How to write a research plan: Step-by-step guide

Last updated

30 January 2024

Reviewed by

Today’s businesses and institutions rely on data and analytics to inform their product and service decisions. These metrics influence how organizations stay competitive and inspire innovation. However, gathering data and insights requires carefully constructed research, and every research project needs a roadmap. This is where a research plan comes into play.

There’s general research planning; then there’s an official, well-executed research plan. Whatever data-driven research project you’re gearing up for, the research plan will be your framework for execution. The plan should also be detailed and thorough, with a diligent set of criteria to formulate your research efforts. Not including these key elements in your plan can be just as harmful as having no plan at all.

Read this step-by-step guide for writing a detailed research plan that can apply to any project, whether it’s scientific, educational, or business-related.

  • What is a research plan?

A research plan is a documented overview of a project in its entirety, from end to end. It details the research efforts, participants, and methods needed, along with any anticipated results. It also outlines the project’s goals and mission, creating layers of steps to achieve those goals within a specified timeline.

Without a research plan, you and your team are flying blind, potentially wasting time and resources to pursue research without structured guidance.

The principal investigator, or PI, is responsible for facilitating the research oversight. They will create the research plan and inform team members and stakeholders of every detail relating to the project. The PI will also use the research plan to inform decision-making throughout the project.

  • Why do you need a research plan?

Create a research plan before starting any official research to maximize every effort in pursuing and collecting the research data. Crucially, the plan will model the activities needed at each phase of the research project.

Like any roadmap, a research plan serves as a valuable tool providing direction for those involved in the project—both internally and externally. It will keep you and your immediate team organized and task-focused while also providing necessary definitions and timelines so you can execute your project initiatives with full understanding and transparency.

External stakeholders appreciate a working research plan because it’s a great communication tool, documenting progress and changing dynamics as they arise. Any participants of your planned research sessions will be informed about the purpose of your study, while the exercises will be based on the key messaging outlined in the official plan.

Here are some of the benefits of creating a research plan document for every project:

Project organization and structure

Well-informed participants

All stakeholders and teams align in support of the project

Clearly defined project definitions and purposes

Distractions are eliminated, prioritizing task focus

Timely management of individual task schedules and roles

Costly reworks are avoided

  • What should a research plan include?

The different aspects of your research plan will depend on the nature of the project. However, most official research plan documents will include the core elements below. Each aims to define the problem statement, devising an official plan for seeking a solution.

Specific project goals and individual objectives

Ideal strategies or methods for reaching those goals

Required resources

Descriptions of the target audience, sample sizes, demographics, and scopes

Key performance indicators (KPIs)

Project background

Research and testing support

Preliminary studies and progress reporting mechanisms

Cost estimates and change order processes

Depending on the research project’s size and scope, your research plan could be brief—perhaps only a few pages of documented plans. Alternatively, it could be a fully comprehensive report. Either way, it’s an essential first step in dictating your project’s facilitation in the most efficient and effective way.

  • How to write a research plan for your project

When you start writing your research plan, aim to be detailed about each step, requirement, and idea. The more time you spend curating your research plan, the more precise your research execution efforts will be.

Account for every potential scenario, and be sure to address each and every aspect of the research.

Consider following this flow to develop a great research plan for your project:

Define your project’s purpose

Start by defining your project’s purpose. Identify what your project aims to accomplish and what you are researching. Remember to use clear language.

Thinking about the project’s purpose will help you set realistic goals and inform how you divide tasks and assign responsibilities. These individual tasks will be your stepping stones to reach your overarching goal.

Additionally, you’ll want to identify the specific problem, the usability metrics needed, and the intended solutions.

Know the following three things about your project’s purpose before you outline anything else:

What you’re doing

Why you’re doing it

What you expect from it

Identify individual objectives

With your overarching project objectives in place, you can identify any individual goals or steps needed to reach those objectives. Break them down into phases or steps. You can work backward from the project goal and identify every process required to facilitate it.

Be mindful to identify each unique task so that you can assign responsibilities to various team members. At this point in your research plan development, you’ll also want to assign priority to those smaller, more manageable steps and phases that require more immediate or dedicated attention.

Select research methods

Research methods might include any of the following:

User interviews: this is a qualitative research method where researchers engage with participants in one-on-one or group conversations. The aim is to gather insights into their experiences, preferences, and opinions to uncover patterns, trends, and data.

Field studies: this approach allows for a contextual understanding of behaviors, interactions, and processes in real-world settings. It involves the researcher immersing themselves in the field, conducting observations, interviews, or experiments to gather in-depth insights.

Card sorting: participants categorize information by sorting content cards into groups based on their perceived similarities. You might use this process to gain insights into participants’ mental models and preferences when navigating or organizing information on websites, apps, or other systems.

Focus groups: use organized discussions among select groups of participants to provide relevant views and experiences about a particular topic.

Diary studies: ask participants to record their experiences, thoughts, and activities in a diary over a specified period. This method provides a deeper understanding of user experiences, uncovers patterns, and identifies areas for improvement.

Five-second testing: participants are shown a design, such as a web page or interface, for just five seconds. They then answer questions about their initial impressions and recall, allowing you to evaluate the design’s effectiveness.

Surveys: get feedback from participant groups with structured surveys. You can use online forms, telephone interviews, or paper questionnaires to reveal trends, patterns, and correlations.

Tree testing: tree testing involves researching web assets through the lens of findability and navigability. Participants are given a textual representation of the site’s hierarchy (the “tree”) and asked to locate specific information or complete tasks by selecting paths.

Usability testing: ask participants to interact with a product, website, or application to evaluate its ease of use. This method enables you to uncover areas for improvement in digital key feature functionality by observing participants using the product.

Live website testing: research and collect analytics that outlines the design, usability, and performance efficiencies of a website in real time.

There are no limits to the number of research methods you could use within your project. Just make sure your research methods help you determine the following:

What do you plan to do with the research findings?

What decisions will this research inform? How can your stakeholders leverage the research data and results?

Recruit participants and allocate tasks

Next, identify the participants needed to complete the research and the resources required to complete the tasks. Different people will be proficient at different tasks, and having a task allocation plan will allow everything to run smoothly.

Prepare a thorough project summary

Every well-designed research plan will feature a project summary. This official summary will guide your research alongside its communications or messaging. You’ll use the summary while recruiting participants and during stakeholder meetings. It can also be useful when conducting field studies.

Ensure this summary includes all the elements of your research project. Separate the steps into an easily explainable piece of text that includes the following:

An introduction: the message you’ll deliver to participants about the interview, pre-planned questioning, and testing tasks.

Interview questions: prepare questions you intend to ask participants as part of your research study, guiding the sessions from start to finish.

An exit message: draft messaging your teams will use to conclude testing or survey sessions. These should include the next steps and express gratitude for the participant’s time.

Create a realistic timeline

While your project might already have a deadline or a results timeline in place, you’ll need to consider the time needed to execute it effectively.

Realistically outline the time needed to properly execute each supporting phase of research and implementation. And, as you evaluate the necessary schedules, be sure to include additional time for achieving each milestone in case any changes or unexpected delays arise.

For this part of your research plan, you might find it helpful to create visuals to ensure your research team and stakeholders fully understand the information.

Determine how to present your results

A research plan must also describe how you intend to present your results. Depending on the nature of your project and its goals, you might dedicate one team member (the PI) or assume responsibility for communicating the findings yourself.

In this part of the research plan, you’ll articulate how you’ll share the results. Detail any materials you’ll use, such as:

Presentations and slides

A project report booklet

A project findings pamphlet

Documents with key takeaways and statistics

Graphic visuals to support your findings

  • Format your research plan

As you create your research plan, you can enjoy a little creative freedom. A plan can assume many forms, so format it how you see fit. Determine the best layout based on your specific project, intended communications, and the preferences of your teams and stakeholders.

Find format inspiration among the following layouts:

Written outlines

Narrative storytelling

Visual mapping

Graphic timelines

Remember, the research plan format you choose will be subject to change and adaptation as your research and findings unfold. However, your final format should ideally outline questions, problems, opportunities, and expectations.

  • Research plan example

Imagine you’ve been tasked with finding out how to get more customers to order takeout from an online food delivery platform. The goal is to improve satisfaction and retain existing customers. You set out to discover why more people aren’t ordering and what it is they do want to order or experience. 

You identify the need for a research project that helps you understand what drives customer loyalty. But before you jump in and start calling past customers, you need to develop a research plan—the roadmap that provides focus, clarity, and realistic details to the project.

Here’s an example outline of a research plan you might put together:

Project title

Project members involved in the research plan

Purpose of the project (provide a summary of the research plan’s intent)

Objective 1 (provide a short description for each objective)

Objective 2

Objective 3

Proposed timeline

Audience (detail the group you want to research, such as customers or non-customers)

Budget (how much you think it might cost to do the research)

Risk factors/contingencies (any potential risk factors that may impact the project’s success)

Remember, your research plan doesn’t have to reinvent the wheel—it just needs to fit your project’s unique needs and aims.

Customizing a research plan template

Some companies offer research plan templates to help get you started. However, it may make more sense to develop your own customized plan template. Be sure to include the core elements of a great research plan with your template layout, including the following:

Introductions to participants and stakeholders

Background problems and needs statement

Significance, ethics, and purpose

Research methods, questions, and designs

Preliminary beliefs and expectations

Implications and intended outcomes

Realistic timelines for each phase

Conclusion and presentations

How many pages should a research plan be?

Generally, a research plan can vary in length between 500 to 1,500 words. This is roughly three pages of content. More substantial projects will be 2,000 to 3,500 words, taking up four to seven pages of planning documents.

What is the difference between a research plan and a research proposal?

A research plan is a roadmap to success for research teams. A research proposal, on the other hand, is a dissertation aimed at convincing or earning the support of others. Both are relevant in creating a guide to follow to complete a project goal.

What are the seven steps to developing a research plan?

While each research project is different, it’s best to follow these seven general steps to create your research plan:

Defining the problem

Identifying goals

Choosing research methods

Recruiting participants

Preparing the brief or summary

Establishing task timelines

Defining how you will present the findings

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 11 January 2024

Last updated: 15 January 2024

Last updated: 17 January 2024

Last updated: 12 May 2023

Last updated: 30 April 2024

Last updated: 18 May 2023

Last updated: 25 November 2023

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next.

research planning

Users report unexpectedly high data usage, especially during streaming sessions.

research planning

Users find it hard to navigate from the home page to relevant playlists in the app.

research planning

It would be great to have a sleep timer feature, especially for bedtime listening.

research planning

I need better filters to find the songs or artists I’m looking for.

Log in or sign up

Get started for free

FLEET LIBRARY | Research Guides

Rhode island school of design, create a research plan: research plan.

  • Research Plan
  • Literature Review
  • Ulrich's Global Serials Directory
  • Related Guides

A research plan is a framework that shows how you intend to approach your topic. The plan can take many forms: a written outline, a narrative, a visual/concept map or timeline. It's a document that will change and develop as you conduct your research. Components of a research plan

1. Research conceptualization - introduces your research question

2. Research methodology - describes your approach to the research question

3. Literature review, critical evaluation and synthesis - systematic approach to locating,

    reviewing and evaluating the work (text, exhibitions, critiques, etc) relating to your topic

4. Communication - geared toward an intended audience, shows evidence of your inquiry

Research conceptualization refers to the ability to identify specific research questions, problems or opportunities that are worthy of inquiry. Research conceptualization also includes the skills and discipline that go beyond the initial moment of conception, and which enable the researcher to formulate and develop an idea into something researchable ( Newbury 373).

Research methodology refers to the knowledge and skills required to select and apply appropriate methods to carry through the research project ( Newbury 374) .

Method describes a single mode of proceeding; methodology describes the overall process.

Method - a way of doing anything especially according to a defined and regular plan; a mode of procedure in any activity

Methodology - the study of the direction and implications of empirical research, or the sustainability of techniques employed in it; a method or body of methods used in a particular field of study or activity *Browse a list of research methodology books  or this guide on Art & Design Research

Literature Review, critical evaluation & synthesis

A literature review is a systematic approach to locating, reviewing, and evaluating the published work and work in progress of scholars, researchers, and practitioners on a given topic.

Critical evaluation and synthesis is the ability to handle (or process) existing sources. It includes knowledge of the sources of literature and contextual research field within which the person is working ( Newbury 373).

Literature reviews are done for many reasons and situations. Here's a short list:

Sources to consult while conducting a literature review:

Online catalogs of local, regional, national, and special libraries

meta-catalogs such as worldcat , Art Discovery Group , europeana , world digital library or RIBA

subject-specific online article databases (such as the Avery Index, JSTOR, Project Muse)

digital institutional repositories such as Digital Commons @RISD ; see Registry of Open Access Repositories

Open Access Resources recommended by RISD Research LIbrarians

works cited in scholarly books and articles

print bibliographies

the internet-locate major nonprofit, research institutes, museum, university, and government websites

search google scholar to locate grey literature & referenced citations

trade and scholarly publishers

fellow scholars and peers

Communication                              

Communication refers to the ability to

  • structure a coherent line of inquiry
  • communicate your findings to your intended audience
  • make skilled use of visual material to express ideas for presentations, writing, and the creation of exhibitions ( Newbury 374)

Research plan framework: Newbury, Darren. "Research Training in the Creative Arts and Design." The Routledge Companion to Research in the Arts . Ed. Michael Biggs and Henrik Karlsson. New York: Routledge, 2010. 368-87. Print.

About the author

Except where otherwise noted, this guide is subject to a Creative Commons Attribution license

source document

  Routledge Companion to Research in the Arts

  • Next: Literature Review >>
  • Last Updated: Sep 20, 2023 5:05 PM
  • URL: https://risd.libguides.com/researchplan

research planning

Illustration by James Round

How to plan a research project

Whether for a paper or a thesis, define your question, review the work of others – and leave yourself open to discovery.

by Brooke Harrington   + BIO

is professor of sociology at Dartmouth College in New Hampshire. Her research has won international awards both for scholarly quality and impact on public life. She has published dozens of articles and three books, most recently the bestseller Capital without Borders (2016), now translated into five languages.

Edited by Sam Haselby

Need to know

‘When curiosity turns to serious matters, it’s called research.’ – From Aphorisms (1880-1905) by Marie von Ebner-Eschenbach

Planning research projects is a time-honoured intellectual exercise: one that requires both creativity and sharp analytical skills. The purpose of this Guide is to make the process systematic and easy to understand. While there is a great deal of freedom and discovery involved – from the topics you choose, to the data and methods you apply – there are also some norms and constraints that obtain, no matter what your academic level or field of study. For those in high school through to doctoral students, and from art history to archaeology, research planning involves broadly similar steps, including: formulating a question, developing an argument or predictions based on previous research, then selecting the information needed to answer your question.

Some of this might sound self-evident but, as you’ll find, research requires a different way of approaching and using information than most of us are accustomed to in everyday life. That is why I include orienting yourself to knowledge-creation as an initial step in the process. This is a crucial and underappreciated phase in education, akin to making the transition from salaried employment to entrepreneurship: suddenly, you’re on your own, and that requires a new way of thinking about your work.

What follows is a distillation of what I’ve learned about this process over 27 years as a professional social scientist. It reflects the skills that my own professors imparted in the sociology doctoral programme at Harvard, as well as what I learned later on as a research supervisor for Ivy League PhD and MA students, and then as the author of award-winning scholarly books and articles. It can be adapted to the demands of both short projects (such as course term papers) and long ones, such as a thesis.

At its simplest, research planning involves the four distinct steps outlined below: orienting yourself to knowledge-creation; defining your research question; reviewing previous research on your question; and then choosing relevant data to formulate your own answers. Because the focus of this Guide is on planning a research project, as opposed to conducting a research project, this section won’t delve into the details of data-collection or analysis; those steps happen after you plan the project. In addition, the topic is vast: year-long doctoral courses are devoted to data and analysis. Instead, the fourth part of this section will outline some basic strategies you could use in planning a data-selection and analysis process appropriate to your research question.

Step 1: Orient yourself

Planning and conducting research requires you to make a transition, from thinking like a consumer of information to thinking like a producer of information. That sounds simple, but it’s actually a complex task. As a practical matter, this means putting aside the mindset of a student, which treats knowledge as something created by other people. As students, we are often passive receivers of knowledge: asked to do a specified set of readings, then graded on how well we reproduce what we’ve read.

Researchers, however, must take on an active role as knowledge producers . Doing research requires more of you than reading and absorbing what other people have written: you have to engage in a dialogue with it. That includes arguing with previous knowledge and perhaps trying to show that ideas we have accepted as given are actually wrong or incomplete. For example, rather than simply taking in the claims of an author you read, you’ll need to draw out the implications of those claims: if what the author is saying is true, what else does that suggest must be true? What predictions could you make based on the author’s claims?

In other words, rather than treating a reading as a source of truth – even if it comes from a revered source, such as Plato or Marie Curie – this orientation step asks you to treat the claims you read as provisional and subject to interrogation. That is one of the great pieces of wisdom that science and philosophy can teach us: that the biggest advances in human understanding have been made not by being correct about trivial things, but by being wrong in an interesting way . For example, Albert Einstein was wrong about quantum mechanics, but his arguments about it with his fellow physicist Niels Bohr have led to some of the biggest breakthroughs in science, even a century later.

Step 2: Define your research question

Students often give this step cursory attention, but experienced researchers know that formulating a good question is sometimes the most difficult part of the research planning process. That is because the precise language of the question frames the rest of the project. It’s therefore important to pose the question carefully, in a way that’s both possible to answer and likely to yield interesting results. Of course, you must choose a question that interests you, but that’s only the beginning of what’s likely to be an iterative process: most researchers come back to this step repeatedly, modifying their questions in light of previous research, resource limitations and other considerations.

Researchers face limits in terms of time and money. They, like everyone else, have to pose research questions that they can plausibly answer given the constraints they face. For example, it would be inadvisable to frame a project around the question ‘What are the roots of the Arab-Israeli conflict?’ if you have only a week to develop an answer and no background on that topic. That’s not to limit your imagination: you can come up with any question you’d like. But it typically does require some creativity to frame a question that you can answer well – that is, by investigating thoroughly and providing new insights – within the limits you face.

In addition to being interesting to you, and feasible within your resource constraints, the third and most important characteristic of a ‘good’ research topic is whether it allows you to create new knowledge. It might turn out that your question has already been asked and answered to your satisfaction: if so, you’ll find out in the next step of this process. On the other hand, you might come up with a research question that hasn’t been addressed previously. Before you get too excited about breaking uncharted ground, consider this: a lot of potentially researchable questions haven’t been studied for good reason ; they might have answers that are trivial or of very limited interest. This could include questions such as ‘Why does the area of a circle equal π r²?’ or ‘Did winter conditions affect Napoleon’s plans to invade Russia?’ Of course, you might be able to make the argument that a seemingly trivial question is actually vitally important, but you must be prepared to back that up with convincing evidence. The exercise in the ‘Learn More’ section below will help you think through some of these issues.

Finally, scholarly research questions must in some way lead to new and distinctive insights. For example, lots of people have studied gender roles in sports teams; what can you ask that hasn’t been asked before? Reinventing the wheel is the number-one no-no in this endeavour. That’s why the next step is so important: reviewing previous research on your topic. Depending on what you find in that step, you might need to revise your research question; iterating between your question and the existing literature is a normal process. But don’t worry: it doesn’t go on forever. In fact, the iterations taper off – and your research question stabilises – as you develop a firm grasp of the current state of knowledge on your topic.

Step 3: Review previous research

In academic research, from articles to books, it’s common to find a section called a ‘literature review’. The purpose of that section is to describe the state of the art in knowledge on the research question that a project has posed. It demonstrates that researchers have thoroughly and systematically reviewed the relevant findings of previous studies on their topic, and that they have something novel to contribute.

Your own research project should include something like this, even if it’s a high-school term paper. In the research planning process, you’ll want to list at least half a dozen bullet points stating the major findings on your topic by other people. In relation to those findings, you should be able to specify where your project could provide new and necessary insights. There are two basic rhetorical positions one can take in framing the novelty-plus-importance argument required of academic research:

  • Position 1 requires you to build on or extend a set of existing ideas; that means saying something like: ‘Person A has argued that X is true about gender; this implies Y, which has not yet been tested. My project will test Y, and if I find evidence to support it, that will change the way we understand gender.’
  • Position 2 is to argue that there is a gap in existing knowledge, either because previous research has reached conflicting conclusions or has failed to consider something important. For example, one could say that research on middle schoolers and gender has been limited by being conducted primarily in coeducational environments, and that findings might differ dramatically if research were conducted in more schools where the student body was all-male or all-female.

Your overall goal in this step of the process is to show that your research will be part of a larger conversation: that is, how your project flows from what’s already known, and how it advances, extends or challenges that existing body of knowledge. That will be the contribution of your project, and it constitutes the motivation for your research.

Two things are worth mentioning about your search for sources of relevant previous research. First, you needn’t look only at studies on your precise topic. For example, if you want to study gender-identity formation in schools, you shouldn’t restrict yourself to studies of schools; the empirical setting (schools) is secondary to the larger social process that interests you (how people form gender identity). That process occurs in many different settings, so cast a wide net. Second, be sure to use legitimate sources – meaning publications that have been through some sort of vetting process, whether that involves peer review (as with academic journal articles you might find via Google Scholar) or editorial review (as you’d find in well-known mass media publications, such as The Economist or The Washington Post ). What you’ll want to avoid is using unvetted sources such as personal blogs or Wikipedia. Why? Because anybody can write anything in those forums, and there is no way to know – unless you’re already an expert – if the claims you find there are accurate. Often, they’re not.

Step 4: Choose your data and methods

Whatever your research question is, eventually you’ll need to consider which data source and analytical strategy are most likely to provide the answers you’re seeking. One starting point is to consider whether your question would be best addressed by qualitative data (such as interviews, observations or historical records), quantitative data (such as surveys or census records) or some combination of both. Your ideas about data sources will, in turn, suggest options for analytical methods.

You might need to collect your own data, or you might find everything you need readily available in an existing dataset someone else has created. A great place to start is with a research librarian: university libraries always have them and, at public universities, those librarians can work with the public, including people who aren’t affiliated with the university. If you don’t happen to have a public university and its library close at hand, an ordinary public library can still be a good place to start: the librarians are often well versed in accessing data sources that might be relevant to your study, such as the census, or historical archives, or the Survey of Consumer Finances.

Because your task at this point is to plan research, rather than conduct it, the purpose of this step is not to commit you irrevocably to a course of action. Instead, your goal here is to think through a feasible approach to answering your research question. You’ll need to find out, for example, whether the data you want exist; if not, do you have a realistic chance of gathering the data yourself, or would it be better to modify your research question? In terms of analysis, would your strategy require you to apply statistical methods? If so, do you have those skills? If not, do you have time to learn them, or money to hire a research assistant to run the analysis for you?

Please be aware that qualitative methods in particular are not the casual undertaking they might appear to be. Many people make the mistake of thinking that only quantitative data and methods are scientific and systematic, while qualitative methods are just a fancy way of saying: ‘I talked to some people, read some old newspapers, and drew my own conclusions.’ Nothing could be further from the truth. In the final section of this guide, you’ll find some links to resources that will provide more insight on standards and procedures governing qualitative research, but suffice it to say: there are rules about what constitutes legitimate evidence and valid analytical procedure for qualitative data, just as there are for quantitative data.

Circle back and consider revising your initial plans

As you work through these four steps in planning your project, it’s perfectly normal to circle back and revise. Research planning is rarely a linear process. It’s also common for new and unexpected avenues to suggest themselves. As the sociologist Thorstein Veblen wrote in 1908 : ‘The outcome of any serious research can only be to make two questions grow where only one grew before.’ That’s as true of research planning as it is of a completed project. Try to enjoy the horizons that open up for you in this process, rather than becoming overwhelmed; the four steps, along with the two exercises that follow, will help you focus your plan and make it manageable.

Key points – How to plan a research project

  • Planning a research project is essential no matter your academic level or field of study. There is no one ‘best’ way to design research, but there are certain guidelines that can be helpfully applied across disciplines.
  • Orient yourself to knowledge-creation. Make the shift from being a consumer of information to being a producer of information.
  • Define your research question. Your question frames the rest of your project, sets the scope, and determines the kinds of answers you can find.
  • Review previous research on your question. Survey the existing body of relevant knowledge to ensure that your research will be part of a larger conversation.
  • Choose your data and methods. For instance, will you be collecting qualitative data, via interviews, or numerical data, via surveys?
  • Circle back and consider revising your initial plans. Expect your research question in particular to undergo multiple rounds of refinement as you learn more about your topic.

Good research questions tend to beget more questions. This can be frustrating for those who want to get down to business right away. Try to make room for the unexpected: this is usually how knowledge advances. Many of the most significant discoveries in human history have been made by people who were looking for something else entirely. There are ways to structure your research planning process without over-constraining yourself; the two exercises below are a start, and you can find further methods in the Links and Books section.

The following exercise provides a structured process for advancing your research project planning. After completing it, you’ll be able to do the following:

  • describe clearly and concisely the question you’ve chosen to study
  • summarise the state of the art in knowledge about the question, and where your project could contribute new insight
  • identify the best strategy for gathering and analysing relevant data

In other words, the following provides a systematic means to establish the building blocks of your research project.

Exercise 1: Definition of research question and sources

This exercise prompts you to select and clarify your general interest area, develop a research question, and investigate sources of information. The annotated bibliography will also help you refine your research question so that you can begin the second assignment, a description of the phenomenon you wish to study.

Jot down a few bullet points in response to these two questions, with the understanding that you’ll probably go back and modify your answers as you begin reading other studies relevant to your topic:

  • What will be the general topic of your paper?
  • What will be the specific topic of your paper?

b) Research question(s)

Use the following guidelines to frame a research question – or questions – that will drive your analysis. As with Part 1 above, you’ll probably find it necessary to change or refine your research question(s) as you complete future assignments.

  • Your question should be phrased so that it can’t be answered with a simple ‘yes’ or ‘no’.
  • Your question should have more than one plausible answer.
  • Your question should draw relationships between two or more concepts; framing the question in terms of How? or What? often works better than asking Why ?

c) Annotated bibliography

Most or all of your background information should come from two sources: scholarly books and journals, or reputable mass media sources. You might be able to access journal articles electronically through your library, using search engines such as JSTOR and Google Scholar. This can save you a great deal of time compared with going to the library in person to search periodicals. General news sources, such as those accessible through LexisNexis, are acceptable, but should be cited sparingly, since they don’t carry the same level of credibility as scholarly sources. As discussed above, unvetted sources such as blogs and Wikipedia should be avoided, because the quality of the information they provide is unreliable and often misleading.

To create an annotated bibliography, provide the following information for at least 10 sources relevant to your specific topic, using the format suggested below.

Name of author(s):
Publication date:
Title of book, chapter, or article:
If a chapter or article, title of journal or book where they appear:
Brief description of this work, including main findings and methods ( c 75 words):
Summary of how this work contributes to your project ( c 75 words):
Brief description of the implications of this work ( c 25 words):
Identify any gap or controversy in knowledge this work points up, and how your project could address those problems ( c 50 words):

Exercise 2: Towards an analysis

Develop a short statement ( c 250 words) about the kind of data that would be useful to address your research question, and how you’d analyse it. Some questions to consider in writing this statement include:

  • What are the central concepts or variables in your project? Offer a brief definition of each.
  • Do any data sources exist on those concepts or variables, or would you need to collect data?
  • Of the analytical strategies you could apply to that data, which would be the most appropriate to answer your question? Which would be the most feasible for you? Consider at least two methods, noting their advantages or disadvantages for your project.

Links & books

One of the best texts ever written about planning and executing research comes from a source that might be unexpected: a 60-year-old work on urban planning by a self-trained scholar. The classic book The Death and Life of Great American Cities (1961) by Jane Jacobs (available complete and free of charge via this link ) is worth reading in its entirety just for the pleasure of it. But the final 20 pages – a concluding chapter titled ‘The Kind of Problem a City Is’ – are really about the process of thinking through and investigating a problem. Highly recommended as a window into the craft of research.

Jacobs’s text references an essay on advancing human knowledge by the mathematician Warren Weaver. At the time, Weaver was director of the Rockefeller Foundation, in charge of funding basic research in the natural and medical sciences. Although the essay is titled ‘A Quarter Century in the Natural Sciences’ (1960) and appears at first blush to be merely a summation of one man’s career, it turns out to be something much bigger and more interesting: a meditation on the history of human beings seeking answers to big questions about the world. Weaver goes back to the 17th century to trace the origins of systematic research thinking, with enthusiasm and vivid anecdotes that make the process come alive. The essay is worth reading in its entirety, and is available free of charge via this link .

For those seeking a more in-depth, professional-level discussion of the logic of research design, the political scientist Harvey Starr provides insight in a compact format in the article ‘Cumulation from Proper Specification: Theory, Logic, Research Design, and “Nice” Laws’ (2005). Starr reviews the ‘research triad’, consisting of the interlinked considerations of formulating a question, selecting relevant theories and applying appropriate methods. The full text of the article, published in the scholarly journal Conflict Management and Peace Science , is available, free of charge, via this link .

Finally, the book Getting What You Came For (1992) by Robert Peters is not only an outstanding guide for anyone contemplating graduate school – from the application process onward – but it also includes several excellent chapters on planning and executing research, applicable across a wide variety of subject areas. It was an invaluable resource for me 25 years ago, and it remains in print with good reason; I recommend it to all my students, particularly Chapter 16 (‘The Thesis Topic: Finding It’), Chapter 17 (‘The Thesis Proposal’) and Chapter 18 (‘The Thesis: Writing It’).

research planning

How to cope with climate anxiety

It’s normal to feel troubled by the climate crisis. These practices can help keep your response manageable and constructive

by Lucia Tecuta

research planning

Emerging therapies

How to use cooking as a form of therapy

No matter your culinary skills, spend some reflective time in the kitchen to nourish and renew your sense of self

by Charlotte Hastings

research planning

Meaning and the good life

How to appreciate what you have

To better face an imperfect world, try a deeper reflection on the things, people and legacies that make your life possible

by Avram Alpert

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology

Research Design | Step-by-Step Guide with Examples

Published on 5 May 2022 by Shona McCombes . Revised on 20 March 2023.

A research design is a strategy for answering your research question  using empirical data. Creating a research design means making decisions about:

  • Your overall aims and approach
  • The type of research design you’ll use
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods
  • The procedures you’ll follow to collect data
  • Your data analysis methods

A well-planned research design helps ensure that your methods match your research aims and that you use the right kind of analysis for your data.

Table of contents

Step 1: consider your aims and approach, step 2: choose a type of research design, step 3: identify your population and sampling method, step 4: choose your data collection methods, step 5: plan your data collection procedures, step 6: decide on your data analysis strategies, frequently asked questions.

  • Introduction

Before you can start designing your research, you should already have a clear idea of the research question you want to investigate.

There are many different ways you could go about answering this question. Your research design choices should be driven by your aims and priorities – start by thinking carefully about what you want to achieve.

The first choice you need to make is whether you’ll take a qualitative or quantitative approach.

Qualitative research designs tend to be more flexible and inductive , allowing you to adjust your approach based on what you find throughout the research process.

Quantitative research designs tend to be more fixed and deductive , with variables and hypotheses clearly defined in advance of data collection.

It’s also possible to use a mixed methods design that integrates aspects of both approaches. By combining qualitative and quantitative insights, you can gain a more complete picture of the problem you’re studying and strengthen the credibility of your conclusions.

Practical and ethical considerations when designing research

As well as scientific considerations, you need to think practically when designing your research. If your research involves people or animals, you also need to consider research ethics .

  • How much time do you have to collect data and write up the research?
  • Will you be able to gain access to the data you need (e.g., by travelling to a specific location or contacting specific people)?
  • Do you have the necessary research skills (e.g., statistical analysis or interview techniques)?
  • Will you need ethical approval ?

At each stage of the research design process, make sure that your choices are practically feasible.

Prevent plagiarism, run a free check.

Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research.

Types of quantitative research designs

Quantitative designs can be split into four main types. Experimental and   quasi-experimental designs allow you to test cause-and-effect relationships, while descriptive and correlational designs allow you to measure variables and describe relationships between them.

With descriptive and correlational designs, you can get a clear picture of characteristics, trends, and relationships as they exist in the real world. However, you can’t draw conclusions about cause and effect (because correlation doesn’t imply causation ).

Experiments are the strongest way to test cause-and-effect relationships without the risk of other variables influencing the results. However, their controlled conditions may not always reflect how things work in the real world. They’re often also more difficult and expensive to implement.

Types of qualitative research designs

Qualitative designs are less strictly defined. This approach is about gaining a rich, detailed understanding of a specific context or phenomenon, and you can often be more creative and flexible in designing your research.

The table below shows some common types of qualitative design. They often have similar approaches in terms of data collection, but focus on different aspects when analysing the data.

Your research design should clearly define who or what your research will focus on, and how you’ll go about choosing your participants or subjects.

In research, a population is the entire group that you want to draw conclusions about, while a sample is the smaller group of individuals you’ll actually collect data from.

Defining the population

A population can be made up of anything you want to study – plants, animals, organisations, texts, countries, etc. In the social sciences, it most often refers to a group of people.

For example, will you focus on people from a specific demographic, region, or background? Are you interested in people with a certain job or medical condition, or users of a particular product?

The more precisely you define your population, the easier it will be to gather a representative sample.

Sampling methods

Even with a narrowly defined population, it’s rarely possible to collect data from every individual. Instead, you’ll collect data from a sample.

To select a sample, there are two main approaches: probability sampling and non-probability sampling . The sampling method you use affects how confidently you can generalise your results to the population as a whole.

Probability sampling is the most statistically valid option, but it’s often difficult to achieve unless you’re dealing with a very small and accessible population.

For practical reasons, many studies use non-probability sampling, but it’s important to be aware of the limitations and carefully consider potential biases. You should always make an effort to gather a sample that’s as representative as possible of the population.

Case selection in qualitative research

In some types of qualitative designs, sampling may not be relevant.

For example, in an ethnography or a case study, your aim is to deeply understand a specific context, not to generalise to a population. Instead of sampling, you may simply aim to collect as much data as possible about the context you are studying.

In these types of design, you still have to carefully consider your choice of case or community. You should have a clear rationale for why this particular case is suitable for answering your research question.

For example, you might choose a case study that reveals an unusual or neglected aspect of your research problem, or you might choose several very similar or very different cases in order to compare them.

Data collection methods are ways of directly measuring variables and gathering information. They allow you to gain first-hand knowledge and original insights into your research problem.

You can choose just one data collection method, or use several methods in the same study.

Survey methods

Surveys allow you to collect data about opinions, behaviours, experiences, and characteristics by asking people directly. There are two main survey methods to choose from: questionnaires and interviews.

Observation methods

Observations allow you to collect data unobtrusively, observing characteristics, behaviours, or social interactions without relying on self-reporting.

Observations may be conducted in real time, taking notes as you observe, or you might make audiovisual recordings for later analysis. They can be qualitative or quantitative.

Other methods of data collection

There are many other ways you might collect data depending on your field and topic.

If you’re not sure which methods will work best for your research design, try reading some papers in your field to see what data collection methods they used.

Secondary data

If you don’t have the time or resources to collect data from the population you’re interested in, you can also choose to use secondary data that other researchers already collected – for example, datasets from government surveys or previous studies on your topic.

With this raw data, you can do your own analysis to answer new research questions that weren’t addressed by the original study.

Using secondary data can expand the scope of your research, as you may be able to access much larger and more varied samples than you could collect yourself.

However, it also means you don’t have any control over which variables to measure or how to measure them, so the conclusions you can draw may be limited.

As well as deciding on your methods, you need to plan exactly how you’ll use these methods to collect data that’s consistent, accurate, and unbiased.

Planning systematic procedures is especially important in quantitative research, where you need to precisely define your variables and ensure your measurements are reliable and valid.

Operationalisation

Some variables, like height or age, are easily measured. But often you’ll be dealing with more abstract concepts, like satisfaction, anxiety, or competence. Operationalisation means turning these fuzzy ideas into measurable indicators.

If you’re using observations , which events or actions will you count?

If you’re using surveys , which questions will you ask and what range of responses will be offered?

You may also choose to use or adapt existing materials designed to measure the concept you’re interested in – for example, questionnaires or inventories whose reliability and validity has already been established.

Reliability and validity

Reliability means your results can be consistently reproduced , while validity means that you’re actually measuring the concept you’re interested in.

For valid and reliable results, your measurement materials should be thoroughly researched and carefully designed. Plan your procedures to make sure you carry out the same steps in the same way for each participant.

If you’re developing a new questionnaire or other instrument to measure a specific concept, running a pilot study allows you to check its validity and reliability in advance.

Sampling procedures

As well as choosing an appropriate sampling method, you need a concrete plan for how you’ll actually contact and recruit your selected sample.

That means making decisions about things like:

  • How many participants do you need for an adequate sample size?
  • What inclusion and exclusion criteria will you use to identify eligible participants?
  • How will you contact your sample – by mail, online, by phone, or in person?

If you’re using a probability sampling method, it’s important that everyone who is randomly selected actually participates in the study. How will you ensure a high response rate?

If you’re using a non-probability method, how will you avoid bias and ensure a representative sample?

Data management

It’s also important to create a data management plan for organising and storing your data.

Will you need to transcribe interviews or perform data entry for observations? You should anonymise and safeguard any sensitive data, and make sure it’s backed up regularly.

Keeping your data well organised will save time when it comes to analysing them. It can also help other researchers validate and add to your findings.

On their own, raw data can’t answer your research question. The last step of designing your research is planning how you’ll analyse the data.

Quantitative data analysis

In quantitative research, you’ll most likely use some form of statistical analysis . With statistics, you can summarise your sample data, make estimates, and test hypotheses.

Using descriptive statistics , you can summarise your sample data in terms of:

  • The distribution of the data (e.g., the frequency of each score on a test)
  • The central tendency of the data (e.g., the mean to describe the average score)
  • The variability of the data (e.g., the standard deviation to describe how spread out the scores are)

The specific calculations you can do depend on the level of measurement of your variables.

Using inferential statistics , you can:

  • Make estimates about the population based on your sample data.
  • Test hypotheses about a relationship between variables.

Regression and correlation tests look for associations between two or more variables, while comparison tests (such as t tests and ANOVAs ) look for differences in the outcomes of different groups.

Your choice of statistical test depends on various aspects of your research design, including the types of variables you’re dealing with and the distribution of your data.

Qualitative data analysis

In qualitative research, your data will usually be very dense with information and ideas. Instead of summing it up in numbers, you’ll need to comb through the data in detail, interpret its meanings, identify patterns, and extract the parts that are most relevant to your research question.

Two of the most common approaches to doing this are thematic analysis and discourse analysis .

There are many other ways of analysing qualitative data depending on the aims of your research. To get a sense of potential approaches, try reading some qualitative research papers in your field.

A sample is a subset of individuals from a larger population. Sampling means selecting the group that you will actually collect data from in your research.

For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

Statistical sampling allows you to test a hypothesis about the characteristics of a population. There are various sampling methods you can use to ensure that your sample is representative of the population as a whole.

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2023, March 20). Research Design | Step-by-Step Guide with Examples. Scribbr. Retrieved 14 May 2024, from https://www.scribbr.co.uk/research-methods/research-design/

Is this article helpful?

Shona McCombes

Shona McCombes

Logo for OPEN OKSTATE

Planning Research

research planning

Once working from a research paradigm it becomes possible to start making concrete choices about method(s). Depending on the project, this will involve choices about things like:

  • Who will be involved? How will they be selected/contacted?
  • How data will be collected
  • How data will be managed and stored securely
  • Designing, producing and piloting research instruments
  • Determining the basis of rigour in the study and the “trustworthiness”(credibility, transferability, dependability, and confirmability) of the data(Guba, 1981; Shento, 2004)
  • Ensuring ethical good practice is built into the project (see below)
  • Setting a plan for data analysis

The data collection phase can begin once these decisions are made. It can be very tempting to start collecting data as soon as possible in the research process as this gives a sense of progress. However, it is usually worth getting things exactly right before collecting data as an error found in your approach further down the line can be harder to correct or recalibrate around. From here, things become a bit less generic as the specifics of data collection and analysis are going to be determined by the research methods being used. There are additional aspects which it is worth considering in detail at the research design stage.

Research Methods Handbook Copyright © 2020 by Rob Farrow; Francisco Iniesto; Martin Weller; and Rebecca Pitt is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Pharmacol Pharmacother
  • v.4(2); Apr-Jun 2013

The critical steps for successful research: The research proposal and scientific writing: (A report on the pre-conference workshop held in conjunction with the 64 th annual conference of the Indian Pharmaceutical Congress-2012)

Pitchai balakumar.

Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong. Kedah Darul Aman, Malaysia

Mohammed Naseeruddin Inamdar

1 Department of Pharmacology, Al-Ameen College of Pharmacy, Bengaluru, Karnataka, India

Gowraganahalli Jagadeesh

2 Division of Cardiovascular and Renal Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, USA

An interactive workshop on ‘The Critical Steps for Successful Research: The Research Proposal and Scientific Writing’ was conducted in conjunction with the 64 th Annual Conference of the Indian Pharmaceutical Congress-2012 at Chennai, India. In essence, research is performed to enlighten our understanding of a contemporary issue relevant to the needs of society. To accomplish this, a researcher begins search for a novel topic based on purpose, creativity, critical thinking, and logic. This leads to the fundamental pieces of the research endeavor: Question, objective, hypothesis, experimental tools to test the hypothesis, methodology, and data analysis. When correctly performed, research should produce new knowledge. The four cornerstones of good research are the well-formulated protocol or proposal that is well executed, analyzed, discussed and concluded. This recent workshop educated researchers in the critical steps involved in the development of a scientific idea to its successful execution and eventual publication.

INTRODUCTION

Creativity and critical thinking are of particular importance in scientific research. Basically, research is original investigation undertaken to gain knowledge and understand concepts in major subject areas of specialization, and includes the generation of ideas and information leading to new or substantially improved scientific insights with relevance to the needs of society. Hence, the primary objective of research is to produce new knowledge. Research is both theoretical and empirical. It is theoretical because the starting point of scientific research is the conceptualization of a research topic and development of a research question and hypothesis. Research is empirical (practical) because all of the planned studies involve a series of observations, measurements, and analyses of data that are all based on proper experimental design.[ 1 – 9 ]

The subject of this report is to inform readers of the proceedings from a recent workshop organized by the 64 th Annual conference of the ‘ Indian Pharmaceutical Congress ’ at SRM University, Chennai, India, from 05 to 06 December 2012. The objectives of the workshop titled ‘The Critical Steps for Successful Research: The Research Proposal and Scientific Writing,’ were to assist participants in developing a strong fundamental understanding of how best to develop a research or study protocol, and communicate those research findings in a conference setting or scientific journal. Completing any research project requires meticulous planning, experimental design and execution, and compilation and publication of findings in the form of a research paper. All of these are often unfamiliar to naïve researchers; thus, the purpose of this workshop was to teach participants to master the critical steps involved in the development of an idea to its execution and eventual publication of the results (See the last section for a list of learning objectives).

THE STRUCTURE OF THE WORKSHOP

The two-day workshop was formatted to include key lectures and interactive breakout sessions that focused on protocol development in six subject areas of the pharmaceutical sciences. This was followed by sessions on scientific writing. DAY 1 taught the basic concepts of scientific research, including: (1) how to formulate a topic for research and to describe the what, why , and how of the protocol, (2) biomedical literature search and review, (3) study designs, statistical concepts, and result analyses, and (4) publication ethics. DAY 2 educated the attendees on the basic elements and logistics of writing a scientific paper and thesis, and preparation of poster as well as oral presentations.

The final phase of the workshop was the ‘Panel Discussion,’ including ‘Feedback/Comments’ by participants. There were thirteen distinguished speakers from India and abroad. Approximately 120 post-graduate and pre-doctoral students, young faculty members, and scientists representing industries attended the workshop from different parts of the country. All participants received a printed copy of the workshop manual and supporting materials on statistical analyses of data.

THE BASIC CONCEPTS OF RESEARCH: THE KEY TO GETTING STARTED IN RESEARCH

A research project generally comprises four key components: (1) writing a protocol, (2) performing experiments, (3) tabulating and analyzing data, and (4) writing a thesis or manuscript for publication.

Fundamentals in the research process

A protocol, whether experimental or clinical, serves as a navigator that evolves from a basic outline of the study plan to become a qualified research or grant proposal. It provides the structural support for the research. Dr. G. Jagadeesh (US FDA), the first speaker of the session, spoke on ‘ Fundamentals in research process and cornerstones of a research project .’ He discussed at length the developmental and structural processes in preparing a research protocol. A systematic and step-by-step approach is necessary in planning a study. Without a well-designed protocol, there would be a little chance for successful completion of a research project or an experiment.

Research topic

The first and the foremost difficult task in research is to identify a topic for investigation. The research topic is the keystone of the entire scientific enterprise. It begins the project, drives the entire study, and is crucial for moving the project forward. It dictates the remaining elements of the study [ Table 1 ] and thus, it should not be too narrow or too broad or unfocused. Because of these potential pitfalls, it is essential that a good or novel scientific idea be based on a sound concept. Creativity, critical thinking, and logic are required to generate new concepts and ideas in solving a research problem. Creativity involves critical thinking and is associated with generating many ideas. Critical thinking is analytical, judgmental, and involves evaluating choices before making a decision.[ 4 ] Thus, critical thinking is convergent type thinking that narrows and refines those divergent ideas and finally settles to one idea for an in-depth study. The idea on which a research project is built should be novel, appropriate to achieve within the existing conditions, and useful to the society at large. Therefore, creativity and critical thinking assist biomedical scientists in research that results in funding support, novel discovery, and publication.[ 1 , 4 ]

Elements of a study protocol

An external file that holds a picture, illustration, etc.
Object name is JPP-4-130-g001.jpg

Research question

The next most crucial aspect of a study protocol is identifying a research question. It should be a thought-provoking question. The question sets the framework. It emerges from the title, findings/results, and problems observed in previous studies. Thus, mastering the literature, attendance at conferences, and discussion in journal clubs/seminars are sources for developing research questions. Consider the following example in developing related research questions from the research topic.

Hepatoprotective activity of Terminalia arjuna and Apium graveolens on paracetamol-induced liver damage in albino rats.

How is paracetamol metabolized in the body? Does it involve P450 enzymes? How does paracetamol cause liver injury? What are the mechanisms by which drugs can alleviate liver damage? What biochemical parameters are indicative of liver injury? What major endogenous inflammatory molecules are involved in paracetamol-induced liver damage?

A research question is broken down into more precise objectives. The objectives lead to more precise methods and definition of key terms. The objectives should be SMART-Specific, Measurable, Achievable, Realistic, Time-framed,[ 10 ] and should cover the entire breadth of the project. The objectives are sometimes organized into hierarchies: Primary, secondary, and exploratory; or simply general and specific. Study the following example:

To evaluate the safety and tolerability of single oral doses of compound X in normal volunteers.

To assess the pharmacokinetic profile of compound X following single oral doses.

To evaluate the incidence of peripheral edema reported as an adverse event.

The objectives and research questions are then formulated into a workable or testable hypothesis. The latter forces us to think carefully about what comparisons will be needed to answer the research question, and establishes the format for applying statistical tests to interpret the results. The hypothesis should link a process to an existing or postulated biologic pathway. A hypothesis is written in a form that can yield measurable results. Studies that utilize statistics to compare groups of data should have a hypothesis. Consider the following example:

  • The hepatoprotective activity of Terminalia arjuna is superior to that of Apium graveolens against paracetamol-induced liver damage in albino rats.

All biological research, including discovery science, is hypothesis-driven. However, not all studies need be conducted with a hypothesis. For example, descriptive studies (e.g., describing characteristics of a plant, or a chemical compound) do not need a hypothesis.[ 1 ]

Relevance of the study

Another important section to be included in the protocol is ‘significance of the study.’ Its purpose is to justify the need for the research that is being proposed (e.g., development of a vaccine for a disease). In summary, the proposed study should demonstrate that it represents an advancement in understanding and that the eventual results will be meaningful, contribute to the field, and possibly even impact society.

Biomedical literature

A literature search may be defined as the process of examining published sources of information on a research or review topic, thesis, grant application, chemical, drug, disease, or clinical trial, etc. The quantity of information available in print or electronically (e.g., the internet) is immense and growing with time. A researcher should be familiar with the right kinds of databases and search engines to extract the needed information.[ 3 , 6 ]

Dr. P. Balakumar (Institute of Pharmacy, Rajendra Institute of Technology and Sciences, Sirsa, Haryana; currently, Faculty of Pharmacy, AIMST University, Malaysia) spoke on ‘ Biomedical literature: Searching, reviewing and referencing .’ He schematically explained the basis of scientific literature, designing a literature review, and searching literature. After an introduction to the genesis and diverse sources of scientific literature searches, the use of PubMed, one of the premier databases used for biomedical literature searches world-wide, was illustrated with examples and screenshots. Several companion databases and search engines are also used for finding information related to health sciences, and they include Embase, Web of Science, SciFinder, The Cochrane Library, International Pharmaceutical Abstracts, Scopus, and Google Scholar.[ 3 ] Literature searches using alternative interfaces for PubMed such as GoPubMed, Quertle, PubFocus, Pubget, and BibliMed were discussed. The participants were additionally informed of databases on chemistry, drugs and drug targets, clinical trials, toxicology, and laboratory animals (reviewed in ref[ 3 ]).

Referencing and bibliography are essential in scientific writing and publication.[ 7 ] Referencing systems are broadly classified into two major types, such as Parenthetical and Notation systems. Parenthetical referencing is also known as Harvard style of referencing, while Vancouver referencing style and ‘Footnote’ or ‘Endnote’ are placed under Notation referencing systems. The participants were educated on each referencing system with examples.

Bibliography management

Dr. Raj Rajasekaran (University of California at San Diego, CA, USA) enlightened the audience on ‘ bibliography management ’ using reference management software programs such as Reference Manager ® , Endnote ® , and Zotero ® for creating and formatting bibliographies while writing a manuscript for publication. The discussion focused on the use of bibliography management software in avoiding common mistakes such as incomplete references. Important steps in bibliography management, such as creating reference libraries/databases, searching for references using PubMed/Google scholar, selecting and transferring selected references into a library, inserting citations into a research article and formatting bibliographies, were presented. A demonstration of Zotero®, a freely available reference management program, included the salient features of the software, adding references from PubMed using PubMed ID, inserting citations and formatting using different styles.

Writing experimental protocols

The workshop systematically instructed the participants in writing ‘ experimental protocols ’ in six disciplines of Pharmaceutical Sciences.: (1) Pharmaceutical Chemistry (presented by Dr. P. V. Bharatam, NIPER, Mohali, Punjab); (2) Pharmacology (presented by Dr. G. Jagadeesh and Dr. P. Balakumar); (3) Pharmaceutics (presented by Dr. Jayant Khandare, Piramal Life Sciences, Mumbai); (4) Pharmacy Practice (presented by Dr. Shobha Hiremath, Al-Ameen College of Pharmacy, Bengaluru); (5) Pharmacognosy and Phytochemistry (presented by Dr. Salma Khanam, Al-Ameen College of Pharmacy, Bengaluru); and (6) Pharmaceutical Analysis (presented by Dr. Saranjit Singh, NIPER, Mohali, Punjab). The purpose of the research plan is to describe the what (Specific Aims/Objectives), why (Background and Significance), and how (Design and Methods) of the proposal.

The research plan should answer the following questions: (a) what do you intend to do; (b) what has already been done in general, and what have other researchers done in the field; (c) why is this worth doing; (d) how is it innovative; (e) what will this new work add to existing knowledge; and (f) how will the research be accomplished?

In general, the format used by the faculty in all subjects is shown in Table 2 .

Elements of a research protocol

An external file that holds a picture, illustration, etc.
Object name is JPP-4-130-g002.jpg

Biostatistics

Biostatistics is a key component of biomedical research. Highly reputed journals like The Lancet, BMJ, Journal of the American Medical Association, and many other biomedical journals include biostatisticians on their editorial board or reviewers list. This indicates that a great importance is given for learning and correctly employing appropriate statistical methods in biomedical research. The post-lunch session on day 1 of the workshop was largely committed to discussion on ‘ Basic biostatistics .’ Dr. R. Raveendran (JIPMER, Puducherry) and Dr. Avijit Hazra (PGIMER, Kolkata) reviewed, in parallel sessions, descriptive statistics, probability concepts, sample size calculation, choosing a statistical test, confidence intervals, hypothesis testing and ‘ P ’ values, parametric and non-parametric statistical tests, including analysis of variance (ANOVA), t tests, Chi-square test, type I and type II errors, correlation and regression, and summary statistics. This was followed by a practice and demonstration session. Statistics CD, compiled by Dr. Raveendran, was distributed to the participants before the session began and was demonstrated live. Both speakers worked on a variety of problems that involved both clinical and experimental data. They discussed through examples the experimental designs encountered in a variety of studies and statistical analyses performed for different types of data. For the benefit of readers, we have summarized statistical tests applied frequently for different experimental designs and post-hoc tests [ Figure 1 ].

An external file that holds a picture, illustration, etc.
Object name is JPP-4-130-g003.jpg

Conceptual framework for statistical analyses of data. Of the two kinds of variables, qualitative (categorical) and quantitative (numerical), qualitative variables (nominal or ordinal) are not normally distributed. Numerical data that come from normal distributions are analyzed using parametric tests, if not; the data are analyzed using non-parametric tests. The most popularly used Student's t -test compares the means of two populations, data for this test could be paired or unpaired. One-way analysis of variance (ANOVA) is used to compare the means of three or more independent populations that are normally distributed. Applying t test repeatedly in pair (multiple comparison), to compare the means of more than two populations, will increase the probability of type I error (false positive). In this case, for proper interpretation, we need to adjust the P values. Repeated measures ANOVA is used to compare the population means if more than two observations coming from same subject over time. The null hypothesis is rejected with a ‘ P ’ value of less than 0.05, and the difference in population means is considered to be statistically significant. Subsequently, appropriate post-hoc tests are used for pairwise comparisons of population means. Two-way or three-way ANOVA are considered if two (diet, dose) or three (diet, dose, strain) independent factors, respectively, are analyzed in an experiment (not described in the Figure). Categorical nominal unmatched variables (counts or frequencies) are analyzed by Chi-square test (not shown in the Figure)

Research and publication ethics

The legitimate pursuit of scientific creativity is unfortunately being marred by a simultaneous increase in scientific misconduct. A disproportionate share of allegations involves scientists of many countries, and even from respected laboratories. Misconduct destroys faith in science and scientists and creates a hierarchy of fraudsters. Investigating misconduct also steals valuable time and resources. In spite of these facts, most researchers are not aware of publication ethics.

Day 1 of the workshop ended with a presentation on ‘ research and publication ethics ’ by Dr. M. K. Unnikrishnan (College of Pharmaceutical Sciences, Manipal University, Manipal). He spoke on the essentials of publication ethics that included plagiarism (attempting to take credit of the work of others), self-plagiarism (multiple publications by an author on the same content of work with slightly different wordings), falsification (manipulation of research data and processes and omitting critical data or results), gift authorship (guest authorship), ghostwriting (someone other than the named author (s) makes a major contribution), salami publishing (publishing many papers, with minor differences, from the same study), and sabotage (distracting the research works of others to halt their research completion). Additionally, Dr. Unnikrishnan pointed out the ‘ Ingelfinger rule ’ of stipulating that a scientist must not submit the same original research in two different journals. He also advised the audience that authorship is not just credit for the work but also responsibility for scientific contents of a paper. Although some Indian Universities are instituting preventive measures (e.g., use of plagiarism detecting software, Shodhganga digital archiving of doctoral theses), Dr. Unnikrishnan argued for a great need to sensitize young researchers on the nature and implications of scientific misconduct. Finally, he discussed methods on how editors and peer reviewers should ethically conduct themselves while managing a manuscript for publication.

SCIENTIFIC COMMUNICATION: THE KEY TO SUCCESSFUL SELLING OF FINDINGS

Research outcomes are measured through quality publications. Scientists must not only ‘do’ science but must ‘write’ science. The story of the project must be told in a clear, simple language weaving in previous work done in the field, answering the research question, and addressing the hypothesis set forth at the beginning of the study. Scientific publication is an organic process of planning, researching, drafting, revising, and updating the current knowledge for future perspectives. Writing a research paper is no easier than the research itself. The lectures of Day 2 of the workshop dealt with the basic elements and logistics of writing a scientific paper.

An overview of paper structure and thesis writing

Dr. Amitabh Prakash (Adis, Auckland, New Zealand) spoke on ‘ Learning how to write a good scientific paper .’ His presentation described the essential components of an original research paper and thesis (e.g., introduction, methods, results, and discussion [IMRaD]) and provided guidance on the correct order, in which data should appear within these sections. The characteristics of a good abstract and title and the creation of appropriate key words were discussed. Dr. Prakash suggested that the ‘title of a paper’ might perhaps have a chance to make a good impression, and the title might be either indicative (title that gives the purpose of the study) or declarative (title that gives the study conclusion). He also suggested that an abstract is a succinct summary of a research paper, and it should be specific, clear, and concise, and should have IMRaD structure in brief, followed by key words. Selection of appropriate papers to be cited in the reference list was also discussed. Various unethical authorships were enumerated, and ‘The International Committee of Medical Journal Editors (ICMJE) criteria for authorship’ was explained ( http://www.icmje.org/ethical_1author.html ; also see Table 1 in reference #9). The session highlighted the need for transparency in medical publication and provided a clear description of items that needed to be included in the ‘Disclosures’ section (e.g., sources of funding for the study and potential conflicts of interest of all authors, etc.) and ‘Acknowledgements’ section (e.g., writing assistance and input from all individuals who did not meet the authorship criteria). The final part of the presentation was devoted to thesis writing, and Dr. Prakash provided the audience with a list of common mistakes that are frequently encountered when writing a manuscript.

The backbone of a study is description of results through Text, Tables, and Figures. Dr. S. B. Deshpande (Institute of Medical Sciences, Banaras Hindu University, Varanasi, India) spoke on ‘ Effective Presentation of Results .’ The Results section deals with the observations made by the authors and thus, is not hypothetical. This section is subdivided into three segments, that is, descriptive form of the Text, providing numerical data in Tables, and visualizing the observations in Graphs or Figures. All these are arranged in a sequential order to address the question hypothesized in the Introduction. The description in Text provides clear content of the findings highlighting the observations. It should not be the repetition of facts in tables or graphs. Tables are used to summarize or emphasize descriptive content in the text or to present the numerical data that are unrelated. Illustrations should be used when the evidence bearing on the conclusions of a paper cannot be adequately presented in a written description or in a Table. Tables or Figures should relate to each other logically in sequence and should be clear by themselves. Furthermore, the discussion is based entirely on these observations. Additionally, how the results are applied to further research in the field to advance our understanding of research questions was discussed.

Dr. Peush Sahni (All-India Institute of Medical Sciences, New Delhi) spoke on effectively ‘ structuring the Discussion ’ for a research paper. The Discussion section deals with a systematic interpretation of study results within the available knowledge. He said the section should begin with the most important point relating to the subject studied, focusing on key issues, providing link sentences between paragraphs, and ensuring the flow of text. Points were made to avoid history, not repeat all the results, and provide limitations of the study. The strengths and novel findings of the study should be provided in the discussion, and it should open avenues for future research and new questions. The Discussion section should end with a conclusion stating the summary of key findings. Dr. Sahni gave an example from a published paper for writing a Discussion. In another presentation titled ‘ Writing an effective title and the abstract ,’ Dr. Sahni described the important components of a good title, such as, it should be simple, concise, informative, interesting and eye-catching, accurate and specific about the paper's content, and should state the subject in full indicating study design and animal species. Dr. Sahni explained structured (IMRaD) and unstructured abstracts and discussed a few selected examples with the audience.

Language and style in publication

The next lecture of Dr. Amitabh Prakash on ‘ Language and style in scientific writing: Importance of terseness, shortness and clarity in writing ’ focused on the actual sentence construction, language, grammar and punctuation in scientific manuscripts. His presentation emphasized the importance of brevity and clarity in the writing of manuscripts describing biomedical research. Starting with a guide to the appropriate construction of sentences and paragraphs, attendees were given a brief overview of the correct use of punctuation with interactive examples. Dr. Prakash discussed common errors in grammar and proactively sought audience participation in correcting some examples. Additional discussion was centered on discouraging the use of redundant and expendable words, jargon, and the use of adjectives with incomparable words. The session ended with a discussion of words and phrases that are commonly misused (e.g., data vs . datum, affect vs . effect, among vs . between, dose vs . dosage, and efficacy/efficacious vs . effective/effectiveness) in biomedical research manuscripts.

Working with journals

The appropriateness in selecting the journal for submission and acceptance of the manuscript should be determined by the experience of an author. The corresponding author must have a rationale in choosing the appropriate journal, and this depends upon the scope of the study and the quality of work performed. Dr. Amitabh Prakash spoke on ‘ Working with journals: Selecting a journal, cover letter, peer review process and impact factor ’ by instructing the audience in assessing the true value of a journal, understanding principles involved in the peer review processes, providing tips on making an initial approach to the editorial office, and drafting an appropriate cover letter to accompany the submission. His presentation defined the metrics that are most commonly used to measure journal quality (e.g., impact factor™, Eigenfactor™ score, Article Influence™ score, SCOPUS 2-year citation data, SCImago Journal Rank, h-Index, etc.) and guided attendees on the relative advantages and disadvantages of using each metric. Factors to consider when assessing journal quality were discussed, and the audience was educated on the ‘green’ and ‘gold’ open access publication models. Various peer review models (e.g., double-blind, single-blind, non-blind) were described together with the role of the journal editor in assessing manuscripts and selecting suitable reviewers. A typical checklist sent to referees was shared with the attendees, and clear guidance was provided on the best way to address referee feedback. The session concluded with a discussion of the potential drawbacks of the current peer review system.

Poster and oral presentations at conferences

Posters have become an increasingly popular mode of presentation at conferences, as it can accommodate more papers per meeting, has no time constraint, provides a better presenter-audience interaction, and allows one to select and attend papers of interest. In Figure 2 , we provide instructions, design, and layout in preparing a scientific poster. In the final presentation, Dr. Sahni provided the audience with step-by-step instructions on how to write and format posters for layout, content, font size, color, and graphics. Attendees were given specific guidance on the format of text on slides, the use of color, font type and size, and the use of illustrations and multimedia effects. Moreover, the importance of practical tips while delivering oral or poster presentation was provided to the audience, such as speak slowly and clearly, be informative, maintain eye contact, and listen to the questions from judges/audience carefully before coming up with an answer.

An external file that holds a picture, illustration, etc.
Object name is JPP-4-130-g004.jpg

Guidelines and design to scientific poster presentation. The objective of scientific posters is to present laboratory work in scientific meetings. A poster is an excellent means of communicating scientific work, because it is a graphic representation of data. Posters should have focus points, and the intended message should be clearly conveyed through simple sections: Text, Tables, and Graphs. Posters should be clear, succinct, striking, and eye-catching. Colors should be used only where necessary. Use one font (Arial or Times New Roman) throughout. Fancy fonts should be avoided. All headings should have font size of 44, and be in bold capital letters. Size of Title may be a bit larger; subheading: Font size of 36, bold and caps. References and Acknowledgments, if any, should have font size of 24. Text should have font size between 24 and 30, in order to be legible from a distance of 3 to 6 feet. Do not use lengthy notes

PANEL DISCUSSION: FEEDBACK AND COMMENTS BY PARTICIPANTS

After all the presentations were made, Dr. Jagadeesh began a panel discussion that included all speakers. The discussion was aimed at what we do currently and could do in the future with respect to ‘developing a research question and then writing an effective thesis proposal/protocol followed by publication.’ Dr. Jagadeesh asked the following questions to the panelists, while receiving questions/suggestions from the participants and panelists.

  • Does a Post-Graduate or Ph.D. student receive adequate training, either through an institutional course, a workshop of the present nature, or from the guide?
  • Are these Post-Graduates self-taught (like most of us who learnt the hard way)?
  • How are these guides trained? How do we train them to become more efficient mentors?
  • Does a Post-Graduate or Ph.D. student struggle to find a method (s) to carry out studies? To what extent do seniors/guides help a post graduate overcome technical difficulties? How difficult is it for a student to find chemicals, reagents, instruments, and technical help in conducting studies?
  • Analyses of data and interpretation: Most students struggle without adequate guidance.
  • Thesis and publications frequently feature inadequate/incorrect statistical analyses and representation of data in tables/graphs. The student, their guide, and the reviewers all share equal responsibility.
  • Who initiates and drafts the research paper? The Post-Graduate or their guide?
  • What kind of assistance does a Post-Graduate get from the guide in finalizing a paper for publication?
  • Does the guide insist that each Post-Graduate thesis yield at least one paper, and each Ph.D. thesis more than two papers, plus a review article?

The panelists and audience expressed a variety of views, but were unable to arrive at a decisive conclusion.

WHAT HAVE THE PARTICIPANTS LEARNED?

At the end of this fast-moving two-day workshop, the participants had opportunities in learning the following topics:

  • Sequential steps in developing a study protocol, from choosing a research topic to developing research questions and a hypothesis.
  • Study protocols on different topics in their subject of specialization
  • Searching and reviewing the literature
  • Appropriate statistical analyses in biomedical research
  • Scientific ethics in publication
  • Writing and understanding the components of a research paper (IMRaD)
  • Recognizing the value of good title, running title, abstract, key words, etc
  • Importance of Tables and Figures in the Results section, and their importance in describing findings
  • Evidence-based Discussion in a research paper
  • Language and style in writing a paper and expert tips on getting it published
  • Presentation of research findings at a conference (oral and poster).

Overall, the workshop was deemed very helpful to participants. The participants rated the quality of workshop from “ satisfied ” to “ very satisfied .” A significant number of participants were of the opinion that the time allotted for each presentation was short and thus, be extended from the present two days to four days with adequate time to ask questions. In addition, a ‘hands-on’ session should be introduced for writing a proposal and manuscript. A large number of attendees expressed their desire to attend a similar workshop, if conducted, in the near future.

ACKNOWLEDGMENT

We gratefully express our gratitude to the Organizing Committee, especially Professors K. Chinnasamy, B. G. Shivananda, N. Udupa, Jerad Suresh, Padma Parekh, A. P. Basavarajappa, Mr. S. V. Veerramani, Mr. J. Jayaseelan, and all volunteers of the SRM University. We thank Dr. Thomas Papoian (US FDA) for helpful comments on the manuscript.

The opinions expressed herein are those of Gowraganahalli Jagadeesh and do not necessarily reflect those of the US Food and Drug Administration

Source of Support: Nil

Conflict of Interest: None declared.

Research Paper Planner: Guide

  • 1: Understand Your Assignment
  • 2: Select & Focus Your Topic
  • 3: Explore a Research Question
  • 4: Design Your Research Strategy
  • 5: Finding Sources
  • 6: Read, Note, and Compare Sources
  • 7: Write Thesis Statement
  • 8: Writing the First Draft
  • 9: Evaluate Your First Draft
  • 10: Revise & Rewrite
  • 11: Put Your Paper in Final Form

Reference Librarians

Profile Photo

Welcome to the Research Paper Planner Guide

Welcome to the Guide portion of the BU Libraries' Research Paper Planner (RPP).  This Guide contains links to helpful resources for each step of the research and writing process.   If you have used the Timeline portion of the RPP the links in the Timeline will take you to the links for that step of the process.

This Guide may be used independently of the Timeline to locate resources for each of the following stages of the research and writing process; just click on the Step button to the left to get there.

Surprised that there are so many steps?  Research conducted by librarians and teachers of writing has shown that breaking a research paper or thesis down into these steps is the "normal" process of writing for humanities and social science disciplines.  Using these steps will help you approach your research assignment in a progressive manner that should produce a better final product.  Give it a try and then use the evaluation for to the right to let us know how the RPP worked for you and suggest ways it could be improved.

This work is based on the University of Minnesota's Assignment Calculator but has been modified to meet the needs of the Baylor University community.

  • Research Paper Planner: Timeline This link will take you to the Timeline portion of the Research Paper Planner where you can set a start and end date for your writing project, see the deadlines for each step, print out the Timeline for your project, and/or set up email alerts for each step of the research and writing process.
  • Next: 1: Understand Your Assignment >>
  • Last Updated: Jan 16, 2024 10:55 AM
  • URL: https://libguides.baylor.edu/planner

University Libraries

One Bear Place #97148 Waco, TX 76798-7148

(254) 710-6702

   Ask a Question

Copyright © Baylor® University . All rights reserved.

Report It | Title IX | Mental Health Resources | Anonymous Reporting | Legal Disclosures

  • University Libraries
  • Research Guides
  • Topic Guides
  • Research Methods Guide
  • Research Design & Method

Research Methods Guide: Research Design & Method

  • Introduction
  • Survey Research
  • Interview Research
  • Data Analysis
  • Resources & Consultation

Tutorial Videos: Research Design & Method

Research Methods (sociology-focused)

Qualitative vs. Quantitative Methods (intro)

Qualitative vs. Quantitative Methods (advanced)

research planning

FAQ: Research Design & Method

What is the difference between Research Design and Research Method?

Research design is a plan to answer your research question.  A research method is a strategy used to implement that plan.  Research design and methods are different but closely related, because good research design ensures that the data you obtain will help you answer your research question more effectively.

Which research method should I choose ?

It depends on your research goal.  It depends on what subjects (and who) you want to study.  Let's say you are interested in studying what makes people happy, or why some students are more conscious about recycling on campus.  To answer these questions, you need to make a decision about how to collect your data.  Most frequently used methods include:

  • Observation / Participant Observation
  • Focus Groups
  • Experiments
  • Secondary Data Analysis / Archival Study
  • Mixed Methods (combination of some of the above)

One particular method could be better suited to your research goal than others, because the data you collect from different methods will be different in quality and quantity.   For instance, surveys are usually designed to produce relatively short answers, rather than the extensive responses expected in qualitative interviews.

What other factors should I consider when choosing one method over another?

Time for data collection and analysis is something you want to consider.  An observation or interview method, so-called qualitative approach, helps you collect richer information, but it takes time.  Using a survey helps you collect more data quickly, yet it may lack details.  So, you will need to consider the time you have for research and the balance between strengths and weaknesses associated with each method (e.g., qualitative vs. quantitative).

  • << Previous: Introduction
  • Next: Survey Research >>
  • Last Updated: Aug 21, 2023 10:42 AM
  • Get started
  • Project management
  • CRM and Sales
  • Work management
  • Product development life cycle
  • Comparisons
  • Construction management
  • monday.com updates

The value of a good research plan

research planning

A research plan is a guiding framework that can make or break the efficiency and success of your research project. Oftentimes teams avoid them because they’ve earned a reputation as a dry or actionless document — however, this doesn’t have to be the case.

In this article, we’ll go over the most important aspects of a good research plan and show you how they can be visual and actionable with monday.com Work OS.

Don’t miss more quality content!

Why is the research plan pivotal to a research project.

A research plan is pivotal to a research project because it identifies and helps define your focus, method, and goals while also outlining the research project from start to finish.

This type of plan is often necessary to:

  • Apply for grants or internal company funding.
  • Discover possible research partners or business partners.
  • Take your research from an idea into reality.

It will also control the entire journey of the research project through every stage by defining crucial research questions and the hypothesis (theory) that you’ll strive to prove or disprove.

What goes into a research plan?

The contents of a thorough research plan should include a hypothesis, methodology, and more. There is some variation between academic and commercial research, but these are common elements:

  • Hypothesis:  the problem you are trying to solve and the basis for a theoretical solution. For example, if I reduce my intake of calories, I’ll lose weight.
  • Research questions: research questions help guide your investigation into particular issues. If you were looking into the potential impact of outsourcing production, you might ask something like: how would outsourcing impact our production costs?
  • Research method: the method you’ll use to get the data for your research. For example, a case study, survey, interviews, a clinical trial, or user tests.
  • Definitions: a glossary for the research plan, explaining the terminology that you use throughout the document.
  • Conceptual frameworks:  a conceptual framework helps illustrate what you think you’ll discover with your research. In a sense, it’s a visual representation of a more complex hypothesis.

For commercial plans, there will also likely be a budget and timeline estimate, as well as concrete hypothetical benefits for the company (such as how much money the project should save you).

OK, so you’ve got a handle on the building blocks of a research plan, but how should you actually write it?

How do you write a research plan on monday.com?

The first, and perhaps most crucial part of having a good research plan is having the right medium for creating and sharing it. Using a pre-defined template can also make it much easier to get started.

On monday.com, you can choose from several templates like the Project Proposal Template or better yet the Research Power Tools Template to manage all aspects of your project including important communication with internal and external stakeholders and teammates.

Use your template to:

  • Create workdocs
  • Upload assets
  • Provide feedback
  • Assign task owners
  • Automate communication

The next step in writing a research plan is choosing the topic. To pick the right topic, focus on these factors:

  • What are the priorities of the potential funder/employer, such as the company or institution?
  • Are there any relevant recent studies with results you can build on and explore with further research?
  • Can you creatively adapt your experience — whether post-grad or professional — to make you the natural candidate? They don’t just need to believe in the research project, but also in your ability to manage it successfully.

Do your research, no pun intended. Once you’ve got the topic, you need to work on fleshing out the core ideas with the building blocks we mentioned above.

  • Get specific with your research questions and goals. Don’t go with, “how can we revolutionize our HR practices?” Instead use, “what is the economic and environmental impact of only accepting digital CVs?”
  • Use clear language aimed at gatekeepers.  If it’s a CTO (Chief Technology Officer) or a lab committee, you can use well-known technical terms. If they aren’t technical experts, adjust accordingly.
  • Include preliminary data or highlight similar studies.  For companies, showing that a similar approach helped a competitor is a better argument than an empty assertion.

The recommended length of the plan depends on who you’re sending it to and their expectations. If possible, look at successful examples or directly ask your potential employers about their preferences. Not only do you need the right idea, but you also need to present it in the right way for your research project to have a fighting chance.

What is a good research plan?

A good research plan is one that gets accepted and funded to start doing the research.

If you want to plan a pivotal study, it’s not enough to consider the problem in a vacuum. You also need to evaluate how you can best communicate the value of your project to the gatekeepers.

Consider the entirety of your current situation and what that means for your project.

For example, inputs like funding, staff, IP, and how the scale of the project lines up with your company’s research budget. Or how it aligns with the goals of a University program. If the primary goal of the research is to impact a company or government agency directly, you should consider these stages of research engagement.

Flowchart of research engagement

( Image Source )

  • Inputs: anything from funding and staff to company IP that you need to both run the project and implement any results. Does this line up with the budget?
  • Activities: case studies, trials, surveys, the actual research.
  • Outputs: the final reports, any publications, and raw data.
  • Outcome: how will it directly impact the company, organization, or larger society?
  • Impacts: what are the indirect benefits or downsides?

In an internal research proposal, you can outline these aspects in separate sections. That allows different execs or managers to focus on the details that matter most to them. You must also work to engage stakeholders  and make sure that they understand the importance of your project.

Frequently asked questions

What are the 5 purposes of research.

The 2 primary purposes of research are to gather information or test an existing theory. When broken down further, you can see 5 more specific purposes:

  • Exploratory research  is an early-stage inquiry that explores a topic for further study down the line, like exploring the deep ocean with a submersible vehicle.
  • Descriptive research  aims to explore and describe a specific substance, person, or phenomenon.
  • Explanatory research  is about figuring out the causal relationship, why something happens.
  • Predictive research  is all about trying to predict what might happen in specific situations based on the properties of the research object.
  • Meta-research  looks for overarching insights from multiple sources and tests the validity of common hypotheses.

What is a research work plan?

A research work plan is another name for a research plan, which is a critical component of any research proposal. Universities, labs, and companies use them to evaluate research projects before they decide to accept them.

As a researcher, it’s essential when targeting a funding opportunity of any kind.

What are the methods of research?

There are many research methods ranging from a simple online survey to a high-budget clinical study. Here are some examples of popular data collection methods:

  • Clinical trials
  • Experiments
  • Case studies
  • Observations

Which one is right for your plan depends on your hypothesis, goals, industry regulations, and more.

Create a dynamic research plan

If you want to turn your research project into a reality, you need to go beyond the academic and into management mode.

With a template from monday.com, you can plan out a research project from start to finish. Including goals and objectives, budget estimates, milestones, and more.

Send this article to someone who’d like it.

Integrations

What's new?

Prototype Testing

Live Website Testing

Feedback Surveys

Interview Studies

Card Sorting

Tree Testing

In-Product Prompts

Participant Management

Automated Reports

Templates Gallery

Choose from our library of pre-built mazes to copy, customize, and share with your own users

Browse all templates

Financial Services

Tech & Software

Product Designers

Product Managers

User Researchers

By use case

Concept & Idea Validation

Wireframe & Usability Test

Content & Copy Testing

Feedback & Satisfaction

Content Hub

Educational resources for product, research and design teams

Explore all resources

Question Bank

Research Maturity Model

Guides & Reports

Help Center

Future of User Research Report

The Optimal Path Podcast

Maze Guides | Resources Hub

What is UX Research: The Ultimate Guide for UX Researchers

0% complete

Essential elements of an effective UX research plan (examples + templates)

Conducting UX research without a plan is like moving to another country without knowing the language—confusing and exhausting.

To avoid wasting time and resources, it’s crucial to set achievable research goals and work on developing a research plan that’s clear, comprehensive, and aligned with your overarching business goals and research strategy.

A good UX research plan sets out the parameters for your research, and guides how you’ll gather insights to inform product development. In this chapter, we share a step-by-step guide to creating a research plan, including templates and tactics for you to try. You’ll also find expert tips from Paige Bennett, Senior User Research Manager at Affirm, and Sinéad Davis Cochrane, Research Manager at Workday.

ux research plan

What is a UX research plan?

A UX research plan—not to be confused with a UX research strategy or research design—is a plan to guide individual user experience (UX) research projects.

It's a living document that includes a detailed explanation of tactics, methods, timeline, scope, and task owners. It should be co-created and shared with key stakeholders, so everyone is familiar with the project plan, and product teams can meet strategic goals.

A UX research plan is different to a research strategy and research design in both its purpose and contents. Let’s take a look.

Research plan vs. research design vs. research strategy: What’s the difference?

While your UX research plan should be based on strategy, it’s not the same thing. Your UX strategy is a high-level document that contains goals, budget, vision, and expectations. Meanwhile, a plan is a detailed document explaining how the team will achieve those strategic goals. Research design is the form your research itself takes.

research planning

In short, a strategy is a guide, a plan is what drives action, and design is the action itself.

What are the benefits of using a UX research plan?

Conducting research without goals and parameters is aimless. A UX research plan is beneficial for your product, user, and business—by building a plan for conducting UX research, you can:

Streamline processes and add structure

Work toward specific, measurable goals, align and engage stakeholders, save time by avoiding rework.

The structure of a research plan allows you to set timelines, expectations, and task owners, so everyone on your team is aligned and empowered to make decisions. Since there’s no second guessing what to do next or which methods to use, you’ll find your process becomes simpler and more efficient. It’s also worth standardizing your process to turn your plan into a template that you can reuse for future projects.

When you set research goals based on strategy, you’ll find it easier to track your team’s progress and keep the project in scope, on time, and on budget. With a solid, strategy-based UX research plan you can also track metrics at different stages of the project and adjust future tactics to get better research findings.

“It’s important to make sure your stakeholders are on the same page with regards to scope, timeline, and goals before you start," explains Paige Bennett, Senior User Research Manager at Affirm. That's because, when stakeholders are aligned, they're much more likely to sign off on product changes that result from UX research.

A written plan is a collaborative way to involve stakeholders in your research and turn them into active participants rather than passive observers. As they get involved, they'll make useful contributions and get a better understanding of your goals.

A UX research plan helps you save time and money quite simply because it’s easier and less expensive to make design or prototype changes than it is to fix usability issues once the product is coded or fully launched. Additionally, having a plan gives your team direction, which means they won’t be conducting research and talking to users without motive, and you’ll be making better use of your resources. What’s more, when everyone is aligned on goals, they’re empowered to make informed decisions instead of waiting for their managers’ approval.

What should a UX research plan include?

In French cuisine, the concept of mise en place—putting in place—allows chefs to plan and set up their workspace with all the required ingredients before cooking. Think of your research plan like this—laying out the key steps you need to go through during research, to help you run a successful and more efficient study.

Here’s what you should include in a UX research plan:

  • A brief reminder of the strategy and goals
  • An outline of the research objectives
  • The purpose of the plan and studies
  • A short description of the target audience, sample size, scope, and demographics
  • A detailed list of expectations including deliverables, timings, and type of results
  • An overview of the test methods and a short explanation of why you chose them
  • The test set up or guidelines to outline everything that needs to happen before the study: scenarios, screening questions, and duration of pilot tests
  • Your test scripts, questions to ask, or samples to follow
  • When and how you’ll present the results
  • Cost estimations or requests to go over budget

Collect all UX research findings in one place

Use Maze to run quantitative and qualitative research, influence product design, and shape user-centered products.

research planning

How to create a UX research plan

Now we’ve talked through why you need a research plan, let’s get into the how. Here’s a short step-by-step guide on how to write a research plan that will drive results.

  • Define the problem statement
  • Get stakeholders’ buy-in
  • Identify your objectives
  • Choose the right research method
  • Recruit participants
  • Prepare the brief
  • Establish the timeline
  • Decide how you’ll present your findings

1. Define the problem statement

One of the most important purposes of a research plan is to identify what you’re trying to achieve with the research, and clarify the problem statement. For Paige Bennett , Senior User Research Manager at Affirm, this process begins by sitting together with stakeholders and looking at the problem space.

“We do an exercise called FOG, which stands for ‘Fact, Observation, Guess’, to identify large gaps in knowledge,” says Paige. “Evaluating what you know illuminates questions you still have, which then serves as the foundation of the UX research project.”

You can use different techniques to identify the problem statement, such as stakeholder interviews, team sessions, or analysis of customer feedback. The problem statement should explain what the project is about—helping to define the research scope with clear deliverables and objectives.

2. Identify your objectives

Research objectives need to align with the UX strategy and broader business goals, but you also need to define specific targets to achieve within the research itself—whether that’s understanding a specific problem, or measuring usability metrics . So, before you get into a room with your users and customers, “Think about the research objectives: what you’re doing, why you’re doing it, and what you expect from the UX research process ,” explains Sinéad Davis Cochrane , Research Manager at Workday.

Examples of research objectives might be:

  • Learn at what times users interact with your product
  • Understand why users return (or not) to your website/app
  • Discover what competitor products your users are using
  • Uncover any pain points or challenges users find when navigating with your product
  • Gauge user interest in and prioritize potential new features

A valuable purpose of setting objectives is ensuring your project doesn't suffer from scope creep. This can happen when stakeholders see your research as an opportunity to ask any question. As a researcher , Sinéad believes your objectives can guide the type of research questions you ask and give your research more focus. Otherwise, anything and everything becomes a research question—which will confuse your findings and be overwhelming to manage.

Sinéad shares a list of questions you should ask yourself and the research team to help set objectives:

  • What are you going to do with this information?
  • What decisions is it going to inform?
  • How are you going to leverage these insights?

Another useful exercise to help identify research objectives is by asking questions that help you get to the core of a problem. Ask these types of questions before starting the planning process:

  • Who are the users you’re designing this for?
  • What problems and needs do they have?
  • What are the pain points of using the product?
  • Why are they not using a product like yours?

3. Get stakeholders buy-in

It’s good practice to involve stakeholders at early stages of plan creation to get everyone on board. Sharing your UX research plan with relevant stakeholders means you can gather context, adjust based on comments, and gauge what’s truly important to them. When you present the research plan to key stakeholders, remember to align on the scope of research, and how and when you’ll get back to them with results.

Stakeholders usually have a unique vision of the product, and it’s crucial that you’re able to capture it early on—this doesn’t mean saying yes to everything, but listening to their ideas and having a conversation. Seeing the UX research plan as a living document makes it much easier to edit based on team comments. Plus, the more you listen to other ideas, the easier it will be to evangelize research and get stakeholder buy-in by helping them see the value behind it.

I expect my stakeholders to be participants, and I outline how I expect that to happen. That includes observing interviews, participating in synthesis exercises, or co-presenting research recommendations.

paige-bennett

Paige Bennett , Senior User Research Manager at Affirm

4. Choose the right research method

ux research methods

Choose between the different UX research methods to capture different insights from users.

To define the research methods you’ll use, circle back to your research objectives, what stage of the product development process you’re in, and the constraints, resources, and timeline of the project. It’s good research practice to use a mix of different methods to get a more complete perspective of users’ struggles.

For example, if you’re at the start of the design process, a generative research method such as user interviews or field studies will help you generate new insights about the target audience. Or, if you need to evaluate how a new design performs with users, you can run usability tests to get actionable feedback.

It’s also good practice to mix methods that drive quantitative and qualitative results so you can understand context, and catch the user sentiment behind a metric. For instance, if during a remote usability test, you hear a user go ‘Ugh! Where’s the sign up button?’ you’ll get a broader perspective than if you were just reviewing the number of clicks on the same test task.

Examples of UX research methods to consider include:

  • Five-second testing
  • User interviews
  • Field studies
  • Card sorting
  • Tree testing
  • Focus groups
  • Usability testing
  • Diary studies
  • Live website testing

Check out our top UX research templates . Use them as a shortcut to get started on your research.

5. Determine how to recruit participants

Every research plan should include information about the participants you need for your study, and how you’ll recruit them. To identify your perfect candidate, revisit your goals and the questions that need answering, then build a target user persona including key demographics and use cases. Consider the resources you have available already, by asking yourself:

  • Do you have a user base you can tap into to collect customer insights ?
  • Do you need to hire external participants?
  • What’s your budget to recruit users?
  • How many users do you need to interact with?

When selecting participants, make sure they represent all your target personas. If different types of people will be using a certain product, you need to make sure that the people you research represent these personas. This means not just being inclusive in your recruitment, but considering secondary personas—the people who may not be your target user base, but interact with your product incidentally.

You should also consider recruiting research participants to test the product on different devices. Paige explains: “If prior research has shown that behavior differs greatly between those who use a product on their phone versus their tablet, I need to better understand those differences—so I’m going to make sure my participants include people who have used a product on both devices.”

During this step, make sure to include information about the required number of participants, how you’ll get them to participate, and how much time you need per user. The main ways to recruit testers are:

  • Using an online participant recruitment tool like Maze Panel
  • Putting out physical or digital adverts in spaces that are relevant to your product and user
  • Reaching out to existing users
  • Using participants from previous research
  • Recruiting directly from your website or app with a tool like In-Product Prompts

5.1. Determine how you’ll pay them

You should always reward your test participants for their time and insights. Not only because it’s the right thing to do, but also because if they have an incentive they’re more likely to give you complete and insightful answers. If you’re hosting the studies in person, you’ll also need to cover your participants' travel expenses and secure a research space. Running remote moderated or unmoderated research is often considered to be less expensive and faster to complete.

If you’re testing an international audience, remember to check your proposed payment system works worldwide—this might be an Amazon gift card or prepaid Visa cards.

6. Prepare the brief

The next component of a research plan is to create a brief or guide for your research sessions. The kind of brief you need will vary depending on your research method, but for moderated methods like user interviews, field studies, or focus groups, you’ll need a detailed guide and script. The brief is there to remind you which questions to ask and keep the sessions on track.

Your script should cover:

  • Introduction: A short message you’ll say to participants before the session begins. This works as a starting point for conversations and helps set the tone for the meeting. If you’re testing without a moderator, you should also include an introductory message to explain what the research is about and the type of answers they should give (in terms of length and specificity).
  • Interview questions: Include your list of questions you’ll ask participants during the sessions. These could be examples to help guide the interviews, specific pre-planned questions, or test tasks you’ll ask participants to perform during unmoderated sessions.
  • Outro message: Outline what you'll say at the end of the session, including the next steps, asking participants if they are open to future research, and thanking them for their time. This can be a form you share at the end of asynchronous sessions.

It’s crucial you remember to ask participants for their consent. You should do this at the beginning of the test by asking if they’re okay with you recording the session. Use this space to lay out any compensation agreements as well. Then, ask again at the end of the session if they agree with you keeping the results and using the data for research purposes. If possible, explain exactly what you’ll do with their data. Double check and get your legal team’s sign-off on these forms.

7. Establish the timeline

Next in your plan, estimate how long the research project will take and when you should expect to review the findings. Even if not exact, determining an approximate timeline (e.g., two-three weeks) will enable you to manage stakeholders’ expectations of the process and results.

Many people believe UX research is a lengthy process, so they skip it. When you set up a timeline and get stakeholders aligned with it, you can debunk assumptions and put stakeholders’ minds at ease. Plus, if you’re using a product discovery tool like Maze, you can get answers to your tests within days.

8. Decide how you’ll present your findings

When it comes to sharing your findings with your team, presentation matters. You need to make a clear presentation and demonstrate how user insights will influence design and development. If you’ve conducted UX research in the past, share data that proves how implementing user insights has improved product adoption.

Examples of ways you can present your results include:

  • A physical or digital PDF report with key statistics and takeaways
  • An interactive online report of the individual research questions and their results
  • A presentation explaining the results and your findings
  • A digital whiteboard, like Miro, to display the results

In your plan, mention how you’ll share insights with the product team. For example, if you’re using Maze, you can start by emailing everyone the ready-to-share report and setting up a meeting with the team to identify how to bring those insights to life. This is key, because your research should be the guiding light for new products or updates, if you want to keep development user-centric. Taking care over how you present your findings will impact whether they’re taken seriously and implemented by other stakeholders.

Your UX research plan template: Free template + example

Whether you’re creating the plan yourself or delegating to your team, a clear UX research plan template cuts your prep time in half.

Find our customizable free UX research plan template here , and keep reading for a filled-in example.

ux research plan template

Example: Improving user adoption of a project management tool called Flows

Now, let’s go through how to fill out this template and create a UX research plan with an example.

Executive summary:

Flows aims to increase user adoption and tool engagement by 30% within the next 12 months. Our B2B project management software has been on the market for 3 years and has 25,000 active users across various industries.

By researching the current product experience with existing users, we’ll learn what works and what doesn’t in order to make adjustments to the product and experience.

Research objectives:

Purpose of the plan and studies:.

The purpose is to gather actionable insights into user needs, behaviors, and challenges to inform updates that will drive increased adoption and engagement of 30% for the B2B project management tool within 12 months.

Target audience, sample size, scope, and demographics:

Expectations, deliverables, timings, and type of results:, research methodologies:.

*Some teams will take part in more than one research session.

Research analysis methods:

We are doing a mixed methods study.

User interviews are our primary method for gathering qualitative data, and will be analyzed using thematic analysis .

  • Quantitative data will be pulled from usability tests to evaluate the effectiveness of our current design.
  • Research set up and guidelines:
  • Create baselines surveys to gauge current usage and pain points
  • Develop interview/discussion guides and usability testing scenarios
  • Pilot test materials with two teams
  • User interviews: 60 mins, semi-structured; usability tests: 90 mins
  • Findings will be presented in a research report for all stakeholders

Research scripts, questions, and samples:

User interview questions:

  • What’s your experience with Flows?
  • How does Flows fit into your workflow?
  • What is your understanding of Flows’ features?
  • What do you wish Flows could do that it currently doesn’t?

Usability test sample with Maze:

ux research plan template example

Cost estimations or budget requests/pricing:

Total estimated budget: $8,000

More free customizable templates for UX research

Whether you’re creating the plan yourself or are delegating this responsibility to your team, here are six research templates to get started:

  • UX research plan template : This editable Miro research project plan example helps you brainstorm user and business-facing problems, objectives, and questions
  • UX research brief : You need a clear brief before you conduct UX research—Milanote shares a template that will help you simplify the writing process
  • User testing synthesis : Trello put together a sample board to organize user testing notes—you can use this as a guide, but change the titles to fit your UX research purposes
  • Usability testing templates : At Maze, we’ve created multiple templates for conducting specific UX research methods—this list will help you create different remote usability tests
  • Information architecture (IA) tests template : The way you organize the information in your website or app can improve or damage the user experience—use this template to run IA tests easily
  • Feedback survey templates : Ask users anything through a survey, and use these templates to get creative and simplify creation

Everything you need to know about UX research plans

We all know that a robust plan is essential for conducting successful UX research. But, in case you want a quick refresher on what we’ve covered:

  • Using a UX research strategy as a starting point will make your plan more likely to succeed
  • Determine your research objectives before anything else
  • Use a mix of qualitative and quantitative research methods
  • Come up with clear personas so you can recruit and test a group of individuals that’s representative of your real end users
  • Involve stakeholders from the beginning to get buy-in
  • Be vocal about timelines, budget, and expected research findings
  • Use the insights to power your product decisions and wow your users; building the solution they genuinely want and need

UX research can happen at any stage of the development lifecycle. When you build products with and for users, you need to include them continuously at various stages of the process.

It’s helpful to explore the need for continuous discovery in your UX research plan and look for a tool like Maze that simplifies the process for you. We’ll cover more about the different research methods and UX research tools in the upcoming chapters—ready to go?

Elevate your UX research workflow

Discover how Maze can streamline and operationalize your research plans to drive real product innovation while saving on costs.

Frequently asked questions

What’s the difference between a UX research plan and a UX research strategy?

The difference between a UX research plan and a UX research strategy is that they cover different levels of scope and detail. A UX research plan is a document that guides individual user experience (UX) research projects. UX research plans are shared documents that everyone on the product team can and should be familiar with. A UX research strategy, on the other hand, outlines the high-level goals, expectations, and demographics of the organization’s approach to research.

What should you include in a user research plan?

Here’s what to include in a user research plan:

  • Problem statement
  • Research objectives
  • Research methods
  • Participants' demographics
  • Recruitment plan
  • User research brief
  • Expected timeline
  • How to present findings

How do you write a research plan for UX design?

Creating a research plan for user experience (UX) requires a clear problem statement and objectives, choosing the right research method, recruiting participants and briefing them, and establishing a timeline for your project. You'll also need to plan how you'll analyze and present your findings.

How do you plan a UX research roadmap?

To plan a UX research roadmap, start by identifying key business goals and user needs. Align research activities with product milestones to ensure timely insights. Prioritize research methods—like surveys, interviews, and usability tests—based on the project phase and objectives. Set clear timelines and allocate resources accordingly. Regularly update stakeholders on progress and integrate feedback to refine the roadmap continuously.

Generative Research: Definition, Methods, and Examples

Research Methods and the Planning Process

  • First Online: 13 April 2022

Cite this chapter

research planning

  • Yanmei Li 3 &
  • Sumei Zhang 4  

936 Accesses

This chapter introduces the definition of research methods, and how they relate to the urban and regional planning process. Although there are different approaches to resolving planning issues or making a plan, the basic process of planning goes from problem definition, data collection, data analysis, to reporting findings and using the findings for planning purposes. The unique characteristics and process of planning require basic knowledge in research design, data collection, and data analysis. Most of the data needed for planning are specific to a locale. These data include demographic data, business data, transportation, environmental, and other pertinent information. Primary and secondary data collection methods thus need to be carefully formulated before collecting the data. Statistical or simple tabulation methods are necessary in conducting descriptive and inferential analyses. All these indicate the critical role research methods play in planning. While conducting research, it is essential and often mandatory for researchers to follow strict ethical principles of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

American Planning Association (Ed.). (2006). Planning and urban design standards . Wiley.

Google Scholar  

Baum, S. (2021). Why urban analysis. In S. Baum (Ed.), Methods in urban analysis . Springer Nature Singapre Pte Ltd..

Chapter   Google Scholar  

Constant, C. K., & Forkenbrock, D. J. (1986). Planning methods: An analysis of supply and demand. Journal of Planning Education and Research, 6 (1), 10–21.

Article   Google Scholar  

Feldt, A. G. (1986). Observations on planning methods. Journal of Planning Education and Research, 6 (1), 37.

Greenlee, A. J., Edwards, M., & Anthony, J. (2015). Planning skills: An examination of supply and local government demand. Journal of Planning Education and Research, 35 (2), 161–173.

Guzzetta, J. D., & Bollens, S. A. (2003). Urban planners’ skills and competencies: Are we different from other professions? Does context matter? Do we evolve? Journal of Planning Education and Research, 23 (1), 96–106.

Kaufman, S., & Simons, R. (1992). Quantitative and research methods in planning: Are schools teaching what practitioners practice? Journal of Planning Education and Research, 15 (1), 17–33.

Miller, E. V. (2019). Assessing the preparation of undergraduate planners for the demands of entry-level planning positions. Journal of Planning Education and Research . https://doi.org/10.1177/0739456X19873129

Morris, A. E. J. (2013). History of urban form before the industrial revolution . Routledge.

Book   Google Scholar  

Ozawa, C. P., & Selzer, E. P. (1999). Taking our bearings: Mapping a relationship among planning practice, theory, and education. Journal of Planning Education and Research, 18 (3), 257–266.

Patton, C. V., Sawicki, D. S., & Clark, J. J. (2013). Basic methods of policy analysis and planning (3rd ed.). Pearson.

Sawicki, D. (1989). Demographic analysis in planning: A graduate course and an alternative paradigm. Journal of Planning Education and Research, 9 (1), 45–59.

Schon, D. A., Cremer, N. S., Osterman, P., & Perry, C. (1976). Planning in transition: Report on a survey of alumni of M.I.T.’s Department of Urban Studies, 1960-71. Journal of the American Institute of Planners, 42 (2), 193–202.

Seltzer, E. P., & Ozawa, C. P. (2002). Clear signals: Moving on to planning’s promise. Journal of Planning Education and Research, 22 (1), 77–86.

Wachs, M. (1986). Discussion of three papers on planning methods. Journal of Planning Education and Research, 6 (1), 38–39.

Web Resources

Association of Collegiate Schools of Planning: https://www.acsp.org/

American Planning Association: https://www.planning.org/

American Institute of Certified Planners: https://www.planning.org/aicp/

Download references

Author information

Authors and affiliations.

Florida Atlantic University, Boca Raton, FL, USA

University of Louisville, Louisville, KY, USA

Sumei Zhang

You can also search for this author in PubMed   Google Scholar

Electronic Supplementary Material

(docx 14 kb), rights and permissions.

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Li, Y., Zhang, S. (2022). Research Methods and the Planning Process. In: Applied Research Methods in Urban and Regional Planning. Springer, Cham. https://doi.org/10.1007/978-3-030-93574-0_1

Download citation

DOI : https://doi.org/10.1007/978-3-030-93574-0_1

Published : 13 April 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-030-93573-3

Online ISBN : 978-3-030-93574-0

eBook Packages : Mathematics and Statistics Mathematics and Statistics (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Case Western Reserve University

  • Research Data Lifecycle Guide

Developing a Data Management Plan

This section breaks down different topics required for the planning and preparation of data used in research at Case Western Reserve University. In this phase you should understand the research being conducted, the type and methods used for collecting data, the methods used to prepare and analyze the data, addressing budgets and resources required, and have a sound understanding of how you will manage data activities during your research project.

Many federal sponsors of Case Western Reserve funded research have required data sharing plans in research proposals since 2003. As of Jan. 25, 2023, the National Institutes of Health has revised its data management and sharing requirements. 

This website is designed to provide basic information and best practices to seasoned and new investigators as well as detailed guidance for adhering to the revised NIH policy.  

Basics of Research Data Management

What is research data management?

Research data management (RDM) comprises a set of best practices that include file organization, documentation, storage, backup, security, preservation, and sharing, which affords researchers the ability to more quickly, efficiently, and accurately find, access, and understand their own or others' research data.

Why should you care about research data management?

RDM practices, if applied consistently and as early in a project as possible, can save you considerable time and effort later, when specific data are needed, when others need to make sense of your data, or when you decide to share or otherwise upload your data to a digital repository. Adopting RDM practices will also help you more easily comply with the data management plan (DMP) required for obtaining grants from many funding agencies and institutions.

Does data need to be retained after a project is completed?

Research data must be retained in sufficient detail and for an adequate period of time to enable appropriate responses to questions about accuracy, authenticity, primacy and compliance with laws and regulations governing the conduct of the research. External funding agencies will each have different requirements regarding storage, retention, and availability of research data. Please carefully review your award or agreement for the disposition of data requirements and data retention policies.

A good data management plan begins by understanding the sponsor requirements funding your research. As a principal investigator (PI) it is your responsibility to be knowledgeable of sponsors requirements. The Data Management Plan Tool (DMPTool) has been designed to help PIs adhere to sponsor requirements efficiently and effectively. It is strongly recommended that you take advantage of the DMPTool.  

CWRU has an institutional account with DMPTool that enables users to access all of its resources via your Single Sign On credentials. CWRU's DMPTool account is supported by members of the Digital Scholarship team with the Freedman Center for Digital Scholarship. Please use the RDM Intake Request form to schedule a consultation if you would like support or guidance regarding developing a Data Management Plan.

Some basic steps to get started:

  • Sign into the  DMPTool site  to start creating a DMP for managing and sharing your data. 
  • On the DMPTool site, you can find the most up to date templates for creating a DMP for a long list of funders, including the NIH, NEH, NSF, and more. 
  • Explore sample DMPs to see examples of successful plans .

Be sure that your DMP is addressing any and all federal and/or funder requirements and associated DMP templates that may apply to your project. It is strongly recommended that investigators submitting proposals to the NIH utilize this tool. 

The NIH is mandating Data Management and Sharing Plans for all proposals submitted after Jan. 25, 2023.  Guidance for completing a NIH Data Management Plan has its own dedicated content to provide investigators detailed guidance on development of these plans for inclusion in proposals. 

A Data Management Plan can help create and maintain reliable data and promote project success. DMPs, when carefully constructed and reliably adhered to, help guide elements of your research and data organization.

A DMP can help you:

Document your process and data.

  • Maintain a file with information on researchers and collaborators and their roles, sponsors/funding sources, methods/techniques/protocols/standards used, instrumentation, software (w/versions), references used, any applicable restrictions on its distribution or use.
  • Establish how you will document file changes, name changes, dates of changes, etc. Where will you record of these changes? Try to keep this sort of information in a plain text file located in the same folder as the files to which it pertains.
  • How are derived data products created? A DMP encourages consistent description of data processing performed, software (including version number) used, and analyses applied to data.
  • Establish regular forms or templates for data collection. This helps reduce gaps in your data, promotes consistency throughout the project.

Explain your data

  • From the outset, consider why your data were collected, what the known and expected conditions may be for collection, and information such as time and place, resolution, and standards of data collected.
  • What attributes, fields, or parameters will be studied and included in your data files? Identify and describe these in each file that employs them.
  • For an overview of data dictionaries, see the USGS page here: https://www.usgs.gov/products/data-and-tools/data-management/data-dictionaries

DMP Requirements

Why are you being asked to include a data management plan (DMP) in your grant application? For grants awarded by US governmental agencies, two federal memos from the US Office of Science and Technology Policy (OSTP), issued in 2013 and 2015 , respectively, have prompted this requirement. These memos mandate public access to federally- (and, thus, taxpayer-) funded research results, reflecting a commitment by the government to greater accountability and transparency. While "results" generally refers to the publications and reports produced from a research project, it is increasingly used to refer to the resulting data as well.

Federal research-funding agencies  have responded to the OSTP memos by issuing their own guidelines and requirements for grant applicants (see below), specifying whether and how research data in particular are to be managed in order to be publicly and properly accessible.

  • NSF—National Science Foundation "Proposals submitted or due on or after January 18, 2011, must include a supplementary document of no more than two pages labeled 'Data Management Plan'. This supplementary document should describe how the proposal will conform to NSF policy on the dissemination and sharing of research results." Note: Additional requirements may apply per Directorate, Office, Division, Program, or other NSF unit.
  • NIH—National Institutes of Health "To facilitate data sharing, investigators submitting a research application requesting $500,000 or more of direct costs in any single year to NIH on or after October 1, 2003 are expected to include a plan for sharing final research data for research purposes, or state why data sharing is not possible."
  • NASA—National Aeronautics and Space Administration "The purpose of a Data Management Plan (DMP) is to address the management of data from Earth science missions, from the time of their data collection/observation, to their entry into permanent archives."
  • DOD—Department of Defense "A Data Management Plan (DMP) describing the scientific data expected to be created or gathered in the course of a research project must be submitted to DTIC at the start of each research effort. It is important that DoD researchers document plans for preserving data at the outset, keeping in mind the potential utility of the data for future research or to support transition to operational or other environments. Otherwise, the data is lost as researchers move on to other efforts. The essential descriptive elements of the DMP are listed in section 3 of DoDI 3200.12, although the format of the plan may be adjusted to conform to standards established by the relevant scientific discipline or one that meets the requirements of the responsible Component"
  • Department of Education "The purpose of this document is to describe the implementation of this policy on public access to data and to provide guidance to applicants for preparing the Data Management Plan (DMP) that must outline data sharing and be submitted with the grant application. The DMP should describe a plan to provide discoverable and citable dataset(s) with sufficient documentation to support responsible use by other researchers, and should address four interrelated concerns—access, permissions, documentation, and resources—which must be considered in the earliest stages of planning for the grant."
  • " Office of Scientific and Technical Information (OSTI) Provides access to free, publicly-available research sponsored by the Department of Energy (DOE), including technical reports, bibliographic citations, journal articles, conference papers, books, multimedia, software, and data.

Data Management Best Practices

As you plan to collect data for research, keep in mind the following best practices. 

Keep Your Data Accessible to You

  • Store your temporary working files somewhere easily accessible, like on a local hard drive or shared server.
  • While cloud storage is a convenient solution for storage and sharing, there are often concerns about data privacy and preservation. Be sure to only put data in the cloud that you are comfortable with and that your funding and/or departmental requirements allow.
  • For long-term storage, data should be put into preservation systems that are well-managed. [U]Tech provides several long-term data storage options for cloud and campus. 
  • Don't keep your original data on a thumb drive or portable hard drive, as it can be easily lost or stolen.
  • Think about file formats that have a long life and that are readable by many programs. Formats like ascii, .txt, .csv, .pdf are great for long term  preservation.
  • A DMP is not a replacement for good data management practices, but it can set you on the right path if it is consistently followed. Consistently revisit your plan to ensure you are following it and adhering to funder requirements.

Preservation

  • Know the difference between storing and preserving your data. True preservation is the ongoing process of making sure your data are secure and accessible for future generations. Many sponsors have preferred or recommended data repositories. The DMP tool can help you identify these preferred repositories. 
  • Identify data with long-term value. Preserve the raw data and any intermediate/derived products that are expensive to reproduce or can be directly used for analysis. Preserve any scripted code that was used to clean and transform the data.
  • Whenever converting your data from one format to another, keep a copy of the original file and format to avoid loss or corruption of your important files.
  • Leverage online platforms like OSF can help your group organize, version, share, and preserve your data, if the sponsor hasn’t specified a specific platform.
  • Adhere to federal sponsor requirements on utilizing accepted data repositories (NIH dbGaP, NIH SRA, NIH CRDC, etc.) for preservation. 

Backup, Backup, Backup

  • The general rule is to keep 3 copies of your data: 2 copies onsite, 1 offsite.
  • Backup your data regularly and frequently - automate the process if possible. This may mean weekly duplication of your working files to a separate drive, syncing your folders to a cloud service like Box, or dedicating a block of time every week to ensure you've copied everything to another location.

Organization

  • Establish a consistent, descriptive filing system that is intelligible to future researchers and does not rely on your own inside knowledge of your research.
  • A descriptive directory and file-naming structure should guide users through the contents to help them find whatever they are looking for.

Naming Conventions

  • Use consistent, descriptive filenames that reliably indicate the contents of the file.
  • If your discipline requires or recommends particular naming conventions, use them!
  • Do not use spaces between words. Use either camelcase or underscores to separate words
  • Include LastnameFirstname descriptors where appropriate.
  • Avoid using MM-DD-YYYY formats
  • Do not append vague descriptors like "latest" or "final" to your file versions. Instead, append the version's date or a consistently iterated version number.

Clean Your Data

  • Mistakes happen, and often researchers don't notice at first. If you are manually entering data, be sure to double-check the entries for consistency and duplication. Often having a fresh set of eyes will help to catch errors before they become problems.
  • Tabular data can often be error checked by sorting the fields alphanumerically to catch simple typos, extra spaces, or otherwise extreme outliers. Be sure to save your data before sorting it to ensure you do not disrupt the records!
  • Programs like OpenRefine  are useful for checking for consistency in coding for records and variables, catching missing values, transforming data, and much more.

What should you do if you need assistance implementing RDM practices?

Whether it's because you need discipline-specific metadata standards for your data, help with securing sensitive data, or assistance writing a data management plan for a grant, help is available to you at CWRU. In addition to consulting the resources featured in this guide, you are encouraged to contact your department's liaison librarian.

If you are planning to submit a research proposal and need assistance with budgeting for data storage and or applications used to capture, manage, and or process data UTech provides information and assistance including resource boilerplates that list what centralized resources are available. 

More specific guidance for including a budget for Data Management and Sharing is included on this document: Budgeting for Data Management and Sharing . 

Custody of Research Data

The PI is the custodian of research data, unless agreed on in writing otherwise and the agreement is on file with the University, and is responsible for the collection, management, and retention of research data. The PI should adopt an orderly system of data organization and should communicate the chosen system to all members of a research group and to the appropriate administrative personnel, where applicable. Particularly for long-term research projects, the PI should establish and maintain procedures for the protection and management of essential records.

CWRU Custody of Research Data Policy  

Data Sharing

Many funding agencies require data to be shared for the purposes of reproducibility and other important scientific goals. It is important to plan for the timely release and sharing of final research data for use by other researchers.  The final release of data should be included as a key deliverable of the DMP. Knowledge of the discipline-specific database, data repository, data enclave, or archive store used to disseminate the data should also be documented as needed. 

The NIH is mandating Data Management and Sharing Plans for all proposals submitted after Jan. 25, 2023. Guidance for completing a NIH Data Management and Sharing Plan  has its own dedicated content to provide investigators detailed guidance on development of these plans for inclusion in proposals.

X

The Bartlett Development Planning Unit

  • Advisory Services
  • Publications

Menu

Understanding fire risk and disaster recovery in Chile through the eyes of the elderly

The case of Santa Olga, Chile.

Group of people standing in a line smiling at the camera

15 May 2024

Catastrophes triggered by extreme natural events are increasing globally, especially those associated to climate change. In fact, 90% of disasters occurred between 2005 and 2015 were related to extreme weather, an increase of 14% compared to the previous decade. In Chile, an average of US$950 million are spent annually on disaster reconstruction projects. The country has 54% of its population and 13% of its surface exposed to three or more natural hazards. Moreover, Chile presents 7 out of the 9 climate change vulnerability criteria established by the United Nations Framework Convention on Climate Change. Adopting a disaster risk reduction perspective is thus fundamental to pursue sustainable development.

Disasters are bad for everyone, but disproportionally worse for the most vulnerable groups which are less likely to be prepared for the events, more likely to suffer damage from them, less able to act during the emergency phase, slower to recover and reconstruct their lives (if ever), and more likely to present psychological long-term effects after them. A particularly relevant vulnerable group is that of the elderly. They often present physical limitations to move and evacuate freely, and struggle with coping with trauma and its long-term consequences, including displacement, and poor housing and healthcare conditions in disaster emergency and reconstruction. However, older people also play a significant, often unrecognised role in supporting the community throughout disasters in terms of memory, preparedness, and capacity building.

With this collaboration initiative, we seek to understand how structural change derived from disasters, in its physical, social, and policy dimensions, particularly impact the lives of senior citizens. To do so, we have conducted fieldwork (semi-structured interviews, focus groups) with senior citizens from the town of Santa Olga in central Chile, completely burned down in a firestorm in 2017. Through the elderly’s perspective, we aim to characterise the disaster recovery governance and identify how it includes (or not) provisions to account for the specific needs of the elderly throughout the disaster. Our interdisciplinary research approach spans across disaster studies, urban planning, and disaster risk governance.

MediaCentral Widget Placeholder https://mediacentral.ucl.ac.uk/Player/iAgcgI9A

Professor Cassidy Johnson, PI, The Bartlett Development Planning Unit, UCL View Cassidy's profile

Dr Magdalena Gil, International Collaborator, School of Government, UC Chile View Magdalena's profile

Dr Felipe Rivera, Researcher, UCL Civil, Environmental and Geomatic Engineering View Felipe's profile

Camila Chackiel, Research Assistant, Institute of Sociology, UC Chile

Amanda Rivera, Documentary Director/Filmmaker

Filmmaking crew:

Sebastián Meléndez, Director of Photography and Camera, Chancho de Barro Follow Chancho de Barro on Instagram

Mario Muñoz and Max Godard, Sound recording)

Understanding fire risk and disaster recovery in Chile through the eyes of the elderly: the case of Santa Olga (Chile) logos

Describing and characterising disaster risk governance in Chile through the eyes of the elderly, the project aims to contribute to the National Policy for Recovery currently under development at the Chilean Ministry of Housing and Urban Planning (MINVU).

A research article about the case of Santa Olga’s recovery is currently in preparation. Moreover, we are developing two audio-visual pieces with footage from the interviews conducted in early 2024: a micro-documentary portraying the lived experiences of the elderly community of Santa Olga throughout the fire recovery, and an educational capsule on fire preparedness.

The dissemination of the audio-visual material includes academic conferences, film festivals, and the scientific outreach platform Aprende Resiliencia, run by the Chilean Institute for Disaster Resilience, Itrend ( https://aprenderesiliencia.cl/ )

IMAGES

  1. Research Planning Template

    research planning

  2. Research Planning

    research planning

  3. The Value Of A Good Research Plan

    research planning

  4. Planning Your Research: A Step-By-Step Guide To A Successful Research

    research planning

  5. Do You Work, Planning Process, Research, Essay, Solving, Infographic

    research planning

  6. FAQ: Develop a Research Plan

    research planning

VIDEO

  1. Planning your Research

  2. Lecture 60: Emerging Research Potential in Planning and Architecture

  3. Conclusion Confidence: Leaving a Lasting Impression #irfannawaz #phd #research

  4. Creating a research proposal

  5. 12 Important Practice Questions /Research Methodology in English Education /Unit-1 /B.Ed. 4th Year

  6. Mind Your Mindset: Tools for Success in Your Job Search and Career

COMMENTS

  1. How to Write a Research Plan: A Step by Step Guide

    Learn how to create a detailed and thorough research plan for any project, whether it's scientific, educational, or business-related. This guide covers the key elements of a research plan, such as goals, methods, resources, and timelines, and provides examples of different research methods.

  2. Research Plan

    A research plan is a framework that shows how you intend to approach your topic. The plan can take many forms: a written outline, a narrative, a visual/concept map or timeline. It's a document that will change and develop as you conduct your research. Components of a research plan. 1. Research conceptualization - introduces your research question.

  3. How To Write a Research Plan (With Template and Examples)

    If you want to learn how to write your own plan for your research project, consider the following seven steps: 1. Define the project purpose. The first step to creating a research plan for your project is to define why and what you're researching. Regardless of whether you're working with a team or alone, understanding the project's purpose can ...

  4. What Is a Research Design

    Learn how to design a research strategy for answering your research question using empirical data. Explore different types of qualitative and quantitative research designs, and how to choose the most suitable methods for your aims and objectives.

  5. A Beginner's Guide to Starting the Research Process

    Learn how to choose a topic, identify a problem, formulate research questions, create a research design, and write a research proposal for your thesis or dissertation. Scribbr offers tips, examples, and resources to help you plan and execute your research project.

  6. How to plan a research project

    Research planning is rarely a linear process. It's also common for new and unexpected avenues to suggest themselves. As the sociologist Thorstein Veblen wrote in 1908 : 'The outcome of any serious research can only be to make two questions grow where only one grew before.' That's as true of research planning as it is of a completed project.

  7. How to Write a Research Proposal

    Learn how to write a research proposal for your thesis, dissertation, or funding application. Find out the key elements, structure, and tips for a successful proposal, with examples and templates.

  8. Research Design

    On their own, raw data can't answer your research question. The last step of designing your research is planning how you'll analyse the data. Quantitative data analysis. In quantitative research, you'll most likely use some form of statistical analysis. With statistics, you can summarise your sample data, make estimates, and test hypotheses.

  9. Planning Your Research

    Abstract. Planning your research is a vital aspect that needs to be done prior to commencement of the research project. Albert Einstein (1879-1955) once stated that if he had an hour to solve a problem he would spend 55 mins thinking about the problem and 5 mins thinking about solutions.

  10. Writing a Research Plan

    Writing a research plan casts your gaze forward and prompts you to begin planning for when you have your own laboratory. And if you've already started to think about your own lab, it will help you to refine your plans. So take a stab at writing a research plan, even if you don't expect to be on the job market for a while.

  11. Write Your Research Plan

    Your Research Strategy is the bigger part of your application's Research Plan (the other part is the Specific Aims—discussed above.) The Research Strategy is the nuts and bolts of your application, describing the rationale for your research and the experiments you will do to accomplish each aim. It is structured as follows: Three main sections

  12. Planning Research

    Planning Research. Figure 6. The Research Design Process. This diagram (taken from an archived Open University (UK) course entitled E891 Educational Inquiry) shows one way to schematise the research design process. Here, one begins with a research question and a context for the research (comprising policy and practice).

  13. Planning the Research

    Planning preoccupies the first position in the research process. It is the center around which all research activities progress. According to Urick (1943) "planning is a mental predisposition to do things in orderly way, to think before acting and to act in the light of facts rather than guesses" [].The typical research planning approach starts with defining the problem, then selecting a ...

  14. The critical steps for successful research: The research proposal and

    Completing any research project requires meticulous planning, experimental design and execution, and compilation and publication of findings in the form of a research paper. All of these are often unfamiliar to naïve researchers; thus, the purpose of this workshop was to teach participants to master the critical steps involved in the ...

  15. Research Paper Planner: Guide

    This link will take you to the Timeline portion of the Research Paper Planner where you can set a start and end date for your writing project, see the deadlines for each step, print out the Timeline for your project, and/or set up email alerts for each step of the research and writing process. Next: 1: Understand Your Assignment >>. Last ...

  16. Essentials of the Research Plan

    Internet Citation: Essentials of the Research Plan. Content last reviewed January 2017. Agency for Healthcare Research and Quality, Rockville, MD. The research plan is the main part of a grant application describing a principal investigator's proposed research, stating its importance and how it will be conducted.

  17. Planning Qualitative Research: Design and Decision Making for New

    While many books and articles guide various qualitative research methods and analyses, there is currently no concise resource that explains and differentiates among the most common qualitative approaches. We believe novice qualitative researchers, students planning the design of a qualitative study or taking an introductory qualitative research course, and faculty teaching such courses can ...

  18. Research Methods Guide: Research Design & Method

    Research design is a plan to answer your research question. A research method is a strategy used to implement that plan. Research design and methods are different but closely related, because good research design ensures that the data you obtain will help you answer your research question more effectively. Which research method should I choose?

  19. The Value Of A Good Research Plan

    A research plan is pivotal to a research project because it identifies and helps define your focus, method, and goals while also outlining the research project from start to finish. This type of plan is often necessary to: Apply for grants or internal company funding. Discover possible research partners or business partners.

  20. Essential Elements to Create a UX Research Plan

    A UX research plan is a document that guides individual user experience (UX) research projects. UX research plans are shared documents that everyone on the product team can and should be familiar with. A UX research strategy, on the other hand, outlines the high-level goals, expectations, and demographics of the organization's approach to ...

  21. Research Methods and the Planning Process

    Chapter 1 introduces the definition of research methods, and how they relate to the urban and regional planning process. Although there are different approaches to resolving planning issues or making a plan, the basic process of planning goes from problem definition, data collection, data analysis, to reporting findings and using the findings ...

  22. Developing a Data Management Plan

    Developing a Data Management Plan. This section breaks down different topics required for the planning and preparation of data used in research at Case Western Reserve University. In this phase you should understand the research being conducted, the type and methods used for collecting data, the methods used to prepare and analyze the data ...

  23. Planning: Articles, Research, & Case Studies on Planning

    One Strategy: Aligning Planning and Execution. Strategy as it is written up in the corporate playbook often becomes lost or muddled when the team takes the field to execute. In their new book, Professor Marco Iansiti and Microsoft's Steven Sinofsky discuss a "One Strategy" approach to aligning plan and action.

  24. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  25. New Google Search AI features to help you plan, research and learn

    New features include AI Overviews, multistep reasoning capabilities, planning capabilities, AI-organized search results, and a new Google Lens ask with video feature. Google is adding new AI ...

  26. Planning Grants for NIDDK Community Engaged Research

    This initiative proposes to solicit planning grant applications to assemble & strengthen community partnerships, assess feasibility and determine best practices to conduct community-engaged research focused on NIDDK mission diseases and populations that experience health disparities (HDPs). If successful, these planning grants would support ...

  27. Georgia Tech Partners with Children's Hospital on New Heart Surgery

    Cardiologists and surgeons could soon have a new mobile augmented reality (AR) tool to improve collaboration in surgical planning.ARCollab is an iOS AR application designed for doctors to interact with patient-specific 3D heart models in a shared environment. It is the first surgical planning tool that uses multi-user mobile AR in iOS.The application's collaborative feature overcomes ...

  28. Study on food supply chains of Hawaiʻi, Fiji earns national award

    Raj, who has a PhD in urban and regional planning from the State University of New York at Buffalo, was a Fulbright scholar and Kaufman doctoral fellow in food systems planning. The New Innovator Award is bestowed on early-career scientists supporting research in one of FFAR's research priority areas. Cumulatively, the recipients share a ...

  29. Understanding fire risk and disaster recovery in Chile through ...

    Describing and characterising disaster risk governance in Chile through the eyes of the elderly, the project aims to contribute to the National Policy for Recovery currently under development at the Chilean Ministry of Housing and Urban Planning (MINVU). A research article about the case of Santa Olga's recovery is currently in preparation.

  30. USC OORI Names Four Awardees under the SBIR/STTR Planning Award Program

    The SBIR/STTR Planning Award, managed by OORI sub-unit Research Initiatives and Infrastructure (RII) intends to establish and bolster USC's ongoing technology transfer and commercialization efforts. This innovative award program supports faculty partnered with a small business to plan and prepare for submission of a competitive SBIR/STTR ...