• Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Additional menu

MindManager Blog

Nine essential problem solving tools: The ultimate guide to finding a solution

October 26, 2023 by MindManager Blog

Problem solving may unfold differently depending on the industry, or even the department you work in. However, most agree that before you can fix any issue, you need to be clear on what it is, why it’s happening, and what your ideal long-term solution will achieve.

Understanding both the nature and the cause of a problem is the only way to figure out which actions will help you resolve it.

Given that most problem-solving processes are part inspiration and part perspiration, you’ll be more successful if you can reach for a problem solving tool that facilitates collaboration, encourages creative thinking, and makes it easier to implement the fix you devise.

The problem solving tools include three unique categories: problem solving diagrams, problem solving mind maps, and problem solving software solutions.

They include:

  • Fishbone diagrams
  • Strategy maps
  • Mental maps
  • Concept maps
  • Layered process audit software
  • Charting software
  • MindManager

In this article, we’ve put together a roundup of versatile problem solving tools and software to help you and your team map out and repair workplace issues as efficiently as possible.

Let’s get started!

Problem solving diagrams

Mapping your way out of a problem is the simplest way to see where you are, and where you need to end up.

Not only do visual problem maps let you plot the most efficient route from Point A (dysfunctional situation) to Point B (flawless process), problem mapping diagrams make it easier to see:

  • The root cause of a dilemma.
  • The steps, resources, and personnel associated with each possible solution.
  • The least time-consuming, most cost-effective options.

A visual problem solving process help to solidify understanding. Furthermore, it’s a great way for you and your team to transform abstract ideas into a practical, reconstructive plan.

Here are three examples of common problem mapping diagrams you can try with your team:

1. Fishbone diagrams

Fishbone diagrams are a common problem solving tool so-named because, once complete, they resemble the skeleton of a fish.

With the possible root causes of an issue (the ribs) branching off from either side of a spine line attached to the head (the problem), dynamic fishbone diagrams let you:

  • Lay out a related set of possible reasons for an existing problem
  • Investigate each possibility by breaking it out into sub-causes
  • See how contributing factors relate to one another

MindManager Fishbone Diagram 1

Fishbone diagrams are also known as cause and effect or Ishikawa diagrams.

2. Flowcharts

A flowchart is an easy-to-understand diagram with a variety of applications. But you can use it to outline and examine how the steps of a flawed process connect.

Flowchart | MindManager

Made up of a few simple symbols linked with arrows indicating workflow direction, flowcharts clearly illustrate what happens at each stage of a process – and how each event impacts other events and decisions.

3. Strategy maps

Frequently used as a strategic planning tool, strategy maps also work well as problem mapping diagrams. Based on a hierarchal system, thoughts and ideas can be arranged on a single page to flesh out a potential resolution.

Strategy Toolkit MindManager 2018

Once you’ve got a few tactics you feel are worth exploring as possible ways to overcome a challenge, a strategy map will help you establish the best route to your problem-solving goal.

Problem solving mind maps

Problem solving mind maps are especially valuable in visualization. Because they facilitate the brainstorming process that plays a key role in both root cause analysis and the identification of potential solutions, they help make problems more solvable.

Mind maps are diagrams that represent your thinking. Since many people struggle taking or working with hand-written or typed notes, mind maps were designed to let you lay out and structure your thoughts visually so you can play with ideas, concepts, and solutions the same way your brain does.

By starting with a single notion that branches out into greater detail, problem solving mind maps make it easy to:

  • Explain unfamiliar problems or processes in less time
  • Share and elaborate on novel ideas
  • Achieve better group comprehension that can lead to more effective solutions

Mind maps are a valuable problem solving tool because they’re geared toward bringing out the flexible thinking that creative solutions require. Here are three types of problem solving mind maps you can use to facilitate the brainstorming process.

4. Mental maps

A mental map helps you get your thoughts about what might be causing a workplace issue out of your head and onto a shared digital space.

Mental Map | MindManager Blog

Because mental maps mirror the way our brains take in and analyze new information, using them to describe your theories visually will help you and your team work through and test those thought models.

5. Idea maps

Mental Map | MindManager Blog

Idea maps let you take advantage of a wide assortment of colors and images to lay down and organize your scattered thought process. Idea maps are ideal brainstorming tools because they allow you to present and explore ideas about the best way to solve a problem collaboratively, and with a shared sense of enthusiasm for outside-the-box thinking.

6. Concept maps

Concept maps are one of the best ways to shape your thoughts around a potential solution because they let you create interlinked, visual representations of intricate concepts.

Concept Map | MindManager Blog

By laying out your suggested problem-solving process digitally – and using lines to form and define relationship connections – your group will be able to see how each piece of the solution puzzle connects with another.

Problem solving software solutions

Problem solving software is the best way to take advantage of multiple problem solving tools in one platform. While some software programs are geared toward specific industries or processes – like manufacturing or customer relationship management, for example – others, like MindManager , are purpose-built to work across multiple trades, departments, and teams.

Here are three problem-solving software examples.

7. Layered process audit software

Layered process audits (LPAs) help companies oversee production processes and keep an eye on the cost and quality of the goods they create. Dedicated LPA software makes problem solving easier for manufacturers because it helps them see where costly leaks are occurring and allows all levels of management to get involved in repairing those leaks.

8. Charting software

Charting software comes in all shapes and sizes to fit a variety of business sectors. Pareto charts, for example, combine bar charts with line graphs so companies can compare different problems or contributing factors to determine their frequency, cost, and significance. Charting software is often used in marketing, where a variety of bar charts and X-Y axis diagrams make it possible to display and examine competitor profiles, customer segmentation, and sales trends.

9. MindManager

No matter where you work, or what your problem-solving role looks like, MindManager is a problem solving software that will make your team more productive in figuring out why a process, plan, or project isn’t working the way it should.

Once you know why an obstruction, shortfall, or difficulty exists, you can use MindManager’s wide range of brainstorming and problem mapping diagrams to:

  • Find the most promising way to correct the situation
  • Activate your chosen solution, and
  • Conduct regular checks to make sure your repair work is sustainable

MindManager is the ultimate problem solving software.

Not only is it versatile enough to use as your go-to system for puzzling out all types of workplace problems, MindManager’s built-in forecasting tools, timeline charts, and warning indicators let you plan, implement, and monitor your solutions.

By allowing your group to work together more effectively to break down problems, uncover solutions, and rebuild processes and workflows, MindManager’s versatile collection of problem solving tools will help make everyone on your team a more efficient problem solver.

Download a free trial today to get started!

Ready to take the next step?

MindManager helps boost collaboration and productivity among remote and hybrid teams to achieve better results, faster.

what are the tools used for problem solving

Why choose MindManager?

MindManager® helps individuals, teams, and enterprises bring greater clarity and structure to plans, projects, and processes. It provides visual productivity tools and mind mapping software to help take you and your organization to where you want to be.

Explore MindManager

what are the tools used for problem solving

36 Problem-solving techniques, methods and tools

what are the tools used for problem solving

When it comes to solving problems, getting ideas is the easy part. 

But businesses often forget the other four stages of the problem-solving process that will allow them to find the best solution.

Instead of jumping straight to idea generation, your problem-solving framework should look like this:

  • Identify the problem
  • Reveal why it has occurred
  • Brainstorm ideas
  • Select the best solution

See how idea generation doesn’t appear until stage 3?!

In this extensive resource, we provide techniques, methodologies and tools to guide you through every stage of the problem-solving process.

Once you’ve finished reading, you’ll possess an extensive problem-solving arsenal that will enable you to overcome your biggest workplace challenges.

11 Problem-solving techniques for clarity and confidence

Before we dive into more comprehensive methodologies for solving problems, there are a few basic techniques you should know. 

The following techniques will set you up for a successful problem-solving session with your team, allowing you to take on your biggest challenges with clarity and confidence. ‍

1. Take a moment, take a breath

When a problem or challenge arises, it’s normal to act too quickly or rely on solutions that have worked well in the past. This is known as entrenched thinking.

But acting impulsively, without prior consideration or planning, can cause you to misunderstand the issue and overlook possible solutions to the problem.

Therefore, the first thing you should always do when you encounter a problem is: breathe in and out.

Take a step back and make a clear plan of action before you act. This will help you to take rational steps towards solving a problem. ‍

2. Ask questions to understand the full extent of the issue

Another common mistake people make when attempting to solve a problem is taking action before fully understanding the problem.

Before committing to a theory, ask enough questions to unearth the true root of the issue. 

Later in this article, we cover The 5 Why’s problem-solving methodology which you can use to easily identify the root of your problem. Give this a go at your next meeting and see how your initial understanding of a problem can often be wrong. ‍

3. Consider alternative perspectives

A common problem-solving issue is that of myopia—a narrow-minded view or perception of the problem. Myopia can occur when you’re too involved with the problem or your team isn’t diverse enough.

To give yourself the best chance of resolving a problem, gain insight from a wide range of sources. Collaborate with key stakeholders, customers and on-the-ground employees to learn how the problem affects them and whether they have found workarounds or solutions.

To paint the broadest picture, don’t limit your problem-solving team to a specific archetype. Try to include everyone, from the chief executive to the office janitor.

If you’re working with a small team, try the Flip It! problem-solving methodology to view the issue from a fresh angle. ‍

4. Make your office space conducive to problem-solving

The environment in which your host your brainstorming sessions should maximise creativity . When your team members trust each other and feel relaxed, they’re more likely to come up with innovative ideas and solutions to a problem.

Here are a few ways to get your employees’ creative juices flowing:

  • Play team-building games that maximise trust and build interpersonal relationships
  • Improve your team’s problem-solving skills with games that encourage critical thinking
  • Redesign the office with comfortable furniture and collaborative spaces
  • Boost job satisfaction by creating a positive work-life balance
  • Improve collaborative skills and learn to resolve conflicts

World Café is a problem-solving method that creates a casual environment conducive to creative thinking. 

Keep reading to learn more about how World Café can help your team solve complex organisational problems. ‍

5. Use problem-solving methodologies to guide the process

Because problem-solving is a creative process, it can be hard to keep it on track. As more ideas get banded around, conflicts can arise that derail the session.

That’s why problem-solving methodologies are so helpful. They offer you proven problem-solving frameworks to guide your group sessions and keep them on track.

The Six Thinking Hats problem-solving method is a popular technique that guides the process and helps your team analyse a problem from all angles.

We’re going to take a look at our favourite problem-solving methodologies in the next section of this article, XY Tried and tested problem-solving methodologies. ‍

6. Use analogies to solve complex problems

Sometimes, solving a different problem can help you uncover solutions to another problem! 

By stripping back a complex issue and framing it as a simplified analogy , you approach a problem from a different angle, enabling you to come up with alternative ideas.

After solving practice problems, your team might be more aptly equipped to solve real-world issues.

However, coming up with an analogy that reflects your issue can be difficult, so don’t worry if this technique doesn’t work for you.

The Speed Boat diagram is a visual tool that helps your employees view existing challenges as anchors holding back a boat which represents your end goals. By assigning a “weight” to each anchor, your team can prioritise which issues to tackle first. ‍

7. Establish clear constraints

Constraints make a big problem more approachable. 

Before you tackle a problem, establish clear boundaries and codes of conduct for the session. This allows your team to focus on the current issue without becoming distracted or veering off on a tangent.

In an article published in the Harvard Business Review, authors Oguz A. Acar, Murat Tarakci, and Daan van Knippenberg wrote, “Constraints … provide focus and a creative challenge that motivates people to search for and connect information from different sources to generate novel ideas for new products, services, or business processes.” (Why Constraints Are Good for Innovation, 2019)

Lightning Decision Jam is a prime example of how constraints can assist the creative process. Here, your team are given strict time constraints and isn’t permitted to discuss ideas until the end. ‍

8. Dislodge preconceived ideas

Humans are creatures of habit. 

We defer to strategies that have produced positive results in the past. This is typically beneficial because recalling our previous successes means we don’t need to constantly re-learn similar tasks.

But when it comes to problem-solving, this way of thinking can trip us up. We become fixated on a solution that worked in the past, but when this fails we’re dismayed and left wondering what to do next.

To resolve problems effectively, your employees need to escape the precincts of their imaginations. This helps to eliminate functional fixedness—the belief that an item serves only its predefined function.

Alternative Application is an icebreaker game that encourages employees to think outside the box by coming up with different uses for everyday objects. Try this at your next meeting or team-building event and watch your team tap into their creativity. ‍

9. Level the playing field

Having a diverse group of employees at your brainstorming sessions is a good idea, but there’s one problem: the extroverted members of your team will be more vocal than the introverts.

To ensure you’re gaining insight from every member of your team, you need to give your quieter employees equal opportunities to contribute by eliminating personality biases.

Read more: What icebreaker games and questions work best for introverts?

The obvious solution, then, is to “silence” the louder participants (it’s not as sinister as it sounds, promise)—all you have to do is ban your team from debating suggestions during the ideation process. 

The Lightning Decision Jam methodology gives your employees equal opportunities to contribute because much of the problem-solving process is carried out in silence. ‍

10. Take a break from the problem

Have you ever noticed how the best ideas seem to come when you’re not actively working on a problem? You may have spent hours slumped over your desk hashing out a solution, only for the “eureka!” moment to come when you’re walking your dog or taking a shower.

In James Webb Young’s book, A Technique for Producing Ideas , phase three of the process is “stepping away from the problem.” Young proclaims that after putting in the hard work, the information needs to ferment in the mind before any plausible ideas come to you.

So next time you’re in a meeting with your team trying to solve a problem, don’t panic if you don’t uncover groundbreaking ideas there and then. Allow everybody to mull over what they’ve learned, then reconvene at a later date.

The Creativity Dice methodology is a quick-fire brainstorming game that allows your team to incubate ideas while concentrating on another. ‍

11. Limit feedback sessions

The way your team delivers feedback at the end of a successful brainstorming session is critical. Left unsupervised, excessive feedback can undo all of your hard work.

Therefore, it’s wise to put a cap on the amount of feedback your team can provide. One great way of doing this is by using the One Breath Feedback technique.

By limiting your employees to one breath, they’re taught to be concise with their final comments. 

16 Tried and tested problem-solving methodologies

Problem-solving methodologies keep your brainstorming session on track and encourage your team to consider all angles of the issue.

Countless methods have wiggled their way into the world of business, each one with a unique strategy and end goal.

Here are 12 of our favourite problem-solving methodologies that will help you find the best-fit solution to your troubles. ‍

12. Six Thinking Hats

Six Thinking Hats is a methodical problem-solving framework that helps your group consider all possible problems, causes, solutions and repercussions by assigning a different coloured hat to each stage of the problem-solving process.

The roles of each hat are as follows:

  • Blue Hat (Control): This hat controls the session and dictates the order in which the hats will be worn. When wearing the Blue Hat, your group will observe possible solutions, draw conclusions and define a plan of action.
  • Green Hat (Idea Generation): The Green Hat signifies creativity. At this stage of the methodology, your team will focus their efforts on generating ideas, imagining solutions and considering alternatives.
  • Red Hat (Intuition and Feelings): It’s time for your employees to communicate their feelings. Here, your team listen to their guts and convey their emotional impulses without justification. 
  • Yellow Hat (Benefits and Values): What are the merits of each idea that has been put forward thus far? What positive impacts could they have?
  • Black or Grey Hat (Caution): What are the potential risks or shortcomings of each idea? What negative impacts could result from implicating each idea?
  • White Hat (Information and Data): While wearing The White Hat, your team must determine what information is needed and from where it can be obtained.

For Six Thinking Hats to work effectively, ensure your team acts within the confines of each role. 

While wearing The Yellow Hat, for example, your team should only discuss the positives . Any negative implications should be left for the Black or Grey hat.

Note: Feel free to alter the hat colours to align with your cultural context. ‍

13. Lightning Decision Jam (LDJ)

Lightning Decision Jam is a nine-stage problem-solving process designed to uncover a variety of perspectives while keeping the session on track.

The process starts by defining a general topic like the internal design process, interdepartmental communication, the sales funnel, etc.

Then, armed with pens and post-it notes, your team will work through the nine stages in the following order:

  • Write problems (7 minutes)
  • Present problems (4 minutes/person)
  • Select problems (6 minutes)
  • Reframe the problems (6 minutes)
  • Offer solutions (7 minutes)
  • Vote on solutions (10 minutes)
  • Prioritise solutions (30 seconds)
  • Decide what to execute (10 minutes)
  • Create task lists (5 minutes)

The philosophy behind LDJ is that of constraint. By limiting discussion, employees can focus on compiling ideas and coming to democratic decisions that benefit the company without being distracted or going off on a tangent. ‍

14. The 5 Why’s

Root Cause Analysis (RCA) is the process of unearthing a problem and finding the underlying cause. To help you through this process, you can use The 5 Why’s methodology.

The idea is to ask why you’re experiencing a problem, reframe the problem based on the answer, and then ask “ why?” again. If you do this five times , you should come pretty close to the root of your original challenge.

While this might not be a comprehensive end-to-end methodology, it certainly helps you to pin down your core challenges. ‍

15. World Café

If you’ve had enough of uninspiring corporate boardrooms, World Café is the solution. 

This problem-solving strategy facilitates casual conversations around given topics, enabling players to speak more openly about their grievances without the pressure of a large group.

Here’s how to do it:

  • Create a cosy cafe-style setting (try to have at least five or six chairs per table).
  • As a group, decide on a core problem and mark this as the session topic.
  • Divide your group into smaller teams by arranging five or six players at a table.
  • Assign each group a question that pertains to the session topic, or decide on one question for all groups to discuss at once.
  • Give the groups about 20 minutes to casually talk over each question.
  • Repeat this with about three or four different questions, making sure to write down key insights from each group.
  • Share the insights with the whole group.

World Café is a useful way of uncovering hidden causes and pitfalls by having multiple simultaneous conversations about a given topic. ‍

16. Discovery and Action Dialogue (DAD)

Discovery and Actions Dialogues are a collaborative method for employees to share and adopt personal behaviours in response to a problem. 

This crowdsourcing approach provides insight into how a problem affects individuals throughout your company and whether some are better equipped than others.

A DAD session is guided by a facilitator who asks seven open-ended questions in succession. Each person is given equal time to participate while a recorder takes down notes and valuable insights. 

This is a particularly effective method for uncovering preexisting ideas, behaviours and solutions from the people who face problems daily. ‍

17. Design Sprint 2.0

The Design Sprint 2.0 model by Jake Knapp helps your team to focus on finding, developing measuring a solution within four days . Because theorising is all well and good, but sometimes you can learn more by getting an idea off the ground and observing how it plays out in the real world.

Here’s the basic problem-solving framework:

  • Day 1: Map out or sketch possible solutions
  • Day 2: Choose the best solutions and storyboard your strategy going forward
  • Day 3: Create a living, breathing prototype
  • Day 4: Test and record how it performs in the real world

This technique is great for testing the viability of new products or expanding and fixing the features of an existing product. ‍

18. Open Space Technology

Open Space Technology is a method for large groups to create a problem-solving agenda around a central theme. It works best when your group is comprised of subject-matter experts and experienced individuals with a sufficient stake in the problem.

Open Space Technology works like this:

  • Establish a core theme for your team to centralise their efforts.
  • Ask the participants to consider their approach and write it on a post-it note.
  • Everybody writes a time and place for discussion on their note and sticks it to the wall.
  • The group is then invited to join the sessions that most interest them.
  • Everybody joins and contributes to their chosen sessions
  • Any significant insights and outcomes are recorded and presented to the group.

This methodology grants autonomy to your team and encourages them to take ownership of the problem-solving process. ‍

19. Round-Robin Brainstorming Technique

While not an end-to-end problem-solving methodology, the Round-Robin Brainstorming Technique is an effective way of squeezing every last ounce of creativity from your ideation sessions.

Here’s how it works:

  • Decide on a problem that needs to be solved
  • Sitting in a circle, give each employee a chance to offer an idea
  • Have somebody write down each idea as they come up
  • Participants can pass if they don’t have anything to contribute
  • The brainstorming session ends once everybody has passed

Once you’ve compiled a long list of ideas, it’s up to you how you move forward. You could, for example, borrow techniques from other methodologies, such as the “vote on solutions” phase of the Lightning Decision Jam. ‍

20. Failure Modes and Effects Analysis (FMEA)

Failure Modes and Effects Analysis is a method for preventing and mitigating problems within your business processes.

This technique starts by examining the process in question and asking, “What could go wrong?” From here, your team starts to brainstorm a list of potential failures.

Then, going through the list one by one, ask your participants, “Why would this failure happen?” 

Once you’ve answered this question for each list item, ask yourselves, “What would the consequences be of this failure?”

This proactive method focuses on prevention rather than treatment. Instead of waiting for a problem to occur and reacting, you’re actively searching for future shortcomings. ‍

21. Flip It!

The Flip It! Methodology teaches your team to view their concerns in a different light and frame them instead as catalysts for positive change.

The game works like this:

  • Select a topic your employees are likely to be concerned about, like market demand for your product or friction between departments.
  • Give each participant a pile of sticky notes and ask them to write down all their fears about the topic.
  • Take the fears and stick them to an area of the wall marked “fears.”
  • Then, encourage your team to look at these fears and ask them to reframe them as “hope” by writing new statements on different sticky notes.
  • Take these “hope” statements and stick them to an area of the wall marked “hope.”
  • Discuss the statements, then ask them to vote on the areas they feel they can start to take action on. They can do this by drawing a dot on the corner of the sticky note.
  • Move the notes with the most votes to a new area of the wall marked “traction.”
  • Discuss the most popular statements as a group and brainstorm actionable items related to each.
  • Write down the actions that need to be made and discuss them again as a group.

This brainstorming approach teaches your employees the danger of engrained thinking and helps them to reframe their fears as opportunities. ‍

22. The Creativity Dice

The Creativity Dice teaches your team to incubate ideas as they focus on different aspects of a problem. As we mentioned earlier in the article, giving ideas time to mature can be a highly effective problem-solving strategy. Here’s how the game works:

Choose a topic to focus on, It can be as specific or open-ended as you like. Write this down as a word or sentence. Roll the die, start a timer of three minutes and start writing down ideas within the confines of what that number resembles. The roles of each number are as follows:

  • Specification: Write down goals you want to achieve.
  • Investigation: Write down existing factual information you know about the topic.
  • Ideation: Write down creative or practical ideas related to the topic.
  • Incubation: Do something else unrelated to the problem.
  • Iteration: Look at what you’ve already written and come up with related ideas (roll again if you didn’t write anything yet). ‍
  • Integration: Look at everything you have written and try to create something cohesive from your ideas like a potential new product or actionable next step.

Once you’ve finished the activity, review your findings and decide what you want to take with you. ‍

23. SWOT Analysis

The SWOT Analysis is a long-standing method for analysing the current state of your business and considering how this affects the desired end state.

The basic idea is this:

  • Before the meeting, come up with a “Desired end state” and draw a picture that represents this on a flipchart or whiteboard.
  • Divide a large piece of paper into quadrants marked “Strengths”, “Weaknesses”, “Opportunities” and “Threats.”
  • Starting with “Strengths”, work through the quadrants, coming up with ideas that relate to the desired end state.
  • Ask your team to vote for the statements or ideas of each category that they feel are most relevant to the desired end state.
  • As a group, discuss the implications that these statements have on the desired end state. Spark debate by asking thought-provoking and open-ended questions.

The SWOT Analysis is an intuitive method for understanding which parts of your business could be affecting your long-term goals. ‍

24. The Journalistic Six

When learning to cover every aspect of a story, journalists are taught to ask themselves six essential questions:  

Now, this approach has been adopted by organisations to help understand every angle of a problem. All you need is a clear focus question, then you can start working through the six questions with your team until you have a 360-degree view of what has, can and needs to be done. ‍

25. Gamestorming

Gamestorming is a one-stop creative-thinking framework that uses various games to help your team come up with innovative ideas.

Originally published as a book 10 years ago, Gamestorming contained a selection of creative games used by Silicon Valley’s top-performing businesses to develop groundbreaking products and services.

This collection of resources, plucked from the minds of founders and CEOs like Jeff Bezos and Steve Jobs, allows you to tap into the potentially genius ideas lying dormant in the minds of your employees. ‍

26. Four-Step Sketch

The Four-Step Sketch is a visual brainstorming that provides an alternative to traditional discussion-based ideation techniques .

This methodology requires prior discussion to clarify the purpose of the activity. Imagine you’re on a startup retreat , for example, and your team is taking part in a design sprint or hackathon.

Once you’ve brainstormed a list of ideas with your team, participants can look at the suggestions and take down any relevant notes. They then take these notes and turn them into rough sketches that resemble the idea.

Then, as a warm-up, give each participant eight minutes to produce eight alternative sketches (eight minutes per sketch) of the idea. These ideas are not to be shared with the group.

Finally, participants create new sketches based on their favourite ideas and share them with the group. The group can then vote on the ideas they think offer the best solution. ‍

27. 15% Solutions

15% Solutions is a problem-solving strategy for motivating and inspiring your employees. By encouraging your team to gain small victories, you pave the way for bigger changes.

First, ask your participants to think about things they can personally do within the confines of their role.

Then, arrange your team into small groups of three to four and give them time to share their ideas and consult with each other.

This simple problem-solving process removes negativity and powerlessness and teaches your team to take responsibility for change. 

9 Problem-solving tools for gathering and selecting ideas

Problem-solving tools support your meeting with easy-to-use graphs, visualisations and techniques.  

By implementing a problem-solving tool, you break the cycle of mundane verbal discussion, enabling you to maintain engagement throughout the session. ‍

28. Fishbone Diagram

The Fishbone Diagram (otherwise known as the Ishikawa Diagram or Cause and Effect Diagram), is a tool for identifying the leading causes of a problem. You can then consolidate these causes into a comprehensive “Problem Statement.”

The term “Fishbone Diagram” is derived from the diagram’s structure. The problem itself forms the tail, possible causes radiate from the sides to form the fish skeleton while the final “Problem Statement” appears as the “head” of the fish.

Example: A fast-food chain is investigating the declining quality of their food. As the team brainstorms potential causes, they come up with reasons like “poorly trained personnel”, “lack of quality control”, and “incorrect quantity of spices.” Together with other causes, the group summarises that these problems lead to “bad burgers.” They write this as the Problem Statement and set about eliminating the main contributing factors. ‍

29. The Problem Tree

A Problem Tree is a useful tool for assessing the importance or relevance of challenges concerning the core topic. If you’re launching a new product, for example, gather your team and brainstorm the current issues, roadblocks and bottlenecks that are hindering the process.

Then, work together to decide which of these are most pressing. Place the most relevant issues closer to the core topic and less relevant issues farther away. ‍

30. SQUID Diagram

The Squid Diagram is an easy-to-use tool that charts the progress of ideas and business developments as they unfold. Your SQUID Diagram can remain on a wall for your team to add to over time.

  • Write down a core theme on a sticky note such as “customer service” or “Innovation”—this will be the “head” of your SQUID.
  • Hand two sets of different coloured sticky notes to your participants and choose one colour to represent “questions” and the other to represent “answers.”
  • Ask your team to write down questions pertaining to the success of the main topic. In the case of “Innovation,” your team might write things like “How can we improve collaboration between key stakeholders?”
  • Then, using the other coloured sticky notes, ask your team to write down possible answers to these questions. In the example above, this might be “Invest in open innovation software.”
  • Over time, you’ll develop a spawling SQUID Diagram that reflects the creative problem-solving process. ‍

31. The Speed Boat

The Speed Boat Diagram is a visual metaphor used to help your team identify and solve problems in the way of your goals.

Here’s how it works: 

  • Draw a picture of a boat and name it after the core objective.
  • With your team, brainstorm things that are slowing progress and draw each one as an anchor beneath the boat.
  • Discuss possible solutions to each problem on the diagram.

This is an easy-to-use tool that sparks creative solutions. If you like, your team can assign a “weight” to each anchor which determines the impact each problem has on the end goal. ‍

32. The LEGO Challenge

LEGO is an excellent creative-thinking and problem-solving tool used regularly by event facilitators to help teams overcome challenges. 

In our article 5 and 10-minute Team-Building Activities , we introduce Sneak a Peek —a collaborative team-building game that develops communication and leadership skills. ‍

33. The Three W’s: What? So What? Now What?

Teams aren’t always aligned when it comes to their understanding of a problem. While the problem remains the same for everyone, they might have differing opinions as to how it occurred at the implications it had.

Asking “ What? So What? Now What?” Helps you to understand different perspectives around a problem.

It goes like this:

  • Alone or in small groups, ask your employees to consider and write What happened. This should take between five and 10 minutes.
  • Then ask So What? What occurred because of this? Why was what happened important? What might happen if this issue is left unresolved?
  • Finally, ask your team Now What? What might be a solution to the problem? What actions do you need to take to avoid this happening again?

This approach helps your team understand how problems affect individuals in different ways and uncovers a variety of ways to overcome them. ‍

34. Now-How-Wow Matrix

Gathering ideas is easy—but selecting the best ones? That’s a different story. 

If you’ve got a bunch of ideas, try the Now-How-Wow Matrix to help you identify which ones you should implement now and which ones should wait until later.

Simply draw a two-axis graph with “implementation difficulty” on the Y axis and “idea originality” on the X axis. Divide this graph into quadrants and write “Now!” in the bottom left panel, “Wow!” in the bottom right panel, and “How?” in the top right panel. You can leave the top left panel blank.

Then, take your ideas and plot them on the graph depending on their implementation difficulty and level of originality.

By the end, you’ll have a clearer picture of which ideas to ignore, which ones to implement now, and which ones to add to the pipeline for the future. ‍

35. Impact-Effort Matrix

The Impact-Effort Matrix is a variation of the Now-How-Wow Matrix where the Y axis is marked “Impact” and the X axis is marked “Effort.”

Then, divide the graph into quadrants and plot your ideas. 

  • Top left section = Excellent, implement immediately
  • Top right section = Risky, but worth a try
  • Bottom left section = Low risk, but potentially ineffective
  • Bottom right section = Bad idea, ignore

The Impact-Effort Matrix is a simple way for your team to weigh the benefits of an idea against the amount of investment required. ‍

36. Dot Voting

Once you’ve gathered a substantial list of ideas from your employees, you need to sort the good from the bad. 

Dot voting is a simple tool used by problem-solving facilitators as a fast and effective way for large groups to vote on their favourite ideas . You’ll have seen this method used in problem-solving methods like Flip It! and Lightning Decision Jam .

  • Participants write their ideas on sticky notes and stick them to the wall or a flipchart.
  • When asked, participants draw a small dot on the corner of the idea they like the most.
  • Participants can be given as many votes as necessary.
  • When voting ends, arrange the notes from “most popular” to “least popular.”

This provides an easy-to-use visual representation of the best and worst ideas put forward by your team.

Give your problems the attention they deserve at an offsite retreat

While working from home or at the office, your team is often too caught up in daily tasks to take on complex problems. 

By escaping the office and uniting at an offsite location, you can craft a purposeful agenda of team-building activities and problem-solving sessions. This special time away from the office can prove invaluable when it comes to keeping your business on track.

If you have problems that need fixing (who doesn’t?), reach out to Surf Office and let us put together a fully-customised offsite retreat for you.

what are the tools used for problem solving

free course

How to plan your first company retreat

free course partners logos

Retreat Budget Spreadsheet

Are you organising a company retreat and want to make sure you have all the costs under the control?

Get a copy of our free Budget Calculator spreadsheet.

15 Truly impactful feedback methods for your team

15 Truly impactful feedback methods for your team

Improve remote team communication with these 11 tips

Improve remote team communication with these 11 tips

From awareness to action: 35 Practical DEI tips

From awareness to action: 35 Practical DEI tips

Ideas for team empowerment (and why it matters)

Ideas for team empowerment (and why it matters)

12 Decision-making techniques to improve team outcomes

12 Decision-making techniques to improve team outcomes

Organize your next company retreat with surf office, 💌 join 17,000+ managers receiving insights on building company culture that people love., stay in touch, work with us.

loading

How it works

For Business

Join Mind Tools

Article • 4 min read

The Problem-Solving Process

Looking at the basic problem-solving process to help keep you on the right track.

By the Mind Tools Content Team

Problem-solving is an important part of planning and decision-making. The process has much in common with the decision-making process, and in the case of complex decisions, can form part of the process itself.

We face and solve problems every day, in a variety of guises and of differing complexity. Some, such as the resolution of a serious complaint, require a significant amount of time, thought and investigation. Others, such as a printer running out of paper, are so quickly resolved they barely register as a problem at all.

what are the tools used for problem solving

Despite the everyday occurrence of problems, many people lack confidence when it comes to solving them, and as a result may chose to stay with the status quo rather than tackle the issue. Broken down into steps, however, the problem-solving process is very simple. While there are many tools and techniques available to help us solve problems, the outline process remains the same.

The main stages of problem-solving are outlined below, though not all are required for every problem that needs to be solved.

what are the tools used for problem solving

1. Define the Problem

Clarify the problem before trying to solve it. A common mistake with problem-solving is to react to what the problem appears to be, rather than what it actually is. Write down a simple statement of the problem, and then underline the key words. Be certain there are no hidden assumptions in the key words you have underlined. One way of doing this is to use a synonym to replace the key words. For example, ‘We need to encourage higher productivity ’ might become ‘We need to promote superior output ’ which has a different meaning.

2. Analyze the Problem

Ask yourself, and others, the following questions.

  • Where is the problem occurring?
  • When is it occurring?
  • Why is it happening?

Be careful not to jump to ‘who is causing the problem?’. When stressed and faced with a problem it is all too easy to assign blame. This, however, can cause negative feeling and does not help to solve the problem. As an example, if an employee is underperforming, the root of the problem might lie in a number of areas, such as lack of training, workplace bullying or management style. To assign immediate blame to the employee would not therefore resolve the underlying issue.

Once the answers to the where, when and why have been determined, the following questions should also be asked:

  • Where can further information be found?
  • Is this information correct, up-to-date and unbiased?
  • What does this information mean in terms of the available options?

3. Generate Potential Solutions

When generating potential solutions it can be a good idea to have a mixture of ‘right brain’ and ‘left brain’ thinkers. In other words, some people who think laterally and some who think logically. This provides a balance in terms of generating the widest possible variety of solutions while also being realistic about what can be achieved. There are many tools and techniques which can help produce solutions, including thinking about the problem from a number of different perspectives, and brainstorming, where a team or individual write as many possibilities as they can think of to encourage lateral thinking and generate a broad range of potential solutions.

4. Select Best Solution

When selecting the best solution, consider:

  • Is this a long-term solution, or a ‘quick fix’?
  • Is the solution achievable in terms of available resources and time?
  • Are there any risks associated with the chosen solution?
  • Could the solution, in itself, lead to other problems?

This stage in particular demonstrates why problem-solving and decision-making are so closely related.

5. Take Action

In order to implement the chosen solution effectively, consider the following:

  • What will the situation look like when the problem is resolved?
  • What needs to be done to implement the solution? Are there systems or processes that need to be adjusted?
  • What will be the success indicators?
  • What are the timescales for the implementation? Does the scale of the problem/implementation require a project plan?
  • Who is responsible?

Once the answers to all the above questions are written down, they can form the basis of an action plan.

6. Monitor and Review

One of the most important factors in successful problem-solving is continual observation and feedback. Use the success indicators in the action plan to monitor progress on a regular basis. Is everything as expected? Is everything on schedule? Keep an eye on priorities and timelines to prevent them from slipping.

If the indicators are not being met, or if timescales are slipping, consider what can be done. Was the plan realistic? If so, are sufficient resources being made available? Are these resources targeting the correct part of the plan? Or does the plan need to be amended? Regular review and discussion of the action plan is important so small adjustments can be made on a regular basis to help keep everything on track.

Once all the indicators have been met and the problem has been resolved, consider what steps can now be taken to prevent this type of problem recurring? It may be that the chosen solution already prevents a recurrence, however if an interim or partial solution has been chosen it is important not to lose momentum.

Problems, by their very nature, will not always fit neatly into a structured problem-solving process. This process, therefore, is designed as a framework which can be adapted to individual needs and nature.

Join Mind Tools and get access to exclusive content.

This resource is only available to Mind Tools members.

Already a member? Please Login here

what are the tools used for problem solving

Get 30% off your first year of Mind Tools

Great teams begin with empowered leaders. Our tools and resources offer the support to let you flourish into leadership. Join today!

Sign-up to our newsletter

Subscribing to the Mind Tools newsletter will keep you up-to-date with our latest updates and newest resources.

Subscribe now

Business Skills

Personal Development

Leadership and Management

Member Extras

Most Popular

Latest Updates

Article aaimtlg

Tips for Dealing with Customers Effectively

Article aafqx8n

Pain Points Podcast - Procrastination

Mind Tools Store

About Mind Tools Content

Discover something new today

Pain points podcast - starting a new job.

How to Hit the Ground Running!

Ten Dos and Don'ts of Career Conversations

How to talk to team members about their career aspirations.

How Emotionally Intelligent Are You?

Boosting Your People Skills

Self-Assessment

What's Your Leadership Style?

Learn About the Strengths and Weaknesses of the Way You Like to Lead

Recommended for you

Finance management.

Business Operations and Process Management

Strategy Tools

Customer Service

Business Ethics and Values

Handling Information and Data

Project Management

Knowledge Management

Self-Development and Goal Setting

Time Management

Presentation Skills

Learning Skills

Career Skills

Communication Skills

Negotiation, Persuasion and Influence

Working With Others

Difficult Conversations

Creativity Tools

Self-Management

Work-Life Balance

Stress Management and Wellbeing

Coaching and Mentoring

Change Management

Team Management

Managing Conflict

Delegation and Empowerment

Performance Management

Leadership Skills

Developing Your Team

Talent Management

Problem Solving

Decision Making

Member Podcast

Learn Creative Problem Solving Techniques to Stimulate Innovation in Your Organization

By Kate Eby | October 20, 2017 (updated August 27, 2021)

  • Share on Facebook
  • Share on LinkedIn

Link copied

In today’s competitive business landscape, organizations need processes in place to make strong, well-informed, and innovative decisions. Problem solving - in particular creative problem solving (CPS) - is a key skill in learning how to accurately identify problems and their causes, generate potential solutions, and evaluate all the possibilities to arrive at a strong corrective course of action. Every team in any organization, regardless of department or industry, needs to be effective, creative, and quick when solving problems. 

In this article, we’ll discuss traditional and creative problem solving, and define the steps, best practices, and common barriers associated. After that, we’ll provide helpful methods and tools to identify the cause(s) of problematic situations, so you can get to the root of the issue and start to generate solutions. Then, we offer nearly 20 creative problem solving techniques to implement at your organization, or even in your personal life. Along the way, experts weigh in on the importance of problem solving, and offer tips and tricks. 

What Is Problem Solving and Decision Making?

Problem solving is the process of working through every aspect of an issue or challenge to reach a solution. Decision making is choosing one of multiple proposed solutions  — therefore, this process also includes defining and evaluating all potential options. Decision making is often one step of the problem solving process, but the two concepts are distinct. 

Collective problem solving is problem solving that includes many different parties and bridges the knowledge of different groups. Collective problem solving is common in business problem solving because workplace decisions typically affect more than one person. 

Problem solving, especially in business, is a complicated science. Not only are business conflicts multifaceted, but they often involve different personalities, levels of authority, and group dynamics. In recent years, however, there has been a rise in psychology-driven problem solving techniques, especially for the workplace. In fact, the psychology of how people solve problems is now studied formally in academic disciplines such as psychology and cognitive science.

Joe Carella

Joe Carella is the Assistant Dean for Executive Education at the University of Arizona . Joe has over 20 years of experience in helping executives and corporations in managing change and developing successful business strategies. His doctoral research and executive education engagements have seen him focus on corporate strategy, decision making and business performance with a variety of corporate clients including Hershey’s, Chevron, Fender Musical Instruments Corporation, Intel, DP World, Essilor, BBVA Compass Bank.

He explains some of the basic psychology behind problem solving: “When our brain is engaged in the process of solving problems, it is engaged in a series of steps where it processes and organizes the information it receives while developing new knowledge it uses in future steps. Creativity is embedded in this process by incorporating diverse inputs and/or new ways of organizing the information received.”

Laura MacLeod

Laura MacLeod is a Professor of Social Group Work at City University of New York, and the creator of From The Inside Out Project® , a program that coaches managers in team leadership for a variety of workplaces. She has a background in social work and over two decades of experience as a union worker, and currently leads talks on conflict resolution, problem solving, and listening skills at conferences across the country. 

MacLeod thinks of problem solving as an integral practice of successful organizations. “Problem solving is a collaborative process — all voices are heard and connected, and resolution is reached by the group,” she says. “Problems and conflicts occur in all groups and teams in the workplace, but if leaders involve everyone in working through, they will foster cohesion, engagement, and buy in. Everybody wins.”

10 tips that will make you more productive.

Top 3 Productivity Killers Ebook

Uncover the top three factors that are killing your productivity and 10 tips to help you overcome them.

Download the free e-book to overcome my productivity killers

Project Management Guide

Your one-stop shop for everything project management

the 101 guide to project management

Ready to get more out of your project management efforts? Visit our comprehensive project management guide for tips, best practices, and free resources to manage your work more effectively.

View the guide

What Is the First Step in Solving a Problem?

Although problem solving techniques vary procedurally, experts agree that the first step in solving a problem is defining the problem. Without a clear articulation of the problem at stake, it is impossible to analyze all the key factors and actors, generate possible solutions, and then evaluate them to pick the best option. 

Elliott Jaffa

Dr. Elliott Jaffa is a behavioral and management psychologist with over 25 years of problem solving training and management experience. “Start with defining the problem you want to solve,” he says, “And then define where you want to be, what you want to come away with.” He emphasizes these are the first steps in creating an actionable, clear solution. 

Bryan Mattimore

Bryan Mattimore is Co-Founder of Growth Engine, an 18-year old innovation agency based in Norwalk, CT. Bryan has facilitated over 1,000 ideation sessions and managed over 200 successful innovation projects leading to over $3 billion in new sales. His newest book is 21 Days to a Big Idea . When asked about the first critical component to successful problem solving, Mattimore says, “Defining the challenge correctly, or ‘solving the right problem’ … The three creative techniques we use to help our clients ‘identify the right problem to be solved’ are questioning assumptions, 20 questions, and problem redefinition. A good example of this was a new product challenge from a client to help them ‘invent a new iron. We got them to redefine the challenge as first: a) inventing new anti-wrinkle devices, and then b) inventing new garment care devices.”

What Are Problem Solving Skills?

To understand the necessary skills in problem solving, you should first understand the types of thinking often associated with strong decision making. Most problem solving techniques look for a balance between the following binaries:

  • Convergent vs. Divergent Thinking: Convergent thinking is bringing together disparate information or ideas to determine a single best answer or solution. This thinking style values logic, speed, and accuracy, and leaves no chance for ambiguity. Divergent thinking is focused on generating new ideas to identify and evaluate multiple possible solutions, often uniting ideas in unexpected combinations. Divergent thinking is characterized by creativity, complexity, curiosity, flexibility, originality, and risk-taking.
  • Pragmatics vs. Semantics: Pragmatics refer to the logic of the problem at hand, and semantics is how you interpret the problem to solve it. Both are important to yield the best possible solution.
  • Mathematical vs. Personal Problem Solving: Mathematical problem solving involves logic (usually leading to a single correct answer), and is useful for problems that involve numbers or require an objective, clear-cut solution. However, many workplace problems also require personal problem solving, which includes interpersonal, collaborative, and emotional intuition and skills. 

The following basic methods are fundamental problem solving concepts. Implement them to help balance the above thinking models.

  • Reproductive Thinking: Reproductive thinking uses past experience to solve a problem. However, be careful not to rely too heavily on past solutions, and to evaluate current problems individually, with their own factors and parameters. 
  • Idea Generation: The process of generating many possible courses of action to identify a solution. This is most commonly a team exercise because putting everyone’s ideas on the table will yield the greatest number of potential solutions. 

However, many of the most critical problem solving skills are “soft” skills: personal and interpersonal understanding, intuitiveness, and strong listening. 

Mattimore expands on this idea: “The seven key skills to be an effective creative problem solver that I detail in my book Idea Stormers: How to Lead and Inspire Creative Breakthroughs are: 1) curiosity 2) openness 3) a willingness to embrace ambiguity 4) the ability to identify and transfer principles across categories and disciplines 5) the desire to search for integrity in ideas, 6) the ability to trust and exercise “knowingness” and 7) the ability to envision new worlds (think Dr. Seuss, Star Wars, Hunger Games, Harry Potter, etc.).”

“As an individual contributor to problem solving it is important to exercise our curiosity, questioning, and visioning abilities,” advises Carella. “As a facilitator it is essential to allow for diverse ideas to emerge, be able to synthesize and ‘translate’ other people’s thinking, and build an extensive network of available resources.”

MacLeod says the following interpersonal skills are necessary to effectively facilitate group problem solving: “The abilities to invite participation (hear all voices, encourage silent members), not take sides, manage dynamics between the monopolizer, the scapegoat, and the bully, and deal with conflict (not avoiding it or shutting down).” 

Furthermore, Jaffa explains that the skills of a strong problem solver aren’t measurable. The best way to become a creative problem solver, he says, is to do regular creative exercises that keep you sharp and force you to think outside the box. Carella echoes this sentiment: “Neuroscience tells us that creativity comes from creating novel neural paths. Allow a few minutes each day to exercise your brain with novel techniques and brain ‘tricks’ – read something new, drive to work via a different route, count backwards, smell a new fragrance, etc.”

What Is Creative Problem Solving? History, Evolution, and Core Principles

Creative problem solving (CPS) is a method of problem solving in which you approach a problem or challenge in an imaginative, innovative way. The goal of CPS is to come up with innovative solutions, make a decision, and take action quickly. Sidney Parnes and Alex Osborn are credited with developing the creative problem solving process in the 1950s. The concept was further studied and developed at SUNY Buffalo State and the Creative Education Foundation. 

The core principles of CPS include the following:

  • Balance divergent and convergent thinking
  • Ask problems as questions
  • Defer or suspend judgement
  • Focus on “Yes, and…” rather than “No, but…”

According to Carella, “Creative problem solving is the mental process used for generating innovative and imaginative ideas as a solution to a problem or a challenge. Creative problem solving techniques can be pursued by individuals or groups.”

When asked to define CPS, Jaffa explains that it is, by nature, difficult to create boundaries for. “Creative problem solving is not cut and dry,” he says, “If you ask 100 different people the definition of creative problem solving, you’ll get 100 different responses - it’s a non-entity.”

Business presents a unique need for creative problem solving. Especially in today’s competitive landscape, organizations need to iterate quickly, innovate with intention, and constantly be at the cutting-edge of creativity and new ideas to succeed. Developing CPS skills among your workforce not only enables you to make faster, stronger in-the-moment decisions, but also inspires a culture of collaborative work and knowledge sharing. When people work together to generate multiple novel ideas and evaluate solutions, they are also more likely to arrive at an effective decision, which will improve business processes and reduce waste over time. In fact, CPS is so important that some companies now list creative problem solving skills as a job criteria.

MacLeod reiterates the vitality of creative problem solving in the workplace. “Problem solving is crucial for all groups and teams,” she says. “Leaders need to know how to guide the process, hear all voices and involve all members - it’s not easy.”

“This mental process [of CPS] is especially helpful in work environments where individuals and teams continuously struggle with new problems and challenges posed by their continuously changing environment,” adds Carella. 

Problem Solving Best Practices

By nature, creative problem solving does not have a clear-cut set of do’s and don’ts. Rather, creating a culture of strong creative problem solvers requires flexibility, adaptation, and interpersonal skills. However, there are a several best practices that you should incorporate:

  • Use a Systematic Approach: Regardless of the technique you use, choose a systematic method that satisfies your workplace conditions and constraints (time, resources, budget, etc.). Although you want to preserve creativity and openness to new ideas, maintaining a structured approach to the process will help you stay organized and focused. 
  • View Problems as Opportunities: Rather than focusing on the negatives or giving up when you encounter barriers, treat problems as opportunities to enact positive change on the situation. In fact, some experts even recommend defining problems as opportunities, to remain proactive and positive.
  • Change Perspective: Remember that there are multiple ways to solve any problem. If you feel stuck, changing perspective can help generate fresh ideas. A perspective change might entail seeking advice of a mentor or expert, understanding the context of a situation, or taking a break and returning to the problem later. “A sterile or familiar environment can stifle new thinking and new perspectives,” says Carella. “Make sure you get out to draw inspiration from spaces and people out of your usual reach.”
  • Break Down Silos: To invite the greatest possible number of perspectives to any problem, encourage teams to work cross-departmentally. This not only combines diverse expertise, but also creates a more trusting and collaborative environment, which is essential to effective CPS. According to Carella, “Big challenges are always best tackled by a group of people rather than left to a single individual. Make sure you create a space where the team can concentrate and convene.”
  • Employ Strong Leadership or a Facilitator: Some companies choose to hire an external facilitator that teaches problem solving techniques, best practices, and practicums to stimulate creative problem solving. But, internal managers and staff can also oversee these activities. Regardless of whether the facilitator is internal or external, choose a strong leader who will value others’ ideas and make space for creative solutions.  Mattimore has specific advice regarding the role of a facilitator: “When facilitating, get the group to name a promising idea (it will crystalize the idea and make it more memorable), and facilitate deeper rather than broader. Push for not only ideas, but how an idea might specifically work, some of its possible benefits, who and when would be interested in an idea, etc. This fleshing-out process with a group will generate fewer ideas, but at the end of the day will yield more useful concepts that might be profitably pursued.” Additionally, Carella says that “Executives and managers don’t necessarily have to be creative problem solvers, but need to make sure that their teams are equipped with the right tools and resources to make this happen. Also they need to be able to foster an environment where failing fast is accepted and celebrated.”
  • Evaluate Your Current Processes: This practice can help you unlock bottlenecks, and also identify gaps in your data and information management, both of which are common roots of business problems.

MacLeod offers the following additional advice, “Always get the facts. Don’t jump too quickly to a solution – working through [problems] takes time and patience.”

Mattimore also stresses that how you introduce creative problem solving is important. “Do not start by introducing a new company-wide innovation process,” he says. “Instead, encourage smaller teams to pursue specific creative projects, and then build a process from the ground up by emulating these smaller teams’ successful approaches. We say: ‘You don’t innovate by changing the culture, you change the culture by innovating.’”

Barriers to Effective Problem Solving

Learning how to effectively solve problems is difficult and takes time and continual adaptation. There are several common barriers to successful CPS, including:

  • Confirmation Bias: The tendency to only search for or interpret information that confirms a person’s existing ideas. People misinterpret or disregard data that doesn’t align with their beliefs.
  • Mental Set: People’s inclination to solve problems using the same tactics they have used to solve problems in the past. While this can sometimes be a useful strategy (see Analogical Thinking in a later section), it often limits inventiveness and creativity.
  • Functional Fixedness: This is another form of narrow thinking, where people become “stuck” thinking in a certain way and are unable to be flexible or change perspective.
  • Unnecessary Constraints: When people are overwhelmed with a problem, they can invent and impose additional limits on solution avenues. To avoid doing this, maintain a structured, level-headed approach to evaluating causes, effects, and potential solutions.
  • Groupthink: Be wary of the tendency for group members to agree with each other — this might be out of conflict avoidance, path of least resistance, or fear of speaking up. While this agreeableness might make meetings run smoothly, it can actually stunt creativity and idea generation, therefore limiting the success of your chosen solution.
  • Irrelevant Information: The tendency to pile on multiple problems and factors that may not even be related to the challenge at hand. This can cloud the team’s ability to find direct, targeted solutions.
  • Paradigm Blindness: This is found in people who are unwilling to adapt or change their worldview, outlook on a particular problem, or typical way of processing information. This can erode the effectiveness of problem solving techniques because they are not aware of the narrowness of their thinking, and therefore cannot think or act outside of their comfort zone.

According to Jaffa, the primary barrier of effective problem solving is rigidity. “The most common things people say are, ‘We’ve never done it before,’ or ‘We’ve always done it this way.’” While these feelings are natural, Jaffa explains that this rigid thinking actually precludes teams from identifying creative, inventive solutions that result in the greatest benefit.

“The biggest barrier to creative problem solving is a lack of awareness – and commitment to – training employees in state-of-the-art creative problem-solving techniques,” Mattimore explains. “We teach our clients how to use ideation techniques (as many as two-dozen different creative thinking techniques) to help them generate more and better ideas. Ideation techniques use specific and customized stimuli, or ‘thought triggers’ to inspire new thinking and new ideas.” 

MacLeod adds that ineffective or rushed leadership is another common culprit. “We're always in a rush to fix quickly,” she says. “Sometimes leaders just solve problems themselves, making unilateral decisions to save time. But the investment is well worth it — leaders will have less on their plates if they can teach and eventually trust the team to resolve. Teams feel empowered and engagement and investment increases.”

Strategies for Problem Cause Identification

As discussed, most experts agree that the first and most crucial step in problem solving is defining the problem. Once you’ve done this, however, it may not be appropriate to move straight to the solution phase. Rather, it is often helpful to identify the cause(s) of the problem: This will better inform your solution planning and execution, and help ensure that you don’t fall victim to the same challenges in the future. 

Below are some of the most common strategies for identifying the cause of a problem:

  • Root Cause Analysis: This method helps identify the most critical cause of a problem. A factor is considered a root cause if removing it prevents the problem from recurring. Performing a root cause analysis is a 12 step process that includes: define the problem, gather data on the factors contributing to the problem, group the factors based on shared characteristics, and create a cause-and-effect timeline to determine the root cause. After that, you identify and evaluate corrective actions to eliminate the root cause.

Fishbone Diagram Template

‌ Download Fishbone Diagram Template - Excel

Interrelationship Diagrams

Download 5 Whys Template   Excel  |  Word  |  PDF   

Problem Solving Techniques and Strategies

In this section, we’ll explain several traditional and creative problem solving methods that you can use to identify challenges, create actionable goals, and resolve problems as they arise. Although there is often procedural and objective crossover among techniques, they are grouped by theme so you can identify which method works best for your organization.

Divergent Creative Problem Solving Techniques

Brainstorming: One of the most common methods of divergent thinking, brainstorming works best in an open group setting where everyone is encouraged to share their creative ideas. The goal is to generate as many ideas as possible – you analyze, critique, and evaluate the ideas only after the brainstorming session is complete. To learn more specific brainstorming techniques, read this article . 

Mind Mapping: This is a visual thinking tool where you graphically depict concepts and their relation to one another. You can use mind mapping to structure the information you have, analyze and synthesize it, and generate solutions and new ideas from there. The goal of a mind map is to simplify complicated problems so you can more clearly identify solutions.

Appreciative Inquiry (AI): The basic assumption of AI is that “an organization is a mystery to be embraced.” Using this principle, AI takes a positive, inquisitive approach to identifying the problem, analyzing the causes, and presenting possible solutions. The five principles of AI emphasize dialogue, deliberate language and outlook, and social bonding. 

Lateral Thinking: This is an indirect problem solving approach centered on the momentum of idea generation. As opposed to critical thinking, where people value ideas based on their truth and the absence of errors, lateral thinking values the “movement value” of new ideas: This means that you reward team members for producing a large volume of new ideas rapidly. With this approach, you’ll generate many new ideas before approving or rejecting any.

Problem Solving Techniques to Change Perspective

Constructive Controversy: This is a structured approach to group decision making to preserve critical thinking and disagreement while maintaining order. After defining the problem and presenting multiple courses of action, the group divides into small advocacy teams who research, analyze, and refute a particular option. Once each advocacy team has presented its best-case scenario, the group has a discussion (advocacy teams still defend their presented idea). Arguing and playing devil’s advocate is encouraged to reach an understanding of the pros and cons of each option. Next, advocacy teams abandon their cause and evaluate the options openly until they reach a consensus. All team members formally commit to the decision, regardless of whether they advocated for it at the beginning. You can learn more about the goals and steps in constructive controversy here . 

Carella is a fan of this approach. “Create constructive controversy by having two teams argue the pros and cons of a certain idea,” he says. “It forces unconscious biases to surface and gives space for new ideas to formulate.”

Abstraction: In this method, you apply the problem to a fictional model of the current situation. Mapping an issue to an abstract situation can shed extraneous or irrelevant factors, and reveal places where you are overlooking obvious solutions or becoming bogged down by circumstances. 

Analogical Thinking: Also called analogical reasoning , this method relies on an analogy: using information from one problem to solve another problem (these separate problems are called domains). It can be difficult for teams to create analogies among unrelated problems, but it is a strong technique to help you identify repeated issues, zoom out and change perspective, and prevent the problems from occurring in the future. .

CATWOE: This framework ensures that you evaluate the perspectives of those whom your decision will impact. The factors and questions to consider include (which combine to make the acronym CATWOE):

  • Customers: Who is on the receiving end of your decisions? What problem do they currently have, and how will they react to your proposed solution?
  • Actors: Who is acting to bring your solution to fruition? How will they respond and be affected by your decision?
  • Transformation Process: What processes will you employ to transform your current situation and meet your goals? What are the inputs and outputs?
  • World View: What is the larger context of your proposed solution? What is the larger, big-picture problem you are addressing?
  • Owner: Who actually owns the process? How might they influence your proposed solution (positively or negatively), and how can you influence them to help you?
  • Environmental Constraints: What are the limits (environmental, resource- and budget-wise, ethical, legal, etc.) on your ideas? How will you revise or work around these constraints?

Complex Problem Solving

Soft Systems Methodology (SSM): For extremely complex problems, SSM can help you identify how factors interact, and determine the best course of action. SSM was borne out of organizational process modeling and general systems theory, which hold that everything is part of a greater, interconnected system: This idea works well for “hard” problems (where logic and a single correct answer are prioritized), and less so for “soft” problems (i.e., human problems where factors such as personality, emotions, and hierarchy come into play). Therefore, SSM defines a seven step process for problem solving: 

  • Begin with the problem or problematic situation 
  • Express the problem or situation and build a rich picture of the themes of the problem 
  • Identify the root causes of the problem (most commonly with CATWOE)
  • Build conceptual models of human activity surrounding the problem or situation
  • Compare models with real-world happenings
  • Identify changes to the situation that are both feasible and desirable
  • Take action to implement changes and improve the problematic situation

SSM can be used for any complex soft problem, and is also a useful tool in change management . 

Failure Mode and Effects Analysis (FMEA): This method helps teams anticipate potential problems and take steps to mitigate them. Use FMEA when you are designing (redesigning) a complex function, process, product, or service. First, identify the failure modes, which are the possible ways that a project could fail. Then, perform an effects analysis to understand the consequences of each of the potential downfalls. This exercise is useful for internalizing the severity of each potential failure and its effects so you can make adjustments or safeties in your plan. 

FMEA Template

‌ Download FMEA Template  

Problem Solving Based on Data or Logic (Heuristic Methods)

TRIZ: A Russian-developed problem solving technique that values logic, analysis, and forecasting over intuition or soft reasoning. TRIZ (translated to “theory of inventive problem solving” or TIPS in English) is a systematic approach to defining and identifying an inventive solution to difficult problems. The method offers several strategies for arriving at an inventive solution, including a contradictions matrix to assess trade-offs among solutions, a Su-Field analysis which uses formulas to describe a system by its structure, and ARIZ (algorithm of inventive problem solving) which uses algorithms to find inventive solutions. 

Inductive Reasoning: A logical method that uses evidence to conclude that a certain answer is probable (this is opposed to deductive reasoning, where the answer is assumed to be true). Inductive reasoning uses a limited number of observations to make useful, logical conclusions (for example, the Scientific Method is an extreme example of inductive reasoning). However, this method doesn’t always map well to human problems in the workplace — in these instances, managers should employ intuitive inductive reasoning , which allows for more automatic, implicit conclusions so that work can progress. This, of course, retains the principle that these intuitive conclusions are not necessarily the one and only correct answer. 

Process-Oriented Problem Solving Methods

Plan Do Check Act (PDCA): This is an iterative management technique used to ensure continual improvement of products or processes. First, teams plan (establish objectives to meet desired end results), then do (implement the plan, new processes, or produce the output), then check (compare expected with actual results), and finally act (define how the organization will act in the future, based on the performance and knowledge gained in the previous three steps). 

Means-End Analysis (MEA): The MEA strategy is to reduce the difference between the current (problematic) state and the goal state. To do so, teams compile information on the multiple factors that contribute to the disparity between the current and goal states. Then they try to change or eliminate the factors one by one, beginning with the factor responsible for the greatest difference in current and goal state. By systematically tackling the multiple factors that cause disparity between the problem and desired outcome, teams can better focus energy and control each step of the process. 

Hurson’s Productive Thinking Model: This technique was developed by Tim Hurson, and is detailed in his 2007 book Think Better: An Innovator’s Guide to Productive Thinking . The model outlines six steps that are meant to give structure while maintaining creativity and critical thinking: 1) Ask “What is going on?” 2) Ask “What is success?” 3) Ask “What is the question?” 4) Generate answers 5) Forge the solution 6) Align resources. 

Control Influence Accept (CIA): The basic premise of CIA is that how you respond to problems determines how successful you will be in overcoming them. Therefore, this model is both a problem solving technique and stress-management tool that ensures you aren’t responding to problems in a reactive and unproductive way. The steps in CIA include:

  • Control: Identify the aspects of the problem that are within your control.
  • Influence: Identify the aspects of the problem that you cannot control, but that you can influence.
  • Accept: Identify the aspects of the problem that you can neither control nor influence, and react based on this composite information. 

GROW Model: This is a straightforward problem solving method for goal setting that clearly defines your goals and current situation, and then asks you to define the potential solutions and be realistic about your chosen course of action. The steps break down as follows:

  • Goal: What do you want?
  • Reality: Where are you now?
  • Options: What could you do?
  • Will: What will you do?

OODA Loop: This acronym stands for observe, orient, decide, and act. This approach is a decision-making cycle that values agility and flexibility over raw human force. It is framed as a loop because of the understanding that any team will continually encounter problems or opponents to success and have to overcome them.

There are also many un-named creative problem solving techniques that follow a sequenced series of steps. While the exact steps vary slightly, they all follow a similar trajectory and aim to accomplish similar goals of problem, cause, and goal identification, idea generation, and active solution implementation.

MacLeod offers her own problem solving procedure, which echoes the above steps:

“1. Recognize the Problem: State what you see. Sometimes the problem is covert. 2. Identify: Get the facts — What exactly happened? What is the issue? 3. and 4. Explore and Connect: Dig deeper and encourage group members to relate their similar experiences. Now you're getting more into the feelings and background [of the situation], not just the facts.  5. Possible Solutions: Consider and brainstorm ideas for resolution. 6. Implement: Choose a solution and try it out — this could be role play and/or a discussion of how the solution would be put in place.  7. Evaluate: Revisit to see if the solution was successful or not.”

Many of these problem solving techniques can be used in concert with one another, or multiple can be appropriate for any given problem. It’s less about facilitating a perfect CPS session, and more about encouraging team members to continually think outside the box and push beyond personal boundaries that inhibit their innovative thinking. So, try out several methods, find those that resonate best with your team, and continue adopting new techniques and adapting your processes along the way. 

Improve Problem Solving with Work Management in Smartsheet

Empower your people to go above and beyond with a flexible platform designed to match the needs of your team — and adapt as those needs change. 

The Smartsheet platform makes it easy to plan, capture, manage, and report on work from anywhere, helping your team be more effective and get more done. Report on key metrics and get real-time visibility into work as it happens with roll-up reports, dashboards, and automated workflows built to keep your team connected and informed. 

When teams have clarity into the work getting done, there’s no telling how much more they can accomplish in the same amount of time.  Try Smartsheet for free, today.

Discover why over 90% of Fortune 100 companies trust Smartsheet to get work done.

  • Professional Services
  • Creative & Design
  • See all teams
  • Project Management
  • Workflow Management
  • Task Management
  • Resource Management
  • See all use cases

Apps & Integrations

  • Microsoft Teams
  • See all integrations

Explore Wrike

  • Book a Demo
  • Take a Product Tour
  • Start With Templates
  • Customer Stories
  • ROI Calculator
  • Find a Reseller
  • Mobile & Desktop Apps
  • Cross-Tagging
  • Kanban Boards
  • Project Resource Planning
  • Gantt Charts
  • Custom Item Types
  • Dynamic Request Forms
  • Integrations
  • See all features

Learn and connect

  • Resource Hub
  • Educational Guides

Become Wrike Pro

  • Submit A Ticket
  • Help Center
  • Premium Support
  • Community Topics
  • Training Courses
  • Facilitated Services
  • Productivity

Problem-Solving Techniques and Tips (That Actually Work)

June 14, 2022 - 10 min read

Lionel Valdellon

Solving complex problems may be difficult but it doesn't have to be excruciating. You just need the right frame of mind and a process for untangling the problem at hand.

Luckily for you, there are plenty of techniques available to solve whatever problems come at you in the workplace.

When faced with a doozy of a problem, where do you start? And what problem-solving techniques can you use right now that can help you make good decisions?

Today's post will give you tips and techniques for solving complex problems so you can untangle any complication like an expert.

How many steps are there in problem-solving?

At its core, problem-solving is a methodical four-step process. You may even recall these steps from when you were first introduced to the Scientific Method.

  • First, you must define the problem . What is its cause? What are the signs there's a problem at all?
  • Next, you identify various options for solutions. What are some good ideas to solve this?
  • Then, evaluate your options and choose from among them. What is the best option to solve the problem? What's the easiest option? How should you prioritize?
  • Finally, implement the chosen solution . Does it solve the problem? Is there another option you need to try?

When applying problem-solving techniques, you will be using a variation of these steps as your foundation.

Takeaway: Before you can solve a problem, seek to understand it fully.

Creative problem-solving techniques

Time to get creative! You might think this will just be a list of out-of-the-box ways to brainstorm ideas. Not exactly.

Creative problem solving (CPS) is actually a formal process formulated by Sidney Parnes and Alex Faickney Osborn , who is thought of as the father of traditional brainstorming (and the "O" in famous advertising agency BBDO).

Their creative problem solving process emphasizes several things, namely:

  • Separate ideation from evaluation . When you brainstorm creative ideas, have a separate time for writing it all down. Focus on generating lots of ideas. Don't prioritize or evaluate them until everything is captured.
  • Judging will shut it down . Nothing stops the flow of creative ideas faster than judging them on the spot. Wait until the brainstorming is over before you evaluate.
  • Restate problems as questions . It's easier to entice a group into thinking of creative ideas when challenges are stated as open-ended questions.
  • Use "Yes and" to expand ideas . Here's one of the basic tenets of improv comedy. It's way too easy to shut down and negate ideas by using the word "but" (i.e. "But I think this is better..."). Avoid this at all costs. Instead, expand on what was previously introduced by saying "Yes, and..." to keep ideas flowing and evolving.

Takeaway: When brainstorming solutions, generate ideas first by using questions and building off of existing ideas. Do all evaluating and judging later.

Problem-solving tips from psychology

If you take a look at the history of problem-solving techniques in psychology, you'll come across a wide spectrum of interesting ideas that could be helpful.

Take it from experience

In 1911, the American psychologist Edward Thorndike observed cats figuring out how to escape from the cage he placed them in. From this, Thorndike developed his law of effect , which states: If you succeed via trial-and-error, you're more likely to use those same actions and ideas that led to your previous success when you face the problem again.

Takeaway: Your past experience can inform and shed light on the problem you face now. Recall. Explore.

Barriers to reproductive thinking

The Gestalt psychologists  built on Thorndike's ideas when they proposed that problem-solving can happen via reproductive thinking — which is not about sex, but rather solving a problem by using past experience and reproducing that experience to solve the current problem.

What's interesting about Gestalt psychology is how they view barriers to problem-solving. Here are two such barriers:

  • Are you entrenched? Look up mental set or entrenchment . This is when you're fixated on a solution that used to work well in the past but has no bearing to your current problem. Are you so entrenched with a method or idea that you use it even when it doesn't work? As Queen Elsa sang, "Let it go!" 
  • Are you thinking of alternative uses? There is a cognitive bias called functional fixedness which could thwart any of your critical thinking techniques by having you only see an object's conventional function. For example, say you need to cut a piece of paper in half but only have a ruler. Functional fixedness would lead you to think the ruler is only good for measuring things. (You could also use the ruler to crease the paper, making it easier to tear it in half.)

Takeaway: Think outside of the box! And by box, we mean outside of the past experience you're holding on to, or outside any preconceived ideas on how a tool is conventionally used.

More problem-solving tools

Hurson's productive thinking model.

In his book "Think Better," author and creativity guru Tim Hurson proposed a six-step model for solving problems creatively. The steps in his Productive Thinking Model are:

  • Ask, "What is going on?" Define the problem and its impact on your company, then clarify your vision for the future.
  • Ask, "What is success?" Define what the solution must do, what resources it needs, its scope, and the values it must uphold.
  • Ask, "What is the question?" Generate a long list of questions that, when answered, will solve the problem.
  • Generate answers . Answer the questions from step three.
  • Forge the solution . Evaluate the ideas with potential based on the criteria from step two. Pick a solution.
  • Align resources . Identify people and resources to execute the solution.

Use a fishbone diagram to see cause and effect

The most important part of defining the problem is looking at the possible root cause. You'll need to ask yourself questions like: Where and when is it happening? How is it occurring? With whom is it happening? Why is it happening?

You can get to the root cause with a fishbone diagram (also known as an Ishikawa diagram or a cause and effect diagram).

Basically, you put the effect on the right side as the problem statement. Then you list all possible causes on the left, grouped into larger cause categories. The resulting shape resembles a fish skeleton. Which is a perfect way to say, "This problem smells fishy."

Fishbone diagram for cause and effect analysis - problem solving techniques

Use analogies to get to a solution

Analogical thinking uses information from one area to help with a problem in a different area. In short, solving a different problem can lead you to find a solution to the actual problem. Watch out though! Analogies are difficult for beginners and take some getting used to.

An example: In the "radiation problem," a doctor has a patient with a tumor that cannot be operated on. The doctor can use rays to destroy the tumor but it also destroys healthy tissue.

Two researchers, Gick and Holyoak , noted that people solved the radiation problem much more easily after being asked to read a story about an invading general who must capture the fortress of a king but be careful to avoid landmines that will detonate if large forces traverse the streets. The general then sends small forces of men down different streets so the army can converge at the fortress at the same time and can capture it at full force.

Ask "12 what elses"

In her book " The Architecture of All Abundance ," author Lenedra J. Carroll (aka the mother of pop star Jewel) talks about a question-and-answer technique for getting out of a problem.

When faced with a problem, ask yourself a question about it and brainstorm 12 answers ("12 what elses") to that problem. Then you can go further by taking one answer, turning it into a question and generating 12 more "what elses." Repeat until the solution is golden brown, fully baked, and ready to take out of the oven.

what are the tools used for problem solving

Start using these techniques today

Hopefully you find these different techniques useful and they get your imagination rolling with ideas on how to solve different problems.

And if that's the case, then you have four different takeaways to use the next time a problem gets you tangled up:

  • Don't start by trying to solve the problem. First, aim to understand the root of the problem.
  • Use questions to generate ideas for solving the problem.
  • Look to previous problems to find the answers to new ones.
  • Clear your preconceived ideas and past experiences before attempting to tackle the problem.

How to solve problems with Wrike

Empower your team to be even more productive with Wrike's project management and collaboration tools. With documents, revisions, and project -related communication all in one place, employees can use Wrike as a single source of truth for all project information.

Get 360-degree visibility of all your work and identify problems before they occur — see schedule or resource conflicts on Gantt charts, easily view progress with custom statuses, and move work along with automated approvals.

Want to streamline your processes and ease future problem-solving? Get started with a free two-week trial of Wrike today.

What are your favorite problem-solving techniques?

Do you have a problem-solving technique that has worked wonders for your organization? Hit the comments below and share your wisdom!

Mobile image promo promo

Lionel Valdellon

Lionel is a former Content Marketing Manager of Wrike. He is also a blogger since 1997, a productivity enthusiast, a project management newbie, a musician and producer of electronic downtempo music, a father of three, and a husband of one.

Sorry, this content is unavailable due to your privacy settings. To view this content, click the “Cookie Preferences” button and accept Advertising Cookies there.

ABLE blog: thoughts, learnings and experiences

  • Productivity
  • Thoughtful learning

Mental models: 13 thinking tools to boost your problem-solving skills

Mental models: 13 thinking tools to boost your problem-solving skills

Imagine you've gone out to dinner with friends. You’ve just sat down at your favorite table at your favorite restaurant, looking forward to the evening ahead.

The waiter brings over your menus and tells you about the specials. It sounds like one of the dishes is really good — you've always wanted to try it, and the way they've described it sounds amazing.

You're mulling it over in your mind while the others order, and then it's your turn — and you just ask for the same meal you always get.

Sound familiar?

Whether it’s your favorite meal or the perfectly worn-in pair of jeans in your closet, this tendency to fall back on what we know rather than risk something unknown is the result of a common thinking tool called a mental model.

Mental models, like the status quo bias in the scenario above, represent how we perceive something to operate in the world based on what we have learned in our lives. We all use them to help us understand complex situations and predict what will happen. If leveraged well, they can be powerful thinking tools.

This article will explore the concept of mental models as thinking tools and uncover 13 mental models you can add to your toolkit of thinking skills.

Mental models as thinking tools

Most of the time, we're not as thoughtful as we think. While many of us consider ourselves capable of critical thinking, researchers say we tend to make snap judgments without using our knowledge.

For example, let’s try an exercise. Take a look at this image:

Thinking tools: cat pouncing on a man

Did you immediately react based on what you think is about to happen?

Although there isn’t a picture showing what takes place next, most of us made a guess using a tool we weren't even aware of — a mental model. Through our mental model, we could predict a possible outcome (which hopefully didn’t involve any scratches or falls).

Many of our snap judgments and reactions — whether about a photo we see or a problem we encounter — are shaped by the mental models we use to view the world. We begin to develop mental models as soon as we are born and continue to develop them throughout our lives, using them as a thinking tool to make sense of life, solve problems, and make decisions.

We all start out with different sets of mental models — after all, we all have different experiences that shape our early lives. As we gain experiences and knowledge, we add more models to our toolkit and learn to see things in new ways.

Sometimes our mental models work against us. If we limit our thinking to only a few mental models, we can suffer from critical thinking barriers . However, when we actively pursue thoughtful learning and collect many mental models, they can be extremely valuable tools for critical and creative thinking.

Munger's Latticework of Mental Models

Mental models as thinking tools were first made popular by Charlie Munger in his 1995 " The Psychology of Human Misjudgment " speech at Harvard University. Entrepreneurs and thinkers have since embraced mental models to achieve success.

According to Munger's Latticework of Mental Models theory, we can use various thinking tools to see problems from several points of view. Combining mental models increases original thinking, creativity, and problem-solving skills instead of relying on one frame of reference.

As Munger said , "All the wisdom of the world is not to be found in one little academic department ... 80 or 90 important models will carry about 90 percent of the freight in making you a worldly-wise person. And, of those, only a mere handful really carry very heavy freight."

This is why we need to keep learning — to expand our toolbox. The more mental models we have in our toolkit, the easier it is to find one that works for the situation.

A well-stocked toolbox is more effective at solving a problem than a single nail.

what are the tools used for problem solving

Focus like never before

Gather information, take notes, review, reflect, surface insights. All from one perfect, distraction-free interface.

13 valuable tools for your thinking skills toolkit

Brain and a wrench

There are hundreds of mental models and thinking tools available, which can be overwhelming. Most of us are familiar with concepts like the Eisenhower Matrix and brainstorming. However, we can use many other mental models for creative and critical thinking. Here are 13 thinking tools to boost decision-making, problem-solving, and creative thinking skills.

1. First Principles

First principle thinking is a mental model that can be used for problem-solving by breaking things down to the most basic level. This thinking tool is based on the idea that all complex problems can be reduced to more specific, fundamental parts. Using first-principles thinking, you identify the underlying causes of a problem and then find the best solutions that address those root causes.

For instance, it would be impossible to pack up your entire house at once if you were moving. To pack efficiently and safely, you’d need to go room by room, tackling one room at a time.

2. Inversion

Inversion is a technique used to generate ideas of creative solutions to problems by imagining the opposite of them. Inversion is higher-order thinking that requires thinking about the solution you don't want. With inverted thinking, you consider how something might fail and then try to avoid those mistakes. This approach differs from "working backward," another way of doing things that encourages you to begin with the desired end solution in mind.

3. Occam's Razor

Occam's Razor is a mental model that can simplify complex problems and situations by determining which explanation is most likely. This thinking tool is based on the principle that the simplest answer is usually correct. When using Occam's Razor, you should look for the most obvious, straightforward reasoning that fits all facts.

4. Bloom's Taxonomy

Bloom's Taxonomy is a mental model used for categorizing the knowledge levels of learners. The cognitive, affective, and psychomotor learning domains are grouped into three hierarchical levels, with each level encompassing the previous one. In a hierarchical structure, areas of knowledge begin with simple skills and progress to higher-order thinking.

The six levels of Bloom's Taxonomy are:

  • Knowledge: Recalling or recognizing facts and information
  • Comprehension: Understanding the meaning of information
  • Application: Using information in new ways
  • Analysis: Breaking down information into smaller parts
  • Synthesis: Putting pieces of information together to form a new whole
  • Evaluation: Making judgments about the value of information

By applying the actions from each level of this tool, we can analyze situations from different angles and find more comprehensive solutions.

5. Incentives

Incentives are a model that can be used to encourage desired behavior. Based on a cause and effect concept, people will be more likely to act if they are given an incentive to do so. The incentives can be monetary, such as a bonus or commission, or non-monetary, such as recognition or privileges.

6. Fundamental Attribution Error

The fundamental attribution error is characterized by the tendency to focus too much on personal characteristics and not enough on circumstances when judging others. This mental model believes that people's actions reflect who they are without considering their point of view. This can lead to misunderstanding and conflict.

For example, it's easy to get angry and lash out at someone who cuts you off in traffic without considering that maybe they are rushing to the hospital for an emergency. Keeping this model in mind can help us avoid over-simplifying behavior.

7. Law of Diminishing Returns

Declining arrow

The Law of Diminishing Returns provides a way to determine when it’s no longer efficient to continue investing in something. This thinking tool is based on the idea that there’s a point at which additional investment in something will result in diminishing returns.

The law of diminishing returns is often used in higher-level business decisions to determine when to stop investing in a project, but it’s also used in other forms of decision-making. Research has found that decision-makers tend to use a "matching" strategy in which they make their choice based on the relative value each option has.

8. Redundancy

The redundancy theory suggests that learners retain less new knowledge if the same information is presented in multiple ways or if it’s unnecessarily elaborate. Studies have shown that using several sources to relay information, such as text, visuals, and audio can create a lack of focus and less learning. Integrating the redundancy model can help teachers and leaders make learning more efficient.

9. Hanlon's Razor

Hanlon's Razor is a mental model that suggests most mistakes are not made maliciously. The purpose of this tool is to remind us not to assume the worst in the actions of others. Hanlon's Razor can help us see the situation from another's point of view and have more empathy, therefore avoiding making wrong assumptions.

For example, friends who aren't answering their mobile phones most likely aren't mad at you. Maybe they're just busy, or perhaps there are various other reasons to explain their delay.

10. Common Knowledge

We usually think of common knowledge as universal facts most people understand. However, the mental model of common knowledge is a little different. Used as a thinking tool, it focuses on pooling together the knowledge we don't share and taking into account the wisdom of others to help us make better decisions. Brainstorming, creating concept maps, and integrating feedback are useful tools we can use to share common knowledge.

11. Survivorship Bias

Survivorship bias refers to the tendency to focus on successful people, businesses, and strategies while overlooking failed ones.

For example, the idea that all 21st-century Hollywood stars got there through hard work may underestimate the amount of networking used to achieve fame. The idea dismisses the millions of other actors who worked just as hard but didn't have the same connections.

This thinking process can lead to decision-making errors because it causes people to overestimate their chances of success. However, when used to frame thinking, understanding the survivorship bias can help us consider other points of view and avoid making incorrect decisions.

12. The Ladder of Inference

White ladder

The Ladder of Inference is a mental model that helps explain why we make judgments quickly and unconsciously. The ladder illustrates the rapid steps our minds go through to make decisions and take action in any given situation. The seven steps are:

  • Observations: The data or information that we carry in through our senses
  • Selected Data: The process of our brain choosing which information is important and which to ignore
  • Meanings: Making interpretations and judgments based on our experiences, beliefs, and values
  • Assumptions: The views or beliefs that we hold that help us interpret the facts
  • Conclusions: The decision or opinion that we form based on our assumptions
  • Beliefs: The convictions that we have about ourselves and the world around us
  • Actions: The way we act or respond based on our thoughts

Using the Ladder of Inference as a thinking tool can help us avoid rash judgments based on assumptions and ensure sound thinking.

Boost your productivity with ABLE app

Highlight, annotate or take notes from anywhere, and it's easily linked to a selected topic in your Knowledge Base.

13. 80/20 Rule

The 80/20 Rule is a thinking tool that we can use to understand the relationship between inputs and outputs. This model is based on the idea that 80% of the results come from 20% of the effort. The 80/20 rule can be used to decide how to allocate resources.

Thinking tools are essential for a learner's toolkit

Every lifelong learner should have a toolbox of thinking tools. Mental models are helpful thinking tools that can enhance the creative and critical thinking processes. By having more tools at your disposal, you can approach any situation from various angles, increasing the probability of finding a successful solution.

Remember — building your thinking toolkit is an ongoing process. Keep learning, and you'll soon find that you're making better decisions consistently and solving problems more quickly.

I hope you have enjoyed reading this article. Feel free to share, recommend and connect 🙏

Connect with me on Twitter 👉   https://twitter.com/iamborisv

And follow Able's journey on Twitter: https://twitter.com/meet_able

And subscribe to our newsletter to read more valuable articles before it gets published on our blog.

Now we're building a Discord community of like-minded people, and we would be honoured and delighted to see you there.

Erin E. Rupp

Erin E. Rupp

Read more posts by this author

5 remedies for poor time management (and how to know if you need them)

Become a better critical thinker with these 7 critical thinking exercises.

What is abstract thinking? 10 activities to improve your abstract thinking skills

What is abstract thinking? 10 activities to improve your abstract thinking skills

5 examples of cognitive learning theory (and how you can use them)

5 examples of cognitive learning theory (and how you can use them)

0 results found.

  • Aegis Alpha SA
  • We build in public

Building with passion in

How to improve your problem solving skills and build effective problem solving strategies

what are the tools used for problem solving

Design your next session with SessionLab

Join the 150,000+ facilitators 
using SessionLab.

Recommended Articles

A step-by-step guide to planning a workshop, how to create an unforgettable training session in 8 simple steps, 47 useful online tools for workshop planning and meeting facilitation.

Effective problem solving is all about using the right process and following a plan tailored to the issue at hand. Recognizing your team or organization has an issue isn’t enough to come up with effective problem solving strategies. 

To truly understand a problem and develop appropriate solutions, you will want to follow a solid process, follow the necessary problem solving steps, and bring all of your problem solving skills to the table.  

We’ll first guide you through the seven step problem solving process you and your team can use to effectively solve complex business challenges. We’ll also look at what problem solving strategies you can employ with your team when looking for a way to approach the process. We’ll then discuss the problem solving skills you need to be more effective at solving problems, complete with an activity from the SessionLab library you can use to develop that skill in your team.

Let’s get to it! 

What is a problem solving process?

  • What are the problem solving steps I need to follow?

Problem solving strategies

What skills do i need to be an effective problem solver, how can i improve my problem solving skills.

Solving problems is like baking a cake. You can go straight into the kitchen without a recipe or the right ingredients and do your best, but the end result is unlikely to be very tasty!

Using a process to bake a cake allows you to use the best ingredients without waste, collect the right tools, account for allergies, decide whether it is a birthday or wedding cake, and then bake efficiently and on time. The result is a better cake that is fit for purpose, tastes better and has created less mess in the kitchen. Also, it should have chocolate sprinkles. Having a step by step process to solve organizational problems allows you to go through each stage methodically and ensure you are trying to solve the right problems and select the most appropriate, effective solutions.

What are the problem solving steps I need to follow? 

All problem solving processes go through a number of steps in order to move from identifying a problem to resolving it.

Depending on your problem solving model and who you ask, there can be anything between four and nine problem solving steps you should follow in order to find the right solution. Whatever framework you and your group use, there are some key items that should be addressed in order to have an effective process.

We’ve looked at problem solving processes from sources such as the American Society for Quality and their four step approach , and Mediate ‘s six step process. By reflecting on those and our own problem solving processes, we’ve come up with a sequence of seven problem solving steps we feel best covers everything you need in order to effectively solve problems.

seven step problem solving process

1. Problem identification 

The first stage of any problem solving process is to identify the problem or problems you might want to solve. Effective problem solving strategies always begin by allowing a group scope to articulate what they believe the problem to be and then coming to some consensus over which problem they approach first. Problem solving activities used at this stage often have a focus on creating frank, open discussion so that potential problems can be brought to the surface.

2. Problem analysis 

Though this step is not a million miles from problem identification, problem analysis deserves to be considered separately. It can often be an overlooked part of the process and is instrumental when it comes to developing effective solutions.

The process of problem analysis means ensuring that the problem you are seeking to solve is the right problem . As part of this stage, you may look deeper and try to find the root cause of a specific problem at a team or organizational level.

Remember that problem solving strategies should not only be focused on putting out fires in the short term but developing long term solutions that deal with the root cause of organizational challenges. 

Whatever your approach, analyzing a problem is crucial in being able to select an appropriate solution and the problem solving skills deployed in this stage are beneficial for the rest of the process and ensuring the solutions you create are fit for purpose.

3. Solution generation

Once your group has nailed down the particulars of the problem you wish to solve, you want to encourage a free flow of ideas connecting to solving that problem. This can take the form of problem solving games that encourage creative thinking or problem solving activities designed to produce working prototypes of possible solutions. 

The key to ensuring the success of this stage of the problem solving process is to encourage quick, creative thinking and create an open space where all ideas are considered. The best solutions can come from unlikely places and by using problem solving techniques that celebrate invention, you might come up with solution gold. 

4. Solution development

No solution is likely to be perfect right out of the gate. It’s important to discuss and develop the solutions your group has come up with over the course of following the previous problem solving steps in order to arrive at the best possible solution. Problem solving games used in this stage involve lots of critical thinking, measuring potential effort and impact, and looking at possible solutions analytically. 

During this stage, you will often ask your team to iterate and improve upon your frontrunning solutions and develop them further. Remember that problem solving strategies always benefit from a multitude of voices and opinions, and not to let ego get involved when it comes to choosing which solutions to develop and take further.

Finding the best solution is the goal of all problem solving workshops and here is the place to ensure that your solution is well thought out, sufficiently robust and fit for purpose. 

5. Decision making 

Nearly there! Once your group has reached consensus and selected a solution that applies to the problem at hand you have some decisions to make. You will want to work on allocating ownership of the project, figure out who will do what, how the success of the solution will be measured and decide the next course of action.

The decision making stage is a part of the problem solving process that can get missed or taken as for granted. Fail to properly allocate roles and plan out how a solution will actually be implemented and it less likely to be successful in solving the problem.

Have clear accountabilities, actions, timeframes, and follow-ups. Make these decisions and set clear next-steps in the problem solving workshop so that everyone is aligned and you can move forward effectively as a group. 

Ensuring that you plan for the roll-out of a solution is one of the most important problem solving steps. Without adequate planning or oversight, it can prove impossible to measure success or iterate further if the problem was not solved. 

6. Solution implementation 

This is what we were waiting for! All problem solving strategies have the end goal of implementing a solution and solving a problem in mind. 

Remember that in order for any solution to be successful, you need to help your group through all of the previous problem solving steps thoughtfully. Only then can you ensure that you are solving the right problem but also that you have developed the correct solution and can then successfully implement and measure the impact of that solution.

Project management and communication skills are key here – your solution may need to adjust when out in the wild or you might discover new challenges along the way.

7. Solution evaluation 

So you and your team developed a great solution to a problem and have a gut feeling its been solved. Work done, right? Wrong. All problem solving strategies benefit from evaluation, consideration, and feedback. You might find that the solution does not work for everyone, might create new problems, or is potentially so successful that you will want to roll it out to larger teams or as part of other initiatives. 

None of that is possible without taking the time to evaluate the success of the solution you developed in your problem solving model and adjust if necessary.

Remember that the problem solving process is often iterative and it can be common to not solve complex issues on the first try. Even when this is the case, you and your team will have generated learning that will be important for future problem solving workshops or in other parts of the organization. 

It’s worth underlining how important record keeping is throughout the problem solving process. If a solution didn’t work, you need to have the data and records to see why that was the case. If you go back to the drawing board, notes from the previous workshop can help save time. Data and insight is invaluable at every stage of the problem solving process and this one is no different.

Problem solving workshops made easy

what are the tools used for problem solving

Problem solving strategies are methods of approaching and facilitating the process of problem-solving with a set of techniques , actions, and processes. Different strategies are more effective if you are trying to solve broad problems such as achieving higher growth versus more focused problems like, how do we improve our customer onboarding process?

Broadly, the problem solving steps outlined above should be included in any problem solving strategy though choosing where to focus your time and what approaches should be taken is where they begin to differ. You might find that some strategies ask for the problem identification to be done prior to the session or that everything happens in the course of a one day workshop.

The key similarity is that all good problem solving strategies are structured and designed. Four hours of open discussion is never going to be as productive as a four-hour workshop designed to lead a group through a problem solving process.

Good problem solving strategies are tailored to the team, organization and problem you will be attempting to solve. Here are some example problem solving strategies you can learn from or use to get started.

Use a workshop to lead a team through a group process

Often, the first step to solving problems or organizational challenges is bringing a group together effectively. Most teams have the tools, knowledge, and expertise necessary to solve their challenges – they just need some guidance in how to use leverage those skills and a structure and format that allows people to focus their energies.

Facilitated workshops are one of the most effective ways of solving problems of any scale. By designing and planning your workshop carefully, you can tailor the approach and scope to best fit the needs of your team and organization. 

Problem solving workshop

  • Creating a bespoke, tailored process
  • Tackling problems of any size
  • Building in-house workshop ability and encouraging their use

Workshops are an effective strategy for solving problems. By using tried and test facilitation techniques and methods, you can design and deliver a workshop that is perfectly suited to the unique variables of your organization. You may only have the capacity for a half-day workshop and so need a problem solving process to match. 

By using our session planner tool and importing methods from our library of 700+ facilitation techniques, you can create the right problem solving workshop for your team. It might be that you want to encourage creative thinking or look at things from a new angle to unblock your groups approach to problem solving. By tailoring your workshop design to the purpose, you can help ensure great results.

One of the main benefits of a workshop is the structured approach to problem solving. Not only does this mean that the workshop itself will be successful, but many of the methods and techniques will help your team improve their working processes outside of the workshop. 

We believe that workshops are one of the best tools you can use to improve the way your team works together. Start with a problem solving workshop and then see what team building, culture or design workshops can do for your organization!

Run a design sprint

Great for: 

  • aligning large, multi-discipline teams
  • quickly designing and testing solutions
  • tackling large, complex organizational challenges and breaking them down into smaller tasks

By using design thinking principles and methods, a design sprint is a great way of identifying, prioritizing and prototyping solutions to long term challenges that can help solve major organizational problems with quick action and measurable results.

Some familiarity with design thinking is useful, though not integral, and this strategy can really help a team align if there is some discussion around which problems should be approached first. 

The stage-based structure of the design sprint is also very useful for teams new to design thinking.  The inspiration phase, where you look to competitors that have solved your problem, and the rapid prototyping and testing phases are great for introducing new concepts that will benefit a team in all their future work. 

It can be common for teams to look inward for solutions and so looking to the market for solutions you can iterate on can be very productive. Instilling an agile prototyping and testing mindset can also be great when helping teams move forwards – generating and testing solutions quickly can help save time in the long run and is also pretty exciting!

Break problems down into smaller issues

Organizational challenges and problems are often complicated and large scale in nature. Sometimes, trying to resolve such an issue in one swoop is simply unachievable or overwhelming. Try breaking down such problems into smaller issues that you can work on step by step. You may not be able to solve the problem of churning customers off the bat, but you can work with your team to identify smaller effort but high impact elements and work on those first.

This problem solving strategy can help a team generate momentum, prioritize and get some easy wins. It’s also a great strategy to employ with teams who are just beginning to learn how to approach the problem solving process. If you want some insight into a way to employ this strategy, we recommend looking at our design sprint template below!

Use guiding frameworks or try new methodologies

Some problems are best solved by introducing a major shift in perspective or by using new methodologies that encourage your team to think differently.

Props and tools such as Methodkit , which uses a card-based toolkit for facilitation, or Lego Serious Play can be great ways to engage your team and find an inclusive, democratic problem solving strategy. Remember that play and creativity are great tools for achieving change and whatever the challenge, engaging your participants can be very effective where other strategies may have failed.

LEGO Serious Play

  • Improving core problem solving skills
  • Thinking outside of the box
  • Encouraging creative solutions

LEGO Serious Play is a problem solving methodology designed to get participants thinking differently by using 3D models and kinesthetic learning styles. By physically building LEGO models based on questions and exercises, participants are encouraged to think outside of the box and create their own responses. 

Collaborate LEGO Serious Play exercises are also used to encourage communication and build problem solving skills in a group. By using this problem solving process, you can often help different kinds of learners and personality types contribute and unblock organizational problems with creative thinking. 

Problem solving strategies like LEGO Serious Play are super effective at helping a team solve more skills-based problems such as communication between teams or a lack of creative thinking. Some problems are not suited to LEGO Serious Play and require a different problem solving strategy.

Card Decks and Method Kits

  • New facilitators or non-facilitators 
  • Approaching difficult subjects with a simple, creative framework
  • Engaging those with varied learning styles

Card decks and method kids are great tools for those new to facilitation or for whom facilitation is not the primary role. Card decks such as the emotional culture deck can be used for complete workshops and in many cases, can be used right out of the box. Methodkit has a variety of kits designed for scenarios ranging from personal development through to personas and global challenges so you can find the right deck for your particular needs.

Having an easy to use framework that encourages creativity or a new approach can take some of the friction or planning difficulties out of the workshop process and energize a team in any setting. Simplicity is the key with these methods. By ensuring everyone on your team can get involved and engage with the process as quickly as possible can really contribute to the success of your problem solving strategy.

Source external advice

Looking to peers, experts and external facilitators can be a great way of approaching the problem solving process. Your team may not have the necessary expertise, insights of experience to tackle some issues, or you might simply benefit from a fresh perspective. Some problems may require bringing together an entire team, and coaching managers or team members individually might be the right approach. Remember that not all problems are best resolved in the same manner.

If you’re a solo entrepreneur, peer groups, coaches and mentors can also be invaluable at not only solving specific business problems, but in providing a support network for resolving future challenges. One great approach is to join a Mastermind Group and link up with like-minded individuals and all grow together. Remember that however you approach the sourcing of external advice, do so thoughtfully, respectfully and honestly. Reciprocate where you can and prepare to be surprised by just how kind and helpful your peers can be!

Mastermind Group

  • Solo entrepreneurs or small teams with low capacity
  • Peer learning and gaining outside expertise
  • Getting multiple external points of view quickly

Problem solving in large organizations with lots of skilled team members is one thing, but how about if you work for yourself or in a very small team without the capacity to get the most from a design sprint or LEGO Serious Play session? 

A mastermind group – sometimes known as a peer advisory board – is where a group of people come together to support one another in their own goals, challenges, and businesses. Each participant comes to the group with their own purpose and the other members of the group will help them create solutions, brainstorm ideas, and support one another. 

Mastermind groups are very effective in creating an energized, supportive atmosphere that can deliver meaningful results. Learning from peers from outside of your organization or industry can really help unlock new ways of thinking and drive growth. Access to the experience and skills of your peers can be invaluable in helping fill the gaps in your own ability, particularly in young companies.

A mastermind group is a great solution for solo entrepreneurs, small teams, or for organizations that feel that external expertise or fresh perspectives will be beneficial for them. It is worth noting that Mastermind groups are often only as good as the participants and what they can bring to the group. Participants need to be committed, engaged and understand how to work in this context. 

Coaching and mentoring

  • Focused learning and development
  • Filling skills gaps
  • Working on a range of challenges over time

Receiving advice from a business coach or building a mentor/mentee relationship can be an effective way of resolving certain challenges. The one-to-one format of most coaching and mentor relationships can really help solve the challenges those individuals are having and benefit the organization as a result.

A great mentor can be invaluable when it comes to spotting potential problems before they arise and coming to understand a mentee very well has a host of other business benefits. You might run an internal mentorship program to help develop your team’s problem solving skills and strategies or as part of a large learning and development program. External coaches can also be an important part of your problem solving strategy, filling skills gaps for your management team or helping with specific business issues. 

Now we’ve explored the problem solving process and the steps you will want to go through in order to have an effective session, let’s look at the skills you and your team need to be more effective problem solvers.

Problem solving skills are highly sought after, whatever industry or team you work in. Organizations are keen to employ people who are able to approach problems thoughtfully and find strong, realistic solutions. Whether you are a facilitator , a team leader or a developer, being an effective problem solver is a skill you’ll want to develop.

Problem solving skills form a whole suite of techniques and approaches that an individual uses to not only identify problems but to discuss them productively before then developing appropriate solutions.

Here are some of the most important problem solving skills everyone from executives to junior staff members should learn. We’ve also included an activity or exercise from the SessionLab library that can help you and your team develop that skill. 

If you’re running a workshop or training session to try and improve problem solving skills in your team, try using these methods to supercharge your process!

Problem solving skills checklist

Active listening

Active listening is one of the most important skills anyone who works with people can possess. In short, active listening is a technique used to not only better understand what is being said by an individual, but also to be more aware of the underlying message the speaker is trying to convey. When it comes to problem solving, active listening is integral for understanding the position of every participant and to clarify the challenges, ideas and solutions they bring to the table.

Some active listening skills include:

  • Paying complete attention to the speaker.
  • Removing distractions.
  • Avoid interruption.
  • Taking the time to fully understand before preparing a rebuttal.
  • Responding respectfully and appropriately.
  • Demonstrate attentiveness and positivity with an open posture, making eye contact with the speaker, smiling and nodding if appropriate. Show that you are listening and encourage them to continue.
  • Be aware of and respectful of feelings. Judge the situation and respond appropriately. You can disagree without being disrespectful.   
  • Observe body language. 
  • Paraphrase what was said in your own words, either mentally or verbally.
  • Remain neutral. 
  • Reflect and take a moment before responding.
  • Ask deeper questions based on what is said and clarify points where necessary.   
Active Listening   #hyperisland   #skills   #active listening   #remote-friendly   This activity supports participants to reflect on a question and generate their own solutions using simple principles of active listening and peer coaching. It’s an excellent introduction to active listening but can also be used with groups that are already familiar with it. Participants work in groups of three and take turns being: “the subject”, the listener, and the observer.

Analytical skills

All problem solving models require strong analytical skills, particularly during the beginning of the process and when it comes to analyzing how solutions have performed.

Analytical skills are primarily focused on performing an effective analysis by collecting, studying and parsing data related to a problem or opportunity. 

It often involves spotting patterns, being able to see things from different perspectives and using observable facts and data to make suggestions or produce insight. 

Analytical skills are also important at every stage of the problem solving process and by having these skills, you can ensure that any ideas or solutions you create or backed up analytically and have been sufficiently thought out.

Nine Whys   #innovation   #issue analysis   #liberating structures   With breathtaking simplicity, you can rapidly clarify for individuals and a group what is essentially important in their work. You can quickly reveal when a compelling purpose is missing in a gathering and avoid moving forward without clarity. When a group discovers an unambiguous shared purpose, more freedom and more responsibility are unleashed. You have laid the foundation for spreading and scaling innovations with fidelity.

Collaboration

Trying to solve problems on your own is difficult. Being able to collaborate effectively, with a free exchange of ideas, to delegate and be a productive member of a team is hugely important to all problem solving strategies.

Remember that whatever your role, collaboration is integral, and in a problem solving process, you are all working together to find the best solution for everyone. 

Marshmallow challenge with debriefing   #teamwork   #team   #leadership   #collaboration   In eighteen minutes, teams must build the tallest free-standing structure out of 20 sticks of spaghetti, one yard of tape, one yard of string, and one marshmallow. The marshmallow needs to be on top. The Marshmallow Challenge was developed by Tom Wujec, who has done the activity with hundreds of groups around the world. Visit the Marshmallow Challenge website for more information. This version has an extra debriefing question added with sample questions focusing on roles within the team.

Communication  

Being an effective communicator means being empathetic, clear and succinct, asking the right questions, and demonstrating active listening skills throughout any discussion or meeting. 

In a problem solving setting, you need to communicate well in order to progress through each stage of the process effectively. As a team leader, it may also fall to you to facilitate communication between parties who may not see eye to eye. Effective communication also means helping others to express themselves and be heard in a group.

Bus Trip   #feedback   #communication   #appreciation   #closing   #thiagi   #team   This is one of my favourite feedback games. I use Bus Trip at the end of a training session or a meeting, and I use it all the time. The game creates a massive amount of energy with lots of smiles, laughs, and sometimes even a teardrop or two.

Creative problem solving skills can be some of the best tools in your arsenal. Thinking creatively, being able to generate lots of ideas and come up with out of the box solutions is useful at every step of the process. 

The kinds of problems you will likely discuss in a problem solving workshop are often difficult to solve, and by approaching things in a fresh, creative manner, you can often create more innovative solutions.

Having practical creative skills is also a boon when it comes to problem solving. If you can help create quality design sketches and prototypes in record time, it can help bring a team to alignment more quickly or provide a base for further iteration.

The paper clip method   #sharing   #creativity   #warm up   #idea generation   #brainstorming   The power of brainstorming. A training for project leaders, creativity training, and to catalyse getting new solutions.

Critical thinking

Critical thinking is one of the fundamental problem solving skills you’ll want to develop when working on developing solutions. Critical thinking is the ability to analyze, rationalize and evaluate while being aware of personal bias, outlying factors and remaining open-minded.

Defining and analyzing problems without deploying critical thinking skills can mean you and your team go down the wrong path. Developing solutions to complex issues requires critical thinking too – ensuring your team considers all possibilities and rationally evaluating them. 

Agreement-Certainty Matrix   #issue analysis   #liberating structures   #problem solving   You can help individuals or groups avoid the frequent mistake of trying to solve a problem with methods that are not adapted to the nature of their challenge. The combination of two questions makes it possible to easily sort challenges into four categories: simple, complicated, complex , and chaotic .  A problem is simple when it can be solved reliably with practices that are easy to duplicate.  It is complicated when experts are required to devise a sophisticated solution that will yield the desired results predictably.  A problem is complex when there are several valid ways to proceed but outcomes are not predictable in detail.  Chaotic is when the context is too turbulent to identify a path forward.  A loose analogy may be used to describe these differences: simple is like following a recipe, complicated like sending a rocket to the moon, complex like raising a child, and chaotic is like the game “Pin the Tail on the Donkey.”  The Liberating Structures Matching Matrix in Chapter 5 can be used as the first step to clarify the nature of a challenge and avoid the mismatches between problems and solutions that are frequently at the root of chronic, recurring problems.

Data analysis 

Though it shares lots of space with general analytical skills, data analysis skills are something you want to cultivate in their own right in order to be an effective problem solver.

Being good at data analysis doesn’t just mean being able to find insights from data, but also selecting the appropriate data for a given issue, interpreting it effectively and knowing how to model and present that data. Depending on the problem at hand, it might also include a working knowledge of specific data analysis tools and procedures. 

Having a solid grasp of data analysis techniques is useful if you’re leading a problem solving workshop but if you’re not an expert, don’t worry. Bring people into the group who has this skill set and help your team be more effective as a result.

Decision making

All problems need a solution and all solutions require that someone make the decision to implement them. Without strong decision making skills, teams can become bogged down in discussion and less effective as a result. 

Making decisions is a key part of the problem solving process. It’s important to remember that decision making is not restricted to the leadership team. Every staff member makes decisions every day and developing these skills ensures that your team is able to solve problems at any scale. Remember that making decisions does not mean leaping to the first solution but weighing up the options and coming to an informed, well thought out solution to any given problem that works for the whole team.

Lightning Decision Jam (LDJ)   #action   #decision making   #problem solving   #issue analysis   #innovation   #design   #remote-friendly   The problem with anything that requires creative thinking is that it’s easy to get lost—lose focus and fall into the trap of having useless, open-ended, unstructured discussions. Here’s the most effective solution I’ve found: Replace all open, unstructured discussion with a clear process. What to use this exercise for: Anything which requires a group of people to make decisions, solve problems or discuss challenges. It’s always good to frame an LDJ session with a broad topic, here are some examples: The conversion flow of our checkout Our internal design process How we organise events Keeping up with our competition Improving sales flow

Dependability

Most complex organizational problems require multiple people to be involved in delivering the solution. Ensuring that the team and organization can depend on you to take the necessary actions and communicate where necessary is key to ensuring problems are solved effectively.

Being dependable also means working to deadlines and to brief. It is often a matter of creating trust in a team so that everyone can depend on one another to complete the agreed actions in the agreed time frame so that the team can move forward together. Being undependable can create problems of friction and can limit the effectiveness of your solutions so be sure to bear this in mind throughout a project. 

Team Purpose & Culture   #team   #hyperisland   #culture   #remote-friendly   This is an essential process designed to help teams define their purpose (why they exist) and their culture (how they work together to achieve that purpose). Defining these two things will help any team to be more focused and aligned. With support of tangible examples from other companies, the team members work as individuals and a group to codify the way they work together. The goal is a visual manifestation of both the purpose and culture that can be put up in the team’s work space.

Emotional intelligence

Emotional intelligence is an important skill for any successful team member, whether communicating internally or with clients or users. In the problem solving process, emotional intelligence means being attuned to how people are feeling and thinking, communicating effectively and being self-aware of what you bring to a room. 

There are often differences of opinion when working through problem solving processes, and it can be easy to let things become impassioned or combative. Developing your emotional intelligence means being empathetic to your colleagues and managing your own emotions throughout the problem and solution process. Be kind, be thoughtful and put your points across care and attention. 

Being emotionally intelligent is a skill for life and by deploying it at work, you can not only work efficiently but empathetically. Check out the emotional culture workshop template for more!

Facilitation

As we’ve clarified in our facilitation skills post, facilitation is the art of leading people through processes towards agreed-upon objectives in a manner that encourages participation, ownership, and creativity by all those involved. While facilitation is a set of interrelated skills in itself, the broad definition of facilitation can be invaluable when it comes to problem solving. Leading a team through a problem solving process is made more effective if you improve and utilize facilitation skills – whether you’re a manager, team leader or external stakeholder.

The Six Thinking Hats   #creative thinking   #meeting facilitation   #problem solving   #issue resolution   #idea generation   #conflict resolution   The Six Thinking Hats are used by individuals and groups to separate out conflicting styles of thinking. They enable and encourage a group of people to think constructively together in exploring and implementing change, rather than using argument to fight over who is right and who is wrong.

Flexibility 

Being flexible is a vital skill when it comes to problem solving. This does not mean immediately bowing to pressure or changing your opinion quickly: instead, being flexible is all about seeing things from new perspectives, receiving new information and factoring it into your thought process.

Flexibility is also important when it comes to rolling out solutions. It might be that other organizational projects have greater priority or require the same resources as your chosen solution. Being flexible means understanding needs and challenges across the team and being open to shifting or arranging your own schedule as necessary. Again, this does not mean immediately making way for other projects. It’s about articulating your own needs, understanding the needs of others and being able to come to a meaningful compromise.

The Creativity Dice   #creativity   #problem solving   #thiagi   #issue analysis   Too much linear thinking is hazardous to creative problem solving. To be creative, you should approach the problem (or the opportunity) from different points of view. You should leave a thought hanging in mid-air and move to another. This skipping around prevents premature closure and lets your brain incubate one line of thought while you consciously pursue another.

Working in any group can lead to unconscious elements of groupthink or situations in which you may not wish to be entirely honest. Disagreeing with the opinions of the executive team or wishing to save the feelings of a coworker can be tricky to navigate, but being honest is absolutely vital when to comes to developing effective solutions and ensuring your voice is heard. 

Remember that being honest does not mean being brutally candid. You can deliver your honest feedback and opinions thoughtfully and without creating friction by using other skills such as emotional intelligence. 

Explore your Values   #hyperisland   #skills   #values   #remote-friendly   Your Values is an exercise for participants to explore what their most important values are. It’s done in an intuitive and rapid way to encourage participants to follow their intuitive feeling rather than over-thinking and finding the “correct” values. It is a good exercise to use to initiate reflection and dialogue around personal values.

Initiative 

The problem solving process is multi-faceted and requires different approaches at certain points of the process. Taking initiative to bring problems to the attention of the team, collect data or lead the solution creating process is always valuable. You might even roadtest your own small scale solutions or brainstorm before a session. Taking initiative is particularly effective if you have good deal of knowledge in that area or have ownership of a particular project and want to get things kickstarted.

That said, be sure to remember to honor the process and work in service of the team. If you are asked to own one part of the problem solving process and you don’t complete that task because your initiative leads you to work on something else, that’s not an effective method of solving business challenges.

15% Solutions   #action   #liberating structures   #remote-friendly   You can reveal the actions, however small, that everyone can do immediately. At a minimum, these will create momentum, and that may make a BIG difference.  15% Solutions show that there is no reason to wait around, feel powerless, or fearful. They help people pick it up a level. They get individuals and the group to focus on what is within their discretion instead of what they cannot change.  With a very simple question, you can flip the conversation to what can be done and find solutions to big problems that are often distributed widely in places not known in advance. Shifting a few grains of sand may trigger a landslide and change the whole landscape.

Impartiality

A particularly useful problem solving skill for product owners or managers is the ability to remain impartial throughout much of the process. In practice, this means treating all points of view and ideas brought forward in a meeting equally and ensuring that your own areas of interest or ownership are not favored over others. 

There may be a stage in the process where a decision maker has to weigh the cost and ROI of possible solutions against the company roadmap though even then, ensuring that the decision made is based on merit and not personal opinion. 

Empathy map   #frame insights   #create   #design   #issue analysis   An empathy map is a tool to help a design team to empathize with the people they are designing for. You can make an empathy map for a group of people or for a persona. To be used after doing personas when more insights are needed.

Being a good leader means getting a team aligned, energized and focused around a common goal. In the problem solving process, strong leadership helps ensure that the process is efficient, that any conflicts are resolved and that a team is managed in the direction of success.

It’s common for managers or executives to assume this role in a problem solving workshop, though it’s important that the leader maintains impartiality and does not bulldoze the group in a particular direction. Remember that good leadership means working in service of the purpose and team and ensuring the workshop is a safe space for employees of any level to contribute. Take a look at our leadership games and activities post for more exercises and methods to help improve leadership in your organization.

Leadership Pizza   #leadership   #team   #remote-friendly   This leadership development activity offers a self-assessment framework for people to first identify what skills, attributes and attitudes they find important for effective leadership, and then assess their own development and initiate goal setting.

In the context of problem solving, mediation is important in keeping a team engaged, happy and free of conflict. When leading or facilitating a problem solving workshop, you are likely to run into differences of opinion. Depending on the nature of the problem, certain issues may be brought up that are emotive in nature. 

Being an effective mediator means helping those people on either side of such a divide are heard, listen to one another and encouraged to find common ground and a resolution. Mediating skills are useful for leaders and managers in many situations and the problem solving process is no different.

Conflict Responses   #hyperisland   #team   #issue resolution   A workshop for a team to reflect on past conflicts, and use them to generate guidelines for effective conflict handling. The workshop uses the Thomas-Killman model of conflict responses to frame a reflective discussion. Use it to open up a discussion around conflict with a team.

Planning 

Solving organizational problems is much more effective when following a process or problem solving model. Planning skills are vital in order to structure, deliver and follow-through on a problem solving workshop and ensure your solutions are intelligently deployed.

Planning skills include the ability to organize tasks and a team, plan and design the process and take into account any potential challenges. Taking the time to plan carefully can save time and frustration later in the process and is valuable for ensuring a team is positioned for success.

3 Action Steps   #hyperisland   #action   #remote-friendly   This is a small-scale strategic planning session that helps groups and individuals to take action toward a desired change. It is often used at the end of a workshop or programme. The group discusses and agrees on a vision, then creates some action steps that will lead them towards that vision. The scope of the challenge is also defined, through discussion of the helpful and harmful factors influencing the group.

Prioritization

As organisations grow, the scale and variation of problems they face multiplies. Your team or is likely to face numerous challenges in different areas and so having the skills to analyze and prioritize becomes very important, particularly for those in leadership roles.

A thorough problem solving process is likely to deliver multiple solutions and you may have several different problems you wish to solve simultaneously. Prioritization is the ability to measure the importance, value, and effectiveness of those possible solutions and choose which to enact and in what order. The process of prioritization is integral in ensuring the biggest challenges are addressed with the most impactful solutions.

Impact and Effort Matrix   #gamestorming   #decision making   #action   #remote-friendly   In this decision-making exercise, possible actions are mapped based on two factors: effort required to implement and potential impact. Categorizing ideas along these lines is a useful technique in decision making, as it obliges contributors to balance and evaluate suggested actions before committing to them.

Project management

Some problem solving skills are utilized in a workshop or ideation phases, while others come in useful when it comes to decision making. Overseeing an entire problem solving process and ensuring its success requires strong project management skills. 

While project management incorporates many of the other skills listed here, it is important to note the distinction of considering all of the factors of a project and managing them successfully. Being able to negotiate with stakeholders, manage tasks, time and people, consider costs and ROI, and tie everything together is massively helpful when going through the problem solving process. 

Record keeping

Working out meaningful solutions to organizational challenges is only one part of the process.  Thoughtfully documenting and keeping records of each problem solving step for future consultation is important in ensuring efficiency and meaningful change. 

For example, some problems may be lower priority than others but can be revisited in the future. If the team has ideated on solutions and found some are not up to the task, record those so you can rule them out and avoiding repeating work. Keeping records of the process also helps you improve and refine your problem solving model next time around!

Personal Kanban   #gamestorming   #action   #agile   #project planning   Personal Kanban is a tool for organizing your work to be more efficient and productive. It is based on agile methods and principles.

Research skills

Conducting research to support both the identification of problems and the development of appropriate solutions is important for an effective process. Knowing where to go to collect research, how to conduct research efficiently, and identifying pieces of research are relevant are all things a good researcher can do well. 

In larger groups, not everyone has to demonstrate this ability in order for a problem solving workshop to be effective. That said, having people with research skills involved in the process, particularly if they have existing area knowledge, can help ensure the solutions that are developed with data that supports their intention. Remember that being able to deliver the results of research efficiently and in a way the team can easily understand is also important. The best data in the world is only as effective as how it is delivered and interpreted.

Customer experience map   #ideation   #concepts   #research   #design   #issue analysis   #remote-friendly   Customer experience mapping is a method of documenting and visualizing the experience a customer has as they use the product or service. It also maps out their responses to their experiences. To be used when there is a solution (even in a conceptual stage) that can be analyzed.

Risk management

Managing risk is an often overlooked part of the problem solving process. Solutions are often developed with the intention of reducing exposure to risk or solving issues that create risk but sometimes, great solutions are more experimental in nature and as such, deploying them needs to be carefully considered. 

Managing risk means acknowledging that there may be risks associated with more out of the box solutions or trying new things, but that this must be measured against the possible benefits and other organizational factors. 

Be informed, get the right data and stakeholders in the room and you can appropriately factor risk into your decision making process. 

Decisions, Decisions…   #communication   #decision making   #thiagi   #action   #issue analysis   When it comes to decision-making, why are some of us more prone to take risks while others are risk-averse? One explanation might be the way the decision and options were presented.  This exercise, based on Kahneman and Tversky’s classic study , illustrates how the framing effect influences our judgement and our ability to make decisions . The participants are divided into two groups. Both groups are presented with the same problem and two alternative programs for solving them. The two programs both have the same consequences but are presented differently. The debriefing discussion examines how the framing of the program impacted the participant’s decision.

Team-building 

No single person is as good at problem solving as a team. Building an effective team and helping them come together around a common purpose is one of the most important problem solving skills, doubly so for leaders. By bringing a team together and helping them work efficiently, you pave the way for team ownership of a problem and the development of effective solutions. 

In a problem solving workshop, it can be tempting to jump right into the deep end, though taking the time to break the ice, energize the team and align them with a game or exercise will pay off over the course of the day.

Remember that you will likely go through the problem solving process multiple times over an organization’s lifespan and building a strong team culture will make future problem solving more effective. It’s also great to work with people you know, trust and have fun with. Working on team building in and out of the problem solving process is a hallmark of successful teams that can work together to solve business problems.

9 Dimensions Team Building Activity   #ice breaker   #teambuilding   #team   #remote-friendly   9 Dimensions is a powerful activity designed to build relationships and trust among team members. There are 2 variations of this icebreaker. The first version is for teams who want to get to know each other better. The second version is for teams who want to explore how they are working together as a team.

Time management 

The problem solving process is designed to lead a team from identifying a problem through to delivering a solution and evaluating its effectiveness. Without effective time management skills or timeboxing of tasks, it can be easy for a team to get bogged down or be inefficient.

By using a problem solving model and carefully designing your workshop, you can allocate time efficiently and trust that the process will deliver the results you need in a good timeframe.

Time management also comes into play when it comes to rolling out solutions, particularly those that are experimental in nature. Having a clear timeframe for implementing and evaluating solutions is vital for ensuring their success and being able to pivot if necessary.

Improving your skills at problem solving is often a career-long pursuit though there are methods you can use to make the learning process more efficient and to supercharge your problem solving skillset.

Remember that the skills you need to be a great problem solver have a large overlap with those skills you need to be effective in any role. Investing time and effort to develop your active listening or critical thinking skills is valuable in any context. Here are 7 ways to improve your problem solving skills.

Share best practices

Remember that your team is an excellent source of skills, wisdom, and techniques and that you should all take advantage of one another where possible. Best practices that one team has for solving problems, conducting research or making decisions should be shared across the organization. If you have in-house staff that have done active listening training or are data analysis pros, have them lead a training session. 

Your team is one of your best resources. Create space and internal processes for the sharing of skills so that you can all grow together. 

Ask for help and attend training

Once you’ve figured out you have a skills gap, the next step is to take action to fill that skills gap. That might be by asking your superior for training or coaching, or liaising with team members with that skill set. You might even attend specialized training for certain skills – active listening or critical thinking, for example, are business-critical skills that are regularly offered as part of a training scheme.

Whatever method you choose, remember that taking action of some description is necessary for growth. Whether that means practicing, getting help, attending training or doing some background reading, taking active steps to improve your skills is the way to go.

Learn a process 

Problem solving can be complicated, particularly when attempting to solve large problems for the first time. Using a problem solving process helps give structure to your problem solving efforts and focus on creating outcomes, rather than worrying about the format. 

Tools such as the seven-step problem solving process above are effective because not only do they feature steps that will help a team solve problems, they also develop skills along the way. Each step asks for people to engage with the process using different skills and in doing so, helps the team learn and grow together. Group processes of varying complexity and purpose can also be found in the SessionLab library of facilitation techniques . Using a tried and tested process and really help ease the learning curve for both those leading such a process, as well as those undergoing the purpose.

Effective teams make decisions about where they should and shouldn’t expend additional effort. By using a problem solving process, you can focus on the things that matter, rather than stumbling towards a solution haphazardly. 

Create a feedback loop

Some skills gaps are more obvious than others. It’s possible that your perception of your active listening skills differs from those of your colleagues. 

It’s valuable to create a system where team members can provide feedback in an ordered and friendly manner so they can all learn from one another. Only by identifying areas of improvement can you then work to improve them. 

Remember that feedback systems require oversight and consideration so that they don’t turn into a place to complain about colleagues. Design the system intelligently so that you encourage the creation of learning opportunities, rather than encouraging people to list their pet peeves.

While practice might not make perfect, it does make the problem solving process easier. If you are having trouble with critical thinking, don’t shy away from doing it. Get involved where you can and stretch those muscles as regularly as possible. 

Problem solving skills come more naturally to some than to others and that’s okay. Take opportunities to get involved and see where you can practice your skills in situations outside of a workshop context. Try collaborating in other circumstances at work or conduct data analysis on your own projects. You can often develop those skills you need for problem solving simply by doing them. Get involved!

Use expert exercises and methods

Learn from the best. Our library of 700+ facilitation techniques is full of activities and methods that help develop the skills you need to be an effective problem solver. Check out our templates to see how to approach problem solving and other organizational challenges in a structured and intelligent manner.

There is no single approach to improving problem solving skills, but by using the techniques employed by others you can learn from their example and develop processes that have seen proven results. 

Try new ways of thinking and change your mindset

Using tried and tested exercises that you know well can help deliver results, but you do run the risk of missing out on the learning opportunities offered by new approaches. As with the problem solving process, changing your mindset can remove blockages and be used to develop your problem solving skills.

Most teams have members with mixed skill sets and specialties. Mix people from different teams and share skills and different points of view. Teach your customer support team how to use design thinking methods or help your developers with conflict resolution techniques. Try switching perspectives with facilitation techniques like Flip It! or by using new problem solving methodologies or models. Give design thinking, liberating structures or lego serious play a try if you want to try a new approach. You will find that framing problems in new ways and using existing skills in new contexts can be hugely useful for personal development and improving your skillset. It’s also a lot of fun to try new things. Give it a go!

Encountering business challenges and needing to find appropriate solutions is not unique to your organization. Lots of very smart people have developed methods, theories and approaches to help develop problem solving skills and create effective solutions. Learn from them!

Books like The Art of Thinking Clearly , Think Smarter, or Thinking Fast, Thinking Slow are great places to start, though it’s also worth looking at blogs related to organizations facing similar problems to yours, or browsing for success stories. Seeing how Dropbox massively increased growth and working backward can help you see the skills or approach you might be lacking to solve that same problem. Learning from others by reading their stories or approaches can be time-consuming but ultimately rewarding.

A tired, distracted mind is not in the best position to learn new skills. It can be tempted to burn the candle at both ends and develop problem solving skills outside of work. Absolutely use your time effectively and take opportunities for self-improvement, though remember that rest is hugely important and that without letting your brain rest, you cannot be at your most effective. 

Creating distance between yourself and the problem you might be facing can also be useful. By letting an idea sit, you can find that a better one presents itself or you can develop it further. Take regular breaks when working and create a space for downtime. Remember that working smarter is preferable to working harder and that self-care is important for any effective learning or improvement process.

Want to design better group processes?

what are the tools used for problem solving

Over to you

Now we’ve explored some of the key problem solving skills and the problem solving steps necessary for an effective process, you’re ready to begin developing more effective solutions and leading problem solving workshops.

Need more inspiration? Check out our post on problem solving activities you can use when guiding a group towards a great solution in your next workshop or meeting. Have questions? Did you have a great problem solving technique you use with your team? Get in touch in the comments below. We’d love to chat!

Leave a Comment Cancel reply

Your email address will not be published. Required fields are marked *

cycle of workshop planning steps

Going from a mere idea to a workshop that delivers results for your clients can feel like a daunting task. In this piece, we will shine a light on all the work behind the scenes and help you learn how to plan a workshop from start to finish. On a good day, facilitation can feel like effortless magic, but that is mostly the result of backstage work, foresight, and a lot of careful planning. Read on to learn a step-by-step approach to breaking the process of planning a workshop into small, manageable chunks.  The flow starts with the first meeting with a client to define the purposes of a workshop.…

what are the tools used for problem solving

How does learning work? A clever 9-year-old once told me: “I know I am learning something new when I am surprised.” The science of adult learning tells us that, in order to learn new skills (which, unsurprisingly, is harder for adults to do than kids) grown-ups need to first get into a specific headspace.  In a business, this approach is often employed in a training session where employees learn new skills or work on professional development. But how do you ensure your training is effective? In this guide, we'll explore how to create an effective training session plan and run engaging training sessions. As team leader, project manager, or consultant,…

what are the tools used for problem solving

Effective online tools are a necessity for smooth and engaging virtual workshops and meetings. But how do you choose the right ones? Do you sometimes feel that the good old pen and paper or MS Office toolkit and email leaves you struggling to stay on top of managing and delivering your workshop? Fortunately, there are plenty of online tools to make your life easier when you need to facilitate a meeting and lead workshops. In this post, we’ll share our favorite online tools you can use to make your job as a facilitator easier. In fact, there are plenty of free online workshop tools and meeting facilitation software you can…

Design your next workshop with SessionLab

Join the 150,000 facilitators using SessionLab

Sign up for free

  • ESPC24, Stockholmsmässan, Sweden, Dec 2 - 5 2024
  • ESPC24 Programme
  • ESPC24 Keynotes
  • ESPC23 Programme
  • ESPC23 Showreel
  • ESPC23 Keynotes
  • ESPC23 Tutorials
  • ESPC23 Diversity & Inclusion Sessions
  • ESPC23 Azure Sessions
  • ESPC23 Microsoft Teams Sessions
  • ESPC23 Microsoft Power Platform Sessions
  • ESPC23 Inspire Stage
  • 2024 Programme Team
  • ESPC Inspire Awards
  • ESPC22 Programme
  • Photo Gallery
  • Code of Conduct

Email Updates Signup

  • 2024 Speakers
  • 2023 Speakers
  • 2023 Microsoft Speakers
  • 2022 Speakers
  • 2021 Speakers (Online)
  • 2020 Speakers (Online)
  • 2019 Speakers
  • 2018 Speakers
  • 2017 Speakers
  • 2024 Sponsors
  • Sponsorship Info
  • Sponsor Booking Form
  • 2023 Sponsors
  • 2022 Sponsors
  • Why Attend ESPC
  • ESPC24 Venue and FAQs
  • ESPC Party Night
  • Convince my Boss
  • Booking T&Cs
  • What is the Learning Hub
  • Community Blog
  • Microsoft Copilot Week
  • Microsoft Fabric Week
  • Microsoft Azure AI Week
  • Microsoft SharePoint Week
  • Microsoft Teams Week
  • Microsoft Azure Week
  • Microsoft Power Platform Week
  • Upcoming webinars
  • ESPC Hot Seat Webinars
  • How To Videos
  • BOOK TICKETS
  • European Power Platform Conference

Keep up, Get ahead

  • Name * First Last

You’re almost there…

  • Hidden Company
  • Country * Afghanistan Albania Algeria American Samoa Andorra Angola Antigua and Barbuda Argentina Armenia Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia Bosnia and Herzegovina Botswana Brazil Brunei Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Colombia Comoros Congo, Democratic Republic of the Congo, Republic of the Costa Rica Côte d'Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic East Timor Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Faroe Islands Fiji Finland France French Polynesia Gabon Gambia Georgia Germany Ghana Greece Greenland Grenada Guam Guatemala Guinea Guinea-Bissau Guyana Haiti Honduras Hong Kong Hungary Iceland India Indonesia Iran Iraq Ireland Israel Italy Jamaica Japan Jordan Kazakhstan Kenya Kiribati North Korea South Korea Kosovo Kuwait Kyrgyzstan Laos Latvia Lebanon Lesotho Liberia Libya Liechtenstein Lithuania Luxembourg Macedonia Madagascar Malawi Malaysia Maldives Mali Malta Marshall Islands Mauritania Mauritius Mexico Micronesia Moldova Monaco Mongolia Montenegro Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Zealand Nicaragua Niger Nigeria Northern Mariana Islands Norway Oman Pakistan Palau Palestine, State of Panama Papua New Guinea Paraguay Peru Philippines Poland Portugal Puerto Rico Qatar Romania Russia Rwanda Saint Kitts and Nevis Saint Lucia Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten Slovakia Slovenia Solomon Islands Somalia South Africa Spain Sri Lanka Sudan Sudan, South Suriname Swaziland Sweden Switzerland Syria Taiwan Tajikistan Tanzania Thailand Togo Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Vatican City Venezuela Vietnam Virgin Islands, British Virgin Islands, U.S. Yemen Zambia Zimbabwe
  • Area of Interest Please Select... Developer IT Professional Business Decision Maker End User Maker
  • Hidden Your Comment
  • I have read and accept the Privacy Policy .
  • Name This field is for validation purposes and should be left unchanged.

Leanne Armstrong

May 17, 2021

9 Essential Problem Solving Tools: The Ultimate Guide

what are the tools used for problem solving

Problem solving studies have suggested that the average business professional spends 3 hours every week solving work-related problems!

Problem solving  may unfold differently depending on the industry, or even the department you work in. But most of us will agree that before you can fix any issue, you need to be clear on what it is, why it’s happening, and what your ideal long-term solution will achieve.

Understanding both the nature and the cause of a problem is the only way to figure out which actions will help you resolve it.

And given that most problem-solving processes are part inspiration, part perspiration, you’ll be more successful, more often, if you can reach for a problem solving tool that facilitates collaboration, encourages creative thinking, and makes it easier to implement the fix you devise.

We’ve put together this roundup of versatile problem solving tools and software to help you and your team map out and repair workplace issues as efficiently as possible. The problem solving tools include three unique categories: problem solving diagrams, problem solving mind maps, and problem solving software solutions. They include:

  • Fishbone diagrams
  • Strategy maps
  • Mental maps
  • Concept maps
  • Layered process audit software
  • Charting software
  • MindManager

Let’s get started!

[Free Webinar] Lean Six Sigma: What it is and why you’ll want to use it on your next project

Problem solving diagrams

Mapping your way out of a problem is the simplest way to see where you are, and where you need to end up.

Not only do  visual problem maps  let you plot the most efficient route from Point A (dysfunctional situation) to Point B (flawless process), problem mapping diagrams make it easier to see:

  • The root cause of a dilemma
  • Steps, resources, and personnel associated with each possible solution
  • The least time-consuming,  most cost-effective options

A visual  problem solving process  help to solidify understanding and are a great way for you and your team to transform abstract ideas into a practical, reconstructive plan.

Here are three examples of common problem mapping diagrams you can try with your team.

1. Fishbone diagrams

Fishbone diagrams are a  common problem solving tool  so-named because, once complete, they resemble the skeleton of a fish.

With the possible root causes of an issue (the ribs) branching off from either side of a spine line attached to the head (the problem), dynamic fishbone diagrams let you:

  • Lay out a related set of possible reasons for an existing problem
  • Investigate each possibility by breaking it out into sub-causes
  • See how contributing factors relate to one another

Fishbone diagrams are also known as cause and effect or Ishikawa diagrams.

what are the tools used for problem solving

2. Flowcharts

A  flowchart  is an easy-to-understand diagram with a variety of applications. But you can use it to outline and examine how the steps of a flawed process connect. Made up of a few simple symbols linked with arrows indicating  workflow  direction, flowcharts clearly illustrate what happens at each stage of a process – and how each event impacts other events and decisions.

what are the tools used for problem solving

3. Strategy maps

Frequently used as a  strategic planning tool , strategy maps also work well as problem mapping diagrams. Based on a hierarchal system, thoughts and ideas can be arranged on a single page to flesh out a potential resolution. Once you’ve got a few tactics you feel are worth exploring as possible ways to overcome a challenge, a strategy map will help you establish the best route to your problem-solving goal.

9 Essential Problem Solving Tools: The Ultimate Guide

Problem solving mind maps

Problem solving mind maps are especially valuable in visualization. Because they facilitate the brainstorming process that plays a key role in both root cause analysis and the identification of potential solutions, they help make problems more solvable.

Mind maps  are diagrams that represent your thinking. Since many people struggle taking or working with hand-written or typed notes, mind maps were designed to let you lay out and structure your thoughts visually so you can play with ideas, concepts, and solutions the same way your brain does.

By starting with a single notion that branches out into greater detail, problem solving mind maps make it easy to:

  • Explain unfamiliar problems or processes in less time
  • Share and elaborate on novel ideas
  • Achieve better group comprehension that can lead to more effective solutions

what are the tools used for problem solving

4. Mental maps

A mental map helps you get your thoughts about what might be causing a workplace issue out of your head and onto a shared digital space. Because mental maps mirror the way our brains take in and analyze new information, using them to describe your theories visually will help you and your team work through and test those thought models.

9 Essential Problem Solving Tools: The Ultimate Guide

5. Idea maps

Idea maps let you take advantage of a wide assortment of colors and images to lay down and organize your scattered thought process. Idea maps are ideal  brainstorming tools  because they allow you to present and explore ideas about the best way to solve a problem collaboratively, and with a shared sense of enthusiasm for outside-the-box thinking.

what are the tools used for problem solving

6. Concept maps

Concept maps are one of the best ways to shape your thoughts around a potential solution because they let you create interlinked, visual representations of intricate concepts. By laying out your suggested problem-solving process digitally – and using lines to form and define relationship connections – your group will be able to see how each piece of the solution puzzle connects with another.

9 Essential Problem Solving Tools: The Ultimate Guide

Problem solving software solutions

Problem solving software is the best way to take advantage of multiple problem solving tools in one platform. While some software programs are geared toward specific industries or processes – like manufacturing or customer relationship management, for example – others, like  MindManager , are purpose-built to work across multiple trades, departments, and teams.

Here are three problem-solving software examples.

7. Layered process audit software

Layered process audits (LPAs) help companies oversee production processes and keep an eye on the cost and quality of the goods they create. Dedicated LPA software makes problem solving easier for manufacturers because it helps them see where costly leaks are occurring and allows all levels of management to get involved in repairing those leaks.

8. Charting software

Charting software comes in all shapes and sizes to fit a variety of business sectors. Pareto charts, for example, combine bar charts with line graphs so companies can compare different problems or contributing factors to determine their frequency, cost, and significance. Charting software is often used in marketing, where a variety of bar charts and X-Y axis diagrams make it possible to display and examine competitor profiles, customer segmentation, and sales trends.

9. MindManager

No matter where you work, or what your problem-solving role looks like, MindManager is a problem solving software that will  make your team more productive  in figuring out why a process, plan, or project isn’t working the way it should.

Once you know why an obstruction, shortfall, or difficulty exists, you can use MindManager’s wide range of brainstorming and problem mapping diagrams to:

  • Find the most promising way to correct the situation
  • Activate your chosen solution, and
  • Conduct regular checks to make sure your repair work is sustainable

MindManager is the ultimate  problem solving software .

Not only is it versatile enough to use as your go-to system for puzzling out all types of workplace problems, MindManager’s built-in forecasting tools, timeline charts, and warning indicators let you plan, implement, and monitor your solutions.

By allowing your group to work together more effectively to break down problems, uncover solutions, and rebuild processes and workflows, MindManager’s versatile collection of problem solving tools will help make everyone on your team a more efficient problem solver.

Lean Six Sigma is one powerful problem solving and efficiency auditing technique that can be accomplished using MindManager.  Watch this webinar  for a full overview of what Lean Six Sigma is, and how MindManager fits into the process.

Find more great content here !

Related articles

  • 5 steps to problem solving proficiency
  • 9 problem solving tools you should be using with your team

Armstrong, L. (2021). 9 Essential Problem Solving Tools: The Ultimate Guide. Available at: https://blog.mindmanager.com/blog/2020/07/202007problem-solving-tools/ [Accessed: 11th May 2021].

You might also like ...

what are the tools used for problem solving

Text-to-Speech and Audio Playback in Power Apps using Azure and Power Automate

what are the tools used for problem solving

Connecting Microsoft Outlook to model-driven Power Apps

what are the tools used for problem solving

Microsoft Fabric - Data Activator Triggers and Alerts

The European Power Platform Conference 2024 Programme

Trending Posts

what are the tools used for problem solving

Recent Posts

  • 5 Best Practices for Power Platform Management
  • API versioning
  • SharePoint and OneDrive: How to Create Shortcuts for Faster and Easier Collaboration
  • Dive into Fun and Learning: Join the Learning Hub Quizzes Today!
  • Introduction to Generative AI

what are the tools used for problem solving

Rate This Post

Join our mailing list.

Sign up to receive exclusive content and analysis from the Microsoft 365 & Azure community, as well as the latest conference updates and offers. NOTE: This is for content only. You do not need to register for conference sessions.

  • Country Afghanistan Albania Algeria American Samoa Andorra Angola Antigua and Barbuda Argentina Armenia Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia Bosnia and Herzegovina Botswana Brazil Brunei Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Colombia Comoros Congo, Democratic Republic of the Congo, Republic of the Costa Rica Côte d'Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic East Timor Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Faroe Islands Fiji Finland France French Polynesia Gabon Gambia Georgia Germany Ghana Greece Greenland Grenada Guam Guatemala Guinea Guinea-Bissau Guyana Haiti Honduras Hong Kong Hungary Iceland India Indonesia Iran Iraq Ireland Israel Italy Jamaica Japan Jordan Kazakhstan Kenya Kiribati North Korea South Korea Kosovo Kuwait Kyrgyzstan Laos Latvia Lebanon Lesotho Liberia Libya Liechtenstein Lithuania Luxembourg Macedonia Madagascar Malawi Malaysia Maldives Mali Malta Marshall Islands Mauritania Mauritius Mexico Micronesia Moldova Monaco Mongolia Montenegro Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Zealand Nicaragua Niger Nigeria Northern Mariana Islands Norway Oman Pakistan Palau Palestine, State of Panama Papua New Guinea Paraguay Peru Philippines Poland Portugal Puerto Rico Qatar Romania Russia Rwanda Saint Kitts and Nevis Saint Lucia Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten Slovakia Slovenia Solomon Islands Somalia South Africa Spain Sri Lanka Sudan Sudan, South Suriname Swaziland Sweden Switzerland Syria Taiwan Tajikistan Tanzania Thailand Togo Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Vatican City Venezuela Vietnam Virgin Islands, British Virgin Islands, U.S. Yemen Zambia Zimbabwe
  • Area of Interest Area of Interest Developer IT Professional Business Decision Maker End User Maker
  • Phone This field is for validation purposes and should be left unchanged.

Privacy Overview

Resource centre login - content.

Forgot Password?

Enter something special:

Not a member yet? Create a free account Sign Up

Already a member? Simply Login

Become an ESPC Community Member today to access a wealth of SharePoint, Office 365 and Azure knowledge for free. New content is added daily to the online Resource Centre, across a variety of topics and formats from Microsoft MVP’s and industry experts. With over 2,500 eBooks, webinars, presentations, how to videos and blogs, there is something to suit everyone’s learning styles and career goals.

  • Password * Enter Password Confirm Password
  • Create Username *
  • Area of Interest * Please Select... Developer IT Professional Business Decision Maker End User Maker
  • Join to receive 1 Monthly Newsletter with Top and Upcoming Content and the occasional dedicated Webinar, Hot Seat or eBook email :) .
  • I have read and accept the Privacy Policy and the Terms and Conditions
  • ** Verification Email will be sent ** Check your Spam/Junk/Clutter folder
  • Email This field is for validation purposes and should be left unchanged.

Already have an account? Sign In

  • Comments This field is for validation purposes and should be left unchanged.

Scroll to top

STAY UP TO DATE - JOIN OUR MAILING LIST

opt-in

Image

  • RCA 101 – 5-Why Analysis (Free Training)
  • RCA 201 – Basic Failure Analysis
  • RCA 301 – PROACT® RCA Certification
  • RCA 401 – RCA Train The Trainer
  • Other Trainings
  • 5 Whys Root Cause Analysis Template
  • RCA Template
  • Chronic Failure Calculator

7 Powerful Root Cause Analysis Tools and Techniques

Sebastian Traeger

By Sebastian Traeger

Updated: April 21, 2024

Reading Time: 5 minutes

1. The Ishikawa Fishbone Diagram (IFD)

2. pareto chart, 4. failure mode and effects analysis (fmea), 5. proact® rca method, 6. affinity diagram, 7. fault tree analysis (fta).

With over two decades in business – spanning strategy consulting, tech startups and executive leadership – I am committed to helping your organization thrive. At Reliability, we’re on a mission to help enhance strategic decision-making and operational excellence through the power of Root Cause Analysis, and I hope this article will be helpful!  Our goal is to help you better understand these root cause analysis techniques by offering insights and practical tips based on years of experience. Whether you’re new to doing RCAs or a seasoned pro, we trust this will be useful in your journey towards working hard and working smart.

Root Cause Analysis (RCA) shines as a pivotal process that helps organizations identify the underlying reasons for problems, failures, and inefficiencies. The goal is simple: find the cause, fix it, and prevent it from happening again. But the process can be complex, and that’s where various RCA techniques come into play. 

Let’s dive into seven widely utilized RCA techniques and explore how they can empower your team’s problem-solving efforts.

Named after Japanese quality control statistician Kaoru Ishikawa, the Fishbone Diagram is a visual tool designed for group discussions. It helps teams track back to the potential root causes of a problem by sorting and relating them in a structured way. The diagram resembles a fishbone, with the problem at the head and the causes branching off the spine like bones. This visualization aids in categorizing potential causes and studying their complex interrelationships.

The-Ishikawa- -IFD

The Pareto Chart, rooted in the Pareto Principle, is a visual tool that helps teams identify the most significant factors in a set of data. In most situations, 80% of problems can be traced back to about 20% of causes. By arranging bar heights from tallest to shortest, teams can prioritize the most significant factors and focus their improvement efforts where they can have the most impact.

Pareto Chart - Quality Improvement - East London NHS Foundation Trust :  Quality Improvement – East London NHS Foundation Trust

The 5 Whys method is the epitome of simplicity in getting to the bottom of a problem. By repeatedly asking ‘why’ (typically five times), you can delve beneath the surface-level symptoms of a problem to unearth the root cause. This iterative interrogation is most effective when answers are grounded in factual evidence.

5 Why Image 2

When prevention is better than cure, Failure Mode and Effects Analysis (FMEA) steps in. This systematic, proactive method helps teams identify where and how a process might fail. By predicting and examining potential process breakdowns and their impacts, teams can rectify issues before they turn into failures. FMEA is a three-step process that involves identifying potential failures, analyzing their effects, and prioritizing them based on severity, occurrence, and detection ratings.

Failure Mode and Effects Analysis (FMEA)

The PROACT ® RCA technique is a robust process designed to drive significant business results. Notably used to identify and analyze ‘chronic failures,’ which can otherwise be overlooked, this method is defined by its name:

PReserving Evidence and Acquiring Data: Initial evidence collection step based on the 5-P’s – Parts, Position, People, Paper, and Paradigms.

Order Your Analysis Team and Assign Resources: Assembling an unbiased team to analyze a specific failure.

Analyze the Event: Reconstructing the event using a logic tree to identify Physical, Human, and Latent Root Causes.

Communicate Findings and Recommendations: Developing and implementing solutions to prevent root cause recurrence.

Track and Measure Impact for Bottom Line Results: Tracking the success of implemented recommendations and correlating the RCA’s effectiveness with ROI.

PROACT® RCA excels in mitigating risk, optimizing cost, and boosting performance, making it a valuable addition to any RCA toolkit.

PROACT Performance Process (P3)

The Affinity Diagram is a powerful tool for dealing with large amounts of data. It organizes a broad range of information into groups based on their natural relationships, creating a clear, visual representation of complex situations. It’s particularly beneficial for condensing feedback from brainstorming sessions into manageable categories, fostering a better understanding of the broader picture.

Affinity Diagram

Fault Tree Analysis (FTA) is a top-down, deductive failure analysis that explores the causes of faults or problems. It involves graphically mapping multiple causal chains to track back to possible root causes, using a tree-like diagram. FTA is particularly useful in high-risk industries, such as aerospace and nuclear power, where preventing failure is crucial.

Fault Tree Analysis (FTA)

Each RCA technique provides a unique approach for viewing and understanding problems, helping you pinpoint the root cause more effectively. The key is to understand when and how to use each tool, which can significantly enhance your team’s problem-solving capabilities.

Power up your RCA analysis with our EasyRCA and revolutionize your problem-solving process. Start Your Free Trial.

In conclusion, the techniques presented offer a diverse set of tools to help organizations address problems and inefficiencies effectively. From visual representations like the Ishikawa Fishbone Diagram and Pareto Chart to more proactive approaches such as the 5 Whys and Failure Mode and Effects Analysis (FMEA), each technique provides a unique perspective on identifying and mitigating root causes.

The PROACT® RCA Method stands out for its comprehensive process, particularly suited for chronic failures. Additionally, the Affinity Diagram and Fault Tree Analysis (FTA) contribute valuable insights by organizing data and exploring causal chains, respectively. Leveraging these techniques strategically enhances a team’s problem-solving capabilities, enabling them to make informed decisions and drive continuous improvement.

I hope you found these 7 techniques insightful and actionable! Stay tuned for more thought-provoking articles as we continue to share our knowledge. Success is rooted in a thorough understanding and consistent application, and we hope this article was a step in unlocking the full potential of Root Cause Analysis for your organization. Reliability runs initiatives such as an online learning center focused on the proprietary PROACT® RCA methodology and EasyRCA.com software. For additional resources, visit our Reliability Resources .

  • Root Cause Analysis /

Recent Posts

5 Root Cause Analysis Examples That Shed Light on Complex Issues

Root Cause Analysis with 5 Whys Technique (With Examples)

What Is Fault Tree Analysis (FTA)? Definition & Examples

Guide to Failure Mode and Effects Analysis (FMEA)

Root Cause Analysis Software

Our RCA software mobilizes your team to complete standardized RCA’s while giving you the enterprise-wide data you need to increase asset performance and keep your team safe.

Root Cause Analysis Training

[email protected]

Tel: 1 (800) 457-0645

Share article with friends:

Filter by Keywords

6 Powerful Problem-Solving Root Cause Analysis Tools

Engineering Team

February 13, 2024

When solving problems, you either take a proactive approach or a reactive one. Proactive: address the underlying causes of the issue to avoid future challenges. Reactive: respond to issues as they come.

For many project managers, getting at the root cause of an issue before it derails an entire project is key. You’ll save time, money, and valuable resources where they matter most. Plus, you develop insights to build better processes for smoother workflows. 

To nail down what’s at the heart of an issue, you need root cause analysis. 👀

In this article, we’ll share ten of the best root cause analysis tools and techniques. We’ll dive into what root cause analysis is and how to choose the right tools for your business. 

How to choose the right root cause analysis tool for a specific problem 

2. intelex root cause analysis software, 3. apache skywalking, 4. taproot®, 5. appdynamics from cisco, 6. sologic root cause analysis software, pareto chart, fishbone diagram, scatter plot diagram.

Avatar of person using AI

What Is Root Cause Analysis? 

Root cause analysis is the process of examining the source of an issue using various techniques and tools. It’s ideal for solving complex problems and helps teams create and prioritize solutions for better quality control and seamless processes.

There are several steps in the process, including: 

  • Describing the existing issue
  • Analyzing metrics and collecting data
  • Identifying potential causes
  • Brainstorming solutions
  • Taking corrective action
  • Observing changes and performance

ClickUp Whiteboards product template view

Root cause analysis is a key component of quality management because its goal is to get to the heart of an issue and what’s causing it. That way, you prevent similar problems from arising and causing havoc on a project.

The benefit of root cause analysis is that it allows you to examine potential issues at their core. Plus, it’s designed to assess the issue as well as the solutions as you implement them.

As you gather valuable data on the problems your business faces and the effectiveness of the solutions you try out, you learn how to improve processes every step of the way. The result is a more efficient and successful business that’s able to adapt to whatever comes next. 🤩

You’ll find plenty of tools and methods designed to make root cause analysis easier and streamline the overall process. Luckily, there are also a number of free options in addition to paid analytics tools on the market to gather insights into the cause of the problem.

Of course, not all tools are equally effective. Some are meant to help brainstorm ideas for solutions. Others are designed to dive into metrics to track issues and nail down what’s behind them. And some are complete process software tools designed to integrate into your daily work. 🛠️

Want effective root cause analysis? Here’s what to look for in different tools and techniques:

  • Integrations : RCA is best when done collaboratively. Look for tools that let you work with team members to break down problems
  • Data tools : You can’t figure out what’s wrong without diving into metrics. Choose a tool that lets you collect data to inform the process
  • Specific actions : It’s not enough to know what’s causing a problem. You need a tool that lets you take specific actions, like instantly assigning remedial tasks

6 Best Root Cause Analysis Tools in 2024

Ready to figure out what’s at the root of your problem? With these six best root cause analysis tools and techniques, you’ll have what you need to break down an issue. From integrated software tools to free methods, there’s something for everyone. 💪

ClickUp is an all-in-one project management software designed to centralize your work across apps into one collaborative platform. With a rich set of dynamic features to streamline any workflow, teams rely on ClickUp to drive productivity, reduce downtime, and make processes more efficient. 

One of the first steps in root cause analysis is to describe the problem. With ClickUp Whiteboards , teams can take a visual approach to this step. With live cursors, actionable tasks, embedding, and more, teams can work collaboratively to identify the root cause and present metrics that support their ideas. 

The next step is to collect data. Use metrics to truly see what’s driving the issue. With ClickUp Forms , you can survey customers and employees to find out what problems are present and what may be causing them. These Forms are completely customizable, letting you collect the specific data you need. Plus, they’re easy to share, allowing you to cast a wide net to gather as much information as possible.

Once you’re in the analysis stage, ClickUp’s Table view will be your best friend. Create spreadsheets in seconds and design visual databases of information. Use these views to analyze your data and lay the groundwork for next steps to correct the problem. 🤩

ClickUp best features

  • ClickUp AI features hundreds of tools for various use cases, identifying issues and brainstorming solutions
  • Use Docs from ClickUp to easily document your RCA process and keep track of important insights and potential next steps
  • More than 1,000 templates, including ClickUp’s Root Cause Analysis Template , make it easy to do your work faster and more efficiently

ClickUp limitations

  • Right now, ClickUp AI writing tools are only available on desktop, but mobile rollout is on the way
  • The sheer number of features requires some time to learn, but once you do, you’ll be able to create more powerful processes

ClickUp pricing

  • Free Forever
  • Unlimited : $7/month per user
  • Business : $12/month per user
  • Enterprise : Contact for pricing
  • ClickUp AI is available on all paid plans for $5 per Workspace member per month

ClickUp ratings and reviews

  • G2 : 4.7/5 (2,000+ reviews)
  • Capterra : 4.7/5 (2,000+ reviews)

Intelex Root Cause Analysis product example

The Root Cause Analysis Software from Intelex is a SaaS tool designed to help companies create better environment, health, safety, and quality (EHSC) procedures. It uses various methodologies to get to the root cause of the problem.

Start by recording incident data in the tool where everyone on the team can access and analyze the information. Next, use methodology tools like Ishikawa diagrams and failure mode and effects analysis (FMEA) to identify trends.

Intelex best features

  • Integrated RCA techniques, including 5 whys, checklists, and gap analysis, make it easy to assess problems in one space
  • Workflow tools feature integrations to identify the root causes of problems outside your organization when they occur
  • Custom dashboards and reporting make sharing insights with various team members easier than ever

Intelex limitations

  • Some users felt the tool was rigid and that data collection features could be more insightful
  • The user interface isn’t the most friendly, particularly for beginners

Intelex pricing

  • Free: seven-day trial
  • Custom : Contact for pricing

Intelex ratings and reviews

  • G2 : 4/5 (10+ reviews)
  • Capterra : N/A

Root cause analysis tools: Apache Skywalking's services stats dashboard

Apache Skywalking is an application performance management (APM) tool designed to identify issues in software tools. Specifically made for microservices, cloud, and Kubernetes applications, this tool is useful for software engineers in charge of tech teams. 👨🏽‍💻

Apache Skywalking best features

  • Profile codes on runtime using the built-in root causes analysis features that identify the exact point where issues develop
  • Performance optimization tools let you create continuous improvement processes to better meet customer needs
  • In-depth metrics get to the heart of the problem, so your team can brainstorm solutions

Apache Skywalking limitations

  • The complex interface may be intimidating, particularly for entry-level team members
  • Some found the tool was better suited for smaller-scale projects 

Apache Skywalking pricing

  • Free (open source tool)

Apache Skywalking ratings and reviews

Bonus: Check out The Best Open-Source Project Management Tools in 2024

TapRoot product example

TapRooT® is a software tool designed to identify and fix problems caused by both equipment and humans. Use this tool to collect evidence of the issue, identify the cause and effect of various actors, and develop fixes.

TapRooT® best features

  • Processes are differentiated based on whether it’s a simple incident or a major accident, so you react accordingly
  • The Corrective Action Helper® Guide/Module leads you through potential solutions and makes implementation faster
  • Charts and graphs organize data so it’s easier to identify trends

TapRooT® limitations

  • Some users found the pricing to be high
  • The tool is extremely in-depth, making it a better choice for big businesses 

TapRooT® pricing

  • Contact for pricing

TapRooT® ratings and reviews

Root cause analysis tools: AppDynamics from Cisco's Dashboard and Reports page

AppDynamics is a tech tool from Cisco that’s designed to identify the root causes of issues across your business. Use it to break down problems in software, applications, user experience, and overall business health. The tool lets you gain visibility, gather data, and automate solutions. 📚

AppDynamics best features

  • Extensive supported technologies, including Apache, Python, and Docker
  • Monitoring and migration tools make implementing solutions faster
  • Application flow maps let you pinpoint the exact moment issues arise

AppDynamics limitations

  • A steep learning curve means you have to allocate resources to get the team up to speed
  • Complicated licensing and limited data security features

AppDynamics pricing

  • Infrastructure Monitoring Edition : $6/month/CPU Core
  • Premium Edition : $60/month/CPU Core
  • Enterprise Edition : $90/month/CPU Core
  • Enterprise Edition for SAP® Solutions : $167/month/CPU Core
  • Real User Monitoring : $0.06/month per 1,000 tokens

AppDynamics ratings and reviews

  • G2 : 4.3/5 (300+ reviews)
  • Capterra : 4.5/5 (30+ reviews)

Sologic product example

Causelink® is Sologic’s RCA tool. It uses techniques like 5 whys, fishbone diagrams, and incident timelines to pinpoint the root cause of a problem. Use it as an individual, team, or enterprise tool based on the size of your business.

Sologic best features

  • Virtual RCA training features make it easy to provide professional development opportunities for all team members 
  • Multiple built-in techniques let you analyze data in ways that make the most sense for your business
  • The built-in five-step method takes the guesswork out of RCA

Sologic limitations

  • Since the tool features built-in methodologies, there isn’t as much customization as with other tools
  • Pricing can be expensive, making it harder for small businesses to use

Sologic pricing

  • Causelink® Individual : $384/year
  • Causelink® Team : Contact for pricing
  • Causelink® Enterprise : Contact for pricing

Sologic ratings and reviews

  • G2 : 4/5 (1+ reviews)

Root Cause Analysis Techniques

A major benefit to using root cause analysis tools is that they’re designed to help teams integrate proven techniques into their daily processes. There are a ton of ways to get to the root of a problem, especially when you consider the range of issues teams face across industries.

If you’re searching for a new strategy or wondering what root cause analysis technique will best fit your team’s needs, start here with a few of our favorite examples:

Also called Pareto analysis, this RCA tool is a simple bar chart that ranks data based on frequency. It’s useful for identifying problems that cause the most downtime and highlighting where you should focus your efforts. The main purpose of a Pareto Chart is to separate minor problems from major ones. Teams turn to Pareto charts and analysis to:

  • Simplify the problem-solving process 
  • Look for a singular cause to hone in on the root issue
  • Highlight the most commonly felt problems

The 5 Whys method is an investigative tool that’s much like a child repeatedly asking, “Why?” 🤔

That might be frustrating in other areas of life, but it’s great for root cause analysis because it pushes you to consider what’s behind a problem.

This tool isn’t meant for quantitative analysis; it’s more for a qualitative approach to finding out what’s behind an issue. It’s a mental exercise that limits your focus on one potential issue and encourages you to identify multiple contributors to that problem. The idea is to ask why-type questions about the problem to understand what’s wrong and why it may not be working.

This root cause analysis method is named for the shape of the diagram. It’s a process that breaks down problems into subcategories like machine, method, and materials. 🐟

Use fishbone diagram templates when you have no idea what’s behind the issue and need to do a big brainstorm. This strategy can be used for both simple and complex problems by breaking down each subcategory further and further until you nail down the root cause.

A scatter diagram helps you analyze the correlation of two sets of data. An independent variable (or potential cause) is plotted on the x-axis, while a dependent variable (the observed effect) is plotted on the y-axis. If the dots are grouped to create a line, this means there is a relationship between the two.

By clearly identifying the cause and effect based on data, you can implement solutions quickly and efficiently—even when using data points that may initially seem unrelated to each other.

Identify and Solve Problems With ClickUp

With these root cause analysis tools and methods, finding the problem and creating solutions is easier than ever. Choose one tool or mix and match a few depending on your business needs.

Sign up for ClickUp today to start gathering metrics, identifying problems, and creating solutions in your processes. With AI insights, Whiteboards, and Forms, quickly brainstorm ideas on what’s behind the issue and work collaboratively with your team. 

Once you identify the problem, ClickUp makes it easy to instantly assign tasks and create a schedule for implementing solutions. 🏆

Questions? Comments? Visit our Help Center for support.

Receive the latest WriteClick Newsletter updates.

Thanks for subscribing to our blog!

Please enter a valid email

  • Free training & 24-hour support
  • Serious about security & privacy
  • 99.99% uptime the last 12 months

By using this site you agree to our use of cookies. Please refer to our privacy policy for more information.   Close

ComplianceOnline

7 Powerful Problem-Solving Root Cause Analysis Tools

The first step to solving a problem is to define the problem precisely. It is the heart of problem-solving.

Root cause analysis is the second important element of problem-solving in quality management. The reason is if you don't know what the problem is, you can never solve the exact problem that is hurting the quality.

Sustainable Compliance for Out of Specifications (OOS) Results, Deviations, and Corrective and Preventive Actions (CAPA)

Manufacturers have a variety of problem-solving tools at hand. However, they need to know when to use which tool in a manner that is appropriate for the situation. In this article, we discuss 7 tools including:

  • The Ishikawa Fishbone Diagram (IFD)
  • Pareto Chart
  • Failure Mode and Effects Analysis (FMEA)
  • Scatter Diagram
  • Affinity Diagram
  • Fault Tree Analysis (FTA)

1. The Ishikawa Fishbone Diagram IFD

what are the tools used for problem solving

The model introduced by Ishikawa (also known as the fishbone diagram) is considered one of the most robust methods for conducting root cause analysis. This model uses the assessment of the 6Ms as a methodology for identifying the true or most probable root cause to determine corrective and preventive actions. The 6Ms include:

  • Measurement,
  • Mother Nature- i.e., Environment

Related Training: Fishbone Diagramming

2. Pareto Chart

what are the tools used for problem solving

The Pareto Chart is a series of bars whose heights reflect the frequency or impact of problems. On the Chart, bars are arranged in descending order of height from left to right, which means the categories represented by the tall bars on the left are relatively more frequent than those on the right.

Related Training: EFFECTIVE INVESTIGATIONS AND CORRECTIVE ACTIONS (CAPA) Establishing and resolving the root causes of deviations, problems and failures

This model uses the 5 Why by asking why 5 times to find the root cause of the problem. It generally takes five iterations of the questioning process to arrive at the root cause of the problem and that's why this model got its name as 5 Whys. But it is perfectly fine for a facilitator to ask less or more questions depending on the needs.

what are the tools used for problem solving

Related training: Accident/Incident Investigation and Root Cause Analysis

4. Failure Mode and Effects Analysis (FMEA)

FMEA is a technique used to identify process and product problems before they occur. It focuses on how and when a system will fail, not if it will fail. In this model, each failure mode is assessed for:

  • Severity (S)
  • Occurrence (O)
  • Detection (D)

A combination of the three scores produces a risk priority number (RPN). The RPN is then provided a ranking system to prioritize which problem must gain more attention first.

Related Training: Failure Mode Effects Analysis

5. Scatter Diagram

what are the tools used for problem solving

A scatter diagram also known as a scatter plot is a graph in which the values of two variables are plotted along two axes, the pattern of the resulting points revealing any correlation present.

To use scatter plots in root cause analysis, an independent variable or suspected cause is plotted on the x-axis and the dependent variable (the effect) is plotted on the y-axis. If the pattern reflects a clear curve or line, it means they are correlated. If required, more sophisticated correlation analyses can be continued.

Related Training: Excel Charting Basics - Produce Professional-Looking Excel Charts

6. Affinity Diagram

Also known as KJ Diagram, this model is used to represent the structure of big and complex factors that impact a problem or a situation. It divides these factors into small classifications according to their similarity to assist in identifying the major causes of the problem.

what are the tools used for problem solving

7. Fault Tree Analysis (FTA)

The Fault Tree Analysis uses Boolean logic to arrive at the cause of a problem. It begins with a defined problem and works backward to identify what factors contributed to the problem using a graphical representation called the Fault Tree. It takes a top-down approach starting with the problem and evaluating the factors that caused the problem.

what are the tools used for problem solving

Finding the root cause isn't an easy because there is not always one root cause. You may have to repeat your experiment several times to arrive at it to eliminate the encountered problem. Using a scientific approach to solving problem works. So, its important to learn the several problem-solving tools and techniques at your fingertips so you can use the ones appropriate for different situations.

ComplianceOnline Trainings on Root Cause Analysis

P&PC, SPC/6Sigma, Failure Investigation, Root Cause Analysis, PDCA, DMAIC, A3 This webinar will define what are the US FDA's expectation for Production and Process Control / Product Realization, the use of statistical tehniques, 6 sigma, SPC, for establishing, controlling , and verifying the acceptability of process capability and product characteristics, product acceptance or validation and other studies. Non-conformance, OOS, deviations Failure Investigations, and Root Cause Analysis, PDCA, DMAIC, and similar project drivers to improvement, A# and similar dash boards.

Accident/Incident Investigation and Root Cause Analysis If a major workplace injury or illness occurred, what would you do? How would you properly investigate it? What could be done to prevent it from happening again? A properly executed accident/incident investigation drives to the root causes of the workplace accident to prevent a repeat occurrence. A good accident/incident investigation process includes identifying the investigation team, establishing/reviewing written procedures, identifying root causes and tracking of all safety hazards found to completion.

Root Cause Analysis - The Heart of Corrective Action This presentation will explain the importance of root cause analysis and how it fits into an effective corrective and preventive action system. It will cover where else in your quality management system root cause analysis can be used and will give examples of some of the techniques for doing an effective root cause analysis. Attendees will learn how root cause analysis can be used in process control.

Addressing Non-Conformances using Root Cause Analysis (RCA) RCA assumes that systems and events are interrelated. An action in one area triggers an action in another, and another, and so on. By tracing back these actions, you can discover where the issue started and how it grew into the problem you're now facing.

Introduction to Root Cause Investigation for CAPA If you have reoccurring problems showing up in your quality systems, your CAPA system is not effective and you have not performed an in-depth root cause analysis to be able to detect through proper problem solving tools and quality data sources, the true root cause of your problem. Unless you can get to the true root cause of a failure, nonconformity, defect or other undesirable situation, your CAPA system will not be successful.

Root Cause Analysis and CAPA Controls for a Compliant Quality System In this CAPA webinar, learn various regulations governing Corrective and Preventive Actions (CAPA) and how organization should collect information, analyze information, identify, investigate product and quality problems, and take appropriate and effective corrective and/or preventive action to prevent their recurrence.

Root Cause Analysis for CAPA Management (Shutting Down the Alligator Farm) Emphasis will be placed on realizing system interactions and cultural environment that often lies at the root of the problem and prevents true root cause analysis. This webinar will benefit any organization that wants to improve the effectiveness of their CAPA and failure investigation processes.

Root Cause Analysis for Corrective and Preventive Action (CAPA) The Quality Systems Regulation (21 CFR 820) and the Quality Management Standard for Medical Devices (ISO 13485:2003), require medical device companies to establish and maintain procedures for implementing corrective and preventive action (CAPA) as an integral part of the quality system.

Strategies for an Effective Root Cause Analysis and CAPA Program This webinar will provide valuable assistance to all regulated companies, a CAPA program is a requirement across the Medical Device, Diagnostic, Pharmaceutical, and Biologics fields. This session will discuss the importance, requirements, and elements of a root cause-based CAPA program, as well as detailing the most effective ways to determine root cause and describing the uses of CAPA data.

Legal Disclaimer

This piece of content and any of its enclosures, attachments or appendices, references are created to provide solely for information purpose. ComplianceOnline has made all effort to provide accurate information concerning the subject matter covered. This content is created from interpretation, and understanding of relevant and applicable information and it is not all inclusive. It can be best used in conjunction with your professional judgment and discretion.

However, this piece of content and any other ancillary items disseminated in connection with same are not necessarily prepared by a person licensed to practice law in a particular jurisdiction. This piece of content is not a substitute for the advice of an attorney. If you require legal or other expert advice, you should seek the services of a competent attorney or other professional.

ComplianceOnline necessarily is not, cannot and will not be liable for any claims, damages, or regulatory legal proceedings initiated as a consequence of you using whole or any part of the content present in this document. If any action, claim for damages, or regulatory proceedings is commenced against ComplianceOnline as a consequence of your use of this document, then and in that event, you agree to indemnify ComplianceOnline for such claims, and for any attorney's fees expended by ComplianceOnline in connection with defense of same.

Phone

Explore Lean Thinking and Practice / Problem-Solving

Problem-Solving

Problem Solving graphic icon

Explore the process that’s foundational to assuring every individual becomes engaged by arming them with methods they can use to overcome obstacles and improve their work process.

leapers digging up problems

Overcoming obstacles to achieve or elevate a standard 

In a lean management system, everyone is engaged in ongoing problem-solving that is guided by two characteristics:

  • Everything described or claimed should be based on verifiable facts, not assumptions and interpretations. 
  • Problem-solving is never-ending; that is, it begins rather than ends when an improvement plan is implemented. The implementation process is a learning opportunity to discover how to make progress toward the target condition. 

Lean thinkers & practitioners understand that the problem-solving process is impeded if you make the common mistake of mechanically reaching for a familiar or favorite problem-solving methodology or, worse, jump quickly to a solution. 

Leaders and teams avoid this trap by recognizing that most business problems fall into four categories, each requiring different thought processes, improvement methods, and management cadences.

Problem-Solving

The Four Types of Problems

Type 1: Troubleshooting:   reactive problem-solving that hinges upon rapidly returning abnormal conditions to known standards. It provides some immediate relief but does not address the root cause.

Type 2: Gap from Standard: structured problem-solving that focuses on defining the problem, setting goals, analyzing the root cause, and establishing countermeasures, checks, standards, and follow-up activities. The aim is to prevent the problem from recurring by eliminating its underlying causes.

Type 3: Target Condition:   continuous improvement ( kaizen ) that goes beyond existing standards of performance. It may utilize existing methods in new, creative ways to deliver superior value or performance toward a new target state of improvement.

Type 4: Open-ended:  innovative problem-solving based on creativity, synthesis, and recognition of opportunity. It establishes new norms that often entail unexpected products, processes, systems, or value for the customer well beyond current levels. 

By helping everyone in the organization to understand the importance of taking ownership of seeing and solving all types of problems, lean thinking & practice:

  • Engenders a sense of empowerment and autonomy in all workers, which in turn promotes engagement in and ownership of the work process
  • Enables organizations to overcome obstacles at their source, so they do not become more significant problems upstream

Ultimately, building a problem-solving culture creates a competitive advantage that is difficult for competitors to match.  

Relevant Posts

Why the A3 Process Involves More than Filling in Boxes

Problem Solving

Why the A3 Process Involves More than Filling in Boxes

Article by Tracey Richardson

Big Problems? Start Small

Big Problems? Start Small

Article by Josh Howell

Article graphic image with repeating icons

What’s your problem

Article, Video by John Shook

Recent Posts

WLEI POdcast graphic with DHL logo

Revolutionizing Logistics: DHL eCommerce’s Journey Applying Lean Thinking to Automation  

Podcast by Matthew Savas

WLEI podcast with CEO of BEstBaths

Transforming Corporate Culture: Bestbath’s Approach to Scaling Problem-Solving Capability

Podcast graphic image with repeating icons and microphones

Teaching Lean Thinking to Kids: A Conversation with Alan Goodman 

Podcast by Alan Goodman and Matthew Savas

Relevant Products

Four Types of Problems Book

Four Types of Problems

by Art Smalley

Managing to Learn: Using the A3 management process

Managing to Learn: Using the A3 management process

by John Shook

Getting Home

Getting Home

by Liz McCartney and Zack Rosenburg

Steady Work

Steady Work

by Karen Gaudet

Relevant Events

June 10, 2024 | Coach-Led Online Course and Oakland University in Rochester, Michigan

Managing to Learn

June 12, 2024 | Morgantown, PA

Building a Lean Operating and Management System 

November 12, 2024 | Coach-Led Online Course

Improvement Kata/Coaching Kata

Be the first to learn of new learning opportunities and the latest practical, actionable information. subscribe to an lei newsletter., join us on social, privacy overview.

Fekra

Practical Problem Solving Tools for Factory and Office

February 5, 2022

Many tools exist to address deviations and defects, but only a few are simple yet effective to address daily issues in manufacturing, development, administration.

When starting systematic trouble-shooting, it is important to choose the right approach. Using a comprehensive method that requires 50 pages to solve a simple problem is a waste of time, while solving a complex problem with a simple tool will most likely not reveal the hidden causes. The optimal choice of Problem Solving Tools depends on the type of issues to be addressed. Before going into details, let’s first review the most common methods used today.

Comparing Popular Methods: 3W, PDCA, 8D, A3, DMAIC, 7STEP

At their core, all scientific approaches follow a similar logic: take quick action to prevent the problem from getting worse and then define the gap, analyze the gap, identify causes, take action, evaluate impact, and embed the solution so that the problem will not reoccur. 

  • 3W : When the issue is small and the solution is obvious, a formal analysis is not required. The 3W-method defines  What  to do,  Who  to do it, by  When . This “quick-fix” or “just-do-it” is commonly applied at daily team meetings to contain and correct snags and minor issues.
  • PDCA : The Deming or Shewhart cycle “Plan-Do-Check-Act” is the classic method, used by over 80% companies that practice systematic problem solving. PDCA is effective for medium-size problems that require a systematic analysis to uncover underlying causes.
  • 8D : The eight disciplines (8D) are commonly used in automotive, and the problem-solving process (PSP) in avionics. Both methods are similar, using 8 steps to address complex problems with focus on a fast reaction to non-conformances, completing the first three steps within three days.
  • A3 : The A3-report, developed by Toyota, is an 8-step improvement and problem-solving process that fits on one sheet of paper. The A3-report is most effective to address small- to medium-size problems, and to structure improvement projects.
  • DMAIC : The 5-step Six Sigma process “Define-Measure-Analyze-Improve-Control” is a data-centric solving method. DMAIC is used to structure projects and solve complex situations that require statistical analysis to develop the solution, e.g. adjust process parameters to reduce yield loss.
  • 7STEP : This seven-step (7S) problem-solving process shares elements with the A3 and 8D, but does not include a formal step for containment. Because of this weakness, the 7STEP process is rarely used today, replaced by 8D to address major deviations and PDCA for smaller issues.

Problem solving, comparison of different processes - PDCA, DMAIC, Toyota A3, 7-Step, 8D, Airbus, Boeing, Rolls-Royce.

Comparing the most-popular processes for trouble-shooting and root-cause analysis shows how similar they are. For example, the PDCA planning phase covers the first three steps in DMAIC and the first five steps in A3 and 8D. Of all those processes, there are two that stick out, that all others are based on – PDCA and 8D – they are therefore considered the “mother” and “father” of practical problem solving tools used today.

Answer 5 Questions to Select the Best Method

When it comes to choosing the right process, it merely depends on the complexity of the situation to address. The more complex or severe, the more formal steps should be applied to make sure no step is missed. Here are five questions that will help you selecting the best process:

  • Is the issue small, medium, or large?
  • Is the solution obvious or unknown?
  • Is it reoccurring or a single incident?
  • Is it a single cause or multiple causes?
  • Is statistical data analysis required?

3 Practical Problem Solving Tools: Fix, Fish, Tree

There are three practical, yet effective tools to address daily issues in factory and office: The 3W or “Fix” because it is quick, simple, informal;, the PDCA or “Fish” because it is based on the Ishikawa or Fishbone diagram;, and the 8D or “Tree” because it uses logical trees to analyze complex root causes.

  • Fix: use 3W (What-Who-When) for informal trouble-shooting , finding a quick action to fix a small issue within a day .
  • Fish: use PDCA (Plan-Do-Check-Act) to analyze simple and repeat issues within a week , using the fishbone diagram.
  • Tree: use 8D (Eight Disciplines) to systematically eliminate multiple root-causes or complex problems within a month .

Problem-solving, tool selection 3W, PDCA, 8D.

Tools and Templates to Eliminate Root Causes

To encourage people to go beyond containment and quick fixes, the method they use must be simple and practical, but also effective and efficient. Over the course of several years, we have tested dozens of different templates and found that the following two forms work best by far. Why? Because the user is given a clear structure, enhanced with pictograms, and the entire solving process can be completed on a single sheet, the key for broad adoption.

The PDCA and 8D templates have proven to be extremely effective in addressing non-conformances; they are practical problem solving tools for teams in manufacturing, quality control, product development, healthcare, back office, and corporate administration to successfully resolve daily issues and prevent them from coming back. You can download the free toolkit in 22 languages here .

Use PDCA Template to Solve Simple Problems

PDCA template by Leanmap.

4 Steps to Eliminate Simple Causes

  • Plan-1 Record Problem : Describe what happened, where and when, and who is involved solving it.
  • Plan-2 Analyze Problem :  Assign potential causes to categories: Man, Method, Machine, Material, Management, Milieu (Environment).
  • Plan-3 Identify Causes : Ask “why” to drill down to root causes; for complex problems, use several forms, one per branch or issue.
  • Do Implement Actions : Create and implement an action plan to contain, correct, and prevent the problem from reoccurring.
  • Check Results and Act : Review impact, standardize solution; close the case or initiate further actions by starting a new PDCA cycle.

Use 8D Template to Solve Complex Problems

8D template by Leanmap.

8 Steps to Eliminate Complex Causes

  • D0 Plan : Register problem and define emergency response.
  • D1 Team : Identify team members to address the problem.
  • D2 Problem : Grasp the situation and describe the problem.
  • D3 Containment : Prevent the problem from spreading.
  • D4 Diagnostics : Identify direct causes and root causes.
  • D5 Correction : Define and prioritize corrective actions.
  • D6 Validation : Implement actions and evaluate effectiveness.
  • D7 Prevention : Systemize solutions to prevent reoccurrence.
  • D8 Completion : Transfer knowledge and recognize contributors.

Become an Effective Problem Solver by Applying Practical Tools and Learning Battle-Tested Methods

what are the tools used for problem solving

TheLeanSuite

Got a question? Call us at +1-616-433-6688

theleansuite logo

People and Morale

Suggestions, suggestion platform.

Collect and implement million dollar ideas

Compentency Planning

Track and upscale workforce skills with ease

Learning Management System

Build and deploy on-demand training with ease

Job Cover Matrix

Loss and cost management.

Collect data and compile production loss trees

Quality Management

Prioritize internal and external quality defects

Issue Tracker

Identify, assign and close shop-floor anomalies quickly

Continuous Improvement

Document and manage quick to complex kaizens

Gemba Walker

Make the most out of the shop floor walks

CILR Management

Schedule & plan maintenance activities

Suggestion Management

Issue tracker for quality, issue tracker for operations, issue tracker for safety, suggestions, suggestion system for hr, suggestion system for operations.

  • Why TheLeanSuite

FEATURED BLOG POST

Blog Post Featured Images

  • Continuous Improvement: A Quick Guide for Beginners
  • The 5G Methodology: An Approach to Problem-Solving
  • Lean Transformation: A Complete Guide for Beginners
  • What is a Continuous Improvement Culture (CIC)?
  • PDCA Cycle: What is the Plan-Do-Check-Act Cycle?
  • Five Benefits of Continuous Improvement in Manufacturing
  • SCHEDULE FREE DEMO

></center></p><h2>The Most Popular Lean Six Sigma Tools and Techniques</h2><ul><li>March 15, 2024</li><li>Operations Management</li><li>Reading Time: 10 minutes</li></ul><p>Lean Six Sigma has emerged as a powerful methodology to enhance efficiency, reduce waste, and drive continuous improvement within organizations. One of the key elements that make Lean Six Sigma so effective is the wide array of tools and techniques it offers to identify problems, analyze data, and implement solutions. In this blog post, we’ll explore some of the most popular Lean Six Sigma tools and techniques that have been widely adopted across industries to achieve operational excellence and deliver exceptional results.</p><h2>What is Lean?</h2><p>Lean manufacturing is a systematic approach to minimizing waste and maximizing productivity in manufacturing processes. It focuses on creating more value for customers with fewer resources by eliminating activities that do not add value to the final product. Lean manufacturing principles originated from the Toyota Production System and have since been adopted by many industries worldwide.</p><h2>What is Six Sigma?</h2><p>Six Sigma is a data-driven methodology used by organizations to improve processes and reduce defects. Originating from Motorola in the 1980s and popularized by General Electric, Six Sigma aims to achieve near-perfect quality by minimizing variability and enhancing efficiency. Six Sigma methodologies are widely used across industries to enhance customer satisfaction, increase profitability, and drive continuous improvement.</p><h2>What is Lean Six Sigma?</h2><p>Lean and Six Sigma are two powerful methodologies that, when combined, create Lean Six Sigma – a comprehensive approach to process improvement. Lean focuses on eliminating waste and increasing efficiency by streamlining processes, while Six Sigma aims to reduce defects and variations in processes to improve quality and consistency. By integrating the principles of both Lean and Six Sigma, organizations can achieve significant improvements in operational performance, customer satisfaction, and profitability. Lean Six Sigma emphasizes the importance of data-driven decision-making, continuous improvement, and a customer-centric approach, making it a highly effective strategy for organizations looking to optimize their processes and drive sustainable growth.</p><h2>Key principles of Lean Six Sigma</h2><p>The Lean Six Sigma principles are widely recognized as a highly effective approach to project management. The methodology is based on five key principles or objectives:</p><p><center><img style=

1. Focus on the customer

This first Lean Six Sigma principle emphasizes the importance of understanding and meeting the needs and expectations of the customer in order to deliver high-quality products or services. By prioritizing the customer, organizations can identify areas for improvement, reduce waste, and increase customer satisfaction. In short, this principle involves gathering feedback from customers, analyzing data to identify customer requirements, and continuously striving to enhance the customer experience.

2. Map out the value stream

The second principle involves identifying and visualizing every step in the process that adds value to the end product or service. By mapping out the value stream, teams can gain a clear understanding of how value is created and where there may be inefficiencies or waste in the process. As a result, this enables them to pinpoint specific problems or bottlenecks that impact productivity, quality, or customer satisfaction. The purpose of the value stream map is to streamline processes, eliminate non-value-added activities, and improve overall efficiency.

3. Remove waste to create flow

The third principle emphasizes the importance of eliminating any processes or activities that do not add value to the final product or service. According to the principles of lean methodology, there are seven kinds of waste : transportation, inventory, motion, waiting, overproduction, over processing, and defects. By minimizing waste, organizations can streamline their operations and improve efficiency. What’s more, creating a smooth flow of work ensures that tasks are completed in a timely manner, further reducing lead times and increasing customer satisfaction.

4. Communicate with your team

Communication is essential in Lean Six Sigma, and the fourth principle emphasizes the importance of effective communication within your team. Clear and open communication ensures that everyone is on the same page, working towards the same goals, and can help in identifying and addressing any issues that may arise during the project. By fostering a culture of transparent communication, team members can share ideas, feedback, and concerns. Consequently, this leads to improved collaboration and ultimately better outcomes.

5. Create a culture of change and flexibility

The fifth and final key principle of Lean Six Sigma emphasizes the importance of creating a culture of change and flexibility within an organization. Lean Six Sigma principles involve a significant amount of change in processes and procedures to improve efficiency and reduce waste. So, to successfully implement these principles, it’s crucial to encourage employees to embrace and accept change. This involves fostering a work environment where employees feel empowered to adapt to new ways of working and are open to continuous improvement.

The most popular Lean Six Sigma tools and techniques

Several Lean Six Sigma tools and techniques have emerged as the most popular choices for process improvement. From the versatile DMAIC (Define, Measure, Analyze, Improve, Control) framework to the powerful fishbone diagram (Ishikawa) for root cause analysis, these tools play a crucial role in streamlining operations and enhancing quality. We’ll now dive into the top Lean Six Sigma tools and techniques that can revolutionize your process improvement strategy.

what are the tools used for problem solving

Value stream mapping

Value stream mapping is a powerful tool used in Lean Six Sigma to visualize and analyze the steps involved in delivering a product or service to a customer. It provides a detailed overview of the current state of a process, highlighting areas of waste, inefficiency, and opportunities for improved capabilities within the process. By mapping out every step in the value stream, from raw materials to the finished product reaching the customer, teams can identify bottlenecks, redundancies, and non-value-added activities. As a result, this enables organizations to streamline their processes, reduce lead times, improve quality, and ultimately deliver greater value to customers.

The 5 Whys technique is one of the most commonly used Lean Six Sigma tools for problem-solving. It involves asking “why” at least five times to get to the root cause of a particular issue or problem. By repeatedly asking “why,” teams can uncover the underlying reasons behind issues rather than just addressing the symptoms. This method helps in identifying the true cause of a problem, leading to more effective and sustainable solutions. In essence, the 5 Whys technique encourages a deeper level of thinking and analysis. This promotes a culture of continuous improvement within organizations by addressing issues at their core.

Kanban is a visual scheduling system used in Lean Six Sigma to improve efficiency and reduce waste in manufacturing processes. Originating from Japan, Kanban means “visual card” or “signal,” and it involves using visual cues like cards or boards to signal the need for production or replenishment of materials. By adopting Kanban, organizations can streamline their supply chain control system (and other workflows), minimize inventory levels, and enhance overall productivity. Basically, this method enables teams to prioritize tasks, identify bottlenecks, and maintain a smooth, continuous workflow. Kanban promotes a pull-based system where work is only pulled through the system when needed, thus reducing overproduction and improving lead times.

Failure Modes and Effects Analysis (FMEA)

Failure Modes and Effects Analysis (FMEA) is an analysis technique used in Lean Six Sigma to proactively identify and address potential failures in a process or product. By systematically analyzing the various failure modes and their potential effects, FMEA helps teams prioritize their efforts towards preventing or mitigating the most critical risks. This structured approach not only improves the overall quality and reliability of a system, but also reduces costs associated with rework, scrap, or customer complaints. FMEA can be applied at different stages of a project or product lifecycle. So, this makes it a versatile tool for continuous improvement and risk management in various industries.

Process mapping

Process mapping is a valuable tool in Lean Six Sigma that helps organizations visualize and understand their business processes. Essentially, it involves creating detailed flowcharts or diagrams that outline each step in a process, from start to finish. This allows for a clear identification of inefficiencies, bottlenecks, and opportunities for improvement. What’s more, this visual representation helps teams identify redundancies, unnecessary steps, or areas where errors commonly occur, enabling them to streamline processes and increase overall efficiency.

5S is one of the most fundamental Lean Six Sigma tools that focuses on organizing the workplace for efficiency and effectiveness. The 5S stands for Sort, Set in Order, Shine, Standardize, and Sustain. Each of these steps plays a crucial role in creating a well-structured and organized work environment. The purpose of implementing 5S is to eliminate waste, reduce errors, and optimize productivity by streamlining processes, improving safety, and promoting a culture of continuous improvement.

Pareto chart

A Pareto chart is a Lean Six Sigma tool used to identify and prioritize the most significant factors contributing to a problem or issue. Named after Vilfredo Pareto, an Italian economist, the chart uses the Pareto principle which states that a majority of problems come from vital few causes. In other words, it follows the 80/20 rule, which suggests that 80% of the effects come from 20% of the causes. By visually displaying data in descending order of frequency or impact, Pareto charts help teams focus their efforts on the vital few rather than the trivial many. This prioritization enables organizations to allocate resources efficiently and effectively to address the root causes of problems, leading to improved processes and outcomes.

Kaizen (continuous improvement)

Kaizen is another fundamental concept in Lean Six Sigma that involves the continuous effort to improve processes, products, or services incrementally. That is to say, the purpose of Kaizen is to create a culture of continuous improvement within an organization, where employees at all levels are encouraged to identify areas for enhancement and implement small, incremental changes to achieve ongoing improvements. By focusing on Kaizen, companies can streamline operations, reduce waste, increase efficiency, and ultimately enhance customer satisfaction. This systematic approach to improvement empowers employees to take ownership of their work and contribute to the overall success of the organization.

DMAIC process

DMAIC , standing for Define, Measure, Analyze, Improve, and Control, is a systematic and data-driven tool in Lean Six Sigma. It has five phases and is used to provide a structured approach for problem-solving and process improvement within organizations:

  • 1. The “define” phase involves clearly outlining the problem, project goals, and customer requirements.
  • 2. In the “measure” phase, data is collected to establish a baseline performance level.
  • 3. The “analyze” phase focuses on identifying root causes of issues through data analysis.
  • 4. Improvement actions are then implemented in the “improve” phase to address the root causes and improve processes.
  • 5. Finally, the “control” phase ensures that the improvements are sustained over time by implementing controls and monitoring the process.

RACI matrix

The RACI matrix is a Lean Six Sigma tool used to clarify roles and responsibilities within a project or process. RACI stands for Responsible, Accountable, Consulted, and Informed, representing the different levels of involvement individuals can have in a task. By clearly defining who is responsible for completing a task, who is ultimately accountable for its success, who needs to be consulted for input, and who needs to be informed of progress, the RACI matrix helps streamline decision-making processes and enhances communication among team members. In short, this tool is particularly useful in ensuring that everyone understands their role in achieving project goals, reducing confusion, and improving overall efficiency.

Fishbone diagram

The fishbone diagram , also known as the Ishikawa diagram or cause-and-effect diagram, is a Lean Six Sigma tool used for problem-solving and root cause analysis. This diagram takes its name from its appearance, resembling the skeleton of a fish, with the “head” representing the problem or effect, and the “bones” representing the various potential causes contributing to that problem. By visually mapping out these potential causes in categories such as people, process, equipment, materials, and environment, the fishbone diagram helps teams identify the root causes of issues, leading to more targeted and effective solutions. Its purpose is to promote a structured approach to problem-solving, encourage team collaboration, and ultimately drive continuous improvement within an organization.

Regression analysis

Regression analysis is a powerful statistical process control tool used in Lean Six Sigma to understand the relationship between variables and make predictions based on observed data. Its primary purpose is to identify and quantify the relationship between a dependent variable and one or more independent variables. By analyzing data through regression analysis, teams can determine how changes in one variable may impact another, allowing them to make informed decisions to enhance existing processes and reduce variation. This tool helps organizations identify key factors that influence process performance and enables them to optimize operations for better efficiency and quality.

Control charts

A control chart is a Lean Six Sigma tool used to monitor process variation over time. It helps identify any trends, shifts, or patterns in data. This allows teams to distinguish between common cause variation (inherent to the process) and special cause variation (due to external factors). By plotting data points on a control chart to track all improved capabilities, teams can determine if a process is in control or out of control. Consequently, this enables them to take corrective actions promptly, reducing variation, enhancing quality, and increasing efficiency.

How to pick the right Lean Six Sigma tools and techniques

Selecting the right Lean Six Sigma tools is crucial for the successful implementation of process improvement initiatives. To begin, it’s essential to clearly define the problem or opportunity you aim to address. Understanding the nature of the issue will guide you in choosing the most suitable Lean Six Sigma tools for analysis and improvement.

Next, consider the data requirements for the project. Some Lean Six Sigma tools, such as Pareto charts or fishbone diagrams, rely heavily on data analysis, while others, like process mapping or value stream mapping, focus more on visualizing the workflow. Therefore, matching the tools to the data availability and complexity of the problem will ensure effective analysis and decision-making.

Additionally, take into account the expertise and skills of your team members. Different Lean Six Sigma tools require varying levels of statistical knowledge and experience. Hence, it’s important to select tools that align with the capabilities of your team to maximize efficiency and accuracy in the improvement process. By carefully evaluating the problem, data requirements, and team proficiency, you can confidently choose the right Lean Six Sigma tools to drive impactful and sustainable change within your organization.

Lean Six Sigma vs Six Sigma

Lean Six Sigma and Six Sigma are both methodologies that aim to improve processes and eliminate defects within organizations. While they share the common goal of enhancing efficiency and quality, there are some key differences between the two approaches.

Six Sigma focuses primarily on reducing variation and defects in processes by using statistical analysis and data-driven decision-making. It aims to ensure that outputs meet customer requirements and that processes operate as efficiently as possible. On the other hand, Lean Six Sigma combines the principles of the Six Sigma process with those of lean manufacturing, which focuses on minimizing waste and maximizing value. This means that Lean Six Sigma not only targets defects and process variations, but also looks at streamlining processes and eliminating non-value-added activities.

In essence, Six Sigma is more focused on quality and reducing defects, while Lean Six Sigma takes a broader approach by incorporating waste reduction and process optimization. Both methodologies have their strengths and can be effective in different contexts. So, choosing the right one depends on the specific goals and challenges of the organization.

What are the Lean Six Sigma certification levels?

Lean six sigma belt levels

Lean Six Sigma certification levels provide a structured framework for individuals to showcase their expertise and proficiency in process improvement methodologies. These levels signify different levels of knowledge and experience in Lean Six Sigma practices. There are six different certification levels: white belt, yellow belt, green belt, black belt, and master black belt.

Share this:

Related blogs.

what are the tools used for problem solving

Continuous Improvement vs Process Improvement: The Differences

In the world of business and project management, the concepts

what are the tools used for problem solving

How to Reduce Lead Time in Manufacturing

If you work in the manufacturing industry, you know how

what are the tools used for problem solving

What is Operational Excellence in Manufacturing?

If you’re involved in the manufacturing industry, you’ve likely heard

360 Degree view of Lean Program

desktopscreen

Ready to Digitze your Lean Manufacturing Journey?

Fill out the form and an advisor will reach out to you at the earliest..

Invalid value

Discover more from TheLeanSuite

Subscribe now to keep reading and get access to the full archive.

Type your email…

Continue reading

Kaizen is about changing the way things are. If you assume that things are all right the way they are, you can’t do kaizen. So change something! —Taiichi Ohno

Inspect and Adapt

Inspect & adapt: overview.

what are the tools used for problem solving

The Inspect and Adapt (I&A) is a significant event held at the end of each PI, where the current state of the Solution is demonstrated and evaluated. Teams then reflect and identify improvement backlog items via a structured problem-solving workshop.

The Agile Manifesto emphasizes the importance of continuous improvement through the following principle: “At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its behavior accordingly.”

In addition, SAFe includes ‘relentless improvement’ as one of the four SAFe Core Values as well as a dimension of the Continuous Learning Culture core competency. While opportunities to improve can and should occur continuously throughout the PI (e.g., Iteration Retrospectives ), applying some structure, cadence, and synchronization helps ensure that there is also time set aside to identify improvements across multiple teams and Agile Release Trains .

All ART stakeholders participate along with the Agile Teams in the I&A event. The result is a set of improvement backlog items that go into the ART Backlog for the next PI Planning event. In this way, every ART improves every PI. A similar I&A event is held by Solution Trains .

The I&A event consists of three parts:

PI System Demo

  • Quantitative and qualitative measurement
  • Retrospective and problem-solving workshop

Participants in the I&A should be, wherever possible, all the people involved in building the solution. For an ART, this includes:

  • The Agile teams
  • Release Train Engineer (RTE)
  • System and Solution Architects
  • Product Management ,  Business Owners , and other stakeholders

Additionally, Solution Train stakeholders may also attend this event.

The PI System Demo is the first part of the I&A, and it’s a little different from the regular system demos after every iteration. This demo shows all the Features the ART has developed during the PI. Typically the audience is broader; for example, Customers or Portfolio representatives are more likely to attend this demo. Therefore, the PI system demo tends to be a little more formal, and extra preparation and setup are usually required. But like any other system demo, it should be timeboxed to an hour or less, with the level of abstraction high enough to keep stakeholders actively engaged and providing feedback.

Before or as part of the PI system demo, Business Owners collaborate with each Agile Team to score the actual business value achieved for each of their Team PI Objectives , as illustrated in Figure 1.

The achievement score is calculated by separately totaling the business value for the plan and actual columns. The uncommitted objectives are not included in the total plan. However, they are part of the total actual. Then divide the actual total by the planned total to calculate the achievement score illustrated in Figure 1.

Quantitative and Qualitative Measurement

In the second part of the I&A event, teams collectively review any quantitative and qualitative metrics they have agreed to collect, then discuss the data and trends. In preparation for this, the RTE and the Solution Train Engineer are often responsible for gathering the information, analyzing it to identify potential issues, and facilitating the presentation of the findings to the ART.

Each team’s planned vs. actual business value is rolled up to create the ART predictability measure, as shown in Figure 2.

Reliable trains should operate in the 80–100 percent range; this allows the business and its external stakeholders to plan effectively. (Note: Uncommitted objectives are excluded from the planned commitment. However, they are included in the actual business value achievement, as can also be seen in Figure 1.)

Retrospective

The teams then run a brief (30 minutes or less) retrospective to identify a few significant issues they would like to address during the problem-solving workshop . There is no one way to do this; several different Agile retrospective formats can be used [3].

Based on the retrospective and the nature of the problems identified, the facilitator helps the group decide which issues they want to tackle. Each team may work on a problem, or, more typically, new groups are formed from individuals across different teams who wish to work on the same issue. This self-selection helps provide cross-functional and differing views of the problem and brings together those impacted and those best motivated to address the issue.

Key ART stakeholders—including Business Owners, customers, and management—join the retrospective and problem-solving workshop teams. The Business Owners can often unblock the impediments outside the team’s control.

Problem-Solving Workshop

The ART holds a structured, root-cause problem-solving workshop to address systemic problems. Root cause analysis provides a set of problem-solving tools used to identify the actual causes of a problem rather than just fixing the symptoms. The RTE typically facilitates the session in a timebox of two hours or less.

Figure 3 illustrates the steps in the problem-solving workshop.

The following sections describe each step of the process.

Agree on the Problem(s) to Solve

American inventor Charles Kettering is credited with saying that “a problem well stated is a problem half solved.” At this point, the teams have self-selected the problem they want to address. But do they agree on the details of the problem, or is it more likely that they have differing perspectives? To this end, the teams should spend a few minutes clearly stating the problem, highlighting the ‘what,’ ‘where,’ ‘when,’ and ‘impact’ as concisely as possible. Figure 4 illustrates a well-written problem statement.

Perform Root Cause Analysis

Effective problem-solving tools include the fishbone diagram and the ‘5 Whys.’ Also known as an Ishikawa Diagram , a fishbone diagram is a visual tool to explore the causes of specific events or sources of variation in a process. Figure 5 illustrates the fishbone diagram with a summary of the previous problem statement written at the head of the ‘fish.’

For our problem-solving workshop, the main bones often start with the default categories of people, processes, tools, program, and environment. However, these categories should be adapted as appropriate.

Team members then brainstorm causes that they think contribute to solving the problem and group them into these categories. Once a potential cause is identified, its root cause is explored with the 5 Whys technique. By asking ‘why’ five times, the cause of the previous cause is uncovered and added to the diagram. The process stops once a suitable root cause has been identified, and the same process is then applied to the next cause.

Identify the Biggest Root Cause

Pareto Analysis, also known as the 80/20 rule, is used to narrow down the number of actions that produce the most significant overall effect. It uses the principle that 20 percent of the causes are responsible for 80 percent of the problem. It’s beneficial when many possible courses of action compete for attention, which is almost always the case with complex, systemic issues.

Once all the possible causes-of-causes are identified, team members then cumulatively vote on the item they think is the most significant factor contributing to the original problem. They can do this by dot voting. For example, each person gets five votes to choose one or more causes they think are most problematic. The team then summarizes the votes in a Pareto chart, such as the example in Figure 6, which illustrates their collective consensus on the most significant root cause.

Restate the New Problem

The next step is to pick the cause with the most votes and restate it clearly as a problem. Restating it should take only a few minutes, as the teams clearly understand the root cause.

Brainstorm Solutions

At this point, the restated problem will start to imply some potential solutions. The team brainstorms as many possible corrective actions as possible within a fixed timebox (about 15–30 minutes). The rules of brainstorming apply here:

  • Generate as many ideas as possible
  • Do not allow criticism or debate
  • Let the imagination soar
  • Explore and combine ideas

Create Improvement Backlog Items

The team then cumulatively votes on up to three most viable solutions. These potential solutions are written as improvement stories and features, planned in the following PI Planning event. During that event, the RTE helps ensure that the relevant work needed to deliver the identified improvements is planned. This approach closes the loop, thus ensuring that action will be taken and that people and resources are dedicated as necessary to improve the current state.

Following this practice, problem-solving becomes routine and systematic, and team members and ART stakeholders can ensure that the train is solidly on its journey of relentless improvement.

Inspect and Adapt for Solution Trains

The above describes a rigorous approach to problem-solving in the context of a single ART. If the ART is part of a Solution Train, the I&A event will often include key stakeholders from the Solution Train. In larger value streams, however, an additional Solution Train I&A event may be required, following the same format.

Due to the number of people in a Solution Train, attendees at the large solution I&A event cannot include everyone, so stakeholders are selected that are best suited to address the problems. This subset of people consists of the Solution Train’s primary stakeholders and representatives from the various ARTs and Suppliers .

Last update: 22 January 2023

Privacy Overview

For IEEE Members

Ieee spectrum, follow ieee spectrum, support ieee spectrum, enjoy more free content and benefits by creating an account, saving articles to read later requires an ieee spectrum account, the institute content is only available for members, downloading full pdf issues is exclusive for ieee members, downloading this e-book is exclusive for ieee members, access to spectrum 's digital edition is exclusive for ieee members, following topics is a feature exclusive for ieee members, adding your response to an article requires an ieee spectrum account, create an account to access more content and features on ieee spectrum , including the ability to save articles to read later, download spectrum collections, and participate in conversations with readers and editors. for more exclusive content and features, consider joining ieee ., join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of spectrum’s articles, archives, pdf downloads, and other benefits. learn more →, join the world’s largest professional organization devoted to engineering and applied sciences and get access to this e-book plus all of ieee spectrum’s articles, archives, pdf downloads, and other benefits. learn more →, access thousands of articles — completely free, create an account and get exclusive content and features: save articles, download collections, and talk to tech insiders — all free for full access and benefits, join ieee as a paying member., ai copilots are changing how coding is taught, professors are shifting away from syntax and emphasizing higher-level skills.

Photo-illustration of a mini AI bot looking at a laptop atop a stock of books, sitting next to human hands on a laptop.

Generative AI is transforming the software development industry. AI-powered coding tools are assisting programmers in their workflows, while jobs in AI continue to increase. But the shift is also evident in academia—one of the major avenues through which the next generation of software engineers learn how to code.

Computer science students are embracing the technology, using generative AI to help them understand complex concepts, summarize complicated research papers, brainstorm ways to solve a problem, come up with new research directions, and, of course, learn how to code.

“Students are early adopters and have been actively testing these tools,” says Johnny Chang , a teaching assistant at Stanford University pursuing a master’s degree in computer science. He also founded the AI x Education conference in 2023, a virtual gathering of students and educators to discuss the impact of AI on education.

So as not to be left behind, educators are also experimenting with generative AI. But they’re grappling with techniques to adopt the technology while still ensuring students learn the foundations of computer science.

“It’s a difficult balancing act,” says Ooi Wei Tsang , an associate professor in the School of Computing at the National University of Singapore . “Given that large language models are evolving rapidly, we are still learning how to do this.”

Less Emphasis on Syntax, More on Problem Solving

The fundamentals and skills themselves are evolving. Most introductory computer science courses focus on code syntax and getting programs to run, and while knowing how to read and write code is still essential, testing and debugging—which aren’t commonly part of the syllabus—now need to be taught more explicitly.

“We’re seeing a little upping of that skill, where students are getting code snippets from generative AI that they need to test for correctness,” says Jeanna Matthews , a professor of computer science at Clarkson University in Potsdam, N.Y.

Another vital expertise is problem decomposition. “This is a skill to know early on because you need to break a large problem into smaller pieces that an LLM can solve,” says Leo Porter , an associate teaching professor of computer science at the University of California, San Diego . “It’s hard to find where in the curriculum that’s taught—maybe in an algorithms or software engineering class, but those are advanced classes. Now, it becomes a priority in introductory classes.”

“Given that large language models are evolving rapidly, we are still learning how to do this.” —Ooi Wei Tsang, National University of Singapore

As a result, educators are modifying their teaching strategies. “I used to have this singular focus on students writing code that they submit, and then I run test cases on the code to determine what their grade is,” says Daniel Zingaro , an associate professor of computer science at the University of Toronto Mississauga . “This is such a narrow view of what it means to be a software engineer, and I just felt that with generative AI, I’ve managed to overcome that restrictive view.”

Zingaro, who coauthored a book on AI-assisted Python programming with Porter, now has his students work in groups and submit a video explaining how their code works. Through these walk-throughs, he gets a sense of how students use AI to generate code, what they struggle with, and how they approach design, testing, and teamwork.

“It’s an opportunity for me to assess their learning process of the whole software development [life cycle]—not just code,” Zingaro says. “And I feel like my courses have opened up more and they’re much broader than they used to be. I can make students work on larger and more advanced projects.”

Ooi echoes that sentiment, noting that generative AI tools “will free up time for us to teach higher-level thinking—for example, how to design software, what is the right problem to solve, and what are the solutions. Students can spend more time on optimization, ethical issues, and the user-friendliness of a system rather than focusing on the syntax of the code.”

Avoiding AI’s Coding Pitfalls

But educators are cautious given an LLM’s tendency to hallucinate . “We need to be teaching students to be skeptical of the results and take ownership of verifying and validating them,” says Matthews.

Matthews adds that generative AI “can short-circuit the learning process of students relying on it too much.” Chang agrees that this overreliance can be a pitfall and advises his fellow students to explore possible solutions to problems by themselves so they don’t lose out on that critical thinking or effective learning process. “We should be making AI a copilot—not the autopilot—for learning,” he says.

“We should be making AI a copilot—not the autopilot—for learning.” —Johnny Chang, Stanford University

Other drawbacks include copyright and bias. “I teach my students about the ethical constraints—that this is a model built off other people’s code and we’d recognize the ownership of that,” Porter says. “We also have to recognize that models are going to represent the bias that’s already in society.”

Adapting to the rise of generative AI involves students and educators working together and learning from each other. For her colleagues, Matthews’s advice is to “try to foster an environment where you encourage students to tell you when and how they’re using these tools. Ultimately, we are preparing our students for the real world, and the real world is shifting, so sticking with what you’ve always done may not be the recipe that best serves students in this transition.”

Porter is optimistic that the changes they’re applying now will serve students well in the future. “There’s this long history of a gap between what we teach in academia and what’s actually needed as skills when students arrive in the industry,” he says. “There’s hope on my part that we might help close the gap if we embrace LLMs.”

  • How Coders Can Survive—and Thrive—in a ChatGPT World ›
  • AI Coding Is Going From Copilot to Autopilot ›
  • OpenAI Codex ›

Rina Diane Caballar is a writer covering tech and its intersections with science, society, and the environment. An IEEE Spectrum Contributing Editor, she's a former software engineer based in Wellington, New Zealand.

Bruce Benson

Yes! Great summary of how things are evolving with AI. I’m a retired coder (BS comp sci) and understand the fundamentals of developing systems. Learning the lastest systems is now the greatest challenge. I was intrigued by Ansible to help me manage my homelab cluster, but who wants to learn one more scripting language? Turns out ChatGPT4 knows the syntax, semantics, and work flow of Ansible and all I do is tell is to “install log2ram on all my proxmox servers” and I get a playbook that does just that. The same with Docker Compose scripts. Wow.

Video Friday: Robot Bees

The new shadow hand can take a beating, commercial space stations approach launch phase, related stories, ai spam threatens the internet—ai can also protect it, what is generative ai, generative ai has a visual plagiarism problem.

Help | Advanced Search

Physics > Physics Education

Title: real-world problem-solving class is correlated with higher student persistence in engineering.

Abstract: Student persistence in science, technology, engineering, and mathematics (STEM) has long been a focus of educational research, with both quantitative and qualitative methods being used to investigate patterns and mechanisms of attrition. Some studies have used machine learning to predict a student's likelihood to persist given measurable classroom factors and institutional data, while others have framed persistence as a function of a student's social integration in the classroom. While these methods have provided insight into broader underlying patterns of attrition in STEM, they have not investigated class structures or teaching methods that promote persistence. In this study we explore how a research-based instructional format for an introductory calculus-based physics class using real world problem-solving (RPS) was correlated with higher persistence for students at a large research-intensive university. We found that the one-year persistence rates for the RPS course were 74% (fall semester) and 90% (spring semester), while the lecture-based class had a persistence rate of 64% and 78%, respectively. In spring, the RPS persistence rate was significantly higher (p=0.037). The RPS also had higher final grades and larger learning gains than the lecture-based class despite lower scores on a physics diagnostic test. We also note that the higher rates of persistence were not completely explained by higher final grades. This study motivates future work to understand the structural mechanisms that promote student persistence in introductory physics courses.

Submission history

Access paper:.

  • Other Formats

license icon

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

A Lagrangian approach for solving an axisymmetric thermo-electromagnetic problem. Application to time-varying geometry processes

  • Open access
  • Published: 08 May 2024
  • Volume 50 , article number  45 , ( 2024 )

Cite this article

You have full access to this open access article

what are the tools used for problem solving

  • Marta Benítez 1 , 2 ,
  • Alfredo Bermúdez 1 , 3 ,
  • Pedro Fontán 4 ,
  • Iván Martínez 1 , 3 &
  • Pilar Salgado 1 , 3  

39 Accesses

Explore all metrics

The aim of this work is to introduce a thermo-electromagnetic model for calculating the temperature and the power dissipated in cylindrical pieces whose geometry varies with time and undergoes large deformations; the motion will be a known data. The work will be a first step towards building a complete thermo-electromagnetic-mechanical model suitable for simulating electrically assisted forming processes, which is the main motivation of the work. The electromagnetic model will be obtained from the time-harmonic eddy current problem with an in-plane current; the source will be given in terms of currents or voltages defined at some parts of the boundary. Finite element methods based on a Lagrangian weak formulation will be used for the numerical solution. This approach will avoid the need to compute and remesh the thermo-electromagnetic domain along the time. The numerical tools will be implemented in FEniCS and validated by using a suitable test also solved in Eulerian coordinates.

Article PDF

Download to read the full article text

Similar content being viewed by others

Thermoelastic interactions in an infinite orthotropic continuum of a variable thermal conductivity with a cylindrical hole.

what are the tools used for problem solving

Nonlinear thermo-electromagnetic analysis of inductive heating processes

what are the tools used for problem solving

Development of One-dimensional Semi-coupled Field Electromagnetic-Thermal Model on Electromagnetic Tube Forming

Avoid common mistakes on your manuscript.

Alonso-Rodríguez, A., Valli, A.: Eddy Current Approximation of Maxwell Equations: Theory. Algorithms and Applications. Springer, Milan (2010)

Alves, J., Acevedo, S., Marie, S., Adams, B., Mocellin, K., Bay, F.: Numerical modeling of electrical upsetting manufacturing processes based on Forge® environment. AIP Conf. Proc. 1896 , 120003 (2017). https://doi.org/10.1063/1.5008141

Bermúdez, A., Rodríguez, R., Salgado, P.: Numerical solution of eddy current problems in bounded domains using realistic boundary conditions. Comput. Methods Appl. Mech. Eng. 194 (2), 411–426 (2005)

Bermúdez, A., Bullón, J., Pena, F., Salgado, P.: A numerical method for transient simulation of metallurgical compound electrodes. Finite Elem. Anal. Des. 39 , 283–299 (2003). https://api.semanticscholar.org/CorpusID:121553921

Bermúdez, A., Gómez, D., Muñiz, M.C., Salgado, P.: Transient numerical simulation of a thermoelectrical problem in cylindrical induction heating furnaces. Adv. Comput. Math. 26 (1–3), 39–62 (2007). https://doi.org/10.1007/s10444-005-7470-9

Bermúdez, A., Gómez, D., Salgado, P.: Mathematical Models and Numerical Simulation in Electromagnetism, UNITEXT , vol. 74. Springer, New York (2014). https://doi.org/10.1007/978-3-319-02949-8

Bermúdez, A., López-Rodríguez, B., Pena, F.J., Rodríguez, R., Salgado, P., Venegas, P.: Numerical solution of an axisymmetric eddy current model with current and voltage excitations. J. Sci. Comput. 91(1), Paper No. 8, 26 (2022). https://doi.org/10.1007/s10915-022-01780-4

Bermúdez, A., López-Rodríguez, B., Rodríguez, R., Salgado, P.: Numerical solution of transient eddy current problems with input current intensities as boundary data. IMA J. Numer. Anal. 32 (3), 1001–1029 (2012). https://doi.org/10.1093/imanum/drr028

Bossavit, A.: Two dual formulations of the 3D eddy currents problem. COMPEL - Int. J. Comput. Math. Electr. Electron. Eng. 4 , 103–116 (1985)

Bossavit, A.: Forces in magnetostatics and their computation. J. Appl. Phys. 67(9), 5812–5814 (1990). https://doi.org/10.1063/1.345972

Bossavit, A.: Differential forms and the computation of fields and forces in Electromagnetism. Eur. J. Mech. B Fluids 10 , 474–488 (1991). https://api.semanticscholar.org/CorpusID:123083223

Bossavit, A.: On “Hybrid” Electric-Magnetic Methods, pp. 237–240. Springer US, Boston, MA (1995). https://doi.org/10.1007/978-1-4615-1961-4_54

Bossavit, A.: Computational Electromagnetism. Variational Formulations, Complementarity, Edge Elements. Variational Formulations, Complementarity, Edge Elements. Academic Press Inc., San Diego, CA, (1998)

Bossavit, A.: Most general “non-local” boundary conditions for the Maxwell equation in a bounded region. COMPEL - Int J Comput Math Electr Electron Eng 19 , (2000)

Bossavit, A., Verite, J.: The “TRIFOU” Code: solving the 3-D eddy-currents problem by using H as state variable. IEEE Trans. Magn. 19 (6), 2465–2470 (1983). https://doi.org/10.1109/TMAG.1983.1062817

Fontán, P.: Mathematical analysis and numerical simulation with pure Lagrangian and semi-Lagrangian methods of problems in continuum mechanics. Ph.D. thesis (2021)

Gurtin, M.E.: An introduction to continuum mechanics, vol. 158. Academic Press, San Diego (2003)

Google Scholar  

Lax, M., Nelson, D.F.: Maxwell equations in material form. Phys. Rev. B. 13 (4), 1777–1784 (1976). https://doi.org/10.1103/PhysRevB.13.1777

Logg, A., Mardal, K.A., Wells, G. N.: Automated solution of differential equations by the finite element method. The FEniCS book, Lecture Notes in Computational Science and Engineering , vol. 84. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-23099-8

Monk, P.: Finite element methods for Maxwell’s equations. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2003). https://doi.org/10.1093/acprof:oso/9780198508885.001.0001

Niyonzima, I., Jiao, Y., Fish, J.: Modeling and simulation of nonlinear electro-thermo-mechanical continua with application to shape memory polymeric medical devices. Comput. Methods Appl. Mech. Eng 350 , 511–534 (2019). https://doi.org/10.1016/j.cma.2019.03.003

Paoli, G., Biro, O., Buchgraber, G: Complex representation in nonlinear time harmonic Eddy current problems. In: Proceeding of the 11th COMPUMAG Conference on the Computation of Electromagnetic Fields. pp. 647–648, COMPUMAG, Rio de Janeiro (1997)

Petzold, T.: Modelling, Analysis and Simulation of Multifrequency Induction Hardening. Ph.D. thesis (2014). https://doi.org/10.14279/depositonce-4118

Quan, Guo-Zheng., Zou, Zhen-Yu., Zhang, Zhi-Hua., Pan, Jia: A study on formation process of secondary upsetting defect in electric upsetting and optimization of processing parameters based on multi-field coupling FEM. Mater. Res. 19 , 856–864 (2016)

Article   Google Scholar  

Thomas, J., Triantafyllidis, N.: On electromagnetic forming processes in finitely strained solids: theory and examples. J. Mech. Phys. Solids 57 (8), 1391–1416 (2009). https://doi.org/10.1016/j.jmps.2009.04.004

Download references

Acknowledgements

Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. The research has been developed in collaboration with CIE Galfor through a project granted by the Centre for the Development of Industrial Technology (CDTI) and signed between the company CIE Galfor and Itmati (nowadays, integrated in CITMAga). This work has been partially supported by FEDER, Ministerio de Economía, Industria y Competitividad-AEI research project PID2021-122625OBI00 and by Xunta de Galicia (Spain) research project GRC GI-1563 ED431C 2021/15.

Author information

Authors and affiliations.

Galician Centre for Mathematical Research and Technology (CITMAga), Campus Vida, Santiago de Compostela, E-15782, Spain

Marta Benítez, Alfredo Bermúdez, Iván Martínez & Pilar Salgado

Department of Mathematics, University of A Coruña, Elviña s/n, A Coruña, E-15071, Spain

Marta Benítez

Department of Applied Mathematics, University of Santiago de Compostela, Campus Vida, Santiago de Compostela, E-15782, Spain

Alfredo Bermúdez, Iván Martínez & Pilar Salgado

REPSOL Technology Lab, Autovía de Extremadura s/n, Móstoles, Madrid, 28935, Spain

Pedro Fontán

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Pilar Salgado .

Ethics declarations

Conflict of interest.

The authors declare that they have no conflict of interest.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is dedicated to Professor Alain Bossavit on the occasion of his 80th birthday.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Benítez, M., Bermúdez, A., Fontán, P. et al. A Lagrangian approach for solving an axisymmetric thermo-electromagnetic problem. Application to time-varying geometry processes. Adv Comput Math 50 , 45 (2024). https://doi.org/10.1007/s10444-024-10121-y

Download citation

Received : 16 October 2023

Accepted : 04 March 2024

Published : 08 May 2024

DOI : https://doi.org/10.1007/s10444-024-10121-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Lagrangian methods
  • Eddy currents
  • Thermo-electromagnetic
  • Time dependent domain
  • Axisymmetric

Mathematics Subject Classification

Advertisement

  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. Problem-Solving Strategies: Definition and 5 Techniques to Try

    what are the tools used for problem solving

  2. PROBLEM SOLVING

    what are the tools used for problem solving

  3. 6 steps of the problem solving process

    what are the tools used for problem solving

  4. example of a problem solving tool

    what are the tools used for problem solving

  5. How to improve your problem solving skills and strategies

    what are the tools used for problem solving

  6. Problem Solving Technique

    what are the tools used for problem solving

VIDEO

  1. Problem Solving Techniques

  2. Problem Solving tools -part2

  3. Problem Solving tools

  4. Problem solving

  5. UP Scholarship This Mobile number already used Problem Solution

  6. Leveraging digital tools and platforms for Problem Solving

COMMENTS

  1. 9 essential problem solving tools: the ultimate guide

    Problem solving software is the best way to take advantage of multiple problem solving tools in one platform. While some software programs are geared toward specific industries or processes - like manufacturing or customer relationship management, for example - others, like MindManager , are purpose-built to work across multiple trades ...

  2. What Is Problem Solving?

    The first step in solving a problem is understanding what that problem actually is. You need to be sure that you're dealing with the real problem - not its symptoms. For example, if performance in your department is substandard, you might think that the problem lies with the individuals submitting work. However, if you look a bit deeper, the ...

  3. 35 problem-solving techniques and methods for solving complex problems

    Problem analysis can be one of the most important and decisive stages of all problem-solving tools. Sometimes, a team can become bogged down in the details and are unable to move forward. Journalists is an activity that can avoid a group from getting stuck in the problem identification or problem analysis stages of the process.

  4. 36 Problem-solving techniques, methods and tools

    9 Problem-solving tools for gathering and selecting ideas. Problem-solving tools support your meeting with easy-to-use graphs, visualisations and techniques. By implementing a problem-solving tool, you break the cycle of mundane verbal discussion, enabling you to maintain engagement throughout the session. ‍ 28. Fishbone Diagram

  5. What is Problem Solving? Steps, Process & Techniques

    Finding a suitable solution for issues can be accomplished by following the basic four-step problem-solving process and methodology outlined below. Step. Characteristics. 1. Define the problem. Differentiate fact from opinion. Specify underlying causes. Consult each faction involved for information. State the problem specifically.

  6. How Good Is Your Problem Solving?

    Problem solving is an exceptionally important workplace skill. Being a competent and confident problem solver will create many opportunities for you. By using a well-developed model like Simplexity Thinking for solving problems, you can approach the process systematically, and be comfortable that the decisions you make are solid.

  7. Effective Problem-Solving Tools: Definition and Examples

    Problem-solving tools refer to strategies that can help determine the cause of a problem and identify the best solutions available. The first step in addressing an issue at work is to outline your objectives. Once you establish the cause, you can isolate variables that can help contribute to a potential solution.

  8. The Problem-Solving Process

    The Problem-Solving Process. Problem-solving is an important part of planning and decision-making. The process has much in common with the decision-making process, and in the case of complex decisions, can form part of the process itself. We face and solve problems every day, in a variety of guises and of differing complexity.

  9. The McKinsey guide to problem solving

    The McKinsey guide to problem solving. Become a better problem solver with insights and advice from leaders around the world on topics including developing a problem-solving mindset, solving problems in uncertain times, problem solving with AI, and much more.

  10. Definitive Guide to Problem Solving Techniques

    Defer or suspend judgement. Focus on "Yes, and…" rather than "No, but…". According to Carella, "Creative problem solving is the mental process used for generating innovative and imaginative ideas as a solution to a problem or a challenge. Creative problem solving techniques can be pursued by individuals or groups.".

  11. Problem-Solving Techniques and Tips (That Actually Work)

    And by box, we mean outside of the past experience you're holding on to, or outside any preconceived ideas on how a tool is conventionally used. More problem-solving tools Hurson's Productive Thinking Model. In his book "Think Better," author and creativity guru Tim Hurson proposed a six-step model for solving problems creatively.

  12. 13 thinking tools to boost your problem-solving skills

    However, we can use many other mental models for creative and critical thinking. Here are 13 thinking tools to boost decision-making, problem-solving, and creative thinking skills. 1. First Principles. First principle thinking is a mental model that can be used for problem-solving by breaking things down to the most basic level.

  13. THE ART OF ROOT CAUSE PROBLEM SOLVING: 15 ESSENTIAL TOOLS ...

    Here are some commonly used tools and methodologies: 1. THE 5 WHYS. This is a simple but effective technique that involves asking "why" repeatedly (usually five times) to drill down to the ...

  14. How to improve your problem solving skills and strategies

    Problem solving activities used at this stage often have a focus on creating frank, open discussion so that potential problems can be brought to the surface. ... Tools such as the seven-step problem solving process above are effective because not only do they feature steps that will help a team solve problems, they also develop skills along the ...

  15. 9 Essential Problem Solving Tools: The Ultimate Guide

    1. Fishbone diagrams. Fishbone diagrams are a common problem solving tool so-named because, once complete, they resemble the skeleton of a fish. With the possible root causes of an issue (the ribs) branching off from either side of a spine line attached to the head (the problem), dynamic fishbone diagrams let you: Lay out a related set of ...

  16. 7 Powerful Root Cause Analysis Tools and Techniques

    Explore 7 powerful RCA techniques to enhance problem-solving. From Fishbone Diagrams to FMEA, unlock effective strategies for identifying root causes. ... understanding problems, helping you pinpoint the root cause more effectively. The key is to understand when and how to use each tool, which can significantly enhance your team's problem ...

  17. 6 Powerful Problem-Solving Root Cause Analysis Tools

    Capterra: 4.7/5 (2,000+ reviews) 2. Intelex Root Cause Analysis Software. via Intelex. The Root Cause Analysis Software from Intelex is a SaaS tool designed to help companies create better environment, health, safety, and quality (EHSC) procedures. It uses various methodologies to get to the root cause of the problem.

  18. 7 Powerful Problem-Solving Root Cause Analysis Tools

    The first step to solving a problem is to define the problem precisely. It is the heart of problem-solving. ... Manufacturers have a variety of problem-solving tools at hand. However, they need to know when to use which tool in a manner that is appropriate for the situation. In this article, we discuss 7 tools including: The Ishikawa Fishbone ...

  19. Lean Problem Solving

    The Four Types of Problems. Type 1: Troubleshooting: reactive problem-solving that hinges upon rapidly returning abnormal conditions to known standards.It provides some immediate relief but does not address the root cause. Type 2: Gap from Standard: structured problem-solving that focuses on defining the problem, setting goals, analyzing the root cause, and establishing countermeasures, checks ...

  20. Practical Problem Solving Tools for Factory and Office

    3 Practical Problem Solving Tools: Fix, Fish, Tree. There are three practical, yet effective tools to address daily issues in factory and office: The 3W or "Fix" because it is quick, simple, informal;, the PDCA or "Fish" because it is based on the Ishikawa or Fishbone diagram;, and the 8D or "Tree" because it uses logical trees to ...

  21. Six Sigma Tools: DMAIC, Lean & Other Techniques

    Six Sigma tools are defined as the problem-solving tools used to support Six Sigma and other process improvement efforts. The Six Sigma expert uses qualitative and quantitative techniques to drive process improvement. Although the tools themselves are not unique, the way they are applied and integrated as part of a system is.

  22. The Most Popular Lean Six Sigma Tools and Techniques

    The 5 Whys technique is one of the most commonly used Lean Six Sigma tools for problem-solving. It involves asking "why" at least five times to get to the root cause of a particular issue or problem. By repeatedly asking "why," teams can uncover the underlying reasons behind issues rather than just addressing the symptoms.

  23. Inspect and Adapt

    Problem-Solving Workshop. The ART holds a structured, root-cause problem-solving workshop to address systemic problems. Root cause analysis provides a set of problem-solving tools used to identify the actual causes of a problem rather than just fixing the symptoms. The RTE typically facilitates the session in a timebox of two hours or less.

  24. Problem-Solving Powerhouse: Tools for Kids Future Success

    Equipping children with problem-solving skills not only prepares them to handle academic challenges but also empowers them to navigate the complexities of life. Problem-solving is an indispensable facet of learning, encompassing the ability to analyse situations, brainstorm solutions, and implement them effectively.

  25. AI Copilots Are Changing How Coding Is Taught

    AI-powered coding tools are assisting programmers in their workflows, ... Less Emphasis on Syntax, More on Problem Solving. The fundamentals and skills themselves are evolving. Most introductory ...

  26. Real-World Problem-Solving Class is Correlated with Higher Student

    Student persistence in science, technology, engineering, and mathematics (STEM) has long been a focus of educational research, with both quantitative and qualitative methods being used to investigate patterns and mechanisms of attrition. Some studies have used machine learning to predict a student's likelihood to persist given measurable classroom factors and institutional data, while others ...

  27. Rio Salado Launching Program for Introduction to Precision Optics

    OTP 107: Precision Optics & Mathematical Concepts (Covers basic algebraic operations, problem solving involving metric measurement, gears, pulleys, simple mechanism problems. Areas and volume calculations of geometric figures. Essentials of trigonometry for solving right and oblique triangles.) ... tools and systems used for manufacturing ...

  28. An Investigation into the Utility of Large Language Models in ...

    The study explores the capabilities of large language models (LLMs), particularly GPT-4, in understanding and solving geotechnical problems, a specialised area that has not been extensively examined in previous research. Employing a question bank obtained from a commonly used textbook in geotechnical engineering, the research assesses GPT-4's performance across various topics and cognitive ...

  29. A Lagrangian approach for solving an axisymmetric thermo

    The electromagnetic model will be obtained from the time-harmonic eddy current problem with an in-plane current; the source will be given in terms of currents or voltages defined at some parts of the boundary. Finite element methods based on a Lagrangian weak formulation will be used for the numerical solution.