Joe: Sure, just follow me and I’ll show you. Do you have any other pets?

Lauren: Only one, and it tweets a lot!

In this exchange, the explicit data indicates that Joe is helping Lauren to find the right puppy food. Lauren asks Joe whether she has any pets aside from her puppy. This data is explicit because it requires no interpretation.

On the other hand, implicit data , in this case, includes the fact that the speakers are in a pet store. This information is not clearly stated but can be inferred from the conversation, where Joe is helping Lauren to choose pet food. An additional piece of implicit data is that Lauren likely has some type of bird as a pet. This can be inferred from the way that Lauren states that her pet “tweets”.

As you can see, explicit and implicit data both play a role in human interaction  and are an important part of your analysis. However, it’s important to differentiate between these two types of data when you’re undertaking content analysis. Interpreting implicit data can be rather subjective as conclusions are based on the researcher’s interpretation. This can introduce an element of bias , which risks skewing your results.

Explicit and implicit data both play an important role in your content analysis, but it’s important to differentiate between them.

2. The two types of content analysis

Now that you understand the difference between implicit and explicit data, let’s move on to the two general types of content analysis : conceptual and relational content analysis. Importantly, while conceptual and relational content analysis both follow similar steps initially, the aims and outcomes of each are different.

Conceptual analysis focuses on the number of times a concept occurs in a set of data and is generally focused on explicit data. For example, if you were to have the following conversation:

Marie: She told me that she has three cats.

Jean: What are her cats’ names?

Marie: I think the first one is Bella, the second one is Mia, and… I can’t remember the third cat’s name.

In this data, you can see that the word “cat” has been used three times. Through conceptual content analysis, you can deduce that cats are the central topic of the conversation. You can also perform a frequency analysis , where you assess the term’s frequency in the data. For example, in the exchange above, the word “cat” makes up 9% of the data. In other words, conceptual analysis brings a little bit of quantitative analysis into your qualitative analysis.

As you can see, the above data is without interpretation and focuses on explicit data . Relational content analysis, on the other hand, takes a more holistic view by focusing more on implicit data in terms of context, surrounding words and relationships.

There are three types of relational analysis:

  • Affect extraction
  • Proximity analysis
  • Cognitive mapping

Affect extraction is when you assess concepts according to emotional attributes. These emotions are typically mapped on scales, such as a Likert scale or a rating scale ranging from 1 to 5, where 1 is “very sad” and 5 is “very happy”.

If participants are talking about their achievements, they are likely to be given a score of 4 or 5, depending on how good they feel about it. If a participant is describing a traumatic event, they are likely to have a much lower score, either 1 or 2.

Proximity analysis identifies explicit terms (such as those found in a conceptual analysis) and the patterns in terms of how they co-occur in a text. In other words, proximity analysis investigates the relationship between terms and aims to group these to extract themes and develop meaning.

Proximity analysis is typically utilised when you’re looking for hard facts rather than emotional, cultural, or contextual factors. For example, if you were to analyse a political speech, you may want to focus only on what has been said, rather than implications or hidden meanings. To do this, you would make use of explicit data, discounting any underlying meanings and implications of the speech.

Lastly, there’s cognitive mapping, which can be used in addition to, or along with, proximity analysis. Cognitive mapping involves taking different texts and comparing them in a visual format – i.e. a cognitive map. Typically, you’d use cognitive mapping in studies that assess changes in terms, definitions, and meanings over time. It can also serve as a way to visualise affect extraction or proximity analysis and is often presented in a form such as a graphic map.

Example of a cognitive map

To recap on the essentials, content analysis is a qualitative analysis method that focuses on recorded human artefacts . It involves both conceptual analysis (which is more numbers-based) and relational analysis (which focuses on the relationships between concepts and how they’re connected).

Need a helping hand?

content analysis research sample

3. When should you use content analysis?

Content analysis is a useful tool that provides insight into trends of communication . For example, you could use a discussion forum as the basis of your analysis and look at the types of things the members talk about as well as how they use language to express themselves. Content analysis is flexible in that it can be applied to the individual, group, and institutional level.

Content analysis is typically used in studies where the aim is to better understand factors such as behaviours, attitudes, values, emotions, and opinions . For example, you could use content analysis to investigate an issue in society, such as miscommunication between cultures. In this example, you could compare patterns of communication in participants from different cultures, which will allow you to create strategies for avoiding misunderstandings in intercultural interactions.

Another example could include conducting content analysis on a publication such as a book. Here you could gather data on the themes, topics, language use and opinions reflected in the text to draw conclusions regarding the political (such as conservative or liberal) leanings of the publication.

Content analysis is typically used in projects where the research aims involve getting a better understanding of factors such as behaviours, attitudes, values, emotions, and opinions.

4. How to conduct a qualitative content analysis

Conceptual and relational content analysis differ in terms of their exact process ; however, there are some similarities. Let’s have a look at these first – i.e., the generic process:

  • Recap on your research questions
  • Undertake bracketing to identify biases
  • Operationalise your variables and develop a coding scheme
  • Code the data and undertake your analysis

Step 1 – Recap on your research questions

It’s always useful to begin a project with research questions , or at least with an idea of what you are looking for. In fact, if you’ve spent time reading this blog, you’ll know that it’s useful to recap on your research questions, aims and objectives when undertaking pretty much any research activity. In the context of content analysis, it’s difficult to know what needs to be coded and what doesn’t, without a clear view of the research questions.

For example, if you were to code a conversation focused on basic issues of social justice, you may be met with a wide range of topics that may be irrelevant to your research. However, if you approach this data set with the specific intent of investigating opinions on gender issues, you will be able to focus on this topic alone, which would allow you to code only what you need to investigate.

With content analysis, it’s difficult to know what needs to be coded  without a clear view of the research questions.

Step 2 – Reflect on your personal perspectives and biases

It’s vital that you reflect on your own pre-conception of the topic at hand and identify the biases that you might drag into your content analysis – this is called “ bracketing “. By identifying this upfront, you’ll be more aware of them and less likely to have them subconsciously influence your analysis.

For example, if you were to investigate how a community converses about unequal access to healthcare, it is important to assess your views to ensure that you don’t project these onto your understanding of the opinions put forth by the community. If you have access to medical aid, for instance, you should not allow this to interfere with your examination of unequal access.

You must reflect on the preconceptions and biases that you might drag into your content analysis - this is called "bracketing".

Step 3 – Operationalise your variables and develop a coding scheme

Next, you need to operationalise your variables . But what does that mean? Simply put, it means that you have to define each variable or construct . Give every item a clear definition – what does it mean (include) and what does it not mean (exclude). For example, if you were to investigate children’s views on healthy foods, you would first need to define what age group/range you’re looking at, and then also define what you mean by “healthy foods”.

In combination with the above, it is important to create a coding scheme , which will consist of information about your variables (how you defined each variable), as well as a process for analysing the data. For this, you would refer back to how you operationalised/defined your variables so that you know how to code your data.

For example, when coding, when should you code a food as “healthy”? What makes a food choice healthy? Is it the absence of sugar or saturated fat? Is it the presence of fibre and protein? It’s very important to have clearly defined variables to achieve consistent coding – without this, your analysis will get very muddy, very quickly.

When operationalising your variables, you must give every item a clear definition. In other words, what does it mean (include) and what does it not mean (exclude).

Step 4 – Code and analyse the data

The next step is to code the data. At this stage, there are some differences between conceptual and relational analysis.

As described earlier in this post, conceptual analysis looks at the existence and frequency of concepts, whereas a relational analysis looks at the relationships between concepts. For both types of analyses, it is important to pre-select a concept that you wish to assess in your data. Using the example of studying children’s views on healthy food, you could pre-select the concept of “healthy food” and assess the number of times the concept pops up in your data.

Here is where conceptual and relational analysis start to differ.

At this stage of conceptual analysis , it is necessary to decide on the level of analysis you’ll perform on your data, and whether this will exist on the word, phrase, sentence, or thematic level. For example, will you code the phrase “healthy food” on its own? Will you code each term relating to healthy food (e.g., broccoli, peaches, bananas, etc.) with the code “healthy food” or will these be coded individually? It is very important to establish this from the get-go to avoid inconsistencies that could result in you having to code your data all over again.

On the other hand, relational analysis looks at the type of analysis. So, will you use affect extraction? Proximity analysis? Cognitive mapping? A mix? It’s vital to determine the type of analysis before you begin to code your data so that you can maintain the reliability and validity of your research .

content analysis research sample

How to conduct conceptual analysis

First, let’s have a look at the process for conceptual analysis.

Once you’ve decided on your level of analysis, you need to establish how you will code your concepts, and how many of these you want to code. Here you can choose whether you want to code in a deductive or inductive manner. Just to recap, deductive coding is when you begin the coding process with a set of pre-determined codes, whereas inductive coding entails the codes emerging as you progress with the coding process. Here it is also important to decide what should be included and excluded from your analysis, and also what levels of implication you wish to include in your codes.

For example, if you have the concept of “tall”, can you include “up in the clouds”, derived from the sentence, “the giraffe’s head is up in the clouds” in the code, or should it be a separate code? In addition to this, you need to know what levels of words may be included in your codes or not. For example, if you say, “the panda is cute” and “look at the panda’s cuteness”, can “cute” and “cuteness” be included under the same code?

Once you’ve considered the above, it’s time to code the text . We’ve already published a detailed post about coding , so we won’t go into that process here. Once you’re done coding, you can move on to analysing your results. This is where you will aim to find generalisations in your data, and thus draw your conclusions .

How to conduct relational analysis

Now let’s return to relational analysis.

As mentioned, you want to look at the relationships between concepts . To do this, you’ll need to create categories by reducing your data (in other words, grouping similar concepts together) and then also code for words and/or patterns. These are both done with the aim of discovering whether these words exist, and if they do, what they mean.

Your next step is to assess your data and to code the relationships between your terms and meanings, so that you can move on to your final step, which is to sum up and analyse the data.

To recap, it’s important to start your analysis process by reviewing your research questions and identifying your biases . From there, you need to operationalise your variables, code your data and then analyse it.

Time to analyse

5. What are the pros & cons of content analysis?

One of the main advantages of content analysis is that it allows you to use a mix of quantitative and qualitative research methods, which results in a more scientifically rigorous analysis.

For example, with conceptual analysis, you can count the number of times that a term or a code appears in a dataset, which can be assessed from a quantitative standpoint. In addition to this, you can then use a qualitative approach to investigate the underlying meanings of these and relationships between them.

Content analysis is also unobtrusive and therefore poses fewer ethical issues than some other analysis methods. As the content you’ll analyse oftentimes already exists, you’ll analyse what has been produced previously, and so you won’t have to collect data directly from participants. When coded correctly, data is analysed in a very systematic and transparent manner, which means that issues of replicability (how possible it is to recreate research under the same conditions) are reduced greatly.

On the downside , qualitative research (in general, not just content analysis) is often critiqued for being too subjective and for not being scientifically rigorous enough. This is where reliability (how replicable a study is by other researchers) and validity (how suitable the research design is for the topic being investigated) come into play – if you take these into account, you’ll be on your way to achieving sound research results.

One of the main advantages of content analysis is that it allows you to use a mix of quantitative and qualitative research methods, which results in a more scientifically rigorous analysis.

Recap: Qualitative content analysis

In this post, we’ve covered a lot of ground – click on any of the sections to recap:

If you have any questions about qualitative content analysis, feel free to leave a comment below. If you’d like 1-on-1 help with your qualitative content analysis, be sure to book an initial consultation with one of our friendly Research Coaches.

Research Bootcamps

Learn More About Qualitative:

Triangulation: The Ultimate Credibility Enhancer

Triangulation: The Ultimate Credibility Enhancer

Triangulation is one of the best ways to enhance the credibility of your research. Learn about the different options here.

Structured, Semi-Structured & Unstructured Interviews

Structured, Semi-Structured & Unstructured Interviews

Learn about the differences (and similarities) between the three interview approaches: structured, semi-structured and unstructured.

Qualitative Coding Examples: Process, Values & In Vivo Coding

Qualitative Coding Examples: Process, Values & In Vivo Coding

See real-world examples of qualitative data that has been coded using process coding, values coding and in vivo coding.

In Vivo Coding 101: Full Explainer With Examples

In Vivo Coding 101: Full Explainer With Examples

Learn about in vivo coding, a popular qualitative coding technique ideal for studies where the nuances of language are central to the aims.

Process Coding 101: Full Explainer With Examples

Process Coding 101: Full Explainer With Examples

Learn about process coding, a popular qualitative coding technique ideal for studies exploring processes, actions and changes over time.

📄 FREE TEMPLATES

Research Topic Ideation

Proposal Writing

Literature Review

Methodology & Analysis

Academic Writing

Referencing & Citing

Apps, Tools & Tricks

The Grad Coach Podcast

19 Comments

Abhishek

If I am having three pre-decided attributes for my research based on which a set of semi-structured questions where asked then should I conduct a conceptual content analysis or relational content analysis. please note that all three attributes are different like Agility, Resilience and AI.

Ofori Henry Affum

Thank you very much. I really enjoyed every word.

Janak Raj Bhatta

please send me one/ two sample of content analysis

pravin

send me to any sample of qualitative content analysis as soon as possible

abdellatif djedei

Many thanks for the brilliant explanation. Do you have a sample practical study of a foreign policy using content analysis?

DR. TAPAS GHOSHAL

1) It will be very much useful if a small but complete content analysis can be sent, from research question to coding and analysis. 2) Is there any software by which qualitative content analysis can be done?

Carkanirta

Common software for qualitative analysis is nVivo, and quantitative analysis is IBM SPSS

carmely

Thank you. Can I have at least 2 copies of a sample analysis study as my reference?

Yang

Could you please send me some sample of textbook content analysis?

Abdoulie Nyassi

Can I send you my research topic, aims, objectives and questions to give me feedback on them?

Bobby Benjamin Simeon

please could you send me samples of content analysis?

Obi Clara Chisom

Yes please send

Gaid Ahmed

really we enjoyed your knowledge thanks allot. from Ethiopia

Ary

can you please share some samples of content analysis(relational)? I am a bit confused about processing the analysis part

eeeema

Is it possible for you to list the journal articles and books or other sources you used to write this article? Thank you.

Upeksha Hettithanthri

can you please send some samples of content analysis ?

can you kindly send some good examples done by using content analysis ?

samuel batimedi

This was very useful. can you please send me sample for qualitative content analysis. thank you

Lawal Ridwan Olalekan

What a brilliant explanation! Kindly help with textbooks or blogs on the context analysis method such as discourse, thematic and semiotic analysis.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Submit Comment

content analysis research sample

  • Print Friendly

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology

Content Analysis | A Step-by-Step Guide with Examples

Published on 5 May 2022 by Amy Luo . Revised on 5 December 2022.

Content analysis is a research method used to identify patterns in recorded communication. To conduct content analysis, you systematically collect data from a set of texts, which can be written, oral, or visual:

  • Books, newspapers, and magazines
  • Speeches and interviews
  • Web content and social media posts
  • Photographs and films

Content analysis can be both quantitative (focused on counting and measuring) and qualitative (focused on interpreting and understanding). In both types, you categorise or ‘code’ words, themes, and concepts within the texts and then analyse the results.

Table of contents

What is content analysis used for, advantages of content analysis, disadvantages of content analysis, how to conduct content analysis.

Researchers use content analysis to find out about the purposes, messages, and effects of communication content. They can also make inferences about the producers and audience of the texts they analyse.

Content analysis can be used to quantify the occurrence of certain words, phrases, subjects, or concepts in a set of historical or contemporary texts.

In addition, content analysis can be used to make qualitative inferences by analysing the meaning and semantic relationship of words and concepts.

Because content analysis can be applied to a broad range of texts, it is used in a variety of fields, including marketing, media studies, anthropology, cognitive science, psychology, and many social science disciplines. It has various possible goals:

  • Finding correlations and patterns in how concepts are communicated
  • Understanding the intentions of an individual, group, or institution
  • Identifying propaganda and bias in communication
  • Revealing differences in communication in different contexts
  • Analysing the consequences of communication content, such as the flow of information or audience responses

Prevent plagiarism, run a free check.

  • Unobtrusive data collection

You can analyse communication and social interaction without the direct involvement of participants, so your presence as a researcher doesn’t influence the results.

  • Transparent and replicable

When done well, content analysis follows a systematic procedure that can easily be replicated by other researchers, yielding results with high reliability .

  • Highly flexible

You can conduct content analysis at any time, in any location, and at low cost. All you need is access to the appropriate sources.

Focusing on words or phrases in isolation can sometimes be overly reductive, disregarding context, nuance, and ambiguous meanings.

Content analysis almost always involves some level of subjective interpretation, which can affect the reliability and validity of the results and conclusions.

  • Time intensive

Manually coding large volumes of text is extremely time-consuming, and it can be difficult to automate effectively.

If you want to use content analysis in your research, you need to start with a clear, direct  research question .

Next, you follow these five steps.

Step 1: Select the content you will analyse

Based on your research question, choose the texts that you will analyse. You need to decide:

  • The medium (e.g., newspapers, speeches, or websites) and genre (e.g., opinion pieces, political campaign speeches, or marketing copy)
  • The criteria for inclusion (e.g., newspaper articles that mention a particular event, speeches by a certain politician, or websites selling a specific type of product)
  • The parameters in terms of date range, location, etc.

If there are only a small number of texts that meet your criteria, you might analyse all of them. If there is a large volume of texts, you can select a sample .

Step 2: Define the units and categories of analysis

Next, you need to determine the level at which you will analyse your chosen texts. This means defining:

  • The unit(s) of meaning that will be coded. For example, are you going to record the frequency of individual words and phrases, the characteristics of people who produced or appear in the texts, the presence and positioning of images, or the treatment of themes and concepts?
  • The set of categories that you will use for coding. Categories can be objective characteristics (e.g., aged 30–40, lawyer, parent) or more conceptual (e.g., trustworthy, corrupt, conservative, family-oriented).

Step 3: Develop a set of rules for coding

Coding involves organising the units of meaning into the previously defined categories. Especially with more conceptual categories, it’s important to clearly define the rules for what will and won’t be included to ensure that all texts are coded consistently.

Coding rules are especially important if multiple researchers are involved, but even if you’re coding all of the text by yourself, recording the rules makes your method more transparent and reliable.

Step 4: Code the text according to the rules

You go through each text and record all relevant data in the appropriate categories. This can be done manually or aided with computer programs, such as QSR NVivo , Atlas.ti , and Diction , which can help speed up the process of counting and categorising words and phrases.

Step 5: Analyse the results and draw conclusions

Once coding is complete, the collected data is examined to find patterns and draw conclusions in response to your research question. You might use statistical analysis to find correlations or trends, discuss your interpretations of what the results mean, and make inferences about the creators, context, and audience of the texts.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Luo, A. (2022, December 05). Content Analysis | A Step-by-Step Guide with Examples. Scribbr. Retrieved 1 November 2024, from https://www.scribbr.co.uk/research-methods/content-analysis-explained/

Is this article helpful?

Amy Luo

Other students also liked

How to do thematic analysis | guide & examples, data collection methods | step-by-step guide & examples, qualitative vs quantitative research | examples & methods.