U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.37(16); 2022 Apr 25

Logo of jkms

A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

Edward barroga.

1 Department of General Education, Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated. Initially, research questions may be written as descriptive questions which could be developed into inferential questions. These questions must be specific and concise to provide a clear foundation for developing hypotheses. Hypotheses are more formal predictions about the research outcomes. These specify the possible results that may or may not be expected regarding the relationship between groups. Thus, research questions and hypotheses clarify the main purpose and specific objectives of the study, which in turn dictate the design of the study, its direction, and outcome. Studies developed from good research questions and hypotheses will have trustworthy outcomes with wide-ranging social and health implications.

INTRODUCTION

Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses. 1 , 2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results. 3 , 4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the inception of novel studies and the ethical testing of ideas. 5 , 6

It is crucial to have knowledge of both quantitative and qualitative research 2 as both types of research involve writing research questions and hypotheses. 7 However, these crucial elements of research are sometimes overlooked; if not overlooked, then framed without the forethought and meticulous attention it needs. Planning and careful consideration are needed when developing quantitative or qualitative research, particularly when conceptualizing research questions and hypotheses. 4

There is a continuing need to support researchers in the creation of innovative research questions and hypotheses, as well as for journal articles that carefully review these elements. 1 When research questions and hypotheses are not carefully thought of, unethical studies and poor outcomes usually ensue. Carefully formulated research questions and hypotheses define well-founded objectives, which in turn determine the appropriate design, course, and outcome of the study. This article then aims to discuss in detail the various aspects of crafting research questions and hypotheses, with the goal of guiding researchers as they develop their own. Examples from the authors and peer-reviewed scientific articles in the healthcare field are provided to illustrate key points.

DEFINITIONS AND RELATIONSHIP OF RESEARCH QUESTIONS AND HYPOTHESES

A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question. 1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study. 5

On the other hand, a research hypothesis is an educated statement of an expected outcome. This statement is based on background research and current knowledge. 8 , 9 The research hypothesis makes a specific prediction about a new phenomenon 10 or a formal statement on the expected relationship between an independent variable and a dependent variable. 3 , 11 It provides a tentative answer to the research question to be tested or explored. 4

Hypotheses employ reasoning to predict a theory-based outcome. 10 These can also be developed from theories by focusing on components of theories that have not yet been observed. 10 The validity of hypotheses is often based on the testability of the prediction made in a reproducible experiment. 8

Conversely, hypotheses can also be rephrased as research questions. Several hypotheses based on existing theories and knowledge may be needed to answer a research question. Developing ethical research questions and hypotheses creates a research design that has logical relationships among variables. These relationships serve as a solid foundation for the conduct of the study. 4 , 11 Haphazardly constructed research questions can result in poorly formulated hypotheses and improper study designs, leading to unreliable results. Thus, the formulations of relevant research questions and verifiable hypotheses are crucial when beginning research. 12

CHARACTERISTICS OF GOOD RESEARCH QUESTIONS AND HYPOTHESES

Excellent research questions are specific and focused. These integrate collective data and observations to confirm or refute the subsequent hypotheses. Well-constructed hypotheses are based on previous reports and verify the research context. These are realistic, in-depth, sufficiently complex, and reproducible. More importantly, these hypotheses can be addressed and tested. 13

There are several characteristics of well-developed hypotheses. Good hypotheses are 1) empirically testable 7 , 10 , 11 , 13 ; 2) backed by preliminary evidence 9 ; 3) testable by ethical research 7 , 9 ; 4) based on original ideas 9 ; 5) have evidenced-based logical reasoning 10 ; and 6) can be predicted. 11 Good hypotheses can infer ethical and positive implications, indicating the presence of a relationship or effect relevant to the research theme. 7 , 11 These are initially developed from a general theory and branch into specific hypotheses by deductive reasoning. In the absence of a theory to base the hypotheses, inductive reasoning based on specific observations or findings form more general hypotheses. 10

TYPES OF RESEARCH QUESTIONS AND HYPOTHESES

Research questions and hypotheses are developed according to the type of research, which can be broadly classified into quantitative and qualitative research. We provide a summary of the types of research questions and hypotheses under quantitative and qualitative research categories in Table 1 .

Research questions in quantitative research

In quantitative research, research questions inquire about the relationships among variables being investigated and are usually framed at the start of the study. These are precise and typically linked to the subject population, dependent and independent variables, and research design. 1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured ( descriptive research questions ). 1 , 5 , 14 These questions may also aim to discover differences between groups within the context of an outcome variable ( comparative research questions ), 1 , 5 , 14 or elucidate trends and interactions among variables ( relationship research questions ). 1 , 5 We provide examples of descriptive, comparative, and relationship research questions in quantitative research in Table 2 .

Hypotheses in quantitative research

In quantitative research, hypotheses predict the expected relationships among variables. 15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable ( simple hypothesis ) or 2) between two or more independent and dependent variables ( complex hypothesis ). 4 , 11 Hypotheses may also specify the expected direction to be followed and imply an intellectual commitment to a particular outcome ( directional hypothesis ) 4 . On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies ( non-directional hypothesis ). 4 In addition, hypotheses can 1) define interdependency between variables ( associative hypothesis ), 4 2) propose an effect on the dependent variable from manipulation of the independent variable ( causal hypothesis ), 4 3) state a negative relationship between two variables ( null hypothesis ), 4 , 11 , 15 4) replace the working hypothesis if rejected ( alternative hypothesis ), 15 explain the relationship of phenomena to possibly generate a theory ( working hypothesis ), 11 5) involve quantifiable variables that can be tested statistically ( statistical hypothesis ), 11 6) or express a relationship whose interlinks can be verified logically ( logical hypothesis ). 11 We provide examples of simple, complex, directional, non-directional, associative, causal, null, alternative, working, statistical, and logical hypotheses in quantitative research, as well as the definition of quantitative hypothesis-testing research in Table 3 .

Research questions in qualitative research

Unlike research questions in quantitative research, research questions in qualitative research are usually continuously reviewed and reformulated. The central question and associated subquestions are stated more than the hypotheses. 15 The central question broadly explores a complex set of factors surrounding the central phenomenon, aiming to present the varied perspectives of participants. 15

There are varied goals for which qualitative research questions are developed. These questions can function in several ways, such as to 1) identify and describe existing conditions ( contextual research question s); 2) describe a phenomenon ( descriptive research questions ); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ( evaluation research questions ); 4) examine a phenomenon or analyze the reasons or relationships between subjects or phenomena ( explanatory research questions ); or 5) focus on unknown aspects of a particular topic ( exploratory research questions ). 5 In addition, some qualitative research questions provide new ideas for the development of theories and actions ( generative research questions ) or advance specific ideologies of a position ( ideological research questions ). 1 Other qualitative research questions may build on a body of existing literature and become working guidelines ( ethnographic research questions ). Research questions may also be broadly stated without specific reference to the existing literature or a typology of questions ( phenomenological research questions ), may be directed towards generating a theory of some process ( grounded theory questions ), or may address a description of the case and the emerging themes ( qualitative case study questions ). 15 We provide examples of contextual, descriptive, evaluation, explanatory, exploratory, generative, ideological, ethnographic, phenomenological, grounded theory, and qualitative case study research questions in qualitative research in Table 4 , and the definition of qualitative hypothesis-generating research in Table 5 .

Qualitative studies usually pose at least one central research question and several subquestions starting with How or What . These research questions use exploratory verbs such as explore or describe . These also focus on one central phenomenon of interest, and may mention the participants and research site. 15

Hypotheses in qualitative research

Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed-methods research question can be developed. 1

FRAMEWORKS FOR DEVELOPING RESEARCH QUESTIONS AND HYPOTHESES

Research questions followed by hypotheses should be developed before the start of the study. 1 , 12 , 14 It is crucial to develop feasible research questions on a topic that is interesting to both the researcher and the scientific community. This can be achieved by a meticulous review of previous and current studies to establish a novel topic. Specific areas are subsequently focused on to generate ethical research questions. The relevance of the research questions is evaluated in terms of clarity of the resulting data, specificity of the methodology, objectivity of the outcome, depth of the research, and impact of the study. 1 , 5 These aspects constitute the FINER criteria (i.e., Feasible, Interesting, Novel, Ethical, and Relevant). 1 Clarity and effectiveness are achieved if research questions meet the FINER criteria. In addition to the FINER criteria, Ratan et al. described focus, complexity, novelty, feasibility, and measurability for evaluating the effectiveness of research questions. 14

The PICOT and PEO frameworks are also used when developing research questions. 1 The following elements are addressed in these frameworks, PICOT: P-population/patients/problem, I-intervention or indicator being studied, C-comparison group, O-outcome of interest, and T-timeframe of the study; PEO: P-population being studied, E-exposure to preexisting conditions, and O-outcome of interest. 1 Research questions are also considered good if these meet the “FINERMAPS” framework: Feasible, Interesting, Novel, Ethical, Relevant, Manageable, Appropriate, Potential value/publishable, and Systematic. 14

As we indicated earlier, research questions and hypotheses that are not carefully formulated result in unethical studies or poor outcomes. To illustrate this, we provide some examples of ambiguous research question and hypotheses that result in unclear and weak research objectives in quantitative research ( Table 6 ) 16 and qualitative research ( Table 7 ) 17 , and how to transform these ambiguous research question(s) and hypothesis(es) into clear and good statements.

a These statements were composed for comparison and illustrative purposes only.

b These statements are direct quotes from Higashihara and Horiuchi. 16

a This statement is a direct quote from Shimoda et al. 17

The other statements were composed for comparison and illustrative purposes only.

CONSTRUCTING RESEARCH QUESTIONS AND HYPOTHESES

To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe. 9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying theories and previous studies. 18 Afterwards, 4) construct research questions to investigate the research problem. Identify variables to be accessed from the research questions 4 and make operational definitions of constructs from the research problem and questions. Thereafter, 5) construct specific deductive or inductive predictions in the form of hypotheses. 4 Finally, 6) state the study aims . This general flow for constructing effective research questions and hypotheses prior to conducting research is shown in Fig. 1 .

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g001.jpg

Research questions are used more frequently in qualitative research than objectives or hypotheses. 3 These questions seek to discover, understand, explore or describe experiences by asking “What” or “How.” The questions are open-ended to elicit a description rather than to relate variables or compare groups. The questions are continually reviewed, reformulated, and changed during the qualitative study. 3 Research questions are also used more frequently in survey projects than hypotheses in experiments in quantitative research to compare variables and their relationships.

Hypotheses are constructed based on the variables identified and as an if-then statement, following the template, ‘If a specific action is taken, then a certain outcome is expected.’ At this stage, some ideas regarding expectations from the research to be conducted must be drawn. 18 Then, the variables to be manipulated (independent) and influenced (dependent) are defined. 4 Thereafter, the hypothesis is stated and refined, and reproducible data tailored to the hypothesis are identified, collected, and analyzed. 4 The hypotheses must be testable and specific, 18 and should describe the variables and their relationships, the specific group being studied, and the predicted research outcome. 18 Hypotheses construction involves a testable proposition to be deduced from theory, and independent and dependent variables to be separated and measured separately. 3 Therefore, good hypotheses must be based on good research questions constructed at the start of a study or trial. 12

In summary, research questions are constructed after establishing the background of the study. Hypotheses are then developed based on the research questions. Thus, it is crucial to have excellent research questions to generate superior hypotheses. In turn, these would determine the research objectives and the design of the study, and ultimately, the outcome of the research. 12 Algorithms for building research questions and hypotheses are shown in Fig. 2 for quantitative research and in Fig. 3 for qualitative research.

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g002.jpg

EXAMPLES OF RESEARCH QUESTIONS FROM PUBLISHED ARTICLES

  • EXAMPLE 1. Descriptive research question (quantitative research)
  • - Presents research variables to be assessed (distinct phenotypes and subphenotypes)
  • “BACKGROUND: Since COVID-19 was identified, its clinical and biological heterogeneity has been recognized. Identifying COVID-19 phenotypes might help guide basic, clinical, and translational research efforts.
  • RESEARCH QUESTION: Does the clinical spectrum of patients with COVID-19 contain distinct phenotypes and subphenotypes? ” 19
  • EXAMPLE 2. Relationship research question (quantitative research)
  • - Shows interactions between dependent variable (static postural control) and independent variable (peripheral visual field loss)
  • “Background: Integration of visual, vestibular, and proprioceptive sensations contributes to postural control. People with peripheral visual field loss have serious postural instability. However, the directional specificity of postural stability and sensory reweighting caused by gradual peripheral visual field loss remain unclear.
  • Research question: What are the effects of peripheral visual field loss on static postural control ?” 20
  • EXAMPLE 3. Comparative research question (quantitative research)
  • - Clarifies the difference among groups with an outcome variable (patients enrolled in COMPERA with moderate PH or severe PH in COPD) and another group without the outcome variable (patients with idiopathic pulmonary arterial hypertension (IPAH))
  • “BACKGROUND: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition.
  • RESEARCH QUESTION: Which factors determine the outcome of PH in COPD?
  • STUDY DESIGN AND METHODS: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH) .” 21
  • EXAMPLE 4. Exploratory research question (qualitative research)
  • - Explores areas that have not been fully investigated (perspectives of families and children who receive care in clinic-based child obesity treatment) to have a deeper understanding of the research problem
  • “Problem: Interventions for children with obesity lead to only modest improvements in BMI and long-term outcomes, and data are limited on the perspectives of families of children with obesity in clinic-based treatment. This scoping review seeks to answer the question: What is known about the perspectives of families and children who receive care in clinic-based child obesity treatment? This review aims to explore the scope of perspectives reported by families of children with obesity who have received individualized outpatient clinic-based obesity treatment.” 22
  • EXAMPLE 5. Relationship research question (quantitative research)
  • - Defines interactions between dependent variable (use of ankle strategies) and independent variable (changes in muscle tone)
  • “Background: To maintain an upright standing posture against external disturbances, the human body mainly employs two types of postural control strategies: “ankle strategy” and “hip strategy.” While it has been reported that the magnitude of the disturbance alters the use of postural control strategies, it has not been elucidated how the level of muscle tone, one of the crucial parameters of bodily function, determines the use of each strategy. We have previously confirmed using forward dynamics simulations of human musculoskeletal models that an increased muscle tone promotes the use of ankle strategies. The objective of the present study was to experimentally evaluate a hypothesis: an increased muscle tone promotes the use of ankle strategies. Research question: Do changes in the muscle tone affect the use of ankle strategies ?” 23

EXAMPLES OF HYPOTHESES IN PUBLISHED ARTICLES

  • EXAMPLE 1. Working hypothesis (quantitative research)
  • - A hypothesis that is initially accepted for further research to produce a feasible theory
  • “As fever may have benefit in shortening the duration of viral illness, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response when taken during the early stages of COVID-19 illness .” 24
  • “In conclusion, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response . The difference in perceived safety of these agents in COVID-19 illness could be related to the more potent efficacy to reduce fever with ibuprofen compared to acetaminophen. Compelling data on the benefit of fever warrant further research and review to determine when to treat or withhold ibuprofen for early stage fever for COVID-19 and other related viral illnesses .” 24
  • EXAMPLE 2. Exploratory hypothesis (qualitative research)
  • - Explores particular areas deeper to clarify subjective experience and develop a formal hypothesis potentially testable in a future quantitative approach
  • “We hypothesized that when thinking about a past experience of help-seeking, a self distancing prompt would cause increased help-seeking intentions and more favorable help-seeking outcome expectations .” 25
  • “Conclusion
  • Although a priori hypotheses were not supported, further research is warranted as results indicate the potential for using self-distancing approaches to increasing help-seeking among some people with depressive symptomatology.” 25
  • EXAMPLE 3. Hypothesis-generating research to establish a framework for hypothesis testing (qualitative research)
  • “We hypothesize that compassionate care is beneficial for patients (better outcomes), healthcare systems and payers (lower costs), and healthcare providers (lower burnout). ” 26
  • Compassionomics is the branch of knowledge and scientific study of the effects of compassionate healthcare. Our main hypotheses are that compassionate healthcare is beneficial for (1) patients, by improving clinical outcomes, (2) healthcare systems and payers, by supporting financial sustainability, and (3) HCPs, by lowering burnout and promoting resilience and well-being. The purpose of this paper is to establish a scientific framework for testing the hypotheses above . If these hypotheses are confirmed through rigorous research, compassionomics will belong in the science of evidence-based medicine, with major implications for all healthcare domains.” 26
  • EXAMPLE 4. Statistical hypothesis (quantitative research)
  • - An assumption is made about the relationship among several population characteristics ( gender differences in sociodemographic and clinical characteristics of adults with ADHD ). Validity is tested by statistical experiment or analysis ( chi-square test, Students t-test, and logistic regression analysis)
  • “Our research investigated gender differences in sociodemographic and clinical characteristics of adults with ADHD in a Japanese clinical sample. Due to unique Japanese cultural ideals and expectations of women's behavior that are in opposition to ADHD symptoms, we hypothesized that women with ADHD experience more difficulties and present more dysfunctions than men . We tested the following hypotheses: first, women with ADHD have more comorbidities than men with ADHD; second, women with ADHD experience more social hardships than men, such as having less full-time employment and being more likely to be divorced.” 27
  • “Statistical Analysis
  • ( text omitted ) Between-gender comparisons were made using the chi-squared test for categorical variables and Students t-test for continuous variables…( text omitted ). A logistic regression analysis was performed for employment status, marital status, and comorbidity to evaluate the independent effects of gender on these dependent variables.” 27

EXAMPLES OF HYPOTHESIS AS WRITTEN IN PUBLISHED ARTICLES IN RELATION TO OTHER PARTS

  • EXAMPLE 1. Background, hypotheses, and aims are provided
  • “Pregnant women need skilled care during pregnancy and childbirth, but that skilled care is often delayed in some countries …( text omitted ). The focused antenatal care (FANC) model of WHO recommends that nurses provide information or counseling to all pregnant women …( text omitted ). Job aids are visual support materials that provide the right kind of information using graphics and words in a simple and yet effective manner. When nurses are not highly trained or have many work details to attend to, these job aids can serve as a content reminder for the nurses and can be used for educating their patients (Jennings, Yebadokpo, Affo, & Agbogbe, 2010) ( text omitted ). Importantly, additional evidence is needed to confirm how job aids can further improve the quality of ANC counseling by health workers in maternal care …( text omitted )” 28
  • “ This has led us to hypothesize that the quality of ANC counseling would be better if supported by job aids. Consequently, a better quality of ANC counseling is expected to produce higher levels of awareness concerning the danger signs of pregnancy and a more favorable impression of the caring behavior of nurses .” 28
  • “This study aimed to examine the differences in the responses of pregnant women to a job aid-supported intervention during ANC visit in terms of 1) their understanding of the danger signs of pregnancy and 2) their impression of the caring behaviors of nurses to pregnant women in rural Tanzania.” 28
  • EXAMPLE 2. Background, hypotheses, and aims are provided
  • “We conducted a two-arm randomized controlled trial (RCT) to evaluate and compare changes in salivary cortisol and oxytocin levels of first-time pregnant women between experimental and control groups. The women in the experimental group touched and held an infant for 30 min (experimental intervention protocol), whereas those in the control group watched a DVD movie of an infant (control intervention protocol). The primary outcome was salivary cortisol level and the secondary outcome was salivary oxytocin level.” 29
  • “ We hypothesize that at 30 min after touching and holding an infant, the salivary cortisol level will significantly decrease and the salivary oxytocin level will increase in the experimental group compared with the control group .” 29
  • EXAMPLE 3. Background, aim, and hypothesis are provided
  • “In countries where the maternal mortality ratio remains high, antenatal education to increase Birth Preparedness and Complication Readiness (BPCR) is considered one of the top priorities [1]. BPCR includes birth plans during the antenatal period, such as the birthplace, birth attendant, transportation, health facility for complications, expenses, and birth materials, as well as family coordination to achieve such birth plans. In Tanzania, although increasing, only about half of all pregnant women attend an antenatal clinic more than four times [4]. Moreover, the information provided during antenatal care (ANC) is insufficient. In the resource-poor settings, antenatal group education is a potential approach because of the limited time for individual counseling at antenatal clinics.” 30
  • “This study aimed to evaluate an antenatal group education program among pregnant women and their families with respect to birth-preparedness and maternal and infant outcomes in rural villages of Tanzania.” 30
  • “ The study hypothesis was if Tanzanian pregnant women and their families received a family-oriented antenatal group education, they would (1) have a higher level of BPCR, (2) attend antenatal clinic four or more times, (3) give birth in a health facility, (4) have less complications of women at birth, and (5) have less complications and deaths of infants than those who did not receive the education .” 30

Research questions and hypotheses are crucial components to any type of research, whether quantitative or qualitative. These questions should be developed at the very beginning of the study. Excellent research questions lead to superior hypotheses, which, like a compass, set the direction of research, and can often determine the successful conduct of the study. Many research studies have floundered because the development of research questions and subsequent hypotheses was not given the thought and meticulous attention needed. The development of research questions and hypotheses is an iterative process based on extensive knowledge of the literature and insightful grasp of the knowledge gap. Focused, concise, and specific research questions provide a strong foundation for constructing hypotheses which serve as formal predictions about the research outcomes. Research questions and hypotheses are crucial elements of research that should not be overlooked. They should be carefully thought of and constructed when planning research. This avoids unethical studies and poor outcomes by defining well-founded objectives that determine the design, course, and outcome of the study.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Methodology: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ.

Quantitative and Empirical Research vs. Other Types of Research: Quantitative Research

  • Quantitative Research
  • Other Types of Research
  • What are Scholarly Journals?

Colorful, decorative horizontal line.

     P rofessors often want you to use scholarly journal articles for your assignments.

     Sometimes, they will require you to use scholarly journal articles that contain quantitative research .

DEFINITIONS

QUANTITATIVE

     Quantitative research looks at factors that can actually be measured in some way, in other words, quantified . It produces numerical results that can be analyzed statistically.

     Quantitative research commonly involves experimentation, surveys, or questionnaires in the context of a large, randomly selected group.

     The term  empirical research  is often used as a synonym for quantitative research, but strictly speaking, empirical research is simply any form of research based upon direct observation. It might also be quantitative, but it might not.

PLEASE NOTE: Some professors use these two terms interchangeably.  When this occurs, they are usually referring to articles that fit the quantitative description above.

HINT: Don't use the words "quantitative" or "empirical" in your keyword searches.  They usually do not appear in article titles, abstracts, or subject words.  Instead, check the articles you find to see if some sort of numerical measuring and statistical analysis is present along with the characteristics listed on the right.

CHARACTERISTICS OF QUANTITATIVE RESEARCH

      W atch for these features when determining if an article has quantitative research. They may appear in the abstract, or you may need to skim the text of the article to find them.

  • Introduction : a statement of background or purpose (what was being studied and why). May review prior studies on the same topic.
  • Description of the design and/or method of the study (the experimental group or sample , control, variables, number of test subjects, test conditions, etc.)
  • Results , or report of the findings (in numeric form as tables, charts, or graphs, etc., often with statistical analysis)
  • Conclusions that can be drawn from the results (may be labeled  discussion or significance )
  • Footnotes and/or a bibliography
  • Author credentials (degrees earned, where they work, etc.)  

SAMPLE QUANTITATIVE RESEARCH ARTICLES

  • Relations Between Trait Impulsivity, Behavioral Impulsivity, Physiological Arousal, and Risky Sexual Behavior Among Young Men
  • Nocturnal Heart Rate Variability in Patients Treated with Cognitive–Behavioral Therapy for Insomnia.
  • Characterisation of Mainstream and Passive Vapors Emitted by Selected Electronic Cigarettes

Thin green line.

  • Next: Other Types of Research >>
  • Last Updated: Apr 6, 2023 8:16 AM
  • URL: https://libguides.csusb.edu/quantitative

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here .

Loading metrics

Open Access

Peer-reviewed

Research Article

Recent quantitative research on determinants of health in high income countries: A scoping review

Roles Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Software, Visualization, Writing – original draft, Writing – review & editing

* E-mail: [email protected]

Affiliation Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium

ORCID logo

Roles Conceptualization, Data curation, Funding acquisition, Project administration, Resources, Supervision, Validation, Visualization, Writing – review & editing

  • Vladimira Varbanova, 
  • Philippe Beutels

PLOS

  • Published: September 17, 2020
  • https://doi.org/10.1371/journal.pone.0239031
  • Peer Review
  • Reader Comments

Fig 1

Identifying determinants of health and understanding their role in health production constitutes an important research theme. We aimed to document the state of recent multi-country research on this theme in the literature.

We followed the PRISMA-ScR guidelines to systematically identify, triage and review literature (January 2013—July 2019). We searched for studies that performed cross-national statistical analyses aiming to evaluate the impact of one or more aggregate level determinants on one or more general population health outcomes in high-income countries. To assess in which combinations and to what extent individual (or thematically linked) determinants had been studied together, we performed multidimensional scaling and cluster analysis.

Sixty studies were selected, out of an original yield of 3686. Life-expectancy and overall mortality were the most widely used population health indicators, while determinants came from the areas of healthcare, culture, politics, socio-economics, environment, labor, fertility, demographics, life-style, and psychology. The family of regression models was the predominant statistical approach. Results from our multidimensional scaling showed that a relatively tight core of determinants have received much attention, as main covariates of interest or controls, whereas the majority of other determinants were studied in very limited contexts. We consider findings from these studies regarding the importance of any given health determinant inconclusive at present. Across a multitude of model specifications, different country samples, and varying time periods, effects fluctuated between statistically significant and not significant, and between beneficial and detrimental to health.

Conclusions

We conclude that efforts to understand the underlying mechanisms of population health are far from settled, and the present state of research on the topic leaves much to be desired. It is essential that future research considers multiple factors simultaneously and takes advantage of more sophisticated methodology with regards to quantifying health as well as analyzing determinants’ influence.

Citation: Varbanova V, Beutels P (2020) Recent quantitative research on determinants of health in high income countries: A scoping review. PLoS ONE 15(9): e0239031. https://doi.org/10.1371/journal.pone.0239031

Editor: Amir Radfar, University of Central Florida, UNITED STATES

Received: November 14, 2019; Accepted: August 28, 2020; Published: September 17, 2020

Copyright: © 2020 Varbanova, Beutels. This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: All relevant data are within the manuscript and its Supporting Information files.

Funding: This study (and VV) is funded by the Research Foundation Flanders ( https://www.fwo.be/en/ ), FWO project number G0D5917N, award obtained by PB. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

Introduction

Identifying the key drivers of population health is a core subject in public health and health economics research. Between-country comparative research on the topic is challenging. In order to be relevant for policy, it requires disentangling different interrelated drivers of “good health”, each having different degrees of importance in different contexts.

“Good health”–physical and psychological, subjective and objective–can be defined and measured using a variety of approaches, depending on which aspect of health is the focus. A major distinction can be made between health measurements at the individual level or some aggregate level, such as a neighborhood, a region or a country. In view of this, a great diversity of specific research topics exists on the drivers of what constitutes individual or aggregate “good health”, including those focusing on health inequalities, the gender gap in longevity, and regional mortality and longevity differences.

The current scoping review focuses on determinants of population health. Stated as such, this topic is quite broad. Indeed, we are interested in the very general question of what methods have been used to make the most of increasingly available region or country-specific databases to understand the drivers of population health through inter-country comparisons. Existing reviews indicate that researchers thus far tend to adopt a narrower focus. Usually, attention is given to only one health outcome at a time, with further geographical and/or population [ 1 , 2 ] restrictions. In some cases, the impact of one or more interventions is at the core of the review [ 3 – 7 ], while in others it is the relationship between health and just one particular predictor, e.g., income inequality, access to healthcare, government mechanisms [ 8 – 13 ]. Some relatively recent reviews on the subject of social determinants of health [ 4 – 6 , 14 – 17 ] have considered a number of indicators potentially influencing health as opposed to a single one. One review defines “social determinants” as “the social, economic, and political conditions that influence the health of individuals and populations” [ 17 ] while another refers even more broadly to “the factors apart from medical care” [ 15 ].

In the present work, we aimed to be more inclusive, setting no limitations on the nature of possible health correlates, as well as making use of a multitude of commonly accepted measures of general population health. The goal of this scoping review was to document the state of the art in the recent published literature on determinants of population health, with a particular focus on the types of determinants selected and the methodology used. In doing so, we also report the main characteristics of the results these studies found. The materials collected in this review are intended to inform our (and potentially other researchers’) future analyses on this topic. Since the production of health is subject to the law of diminishing marginal returns, we focused our review on those studies that included countries where a high standard of wealth has been achieved for some time, i.e., high-income countries belonging to the Organisation for Economic Co-operation and Development (OECD) or Europe. Adding similar reviews for other country income groups is of limited interest to the research we plan to do in this area.

In view of its focus on data and methods, rather than results, a formal protocol was not registered prior to undertaking this review, but the procedure followed the guidelines of the PRISMA statement for scoping reviews [ 18 ].

We focused on multi-country studies investigating the potential associations between any aggregate level (region/city/country) determinant and general measures of population health (e.g., life expectancy, mortality rate).

Within the query itself, we listed well-established population health indicators as well as the six world regions, as defined by the World Health Organization (WHO). We searched only in the publications’ titles in order to keep the number of hits manageable, and the ratio of broadly relevant abstracts over all abstracts in the order of magnitude of 10% (based on a series of time-focused trial runs). The search strategy was developed iteratively between the two authors and is presented in S1 Appendix . The search was performed by VV in PubMed and Web of Science on the 16 th of July, 2019, without any language restrictions, and with a start date set to the 1 st of January, 2013, as we were interested in the latest developments in this area of research.

Eligibility criteria

Records obtained via the search methods described above were screened independently by the two authors. Consistency between inclusion/exclusion decisions was approximately 90% and the 43 instances where uncertainty existed were judged through discussion. Articles were included subject to meeting the following requirements: (a) the paper was a full published report of an original empirical study investigating the impact of at least one aggregate level (city/region/country) factor on at least one health indicator (or self-reported health) of the general population (the only admissible “sub-populations” were those based on gender and/or age); (b) the study employed statistical techniques (calculating correlations, at the very least) and was not purely descriptive or theoretical in nature; (c) the analysis involved at least two countries or at least two regions or cities (or another aggregate level) in at least two different countries; (d) the health outcome was not differentiated according to some socio-economic factor and thus studied in terms of inequality (with the exception of gender and age differentiations); (e) mortality, in case it was one of the health indicators under investigation, was strictly “total” or “all-cause” (no cause-specific or determinant-attributable mortality).

Data extraction

The following pieces of information were extracted in an Excel table from the full text of each eligible study (primarily by VV, consulting with PB in case of doubt): health outcome(s), determinants, statistical methodology, level of analysis, results, type of data, data sources, time period, countries. The evidence is synthesized according to these extracted data (often directly reflected in the section headings), using a narrative form accompanied by a “summary-of-findings” table and a graph.

Search and selection

The initial yield contained 4583 records, reduced to 3686 after removal of duplicates ( Fig 1 ). Based on title and abstract screening, 3271 records were excluded because they focused on specific medical condition(s) or specific populations (based on morbidity or some other factor), dealt with intervention effectiveness, with theoretical or non-health related issues, or with animals or plants. Of the remaining 415 papers, roughly half were disqualified upon full-text consideration, mostly due to using an outcome not of interest to us (e.g., health inequality), measuring and analyzing determinants and outcomes exclusively at the individual level, performing analyses one country at a time, employing indices that are a mixture of both health indicators and health determinants, or not utilizing potential health determinants at all. After this second stage of the screening process, 202 papers were deemed eligible for inclusion. This group was further dichotomized according to level of economic development of the countries or regions under study, using membership of the OECD or Europe as a reference “cut-off” point. Sixty papers were judged to include high-income countries, and the remaining 142 included either low- or middle-income countries or a mix of both these levels of development. The rest of this report outlines findings in relation to high-income countries only, reflecting our own primary research interests. Nonetheless, we chose to report our search yield for the other income groups for two reasons. First, to gauge the relative interest in applied published research for these different income levels; and second, to enable other researchers with a focus on determinants of health in other countries to use the extraction we made here.

thumbnail

  • PPT PowerPoint slide
  • PNG larger image
  • TIFF original image

https://doi.org/10.1371/journal.pone.0239031.g001

Health outcomes

The most frequent population health indicator, life expectancy (LE), was present in 24 of the 60 studies. Apart from “life expectancy at birth” (representing the average life-span a newborn is expected to have if current mortality rates remain constant), also called “period LE” by some [ 19 , 20 ], we encountered as well LE at 40 years of age [ 21 ], at 60 [ 22 ], and at 65 [ 21 , 23 , 24 ]. In two papers, the age-specificity of life expectancy (be it at birth or another age) was not stated [ 25 , 26 ].

Some studies considered male and female LE separately [ 21 , 24 , 25 , 27 – 33 ]. This consideration was also often observed with the second most commonly used health index [ 28 – 30 , 34 – 38 ]–termed “total”, or “overall”, or “all-cause”, mortality rate (MR)–included in 22 of the 60 studies. In addition to gender, this index was also sometimes broken down according to age group [ 30 , 39 , 40 ], as well as gender-age group [ 38 ].

While the majority of studies under review here focused on a single health indicator, 23 out of the 60 studies made use of multiple outcomes, although these outcomes were always considered one at a time, and sometimes not all of them fell within the scope of our review. An easily discernable group of indices that typically went together [ 25 , 37 , 41 ] was that of neonatal (deaths occurring within 28 days postpartum), perinatal (fetal or early neonatal / first-7-days deaths), and post-neonatal (deaths between the 29 th day and completion of one year of life) mortality. More often than not, these indices were also accompanied by “stand-alone” indicators, such as infant mortality (deaths within the first year of life; our third most common index found in 16 of the 60 studies), maternal mortality (deaths during pregnancy or within 42 days of termination of pregnancy), and child mortality rates. Child mortality has conventionally been defined as mortality within the first 5 years of life, thus often also called “under-5 mortality”. Nonetheless, Pritchard & Wallace used the term “child mortality” to denote deaths of children younger than 14 years [ 42 ].

As previously stated, inclusion criteria did allow for self-reported health status to be used as a general measure of population health. Within our final selection of studies, seven utilized some form of subjective health as an outcome variable [ 25 , 43 – 48 ]. Additionally, the Health Human Development Index [ 49 ], healthy life expectancy [ 50 ], old-age survival [ 51 ], potential years of life lost [ 52 ], and disability-adjusted life expectancy [ 25 ] were also used.

We note that while in most cases the indicators mentioned above (and/or the covariates considered, see below) were taken in their absolute or logarithmic form, as a—typically annual—number, sometimes they were used in the form of differences, change rates, averages over a given time period, or even z-scores of rankings [ 19 , 22 , 40 , 42 , 44 , 53 – 57 ].

Regions, countries, and populations

Despite our decision to confine this review to high-income countries, some variation in the countries and regions studied was still present. Selection seemed to be most often conditioned on the European Union, or the European continent more generally, and the Organisation of Economic Co-operation and Development (OECD), though, typically, not all member nations–based on the instances where these were also explicitly listed—were included in a given study. Some of the stated reasons for omitting certain nations included data unavailability [ 30 , 45 , 54 ] or inconsistency [ 20 , 58 ], Gross Domestic Product (GDP) too low [ 40 ], differences in economic development and political stability with the rest of the sampled countries [ 59 ], and national population too small [ 24 , 40 ]. On the other hand, the rationales for selecting a group of countries included having similar above-average infant mortality [ 60 ], similar healthcare systems [ 23 ], and being randomly drawn from a social spending category [ 61 ]. Some researchers were interested explicitly in a specific geographical region, such as Eastern Europe [ 50 ], Central and Eastern Europe [ 48 , 60 ], the Visegrad (V4) group [ 62 ], or the Asia/Pacific area [ 32 ]. In certain instances, national regions or cities, rather than countries, constituted the units of investigation instead [ 31 , 51 , 56 , 62 – 66 ]. In two particular cases, a mix of countries and cities was used [ 35 , 57 ]. In another two [ 28 , 29 ], due to the long time periods under study, some of the included countries no longer exist. Finally, besides “European” and “OECD”, the terms “developed”, “Western”, and “industrialized” were also used to describe the group of selected nations [ 30 , 42 , 52 , 53 , 67 ].

As stated above, it was the health status of the general population that we were interested in, and during screening we made a concerted effort to exclude research using data based on a more narrowly defined group of individuals. All studies included in this review adhere to this general rule, albeit with two caveats. First, as cities (even neighborhoods) were the unit of analysis in three of the studies that made the selection [ 56 , 64 , 65 ], the populations under investigation there can be more accurately described as general urban , instead of just general. Second, oftentimes health indicators were stratified based on gender and/or age, therefore we also admitted one study that, due to its specific research question, focused on men and women of early retirement age [ 35 ] and another that considered adult males only [ 68 ].

Data types and sources

A great diversity of sources was utilized for data collection purposes. The accessible reference databases of the OECD ( https://www.oecd.org/ ), WHO ( https://www.who.int/ ), World Bank ( https://www.worldbank.org/ ), United Nations ( https://www.un.org/en/ ), and Eurostat ( https://ec.europa.eu/eurostat ) were among the top choices. The other international databases included Human Mortality [ 30 , 39 , 50 ], Transparency International [ 40 , 48 , 50 ], Quality of Government [ 28 , 69 ], World Income Inequality [ 30 ], International Labor Organization [ 41 ], International Monetary Fund [ 70 ]. A number of national databases were referred to as well, for example the US Bureau of Statistics [ 42 , 53 ], Korean Statistical Information Services [ 67 ], Statistics Canada [ 67 ], Australian Bureau of Statistics [ 67 ], and Health New Zealand Tobacco control and Health New Zealand Food and Nutrition [ 19 ]. Well-known surveys, such as the World Values Survey [ 25 , 55 ], the European Social Survey [ 25 , 39 , 44 ], the Eurobarometer [ 46 , 56 ], the European Value Survey [ 25 ], and the European Statistics of Income and Living Condition Survey [ 43 , 47 , 70 ] were used as data sources, too. Finally, in some cases [ 25 , 28 , 29 , 35 , 36 , 41 , 69 ], built-for-purpose datasets from previous studies were re-used.

In most of the studies, the level of the data (and analysis) was national. The exceptions were six papers that dealt with Nomenclature of Territorial Units of Statistics (NUTS2) regions [ 31 , 62 , 63 , 66 ], otherwise defined areas [ 51 ] or cities [ 56 ], and seven others that were multilevel designs and utilized both country- and region-level data [ 57 ], individual- and city- or country-level [ 35 ], individual- and country-level [ 44 , 45 , 48 ], individual- and neighborhood-level [ 64 ], and city-region- (NUTS3) and country-level data [ 65 ]. Parallel to that, the data type was predominantly longitudinal, with only a few studies using purely cross-sectional data [ 25 , 33 , 43 , 45 – 48 , 50 , 62 , 67 , 68 , 71 , 72 ], albeit in four of those [ 43 , 48 , 68 , 72 ] two separate points in time were taken (thus resulting in a kind of “double cross-section”), while in another the averages across survey waves were used [ 56 ].

In studies using longitudinal data, the length of the covered time periods varied greatly. Although this was almost always less than 40 years, in one study it covered the entire 20 th century [ 29 ]. Longitudinal data, typically in the form of annual records, was sometimes transformed before usage. For example, some researchers considered data points at 5- [ 34 , 36 , 49 ] or 10-year [ 27 , 29 , 35 ] intervals instead of the traditional 1, or took averages over 3-year periods [ 42 , 53 , 73 ]. In one study concerned with the effect of the Great Recession all data were in a “recession minus expansion change in trends”-form [ 57 ]. Furthermore, there were a few instances where two different time periods were compared to each other [ 42 , 53 ] or when data was divided into 2 to 4 (possibly overlapping) periods which were then analyzed separately [ 24 , 26 , 28 , 29 , 31 , 65 ]. Lastly, owing to data availability issues, discrepancies between the time points or periods of data on the different variables were occasionally observed [ 22 , 35 , 42 , 53 – 55 , 63 ].

Health determinants

Together with other essential details, Table 1 lists the health correlates considered in the selected studies. Several general categories for these correlates can be discerned, including health care, political stability, socio-economics, demographics, psychology, environment, fertility, life-style, culture, labor. All of these, directly or implicitly, have been recognized as holding importance for population health by existing theoretical models of (social) determinants of health [ 74 – 77 ].

thumbnail

https://doi.org/10.1371/journal.pone.0239031.t001

It is worth noting that in a few studies there was just a single aggregate-level covariate investigated in relation to a health outcome of interest to us. In one instance, this was life satisfaction [ 44 ], in another–welfare system typology [ 45 ], but also gender inequality [ 33 ], austerity level [ 70 , 78 ], and deprivation [ 51 ]. Most often though, attention went exclusively to GDP [ 27 , 29 , 46 , 57 , 65 , 71 ]. It was often the case that research had a more particular focus. Among others, minimum wages [ 79 ], hospital payment schemes [ 23 ], cigarette prices [ 63 ], social expenditure [ 20 ], residents’ dissatisfaction [ 56 ], income inequality [ 30 , 69 ], and work leave [ 41 , 58 ] took center stage. Whenever variables outside of these specific areas were also included, they were usually identified as confounders or controls, moderators or mediators.

We visualized the combinations in which the different determinants have been studied in Fig 2 , which was obtained via multidimensional scaling and a subsequent cluster analysis (details outlined in S2 Appendix ). It depicts the spatial positioning of each determinant relative to all others, based on the number of times the effects of each pair of determinants have been studied simultaneously. When interpreting Fig 2 , one should keep in mind that determinants marked with an asterisk represent, in fact, collectives of variables.

thumbnail

Groups of determinants are marked by asterisks (see S1 Table in S1 Appendix ). Diminishing color intensity reflects a decrease in the total number of “connections” for a given determinant. Noteworthy pairwise “connections” are emphasized via lines (solid-dashed-dotted indicates decreasing frequency). Grey contour lines encircle groups of variables that were identified via cluster analysis. Abbreviations: age = population age distribution, associations = membership in associations, AT-index = atherogenic-thrombogenic index, BR = birth rate, CAPB = Cyclically Adjusted Primary Balance, civilian-labor = civilian labor force, C-section = Cesarean delivery rate, credit-info = depth of credit information, dissatisf = residents’ dissatisfaction, distrib.orient = distributional orientation, EDU = education, eHealth = eHealth index at GP-level, exch.rate = exchange rate, fat = fat consumption, GDP = gross domestic product, GFCF = Gross Fixed Capital Formation/Creation, GH-gas = greenhouse gas, GII = gender inequality index, gov = governance index, gov.revenue = government revenues, HC-coverage = healthcare coverage, HE = health(care) expenditure, HHconsump = household consumption, hosp.beds = hospital beds, hosp.payment = hospital payment scheme, hosp.stay = length of hospital stay, IDI = ICT development index, inc.ineq = income inequality, industry-labor = industrial labor force, infant-sex = infant sex ratio, labor-product = labor production, LBW = low birth weight, leave = work leave, life-satisf = life satisfaction, M-age = maternal age, marginal-tax = marginal tax rate, MDs = physicians, mult.preg = multiple pregnancy, NHS = Nation Health System, NO = nitrous oxide emissions, PM10 = particulate matter (PM10) emissions, pop = population size, pop.density = population density, pre-term = pre-term birth rate, prison = prison population, researchE = research&development expenditure, school.ref = compulsory schooling reform, smoke-free = smoke-free places, SO = sulfur oxide emissions, soc.E = social expenditure, soc.workers = social workers, sugar = sugar consumption, terror = terrorism, union = union density, UR = unemployment rate, urban = urbanization, veg-fr = vegetable-and-fruit consumption, welfare = welfare regime, Wwater = wastewater treatment.

https://doi.org/10.1371/journal.pone.0239031.g002

Distances between determinants in Fig 2 are indicative of determinants’ “connectedness” with each other. While the statistical procedure called for higher dimensionality of the model, for demonstration purposes we show here a two-dimensional solution. This simplification unfortunately comes with a caveat. To use the factor smoking as an example, it would appear it stands at a much greater distance from GDP than it does from alcohol. In reality however, smoking was considered together with alcohol consumption [ 21 , 25 , 26 , 52 , 68 ] in just as many studies as it was with GDP [ 21 , 25 , 26 , 52 , 59 ], five. To aid with respect to this apparent shortcoming, we have emphasized the strongest pairwise links. Solid lines connect GDP with health expenditure (HE), unemployment rate (UR), and education (EDU), indicating that the effect of GDP on health, taking into account the effects of the other three determinants as well, was evaluated in between 12 to 16 studies of the 60 included in this review. Tracing the dashed lines, we can also tell that GDP appeared jointly with income inequality, and HE together with either EDU or UR, in anywhere between 8 to 10 of our selected studies. Finally, some weaker but still worth-mentioning “connections” between variables are displayed as well via the dotted lines.

The fact that all notable pairwise “connections” are concentrated within a relatively small region of the plot may be interpreted as low overall “connectedness” among the health indicators studied. GDP is the most widely investigated determinant in relation to general population health. Its total number of “connections” is disproportionately high (159) compared to its runner-up–HE (with 113 “connections”), and then subsequently EDU (with 90) and UR (with 86). In fact, all of these determinants could be thought of as outliers, given that none of the remaining factors have a total count of pairings above 52. This decrease in individual determinants’ overall “connectedness” can be tracked on the graph via the change of color intensity as we move outwards from the symbolic center of GDP and its closest “co-determinants”, to finally reach the other extreme of the ten indicators (welfare regime, household consumption, compulsory school reform, life satisfaction, government revenues, literacy, research expenditure, multiple pregnancy, Cyclically Adjusted Primary Balance, and residents’ dissatisfaction; in white) the effects on health of which were only studied in isolation.

Lastly, we point to the few small but stable clusters of covariates encircled by the grey bubbles on Fig 2 . These groups of determinants were identified as “close” by both statistical procedures used for the production of the graph (see details in S2 Appendix ).

Statistical methodology

There was great variation in the level of statistical detail reported. Some authors provided too vague a description of their analytical approach, necessitating some inference in this section.

The issue of missing data is a challenging reality in this field of research, but few of the studies under review (12/60) explain how they dealt with it. Among the ones that do, three general approaches to handling missingness can be identified, listed in increasing level of sophistication: case-wise deletion, i.e., removal of countries from the sample [ 20 , 45 , 48 , 58 , 59 ], (linear) interpolation [ 28 , 30 , 34 , 58 , 59 , 63 ], and multiple imputation [ 26 , 41 , 52 ].

Correlations, Pearson, Spearman, or unspecified, were the only technique applied with respect to the health outcomes of interest in eight analyses [ 33 , 42 – 44 , 46 , 53 , 57 , 61 ]. Among the more advanced statistical methods, the family of regression models proved to be, by and large, predominant. Before examining this closer, we note the techniques that were, in a way, “unique” within this selection of studies: meta-analyses were performed (random and fixed effects, respectively) on the reduced form and 2-sample two stage least squares (2SLS) estimations done within countries [ 39 ]; difference-in-difference (DiD) analysis was applied in one case [ 23 ]; dynamic time-series methods, among which co-integration, impulse-response function (IRF), and panel vector autoregressive (VAR) modeling, were utilized in one study [ 80 ]; longitudinal generalized estimating equation (GEE) models were developed on two occasions [ 70 , 78 ]; hierarchical Bayesian spatial models [ 51 ] and special autoregressive regression [ 62 ] were also implemented.

Purely cross-sectional data analyses were performed in eight studies [ 25 , 45 , 47 , 50 , 55 , 56 , 67 , 71 ]. These consisted of linear regression (assumed ordinary least squares (OLS)), generalized least squares (GLS) regression, and multilevel analyses. However, six other studies that used longitudinal data in fact had a cross-sectional design, through which they applied regression at multiple time-points separately [ 27 , 29 , 36 , 48 , 68 , 72 ].

Apart from these “multi-point cross-sectional studies”, some other simplistic approaches to longitudinal data analysis were found, involving calculating and regressing 3-year averages of both the response and the predictor variables [ 54 ], taking the average of a few data-points (i.e., survey waves) [ 56 ] or using difference scores over 10-year [ 19 , 29 ] or unspecified time intervals [ 40 , 55 ].

Moving further in the direction of more sensible longitudinal data usage, we turn to the methods widely known among (health) economists as “panel data analysis” or “panel regression”. Most often seen were models with fixed effects for country/region and sometimes also time-point (occasionally including a country-specific trend as well), with robust standard errors for the parameter estimates to take into account correlations among clustered observations [ 20 , 21 , 24 , 28 , 30 , 32 , 34 , 37 , 38 , 41 , 52 , 59 , 60 , 63 , 66 , 69 , 73 , 79 , 81 , 82 ]. The Hausman test [ 83 ] was sometimes mentioned as the tool used to decide between fixed and random effects [ 26 , 49 , 63 , 66 , 73 , 82 ]. A few studies considered the latter more appropriate for their particular analyses, with some further specifying that (feasible) GLS estimation was employed [ 26 , 34 , 49 , 58 , 60 , 73 ]. Apart from these two types of models, the first differences method was encountered once as well [ 31 ]. Across all, the error terms were sometimes assumed to come from a first-order autoregressive process (AR(1)), i.e., they were allowed to be serially correlated [ 20 , 30 , 38 , 58 – 60 , 73 ], and lags of (typically) predictor variables were included in the model specification, too [ 20 , 21 , 37 , 38 , 48 , 69 , 81 ]. Lastly, a somewhat different approach to longitudinal data analysis was undertaken in four studies [ 22 , 35 , 48 , 65 ] in which multilevel–linear or Poisson–models were developed.

Regardless of the exact techniques used, most studies included in this review presented multiple model applications within their main analysis. None attempted to formally compare models in order to identify the “best”, even if goodness-of-fit statistics were occasionally reported. As indicated above, many studies investigated women’s and men’s health separately [ 19 , 21 , 22 , 27 – 29 , 31 , 33 , 35 , 36 , 38 , 39 , 45 , 50 , 51 , 64 , 65 , 69 , 82 ], and covariates were often tested one at a time, including other covariates only incrementally [ 20 , 25 , 28 , 36 , 40 , 50 , 55 , 67 , 73 ]. Furthermore, there were a few instances where analyses within countries were performed as well [ 32 , 39 , 51 ] or where the full time period of interest was divided into a few sub-periods [ 24 , 26 , 28 , 31 ]. There were also cases where different statistical techniques were applied in parallel [ 29 , 55 , 60 , 66 , 69 , 73 , 82 ], sometimes as a form of sensitivity analysis [ 24 , 26 , 30 , 58 , 73 ]. However, the most common approach to sensitivity analysis was to re-run models with somewhat different samples [ 39 , 50 , 59 , 67 , 69 , 80 , 82 ]. Other strategies included different categorization of variables or adding (more/other) controls [ 21 , 23 , 25 , 28 , 37 , 50 , 63 , 69 ], using an alternative main covariate measure [ 59 , 82 ], including lags for predictors or outcomes [ 28 , 30 , 58 , 63 , 65 , 79 ], using weights [ 24 , 67 ] or alternative data sources [ 37 , 69 ], or using non-imputed data [ 41 ].

As the methods and not the findings are the main focus of the current review, and because generic checklists cannot discern the underlying quality in this application field (see also below), we opted to pool all reported findings together, regardless of individual study characteristics or particular outcome(s) used, and speak generally of positive and negative effects on health. For this summary we have adopted the 0.05-significance level and only considered results from multivariate analyses. Strictly birth-related factors are omitted since these potentially only relate to the group of infant mortality indicators and not to any of the other general population health measures.

Starting with the determinants most often studied, higher GDP levels [ 21 , 26 , 27 , 29 , 30 , 32 , 43 , 48 , 52 , 58 , 60 , 66 , 67 , 73 , 79 , 81 , 82 ], higher health [ 21 , 37 , 47 , 49 , 52 , 58 , 59 , 68 , 72 , 82 ] and social [ 20 , 21 , 26 , 38 , 79 ] expenditures, higher education [ 26 , 39 , 52 , 62 , 72 , 73 ], lower unemployment [ 60 , 61 , 66 ], and lower income inequality [ 30 , 42 , 53 , 55 , 73 ] were found to be significantly associated with better population health on a number of occasions. In addition to that, there was also some evidence that democracy [ 36 ] and freedom [ 50 ], higher work compensation [ 43 , 79 ], distributional orientation [ 54 ], cigarette prices [ 63 ], gross national income [ 22 , 72 ], labor productivity [ 26 ], exchange rates [ 32 ], marginal tax rates [ 79 ], vaccination rates [ 52 ], total fertility [ 59 , 66 ], fruit and vegetable [ 68 ], fat [ 52 ] and sugar consumption [ 52 ], as well as bigger depth of credit information [ 22 ] and percentage of civilian labor force [ 79 ], longer work leaves [ 41 , 58 ], more physicians [ 37 , 52 , 72 ], nurses [ 72 ], and hospital beds [ 79 , 82 ], and also membership in associations, perceived corruption and societal trust [ 48 ] were beneficial to health. Higher nitrous oxide (NO) levels [ 52 ], longer average hospital stay [ 48 ], deprivation [ 51 ], dissatisfaction with healthcare and the social environment [ 56 ], corruption [ 40 , 50 ], smoking [ 19 , 26 , 52 , 68 ], alcohol consumption [ 26 , 52 , 68 ] and illegal drug use [ 68 ], poverty [ 64 ], higher percentage of industrial workers [ 26 ], Gross Fixed Capital creation [ 66 ] and older population [ 38 , 66 , 79 ], gender inequality [ 22 ], and fertility [ 26 , 66 ] were detrimental.

It is important to point out that the above-mentioned effects could not be considered stable either across or within studies. Very often, statistical significance of a given covariate fluctuated between the different model specifications tried out within the same study [ 20 , 49 , 59 , 66 , 68 , 69 , 73 , 80 , 82 ], testifying to the importance of control variables and multivariate research (i.e., analyzing multiple independent variables simultaneously) in general. Furthermore, conflicting results were observed even with regards to the “core” determinants given special attention, so to speak, throughout this text. Thus, some studies reported negative effects of health expenditure [ 32 , 82 ], social expenditure [ 58 ], GDP [ 49 , 66 ], and education [ 82 ], and positive effects of income inequality [ 82 ] and unemployment [ 24 , 31 , 32 , 52 , 66 , 68 ]. Interestingly, one study [ 34 ] differentiated between temporary and long-term effects of GDP and unemployment, alluding to possibly much greater complexity of the association with health. It is also worth noting that some gender differences were found, with determinants being more influential for males than for females, or only having statistically significant effects for male health [ 19 , 21 , 28 , 34 , 36 , 37 , 39 , 64 , 65 , 69 ].

The purpose of this scoping review was to examine recent quantitative work on the topic of multi-country analyses of determinants of population health in high-income countries.

Measuring population health via relatively simple mortality-based indicators still seems to be the state of the art. What is more, these indicators are routinely considered one at a time, instead of, for example, employing existing statistical procedures to devise a more general, composite, index of population health, or using some of the established indices, such as disability-adjusted life expectancy (DALE) or quality-adjusted life expectancy (QALE). Although strong arguments for their wider use were already voiced decades ago [ 84 ], such summary measures surface only rarely in this research field.

On a related note, the greater data availability and accessibility that we enjoy today does not automatically equate to data quality. Nonetheless, this is routinely assumed in aggregate level studies. We almost never encountered a discussion on the topic. The non-mundane issue of data missingness, too, goes largely underappreciated. With all recent methodological advancements in this area [ 85 – 88 ], there is no excuse for ignorance; and still, too few of the reviewed studies tackled the matter in any adequate fashion.

Much optimism can be gained considering the abundance of different determinants that have attracted researchers’ attention in relation to population health. We took on a visual approach with regards to these determinants and presented a graph that links spatial distances between determinants with frequencies of being studies together. To facilitate interpretation, we grouped some variables, which resulted in some loss of finer detail. Nevertheless, the graph is helpful in exemplifying how many effects continue to be studied in a very limited context, if any. Since in reality no factor acts in isolation, this oversimplification practice threatens to render the whole exercise meaningless from the outset. The importance of multivariate analysis cannot be stressed enough. While there is no “best method” to be recommended and appropriate techniques vary according to the specifics of the research question and the characteristics of the data at hand [ 89 – 93 ], in the future, in addition to abandoning simplistic univariate approaches, we hope to see a shift from the currently dominating fixed effects to the more flexible random/mixed effects models [ 94 ], as well as wider application of more sophisticated methods, such as principle component regression, partial least squares, covariance structure models (e.g., structural equations), canonical correlations, time-series, and generalized estimating equations.

Finally, there are some limitations of the current scoping review. We searched the two main databases for published research in medical and non-medical sciences (PubMed and Web of Science) since 2013, thus potentially excluding publications and reports that are not indexed in these databases, as well as older indexed publications. These choices were guided by our interest in the most recent (i.e., the current state-of-the-art) and arguably the highest-quality research (i.e., peer-reviewed articles, primarily in indexed non-predatory journals). Furthermore, despite holding a critical stance with regards to some aspects of how determinants-of-health research is currently conducted, we opted out of formally assessing the quality of the individual studies included. The reason for that is two-fold. On the one hand, we are unaware of the existence of a formal and standard tool for quality assessment of ecological designs. And on the other, we consider trying to score the quality of these diverse studies (in terms of regional setting, specific topic, outcome indices, and methodology) undesirable and misleading, particularly since we would sometimes have been rating the quality of only a (small) part of the original studies—the part that was relevant to our review’s goal.

Our aim was to investigate the current state of research on the very broad and general topic of population health, specifically, the way it has been examined in a multi-country context. We learned that data treatment and analytical approach were, in the majority of these recent studies, ill-equipped or insufficiently transparent to provide clarity regarding the underlying mechanisms of population health in high-income countries. Whether due to methodological shortcomings or the inherent complexity of the topic, research so far fails to provide any definitive answers. It is our sincere belief that with the application of more advanced analytical techniques this continuous quest could come to fruition sooner.

Supporting information

S1 checklist. preferred reporting items for systematic reviews and meta-analyses extension for scoping reviews (prisma-scr) checklist..

https://doi.org/10.1371/journal.pone.0239031.s001

S1 Appendix.

https://doi.org/10.1371/journal.pone.0239031.s002

S2 Appendix.

https://doi.org/10.1371/journal.pone.0239031.s003

  • View Article
  • Google Scholar
  • PubMed/NCBI
  • 75. Dahlgren G, Whitehead M. Policies and Strategies to Promote Equity in Health. Stockholm, Sweden: Institute for Future Studies; 1991.
  • 76. Brunner E, Marmot M. Social Organization, Stress, and Health. In: Marmot M, Wilkinson RG, editors. Social Determinants of Health. Oxford, England: Oxford University Press; 1999.
  • 77. Najman JM. A General Model of the Social Origins of Health and Well-being. In: Eckersley R, Dixon J, Douglas B, editors. The Social Origins of Health and Well-being. Cambridge, England: Cambridge University Press; 2001.
  • 85. Carpenter JR, Kenward MG. Multiple Imputation and its Application. New York: John Wiley & Sons; 2013.
  • 86. Molenberghs G, Fitzmaurice G, Kenward MG, Verbeke G, Tsiatis AA. Handbook of Missing Data Methodology. Boca Raton: Chapman & Hall/CRC; 2014.
  • 87. van Buuren S. Flexible Imputation of Missing Data. 2nd ed. Boca Raton: Chapman & Hall/CRC; 2018.
  • 88. Enders CK. Applied Missing Data Analysis. New York: Guilford; 2010.
  • 89. Shayle R. Searle GC, Charles E. McCulloch. Variance Components: John Wiley & Sons, Inc.; 1992.
  • 90. Agresti A. Foundations of Linear and Generalized Linear Models. Hoboken, New Jersey: John Wiley & Sons Inc.; 2015.
  • 91. Leyland A. H. (Editor) HGE. Multilevel Modelling of Health Statistics: John Wiley & Sons Inc; 2001.
  • 92. Garrett Fitzmaurice MD, Geert Verbeke, Geert Molenberghs. Longitudinal Data Analysis. New York: Chapman and Hall/CRC; 2008.
  • 93. Wolfgang Karl Härdle LS. Applied Multivariate Statistical Analysis. Berlin, Heidelberg: Springer; 2015.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is Quantitative Research? | Definition, Uses & Methods

What Is Quantitative Research? | Definition, Uses & Methods

Published on June 12, 2020 by Pritha Bhandari . Revised on June 22, 2023.

Quantitative research is the process of collecting and analyzing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalize results to wider populations.

Quantitative research is the opposite of qualitative research , which involves collecting and analyzing non-numerical data (e.g., text, video, or audio).

Quantitative research is widely used in the natural and social sciences: biology, chemistry, psychology, economics, sociology, marketing, etc.

  • What is the demographic makeup of Singapore in 2020?
  • How has the average temperature changed globally over the last century?
  • Does environmental pollution affect the prevalence of honey bees?
  • Does working from home increase productivity for people with long commutes?

Table of contents

Quantitative research methods, quantitative data analysis, advantages of quantitative research, disadvantages of quantitative research, other interesting articles, frequently asked questions about quantitative research.

You can use quantitative research methods for descriptive, correlational or experimental research.

  • In descriptive research , you simply seek an overall summary of your study variables.
  • In correlational research , you investigate relationships between your study variables.
  • In experimental research , you systematically examine whether there is a cause-and-effect relationship between variables.

Correlational and experimental research can both be used to formally test hypotheses , or predictions, using statistics. The results may be generalized to broader populations based on the sampling method used.

To collect quantitative data, you will often need to use operational definitions that translate abstract concepts (e.g., mood) into observable and quantifiable measures (e.g., self-ratings of feelings and energy levels).

Note that quantitative research is at risk for certain research biases , including information bias , omitted variable bias , sampling bias , or selection bias . Be sure that you’re aware of potential biases as you collect and analyze your data to prevent them from impacting your work too much.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Once data is collected, you may need to process it before it can be analyzed. For example, survey and test data may need to be transformed from words to numbers. Then, you can use statistical analysis to answer your research questions .

Descriptive statistics will give you a summary of your data and include measures of averages and variability. You can also use graphs, scatter plots and frequency tables to visualize your data and check for any trends or outliers.

Using inferential statistics , you can make predictions or generalizations based on your data. You can test your hypothesis or use your sample data to estimate the population parameter .

First, you use descriptive statistics to get a summary of the data. You find the mean (average) and the mode (most frequent rating) of procrastination of the two groups, and plot the data to see if there are any outliers.

You can also assess the reliability and validity of your data collection methods to indicate how consistently and accurately your methods actually measured what you wanted them to.

Quantitative research is often used to standardize data collection and generalize findings . Strengths of this approach include:

  • Replication

Repeating the study is possible because of standardized data collection protocols and tangible definitions of abstract concepts.

  • Direct comparisons of results

The study can be reproduced in other cultural settings, times or with different groups of participants. Results can be compared statistically.

  • Large samples

Data from large samples can be processed and analyzed using reliable and consistent procedures through quantitative data analysis.

  • Hypothesis testing

Using formalized and established hypothesis testing procedures means that you have to carefully consider and report your research variables, predictions, data collection and testing methods before coming to a conclusion.

Despite the benefits of quantitative research, it is sometimes inadequate in explaining complex research topics. Its limitations include:

  • Superficiality

Using precise and restrictive operational definitions may inadequately represent complex concepts. For example, the concept of mood may be represented with just a number in quantitative research, but explained with elaboration in qualitative research.

  • Narrow focus

Predetermined variables and measurement procedures can mean that you ignore other relevant observations.

  • Structural bias

Despite standardized procedures, structural biases can still affect quantitative research. Missing data , imprecise measurements or inappropriate sampling methods are biases that can lead to the wrong conclusions.

  • Lack of context

Quantitative research often uses unnatural settings like laboratories or fails to consider historical and cultural contexts that may affect data collection and results.

Prevent plagiarism. Run a free check.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Chi square goodness of fit test
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Inclusion and exclusion criteria

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organizations.

Operationalization means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioral avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalize the variables that you want to measure.

Reliability and validity are both about how well a method measures something:

  • Reliability refers to the  consistency of a measure (whether the results can be reproduced under the same conditions).
  • Validity   refers to the  accuracy of a measure (whether the results really do represent what they are supposed to measure).

If you are doing experimental research, you also have to consider the internal and external validity of your experiment.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, June 22). What Is Quantitative Research? | Definition, Uses & Methods. Scribbr. Retrieved April 15, 2024, from https://www.scribbr.com/methodology/quantitative-research/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, descriptive statistics | definitions, types, examples, inferential statistics | an easy introduction & examples, what is your plagiarism score.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Published: 01 June 2023

Data, measurement and empirical methods in the science of science

  • Lu Liu 1 , 2 , 3 , 4 ,
  • Benjamin F. Jones   ORCID: orcid.org/0000-0001-9697-9388 1 , 2 , 3 , 5 , 6 ,
  • Brian Uzzi   ORCID: orcid.org/0000-0001-6855-2854 1 , 2 , 3 &
  • Dashun Wang   ORCID: orcid.org/0000-0002-7054-2206 1 , 2 , 3 , 7  

Nature Human Behaviour volume  7 ,  pages 1046–1058 ( 2023 ) Cite this article

16k Accesses

8 Citations

119 Altmetric

Metrics details

  • Scientific community

The advent of large-scale datasets that trace the workings of science has encouraged researchers from many different disciplinary backgrounds to turn scientific methods into science itself, cultivating a rapidly expanding ‘science of science’. This Review considers this growing, multidisciplinary literature through the lens of data, measurement and empirical methods. We discuss the purposes, strengths and limitations of major empirical approaches, seeking to increase understanding of the field’s diverse methodologies and expand researchers’ toolkits. Overall, new empirical developments provide enormous capacity to test traditional beliefs and conceptual frameworks about science, discover factors associated with scientific productivity, predict scientific outcomes and design policies that facilitate scientific progress.

Similar content being viewed by others

quantitative empirical research article

Worldwide divergence of values

Joshua Conrad Jackson & Danila Medvedev

quantitative empirical research article

Genome-wide association studies

Emil Uffelmann, Qin Qin Huang, … Danielle Posthuma

quantitative empirical research article

Pleiotropy, epistasis and the genetic architecture of quantitative traits

Trudy F. C. Mackay & Robert R. H. Anholt

Scientific advances are a key input to rising standards of living, health and the capacity of society to confront grand challenges, from climate change to the COVID-19 pandemic 1 , 2 , 3 . A deeper understanding of how science works and where innovation occurs can help us to more effectively design science policy and science institutions, better inform scientists’ own research choices, and create and capture enormous value for science and humanity. Building on these key premises, recent years have witnessed substantial development in the ‘science of science’ 4 , 5 , 6 , 7 , 8 , 9 , which uses large-scale datasets and diverse computational toolkits to unearth fundamental patterns behind scientific production and use.

The idea of turning scientific methods into science itself is long-standing. Since the mid-20th century, researchers from different disciplines have asked central questions about the nature of scientific progress and the practice, organization and impact of scientific research. Building on these rich historical roots, the field of the science of science draws upon many disciplines, ranging from information science to the social, physical and biological sciences to computer science, engineering and design. The science of science closely relates to several strands and communities of research, including metascience, scientometrics, the economics of science, research on research, science and technology studies, the sociology of science, metaknowledge and quantitative science studies 5 . There are noticeable differences between some of these communities, mostly around their historical origins and the initial disciplinary composition of researchers forming these communities. For example, metascience has its origins in the clinical sciences and psychology, and focuses on rigour, transparency, reproducibility and other open science-related practices and topics. The scientometrics community, born in library and information sciences, places a particular emphasis on developing robust and responsible measures and indicators for science. Science and technology studies engage the history of science and technology, the philosophy of science, and the interplay between science, technology and society. The science of science, which has its origins in physics, computer science and sociology, takes a data-driven approach and emphasizes questions on how science works. Each of these communities has made fundamental contributions to understanding science. While they differ in their origins, these differences pale in comparison to the overarching, common interest in understanding the practice of science and its societal impact.

Three major developments have encouraged rapid advances in the science of science. The first is in data 9 : modern databases include millions of research articles, grant proposals, patents and more. This windfall of data traces scientific activity in remarkable detail and at scale. The second development is in measurement: scholars have used data to develop many new measures of scientific activities and examine theories that have long been viewed as important but difficult to quantify. The third development is in empirical methods: thanks to parallel advances in data science, network science, artificial intelligence and econometrics, researchers can study relationships, make predictions and assess science policy in powerful new ways. Together, new data, measurements and methods have revealed fundamental new insights about the inner workings of science and scientific progress itself.

With multiple approaches, however, comes a key challenge. As researchers adhere to norms respected within their disciplines, their methods vary, with results often published in venues with non-overlapping readership, fragmenting research along disciplinary boundaries. This fragmentation challenges researchers’ ability to appreciate and understand the value of work outside of their own discipline, much less to build directly on it for further investigations.

Recognizing these challenges and the rapidly developing nature of the field, this paper reviews the empirical approaches that are prevalent in this literature. We aim to provide readers with an up-to-date understanding of the available datasets, measurement constructs and empirical methodologies, as well as the value and limitations of each. Owing to space constraints, this Review does not cover the full technical details of each method, referring readers to related guides to learn more. Instead, we will emphasize why a researcher might favour one method over another, depending on the research question.

Beyond a positive understanding of science, a key goal of the science of science is to inform science policy. While this Review mainly focuses on empirical approaches, with its core audience being researchers in the field, the studies reviewed are also germane to key policy questions. For example, what is the appropriate scale of scientific investment, in what directions and through what institutions 10 , 11 ? Are public investments in science aligned with public interests 12 ? What conditions produce novel or high-impact science 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 ? How do the reward systems of science influence the rate and direction of progress 13 , 21 , 22 , 23 , 24 , and what governs scientific reproducibility 25 , 26 , 27 ? How do contributions evolve over a scientific career 28 , 29 , 30 , 31 , 32 , and how may diversity among scientists advance scientific progress 33 , 34 , 35 , among other questions relevant to science policy 36 , 37 .

Overall, this review aims to facilitate entry to science of science research, expand researcher toolkits and illustrate how diverse research approaches contribute to our collective understanding of science. Section 2 reviews datasets and data linkages. Section 3 reviews major measurement constructs in the science of science. Section 4 considers a range of empirical methods, focusing on one study to illustrate each method and briefly summarizing related examples and applications. Section 5 concludes with an outlook for the science of science.

Historically, data on scientific activities were difficult to collect and were available in limited quantities. Gathering data could involve manually tallying statistics from publications 38 , 39 , interviewing scientists 16 , 40 , or assembling historical anecdotes and biographies 13 , 41 . Analyses were typically limited to a specific domain or group of scientists. Today, massive datasets on scientific production and use are at researchers’ fingertips 42 , 43 , 44 . Armed with big data and advanced algorithms, researchers can now probe questions previously not amenable to quantification and with enormous increases in scope and scale, as detailed below.

Publication datasets cover papers from nearly all scientific disciplines, enabling analyses of both general and domain-specific patterns. Commonly used datasets include the Web of Science (WoS), PubMed, CrossRef, ORCID, OpenCitations, Dimensions and OpenAlex. Datasets incorporating papers’ text (CORE) 45 , 46 , 47 , data entities (DataCite) 48 , 49 and peer review reports (Publons) 33 , 50 , 51 have also become available. These datasets further enable novel measurement, for example, representations of a paper’s content 52 , 53 , novelty 15 , 54 and interdisciplinarity 55 .

Notably, databases today capture more diverse aspects of science beyond publications, offering a richer and more encompassing view of research contexts and of researchers themselves (Fig. 1 ). For example, some datasets trace research funding to the specific publications these investments support 56 , 57 , allowing high-scale studies of the impact of funding on productivity and the return on public investment. Datasets incorporating job placements 58 , 59 , curriculum vitae 21 , 59 and scientific prizes 23 offer rich quantitative evidence on the social structure of science. Combining publication profiles with mentorship genealogies 60 , 61 , dissertations 34 and course syllabi 62 , 63 provides insights on mentoring and cultivating talent.

figure 1

This figure presents commonly used data types in science of science research, information contained in each data type and examples of data sources. Datasets in the science of science research have not only grown in scale but have also expanded beyond publications to integrate upstream funding investments and downstream applications that extend beyond science itself.

Finally, today’s scope of data extends beyond science to broader aspects of society. Altmetrics 64 captures news media and social media mentions of scientific articles. Other databases incorporate marketplace uses of science, including through patents 10 , pharmaceutical clinical trials and drug approvals 65 , 66 . Policy documents 67 , 68 help us to understand the role of science in the halls of government 69 and policy making 12 , 68 .

While datasets of the modern scientific enterprise have grown exponentially, they are not without limitations. As is often the case for data-driven research, drawing conclusions from specific data sources requires scrutiny and care. Datasets are typically based on published work, which may favour easy-to-publish topics over important ones (the streetlight effect) 70 , 71 . The publication of negative results is also rare (the file drawer problem) 72 , 73 . Meanwhile, English language publications account for over 90% of articles in major data sources, with limited coverage of non-English journals 74 . Publication datasets may also reflect biases in data collection across research institutions or demographic groups. Despite the open science movement, many datasets require paid subscriptions, which can create inequality in data access. Creating more open datasets for the science of science, such as OpenAlex, may not only improve the robustness and replicability of empirical claims but also increase entry to the field.

As today’s datasets become larger in scale and continue to integrate new dimensions, they offer opportunities to unveil the inner workings and external impacts of science in new ways. They can enable researchers to reach beyond previous limitations while conducting original studies of new and long-standing questions about the sciences.

Measurement

Here we discuss prominent measurement approaches in the science of science, including their purposes and limitations.

Modern publication databases typically include data on which articles and authors cite other papers and scientists. These citation linkages have been used to engage core conceptual ideas in scientific research. Here we consider two common measures based on citation information: citation counts and knowledge flows.

First, citation counts are commonly used indicators of impact. The term ‘indicator’ implies that it only approximates the concept of interest. A citation count is defined as how many times a document is cited by subsequent documents and can proxy for the importance of research papers 75 , 76 as well as patented inventions 77 , 78 , 79 . Rather than treating each citation equally, measures may further weight the importance of each citation, for example by using the citation network structure to produce centrality 80 , PageRank 81 , 82 or Eigenfactor indicators 83 , 84 .

Citation-based indicators have also faced criticism 84 , 85 . Citation indicators necessarily oversimplify the construct of impact, often ignoring heterogeneity in the meaning and use of a particular reference, the variations in citation practices across fields and institutional contexts, and the potential for reputation and power structures in science to influence citation behaviour 86 , 87 . Researchers have started to understand more nuanced citation behaviours ranging from negative citations 86 to citation context 47 , 88 , 89 . Understanding what a citation actually measures matters in interpreting and applying many research findings in the science of science. Evaluations relying on citation-based indicators rather than expert judgements raise questions regarding misuse 90 , 91 , 92 . Given the importance of developing indicators that can reliably quantify and evaluate science, the scientometrics community has been working to provide guidance for responsible citation practices and assessment 85 .

Second, scientists use citations to trace knowledge flows. Each citation in a paper is a link to specific previous work from which we can proxy how new discoveries draw upon existing ideas 76 , 93 and how knowledge flows between fields of science 94 , 95 , research institutions 96 , regions and nations 97 , 98 , 99 , and individuals 81 . Combinations of citation linkages can also approximate novelty 15 , disruptiveness 17 , 100 and interdisciplinarity 55 , 95 , 101 , 102 . A rapidly expanding body of work further examines citations to scientific articles from other domains (for example, patents, clinical drug trials and policy documents) to understand the applied value of science 10 , 12 , 65 , 66 , 103 , 104 , 105 .

Individuals

Analysing individual careers allows researchers to answer questions such as: How do we quantify individual scientific productivity? What is a typical career lifecycle? How are resources and credits allocated across individuals and careers? A scholar’s career can be examined through the papers they publish 30 , 31 , 106 , 107 , 108 , with attention to career progression and mobility, publication counts and citation impact, as well as grant funding 24 , 109 , 110 and prizes 111 , 112 , 113 ,

Studies of individual impact focus on output, typically approximated by the number of papers a researcher publishes and citation indicators. A popular measure for individual impact is the h -index 114 , which takes both volume and per-paper impact into consideration. Specifically, a scientist is assigned the largest value h such that they have h papers that were each cited at least h times. Later studies build on the idea of the h -index and propose variants to address limitations 115 , these variants ranging from emphasizing highly cited papers in a career 116 , to field differences 117 and normalizations 118 , to the relative contribution of an individual in collaborative works 119 .

To study dynamics in output over the lifecycle, individuals can be studied according to age, career age or the sequence of publications. A long-standing literature has investigated the relationship between age and the likelihood of outstanding achievement 28 , 106 , 111 , 120 , 121 . Recent studies further decouple the relationship between age, publication volume and per-paper citation, and measure the likelihood of producing highly cited papers in the sequence of works one produces 30 , 31 .

As simple as it sounds, representing careers using publication records is difficult. Collecting the full publication list of a researcher is the foundation to study individuals yet remains a key challenge, requiring name disambiguation techniques to match specific works to specific researchers. Although algorithms are increasingly capable at identifying millions of career profiles 122 , they vary in accuracy and robustness. ORCID can help to alleviate the problem by offering researchers the opportunity to create, maintain and update individual profiles themselves, and it goes beyond publications to collect broader outputs and activities 123 . A second challenge is survivorship bias. Empirical studies tend to focus on careers that are long enough to afford statistical analyses, which limits the applicability of the findings to scientific careers as a whole. A third challenge is the breadth of scientists’ activities, where focusing on publications ignores other important contributions such as mentorship and teaching, service (for example, refereeing papers, reviewing grant proposals and editing journals) or leadership within their organizations. Although researchers have begun exploring these dimensions by linking individual publication profiles with genealogical databases 61 , 124 , dissertations 34 , grants 109 , curriculum vitae 21 and acknowledgements 125 , scientific careers beyond publication records remain under-studied 126 , 127 . Lastly, citation-based indicators only serve as an approximation of individual performance with similar limitations as discussed above. The scientific community has called for more appropriate practices 85 , 128 , ranging from incorporating expert assessment of research contributions to broadening the measures of impact beyond publications.

Over many decades, science has exhibited a substantial and steady shift away from solo authorship towards coauthorship, especially among highly cited works 18 , 129 , 130 . In light of this shift, a research field, the science of team science 131 , 132 , has emerged to study the mechanisms that facilitate or hinder the effectiveness of teams. Team size can be proxied by the number of coauthors on a paper, which has been shown to predict distinctive types of advance: whereas larger teams tend to develop ideas, smaller teams tend to disrupt current ways of thinking 17 . Team characteristics can be inferred from coauthors’ backgrounds 133 , 134 , 135 , allowing quantification of a team’s diversity in terms of field, age, gender or ethnicity. Collaboration networks based on coauthorship 130 , 136 , 137 , 138 , 139 offer nuanced network-based indicators to understand individual and institutional collaborations.

However, there are limitations to using coauthorship alone to study teams 132 . First, coauthorship can obscure individual roles 140 , 141 , 142 , which has prompted institutional responses to help to allocate credit, including authorship order and individual contribution statements 56 , 143 . Second, coauthorship does not reflect the complex dynamics and interactions between team members that are often instrumental for team success 53 , 144 . Third, collaborative contributions can extend beyond coauthorship in publications to include members of a research laboratory 145 or co-principal investigators (co-PIs) on a grant 146 . Initiatives such as CRediT may help to address some of these issues by recording detailed roles for each contributor 147 .

Institutions

Research institutions, such as departments, universities, national laboratories and firms, encompass wider groups of researchers and their corresponding outputs. Institutional membership can be inferred from affiliations listed on publications or patents 148 , 149 , and the output of an institution can be aggregated over all its affiliated researchers 150 . Institutional research information systems (CRIS) contain more comprehensive research outputs and activities from employees.

Some research questions consider the institution as a whole, investigating the returns to research and development investment 104 , inequality of resource allocation 22 and the flow of scientists 21 , 148 , 149 . Other questions focus on institutional structures as sources of research productivity by looking into the role of peer effects 125 , 151 , 152 , 153 , how institutional policies impact research outcomes 154 , 155 and whether interdisciplinary efforts foster innovation 55 . Institution-oriented measurement faces similar limitations as with analyses of individuals and teams, including name disambiguation for a given institution and the limited capacity of formal publication records to characterize the full range of relevant institutional outcomes. It is also unclear how to allocate credit among multiple institutions associated with a paper. Moreover, relevant institutional employees extend beyond publishing researchers: interns, technicians and administrators all contribute to research endeavours 130 .

In sum, measurements allow researchers to quantify scientific production and use across numerous dimensions, but they also raise questions of construct validity: Does the proposed metric really reflect what we want to measure? Testing the construct’s validity is important, as is understanding a construct’s limits. Where possible, using alternative measurement approaches, or qualitative methods such as interviews and surveys, can improve measurement accuracy and the robustness of findings.

Empirical methods

In this section, we review two broad categories of empirical approaches (Table 1 ), each with distinctive goals: (1) to discover, estimate and predict empirical regularities; and (2) to identify causal mechanisms. For each method, we give a concrete example to help to explain how the method works, summarize related work for interested readers, and discuss contributions and limitations.

Descriptive and predictive approaches

Empirical regularities and generalizable facts.

The discovery of empirical regularities in science has had a key role in driving conceptual developments and the directions of future research. By observing empirical patterns at scale, researchers unveil central facts that shape science and present core features that theories of scientific progress and practice must explain. For example, consider citation distributions. de Solla Price first proposed that citation distributions are fat-tailed 39 , indicating that a few papers have extremely high citations while most papers have relatively few or even no citations at all. de Solla Price proposed that citation distribution was a power law, while researchers have since refined this view to show that the distribution appears log-normal, a nearly universal regularity across time and fields 156 , 157 . The fat-tailed nature of citation distributions and its universality across the sciences has in turn sparked substantial theoretical work that seeks to explain this key empirical regularity 20 , 156 , 158 , 159 .

Empirical regularities are often surprising and can contest previous beliefs of how science works. For example, it has been shown that the age distribution of great achievements peaks in middle age across a wide range of fields 107 , 121 , 160 , rejecting the common belief that young scientists typically drive breakthroughs in science. A closer look at the individual careers also indicates that productivity patterns vary widely across individuals 29 . Further, a scholar’s highest-impact papers come at a remarkably constant rate across the sequence of their work 30 , 31 .

The discovery of empirical regularities has had important roles in shaping beliefs about the nature of science 10 , 45 , 161 , 162 , sources of breakthrough ideas 15 , 163 , 164 , 165 , scientific careers 21 , 29 , 126 , 127 , the network structure of ideas and scientists 23 , 98 , 136 , 137 , 138 , 139 , 166 , gender inequality 57 , 108 , 126 , 135 , 143 , 167 , 168 , and many other areas of interest to scientists and science institutions 22 , 47 , 86 , 97 , 102 , 105 , 134 , 169 , 170 , 171 . At the same time, care must be taken to ensure that findings are not merely artefacts due to data selection or inherent bias. To differentiate meaningful patterns from spurious ones, it is important to stress test the findings through different selection criteria or across non-overlapping data sources.

Regression analysis

When investigating correlations among variables, a classic method is regression, which estimates how one set of variables explains variation in an outcome of interest. Regression can be used to test explicit hypotheses or predict outcomes. For example, researchers have investigated whether a paper’s novelty predicts its citation impact 172 . Adding additional control variables to the regression, one can further examine the robustness of the focal relationship.

Although regression analysis is useful for hypothesis testing, it bears substantial limitations. If the question one wishes to ask concerns a ‘causal’ rather than a correlational relationship, regression is poorly suited to the task as it is impossible to control for all the confounding factors. Failing to account for such ‘omitted variables’ can bias the regression coefficient estimates and lead to spurious interpretations. Further, regression models often have low goodness of fit (small R 2 ), indicating that the variables considered explain little of the outcome variation. As regressions typically focus on a specific relationship in simple functional forms, regressions tend to emphasize interpretability rather than overall predictability. The advent of predictive approaches powered by large-scale datasets and novel computational techniques offers new opportunities for modelling complex relationships with stronger predictive power.

Mechanistic models

Mechanistic modelling is an important approach to explaining empirical regularities, drawing from methods primarily used in physics. Such models predict macro-level regularities of a system by modelling micro-level interactions among basic elements with interpretable and modifiable formulars. While theoretical by nature, mechanistic models in the science of science are often empirically grounded, and this approach has developed together with the advent of large-scale, high-resolution data.

Simplicity is the core value of a mechanistic model. Consider for example, why citations follow a fat-tailed distribution. de Solla Price modelled the citing behaviour as a cumulative advantage process on a growing citation network 159 and found that if the probability a paper is cited grows linearly with its existing citations, the resulting distribution would follow a power law, broadly aligned with empirical observations. The model is intentionally simplified, ignoring myriad factors. Yet the simple cumulative advantage process is by itself sufficient in explaining a power law distribution of citations. In this way, mechanistic models can help to reveal key mechanisms that can explain observed patterns.

Moreover, mechanistic models can be refined as empirical evidence evolves. For example, later investigations showed that citation distributions are better characterized as log-normal 156 , 173 , prompting researchers to introduce a fitness parameter to encapsulate the inherent differences in papers’ ability to attract citations 174 , 175 . Further, older papers are less likely to be cited than expected 176 , 177 , 178 , motivating more recent models 20 to introduce an additional aging effect 179 . By combining the cumulative advantage, fitness and aging effects, one can already achieve substantial predictive power not just for the overall properties of the system but also the citation dynamics of individual papers 20 .

In addition to citations, mechanistic models have been developed to understand the formation of collaborations 136 , 180 , 181 , 182 , 183 , knowledge discovery and diffusion 184 , 185 , topic selection 186 , 187 , career dynamics 30 , 31 , 188 , 189 , the growth of scientific fields 190 and the dynamics of failure in science and other domains 178 .

At the same time, some observers have argued that mechanistic models are too simplistic to capture the essence of complex real-world problems 191 . While it has been a cornerstone for the natural sciences, representing social phenomena in a limited set of mathematical equations may miss complexities and heterogeneities that make social phenomena interesting in the first place. Such concerns are not unique to the science of science, as they represent a broader theme in computational social sciences 192 , 193 , ranging from social networks 194 , 195 to human mobility 196 , 197 to epidemics 198 , 199 . Other observers have questioned the practical utility of mechanistic models and whether they can be used to guide decisions and devise actionable policies. Nevertheless, despite these limitations, several complex phenomena in the science of science are well captured by simple mechanistic models, showing a high degree of regularity beneath complex interacting systems and providing powerful insights about the nature of science. Mixing such modelling with other methods could be particularly fruitful in future investigations.

Machine learning

The science of science seeks in part to forecast promising directions for scientific research 7 , 44 . In recent years, machine learning methods have substantially advanced predictive capabilities 200 , 201 and are playing increasingly important parts in the science of science. In contrast to the previous methods, machine learning does not emphasize hypotheses or theories. Rather, it leverages complex relationships in data and optimizes goodness of fit to make predictions and categorizations.

Traditional machine learning models include supervised, semi-supervised and unsupervised learning. The model choice depends on data availability and the research question, ranging from supervised models for citation prediction 202 , 203 to unsupervised models for community detection 204 . Take for example mappings of scientific knowledge 94 , 205 , 206 . The unsupervised method applies network clustering algorithms to map the structures of science. Related visualization tools make sense of clusters from the underlying network, allowing observers to see the organization, interactions and evolution of scientific knowledge. More recently, supervised learning, and deep neural networks in particular, have witnessed especially rapid developments 207 . Neural networks can generate high-dimensional representations of unstructured data such as images and texts, which encode complex properties difficult for human experts to perceive.

Take text analysis as an example. A recent study 52 utilizes 3.3 million paper abstracts in materials science to predict the thermoelectric properties of materials. The intuition is that the words currently used to describe a material may predict its hitherto undiscovered properties (Fig. 2 ). Compared with a random material, the materials predicted by the model are eight times more likely to be reported as thermoelectric in the next 5 years, suggesting that machine learning has the potential to substantially speed up knowledge discovery, especially as data continue to grow in scale and scope. Indeed, predicting the direction of new discoveries represents one of the most promising avenues for machine learning models, with neural networks being applied widely to biology 208 , physics 209 , 210 , mathematics 211 , chemistry 212 , medicine 213 and clinical applications 214 . Neural networks also offer a quantitative framework to probe the characteristics of creative products ranging from scientific papers 53 , journals 215 , organizations 148 , to paintings and movies 32 . Neural networks can also help to predict the reproducibility of papers from a variety of disciplines at scale 53 , 216 .

figure 2

This figure illustrates the word2vec skip-gram methods 52 , where the goal is to predict useful properties of materials using previous scientific literature. a , The architecture and training process of the word2vec skip-gram model, where the 3-layer, fully connected neural network learns the 200-dimensional representation (hidden layer) from the sparse vector for each word and its context in the literature (input layer). b , The top two principal components of the word embedding. Materials with similar features are close in the 2D space, allowing prediction of a material’s properties. Different targeted words are shown in different colours. Reproduced with permission from ref. 52 , Springer Nature Ltd.

While machine learning can offer high predictive accuracy, successful applications to the science of science face challenges, particularly regarding interpretability. Researchers may value transparent and interpretable findings for how a given feature influences an outcome, rather than a black-box model. The lack of interpretability also raises concerns about bias and fairness. In predicting reproducible patterns from data, machine learning models inevitably include and reproduce biases embedded in these data, often in non-transparent ways. The fairness of machine learning 217 is heavily debated in applications ranging from the criminal justice system to hiring processes. Effective and responsible use of machine learning in the science of science therefore requires thoughtful partnership between humans and machines 53 to build a reliable system accessible to scrutiny and modification.

Causal approaches

The preceding methods can reveal core facts about the workings of science and develop predictive capacity. Yet, they fail to capture causal relationships, which are particularly useful in assessing policy interventions. For example, how can we test whether a science policy boosts or hinders the performance of individuals, teams or institutions? The overarching idea of causal approaches is to construct some counterfactual world where two groups are identical to each other except that one group experiences a treatment that the other group does not.

Towards causation

Before engaging in causal approaches, it is useful to first consider the interpretative challenges of observational data. As observational data emerge from mechanisms that are not fully known or measured, an observed correlation may be driven by underlying forces that were not accounted for in the analysis. This challenge makes causal inference fundamentally difficult in observational data. An awareness of this issue is the first step in confronting it. It further motivates intermediate empirical approaches, including the use of matching strategies and fixed effects, that can help to confront (although not fully eliminate) the inference challenge. We first consider these approaches before turning to more fully causal methods.

Matching. Matching utilizes rich information to construct a control group that is similar to the treatment group on as many observable characteristics as possible before the treatment group is exposed to the treatment. Inferences can then be made by comparing the treatment and the matched control groups. Exact matching applies to categorical values, such as country, gender, discipline or affiliation 35 , 218 . Coarsened exact matching considers percentile bins of continuous variables and matches observations in the same bin 133 . Propensity score matching estimates the probability of receiving the ‘treatment’ on the basis of the controlled variables and uses the estimates to match treatment and control groups, which reduces the matching task from comparing the values of multiple covariates to comparing a single value 24 , 219 . Dynamic matching is useful for longitudinally matching variables that change over time 220 , 221 .

Fixed effects. Fixed effects are a powerful and now standard tool in controlling for confounders. A key requirement for using fixed effects is that there are multiple observations on the same subject or entity (person, field, institution and so on) 222 , 223 , 224 . The fixed effect works as a dummy variable that accounts for the role of any fixed characteristic of that entity. Consider the finding where gender-diverse teams produce higher-impact papers than same-gender teams do 225 . A confounder may be that individuals who tend to write high-impact papers may also be more likely to work in gender-diverse teams. By including individual fixed effects, one accounts for any fixed characteristics of individuals (such as IQ, cultural background or previous education) that might drive the relationship of interest.

In sum, matching and fixed effects methods reduce potential sources of bias in interpreting relationships between variables. Yet, confounders may persist in these studies. For instance, fixed effects do not control for unobserved factors that change with time within the given entity (for example, access to funding or new skills). Identifying casual effects convincingly will then typically require distinct research methods that we turn to next.

Quasi-experiments

Researchers in economics and other fields have developed a range of quasi-experimental methods to construct treatment and control groups. The key idea here is exploiting randomness from external events that differentially expose subjects to a particular treatment. Here we review three quasi-experimental methods: difference-in-differences, instrumental variables and regression discontinuity (Fig. 3 ).

figure 3

a – c , This figure presents illustrations of ( a ) differences-in-differences, ( b ) instrumental variables and ( c ) regression discontinuity methods. The solid line in b represents causal links and the dashed line represents the relationships that are not allowed, if the IV method is to produce causal inference.

Difference-in-differences. Difference-in-difference regression (DiD) investigates the effect of an unexpected event, comparing the affected group (the treated group) with an unaffected group (the control group). The control group is intended to provide the counterfactual path—what would have happened were it not for the unexpected event. Ideally, the treated and control groups are on virtually identical paths before the treatment event, but DiD can also work if the groups are on parallel paths (Fig. 3a ). For example, one study 226 examines how the premature death of superstar scientists affects the productivity of their previous collaborators. The control group are collaborators of superstars who did not die in the time frame. The two groups do not show significant differences in publications before a death event, yet upon the death of a star scientist, the treated collaborators on average experience a 5–8% decline in their quality-adjusted publication rates compared with the control group. DiD has wide applicability in the science of science, having been used to analyse the causal effects of grant design 24 , access costs to previous research 155 , 227 , university technology transfer policies 154 , intellectual property 228 , citation practices 229 , evolution of fields 221 and the impacts of paper retractions 230 , 231 , 232 . The DiD literature has grown especially rapidly in the field of economics, with substantial recent refinements 233 , 234 .

Instrumental variables. Another quasi-experimental approach utilizes ‘instrumental variables’ (IV). The goal is to determine the causal influence of some feature X on some outcome Y by using a third, instrumental variable. This instrumental variable is a quasi-random event that induces variation in X and, except for its impact through X , has no other effect on the outcome Y (Fig. 3b ). For example, consider a study of astronomy that seeks to understand how telescope time affects career advancement 235 . Here, one cannot simply look at the correlation between telescope time and career outcomes because many confounds (such as talent or grit) may influence both telescope time and career opportunities. Now consider the weather as an instrumental variable. Cloudy weather will, at random, reduce an astronomer’s observational time. Yet, the weather on particular nights is unlikely to correlate with a scientist’s innate qualities. The weather can then provide an instrumental variable to reveal a causal relationship between telescope time and career outcomes. Instrumental variables have been used to study local peer effects in research 151 , the impact of gender composition in scientific committees 236 , patents on future innovation 237 and taxes on inventor mobility 238 .

Regression discontinuity. In regression discontinuity, policies with an arbitrary threshold for receiving some benefit can be used to construct treatment and control groups (Fig. 3c ). Take the funding paylines for grant proposals as an example. Proposals with scores increasingly close to the payline are increasingly similar in their both observable and unobservable characteristics, yet only those projects with scores above the payline receive the funding. For example, a study 110 examines the effect of winning an early-career grant on the probability of winning a later, mid-career grant. The probability has a discontinuous jump across the initial grant’s payline, providing the treatment and control groups needed to estimate the causal effect of receiving a grant. This example utilizes the ‘sharp’ regression discontinuity that assumes treatment status to be fully determined by the cut-off. If we assume treatment status is only partly determined by the cut-off, we can use ‘fuzzy’ regression discontinuity designs. Here the probability of receiving a grant is used to estimate the future outcome 11 , 110 , 239 , 240 , 241 .

Although quasi-experiments are powerful tools, they face their own limitations. First, these approaches identify causal effects within a specific context and often engage small numbers of observations. How representative the samples are for broader populations or contexts is typically left as an open question. Second, the validity of the causal design is typically not ironclad. Researchers usually conduct different robustness checks to verify whether observable confounders have significant differences between the treated and control groups, before treatment. However, unobservable features may still differ between treatment and control groups. The quality of instrumental variables and the specific claim that they have no effect on the outcome except through the variable of interest, is also difficult to assess. Ultimately, researchers must rely partly on judgement to tell whether appropriate conditions are met for causal inference.

This section emphasized popular econometric approaches to causal inference. Other empirical approaches, such as graphical causal modelling 242 , 243 , also represent an important stream of work on assessing causal relationships. Such approaches usually represent causation as a directed acyclic graph, with nodes as variables and arrows between them as suspected causal relationships. In the science of science, the directed acyclic graph approach has been applied to quantify the causal effect of journal impact factor 244 and gender or racial bias 245 on citations. Graphical causal modelling has also triggered discussions on strengths and weaknesses compared to the econometrics methods 246 , 247 .

Experiments

In contrast to quasi-experimental approaches, laboratory and field experiments conduct direct randomization in assigning treatment and control groups. These methods engage explicitly in the data generation process, manipulating interventions to observe counterfactuals. These experiments are crafted to study mechanisms of specific interest and, by designing the experiment and formally randomizing, can produce especially rigorous causal inference.

Laboratory experiments. Laboratory experiments build counterfactual worlds in well-controlled laboratory environments. Researchers randomly assign participants to the treatment or control group and then manipulate the laboratory conditions to observe different outcomes in the two groups. For example, consider laboratory experiments on team performance and gender composition 144 , 248 . The researchers randomly assign participants into groups to perform tasks such as solving puzzles or brainstorming. Teams with a higher proportion of women are found to perform better on average, offering evidence that gender diversity is causally linked to team performance. Laboratory experiments can allow researchers to test forces that are otherwise hard to observe, such as how competition influences creativity 249 . Laboratory experiments have also been used to evaluate how journal impact factors shape scientists’ perceptions of rewards 250 and gender bias in hiring 251 .

Laboratory experiments allow for precise control of settings and procedures to isolate causal effects of interest. However, participants may behave differently in synthetic environments than in real-world settings, raising questions about the generalizability and replicability of the results 252 , 253 , 254 . To assess causal effects in real-world settings, researcher use randomized controlled trials.

Randomized controlled trials. A randomized controlled trial (RCT), or field experiment, is a staple for causal inference across a wide range of disciplines. RCTs randomly assign participants into the treatment and control conditions 255 and can be used not only to assess mechanisms but also to test real-world interventions such as policy change. The science of science has witnessed growing use of RCTs. For instance, a field experiment 146 investigated whether lower search costs for collaborators increased collaboration in grant applications. The authors randomly allocated principal investigators to face-to-face sessions in a medical school, and then measured participants’ chance of writing a grant proposal together. RCTs have also offered rich causal insights on peer review 256 , 257 , 258 , 259 , 260 and gender bias in science 261 , 262 , 263 .

While powerful, RCTs are difficult to conduct in the science of science, mainly for two reasons. The first concerns potential risks in a policy intervention. For instance, while randomizing funding across individuals could generate crucial causal insights for funders, it may also inadvertently harm participants’ careers 264 . Second, key questions in the science of science often require a long-time horizon to trace outcomes, which makes RCTs costly. It also raises the difficulty of replicating findings. A relative advantage of the quasi-experimental methods discussed earlier is that one can identify causal effects over potentially long periods of time in the historical record. On the other hand, quasi-experiments must be found as opposed to designed, and they often are not available for many questions of interest. While the best approaches are context dependent, a growing community of researchers is building platforms to facilitate RCTs for the science of science, aiming to lower their costs and increase their scale. Performing RCTs in partnership with science institutions can also contribute to timely, policy-relevant research that may substantially improve science decision-making and investments.

Research in the science of science has been empowered by the growth of high-scale data, new measurement approaches and an expanding range of empirical methods. These tools provide enormous capacity to test conceptual frameworks about science, discover factors impacting scientific productivity, predict key scientific outcomes and design policies that better facilitate future scientific progress. A careful appreciation of empirical techniques can help researchers to choose effective tools for questions of interest and propel the field. A better and broader understanding of these methodologies may also build bridges across diverse research communities, facilitating communication and collaboration, and better leveraging the value of diverse perspectives. The science of science is about turning scientific methods on the nature of science itself. The fruits of this work, with time, can guide researchers and research institutions to greater progress in discovery and understanding across the landscape of scientific inquiry.

Bush, V . S cience–the Endless Frontier: A Report to the President on a Program for Postwar Scientific Research (National Science Foundation, 1990).

Mokyr, J. The Gifts of Athena (Princeton Univ. Press, 2011).

Jones, B. F. in Rebuilding the Post-Pandemic Economy (eds Kearney, M. S. & Ganz, A.) 272–310 (Aspen Institute Press, 2021).

Wang, D. & Barabási, A.-L. The Science of Science (Cambridge Univ. Press, 2021).

Fortunato, S. et al. Science of science. Science 359 , eaao0185 (2018).

Article   PubMed   PubMed Central   Google Scholar  

Azoulay, P. et al. Toward a more scientific science. Science 361 , 1194–1197 (2018).

Article   PubMed   Google Scholar  

Clauset, A., Larremore, D. B. & Sinatra, R. Data-driven predictions in the science of science. Science 355 , 477–480 (2017).

Article   CAS   PubMed   Google Scholar  

Zeng, A. et al. The science of science: from the perspective of complex systems. Phys. Rep. 714 , 1–73 (2017).

Article   Google Scholar  

Lin, Z., Yin. Y., Liu, L. & Wang, D. SciSciNet: a large-scale open data lake for the science of science research. Sci. Data, https://doi.org/10.1038/s41597-023-02198-9 (2023).

Ahmadpoor, M. & Jones, B. F. The dual frontier: patented inventions and prior scientific advance. Science 357 , 583–587 (2017).

Azoulay, P., Graff Zivin, J. S., Li, D. & Sampat, B. N. Public R&D investments and private-sector patenting: evidence from NIH funding rules. Rev. Econ. Stud. 86 , 117–152 (2019).

Yin, Y., Dong, Y., Wang, K., Wang, D. & Jones, B. F. Public use and public funding of science. Nat. Hum. Behav. 6 , 1344–1350 (2022).

Merton, R. K. The Sociology of Science: Theoretical and Empirical Investigations (Univ. Chicago Press, 1973).

Kuhn, T. The Structure of Scientific Revolutions (Princeton Univ. Press, 2021).

Uzzi, B., Mukherjee, S., Stringer, M. & Jones, B. Atypical combinations and scientific impact. Science 342 , 468–472 (2013).

Zuckerman, H. Scientific Elite: Nobel Laureates in the United States (Transaction Publishers, 1977).

Wu, L., Wang, D. & Evans, J. A. Large teams develop and small teams disrupt science and technology. Nature 566 , 378–382 (2019).

Wuchty, S., Jones, B. F. & Uzzi, B. The increasing dominance of teams in production of knowledge. Science 316 , 1036–1039 (2007).

Foster, J. G., Rzhetsky, A. & Evans, J. A. Tradition and innovation in scientists’ research strategies. Am. Sociol. Rev. 80 , 875–908 (2015).

Wang, D., Song, C. & Barabási, A.-L. Quantifying long-term scientific impact. Science 342 , 127–132 (2013).

Clauset, A., Arbesman, S. & Larremore, D. B. Systematic inequality and hierarchy in faculty hiring networks. Sci. Adv. 1 , e1400005 (2015).

Ma, A., Mondragón, R. J. & Latora, V. Anatomy of funded research in science. Proc. Natl Acad. Sci. USA 112 , 14760–14765 (2015).

Article   CAS   PubMed   PubMed Central   Google Scholar  

Ma, Y. & Uzzi, B. Scientific prize network predicts who pushes the boundaries of science. Proc. Natl Acad. Sci. USA 115 , 12608–12615 (2018).

Azoulay, P., Graff Zivin, J. S. & Manso, G. Incentives and creativity: evidence from the academic life sciences. RAND J. Econ. 42 , 527–554 (2011).

Schor, S. & Karten, I. Statistical evaluation of medical journal manuscripts. JAMA 195 , 1123–1128 (1966).

Platt, J. R. Strong inference: certain systematic methods of scientific thinking may produce much more rapid progress than others. Science 146 , 347–353 (1964).

Ioannidis, J. P. Why most published research findings are false. PLoS Med. 2 , e124 (2005).

Simonton, D. K. Career landmarks in science: individual differences and interdisciplinary contrasts. Dev. Psychol. 27 , 119 (1991).

Way, S. F., Morgan, A. C., Clauset, A. & Larremore, D. B. The misleading narrative of the canonical faculty productivity trajectory. Proc. Natl Acad. Sci. USA 114 , E9216–E9223 (2017).

Sinatra, R., Wang, D., Deville, P., Song, C. & Barabási, A.-L. Quantifying the evolution of individual scientific impact. Science 354 , aaf5239 (2016).

Liu, L. et al. Hot streaks in artistic, cultural, and scientific careers. Nature 559 , 396–399 (2018).

Liu, L., Dehmamy, N., Chown, J., Giles, C. L. & Wang, D. Understanding the onset of hot streaks across artistic, cultural, and scientific careers. Nat. Commun. 12 , 5392 (2021).

Squazzoni, F. et al. Peer review and gender bias: a study on 145 scholarly journals. Sci. Adv. 7 , eabd0299 (2021).

Hofstra, B. et al. The diversity–innovation paradox in science. Proc. Natl Acad. Sci. USA 117 , 9284–9291 (2020).

Huang, J., Gates, A. J., Sinatra, R. & Barabási, A.-L. Historical comparison of gender inequality in scientific careers across countries and disciplines. Proc. Natl Acad. Sci. USA 117 , 4609–4616 (2020).

Gläser, J. & Laudel, G. Governing science: how science policy shapes research content. Eur. J. Sociol. 57 , 117–168 (2016).

Stephan, P. E. How Economics Shapes Science (Harvard Univ. Press, 2012).

Garfield, E. & Sher, I. H. New factors in the evaluation of scientific literature through citation indexing. Am. Doc. 14 , 195–201 (1963).

Article   CAS   Google Scholar  

de Solla Price, D. J. Networks of scientific papers. Science 149 , 510–515 (1965).

Etzkowitz, H., Kemelgor, C. & Uzzi, B. Athena Unbound: The Advancement of Women in Science and Technology (Cambridge Univ. Press, 2000).

Simonton, D. K. Scientific Genius: A Psychology of Science (Cambridge Univ. Press, 1988).

Khabsa, M. & Giles, C. L. The number of scholarly documents on the public web. PLoS ONE 9 , e93949 (2014).

Xia, F., Wang, W., Bekele, T. M. & Liu, H. Big scholarly data: a survey. IEEE Trans. Big Data 3 , 18–35 (2017).

Evans, J. A. & Foster, J. G. Metaknowledge. Science 331 , 721–725 (2011).

Milojević, S. Quantifying the cognitive extent of science. J. Informetr. 9 , 962–973 (2015).

Rzhetsky, A., Foster, J. G., Foster, I. T. & Evans, J. A. Choosing experiments to accelerate collective discovery. Proc. Natl Acad. Sci. USA 112 , 14569–14574 (2015).

Poncela-Casasnovas, J., Gerlach, M., Aguirre, N. & Amaral, L. A. Large-scale analysis of micro-level citation patterns reveals nuanced selection criteria. Nat. Hum. Behav. 3 , 568–575 (2019).

Hardwicke, T. E. et al. Data availability, reusability, and analytic reproducibility: evaluating the impact of a mandatory open data policy at the journal Cognition. R. Soc. Open Sci. 5 , 180448 (2018).

Nagaraj, A., Shears, E. & de Vaan, M. Improving data access democratizes and diversifies science. Proc. Natl Acad. Sci. USA 117 , 23490–23498 (2020).

Bravo, G., Grimaldo, F., López-Iñesta, E., Mehmani, B. & Squazzoni, F. The effect of publishing peer review reports on referee behavior in five scholarly journals. Nat. Commun. 10 , 322 (2019).

Tran, D. et al. An open review of open review: a critical analysis of the machine learning conference review process. Preprint at https://doi.org/10.48550/arXiv.2010.05137 (2020).

Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571 , 95–98 (2019).

Yang, Y., Wu, Y. & Uzzi, B. Estimating the deep replicability of scientific findings using human and artificial intelligence. Proc. Natl Acad. Sci. USA 117 , 10762–10768 (2020).

Mukherjee, S., Uzzi, B., Jones, B. & Stringer, M. A new method for identifying recombinations of existing knowledge associated with high‐impact innovation. J. Prod. Innov. Manage. 33 , 224–236 (2016).

Leahey, E., Beckman, C. M. & Stanko, T. L. Prominent but less productive: the impact of interdisciplinarity on scientists’ research. Adm. Sci. Q. 62 , 105–139 (2017).

Sauermann, H. & Haeussler, C. Authorship and contribution disclosures. Sci. Adv. 3 , e1700404 (2017).

Oliveira, D. F. M., Ma, Y., Woodruff, T. K. & Uzzi, B. Comparison of National Institutes of Health grant amounts to first-time male and female principal investigators. JAMA 321 , 898–900 (2019).

Yang, Y., Chawla, N. V. & Uzzi, B. A network’s gender composition and communication pattern predict women’s leadership success. Proc. Natl Acad. Sci. USA 116 , 2033–2038 (2019).

Way, S. F., Larremore, D. B. & Clauset, A. Gender, productivity, and prestige in computer science faculty hiring networks. In Proc. 25th International Conference on World Wide Web 1169–1179. (ACM 2016)

Malmgren, R. D., Ottino, J. M. & Amaral, L. A. N. The role of mentorship in protege performance. Nature 465 , 622–626 (2010).

Ma, Y., Mukherjee, S. & Uzzi, B. Mentorship and protégé success in STEM fields. Proc. Natl Acad. Sci. USA 117 , 14077–14083 (2020).

Börner, K. et al. Skill discrepancies between research, education, and jobs reveal the critical need to supply soft skills for the data economy. Proc. Natl Acad. Sci. USA 115 , 12630–12637 (2018).

Biasi, B. & Ma, S. The Education-Innovation Gap (National Bureau of Economic Research Working papers, 2020).

Bornmann, L. Do altmetrics point to the broader impact of research? An overview of benefits and disadvantages of altmetrics. J. Informetr. 8 , 895–903 (2014).

Cleary, E. G., Beierlein, J. M., Khanuja, N. S., McNamee, L. M. & Ledley, F. D. Contribution of NIH funding to new drug approvals 2010–2016. Proc. Natl Acad. Sci. USA 115 , 2329–2334 (2018).

Spector, J. M., Harrison, R. S. & Fishman, M. C. Fundamental science behind today’s important medicines. Sci. Transl. Med. 10 , eaaq1787 (2018).

Haunschild, R. & Bornmann, L. How many scientific papers are mentioned in policy-related documents? An empirical investigation using Web of Science and Altmetric data. Scientometrics 110 , 1209–1216 (2017).

Yin, Y., Gao, J., Jones, B. F. & Wang, D. Coevolution of policy and science during the pandemic. Science 371 , 128–130 (2021).

Sugimoto, C. R., Work, S., Larivière, V. & Haustein, S. Scholarly use of social media and altmetrics: a review of the literature. J. Assoc. Inf. Sci. Technol. 68 , 2037–2062 (2017).

Dunham, I. Human genes: time to follow the roads less traveled? PLoS Biol. 16 , e3000034 (2018).

Kustatscher, G. et al. Understudied proteins: opportunities and challenges for functional proteomics. Nat. Methods 19 , 774–779 (2022).

Rosenthal, R. The file drawer problem and tolerance for null results. Psychol. Bull. 86 , 638 (1979).

Franco, A., Malhotra, N. & Simonovits, G. Publication bias in the social sciences: unlocking the file drawer. Science 345 , 1502–1505 (2014).

Vera-Baceta, M.-A., Thelwall, M. & Kousha, K. Web of Science and Scopus language coverage. Scientometrics 121 , 1803–1813 (2019).

Waltman, L. A review of the literature on citation impact indicators. J. Informetr. 10 , 365–391 (2016).

Garfield, E. & Merton, R. K. Citation Indexing: Its Theory and Application in Science, Technology, and Humanities (Wiley, 1979).

Kelly, B., Papanikolaou, D., Seru, A. & Taddy, M. Measuring Technological Innovation Over the Long Run Report No. 0898-2937 (National Bureau of Economic Research, 2018).

Kogan, L., Papanikolaou, D., Seru, A. & Stoffman, N. Technological innovation, resource allocation, and growth. Q. J. Econ. 132 , 665–712 (2017).

Hall, B. H., Jaffe, A. & Trajtenberg, M. Market value and patent citations. RAND J. Econ. 36 , 16–38 (2005).

Google Scholar  

Yan, E. & Ding, Y. Applying centrality measures to impact analysis: a coauthorship network analysis. J. Am. Soc. Inf. Sci. Technol. 60 , 2107–2118 (2009).

Radicchi, F., Fortunato, S., Markines, B. & Vespignani, A. Diffusion of scientific credits and the ranking of scientists. Phys. Rev. E 80 , 056103 (2009).

Bollen, J., Rodriquez, M. A. & Van de Sompel, H. Journal status. Scientometrics 69 , 669–687 (2006).

Bergstrom, C. T., West, J. D. & Wiseman, M. A. The eigenfactor™ metrics. J. Neurosci. 28 , 11433–11434 (2008).

Cronin, B. & Sugimoto, C. R. Beyond Bibliometrics: Harnessing Multidimensional Indicators of Scholarly Impact (MIT Press, 2014).

Hicks, D., Wouters, P., Waltman, L., De Rijcke, S. & Rafols, I. Bibliometrics: the Leiden Manifesto for research metrics. Nature 520 , 429–431 (2015).

Catalini, C., Lacetera, N. & Oettl, A. The incidence and role of negative citations in science. Proc. Natl Acad. Sci. USA 112 , 13823–13826 (2015).

Alcacer, J. & Gittelman, M. Patent citations as a measure of knowledge flows: the influence of examiner citations. Rev. Econ. Stat. 88 , 774–779 (2006).

Ding, Y. et al. Content‐based citation analysis: the next generation of citation analysis. J. Assoc. Inf. Sci. Technol. 65 , 1820–1833 (2014).

Teufel, S., Siddharthan, A. & Tidhar, D. Automatic classification of citation function. In Proc. 2006 Conference on Empirical Methods in Natural Language Processing, 103–110 (Association for Computational Linguistics 2006)

Seeber, M., Cattaneo, M., Meoli, M. & Malighetti, P. Self-citations as strategic response to the use of metrics for career decisions. Res. Policy 48 , 478–491 (2019).

Pendlebury, D. A. The use and misuse of journal metrics and other citation indicators. Arch. Immunol. Ther. Exp. 57 , 1–11 (2009).

Biagioli, M. Watch out for cheats in citation game. Nature 535 , 201 (2016).

Jo, W. S., Liu, L. & Wang, D. See further upon the giants: quantifying intellectual lineage in science. Quant. Sci. Stud. 3 , 319–330 (2022).

Boyack, K. W., Klavans, R. & Börner, K. Mapping the backbone of science. Scientometrics 64 , 351–374 (2005).

Gates, A. J., Ke, Q., Varol, O. & Barabási, A.-L. Nature’s reach: narrow work has broad impact. Nature 575 , 32–34 (2019).

Börner, K., Penumarthy, S., Meiss, M. & Ke, W. Mapping the diffusion of scholarly knowledge among major US research institutions. Scientometrics 68 , 415–426 (2006).

King, D. A. The scientific impact of nations. Nature 430 , 311–316 (2004).

Pan, R. K., Kaski, K. & Fortunato, S. World citation and collaboration networks: uncovering the role of geography in science. Sci. Rep. 2 , 902 (2012).

Jaffe, A. B., Trajtenberg, M. & Henderson, R. Geographic localization of knowledge spillovers as evidenced by patent citations. Q. J. Econ. 108 , 577–598 (1993).

Funk, R. J. & Owen-Smith, J. A dynamic network measure of technological change. Manage. Sci. 63 , 791–817 (2017).

Yegros-Yegros, A., Rafols, I. & D’este, P. Does interdisciplinary research lead to higher citation impact? The different effect of proximal and distal interdisciplinarity. PLoS ONE 10 , e0135095 (2015).

Larivière, V., Haustein, S. & Börner, K. Long-distance interdisciplinarity leads to higher scientific impact. PLoS ONE 10 , e0122565 (2015).

Fleming, L., Greene, H., Li, G., Marx, M. & Yao, D. Government-funded research increasingly fuels innovation. Science 364 , 1139–1141 (2019).

Bowen, A. & Casadevall, A. Increasing disparities between resource inputs and outcomes, as measured by certain health deliverables, in biomedical research. Proc. Natl Acad. Sci. USA 112 , 11335–11340 (2015).

Li, D., Azoulay, P. & Sampat, B. N. The applied value of public investments in biomedical research. Science 356 , 78–81 (2017).

Lehman, H. C. Age and Achievement (Princeton Univ. Press, 2017).

Simonton, D. K. Creative productivity: a predictive and explanatory model of career trajectories and landmarks. Psychol. Rev. 104 , 66 (1997).

Duch, J. et al. The possible role of resource requirements and academic career-choice risk on gender differences in publication rate and impact. PLoS ONE 7 , e51332 (2012).

Wang, Y., Jones, B. F. & Wang, D. Early-career setback and future career impact. Nat. Commun. 10 , 4331 (2019).

Bol, T., de Vaan, M. & van de Rijt, A. The Matthew effect in science funding. Proc. Natl Acad. Sci. USA 115 , 4887–4890 (2018).

Jones, B. F. Age and great invention. Rev. Econ. Stat. 92 , 1–14 (2010).

Newman, M. Networks (Oxford Univ. Press, 2018).

Mazloumian, A., Eom, Y.-H., Helbing, D., Lozano, S. & Fortunato, S. How citation boosts promote scientific paradigm shifts and nobel prizes. PLoS ONE 6 , e18975 (2011).

Hirsch, J. E. An index to quantify an individual’s scientific research output. Proc. Natl Acad. Sci. USA 102 , 16569–16572 (2005).

Alonso, S., Cabrerizo, F. J., Herrera-Viedma, E. & Herrera, F. h-index: a review focused in its variants, computation and standardization for different scientific fields. J. Informetr. 3 , 273–289 (2009).

Egghe, L. An improvement of the h-index: the g-index. ISSI Newsl. 2 , 8–9 (2006).

Kaur, J., Radicchi, F. & Menczer, F. Universality of scholarly impact metrics. J. Informetr. 7 , 924–932 (2013).

Majeti, D. et al. Scholar plot: design and evaluation of an information interface for faculty research performance. Front. Res. Metr. Anal. 4 , 6 (2020).

Sidiropoulos, A., Katsaros, D. & Manolopoulos, Y. Generalized Hirsch h-index for disclosing latent facts in citation networks. Scientometrics 72 , 253–280 (2007).

Jones, B. F. & Weinberg, B. A. Age dynamics in scientific creativity. Proc. Natl Acad. Sci. USA 108 , 18910–18914 (2011).

Dennis, W. Age and productivity among scientists. Science 123 , 724–725 (1956).

Sanyal, D. K., Bhowmick, P. K. & Das, P. P. A review of author name disambiguation techniques for the PubMed bibliographic database. J. Inf. Sci. 47 , 227–254 (2021).

Haak, L. L., Fenner, M., Paglione, L., Pentz, E. & Ratner, H. ORCID: a system to uniquely identify researchers. Learn. Publ. 25 , 259–264 (2012).

Malmgren, R. D., Ottino, J. M. & Amaral, L. A. N. The role of mentorship in protégé performance. Nature 465 , 662–667 (2010).

Oettl, A. Reconceptualizing stars: scientist helpfulness and peer performance. Manage. Sci. 58 , 1122–1140 (2012).

Morgan, A. C. et al. The unequal impact of parenthood in academia. Sci. Adv. 7 , eabd1996 (2021).

Morgan, A. C. et al. Socioeconomic roots of academic faculty. Nat. Hum. Behav. 6 , 1625–1633 (2022).

San Francisco Declaration on Research Assessment (DORA) (American Society for Cell Biology, 2012).

Falk‐Krzesinski, H. J. et al. Advancing the science of team science. Clin. Transl. Sci. 3 , 263–266 (2010).

Cooke, N. J. et al. Enhancing the Effectiveness of Team Science (National Academies Press, 2015).

Börner, K. et al. A multi-level systems perspective for the science of team science. Sci. Transl. Med. 2 , 49cm24 (2010).

Leahey, E. From sole investigator to team scientist: trends in the practice and study of research collaboration. Annu. Rev. Sociol. 42 , 81–100 (2016).

AlShebli, B. K., Rahwan, T. & Woon, W. L. The preeminence of ethnic diversity in scientific collaboration. Nat. Commun. 9 , 5163 (2018).

Hsiehchen, D., Espinoza, M. & Hsieh, A. Multinational teams and diseconomies of scale in collaborative research. Sci. Adv. 1 , e1500211 (2015).

Koning, R., Samila, S. & Ferguson, J.-P. Who do we invent for? Patents by women focus more on women’s health, but few women get to invent. Science 372 , 1345–1348 (2021).

Barabâsi, A.-L. et al. Evolution of the social network of scientific collaborations. Physica A 311 , 590–614 (2002).

Newman, M. E. Scientific collaboration networks. I. Network construction and fundamental results. Phys. Rev. E 64 , 016131 (2001).

Newman, M. E. Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys. Rev. E 64 , 016132 (2001).

Palla, G., Barabási, A.-L. & Vicsek, T. Quantifying social group evolution. Nature 446 , 664–667 (2007).

Ross, M. B. et al. Women are credited less in science than men. Nature 608 , 135–145 (2022).

Shen, H.-W. & Barabási, A.-L. Collective credit allocation in science. Proc. Natl Acad. Sci. USA 111 , 12325–12330 (2014).

Merton, R. K. Matthew effect in science. Science 159 , 56–63 (1968).

Ni, C., Smith, E., Yuan, H., Larivière, V. & Sugimoto, C. R. The gendered nature of authorship. Sci. Adv. 7 , eabe4639 (2021).

Woolley, A. W., Chabris, C. F., Pentland, A., Hashmi, N. & Malone, T. W. Evidence for a collective intelligence factor in the performance of human groups. Science 330 , 686–688 (2010).

Feldon, D. F. et al. Postdocs’ lab engagement predicts trajectories of PhD students’ skill development. Proc. Natl Acad. Sci. USA 116 , 20910–20916 (2019).

Boudreau, K. J. et al. A field experiment on search costs and the formation of scientific collaborations. Rev. Econ. Stat. 99 , 565–576 (2017).

Holcombe, A. O. Contributorship, not authorship: use CRediT to indicate who did what. Publications 7 , 48 (2019).

Murray, D. et al. Unsupervised embedding of trajectories captures the latent structure of mobility. Preprint at https://doi.org/10.48550/arXiv.2012.02785 (2020).

Deville, P. et al. Career on the move: geography, stratification, and scientific impact. Sci. Rep. 4 , 4770 (2014).

Edmunds, L. D. et al. Why do women choose or reject careers in academic medicine? A narrative review of empirical evidence. Lancet 388 , 2948–2958 (2016).

Waldinger, F. Peer effects in science: evidence from the dismissal of scientists in Nazi Germany. Rev. Econ. Stud. 79 , 838–861 (2012).

Agrawal, A., McHale, J. & Oettl, A. How stars matter: recruiting and peer effects in evolutionary biology. Res. Policy 46 , 853–867 (2017).

Fiore, S. M. Interdisciplinarity as teamwork: how the science of teams can inform team science. Small Group Res. 39 , 251–277 (2008).

Hvide, H. K. & Jones, B. F. University innovation and the professor’s privilege. Am. Econ. Rev. 108 , 1860–1898 (2018).

Murray, F., Aghion, P., Dewatripont, M., Kolev, J. & Stern, S. Of mice and academics: examining the effect of openness on innovation. Am. Econ. J. Econ. Policy 8 , 212–252 (2016).

Radicchi, F., Fortunato, S. & Castellano, C. Universality of citation distributions: toward an objective measure of scientific impact. Proc. Natl Acad. Sci. USA 105 , 17268–17272 (2008).

Waltman, L., van Eck, N. J. & van Raan, A. F. Universality of citation distributions revisited. J. Am. Soc. Inf. Sci. Technol. 63 , 72–77 (2012).

Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286 , 509–512 (1999).

de Solla Price, D. A general theory of bibliometric and other cumulative advantage processes. J. Am. Soc. Inf. Sci. 27 , 292–306 (1976).

Cole, S. Age and scientific performance. Am. J. Sociol. 84 , 958–977 (1979).

Ke, Q., Ferrara, E., Radicchi, F. & Flammini, A. Defining and identifying sleeping beauties in science. Proc. Natl Acad. Sci. USA 112 , 7426–7431 (2015).

Bornmann, L., de Moya Anegón, F. & Leydesdorff, L. Do scientific advancements lean on the shoulders of giants? A bibliometric investigation of the Ortega hypothesis. PLoS ONE 5 , e13327 (2010).

Mukherjee, S., Romero, D. M., Jones, B. & Uzzi, B. The nearly universal link between the age of past knowledge and tomorrow’s breakthroughs in science and technology: the hotspot. Sci. Adv. 3 , e1601315 (2017).

Packalen, M. & Bhattacharya, J. NIH funding and the pursuit of edge science. Proc. Natl Acad. Sci. USA 117 , 12011–12016 (2020).

Zeng, A., Fan, Y., Di, Z., Wang, Y. & Havlin, S. Fresh teams are associated with original and multidisciplinary research. Nat. Hum. Behav. 5 , 1314–1322 (2021).

Newman, M. E. The structure of scientific collaboration networks. Proc. Natl Acad. Sci. USA 98 , 404–409 (2001).

Larivière, V., Ni, C., Gingras, Y., Cronin, B. & Sugimoto, C. R. Bibliometrics: global gender disparities in science. Nature 504 , 211–213 (2013).

West, J. D., Jacquet, J., King, M. M., Correll, S. J. & Bergstrom, C. T. The role of gender in scholarly authorship. PLoS ONE 8 , e66212 (2013).

Gao, J., Yin, Y., Myers, K. R., Lakhani, K. R. & Wang, D. Potentially long-lasting effects of the pandemic on scientists. Nat. Commun. 12 , 6188 (2021).

Jones, B. F., Wuchty, S. & Uzzi, B. Multi-university research teams: shifting impact, geography, and stratification in science. Science 322 , 1259–1262 (2008).

Chu, J. S. & Evans, J. A. Slowed canonical progress in large fields of science. Proc. Natl Acad. Sci. USA 118 , e2021636118 (2021).

Wang, J., Veugelers, R. & Stephan, P. Bias against novelty in science: a cautionary tale for users of bibliometric indicators. Res. Policy 46 , 1416–1436 (2017).

Stringer, M. J., Sales-Pardo, M. & Amaral, L. A. Statistical validation of a global model for the distribution of the ultimate number of citations accrued by papers published in a scientific journal. J. Assoc. Inf. Sci. Technol. 61 , 1377–1385 (2010).

Bianconi, G. & Barabási, A.-L. Bose-Einstein condensation in complex networks. Phys. Rev. Lett. 86 , 5632 (2001).

Bianconi, G. & Barabási, A.-L. Competition and multiscaling in evolving networks. Europhys. Lett. 54 , 436 (2001).

Yin, Y. & Wang, D. The time dimension of science: connecting the past to the future. J. Informetr. 11 , 608–621 (2017).

Pan, R. K., Petersen, A. M., Pammolli, F. & Fortunato, S. The memory of science: Inflation, myopia, and the knowledge network. J. Informetr. 12 , 656–678 (2018).

Yin, Y., Wang, Y., Evans, J. A. & Wang, D. Quantifying the dynamics of failure across science, startups and security. Nature 575 , 190–194 (2019).

Candia, C. & Uzzi, B. Quantifying the selective forgetting and integration of ideas in science and technology. Am. Psychol. 76 , 1067 (2021).

Milojević, S. Principles of scientific research team formation and evolution. Proc. Natl Acad. Sci. USA 111 , 3984–3989 (2014).

Guimera, R., Uzzi, B., Spiro, J. & Amaral, L. A. N. Team assembly mechanisms determine collaboration network structure and team performance. Science 308 , 697–702 (2005).

Newman, M. E. Coauthorship networks and patterns of scientific collaboration. Proc. Natl Acad. Sci. USA 101 , 5200–5205 (2004).

Newman, M. E. Clustering and preferential attachment in growing networks. Phys. Rev. E 64 , 025102 (2001).

Iacopini, I., Milojević, S. & Latora, V. Network dynamics of innovation processes. Phys. Rev. Lett. 120 , 048301 (2018).

Kuhn, T., Perc, M. & Helbing, D. Inheritance patterns in citation networks reveal scientific memes. Phys. Rev. 4 , 041036 (2014).

Jia, T., Wang, D. & Szymanski, B. K. Quantifying patterns of research-interest evolution. Nat. Hum. Behav. 1 , 0078 (2017).

Zeng, A. et al. Increasing trend of scientists to switch between topics. Nat. Commun. https://doi.org/10.1038/s41467-019-11401-8 (2019).

Siudem, G., Żogała-Siudem, B., Cena, A. & Gagolewski, M. Three dimensions of scientific impact. Proc. Natl Acad. Sci. USA 117 , 13896–13900 (2020).

Petersen, A. M. et al. Reputation and impact in academic careers. Proc. Natl Acad. Sci. USA 111 , 15316–15321 (2014).

Jin, C., Song, C., Bjelland, J., Canright, G. & Wang, D. Emergence of scaling in complex substitutive systems. Nat. Hum. Behav. 3 , 837–846 (2019).

Hofman, J. M. et al. Integrating explanation and prediction in computational social science. Nature 595 , 181–188 (2021).

Lazer, D. et al. Computational social science. Science 323 , 721–723 (2009).

Lazer, D. M. et al. Computational social science: obstacles and opportunities. Science 369 , 1060–1062 (2020).

Albert, R. & Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74 , 47 (2002).

Newman, M. E. The structure and function of complex networks. SIAM Rev. 45 , 167–256 (2003).

Song, C., Qu, Z., Blumm, N. & Barabási, A.-L. Limits of predictability in human mobility. Science 327 , 1018–1021 (2010).

Alessandretti, L., Aslak, U. & Lehmann, S. The scales of human mobility. Nature 587 , 402–407 (2020).

Pastor-Satorras, R. & Vespignani, A. Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86 , 3200 (2001).

Pastor-Satorras, R., Castellano, C., Van Mieghem, P. & Vespignani, A. Epidemic processes in complex networks. Rev. Mod. Phys. 87 , 925 (2015).

Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).

Bishop, C. M. Pattern Recognition and Machine Learning (Springer, 2006).

Dong, Y., Johnson, R. A. & Chawla, N. V. Will this paper increase your h-index? Scientific impact prediction. In Proc. 8th ACM International Conference on Web Search and Data Mining, 149–158 (ACM 2015)

Xiao, S. et al. On modeling and predicting individual paper citation count over time. In IJCAI, 2676–2682 (IJCAI, 2016)

Fortunato, S. Community detection in graphs. Phys. Rep. 486 , 75–174 (2010).

Chen, C. Science mapping: a systematic review of the literature. J. Data Inf. Sci. 2 , 1–40 (2017).

CAS   Google Scholar  

Van Eck, N. J. & Waltman, L. Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics 111 , 1053–1070 (2017).

LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521 , 436–444 (2015).

Senior, A. W. et al. Improved protein structure prediction using potentials from deep learning. Nature 577 , 706–710 (2020).

Krenn, M. & Zeilinger, A. Predicting research trends with semantic and neural networks with an application in quantum physics. Proc. Natl Acad. Sci. USA 117 , 1910–1916 (2020).

Iten, R., Metger, T., Wilming, H., Del Rio, L. & Renner, R. Discovering physical concepts with neural networks. Phys. Rev. Lett. 124 , 010508 (2020).

Guimerà, R. et al. A Bayesian machine scientist to aid in the solution of challenging scientific problems. Sci. Adv. 6 , eaav6971 (2020).

Segler, M. H., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555 , 604–610 (2018).

Ryu, J. Y., Kim, H. U. & Lee, S. Y. Deep learning improves prediction of drug–drug and drug–food interactions. Proc. Natl Acad. Sci. USA 115 , E4304–E4311 (2018).

Kermany, D. S. et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172 , 1122–1131.e9 (2018).

Peng, H., Ke, Q., Budak, C., Romero, D. M. & Ahn, Y.-Y. Neural embeddings of scholarly periodicals reveal complex disciplinary organizations. Sci. Adv. 7 , eabb9004 (2021).

Youyou, W., Yang, Y. & Uzzi, B. A discipline-wide investigation of the replicability of psychology papers over the past two decades. Proc. Natl Acad. Sci. USA 120 , e2208863120 (2023).

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K. & Galstyan, A. A survey on bias and fairness in machine learning. ACM Computing Surveys (CSUR) 54 , 1–35 (2021).

Way, S. F., Morgan, A. C., Larremore, D. B. & Clauset, A. Productivity, prominence, and the effects of academic environment. Proc. Natl Acad. Sci. USA 116 , 10729–10733 (2019).

Li, W., Aste, T., Caccioli, F. & Livan, G. Early coauthorship with top scientists predicts success in academic careers. Nat. Commun. 10 , 5170 (2019).

Hendry, D. F., Pagan, A. R. & Sargan, J. D. Dynamic specification. Handb. Econ. 2 , 1023–1100 (1984).

Jin, C., Ma, Y. & Uzzi, B. Scientific prizes and the extraordinary growth of scientific topics. Nat. Commun. 12 , 5619 (2021).

Azoulay, P., Ganguli, I. & Zivin, J. G. The mobility of elite life scientists: professional and personal determinants. Res. Policy 46 , 573–590 (2017).

Slavova, K., Fosfuri, A. & De Castro, J. O. Learning by hiring: the effects of scientists’ inbound mobility on research performance in academia. Organ. Sci. 27 , 72–89 (2016).

Sarsons, H. Recognition for group work: gender differences in academia. Am. Econ. Rev. 107 , 141–145 (2017).

Campbell, L. G., Mehtani, S., Dozier, M. E. & Rinehart, J. Gender-heterogeneous working groups produce higher quality science. PLoS ONE 8 , e79147 (2013).

Azoulay, P., Graff Zivin, J. S. & Wang, J. Superstar extinction. Q. J. Econ. 125 , 549–589 (2010).

Furman, J. L. & Stern, S. Climbing atop the shoulders of giants: the impact of institutions on cumulative research. Am. Econ. Rev. 101 , 1933–1963 (2011).

Williams, H. L. Intellectual property rights and innovation: evidence from the human genome. J. Polit. Econ. 121 , 1–27 (2013).

Rubin, A. & Rubin, E. Systematic Bias in the Progress of Research. J. Polit. Econ. 129 , 2666–2719 (2021).

Lu, S. F., Jin, G. Z., Uzzi, B. & Jones, B. The retraction penalty: evidence from the Web of Science. Sci. Rep. 3 , 3146 (2013).

Jin, G. Z., Jones, B., Lu, S. F. & Uzzi, B. The reverse Matthew effect: consequences of retraction in scientific teams. Rev. Econ. Stat. 101 , 492–506 (2019).

Azoulay, P., Bonatti, A. & Krieger, J. L. The career effects of scandal: evidence from scientific retractions. Res. Policy 46 , 1552–1569 (2017).

Goodman-Bacon, A. Difference-in-differences with variation in treatment timing. J. Econ. 225 , 254–277 (2021).

Callaway, B. & Sant’Anna, P. H. Difference-in-differences with multiple time periods. J. Econ. 225 , 200–230 (2021).

Hill, R. Searching for Superstars: Research Risk and Talent Discovery in Astronomy Working Paper (Massachusetts Institute of Technology, 2019).

Bagues, M., Sylos-Labini, M. & Zinovyeva, N. Does the gender composition of scientific committees matter? Am. Econ. Rev. 107 , 1207–1238 (2017).

Sampat, B. & Williams, H. L. How do patents affect follow-on innovation? Evidence from the human genome. Am. Econ. Rev. 109 , 203–236 (2019).

Moretti, E. & Wilson, D. J. The effect of state taxes on the geographical location of top earners: evidence from star scientists. Am. Econ. Rev. 107 , 1858–1903 (2017).

Jacob, B. A. & Lefgren, L. The impact of research grant funding on scientific productivity. J. Public Econ. 95 , 1168–1177 (2011).

Li, D. Expertise versus bias in evaluation: evidence from the NIH. Am. Econ. J. Appl. Econ. 9 , 60–92 (2017).

Pearl, J. Causal diagrams for empirical research. Biometrika 82 , 669–688 (1995).

Pearl, J. & Mackenzie, D. The Book of Why: The New Science of Cause and Effect (Basic Books, 2018).

Traag, V. A. Inferring the causal effect of journals on citations. Quant. Sci. Stud. 2 , 496–504 (2021).

Traag, V. & Waltman, L. Causal foundations of bias, disparity and fairness. Preprint at https://doi.org/10.48550/arXiv.2207.13665 (2022).

Imbens, G. W. Potential outcome and directed acyclic graph approaches to causality: relevance for empirical practice in economics. J. Econ. Lit. 58 , 1129–1179 (2020).

Heckman, J. J. & Pinto, R. Causality and Econometrics (National Bureau of Economic Research, 2022).

Aggarwal, I., Woolley, A. W., Chabris, C. F. & Malone, T. W. The impact of cognitive style diversity on implicit learning in teams. Front. Psychol. 10 , 112 (2019).

Balietti, S., Goldstone, R. L. & Helbing, D. Peer review and competition in the Art Exhibition Game. Proc. Natl Acad. Sci. USA 113 , 8414–8419 (2016).

Paulus, F. M., Rademacher, L., Schäfer, T. A. J., Müller-Pinzler, L. & Krach, S. Journal impact factor shapes scientists’ reward signal in the prospect of publication. PLoS ONE 10 , e0142537 (2015).

Williams, W. M. & Ceci, S. J. National hiring experiments reveal 2:1 faculty preference for women on STEM tenure track. Proc. Natl Acad. Sci. USA 112 , 5360–5365 (2015).

Collaboration, O. S. Estimating the reproducibility of psychological science. Science 349 , aac4716 (2015).

Camerer, C. F. et al. Evaluating replicability of laboratory experiments in economics. Science 351 , 1433–1436 (2016).

Camerer, C. F. et al. Evaluating the replicability of social science experiments in Nature and Science between 2010 and 2015. Nat. Hum. Behav. 2 , 637–644 (2018).

Duflo, E. & Banerjee, A. Handbook of Field Experiments (Elsevier, 2017).

Tomkins, A., Zhang, M. & Heavlin, W. D. Reviewer bias in single versus double-blind peer review. Proc. Natl Acad. Sci. USA 114 , 12708–12713 (2017).

Blank, R. M. The effects of double-blind versus single-blind reviewing: experimental evidence from the American Economic Review. Am. Econ. Rev. 81 , 1041–1067 (1991).

Boudreau, K. J., Guinan, E. C., Lakhani, K. R. & Riedl, C. Looking across and looking beyond the knowledge frontier: intellectual distance, novelty, and resource allocation in science. Manage. Sci. 62 , 2765–2783 (2016).

Lane, J. et al. When Do Experts Listen to Other Experts? The Role of Negative Information in Expert Evaluations for Novel Projects Working Paper #21-007 (Harvard Business School, 2020).

Teplitskiy, M. et al. Do Experts Listen to Other Experts? Field Experimental Evidence from Scientific Peer Review (Harvard Business School, 2019).

Moss-Racusin, C. A., Dovidio, J. F., Brescoll, V. L., Graham, M. J. & Handelsman, J. Science faculty’s subtle gender biases favor male students. Proc. Natl Acad. Sci. USA 109 , 16474–16479 (2012).

Forscher, P. S., Cox, W. T., Brauer, M. & Devine, P. G. Little race or gender bias in an experiment of initial review of NIH R01 grant proposals. Nat. Hum. Behav. 3 , 257–264 (2019).

Dennehy, T. C. & Dasgupta, N. Female peer mentors early in college increase women’s positive academic experiences and retention in engineering. Proc. Natl Acad. Sci. USA 114 , 5964–5969 (2017).

Azoulay, P. Turn the scientific method on ourselves. Nature 484 , 31–32 (2012).

Download references

Acknowledgements

The authors thank all members of the Center for Science of Science and Innovation (CSSI) for invaluable comments. This work was supported by the Air Force Office of Scientific Research under award number FA9550-19-1-0354, National Science Foundation grant SBE 1829344, and the Alfred P. Sloan Foundation G-2019-12485.

Author information

Authors and affiliations.

Center for Science of Science and Innovation, Northwestern University, Evanston, IL, USA

Lu Liu, Benjamin F. Jones, Brian Uzzi & Dashun Wang

Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL, USA

Kellogg School of Management, Northwestern University, Evanston, IL, USA

College of Information Sciences and Technology, Pennsylvania State University, University Park, PA, USA

National Bureau of Economic Research, Cambridge, MA, USA

Benjamin F. Jones

Brookings Institution, Washington, DC, USA

McCormick School of Engineering, Northwestern University, Evanston, IL, USA

  • Dashun Wang

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Dashun Wang .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Peer review

Peer review information.

Nature Human Behaviour thanks Ludo Waltman, Erin Leahey and Sarah Bratt for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Cite this article.

Liu, L., Jones, B.F., Uzzi, B. et al. Data, measurement and empirical methods in the science of science. Nat Hum Behav 7 , 1046–1058 (2023). https://doi.org/10.1038/s41562-023-01562-4

Download citation

Received : 30 June 2022

Accepted : 17 February 2023

Published : 01 June 2023

Issue Date : July 2023

DOI : https://doi.org/10.1038/s41562-023-01562-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Rescaling the disruption index reveals the universality of disruption distributions in science.

  • Alex J. Yang
  • Hongcun Gong
  • Sanhong Deng

Scientometrics (2024)

SciSciNet: A large-scale open data lake for the science of science research

Scientific Data (2023)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

quantitative empirical research article

  • Connelly Library

Qualitative and Quantitative Research

What is "empirical research".

  • empirical research
  • Locating Articles in Cinahl and PsycInfo
  • Locating Articles in PubMed
  • Getting the Articles

Empirical research  is based on observed and measured phenomena and derives knowledge from actual experience rather than from theory or belief. 

How do you know if a study is empirical? Read the subheadings within the article, book, or report and look for a description of the research "methodology."  Ask yourself: Could I recreate this study and test these results?

Key characteristics to look for:

  • Specific research questions  to be answered
  • Definition of the  population, behavior, or   phenomena  being studied
  • Description of the  process  used to study this population or phenomena, including selection criteria, controls, and testing instruments (such as surveys)

Another hint: some scholarly journals use a specific layout, called the "IMRaD" format, to communicate empirical research findings. Such articles typically have 4 components:

  • Introduction : sometimes called "literature review" -- what is currently known about the topic -- usually includes a theoretical framework and/or discussion of previous studies
  • Methodology:  sometimes called "research design" --  how to recreate the study -- usually describes the population, research process, and analytical tools
  • Results : sometimes called "findings"  --  what was learned through the study -- usually appears as statistical data or as substantial quotations from research participants
  • Discussion : sometimes called "conclusion" or "implications" -- why the study is important -- usually describes how the research results influence professional practices or future studies
  • << Previous: Home
  • Next: Locating Articles in Cinahl and PsycInfo >>

La Salle University

© Copyright La Salle University. All rights reserved.

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

quantitative empirical research article

Home Market Research

Empirical Research: Definition, Methods, Types and Examples

What is Empirical Research

Content Index

Empirical research: Definition

Empirical research: origin, quantitative research methods, qualitative research methods, steps for conducting empirical research, empirical research methodology cycle, advantages of empirical research, disadvantages of empirical research, why is there a need for empirical research.

Empirical research is defined as any research where conclusions of the study is strictly drawn from concretely empirical evidence, and therefore “verifiable” evidence.

This empirical evidence can be gathered using quantitative market research and  qualitative market research  methods.

For example: A research is being conducted to find out if listening to happy music in the workplace while working may promote creativity? An experiment is conducted by using a music website survey on a set of audience who are exposed to happy music and another set who are not listening to music at all, and the subjects are then observed. The results derived from such a research will give empirical evidence if it does promote creativity or not.

LEARN ABOUT: Behavioral Research

You must have heard the quote” I will not believe it unless I see it”. This came from the ancient empiricists, a fundamental understanding that powered the emergence of medieval science during the renaissance period and laid the foundation of modern science, as we know it today. The word itself has its roots in greek. It is derived from the greek word empeirikos which means “experienced”.

In today’s world, the word empirical refers to collection of data using evidence that is collected through observation or experience or by using calibrated scientific instruments. All of the above origins have one thing in common which is dependence of observation and experiments to collect data and test them to come up with conclusions.

LEARN ABOUT: Causal Research

Types and methodologies of empirical research

Empirical research can be conducted and analysed using qualitative or quantitative methods.

  • Quantitative research : Quantitative research methods are used to gather information through numerical data. It is used to quantify opinions, behaviors or other defined variables . These are predetermined and are in a more structured format. Some of the commonly used methods are survey, longitudinal studies, polls, etc
  • Qualitative research:   Qualitative research methods are used to gather non numerical data.  It is used to find meanings, opinions, or the underlying reasons from its subjects. These methods are unstructured or semi structured. The sample size for such a research is usually small and it is a conversational type of method to provide more insight or in-depth information about the problem Some of the most popular forms of methods are focus groups, experiments, interviews, etc.

Data collected from these will need to be analysed. Empirical evidence can also be analysed either quantitatively and qualitatively. Using this, the researcher can answer empirical questions which have to be clearly defined and answerable with the findings he has got. The type of research design used will vary depending on the field in which it is going to be used. Many of them might choose to do a collective research involving quantitative and qualitative method to better answer questions which cannot be studied in a laboratory setting.

LEARN ABOUT: Qualitative Research Questions and Questionnaires

Quantitative research methods aid in analyzing the empirical evidence gathered. By using these a researcher can find out if his hypothesis is supported or not.

  • Survey research: Survey research generally involves a large audience to collect a large amount of data. This is a quantitative method having a predetermined set of closed questions which are pretty easy to answer. Because of the simplicity of such a method, high responses are achieved. It is one of the most commonly used methods for all kinds of research in today’s world.

Previously, surveys were taken face to face only with maybe a recorder. However, with advancement in technology and for ease, new mediums such as emails , or social media have emerged.

For example: Depletion of energy resources is a growing concern and hence there is a need for awareness about renewable energy. According to recent studies, fossil fuels still account for around 80% of energy consumption in the United States. Even though there is a rise in the use of green energy every year, there are certain parameters because of which the general population is still not opting for green energy. In order to understand why, a survey can be conducted to gather opinions of the general population about green energy and the factors that influence their choice of switching to renewable energy. Such a survey can help institutions or governing bodies to promote appropriate awareness and incentive schemes to push the use of greener energy.

Learn more: Renewable Energy Survey Template Descriptive Research vs Correlational Research

  • Experimental research: In experimental research , an experiment is set up and a hypothesis is tested by creating a situation in which one of the variable is manipulated. This is also used to check cause and effect. It is tested to see what happens to the independent variable if the other one is removed or altered. The process for such a method is usually proposing a hypothesis, experimenting on it, analyzing the findings and reporting the findings to understand if it supports the theory or not.

For example: A particular product company is trying to find what is the reason for them to not be able to capture the market. So the organisation makes changes in each one of the processes like manufacturing, marketing, sales and operations. Through the experiment they understand that sales training directly impacts the market coverage for their product. If the person is trained well, then the product will have better coverage.

  • Correlational research: Correlational research is used to find relation between two set of variables . Regression analysis is generally used to predict outcomes of such a method. It can be positive, negative or neutral correlation.

LEARN ABOUT: Level of Analysis

For example: Higher educated individuals will get higher paying jobs. This means higher education enables the individual to high paying job and less education will lead to lower paying jobs.

  • Longitudinal study: Longitudinal study is used to understand the traits or behavior of a subject under observation after repeatedly testing the subject over a period of time. Data collected from such a method can be qualitative or quantitative in nature.

For example: A research to find out benefits of exercise. The target is asked to exercise everyday for a particular period of time and the results show higher endurance, stamina, and muscle growth. This supports the fact that exercise benefits an individual body.

  • Cross sectional: Cross sectional study is an observational type of method, in which a set of audience is observed at a given point in time. In this type, the set of people are chosen in a fashion which depicts similarity in all the variables except the one which is being researched. This type does not enable the researcher to establish a cause and effect relationship as it is not observed for a continuous time period. It is majorly used by healthcare sector or the retail industry.

For example: A medical study to find the prevalence of under-nutrition disorders in kids of a given population. This will involve looking at a wide range of parameters like age, ethnicity, location, incomes  and social backgrounds. If a significant number of kids coming from poor families show under-nutrition disorders, the researcher can further investigate into it. Usually a cross sectional study is followed by a longitudinal study to find out the exact reason.

  • Causal-Comparative research : This method is based on comparison. It is mainly used to find out cause-effect relationship between two variables or even multiple variables.

For example: A researcher measured the productivity of employees in a company which gave breaks to the employees during work and compared that to the employees of the company which did not give breaks at all.

LEARN ABOUT: Action Research

Some research questions need to be analysed qualitatively, as quantitative methods are not applicable there. In many cases, in-depth information is needed or a researcher may need to observe a target audience behavior, hence the results needed are in a descriptive analysis form. Qualitative research results will be descriptive rather than predictive. It enables the researcher to build or support theories for future potential quantitative research. In such a situation qualitative research methods are used to derive a conclusion to support the theory or hypothesis being studied.

LEARN ABOUT: Qualitative Interview

  • Case study: Case study method is used to find more information through carefully analyzing existing cases. It is very often used for business research or to gather empirical evidence for investigation purpose. It is a method to investigate a problem within its real life context through existing cases. The researcher has to carefully analyse making sure the parameter and variables in the existing case are the same as to the case that is being investigated. Using the findings from the case study, conclusions can be drawn regarding the topic that is being studied.

For example: A report mentioning the solution provided by a company to its client. The challenges they faced during initiation and deployment, the findings of the case and solutions they offered for the problems. Such case studies are used by most companies as it forms an empirical evidence for the company to promote in order to get more business.

  • Observational method:   Observational method is a process to observe and gather data from its target. Since it is a qualitative method it is time consuming and very personal. It can be said that observational research method is a part of ethnographic research which is also used to gather empirical evidence. This is usually a qualitative form of research, however in some cases it can be quantitative as well depending on what is being studied.

For example: setting up a research to observe a particular animal in the rain-forests of amazon. Such a research usually take a lot of time as observation has to be done for a set amount of time to study patterns or behavior of the subject. Another example used widely nowadays is to observe people shopping in a mall to figure out buying behavior of consumers.

  • One-on-one interview: Such a method is purely qualitative and one of the most widely used. The reason being it enables a researcher get precise meaningful data if the right questions are asked. It is a conversational method where in-depth data can be gathered depending on where the conversation leads.

For example: A one-on-one interview with the finance minister to gather data on financial policies of the country and its implications on the public.

  • Focus groups: Focus groups are used when a researcher wants to find answers to why, what and how questions. A small group is generally chosen for such a method and it is not necessary to interact with the group in person. A moderator is generally needed in case the group is being addressed in person. This is widely used by product companies to collect data about their brands and the product.

For example: A mobile phone manufacturer wanting to have a feedback on the dimensions of one of their models which is yet to be launched. Such studies help the company meet the demand of the customer and position their model appropriately in the market.

  • Text analysis: Text analysis method is a little new compared to the other types. Such a method is used to analyse social life by going through images or words used by the individual. In today’s world, with social media playing a major part of everyone’s life, such a method enables the research to follow the pattern that relates to his study.

For example: A lot of companies ask for feedback from the customer in detail mentioning how satisfied are they with their customer support team. Such data enables the researcher to take appropriate decisions to make their support team better.

Sometimes a combination of the methods is also needed for some questions that cannot be answered using only one type of method especially when a researcher needs to gain a complete understanding of complex subject matter.

We recently published a blog that talks about examples of qualitative data in education ; why don’t you check it out for more ideas?

Since empirical research is based on observation and capturing experiences, it is important to plan the steps to conduct the experiment and how to analyse it. This will enable the researcher to resolve problems or obstacles which can occur during the experiment.

Step #1: Define the purpose of the research

This is the step where the researcher has to answer questions like what exactly do I want to find out? What is the problem statement? Are there any issues in terms of the availability of knowledge, data, time or resources. Will this research be more beneficial than what it will cost.

Before going ahead, a researcher has to clearly define his purpose for the research and set up a plan to carry out further tasks.

Step #2 : Supporting theories and relevant literature

The researcher needs to find out if there are theories which can be linked to his research problem . He has to figure out if any theory can help him support his findings. All kind of relevant literature will help the researcher to find if there are others who have researched this before, or what are the problems faced during this research. The researcher will also have to set up assumptions and also find out if there is any history regarding his research problem

Step #3: Creation of Hypothesis and measurement

Before beginning the actual research he needs to provide himself a working hypothesis or guess what will be the probable result. Researcher has to set up variables, decide the environment for the research and find out how can he relate between the variables.

Researcher will also need to define the units of measurements, tolerable degree for errors, and find out if the measurement chosen will be acceptable by others.

Step #4: Methodology, research design and data collection

In this step, the researcher has to define a strategy for conducting his research. He has to set up experiments to collect data which will enable him to propose the hypothesis. The researcher will decide whether he will need experimental or non experimental method for conducting the research. The type of research design will vary depending on the field in which the research is being conducted. Last but not the least, the researcher will have to find out parameters that will affect the validity of the research design. Data collection will need to be done by choosing appropriate samples depending on the research question. To carry out the research, he can use one of the many sampling techniques. Once data collection is complete, researcher will have empirical data which needs to be analysed.

LEARN ABOUT: Best Data Collection Tools

Step #5: Data Analysis and result

Data analysis can be done in two ways, qualitatively and quantitatively. Researcher will need to find out what qualitative method or quantitative method will be needed or will he need a combination of both. Depending on the unit of analysis of his data, he will know if his hypothesis is supported or rejected. Analyzing this data is the most important part to support his hypothesis.

Step #6: Conclusion

A report will need to be made with the findings of the research. The researcher can give the theories and literature that support his research. He can make suggestions or recommendations for further research on his topic.

Empirical research methodology cycle

A.D. de Groot, a famous dutch psychologist and a chess expert conducted some of the most notable experiments using chess in the 1940’s. During his study, he came up with a cycle which is consistent and now widely used to conduct empirical research. It consists of 5 phases with each phase being as important as the next one. The empirical cycle captures the process of coming up with hypothesis about how certain subjects work or behave and then testing these hypothesis against empirical data in a systematic and rigorous approach. It can be said that it characterizes the deductive approach to science. Following is the empirical cycle.

  • Observation: At this phase an idea is sparked for proposing a hypothesis. During this phase empirical data is gathered using observation. For example: a particular species of flower bloom in a different color only during a specific season.
  • Induction: Inductive reasoning is then carried out to form a general conclusion from the data gathered through observation. For example: As stated above it is observed that the species of flower blooms in a different color during a specific season. A researcher may ask a question “does the temperature in the season cause the color change in the flower?” He can assume that is the case, however it is a mere conjecture and hence an experiment needs to be set up to support this hypothesis. So he tags a few set of flowers kept at a different temperature and observes if they still change the color?
  • Deduction: This phase helps the researcher to deduce a conclusion out of his experiment. This has to be based on logic and rationality to come up with specific unbiased results.For example: In the experiment, if the tagged flowers in a different temperature environment do not change the color then it can be concluded that temperature plays a role in changing the color of the bloom.
  • Testing: This phase involves the researcher to return to empirical methods to put his hypothesis to the test. The researcher now needs to make sense of his data and hence needs to use statistical analysis plans to determine the temperature and bloom color relationship. If the researcher finds out that most flowers bloom a different color when exposed to the certain temperature and the others do not when the temperature is different, he has found support to his hypothesis. Please note this not proof but just a support to his hypothesis.
  • Evaluation: This phase is generally forgotten by most but is an important one to keep gaining knowledge. During this phase the researcher puts forth the data he has collected, the support argument and his conclusion. The researcher also states the limitations for the experiment and his hypothesis and suggests tips for others to pick it up and continue a more in-depth research for others in the future. LEARN MORE: Population vs Sample

LEARN MORE: Population vs Sample

There is a reason why empirical research is one of the most widely used method. There are a few advantages associated with it. Following are a few of them.

  • It is used to authenticate traditional research through various experiments and observations.
  • This research methodology makes the research being conducted more competent and authentic.
  • It enables a researcher understand the dynamic changes that can happen and change his strategy accordingly.
  • The level of control in such a research is high so the researcher can control multiple variables.
  • It plays a vital role in increasing internal validity .

Even though empirical research makes the research more competent and authentic, it does have a few disadvantages. Following are a few of them.

  • Such a research needs patience as it can be very time consuming. The researcher has to collect data from multiple sources and the parameters involved are quite a few, which will lead to a time consuming research.
  • Most of the time, a researcher will need to conduct research at different locations or in different environments, this can lead to an expensive affair.
  • There are a few rules in which experiments can be performed and hence permissions are needed. Many a times, it is very difficult to get certain permissions to carry out different methods of this research.
  • Collection of data can be a problem sometimes, as it has to be collected from a variety of sources through different methods.

LEARN ABOUT:  Social Communication Questionnaire

Empirical research is important in today’s world because most people believe in something only that they can see, hear or experience. It is used to validate multiple hypothesis and increase human knowledge and continue doing it to keep advancing in various fields.

For example: Pharmaceutical companies use empirical research to try out a specific drug on controlled groups or random groups to study the effect and cause. This way, they prove certain theories they had proposed for the specific drug. Such research is very important as sometimes it can lead to finding a cure for a disease that has existed for many years. It is useful in science and many other fields like history, social sciences, business, etc.

LEARN ABOUT: 12 Best Tools for Researchers

With the advancement in today’s world, empirical research has become critical and a norm in many fields to support their hypothesis and gain more knowledge. The methods mentioned above are very useful for carrying out such research. However, a number of new methods will keep coming up as the nature of new investigative questions keeps getting unique or changing.

Create a single source of real data with a built-for-insights platform. Store past data, add nuggets of insights, and import research data from various sources into a CRM for insights. Build on ever-growing research with a real-time dashboard in a unified research management platform to turn insights into knowledge.

LEARN MORE         FREE TRIAL

MORE LIKE THIS

ai for customer experience

The Power of AI in Customer Experience — Tuesday CX Thoughts

Apr 16, 2024

employee lifecycle management software

Employee Lifecycle Management Software: Top of 2024

Apr 15, 2024

Sentiment analysis software

Top 15 Sentiment Analysis Software That Should Be on Your List

A/B testing software

Top 13 A/B Testing Software for Optimizing Your Website

Apr 12, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Canvas | University | Ask a Librarian

  • Library Homepage
  • Arrendale Library

Empirical Research: Quantitative & Qualitative

  • Empirical Research

Introduction: What is Empirical Research?

Quantitative methods, qualitative methods.

  • Quantitative vs. Qualitative
  • Reference Works for Social Sciences Research
  • Contact Us!

 Call us at 706-776-0111

  Chat with a Librarian

  Send Us Email

  Library Hours

Empirical research  is based on phenomena that can be observed and measured. Empirical research derives knowledge from actual experience rather than from theory or belief. 

Key characteristics of empirical research include:

  • Specific research questions to be answered;
  • Definitions of the population, behavior, or phenomena being studied;
  • Description of the methodology or research design used to study this population or phenomena, including selection criteria, controls, and testing instruments (such as surveys);
  • Two basic research processes or methods in empirical research: quantitative methods and qualitative methods (see the rest of the guide for more about these methods).

(based on the original from the Connelly LIbrary of LaSalle University)

quantitative empirical research article

Empirical Research: Qualitative vs. Quantitative

Learn about common types of journal articles that use APA Style, including empirical studies; meta-analyses; literature reviews; and replication, theoretical, and methodological articles.

Academic Writer

© 2024 American Psychological Association.

  • More about Academic Writer ...

Quantitative Research

A quantitative research project is characterized by having a population about which the researcher wants to draw conclusions, but it is not possible to collect data on the entire population.

  • For an observational study, it is necessary to select a proper, statistical random sample and to use methods of statistical inference to draw conclusions about the population. 
  • For an experimental study, it is necessary to have a random assignment of subjects to experimental and control groups in order to use methods of statistical inference.

Statistical methods are used in all three stages of a quantitative research project.

For observational studies, the data are collected using statistical sampling theory. Then, the sample data are analyzed using descriptive statistical analysis. Finally, generalizations are made from the sample data to the entire population using statistical inference.

For experimental studies, the subjects are allocated to experimental and control group using randomizing methods. Then, the experimental data are analyzed using descriptive statistical analysis. Finally, just as for observational data, generalizations are made to a larger population.

Iversen, G. (2004). Quantitative research . In M. Lewis-Beck, A. Bryman, & T. Liao (Eds.), Encyclopedia of social science research methods . (pp. 897-898). Thousand Oaks, CA: SAGE Publications, Inc.

Qualitative Research

What makes a work deserving of the label qualitative research is the demonstrable effort to produce richly and relevantly detailed descriptions and particularized interpretations of people and the social, linguistic, material, and other practices and events that shape and are shaped by them.

Qualitative research typically includes, but is not limited to, discerning the perspectives of these people, or what is often referred to as the actor’s point of view. Although both philosophically and methodologically a highly diverse entity, qualitative research is marked by certain defining imperatives that include its case (as opposed to its variable) orientation, sensitivity to cultural and historical context, and reflexivity. 

In its many guises, qualitative research is a form of empirical inquiry that typically entails some form of purposive sampling for information-rich cases; in-depth interviews and open-ended interviews, lengthy participant/field observations, and/or document or artifact study; and techniques for analysis and interpretation of data that move beyond the data generated and their surface appearances. 

Sandelowski, M. (2004).  Qualitative research . In M. Lewis-Beck, A. Bryman, & T. Liao (Eds.),  Encyclopedia of social science research methods . (pp. 893-894). Thousand Oaks, CA: SAGE Publications, Inc.

  • Next: Quantitative vs. Qualitative >>
  • Last Updated: Mar 22, 2024 10:47 AM
  • URL: https://library.piedmont.edu/empirical-research
  • Ebooks & Online Video
  • New Materials
  • Renew Checkouts
  • Faculty Resources
  • Friends of the Library
  • Library Services
  • Request Books from Demorest
  • Our Mission
  • Library History
  • Ask a Librarian!
  • Making Citations
  • Working Online

Friend us on Facebook!

Arrendale Library Piedmont University 706-776-0111

Purdue University

  • Ask a Librarian

Research: Overview & Approaches

  • Getting Started with Undergraduate Research
  • Planning & Getting Started
  • Building Your Knowledge Base
  • Locating Sources
  • Reading Scholarly Articles
  • Creating a Literature Review
  • Productivity & Organizing Research
  • Scholarly and Professional Relationships

Introduction to Empirical Research

Databases for finding empirical research, guided search, google scholar, examples of empirical research, sources and further reading.

  • Interpretive Research
  • Action-Based Research
  • Creative & Experimental Approaches

Your Librarian

Profile Photo

  • Introductory Video This video covers what empirical research is, what kinds of questions and methods empirical researchers use, and some tips for finding empirical research articles in your discipline.

Help Resources

  • Guided Search: Finding Empirical Research Articles This is a hands-on tutorial that will allow you to use your own search terms to find resources.

Google Scholar Search

  • Study on radiation transfer in human skin for cosmetics
  • Long-Term Mobile Phone Use and the Risk of Vestibular Schwannoma: A Danish Nationwide Cohort Study
  • Emissions Impacts and Benefits of Plug-In Hybrid Electric Vehicles and Vehicle-to-Grid Services
  • Review of design considerations and technological challenges for successful development and deployment of plug-in hybrid electric vehicles
  • Endocrine disrupters and human health: could oestrogenic chemicals in body care cosmetics adversely affect breast cancer incidence in women?

quantitative empirical research article

  • << Previous: Scholarly and Professional Relationships
  • Next: Interpretive Research >>
  • Last Updated: Apr 5, 2024 9:55 AM
  • URL: https://guides.lib.purdue.edu/research_approaches

IMAGES

  1. Empirical Research

    quantitative empirical research article

  2. What Is Empirical Research?

    quantitative empirical research article

  3. Empirical Research: Definition, Methods, Types and Examples

    quantitative empirical research article

  4. Qualitative vs Quantitative

    quantitative empirical research article

  5. Quantitative Research

    quantitative empirical research article

  6. Empirical Research

    quantitative empirical research article

VIDEO

  1. Quantitative Light Element Analysis in EPMA

  2. Types of Research

  3. Quantitative Research Interview Prep (Part II)

  4. What is quantitative research?

  5. QUANTITATIVE RESEARCH

  6. Causal Research

COMMENTS

  1. A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  2. Quantitative Research

    Quantitative research commonly involves experimentation, surveys, or questionnaires in the context of a large, randomly selected group. EMPIRICAL. The term empirical research is often used as a synonym for quantitative research, but strictly speaking, empirical research is simply any form of research based upon direct observation. It might also ...

  3. Recent quantitative research on determinants of health in high ...

    Background Identifying determinants of health and understanding their role in health production constitutes an important research theme. We aimed to document the state of recent multi-country research on this theme in the literature. Methods We followed the PRISMA-ScR guidelines to systematically identify, triage and review literature (January 2013—July 2019). We searched for studies that ...

  4. Quantitative Research Excellence: Study Design and Reliable and Valid

    Joint Recommendations on Reporting Empirical Research in Outdoor, Experiential, Environmental, and Adventure Education Journals. Show details Hide details. ... Quantitative Research for the Qualitative Researcher. 2014. SAGE Research Methods. Entry . Research Design Principles. Show details Hide details.

  5. What Is Quantitative Research?

    Revised on June 22, 2023. Quantitative research is the process of collecting and analyzing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalize results to wider populations. Quantitative research is the opposite of qualitative research, which involves collecting and analyzing ...

  6. Data, measurement and empirical methods in the science of science

    The first is in data 9: modern databases include millions of research articles, grant proposals, patents and more. This windfall of data traces scientific activity in remarkable detail and at scale.

  7. What is "Empirical Research"?

    Another hint: some scholarly journals use a specific layout, called the "IMRaD" format, to communicate empirical research findings. Such articles typically have 4 components: Introduction : sometimes called "literature review" -- what is currently known about the topic -- usually includes a theoretical framework and/or discussion of previous ...

  8. Critical Quantitative Literacy: An Educational Foundation for Critical

    An easy way in which educators can help build CQL is by paying careful attention to the language used in quantitative research. This focus often requires picking apart the words used within the findings and discussion sections of empirical research. For example, it is common for interpretations of regression models to invoke causal language ...

  9. Empirical Research: Definition, Methods, Types and Examples

    Types and methodologies of empirical research. Empirical research can be conducted and analysed using qualitative or quantitative methods. Quantitative research: Quantitative research methods are used to gather information through numerical data. It is used to quantify opinions, behaviors or other defined variables.

  10. Full article: Research Problems and Hypotheses in Empirical Research

    The account is limited to individual, substantive, empirical, and quantitative research studies. Applied and basic/general research differ with respect to general aim. As defined here, whereas the aim in applied research is to generate knowledge to be used directly in specified professional/practical work or contexts, basic/general research is ...

  11. PDF Getting Started with Quantitative Empirical Methods

    Overview of quantitative empirical methods •What are empirical methods? Research methods that are based on observations of the world, data, which is a term for facts about the world. •Qualitative Data vs. Quantitative Data --Qualitative data: Historical archives, ethnography observations, in-depth interviews, case studies

  12. Empirical Research: Quantitative & Qualitative

    The words in this table can be used to evaluate whether an article tends more toward the quantitative or qualitative domain. Well-written article abstracts will contain words like these to succinctly characterize the article's content.

  13. Quantitative measures used in empirical evaluations of mental health

    Quantitative measures used in empirical evaluations of mental health policy implementation: A systematic review. ... about measure development/testing or a measure's pragmatic and psychometric properties was extracted from included empirical articles or, when applicable, from measure development articles. ... Health Research Policy And Systems ...

  14. Empirical Research: Quantitative & Qualitative

    Description of the methodology or research design used to study this population or phenomena, including selection criteria, controls, and testing instruments (such as surveys); Two basic research processes or methods in empirical research: quantitative methods and qualitative methods (see the rest of the guide for more about these methods).

  15. Empirical Research

    Strategies for Empirical Research in Writing is a particularly accessible approach to both qualitative and quantitative empirical research methods, helping novices appreciate the value of empirical research in writing while easing their fears about the research process. This comprehensive book covers research methods ranging from traditional ...

  16. Empirical Research

    What is an Empirical Article? An empirical research article reports research based on actual observation or experiment. The research may use quantitative or qualitative research methods. Quantitative Research uses numerical data to try to establish causal relationships between variables ("Based on 100 interactions, A causes B.")

  17. Writing a useful empirical journal article

    In this article, I reconsider how empirical research in management should be reported. Because this essay will appear in the Journal of Management Scientific Reports, I emphasize the reporting of tests of theory rather than the creation of new theory.I argue that good writing matches the needs of the intended reader, and thus authors must consider what readers need to understand and trust ...

  18. A bibliometric analysis of HIV nursing research between 1999 and 2022

    A potential explanation for Kenya's high citations is that Kenya's institutions and scholars have published prominent articles in nursing-related HIV research. Kenya's most cited article was published in Lancet in 2010, in collaboration with the USA and Canada, entitled "Effects of a mobile phone short message service on antiretroviral ...

  19. Do Quantitative and Qualitative Research Reflect two Distinct Cultures

    The empirical analysis is based on an in-depth content analysis of a random sample of 90 qualitative and 90 quantitative empirical articles that are stratified by three time periods and six major journals covering different subfields of political science (section "Empirical Strategy"). 8 We coded each article independently of each other ...