Journal for Research in Mathematics Education

journal for research in mathematics education

Subject Area and Category

  • Mathematics (miscellaneous)

National Council of Teachers of Mathematics

Publication type

Information.

How to publish in this journal

[email protected]

journal for research in mathematics education

The set of journals have been ranked according to their SJR and divided into four equal groups, four quartiles. Q1 (green) comprises the quarter of the journals with the highest values, Q2 (yellow) the second highest values, Q3 (orange) the third highest values and Q4 (red) the lowest values.

The SJR is a size-independent prestige indicator that ranks journals by their 'average prestige per article'. It is based on the idea that 'all citations are not created equal'. SJR is a measure of scientific influence of journals that accounts for both the number of citations received by a journal and the importance or prestige of the journals where such citations come from It measures the scientific influence of the average article in a journal, it expresses how central to the global scientific discussion an average article of the journal is.

Evolution of the number of published documents. All types of documents are considered, including citable and non citable documents.

This indicator counts the number of citations received by documents from a journal and divides them by the total number of documents published in that journal. The chart shows the evolution of the average number of times documents published in a journal in the past two, three and four years have been cited in the current year. The two years line is equivalent to journal impact factor ™ (Thomson Reuters) metric.

Evolution of the total number of citations and journal's self-citations received by a journal's published documents during the three previous years. Journal Self-citation is defined as the number of citation from a journal citing article to articles published by the same journal.

Evolution of the number of total citation per document and external citation per document (i.e. journal self-citations removed) received by a journal's published documents during the three previous years. External citations are calculated by subtracting the number of self-citations from the total number of citations received by the journal’s documents.

International Collaboration accounts for the articles that have been produced by researchers from several countries. The chart shows the ratio of a journal's documents signed by researchers from more than one country; that is including more than one country address.

Not every article in a journal is considered primary research and therefore "citable", this chart shows the ratio of a journal's articles including substantial research (research articles, conference papers and reviews) in three year windows vs. those documents other than research articles, reviews and conference papers.

Ratio of a journal's items, grouped in three years windows, that have been cited at least once vs. those not cited during the following year.

Scimago Journal & Country Rank

Leave a comment

Name * Required

Email (will not be published) * Required

* Required Cancel

The users of Scimago Journal & Country Rank have the possibility to dialogue through comments linked to a specific journal. The purpose is to have a forum in which general doubts about the processes of publication in the journal, experiences and other issues derived from the publication of papers are resolved. For topics on particular articles, maintain the dialogue through the usual channels with your editor.

Scimago Lab

Follow us on @ScimagoJR Scimago Lab , Copyright 2007-2022. Data Source: Scopus®

journal for research in mathematics education

Cookie settings

Cookie Policy

Legal Notice

Privacy Policy

Logo

Volume 52 (2021): Issue 4 (Jul 2021)

  • eTOC Alerts

NCTM

© 2024 National Council of Teachers of Mathematics (NCTM)

Powered by: PubFactory

  • [66.249.64.20|91.193.111.216]
  • 91.193.111.216

Character limit 500 /500

Mathematics motivation in primary education: building blocks that matter

  • Open access
  • Published: 09 April 2024

Cite this article

You have full access to this open access article

  • Jelena Radišić   ORCID: orcid.org/0000-0003-1427-6254 1 &
  • Aleksandar Baucal 2 , 3  

50 Accesses

Explore all metrics

In this introduction, we set the stage for a collection of papers from the Co-constructing Mathematics Motivation in Primary Education–A Longitudinal Study in Six European Countries Project (MATHMot for short), an international study aiming to identify the factors that shape the development of motivation in mathematics from a comparative perspective in primary education. Students’ motivation, performance, academic emotions, and subject-related identity and agency are observed across six countries: Norway, Sweden, Finland, Estonia, Portugal, and Serbia. MATHMot builds on the belief that one of the main goals of mathematics teaching should be children’s long-term motivation for learning the subject, which in turn supports students in striving for exemplary achievement in mathematics. This special section attempts to observe students’ mathematics motivation in early grades and how different contributions from the classroom, home or the student’s individual characteristics shed light on its development and adjacent concepts like academic emotions and math-related identity and agency.

Similar content being viewed by others

journal for research in mathematics education

The Interplay Between Motivation and Cognition in Elementary and Middle School Mathematics

journal for research in mathematics education

Elementary Students’ Mathematics Identity: Findings from a Longitudinal Study in an Out-of-School Setting

Michaela Gulemetova, Andrea D. Beesley, … Uttara Balakrishnan

journal for research in mathematics education

Attitudes, Beliefs, Motivation, and Identity in Mathematics Education

Avoid common mistakes on your manuscript.

Co-constructing Mathematics Motivation in Primary Education–A Longitudinal Study in Six European Countries Project (MATHMot for short), which is funded by the Research Council of Norway, looks at the development of motivation in mathematics and what affects this process from an international viewpoint. The primary objective of the MATHMot project is to identify the factors shaping the development of motivation in mathematics from a comparative perspective in primary education. MATHMot builds on the assumption that one of the main goals of mathematics teaching should be children’s long-term motivation for learning the subject, which aids them in striving for exemplary achievement in mathematics. Using the first wave data of the MATHMot project collected in Norway, Sweden, Finland, Estonia, Portugal and Serbia, this special section attempts to observe students’ mathematics motivation in early grades and how different contributions from the classroom, home or the students’ individual characteristics shed light on its development and adjacent concepts like academic emotions and math-related identity and agency.

Across the fields of psychology of education and mathematics education, the vital role of how mathematics competence can facilitate student advancement in many domains later in life has long been recognised (OECD, 2013 ). At the same time, both fields have long passed the narrow idea of competence, acknowledging that mathematical competence entails more than mere knowledge of concepts, principles and structures (Rittle-Johnson, 2017 ). Over the years, multiple competency frameworks (e.g., Kilpatrick et al., 2001 ; Niss, 2003 ) have been developed (Radišić, 2023 ), finding their way into small- and large-scale studies. In parallel, fostering instructional environments that institute students’ learning of mathematics as a ‘dynamic playground’, where students are deeply engaged with mathematics, has become paramount while searching for essential elements of teaching that could support these (Schoenfeld, 2014 ).

Even so, international large-scale assessment studies have pointed to significant cross-country variations in students’ mathematics competency levels. The former variation also includes students’ motivation to learn mathematics and their perception of their self-efficacy (Mullis et al., 2016 , 2020 ; OECD, 2013 ). Recognising the importance of motivation is essential because students’ motivation is seen as the driving force behind students’ learning of mathematics over time (Eccles & Wigfield, 2020 ; Wigfield et al., 2016 ) and more and more as a desired outcome and a forgotten one when it comes to student learning outcomes (Radišić, 2023 ). The importance of motivation is coupled with a recent idea of the need to support strong competence self-perceptions (Marsh et al., 2017 ) and positive academic emotions (i.e., emotions directly tied to learning, instruction and outcomes in the school setting), which is grounded within Pekrun’s control-value theory (Pekrun, 2017 ).

From the perspective of the expectancy-value theory (Eccles & Wigfield, 2020 ) and, more recently, situational expectancy-value theory (Eccles & Wigfield, 2023 ), competence self-beliefs and values attributed to the task are seen as the driving force behind students’ motivation (Lauermann et al., 2017 ; Wigfield & Cambria, 2010 ). Concurrently, researchers have continually called for more research on the situational nature of motivational theories, including these theories’ possible cultural specificity (Nolen, 2020 ; Schukajlow et al., 2023 ).

Across the literature, a positive relationship between motivation and achievement in mathematics is recurrently confirmed, irrespective of the theoretical approach followed (e.g., Kriegbaum et al., 2018 ; Prast et al., 2018 ). Some studies report motivation as predictive of mathematics competence (e.g., Murayama et al., 2013 ), while others observe the relationship as reciprocal over time (e.g., Luo et al., 2011 ). The measurement of mathematical competence varying across different studies between teachers’ assessments and independent grade-specific tests has also been attributed to the diversity in the current results.

Although the number of studies observing the competence–motivation continuum is abundant, studies are more oriented towards single-country exploration. On the other hand, when a cross-country comparison is included, it is either limited to a bi-country comparison, or in the case of large-scale international assessments like TIMSS and PISA, the observed aspects of motivation in connection to mathematical competence are limited. Furthermore, most studies observe middle school students and even older students (e.g., Arens et al., 2019 ; Benden & Lauermann, 2022 ), thus limiting knowledge of primary school development concerning motivation, competence and adjacent concepts such as academic emotions (Blažanin et al., 2024 ) and subject-related identity (Simpson & Bouhafa, 2020 ). Meanwhile, the field lacks studies observing students’ motivational patterns in mathematics during transition periods (i.e., the shift in primary education from classroom to subject teaching). A cross-country perspective is even more important in capturing these changes, given the different organisation of education systems across Europe. These differences may include whether students stay with the same class teacher or move to subject teaching, remain in the same class versus change the class group or stay in the same school versus transition to a different school.

Conversely, student development, including motivation, does not occur in a vacuum. Thus, student background (e.g., socioeconomic status; Gustafsson et al., 2013 ; gender; Jacobs et al., 2002 ; Lazarides et al., 2017 ) is a crucial characteristic that contributes to this development and should be observed coupled with the home learning environment (Bradley & Corwyn, 2016 ; Martin & Lazendic, 2018 ). However, as learning mathematics is organised in the classrooms within schools, constrained by students’ family characteristics and traits, examining teacher and school factors is needed, especially from the early development perspective.

In the context of the MATHMot project, all the aspects mentioned above were carefully crafted into the research design, choice of countries (i.e., education systems), samples and instruments used in the project. Thus, combining diverse perspectives and observing contributions from school and the home environment, the six papers in this special section aim to contribute to knowledge building by simultaneously observing the different factors that affect the development of motivation, emotions and identity in mathematics across diverse education sites during the early years of primary school. All papers examine data collected within the first wave of the MATHMot project, offering insights into the emerging mechanisms related to students’ characteristics concerning motivation, affect and subject identity and teacher and parents’ contribution to the process.

The content of the special section

Grounded in the expectancy-value perspective on identity and identity formation, the first study focuses on math identity and its relationship to task values, expectancies and achievement across different cultural contexts, here considering potential gender and grade differences (Radišić, Krstić et al., this issue). Although the authors establish different contributions of task values and expectancies to math identity, they also discuss gender differences not perceived across all the education systems studied. Though the study is cross-sectional, it shows that the grade 4 students perceived themselves less as ‘math persons’ than their grade 3 peers in all countries. It also shows the vital contribution of the education system in which a child is situated and the unique opportunities a system may provide for development.

The second paper further unravels the relationship between performance and confidence judgement and the mismatch between these, which is known as the Dunning–Kruger effect (Yang Hansen et al., this issue). The study investigates how well students’ confidence judgement and item-specific mathematics competence relate to each other and whether such a relationship differs across the six European countries involved in MATHMot. The author team also examines whether expectancy, math identity, gender, socioeconomic status and immigration background predict this mismatch and whether these demographic factors function differently between the examined countries. The results confirm that the Dunning–Kruger effect could be found across both examined grades and all six countries. However, country-specific patterns concerning the relationship between performance, math identity and expectancy value, the Dunning–Kruger effect and how different demographic variables predict its occurrences in particular subpopulations were found, corroborating the importance of the education system a child is situated in.

The third paper in this collection (Peixoto et al., this issue) focuses on parents’ contributions to motivation development, drawing on the expectancy-value model and model of parents’ socialisation of motivation. Recognising the myriad of potential family influences, the authors examine the association between parental beliefs and involvement and their children’s motivation and mathematics achievement. The results indicate a detrimental impact of a fixed mindset on parents’ practices. Furthermore, the authors discuss significant relationships between parents’ attitudes towards mathematics, their practices and students’ perceptions of math-related values and costs, as well as how these further tie to the child’s outcomes. Notably, the authors draw possible implications for interventions aimed at parents.

The special section further examines the contributions of teachers concerning mathematics motivation. In the first such paper (Radišić, Buchholtz et al., this issue), the authors examine teachers’ beliefs about the nature and learning of mathematics in connection to different aspects of task values and expectancies (i.e., intrinsic value, utility value and perceived competence) and enjoyment of mathematics across diverse education systems by considering students’ mathematics achievement, gender and classroom composition (i.e., socioeconomic and behavioural). Although the results show students’ intrinsic value and perceived competence positively relate to their enjoyment of mathematics in all six countries, country-level patterns were observed when examining how teachers’ beliefs about the nature and learning of mathematics moderate the within-classroom relationship between boys and girls and the motivation and enjoyment of learning mathematics. Classroom socioeconomic and behavioural composition showed differential effects on teachers’ beliefs, indicating particular country patterns. Again, gender differences were found, favouring boys in connection with their perceived competence.

Continuing their pursuit in the examination of teacher-level contributions, the last two studies in this section are examples of single country–driven explorations. Haataja et al. (this issue) examine whether Finnish elementary school students’ socioeconomic status affects their mathematical competence and success expectancy, combined with the role of teachers’ beliefs about mathematics learning. The study results underline the importance of teachers’ constructivist beliefs about mathematics learning and class composition regarding students’ special needs in predicting students’ success expectancy. The authors also find that students with disadvantaged socioeconomic backgrounds need support on success expectancy to succeed in mathematics and that such support can be conveyed through teachers’ constructivist pedagogical beliefs.

Finally, Leijen et al. (this issue) expand on the notion of motivation and focus on the adjacent concept of student agency in the context of the education system in Estonia. They observe how math teachers’ beliefs on the nature of mathematics and self-efficacy beliefs relate to different dimensions of student agency in primary education. The results showed that both self-efficacy beliefs and those on the nature of mathematics were related to students’ agency dimensions.

The special section ends with a commentary by Eccles (this issue), which shows several advantages that bring together all the papers. Besides a solid set of measures used across them all, Eccles (this issue) underlines the variety of topics covered and the results stemming from the first wave of the MATHMot project. She also stresses how the section illustrates the benefit of bringing together sets of papers focused on similar issues with similar data sets. In addition, the commentary illustrates how the current collection of papers supports the importance of social cognitive approaches to educational psychology. Eccles (this issue) examines the importance of integrating multiple theoretical lenses in studying the development of motivated behaviour in academic settings and how some well-researched topics, through extensive examination, such as in this special section, have received new validation. Still, their re-examination has also opened new ways of thinking and rethinking about particular relationships on the development of motivation and adjacent concepts in the educational setting.

Arens, A., Schmidt, I., & Preckel, F. (2019). Longitudinal relations among self-concept, intrinsic value, and attainment value across secondary school years in three academic domains. Journal of Educational Psychology, 111 (4), 663–684. https://doi.org/10.1037/edu0000313

Article   Google Scholar  

Benden, D. K., & Lauermann, F. (2022). Students’ motivational trajectories and academic success in math-intensive study programs: Why short-term motivational assessments matter. Journal of Educational Psychology, 114 (5), 1062–1085. https://doi.org/10.1037/edu0000708

Blažanin, B., Radišić, J., & Krstić, K. (2024). Toward becoming a “math-person”: Relationship between achievement emotions, personal beliefs, and mathematics identity . Advance online publication. https://doi.org/10.2298/PSI221109021B

Book   Google Scholar  

Bradley, R., & Corwyn, R. (2016). Home life and the development of competence in mathematics: Implications of research with the HOME inventor. In B. Blevins-Knabe & A. M. Berghout Austin (Eds.), Early Childhood Mathematics Skill Development in the Home Environment (pp. 29–49). Springer.

Chapter   Google Scholar  

Eccles, J. S. (2024). International comparative study of motivation: A commentary. European Journal of Psychology of Education . https://doi.org/10.1007/s10212-024-00820-x

Eccles, J. S., & Wigfield, A. (2023). Expectancy-value theory to situated expectancy-value theory: Reflections on the legacy of 40+ years of working together. Motivation Science, 9 (1), 1–12. https://doi.org/10.1037/mot0000275

Eccles, J. S., & Wigfield, A. (2020). From expectancy-value theory to situated expectancy-value theory: A developmental, social cognitive, and socio-cultural perspective on motivation. Contemporary Educational Psychology , 61. https://doi.org/10.1016/j.cedpsych.2020.101866

Gustafsson, J., Hansen, Y. K., Rosen, M. (2013). Effects of home background on student achievement in reading, mathematics, and science at the fourth grade. In M. O. Martin & I. V. S. Mullis (Eds.), TIMSS and PIRLS 2011: Relationships among reading, mathematics, and science achievement at the fourth grade—Implications for early learning (pp. 183–289). Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College. https://timssandpirls.bc.edu/timss2019/international-results/

Haataja, E. S. H., Niemivirta, M., Holm, M. E., Ilomanni, P., & Laine, A. (2024). Students’ socioeconomic status and teacher beliefs about learning as predictors of students’ mathematical competence. European Journal of Psychology of Education . https://doi.org/10.1007/s10212-023-00791-5

Jacobs, J. E., Lanza, S., Osgood, D. W., Eccles, J. S., & Wigfield, A. (2002). Changes in children’s self-motivation and achievement in mathematics competence and values: Gender and domain differences across grades one through twelve. Child Development, 73 , 509–527.

Kilpatrick, J., Swafford, J., & Findell, B. (Eds.). (2001). Adding it up: Helping children learn mathematics, National Academy Press.

Kriegbaum, K., Becker, N., & Spinath, B. (2018). The relative importance of intelligence and motivation as predictors of school achievement: A meta-analysis. Educational Research Review, 25 , 120–148.

Lauermann, F., Eccles, J. S., & Pekrun, R. (2017). Why do children worry about their academic achievement? An expectancy-value perspective on elementary students’ worries about their mathematics and reading performance. ZDM Mathematics Education, 49 , 339–354.

Lazarides, R., Rubach, C., & Ittel, A. (2017). Adolescents’ perceptions of socializers’ beliefs, career-related conversations, and motivation in mathematics. Developmental Psychology, 53 (3), 525–539.

Leijen, Ä., Baucal, A., Pikk, K., Uibu, K., Pajula, L., & Sõrmus, M. (2023). Opportunities to develop student’s math-related agency in primary education: The role of teacher beliefs. European Journal of Psychology of Education . https://doi.org/10.1007/s10212-023-00771-9

Luo, Y. L., Kovas, Y., Haworth, C., & Plomin, R. (2011). The etiology of mathematical self-evaluation and mathematics achievement: Understanding the relationship using a cross-lagged twin study from ages 9 to 12. Learning and Individual Differences, 21 , 710–718.

Marsh, H. W., Martin, A. J., Yeung, A. S., & Craven, R. G. (2017). Competence self-perceptions. In A. J. Elliot, C. S. Dweck, & D. S. Yeager (Eds.), Handbook of competence and motivation: Theory and application (2nd ed., pp. 85–115). Guilford Press.

Google Scholar  

Martin, A. J., & Lazendic, G. (2018). Achievement in large-scale national numeracy assessment: An ecological study of motivation and student, home, and school predictors. Journal of Educational Psychology, 110 (4), 465–482.

Mullis, I. V. S., Martin, M. O., Foy, P., & Hooper, M. (2016). TIMSS 2015 International Results in Mathematics. Retrieved from Boston College, TIMSS & PIRLS International Study Center website: http://timssandpirls.bc.edu/timss2015/international-results/

Mullis, I. V. S., Martin, M. O., Foy, P., Kelly, D. L., & Fishbein, B. (2020). TIMSS 2019 International Results in Mathematics and Science. Retrieved from Boston College, TIMSS & PIRLS International Study Center website.  https://timssandpirls.bc.edu/timss2019/international-results/

Murayama, K., Pekrun, R., Lichtenfeld, S., & vom Hofe, R. (2013). Predicting long-term growth in students’ mathematics achievement: The unique contributions of motivation and cognitive strategies. Child Development, 84 , 1475–1490.

Niss, M. (2003). The Danish KOM project and possible consequences for teacher education. In R. Strässer, G. Brandell, B. Grevholm, & O. Helenius (Eds.), Educating for the Future. Proceedings of an International Symposium on Mathematics Teacher Education  (pp. 178–192). Royal Swedish Academy of Science.

Nolen, S. B. (2020). A situative turn in the conversation on motivation theories. Contemporary Educational Psychology, 61 , 101866. https://doi.org/10.1016/j.cedpsych.2020.101866

OECD. (2013). PISA 2012 Assessment and analytical framework: Mathematics, reading, science, problem solving and financial literacy . OECD Publishing.

Peixoto, F., Mata, L., Campos, M., Caetano, T., Radišić, J., & Niemivirta, M. (2023). ‘Am I to blame because my child is not motivated to do math?’: Relationships between parents’ attitudes, beliefs and practices towards mathematics and students’ mathematics motivation and achievement. European Journal of Psychology of Education . https://doi.org/10.1007/s10212-023-00774-6

Pekrun, R. (2017). Achievement emotions. In A. J. Elliot, C. S. Dweck, & D. S. Yeager (Eds.), Handbook of competence and motivation: Theory and application (2nd ed., pp. 251–271). Guilford Press.

Prast, E., Van de Weijer-Bergsma, E., Miočević, M., Kroesbergen, E., & Van Luit, J. (2018). Relations between mathematics achievement and motivation in students of diverse achievement levels. Contemporary Educational Psychology, 55 , 84–96.

Radišić, J., Buchholtz, N., Yang-Hansen, K., Liy, X., & Kaarstein, H. (2024a). Do teachers’ beliefs about the nature and learning of mathematics affect students’ motivation and enjoyment of mathematics? Examining differences between boys and girls across six countries. European Journal of Psychology of Education . https://doi.org/10.1007/s10212-024-00809-6

Radišić, J., Krstić, K., Blažanin, B., Mićić, K., Baucal, A., Peixoto, F., & Schukajlow, S. (2024b). Am I a math person? Linking math identity with students’ motivation for mathematics and achievement. European Journal of Psychology of Education. https://doi.org/10.1007/s10212-024-00811-y

Radišić, J. (2023). Student Mathematics Learning Outcomes. In A. Manizade, N. Buchholtz, & K. Beswick (Eds.), The Evolution of Research on Teaching Mathematics. Mathematics Education in the Digital Era , (pp. 197–223). Springer. https://doi.org/10.1007/978-3-031-31193-2_7

Rittle-Johnson, B. (2017). Developing mathematics knowledge. Child Development Perspectives, 11 (3), 184–190. https://doi.org/10.1111/cdep.12229

Schoenfeld, A. H. (2014). What makes for powerful classrooms, and how can we support teachers in creating them? Educational Researcher, 43 (8), 404–412.

Schukajlow, S., Rakoczy, K., & Pekrun, R. (2023). Emotions and motivation in mathematics education: Where we are today and where we need to go. ZDM - Mathematics Education, 55 , 249–267. https://doi.org/10.1007/s11858-022-01463-2

Simpson, A., & Bouhafa, Y. (2020). Youths’ and adults’ identity in STEM: A systematic literature review. Journal for STEM Education Research, 3 (2), 167–194. https://doi.org/10.1007/s41979-020-00034-y

Wigfield, A., & Cambria, J. (2010). Students’ achievement values, goal orientations, and interest: Definitions, development, and relations to achievement outcomes. Developmental Review, 30 , 1–35.

Wigfield, A., Tonks, S., & Klauda, S. L. (2016). Expectancy-value theory. In K. R. Wentzel & A. Wigfield (Eds.), Handbook on motivation in school (2nd ed., pp. 55–76). Routledge.

Yang Hansen, K., Thorsen, C., Radišić, J., Peixoto, F., Laine, A., & Liu, X. (2024). When competence and confidence are at odds: A cross-country examination of the Dunning-Kruger effect. European Journal of Psychology of EducAtion . https://doi.org/10.1007/s10212-024-00804-x

Download references

Open access funding provided by University of Oslo (incl Oslo University Hospital). This study is funded by the Research Council of Norway within FINNUT Programme for Research and Innovation in the Educational Sector (grant number 301033).

Author information

Authors and affiliations.

Department of Teacher Education and School Research, Faculty of Educational Sciences, University of Oslo, Postboks 1099 Blindern, 0317, Oslo, Norway

Jelena Radišić

Department of Psychology, Faculty of Philosophy, University of Belgrade, Belgrade, Serbia

Aleksandar Baucal

Institute of Education, University of Tartu, Tartu, Estonia

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Jelena Radišić .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author name.

Dr. Jelena Radišić. Department of Teacher Education and School Research, Faculty of Educational Sciences, University of Oslo, Oslo, Norway. Email: [email protected]

Current themes of research

Motivation for learning, academic emotions, teacher competence, teacher beliefs and instructional practices.

Relevant publications:

Radišić, J., Nortvedt, G. A., & Runde, R. K. (2023). Relationships Between Mathematics Self-Beliefs, Exposure to ICT In School, and Achievement on PISA 2012 Paper- and Computer-Based Mathematics Assessments. In C. Martin, B. Miller, & D. Polly (Eds.), Technology Integration and Transformation in STEM Classrooms  (pp. 223-246). IGI Global. https://doi.org/10.4018/978-1-6684-5920-1

Yang Hansen, K., Radišić, J., Ding, Y., & X. Liu (2022). Contextual effects on students’ achievement and academic self-concept in the Nordic and Chinese educational systems. Large-scale Assess in Education , 10, 16. https://doi.org/10.1186/s40536-022-00133-9

Radišić, J., Selleri, P., Carugati, F., & Baucal, A. (2021). Are students in Italy really disinterested in science? A person‐centered approach using the PISA 2015 data. Science Education . https://doi.org/10.1002/sce.21611

Yang Hansen,K., Radišić, J., Liu, X., & Glassow, L.N. (2020). Exploring diversity in the relationships between teacher quality and job satisfaction in the Nordic countries: Insights from TALIS 2013 and 2018 In Frønes, T.S., Pettersen, A., Radišić, J., & Buchholtz, N. (Eds.), Equity, Equality and Diversity in the Nordic Model of Education , Springer.

Radišić, J., & Baucal, A. (2018). Teachers’ reflection on PISA items and why they are so hard for students in Serbia. European Journal of Psychology of Education . 33 (3), 445-466.

Dr. Aleksandar Baucal. Department of Psychology, Faculty of Philosophy, University of Belgrade, Serbia & Institute of Education, University of Tartu, Tartu, Estonia. Email: [email protected]

Motivation for learning, student achievements, student assessment, socio-cultural context in learning/teaching, social interaction in learning and development.

Peixoto, F., Radišić, J., Krstić, K., Hansen, K. Y., Laine, A., Baucal, A., Sõrmus, M., & Mata, L. (2023). Contribution to the Validation of the Expectancy-Value Scale for Primary School Students. J ournal of Psychoeducational Assessment, 41 (3), 343–350. https://doi.org/10.1177/07342829221144868

Pedaste, M., Kallas, K., & Baucal, A. (2023). Digital competence test for learning in schools: Development of items and scales. Computers & education, 203, 104830, https://doi.org/10.1016/j.compedu.2023.104830

Leijen, Ä., Arcidiacono, F., & Baucal, A. (2021). The Dilemma of Inclusive Education: Inclusion for Some or Inclusion for All. Frontiers in Psychology, 12:633066. https://doi.org/10.3389/fpsyg.2021.633066

Radišić, J., Selleri, P., Carugati, F., & Baucal, A. (2021). Are students in Italy really disinterested in science? A person‐centered approach using the PISA 2015 data. Science Education https://doi.org/10.1002/sce.21611

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Radišić, J., Baucal, A. Mathematics motivation in primary education: building blocks that matter. Eur J Psychol Educ (2024). https://doi.org/10.1007/s10212-024-00832-7

Download citation

Received : 12 March 2024

Revised : 12 March 2024

Accepted : 01 April 2024

Published : 09 April 2024

DOI : https://doi.org/10.1007/s10212-024-00832-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Motivation for mathematics
  • Achievement
  • Academic emotions
  • Mathematics identity
  • Student agency
  • Parents beliefs
  • Teacher beliefs
  • Primary school
  • Cross-country comparison
  • Find a journal
  • Publish with us
  • Track your research

American Mathematical Society

Publications — Over 100 years of publishing excellence

  • Book Author Resources
  • Submit a Book Proposal
  • AMS Rights, Licensing, and Permissions
  • Open Math Notes
  • Frequently asked questions
  • Member Journals
  • Research Journals
  • Translation Journals
  • Distributed Journals
  • Open Access Journals
  • Guidelines and Policies
  • Journal Author Resources

Librarian Resources

  • eBook Collections
  • COUNTER Usage Statistics
  • My Subscriptions
  • Subscription Information
  • Licensing Information

Mathematical Reviews/MathSciNet®

  • MathSciNet ®
  • Reviewer Home
  • MathSciNet ® Subscriptions

Membership — Welcome to your membership center

Join the ams, renew your membership, give a membership, individual membership.

  • Member Benefits
  • Member Directory
  • Reciprocating Societies
  • Members in Developing Countries

Institutional Membership

  • Domestic Institutions
  • International Institutions
  • Two-Year Institutions
  • Graduate Student Chapter Program

Other Member Types

  • Corporate Memberships
  • Associate Memberships

Meetings & Conferences — Engage with colleagues and the latest research

National meetings.

  • Joint Mathematics Meetings
  • Upcoming JMMs
  • Previous JMMs
  • Special Lectures
  • Professional Enhancement Programs (PEPs)

Sectional Meetings

  • Upcoming Sectionals
  • Previous Sectionals
  • Presenting Papers
  • Hosting Sectionals

Other Meetings, Conferences & Workshops

  • Mathematics Research Communities
  • Education Mini-conference
  • International Meetings
  • Mathematics Calendar
  • Short Courses
  • Workshop for Department Chairs and Leaders

Meetings Resources

  • Suggest a Speaker
  • AMS Meetings Grants
  • Submitting Abstracts
  • Welcoming Environment Policy
  • MathSafe – supporting safe meetings

News & Outreach — Explore news, images, posters, and mathematical essays

News from the ams.

  • AMS News Releases
  • Feature Stories
  • Information for Journalists
  • In Memory Of

Math Voices

  • Feature Column
  • Math in the Media
  • Column on Teaching and Learning

Explorations

  • Recognizing Diverse Mathematicians
  • AMS Posters
  • Mathematics & Music
  • Mathematical Imagery
  • Mathematical Moments

Professional Programs — Resources and opportunities to further your mathematical pursuits

Professional development.

  • Employment Services
  • Mathjobs.org
  • BEGIN Career Initiative
  • Mathprograms.org
  • Mathematical Opportunities Database
  • Research Seminars

Institutional Information and Data

  • Annual Survey of the Mathematical and Statistical Sciences
  • CBMS Survey
  • Other Sources of Data
  • Directory of Institutions in the Mathematical Sciences
  • Professional Directory

Grants & Support

  • AMS-Simons Grants for PUI Faculty
  • Travel Grants
  • Fellowships & Scholarships
  • Epsilon Fund
  • Child Care Grants

Awards & Recognition

  • AMS Prizes & Awards
  • Fellows of the AMS

Education — Resources to support advanced mathematics teaching and learning

For students.

  • Information for Undergraduate and High School Students
  • Research Experiences for Undergraduates (REUs)
  • Considering Grad School
  • Find Grad Programs
  • Applying to Grad School
  • What do Mathematicians Do?

For Teachers

  • Teaching Online
  • Teaching Resources
  • Inclusive Classrooms
  • Assessing Student Learning
  • Education Webinars

For Department Leaders & Mentors

  • Information for Department Leaders
  • paraDIGMS (Diversity in Graduate Mathematical Sciences)

Government Relations — Advocating for the mathematical sciences

Elevating mathematics in congress.

  • Our Mission
  • Letters, Statements, & Legislation
  • Congressional Briefings

Legislative Priorities

  • Federal Issues of Concern
  • Federal Budget Process

Get Involved

  • Advocacy Resources
  • Take Action

DC-Based Fellowships

  • Congressional Fellowship
  • Mass Media Fellowship
  • Catalyzing Advocacy in Science & Engineering (CASE) Fellowship

Giving to the AMS — Your gifts make great things happen for mathematics   Make a Gift

What you can support.

  • The 2020 Fund
  • Next Generation Fund
  • Birman Fellowship for Women Scholars
  • JMM Child Care Grants
  • MathSciNet for Developing Countries

Create a Legacy

  • Make a Tribute Gift
  • Create a Permanent Fund
  • Establish a Prize, Award or Fellowship
  • Bequests and Charitable Estate Planning

Honoring Your Gift

  • Donor Stories
  • Donor Wall of Honor
  • Thomas S. Fiske Society
  • AMS Contributors Society
  • AMS Gardens

Giving Resources

  • AMS Development Committee
  • AMS Gift Acceptance Policy

About the AMS — Advancing research. Connecting the mathematics community.

Our organization.

  • Executive Staff
  • Equity, Diversity, & Inclusion
  • Jobs at AMS
  • Customer Service

Our Governance

  • Board of Trustees
  • Executive Committee

Governance Operations

  • Calendar of Meetings
  • Policy Statements & Guidelines

JOURNAL OF THE AMS

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78 . What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

  • Articles in press
  • Recently published
  • All issues : 1943 – Present

Contents of Volume 93, Number 348 HTML articles powered by AMS MathViewer View front and back matter from the print issue

IMAGES

  1. Journal for Research in Mathematics Education Volume 52 Issue 1 (2021)

    journal for research in mathematics education

  2. Journal of Mathematics Education and Science

    journal for research in mathematics education

  3. International Journal of Science and Mathematics Education

    journal for research in mathematics education

  4. International Journal of Science and Mathematics Education (科學與數學教育研究

    journal for research in mathematics education

  5. Journal for Research in Mathematics Education

    journal for research in mathematics education

  6. (PDF) Proof in mathematics education, 1980-2020: An Overview. Journal

    journal for research in mathematics education

VIDEO

  1. What can we change about how we teach research methods? with Jo Ferrie

  2. International conference of Mathematics & Mathematics Education (ICKME)

  3. STEM Education Series 5: Mathematical Literacy in PISA Mathematics Framework

  4. Messenger Lecture and Video Lessons

  5. Applied mathematics second diploma question papers polytechnic student BTE delhi 2017 previous year

  6. 2023-07-11

COMMENTS

  1. Journal for Research in Mathematics Education

    JRME is the premier research journal in mathematics education and is devoted to the interests of teachers and researchers at all levels. Browse the latest and past issues, submission guidelines, and editorial board of this official journal of the National Council of Teachers of Mathematics.

  2. Journal for Research in Mathematics Education

    An official journal of the National Council of Teachers of Mathematics (NCTM), JRME is the premier research journal in mathematics education and is devoted to the interests of teachers and researchers at all levels--preschool through college. Journal information. 2018 (Vol. 49)

  3. NCTM

    NCTM. The February 2024 issue of Mathematics Teacher Educator is a special issue devoted to elevating teacher voices. These five articles center teachers in discussing syllabus design, design thinking, decolonizing lesson study, professional development, and teaching in an emergency.

  4. Journal for Research in Mathematics Education

    Learn about the history, impact, and scope of JRME, the official research journal of NCTM. Find out how to prepare and submit manuscripts that are likely to be published and have an impact on the field of mathematics education.

  5. Journal for Research in Mathematics Education

    Scope. An official journal of the National Council of Teachers of Mathematics (NCTM), JRME is the premier research journal in mathematics education and is devoted to the interests of teachers and researchers at all levels--preschool through college. JRME is a forum for disciplined inquiry into the teaching and learning of mathematics.

  6. Journal for Research in Mathematics Education

    The Journal for Research in Mathematics Education is a peer-reviewed academic journal covering the field of mathematics education. The journal is published by the National Council of Teachers of Mathematics in five issues a year. The editor-in-chief is Patricio Herbst ( University of Michigan ).

  7. Journal for Research in Mathematics Education. Monograph

    An official journal of the National Council of Teachers of Mathematics (NCTM), JRME is the premier research journal in mathematics education and is devoted to the interests of teachers and researchers at all levels--preschool through college. No issues were published from 2018-2020. Vol. 17 (2021) will be released in 2027.

  8. Research in Mathematics Education

    Research in Mathematics Education is an international English language journal, publishing original refereed articles on all aspects of mathematics education. Papers should address the central issues in terms which are of relevance across educational systems and informed by wider thinking in the field. The journal has three sections, covering ...

  9. Future themes of mathematics education research: an international

    Encouraging the reporting of high-quality mathematics education research from a broader spectrum of researchers would serve to increase the impact of the mathematics education research journals in the wider educational arena. This, in turn, would serve to encourage further collaboration around mathematics education issues from various disciplines.

  10. Research in Mathematics Education: Vol 25, No 3 (Current issue)

    Care in mathematics education: alternative educational spaces and practices. by Anne Watson, Palgrave Macmillan, Cham, Switzerland, 2021, e-book/softback/hardback, 53/69/96€, ISBN 978-3-030-64113-9. Anette Bagger. Pages: 409-413.

  11. Research in Mathematics

    Journal metrics Editorial board. Research in Mathematics is a broad open access journal publishing all aspects of mathematics including pure, applied, and interdisciplinary mathematics, and mathematical education and other fields. The journal primarily publishes research articles, but also welcomes review and survey articles, and case studies.

  12. Asian Journal for Mathematics Education: Sage Journals

    Asian Journal for Mathematics Education (AJME) is an international, peer-reviewed journal established by the East China Normal University (ECNU) in Shanghai, China. This open-access journal seeks to publish high-quality original research and scholarly articles focusing on various areas/topics in mathematics education.

  13. Home

    The Mathematics Education Research Journal accepts papers from authors from all regions internationally but authors must draw on the extensive research that has been produced in the Australasian region. This is a transformative journal, you may have access to funding. Editor-in-Chief. Vincent Geiger. Impact factor. 1.8 (2022) 5 year impact factor.

  14. Research in Mathematics

    Journal metrics Editorial board. Research in Mathematics is a broad open access journal publishing all aspects of mathematics including pure, applied, and interdisciplinary mathematics, and mathematical education and other fields. The journal primarily publishes research articles, but also welcomes review and survey articles, and case studies.

  15. Journal for Research in Mathematics Education Volume 52 Issue 4 (2021)

    Research Commentary. A Call for a Critical-Historical Framework in Addressing the Mathematical Experiences of Black Teachers and Students. "Volume 52 (2021): Issue 4 (Jul 2021)" published on Jul 2021 by National Council of Teachers of Mathematics.

  16. Mathematics motivation in primary education: building blocks that

    In this introduction, we set the stage for a collection of papers from the Co-constructing Mathematics Motivation in Primary Education-A Longitudinal Study in Six European Countries Project (MATHMot for short), an international study aiming to identify the factors that shape the development of motivation in mathematics from a comparative perspective in primary education. Students ...

  17. AMS :: Math. Comp. -- Volume 93, Number 348

    Mathematics of Computation. Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics. ISSN 1088-6842 (online) ISSN 0025-5718 (print)