StatAnalytica

200+ Experimental Quantitative Research Topics For STEM Students In 2023

Experimental Quantitative Research Topics For Stem Students

STEM means Science, Technology, Engineering, and Math, which is not the only stuff we learn in school. It is like a treasure chest of skills that help students become great problem solvers, ready to tackle the real world’s challenges.

In this blog, we are here to explore the world of Research Topics for STEM Students. We will break down what STEM really means and why it is so important for students. In addition, we will give you the lowdown on how to pick a fascinating research topic. We will explain a list of 200+ Experimental Quantitative Research Topics For STEM Students.

And when it comes to writing a research title, we will guide you step by step. So, stay with us as we unlock the exciting world of STEM research – it is not just about grades; it is about growing smarter, more confident, and happier along the way.

What Is STEM?

Table of Contents

STEM is Science, Technology, Engineering, and Mathematics. It is a way of talking about things like learning, jobs, and activities related to these four important subjects. Science is about understanding the world around us, technology is about using tools and machines to solve problems, engineering is about designing and building things, and mathematics is about numbers and solving problems with them. STEM helps us explore, discover, and create cool stuff that makes our world better and more exciting.

Why STEM Research Is Important?

STEM research is important because it helps us learn new things about the world and solve problems. When scientists, engineers, and mathematicians study these subjects, they can discover cures for diseases, create new technology that makes life easier, and build things that help us live better. It is like a big puzzle where we put together pieces of knowledge to make our world safer, healthier, and more fun.

  • STEM research leads to new discoveries and solutions.
  • It helps find cures for diseases.
  • STEM technology makes life easier.
  • Engineers build things that improve our lives.
  • Mathematics helps us understand and solve complex problems.

How to Choose a Topic for STEM Research Paper

Here are some steps to choose a topic for STEM Research Paper:

Step 1: Identify Your Interests

Think about what you like and what excites you in science, technology, engineering, or math. It could be something you learned in school, saw in the news, or experienced in your daily life. Choosing a topic you’re passionate about makes the research process more enjoyable.

Step 2: Research Existing Topics

Look up different STEM research areas online, in books, or at your library. See what scientists and experts are studying. This can give you ideas and help you understand what’s already known in your chosen field.

Step 3: Consider Real-World Problems

Think about the problems you see around you. Are there issues in your community or the world that STEM can help solve? Choosing a topic that addresses a real-world problem can make your research impactful.

Step 4: Talk to Teachers and Mentors

Discuss your interests with your teachers, professors, or mentors. They can offer guidance and suggest topics that align with your skills and goals. They may also provide resources and support for your research.

Step 5: Narrow Down Your Topic

Once you have some ideas, narrow them down to a specific research question or project. Make sure it’s not too broad or too narrow. You want a topic that you can explore in depth within the scope of your research paper.

Here we will discuss 200+ Experimental Quantitative Research Topics For STEM Students: 

Qualitative Research Topics for STEM Students:

Qualitative research focuses on exploring and understanding phenomena through non-numerical data and subjective experiences. Here are 10 qualitative research topics for STEM students:

  • Exploring the experiences of female STEM students in overcoming gender bias in academia.
  • Understanding the perceptions of teachers regarding the integration of technology in STEM education.
  • Investigating the motivations and challenges of STEM educators in underprivileged schools.
  • Exploring the attitudes and beliefs of parents towards STEM education for their children.
  • Analyzing the impact of collaborative learning on student engagement in STEM subjects.
  • Investigating the experiences of STEM professionals in bridging the gap between academia and industry.
  • Understanding the cultural factors influencing STEM career choices among minority students.
  • Exploring the role of mentorship in the career development of STEM graduates.
  • Analyzing the perceptions of students towards the ethics of emerging STEM technologies like AI and CRISPR.
  • Investigating the emotional well-being and stress levels of STEM students during their academic journey.

Easy Experimental Research Topics for STEM Students:

These experimental research topics are relatively straightforward and suitable for STEM students who are new to research:

  •  Measuring the effect of different light wavelengths on plant growth.
  •  Investigating the relationship between exercise and heart rate in various age groups.
  •  Testing the effectiveness of different insulating materials in conserving heat.
  •  Examining the impact of pH levels on the rate of chemical reactions.
  •  Studying the behavior of magnets in different temperature conditions.
  •  Investigating the effect of different concentrations of a substance on bacterial growth.
  •  Testing the efficiency of various sunscreen brands in blocking UV radiation.
  •  Measuring the impact of music genres on concentration and productivity.
  •  Examining the correlation between the angle of a ramp and the speed of a rolling object.
  •  Investigating the relationship between the number of blades on a wind turbine and energy output.

Research Topics for STEM Students in the Philippines:

These research topics are tailored for STEM students in the Philippines:

  •  Assessing the impact of climate change on the biodiversity of coral reefs in the Philippines.
  •  Studying the potential of indigenous plants in the Philippines for medicinal purposes.
  •  Investigating the feasibility of harnessing renewable energy sources like solar and wind in rural Filipino communities.
  •  Analyzing the water quality and pollution levels in major rivers and lakes in the Philippines.
  •  Exploring sustainable agricultural practices for small-scale farmers in the Philippines.
  •  Assessing the prevalence and impact of dengue fever outbreaks in urban areas of the Philippines.
  •  Investigating the challenges and opportunities of STEM education in remote Filipino islands.
  •  Studying the impact of typhoons and natural disasters on infrastructure resilience in the Philippines.
  •  Analyzing the genetic diversity of endemic species in the Philippine rainforests.
  •  Assessing the effectiveness of disaster preparedness programs in Philippine communities.

Read More 

  • Frontend Project Ideas
  • Business Intelligence Projects For Beginners

Good Research Topics for STEM Students:

These research topics are considered good because they offer interesting avenues for investigation and learning:

  •  Developing a low-cost and efficient water purification system for rural communities.
  •  Investigating the potential use of CRISPR-Cas9 for gene therapy in genetic disorders.
  •  Studying the applications of blockchain technology in securing medical records.
  •  Analyzing the impact of 3D printing on customized prosthetics for amputees.
  •  Exploring the use of artificial intelligence in predicting and preventing forest fires.
  •  Investigating the effects of microplastic pollution on aquatic ecosystems.
  •  Analyzing the use of drones in monitoring and managing agricultural crops.
  •  Studying the potential of quantum computing in solving complex optimization problems.
  •  Investigating the development of biodegradable materials for sustainable packaging.
  •  Exploring the ethical implications of gene editing in humans.

Unique Research Topics for STEM Students:

Unique research topics can provide STEM students with the opportunity to explore unconventional and innovative ideas. Here are 10 unique research topics for STEM students:

  •  Investigating the use of bioluminescent organisms for sustainable lighting solutions.
  •  Studying the potential of using spider silk proteins for advanced materials in engineering.
  •  Exploring the application of quantum entanglement for secure communication in the field of cryptography.
  •  Analyzing the feasibility of harnessing geothermal energy from underwater volcanoes.
  •  Investigating the use of CRISPR-Cas12 for rapid and cost-effective disease diagnostics.
  •  Studying the interaction between artificial intelligence and human creativity in art and music generation.
  •  Exploring the development of edible packaging materials to reduce plastic waste.
  •  Investigating the impact of microgravity on cellular behavior and tissue regeneration in space.
  •  Analyzing the potential of using sound waves to detect and combat invasive species in aquatic ecosystems.
  •  Studying the use of biotechnology in reviving extinct species, such as the woolly mammoth.

Experimental Research Topics for STEM Students in the Philippines

Research topics for STEM students in the Philippines can address specific regional challenges and opportunities. Here are 10 experimental research topics for STEM students in the Philippines:

  •  Assessing the effectiveness of locally sourced materials for disaster-resilient housing construction in typhoon-prone areas.
  •  Investigating the utilization of indigenous plants for natural remedies in Filipino traditional medicine.
  •  Studying the impact of volcanic soil on crop growth and agriculture in volcanic regions of the Philippines.
  •  Analyzing the water quality and purification methods in remote island communities.
  •  Exploring the feasibility of using bamboo as a sustainable construction material in the Philippines.
  •  Investigating the potential of using solar stills for freshwater production in water-scarce regions.
  •  Studying the effects of climate change on the migration patterns of bird species in the Philippines.
  •  Analyzing the growth and sustainability of coral reefs in marine protected areas.
  •  Investigating the utilization of coconut waste for biofuel production.
  •  Studying the biodiversity and conservation efforts in the Tubbataha Reefs Natural Park.

Capstone Research Topics for STEM Students in the Philippines:

Capstone research projects are often more comprehensive and can address real-world issues. Here are 10 capstone research topics for STEM students in the Philippines:

  •  Designing a low-cost and sustainable sanitation system for informal settlements in urban Manila.
  •  Developing a mobile app for monitoring and reporting natural disasters in the Philippines.
  •  Assessing the impact of climate change on the availability and quality of drinking water in Philippine cities.
  •  Designing an efficient traffic management system to address congestion in major Filipino cities.
  •  Analyzing the health implications of air pollution in densely populated urban areas of the Philippines.
  •  Developing a renewable energy microgrid for off-grid communities in the archipelago.
  •  Assessing the feasibility of using unmanned aerial vehicles (drones) for agricultural monitoring in rural Philippines.
  •  Designing a low-cost and sustainable aquaponics system for urban agriculture.
  •  Investigating the potential of vertical farming to address food security in densely populated urban areas.
  •  Developing a disaster-resilient housing prototype suitable for typhoon-prone regions.

Experimental Quantitative Research Topics for STEM Students:

Experimental quantitative research involves the collection and analysis of numerical data to conclude. Here are 10 Experimental Quantitative Research Topics For STEM Students interested in experimental quantitative research:

  •  Examining the impact of different fertilizers on crop yield in agriculture.
  •  Investigating the relationship between exercise and heart rate among different age groups.
  •  Analyzing the effect of varying light intensities on photosynthesis in plants.
  •  Studying the efficiency of various insulation materials in reducing building heat loss.
  •  Investigating the relationship between pH levels and the rate of corrosion in metals.
  •  Analyzing the impact of different concentrations of pollutants on aquatic ecosystems.
  •  Examining the effectiveness of different antibiotics on bacterial growth.
  •  Trying to figure out how temperature affects how thick liquids are.
  •  Finding out if there is a link between the amount of pollution in the air and lung illnesses in cities.
  •  Analyzing the efficiency of solar panels in converting sunlight into electricity under varying conditions.

Descriptive Research Topics for STEM Students

Descriptive research aims to provide a detailed account or description of a phenomenon. Here are 10 topics for STEM students interested in descriptive research:

  •  Describing the physical characteristics and behavior of a newly discovered species of marine life.
  •  Documenting the geological features and formations of a particular region.
  •  Creating a detailed inventory of plant species in a specific ecosystem.
  •  Describing the properties and behavior of a new synthetic polymer.
  •  Documenting the daily weather patterns and climate trends in a particular area.
  •  Providing a comprehensive analysis of the energy consumption patterns in a city.
  •  Describing the structural components and functions of a newly developed medical device.
  •  Documenting the characteristics and usage of traditional construction materials in a region.
  •  Providing a detailed account of the microbiome in a specific environmental niche.
  •  Describing the life cycle and behavior of a rare insect species.

Research Topics for STEM Students in the Pandemic:

The COVID-19 pandemic has raised many research opportunities for STEM students. Here are 10 research topics related to pandemics:

  •  Analyzing the effectiveness of various personal protective equipment (PPE) in preventing the spread of respiratory viruses.
  •  Studying the impact of lockdown measures on air quality and pollution levels in urban areas.
  •  Investigating the psychological effects of quarantine and social isolation on mental health.
  •  Analyzing the genomic variation of the SARS-CoV-2 virus and its implications for vaccine development.
  •  Studying the efficacy of different disinfection methods on various surfaces.
  •  Investigating the role of contact tracing apps in tracking & controlling the spread of infectious diseases.
  •  Analyzing the economic impact of the pandemic on different industries and sectors.
  •  Studying the effectiveness of remote learning in STEM education during lockdowns.
  •  Investigating the social disparities in healthcare access during a pandemic.
  • Analyzing the ethical considerations surrounding vaccine distribution and prioritization.

Research Topics for STEM Students Middle School

Research topics for middle school STEM students should be engaging and suitable for their age group. Here are 10 research topics:

  • Investigating the growth patterns of different types of mold on various food items.
  • Studying the negative effects of music on plant growth and development.
  • Analyzing the relationship between the shape of a paper airplane and its flight distance.
  • Investigating the properties of different materials in making effective insulators for hot and cold beverages.
  • Studying the effect of salt on the buoyancy of different objects in water.
  • Analyzing the behavior of magnets when exposed to different temperatures.
  • Investigating the factors that affect the rate of ice melting in different environments.
  • Studying the impact of color on the absorption of heat by various surfaces.
  • Analyzing the growth of crystals in different types of solutions.
  • Investigating the effectiveness of different natural repellents against common pests like mosquitoes.

Technology Research Topics for STEM Students

Technology is at the forefront of STEM fields. Here are 10 research topics for STEM students interested in technology:

  • Developing and optimizing algorithms for autonomous drone navigation in complex environments.
  • Exploring the use of blockchain technology for enhancing the security and transparency of supply chains.
  • Investigating the applications of virtual reality (VR) and augmented reality (AR) in medical training and surgery simulations.
  • Studying the potential of 3D printing for creating personalized prosthetics and orthopedic implants.
  • Analyzing the ethical and privacy implications of facial recognition technology in public spaces.
  • Investigating the development of quantum computing algorithms for solving complex optimization problems.
  • Explaining the use of machine learning and AI in predicting and mitigating the impact of natural disasters.
  • Studying the advancement of brain-computer interfaces for assisting individuals with
  • disabilities.
  • Analyzing the role of wearable technology in monitoring and improving personal health and wellness.
  • Investigating the use of robotics in disaster response and search and rescue operations.

Scientific Research Topics for STEM Students

Scientific research encompasses a wide range of topics. Here are 10 research topics for STEM students focusing on scientific exploration:

  • Investigating the behavior of subatomic particles in high-energy particle accelerators.
  • Studying the ecological impact of invasive species on native ecosystems.
  • Analyzing the genetics of antibiotic resistance in bacteria and its implications for healthcare.
  • Exploring the physics of gravitational waves and their detection through advanced interferometry.
  • Investigating the neurobiology of memory formation and retention in the human brain.
  • Studying the biodiversity and adaptation of extremophiles in harsh environments.
  • Analyzing the chemistry of deep-sea hydrothermal vents and their potential for life beyond Earth.
  • Exploring the properties of superconductors and their applications in technology.
  • Investigating the mechanisms of stem cell differentiation for regenerative medicine.
  • Studying the dynamics of climate change and its impact on global ecosystems.

Interesting Research Topics for STEM Students:

Engaging and intriguing research topics can foster a passion for STEM. Here are 10 interesting research topics for STEM students:

  • Exploring the science behind the formation of auroras and their cultural significance.
  • Investigating the mysteries of dark matter and dark energy in the universe.
  • Studying the psychology of decision-making in high-pressure situations, such as sports or
  • emergencies.
  • Analyzing the impact of social media on interpersonal relationships and mental health.
  • Exploring the potential for using genetic modification to create disease-resistant crops.
  • Investigating the cognitive processes involved in solving complex puzzles and riddles.
  • Studying the history and evolution of cryptography and encryption methods.
  • Analyzing the physics of time travel and its theoretical possibilities.
  • Exploring the role of Artificial Intelligence  in creating art and music.
  • Investigating the science of happiness and well-being, including factors contributing to life satisfaction.

Practical Research Topics for STEM Students

Practical research often leads to real-world solutions. Here are 10 practical research topics for STEM students:

  • Developing an affordable and sustainable water purification system for rural communities.
  • Designing a low-cost, energy-efficient home heating and cooling system.
  • Investigating strategies for reducing food waste in the supply chain and households.
  • Studying the effectiveness of eco-friendly pest control methods in agriculture.
  • Analyzing the impact of renewable energy integration on the stability of power grids.
  • Developing a smartphone app for early detection of common medical conditions.
  • Investigating the feasibility of vertical farming for urban food production.
  • Designing a system for recycling and upcycling electronic waste.
  • Studying the environmental benefits of green roofs and their potential for urban heat island mitigation.
  • Analyzing the efficiency of alternative transportation methods in reducing carbon emissions.

Experimental Research Topics for STEM Students About Plants

Plants offer a rich field for experimental research. Here are 10 experimental research topics about plants for STEM students:

  • Investigating the effect of different light wavelengths on plant growth and photosynthesis.
  • Studying the impact of various fertilizers and nutrient solutions on crop yield.
  • Analyzing the response of plants to different types and concentrations of plant hormones.
  • Investigating the role of mycorrhizal in enhancing nutrient uptake in plants.
  • Studying the effects of drought stress and water scarcity on plant physiology and adaptation mechanisms.
  • Analyzing the influence of soil pH on plant nutrient availability and growth.
  • Investigating the chemical signaling and defense mechanisms of plants against herbivores.
  • Studying the impact of environmental pollutants on plant health and genetic diversity.
  • Analyzing the role of plant secondary metabolites in pharmaceutical and agricultural applications.
  • Investigating the interactions between plants and beneficial microorganisms in the rhizosphere.

Qualitative Research Topics for STEM Students in the Philippines

Qualitative research in the Philippines can address local issues and cultural contexts. Here are 10 qualitative research topics for STEM students in the Philippines:

  • Exploring indigenous knowledge and practices in sustainable agriculture in Filipino communities.
  • Studying the perceptions and experiences of Filipino fishermen in coping with climate change impacts.
  • Analyzing the cultural significance and traditional uses of medicinal plants in indigenous Filipino communities.
  • Investigating the barriers and facilitators of STEM education access in remote Philippine islands.
  • Exploring the role of traditional Filipino architecture in natural disaster resilience.
  • Studying the impact of indigenous farming methods on soil conservation and fertility.
  • Analyzing the cultural and environmental significance of mangroves in coastal Filipino regions.
  • Investigating the knowledge and practices of Filipino healers in treating common ailments.
  • Exploring the cultural heritage and conservation efforts of the Ifugao rice terraces.
  • Studying the perceptions and practices of Filipino communities in preserving marine biodiversity.

Science Research Topics for STEM Students

Science offers a diverse range of research avenues. Here are 10 science research topics for STEM students:

  • Investigating the potential of gene editing techniques like CRISPR-Cas9 in curing genetic diseases.
  • Studying the ecological impacts of species reintroduction programs on local ecosystems.
  • Analyzing the effects of microplastic pollution on aquatic food webs and ecosystems.
  • Investigating the link between air pollution and respiratory health in urban populations.
  • Studying the role of epigenetics in the inheritance of acquired traits in organisms.
  • Analyzing the physiology and adaptations of extremophiles in extreme environments on Earth.
  • Investigating the genetics of longevity and factors influencing human lifespan.
  • Studying the behavioral ecology and communication strategies of social insects.
  • Analyzing the effects of deforestation on global climate patterns and biodiversity loss.
  • Investigating the potential of synthetic biology in creating bioengineered organisms for beneficial applications.

Correlational Research Topics for STEM Students

Correlational research focuses on relationships between variables. Here are 10 correlational research topics for STEM students:

  • Analyzing the correlation between dietary habits and the incidence of chronic diseases.
  • Studying the relationship between exercise frequency and mental health outcomes.
  • Investigating the correlation between socioeconomic status and access to quality healthcare.
  • Analyzing the link between social media usage and self-esteem in adolescents.
  • Studying the correlation between academic performance and sleep duration among students.
  • Investigating the relationship between environmental factors and the prevalence of allergies.
  • Analyzing the correlation between technology use and attention span in children.
  • Studying how environmental factors are related to the frequency of allergies.
  • Investigating the link between parental involvement in education and student achievement.
  • Analyzing the correlation between temperature fluctuations and wildlife migration patterns.

Quantitative Research Topics for STEM Students in the Philippines

Quantitative research in the Philippines can address specific regional issues. Here are 10 quantitative research topics for STEM students in the Philippines

  • Analyzing the impact of typhoons on coastal erosion rates in the Philippines.
  • Studying the quantitative effects of land use change on watershed hydrology in Filipino regions.
  • Investigating the quantitative relationship between deforestation and habitat loss for endangered species.
  • Analyzing the quantitative patterns of marine biodiversity in Philippine coral reef ecosystems.
  • Studying the quantitative assessment of water quality in major Philippine rivers and lakes.
  • Investigating the quantitative analysis of renewable energy potential in specific Philippine provinces.
  • Analyzing the quantitative impacts of agricultural practices on soil health and fertility.
  • Studying the quantitative effectiveness of mangrove restoration in coastal protection in the Philippines.
  • Investigating the quantitative evaluation of indigenous agricultural practices for sustainability.
  • Analyzing the quantitative patterns of air pollution and its health impacts in urban Filipino areas.

Things That Must Keep In Mind While Writing Quantitative Research Title 

Here are few things that must be keep in mind while writing quantitative research tile:

1. Be Clear and Precise

Make sure your research title is clear and says exactly what your study is about. People should easily understand the topic and goals of your research by reading the title.

2. Use Important Words

Include words that are crucial to your research, like the main subjects, who you’re studying, and how you’re doing your research. This helps others find your work and understand what it’s about.

3. Avoid Confusing Words

Stay away from words that might confuse people. Your title should be easy to grasp, even if someone isn’t an expert in your field.

4. Show Your Research Approach

Tell readers what kind of research you did, like experiments or surveys. This gives them a hint about how you conducted your study.

5. Match Your Title with Your Research Questions

Make sure your title matches the questions you’re trying to answer in your research. It should give a sneak peek into what your study is all about and keep you on the right track as you work on it.

STEM students, addressing what STEM is and why research matters in this field. It offered an extensive list of research topics , including experimental, qualitative, and regional options, catering to various academic levels and interests. Whether you’re a middle school student or pursuing advanced studies, these topics offer a wealth of ideas. The key takeaway is to choose a topic that resonates with your passion and aligns with your goals, ensuring a successful journey in STEM research. Choose the best Experimental Quantitative Research Topics For Stem Students today!

Related Posts

best way to finance car

Step by Step Guide on The Best Way to Finance Car

how to get fund for business

The Best Way on How to Get Fund For Business to Grow it Efficiently

research topics in stem strand

Journal for STEM Education Research

  • Offers a platform for interdisciplinary research on a broad spectrum of topics in STEM education.
  • Publishes integrative reviews and syntheses of literature relevant to STEM education and research.
  • Promotes research on frontier topics, such as those in the intersection of technology and STEM education.
  • Advances theoretical perspectives and research methodologies in STEM education.
  • Encourages contributions from scholars across diverse subject content and social science fields.

research topics in stem strand

Latest issue

Volume 7, Issue 1

Latest articles

Exploring factors that support pre-service teachers’ engagement in learning artificial intelligence.

  • Musa Adekunle Ayanwale
  • Emmanuel Kwabena Frimpong
  • Ismaila Temitayo Sanusi

research topics in stem strand

Examining Educational and Career Transition Points Among a Diverse, Virtual Mentoring Network

  • Erika L. Thompson
  • Toufeeq Ahmed Syed
  • Jamboor K. Vishwanatha

Computational Thinking During a Short, Authentic, Interdisciplinary STEM Experience for Elementary Students

  • Jessica F. Cantlon
  • Katherine T. Becker
  • Caroline M. DeLong

research topics in stem strand

“I Don’t Back Away from a Fight”: Examining First Year Undergraduate Latinas’ Perseverance in STEM

  • Nicora Placa
  • Christine Nick

“No, This Is Not My Boyfriend’s Computer”: Elevating the Voices of Youth in STEM Education Research Leveraging Photo-Elicitation

  • Daniel Edelen
  • Kristin Cook
  • Andrea Perrin

research topics in stem strand

Journal updates

Most downloaded and cited articles from 2020 – present.

Check the 5 most downloaded and 5 most cited articles of Journal for STEM Education Research  here!

Book Series ''Advances in STEM Education''

Advances in STEM Education is a book series with a focus on cutting-edge research and knowledge development in science, technology, engineering and mathematics (STEM) education from pre-college through continuing education around the world. More...

Journal information

  • Google Scholar
  • OCLC WorldCat Discovery Service
  • TD Net Discovery Service

Rights and permissions

Springer policies

© Springer Nature Switzerland AG

  • Find a journal
  • Publish with us
  • Track your research
  • Open access
  • Published: 22 April 2020

Research and trends in STEM education: a systematic analysis of publicly funded projects

  • Yeping Li 1 ,
  • Ke Wang 2 ,
  • Yu Xiao 1 ,
  • Jeffrey E. Froyd 3 &
  • Sandra B. Nite 1  

International Journal of STEM Education volume  7 , Article number:  17 ( 2020 ) Cite this article

17k Accesses

28 Citations

7 Altmetric

Metrics details

Taking publicly funded projects in STEM education as a special lens, we aimed to learn about research and trends in STEM education. We identified a total of 127 projects funded by the Institute of Education Sciences (IES) of the US Department of Education from 2003 to 2019. Both the number of funded projects in STEM education and their funding amounts were high, although there were considerable fluctuations over the years. The number of projects with multiple principal investigators increased over time. The project duration was typically in the range of 3–4 years, and the goals of these projects were mostly categorized as “development and innovation” or “efficacy and replication.” The majority of the 127 projects focused on individual STEM disciplines, especially mathematics. The findings, based on IES-funded projects, provided a glimpse of the research input and trends in STEM education in the USA, with possible implications for developing STEM education research in other education systems around the world.

Introduction

The rapid development of science, technology, engineering, and mathematics (STEM) education and research since the beginning of this century has benefited from strong, ongoing support from many different entities, including government agencies, professional organizations, industries, and education institutions (Li, 2014 ). Typically, studies that summarized the status of research in STEM education have used publications as the unit of their analyses (e.g., Li et al., 2019 ; Li et al., 2020 ; Margot & Kettler, 2019 ; Minichiello et al., 2018 ; Otten, Van den Heuvel-Panhuizen, & Veldhuis, 2019 ; Schreffler et al., 2019 ). Another approach, which has been used less frequently, is to study research funding. Although not all research publications were generated from funded projects and not all funded projects have been equally productive, as measured by publications, research funding and publications present two different, but related perspectives on the state of research in STEM education. Our review focuses on research funding.

Types of funding support to education research

There are different types of sources and mechanisms in place to allocate, administer, distribute, and manage funding support to education. In general, there are two sources of funding: public and private.

Public funding sources are commonly government agencies that support education program development and training, project evaluation, and research. For example, multiple state and federal agencies in the USA provide and manage funding support to education research, programs and training, including the US Department of Education (ED), the National Science Foundation (NSF), and the National Endowment for the Humanities—Division of Education Programs. Researchers seeking support from public funding sources often submit proposals that are vetted through a well-structured peer-review process. The process is competitive, and the decision to fund a project validates both its importance and alignment with the funding agency’s development agenda. Changes in the agencies’ agendas and funding priorities can reflect governmental intentions and priorities for education and research.

Private funding sources have played a very important role in supporting education programs and research with a long history. Some private funding sources in the USA can be sizeable, such as the Bill & Melinda Gates Foundation ( https://www.gatesfoundation.org ), while many also have specific foci, such as the Howard Hughes Medical Institute ( https://www.hhmi.org ) that is dedicated to advancing science through research and science education. At the same time, private funding sources often have their own development agendas, flexibility in deciding funding priorities, and specific mechanisms in making funding decisions, including how funds can be used, distributed, and managed. Indeed, private funding sources differ from public funding sources in many ways. Given many special features associated with private funding sources, including the lack of transparency, we chose to examine projects that were supported by public funding sources in this review.

Approaches to examining public research funding support

One approach to studying public research funding support to STEM education would be to examine requests-for-proposals (RFPs) issued by different government agencies. However, those RFPs tend to provide guidelines, which are not sufficiently concrete to learn about specific research that is funded. In contrast, reviewing those projects selected for funding can provide more detailed information on research activity. Figure 1 shows a flowchart of research activity and distinguishes how funded projects and publications might provide different perspectives on research. In this review, we focus on the bolded portion of the flowchart, i.e., projects funded to promote STEM education.

figure 1

A general flowchart of RFPs to publications

Current review

Why focus on research funding in the usa.

Recent reviews of journal publications in STEM education have consistently revealed that scholars in the USA played a leading role in producing and promoting scholarship in STEM education, with about 75% of authorship credits for all publications in STEM education either in the International Journal of STEM Education alone from 2014 to 2018 (Li et al., 2019 ) or in 36 selected journals published from 2000 to 2018 (Li et al., 2020 ). The strong scholarship development in the USA is likely due to a research environment that is well supported and conducive to high research output. Studying public funding support for STEM education research in the USA will provide information on trends and patterns, which will be valuable both in the USA and in other countries.

The context of policy and public funding support to STEM education in the USA

The tremendous development of STEM education in the USA over the past decades has benefited greatly from both national policies and strong funding support from the US governmental agencies as well as private funding sources. Federal funding for research and development in science, mathematics, technology, and engineering-related education in the USA was restarted in the late 1980s, in the latter years of the Reagan administration, which had earlier halted funding. In recent years, the federal government has strongly supported STEM education research and development. For example, the Obama administration in the USA (The White House, 2009 ) launched the “Educate to Innovate” campaign in November 2009 for excellence in STEM education as a national priority, with over 260 million USD in financial and in-kind support commitment. The Trump administration has continued to emphasize STEM education. For example, President Trump signed a memorandum in 2017 to direct ED to spend 200 million USD per year on competitive grants promoting STEM (The White House, 2017 ). In response, ED awarded 279 million USD in STEM discretionary grants in Fiscal Year 2018 (US Department of Education, 2018 ). The Trump administration took a step further to release a report in December 2018 detailing its five-year strategic plan of boosting STEM education in the USA (The White House, 2018 ). The strategic plan envisions that “All Americans will have lifelong access to high-quality STEM education and the USA will be the global leader in STEM literacy, innovation, and employment.” (Committee on STEM Education, 2018 , p. 1). Consistently, current Secretory of Education DeVos in the Trump administration has taken STEM as a centerpiece of her comprehensive education agenda (see https://www.ed.gov/stem ). The consistency in national policies and public funding support shows that STEM education continues to be a strategic priority in the USA.

Among many federal agencies that funded STEM education programs, the ED and NSF have functioned as two primary agencies. For ED, the Institute of Education Sciences (Institute of Education Sciences (IES), n.d. , see https://ies.ed.gov/aboutus/ ) was created by the Education Sciences Reform Act of 2002 as its statistics, research, and evaluation arm. ED’s support to STEM education research has been mainly administered and managed by IES since 2003. In contrast to the focus of ED on education, NSF (see https://www.nsf.gov/about/ ) was created by Congress in 1950 to support basic research in many fields such as mathematics, computer sciences, and social sciences. Education and Human Resources is one of its seven directorates that provides important funding support to STEM education programs and research. In addition to these two federal agencies, some other federal agencies also provide funding support to STEM education programs and research from time to time.

Any study of public funding support to STEM education research in the USA would need to limit its scope, given the complexity of various public funding sources available in the system, the ambiguity associated with the meaning of STEM education across different federal agencies (Li et al., 2020 ), and the number of programs that have funded STEM education research over the years. For the purpose of this review, we have chosen to focus on the projects in STEM education funded by IES.

Research questions

Given the preceding research approach decision to focus on research projects funded by IES, we generated the following questions:

What were the number of projects, total project funding, and the average funding per project from 2003 to 2019 in STEM education research?

What were the trends of having single versus multiple principal investigator(s) in STEM education?

What were the types of awardees of the projects?

What were the participant populations in the projects?

What were the types of projects in terms of goals for program development and research in STEM education?

What were the disciplinary foci of the projects?

What research methods did projects tend to use in conducting STEM education research?

Based on the above discussion to focus on funding support from IES, we first specified the time period, and then searched the IES website to identify STEM education research projects funded by IES within the specified time period.

Time period

As discussed above, IES was established in 2002 and it did not start to administer and manage research funding support for ED until 2003. Therefore, we considered IES funded projects from 2003 to the end of 2019.

Searching and identifying IES funded projects in STEM education

Given the diverse perspectives about STEM education across different agencies and researchers (Li et al., 2020 ), we did not discuss and define the meaning of STEM education. Instead, we used the process described in the following paragraph to identify STEM education research projects funded by IES.

On the publicly accessible IES website ( https://ies.ed.gov ), one menu item is “FUNDING OPPORTUNITIES”, and there is a list of choices within this menu item. One choice is “SEARCH FUNDED RESEARCH GRANTS AND CONTRACTS.” On this web search page, we can choose “Program” under “ADDITIONAL SEARCH OPTIONS.” There are two program categories related to STEM under the option of “Program.” One is “Science, Technology, Engineering, and Mathematics (STEM) Education” under one large category of “Education Research” and the other is “Science, Technology, Engineering, and Mathematics” under another large category of “Special Education Research.” We searched for funded projects under these two program categories, and the process returned 98 funded projects in “Science, Technology, Engineering, and Mathematics (STEM) Education” under “Education Research” and 29 funded projects in “Science, Technology, Engineering, and Mathematics” under “Special Education Research,” for a total of 127 funded projects in these two programs designated for STEM education by IES Footnote 1 .

Data analysis

To address questions 1, 2, 3, and 4, we collected the following information about these projects identified using above procedure: amount of funding, years of duration, information about the PI, types of awardees that received and administered the funding (i.e., university versus those non-university including non-profit organization such as WestEd, Educational Testing Service), and projects’ foci on school level and participants. When a project’s coverage went beyond one category, the project was then coded in terms of its actual number of categories being covered. For example, we used the five categories to classify project’s participants: Pre–K, grades 1–4, grades 5–8, grades 9–12, and adult. If a funded project involved participants from Pre-school to grade 8, then we coded the project as having participants in three categories: Pre-K, grades 1–4, and grades 5–8.

To address question 5, we analyzed projects based on goal classifications from IES. IES followed the classification of research types that was produced through a joint effort between IES and NSF in 2013 (Institute of Education Sciences (IES) and National Science Foundation (NSF), 2013 ). The effort specified six types of research that provide guidance on the goals and level of funding support: foundational research, early-stage or exploratory research, design and development research, efficacy research, effectiveness research, and scale-up research. Related to these types, IES classified goals for funded projects: development and innovation, efficacy and replication, exploration, measurement, and scale-up evaluation, as described on the IES website.

To address question 6, we coded the disciplinary focus using the following five categories: mathematics, science, technology, engineering, and integrated (meaning an integration of any two or more of STEM disciplines). In some cases, we coded a project with multiple disciplinary foci into more than one category. The following are two project examples and how we coded them in terms of disciplinary foci:

The project of “A Randomized Controlled Study of the Effects of Intelligent Online Chemistry Tutors in Urban California School Districts” (2008, https://ies.ed.gov/funding/grantsearch/details.asp?ID=601 ) was to test the efficacy of the Quantum Chemistry Tutors, a suite of computer-based cognitive tutors that are designed to give individual tutoring to high school students on 12 chemistry topics. Therefore, we coded this project as having three categories of disciplinary foci: science because it was chemistry, technology because it applied instructional technology, and integrated because it integrated two or more of STEM disciplines.

The project of “Applications of Intelligent Tutoring Systems (ITS) to Improve the Skill Levels of Students with Deficiencies in Mathematics” (2009, https://ies.ed.gov/funding/grantsearch/details.asp?ID=827 ) was coded as having three categories of disciplinary foci: mathematics, technology because it used intelligent tutoring systems, and integrated because it integrated two or more of STEM disciplines.

To address question 7, all 127 projects were coded using a classification category system developed and used in a previous study (Wang et al., 2019 ). Specifically, each funded project was coded in terms of research type (experimental, interventional, longitudinal, single case, correlational) Footnote 2 , data collection method (interview, survey, observation, researcher designed tests, standardized tests, computer data Footnote 3 ), and data analysis method (descriptive statistics, ANOVA*, general regression, HLM, IRT, SEM, others) Footnote 4 . Based on a project description, specific method(s) were identified and coded following a procedure similar to what we used in a previous study (Wang et al., 2019 ). Two researchers coded each project’s description, and the agreement between them for all 127 projects was 88.2%. When method and disciplinary focus-coding discrepancies occurred, a final decision was reached after discussion.

Results and discussion

In the following sections, we report findings as corresponding to each of the seven research questions.

Question 1: the number of projects, total funding, and the average funding per project from 2003 to 2019

Figure 2 shows the distribution of funded projects over the years in each of the two program categories, “Education Research” and “Special Education Research,” as well as combined (i.e., “STEM” for projects funded under “Education Research,” “Special STEM” for projects funded under “Special Education Research,” and “Combined” for projects funded under both “Education Research” and “Special Education Research”). As Fig. 2 shows, the number of projects increased each year up to 2007, with STEM education projects started in 2003 under “Education Research” and in 2006 under “Special Education Research.” The number of projects in STEM under “Special Education Research” was generally less than those funded under the program category of “Education Research,” especially before 2011. There are noticeable decreases in combined project counts from 2009 to 2011 and from 2012 to 2014, before the number count increased again in 2015. We did not find a consistent pattern across the years from 2003 to 2019.

figure 2

The distribution of STEM education projects over the years. (Note: STEM refers to projects funded under “Education Research,” Special STEM refers to projects funded under “Special Education Research,” and “Combined” refers to projects funded under both “Education Research” and “Special Education Research.” The same annotations are used in the rest of the figures.)

A similar trend can be observed in the total funding amount for STEM education research (see Fig. 3 ). The figure shows noticeably big year-to-year swings from 2003 to 2019, with the highest funding amount of more than 33 million USD in 2007 and the lowest amount of 2,698,900 USD in 2013 from these two program categories. Although it is possible that insufficient high-quality grant proposals were available in one particular year to receive funding, the funded amount and the number of projects (Fig. 2 ) provide insights about funding trends over the time period of the review.

figure 3

Annual funding totals

As there are diverse perspectives and foci about STEM education, we also wondered if STEM education research projects might be funded by IES but in program options other than those designated options of “Science, Technology, Engineering, and Mathematics (STEM) Education.” We found a total of 54 funded projects from 2007 to 2019, using the acronym “STEM” as a search term under the option of “SEARCH FUNDED RESEARCH GRANTS AND CONTRACTS” without any program category restriction. Only 2 (3.7%) out of these 54 projects were in the IES designated program options of STEM education in the category of “Education Research.” Further information about these 54 projects and related discussion can be found as additional notes at the end of this review.

Results from two different approaches to searching for IES-funded projects will likely raise questions about what kinds of projects were funded in the designated program option of “Science, Technology, Engineering, and Mathematics (STEM) Education,” if only two funded projects under this option contained the acronym “STEM” in a project’s title and/or description. We shall provide further information in the following sub-sections, especially when answering question 6 related to projects’ disciplinary focus.

Figure 4 illustrates the trend of average funding amount per project each year in STEM education research from 2003 to 2019. The average funding per project varied considerably in the program category “Special Education Research,” and no STEM projects were funded in 2014 and 2017 in this category. In contrast, average funding per project was generally within the range of 1,132,738 USD in 2019 to 3,475,975 USD in 2014 for the projects in the category of “Education Research” and also for project funding in the combined category.

figure 4

The trend of average funding amount per project funded each year in STEM education research

Figure 5 shows the number of projects in different funding amount categories (i.e., less than 1 million USD, 1–2 million USD, 2–3 million USD, 3 million USD or more). The majority of the 127 projects obtained funding of 1–2 million USD (77 projects, 60.6%), with 60 out of 98 projects (61.2%) under “Education Research” program and 17 out of 29 projects (58.6%) in the program category “Special Education Research.” The category with second most projects is funding of 3 million USD or more (21 projects, 16.5%), with 15 projects (15.3% of 98 projects) under “Education Research” and 6 projects (20.7% of 29 projects) under “Special Education Research.”

figure 5

The number of projects in terms of total funding amount categories

Figure 6 shows the average amount of funding per project funded across these different funding amount and program categories. In general, the projects funded under “Education Research” tended to have a higher average amount than those funded under “Special Education Research,” except for those projects in the total funding amount category of “less than 1 million USD.” Considering all 127 funded projects, the average amount of funding was 1,960,826.3 USD per project.

figure 6

The average amount of funding per project across different total funding amount and program categories

Figure 7 shows that the vast majority of these 127 projects were 3- or 4-year projects. In particular, 59 (46.5%) projects were funded as 4-year projects, with 46 projects (46.9%) under “Education Research” and 13 projects (44.8%) under “Special Education Research.” This category is followed closely by 3-year projects (54 projects, 42.5%), with 41 projects (41.8%) under “Education Research” and 13 projects (44.8%) under “Special Education Research.”

figure 7

The number of projects in terms of years of project duration. (Note, 2: 2-year projects; 3: 3-year projects; 4: 4-year projects; 5: 5-year projects)

Question 2: trends of single versus multiple principal investigator(s) in STEM education

Figure 8 shows the distribution of projects over the years grouped by a single PI or multiple PIs where the program categories of “Education Research” and “Special Education Research” have been combined. The majority of projects before 2009 had a single PI, and the trend has been to have multiple PIs for STEM education research projects since 2009. The trend illustrates the increased emphases on collaboration in STEM education research, which is consistent with what we learned from a recent study of journal publications in STEM education (Li et al., 2020 ).

figure 8

The distribution of projects with single versus multiple PIs over the years (combined)

Separating projects by program categories, Fig. 9 shows projects funded in the program category “Education Research.” The trends of single versus multiple PIs in Fig. 9 are similar to the trends shown in Fig. 8 for the combined programs. In addition, almost all projects in STEM education funded under this regular research program had multiple PIs since 2010.

figure 9

The distribution of projects with single versus multiple PIs over the years (in “Education Research” program)

Figure 10 shows projects funded in the category “Special Education Research.” The pattern in Fig. 10 , where very few projects funded under this category had multiple PIs before 2014, is quite different from the patterns in Figs. 8 and 9 . We did not learn if single PIs were appropriate for the nature of these projects. The trend started to change in 2015 as the number of projects with multiple PIs increased and the number of projects with single PIs declined.

figure 10

The distribution of projects with single versus multiple PIs over the years (in “Special Education Research” program)

Question 3: types of awardees of these projects

Besides the information about the project’s PI, the nature of the awardees can help illustrate what types of entity or organization were interested in developing and carrying out STEM education research. Figure 11 shows that the university was the main type of awardee before 2012, with 80 (63.0%) projects awarded to universities from 2003 to 2019. At the same time, non-university entities received funding support for 47 (37.0%) projects and they seem to have become even more active and successful in obtaining research funding in STEM education over the past several years. The result suggests that diverse organizations develop and conduct STEM education research, another indicator of the importance of STEM education research.

figure 11

The distribution of projects funded to university versus non-university awardees over the years

Question 4: participant populations in the projects

Figure 12 indicates that the vast majority of projects were focused on student populations in preschool to grade 12. This is understandable as IES is the research funding arm of ED. Among those projects, middle school students were the participants in the most projects (70 projects), followed by student populations in elementary school (48 projects), and high school (38 projects). The adult population (including post-secondary students and teachers) was the participant group in 36 projects in a combined program count.

figure 12

The number of projects in STEM education for different groups of participants (Note: Pre-K: preschool-kindergarten; G1–4: grades 1–4; G5–8: grades 5–8; G9–12: grades 9–12; adult: post-secondary students and teachers)

If we separate “Education Research” and “Special Education Research” programs, projects in the category “Special Education Research” focused on student populations in elementary and middle school most frequently, and then adult population. In contrast, projects in the category “Education Research” focused most frequently on middle school student population, followed by student populations in high school and elementary school.

Given the importance of funded research in special education Footnote 5 at IES, we considered projects focused on participants with disabilities. Figure 13 shows there were 28 projects in the category “Special Education Research” for participants with disabilities. There were also three such projects funded in the category “Education Research,” which together accounted for a total of 31 (24.4%) projects. In addition, some projects in the category “Education Research” focused on other participants, including 11 projects focused on ELL students (8.7%) projects and 37 projects focused on low SES students (29.1%).

figure 13

The number of funded projects in STEM education for three special participant populations (Note: ELL: English language learners, Low SES: low social-economic status)

Figure 14 shows the trend of projects in STEM education for special participant populations. Participant populations with ELL and/or Low SES gained much attention before 2011 among these projects. Participant populations with disabilities received relatively consistent attention in projects on STEM education over the years. Research on STEM education with special participant populations is important and much needed. However, related scholarship is still in an early development stage. Interested readers can find related publications in this journal (e.g., Schreffler et al., 2019 ) and other journals (e.g., Lee, 2014 ).

figure 14

The distribution of projects in STEM education for special participant populations over the years

Question 5: types of projects in terms of goals for program development and research

Figure 15 shows that “development and innovation” was the most frequently funded type of project (58 projects, 45.7%), followed by “efficacy and replication” (34 projects, 26.8%), and “measurement” (21 projects, 16.5%). The pattern is consistent across “Education Research,” “Special Education Research,” and combined. However, it should be noted that all five projects with the goal of “scale-up evaluation” were in the category “Education Research” Footnote 6 and funding for these projects were large.

figure 15

The number of projects in terms of the types of goals

Examining the types of projects longitudinally, Fig. 16 shows that while “development and innovation” and “efficacy and replication” types of projects were most frequently funded in the “Education Research” program, the types of projects being funded changed longitudinally. The number of “development and innovation” projects was noticeably fewer over the past several years. In contrast, the number of “measurement” projects and “efficacy and replication” projects became more dominant. The change might reflect a shift in research development and needs.

figure 16

The distribution of projects in terms of the type of goals over the years (in “Education Research” program)

Figure 17 shows the distribution of project types in the category “Special Education Research.” The pattern is different from the pattern shown in Fig. 16 . The types of “development and innovation” and “efficacy and replication” projects were also the dominant types of projects under “Special Education Research” program category in most of these years from 2007 to 2019. Projects in the type “measurement” were only observed in 2010 when that was the only type of project funded.

figure 17

The distribution of projects in terms of goals over the years (in “Special Education Research” program)

Question 6: disciplinary foci of projects in developing and conducting STEM education research

Figure 18 shows that the majority of the 127 projects under such specific programs included disciplinary foci on individual STEM disciplines: mathematics in 88 projects, science in 51 projects, technology in 43 projects, and engineering in 2 projects. The tremendous attention to mathematics in these projects is a bit surprising, as mathematics was noted as being out of balance in STEM education (English, 2016 ) and also in STEM education publications (Li, 2018b , 2019 ). As noted above, each project can be classified in multiple disciplinary foci. However, of the 88 projects with a disciplinary focus on mathematics, 54 projects had mathematics as the only disciplinary focus (38 under “Education Research” program and 16 under “Special Education Research” program). We certainly hope that there will be more projects that further scholarship where mathematics is included as part of (integrated) STEM education (see Li & Schoenfeld, 2019 ).

figure 18

The number of projects in terms of disciplinary focus

There were also projects with specific focus on integrated STEM education (i.e., combining any two or more disciplines of STEM), with a total of 55 (43.3%) projects in a combined program count. The limited number of projects on integrated STEM in the designated STEM funding programs further confirms the common perception that the development of integrated STEM education and research is still in its initial stage (Honey et al., 2014 ; Li, 2018a ).

In examining possible funding trends, Fig. 19 shows that mathematics projects were more frequently funded before 2012. Engineering was a rare disciplinary focus. Integrated STEM was a disciplinary focus from time to time among these projects. No other trends were observed.

figure 19

The distribution of projects in terms of disciplinary focus over the years

Question 7: research types and methods that projects used

Figure 20 indicates that “interventional” (in 104 projects, 81.9%) and “experimental research” (in 89 projects, 70.1%) were the most frequently funded types of research. The percentages of projects funded under the regular education research program were similar to those funded under “Special Education Research” program, except that projects funded under “Special Education Research” tended to utilize correlational research more often.

figure 20

The number of projects in terms of the type of research conducted

Research in STEM education uses diverse data collection and analysis methods; therefore, we wanted to study types of methods (Figs. 21 and 22 , respectively). Among the six types of methods used for data collection, Fig. 21 indicates that “standardized tests” and “designed tests” were the most commonly used methods for data collection, followed by “survey,” “observation,” and “interview.” The majority of projects used three quantitative methods (“standardized tests,” “researcher designed tests,” and “survey”). The finding is consistent with the finding from analysis of journal publications in STEM education (Li et al., 2020 ). Data collected through “interview” and “observation” were more likely to be analyzed using qualitative methods as part of a project’s research methodology.

figure 21

The number of projects categorized by the type of data collection methods

figure 22

The number of projects categorized by the type of data analysis methods

Figure 22 shows the use of seven (including others) data analysis methods among these projects. The first six methods (i.e., descriptive, ANOVA*, general regression, HLM, IRT, and SEM) as well as some methods in “others” are quantitative data analysis methods. The number of projects that used these quantitative methods is considerably larger than the number of projects that used qualitative methods (i.e., included in “others” category).

Concluding remarks

The systematic analysis of IES-funded research projects in STEM education presented an informative picture about research support for STEM education development in the USA, albeit based on only one public funding agency from 2003 to 2019. Over this 17-year span, IES funded 127 STEM education research projects (an average of over seven projects per year) in two designated STEM program categories. Although we found no discernable longitudinal funding patterns in these two program categories, both the number of funded projects in STEM education and their funding amounts were high. If we included an additional 52 projects with the acronym “STEM” funded by many other programs from 2007 to 2019 (see “ Notes ” section below), the total number of projects in STEM education research would be even higher, and the number of projects with the acronym “STEM” would also be larger. The results suggested the involvement of many researchers with diverse expertise in STEM education research was supported by a broad array of program areas in IES.

Addressing the seven questions showed several findings. Funding support for STEM education research was strong, with an average of about 2 million USD per project for a typical 3–4 year duration. Also, our analysis showed that the number of projects with multiple PIs over the years increased over the study time period, which we speculate was because STEM education research increasingly requires collaboration. STEM education research is still in early development stage, evidenced by the predominance of project goals in either “development and innovation” or “efficacy and replication” categories. We found very few projects (5 out of 127 projects, 4.0%) that were funded for “scale-up evaluation.” Finally, as shown by our analysis of project participants, IES had focused on funding projects for students in grades 1–12. Various quantitative research methods were frequently used by these projects for data collection and analyses.

These results illustrated how well STEM education research was supported through both the designated STEM education and many other programs during the study time period, which helps to explain why researchers in the USA have been so productive in producing and promoting scholarship in STEM education (Li et al., 2019 ; Li et al., 2020 ). We connected several findings from this study to findings from recent reviews of journal publications in STEM education. For example, publications in STEM education appeared in many different journals as many researchers with diverse expertise were supported to study various issues related to STEM education, STEM education publications often have co-authorship, and there is heavy use of quantitative research methods. The link between public funding and significant numbers of publications in STEM education research from US scholars offers a strong argument for the importance of providing strong funding support to research and development in STEM education in the USA and also in many other countries around the world.

The systematic analysis also revealed that STEM education, as used by IES in naming the designated programs, did not convey a clear definition or scope. In fact, we found diverse disciplinary foci in these projects. Integrated STEM was not a main focus of these designated programs in funding STEM education. Instead, many projects in these programs had clear subject content focus in individual disciplines, which is very similar to discipline-based education research (DBER, National Research Council, 2012 ). Interestingly enough, STEM education research had also been supported in many other programs of IES with diverse foci Footnote 7 , such as “Small Business Innovation Research,” “Cognition and Student Learning,” and “Postsecondary and Adult Education.” This funding reality further suggested the broad scope of issues associated with STEM education, as well as the growing need of building STEM education research as a distinct field (Li, 2018a ).

Inspired by our recent review of journal publications as research output in STEM education, this review started with an ambitious goal to study funding support as research input for STEM education. However, we had to limit the scope of the study for feasibility. We limited funding sources to one federal agency in the USA. Therefore, we did not analyze funding support from private funding sources including many private foundations and corporations. Although public funding sources have been one of the most important funding supports available for researchers to develop and expand their research work, the results of this systematic analysis suggest the importance future studies to learn more about research support and input to STEM education from other sources including other major public funding agencies, private foundations, and non-profit professional organizations.

Among these 54 funded projects containing the acronym “STEM” from 2007 to 2019, Table 1 shows that only 2 (3.7%) were in the IES designated program option of STEM education in the category of “Education Research.” Forty-nine projects were in 13 other program options in the category of “Education Research,” with surprisingly large numbers of projects under the “Small Business Innovation Research” option (17, 31.5%) and “Cognition and Student Learning” (11, 20.4%). Three of the 54 funded projects were in the program category of “Special Education Research.” To be specific, two of the three were in the program of “Small Business Innovation Research in Special Education,” and one was in the program of “Special Topic: Career and Technical Education for Students with Disabilities.”

The results suggest that many projects, focusing on various issues and questions directly associated with STEM education, were funded even when researchers applied for funding support in program options not designated as “Science, Technology, Engineering, and Mathematics (STEM) Education.” It implies that issues associated with STEM education had been generally acknowledged as important across many different program areas in education research and special education research. The funding support available in diverse program areas likely allowed numerous scholars with diverse expertise to study many different questions and publish their research in diverse journals, as we noted in the recent review of journal publications in STEM education (Li et al., 2020 ).

A previous study identified and analyzed a total of 46 IES funded projects from 2007 to 2018 (with an average of fewer than 4 projects per year) that contain the acronym “STEM” in a project’s title and/or description (Wang et al., 2019 ). Finding eight newly funded projects in 2019 suggested a growing interest in research on issues directly associated with STEM education in diverse program areas. In fact, five out of these eight newly funded projects specifically included the acronym “STEM” in the project’s title to explicitly indicate the project’s association with STEM education.

Availability of data and materials

The data and materials used and analyzed for the review are publicly available at the IES website, White House website, and other government agency websites.

In a previous study (Wang, Li, & Xiao, 2019), we used the acronym “STEM” as a search term under the option of “SEARCH FUNDED RESEARCH GRANTS AND CONTRACTS” without any program category restriction, and identified and analyzed 46 funded projects from 2007 to 2018 that contain “STEM” in a project’s title and/or description after screening out unrelated key words containing “stem” such as “system”. To make comparisons when needed, we did the same search using the acronym “STEM” and found 8 more funded projects in 2019 for a total of 54 funded projects across many different program categories from 2007 to 2019.

The project of “A Randomized Controlled Study of the Effects of Intelligent Online Chemistry Tutors in Urban California School Districts” (2008). In the project description, its subtitle shows intervention information. We coded this project as “interventional.” Then, the project also included the treatment group and the control group. We coded this project as “experimental.” Finally, this project was to test the efficacy of computer-based cognitive tutors. This was a correlational study. We thus coded it as “correlational.”

Computer data means that the project description indicated this kind of information, such as log data on students.

Descriptive means “descriptive statistics.” General regression means multiple regression, linear regression, logistical regression, except hierarchical linear regression model. ANOVA* is used here as a broad term to include analysis of variance, analysis of covariance, multivariate analysis of variance, and/or multivariate analysis of variance. Others include factor analysis, t tests, Mann-Whitney tests, and binomial tests, log data analysis, meta-analysis, constant comparative data analysis, and qualitative analysis.

Special education originally was about students with disabilities. It has broadened in scope over the years.

The number of students under Special Education was 14% of students in public schools in the USA in 2017–2018. https://nces.ed.gov/programs/coe/indicator_cgg.asp

For example, “Design Environment for Educator-Student Collaboration Allowing Real-Time Engineering-centric, STEM (DESCARTES) Exploration in Middle Grades” (2017) was funded as a 2-year project to Parametric Studios, Inc. (awardee) under the program option of “Small Business Innovation Research” (here is the link: https://ies.ed.gov/funding/grantsearch/details.asp?ID=1922 ). “Exploring the Spatial Alignment Hypothesis in STEM Learning Environments” (2017) was funded as a 4-year project to WestEd (awardee) under the program option of “Cognition and Student Learning” (link: https://ies.ed.gov/funding/grantsearch/details.asp?ID=2059 ). “Enhancing Undergraduate STEM Education by Integrating Mobile Learning Technologies with Natural Language Processing” (2018) was funded as a 4-year project to Purdue University (awardee) under the program option of “Postsecondary and Adult Education” (link: https://ies.ed.gov/funding/grantsearch/details.asp?ID=2130 ).

Abbreviations

Analysis of variance

Discipline-based education research

Department of Education

Hierarchical linear modeling

Institute of Education Sciences

Item response theory

National Science Foundation

Pre-school–grade 12

Requests-for-proposal

Structural equation modeling

Science, technology, engineering, and mathematics

Committee on STEM Education, National Science & Technology Council, the White House (2018). Charting a course for success: America’s strategy for STEM education . Washington, DC. https://www.whitehouse.gov/wp-content/uploads/2018/12/STEM-Education-Strategic-Plan-2018.pdf Accessed on 18 Jan 2019.

English, L. D. (2016). STEM education K-12: perspectives on integration. International Journal of STEM Education, 3 , 3 https://doi.org/10.1186/s40594-016-0036-1 .

Article   Google Scholar  

Honey, M., Pearson, G., & Schweingruber, A. (2014). STEM integration in K-12 education: status, prospects, and an agenda for research . Washington DC: National Academies Press.

Google Scholar  

Institute of Education Sciences (IES) (n.d.). About IES: connecting research, policy and practice. Retrieved from https://ies.ed.gov/aboutus/ Accessed on 2 Feb 2020.

Institute of Education Sciences (IES) & National Science Foundation (NSF). (2013). Common guidelines for education research and development. Washington, DC: The authors. Retrieved from https://www.nsf.gov/pubs/2013/nsf13126/nsf13126.pdf Accessed on 2 Feb 2020.

Lee, A. (2014). Students with disabilities choosing science technology engineering and math (STEM) majors in postsecondary institutions. Journal of Postsecondary Education and Disability, 27 (3), 261–272.

Li, Y. (2014). International journal of STEM education – a platform to promote STEM education and research worldwide. International Journal of STEM Education, 1 , 1 https://doi.org/10.1186/2196-7822-1-1 .

Li, Y. (2018a). Journal for STEM Education Research – promoting the development of interdisciplinary research in STEM education. Journal for STEM Education Research, 1 (1-2), 1–6 https://doi.org/10.1007/s41979-018-0009-z .

Li, Y. (2018b). Four years of development as a gathering place for international researchers and readers in STEM education. International Journal of STEM Education, 5 , 54 https://doi.org/10.1186/s40594-018-0153-0 .

Li, Y. (2019). Five years of development in pursuing excellence in quality and global impact to become the first journal in STEM education covered in SSCI. International Journal of STEM Education, 6 , 42 https://doi.org/10.1186/s40594-019-0198-8 .

Li, Y., Froyd, J. E., & Wang, K. (2019). Learning about research and readership development in STEM education: a systematic analysis of the journal’s publications from 2014 to 2018. International Journal of STEM Education, 6 , 19 https://doi.org/10.1186/s40594-019-0176-1 .

Li, Y., & Schoenfeld, A. H. (2019). Problematizing teaching and learning mathematics as ‘given’ in STEM education. International Journal of STEM Education, 6 , 44 https://doi.org/10.1186/s40594-019-0197-9 .

Li, Y., Wang, K., Xiao, Y., & Froyd, J. E. (2020). Research and trends in STEM education: a systematic review of journal publications. International Journal of STEM Education, 7 , 11 https://doi.org/10.1186/s40594-020-00207-6 .

Margot, K. C., & Kettler, T. (2019). Teachers’ perception of STEM integration and education: a systematic literature review. International Journal of STEM Education, 6 , 2 https://doi.org/10.1186/s40594-018-0151-2 .

Minichiello, A., Hood, J. R., & Harkness, D. S. (2018). Bring user experience design to bear on STEM education: a narrative literature review. Journal for STEM Education Research, 1 (1-2), 7–33.

National Research Council. (2012). Discipline-based education research: understanding and improving learning in undergraduate science and engineering . Washington DC: National Academies Press.

Otten, M., Van den Heuvel-Panhuizen, M., & Veldhuis, M. (2019). The balance model for teaching linear equations: a systematic literature review. International Journal of STEM Education, 6 , 30 https://doi.org/10.1186/s40594-019-0183-2 .

Schreffler, J., Vasquez III, E., Chini, J., & James, W. (2019). Universal design for learning in postsecondary STEM education for students with disabilities: a systematic literature review. International Journal of STEM Education, 6 , 8 https://doi.org/10.1186/s40594-019-0161-8 .

The White House (2009). President Obama launches “Educate to Innovate” campaign for excellence in science, technology, engineering & math (Stem) education. Retrieved from https://obamawhitehouse.archives.gov/the-press-office/president-obama-launches-educate-innovate-campaign-excellence-science-technology-en Accessed on 2 Feb 2020.

The White House (2017). Presidential memorandum for the secretary of Education. Retrieved from https://www.whitehouse.gov/presidential-actions/presidential-memorandum-secretary-education/ Accessed on 2 Feb 2020.

The White House (2018). President Donald J. Trump is working to ensure all Americans have access to STEM education. Retrieved from https://www.whitehouse.gov/briefings-statements/president-donald-j-trump-is-working-to-ensure-all-americans-have-access-to-stem-education/ Accessed on 2 Feb 2020.

U.S. Department of Education (2018). U.S. Department of Education fulfills administration promise to invest $200 million in STEM education. Retrieved from https://www.ed.gov/news/press-releases/us-department-education-fulfills-administration-promise-invest-200-million-stem-education Accessed on 2 Feb 2020.

Wang, K., Li, Y., & Xiao, Y. (2019). Exploring the status and development trends of STEM education research: the case of IES funded projects on STEM education in the U.S. 数学教育学报 . Journal of Mathematics Education, 28 (3), 53–61.

Download references

This review was supported by a grant from the National Science Foundation (DUE-1852942). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and affiliations.

Texas A&M University, College Station, TX, 77843-4232, USA

Yeping Li, Yu Xiao & Sandra B. Nite

Nicholls State University, Thibodaux, LA, 70310, USA

Ohio State University, Columbus, OH, 43210, USA

Jeffrey E. Froyd

You can also search for this author in PubMed   Google Scholar

Contributions

YL conceptualized the study and drafted the manuscript. KW contributed with data collection, coding, analyses, and manuscript reviews. YX contributed to data collection, coding, and manuscript reviews. JEF and SBN contributed to manuscript improvement through manuscript reviews and revisions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yeping Li .

Ethics declarations

Competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Li, Y., Wang, K., Xiao, Y. et al. Research and trends in STEM education: a systematic analysis of publicly funded projects. IJ STEM Ed 7 , 17 (2020). https://doi.org/10.1186/s40594-020-00213-8

Download citation

Received : 18 March 2020

Accepted : 20 March 2020

Published : 22 April 2020

DOI : https://doi.org/10.1186/s40594-020-00213-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Scholarship
  • STEM education research
  • STEM funding

research topics in stem strand

Studmentors-logo

161+ Exciting Qualitative Research Topics For STEM Students

161+ Exciting Qualitative Research Topics For STEM Students

Are you doing Qualitative research? Looking for the best qualitative research topics for stem students? It is a most interesting and good field for research. Qualitative research allows STEM (Science, Technology, Engineering, and Mathematics) students to delve deeper into complex issues, explore human behavior, and understand the intricacies of the world around them.

In this article, we’ll provide you with an extensive list of 161+ qualitative research topics tailored to STEM students. We’ll also explore how to find and choose good qualitative research topics, and why these topics are particularly beneficial for students, including those in high school.

Also Like To Read: 171+ Brilliant Quantitative Research Topics For STEM Students

Table of Contents

What Are Qualitative Research Topics for STEM Students

Qualitative research topics for stem students are questions or issues that necessitate an in-depth exploration of people’s experiences, beliefs, and behaviors. STEM students can use this approach to investigate societal impacts, ethical dilemmas, and user experiences related to scientific advancements and innovations.

Unlike quantitative research, which focuses on numerical data and statistical analysis, qualitative research delves into the ‘whys’ and ‘hows’ of a particular phenomenon.

How to Find and Choose Good Qualitative Research Topics

Selecting qualitative research topics for stem students is a crucial step in the research process. Here are some tips to help you find and choose a suitable topic:

How to Find and Choose Good Qualitative Research Topics

  • Passion and Interest: Start by considering your personal interests and passions. What topics within STEM excite you? Research becomes more engaging when you’re genuinely interested in the subject.
  • Relevance: Choose qualitative research topics for stem students. Look for gaps in the existing knowledge or unanswered questions.
  • Literature Review: Conduct a thorough literature review to identify the latest trends and areas where qualitative research is lacking. This can guide you in selecting a topic that contributes to the field.
  • Feasibility: Ensure that your chosen topic is feasible within the resources and time constraints available to you. Some research topics may require extensive resources and funding.
  • Ethical Considerations: Be aware of ethical concerns related to your qualitative research topics for stem students, especially when dealing with human subjects or sensitive issues.

Here are the most exciting and very interesting Qualitative Research Topics For STEM Students, high school students, nursing students, college students, etc.

Biology Qualitative Research Topics

  • Impact of Ecosystem Restoration on Biodiversity
  • Ethical Considerations in Human Gene Editing
  • Public Perceptions of Biotechnology in Agriculture
  • Coping Mechanisms and Stress Responses in Marine Biologists
  • Cultural Perspectives on Traditional Herbal Medicine
  • Community Attitudes Toward Wildlife Conservation Efforts
  • Ethical Issues in Animal Testing and Research
  • Indigenous Knowledge and Ethnobotany
  • Psychological Well-being of Conservation Biologists
  • Attitudes Toward Endangered Species Protection

Chemistry Qualitative Research Topics For STEM Students

  • Adoption of Green Chemistry Practices in the Pharmaceutical Industry
  • Public Perception of Chemical Safety in Household Products
  • Strategies for Improving Chemistry Education
  • Art Conservation and Chemical Analysis
  • Consumer Attitudes Toward Organic Chemistry in Everyday Life
  • Ethical Considerations in Chemical Waste Disposal
  • The Role of Chemistry in Sustainable Agriculture
  • Perceptions of Nanomaterials and Their Applications
  • Chemistry-Related Career Aspirations in High School Students
  • Cultural Beliefs and Traditional Chemical Practices

Physics Qualitative Research Topics

  • Gender Bias in Physics Education and Career Progression
  • Philosophical Implications of Quantum Mechanics
  • Public Understanding of Renewable Energy Technologies
  • Influence of Science Fiction on Scientific Research
  • Perceptions of Dark Matter and Dark Energy in the Universe
  • Student Experiences in High School Physics Classes
  • Physics Outreach Programs and Their Impact on Communities
  • Cultural Variations in the Perception of Time and Space
  • Role of Physics in Environmental Conservation
  • Public Engagement with Science Through Astronomy Events

Engineering Qualitative Research Topics For STEM Students

  • Ethics in Artificial Intelligence and Robotics
  • Human-Centered Design in Engineering
  • Innovation and Sustainability in Civil Engineering
  • Public Perception of Self-Driving Cars
  • Engineering Solutions for Climate Change Mitigation
  • Experiences of Women in Male-Dominated Engineering Fields
  • Role of Engineers in Disaster Response and Recovery
  • Ethical Considerations in Technology Patents
  • Perceptions of Engineering Education and Career Prospects
  • Students Views on the Role of Engineers in Society

Computer Science Qualitative Research Topics

  • Gender Diversity in Tech Companies
  • Ethical Implications of AI-Powered Decision-Making
  • User Experience and Interface Design
  • Cybersecurity Awareness and Behaviors
  • Digital Privacy Concerns and Practices
  • Social Media Use and Mental Health in College Students
  • Gaming Culture and its Impact on Social Interactions
  • Student Attitudes Toward Coding and Programming
  • Online Learning Platforms and Student Satisfaction
  • Perceptions of Artificial Intelligence in Everyday Life

Mathematics Qualitative Research Topics For STEM Students

  • Gender Stereotypes in Mathematics Education
  • Cultural Variations in Problem-Solving Approaches
  • Perception of Math in Everyday Life
  • Math Anxiety and Coping Mechanisms
  • Historical Development of Mathematical Concepts
  • Attitudes Toward Mathematics Among Elementary School Students
  • Role of Mathematics in Solving Real-World Problems
  • Homeschooling Approaches to Teaching Mathematics
  • Effectiveness of Math Tutoring Programs
  • Math-Related Stereotypes in Society

Environmental Science Qualitative Research Topics

  • Local Communities’ Responses to Climate Change
  • Public Understanding of Conservation Practices
  • Sustainable Agriculture and Farmer Perspectives
  • Environmental Education and Behavior Change
  • Indigenous Ecological Knowledge and Biodiversity Conservation
  • Conservation Awareness and Behavior of Tourists
  • Climate Change Perceptions Among Youth
  • Perceptions of Water Scarcity and Resource Management
  • Environmental Activism and Youth Engagement
  • Community Responses to Environmental Disasters

Geology and Earth Sciences Qualitative Research Topics For STEM Students

  • Geologists’ Risk Perception and Decision-Making
  • Volcano Hazard Preparedness in At-Risk Communities
  • Public Attitudes Toward Geological Hazards
  • Environmental Consequences of Extractive Industries
  • Perceptions of Geological Time and Deep Earth Processes
  • Use of Geospatial Technology in Environmental Research
  • Role of Geology in Disaster Preparedness and Response
  • Geological Factors Influencing Urban Planning
  • Community Engagement in Geoscience Education
  • Climate Change Communication and Public Understanding

Astronomy and Space Science Qualitative Research Topics

  • The Role of Science Communication in Astronomy Education
  • Perceptions of Space Exploration and Colonization
  • UFO and Extraterrestrial Life Beliefs
  • Public Understanding of Black Holes and Neutron Stars
  • Space Tourism and Future Space Travel
  • Impact of Space Science Outreach Programs on Student Interest
  • Cultural Beliefs and Rituals Related to Celestial Events
  • Space Science in Indigenous Knowledge Systems
  • Public Engagement with Astronomical Phenomena
  • Space Exploration in Science Fiction and Popular Culture

Medicine and Health Sciences Qualitative Research Topics

  • Patient-Physician Communication and Trust
  • Ethical Considerations in Human Cloning and Genetic Modification
  • Public Attitudes Toward Vaccination
  • Coping Strategies for Healthcare Workers in Pandemics
  • Cultural Beliefs and Health Practices
  • Health Disparities Among Underserved Communities
  • Medical Decision-Making and Informed Consent
  • Mental Health Stigma and Help-Seeking Behavior
  • Wellness Practices and Health-Related Beliefs
  • Perceptions of Alternative and Complementary Medicine

Psychology Qualitative Research Topics

  • Perceptions of Body Image in Different Cultures
  • Workplace Stress and Coping Mechanisms
  • LGBTQ+ Youth Experiences and Well-Being
  • Cross-Cultural Differences in Parenting Styles and Outcomes
  • Perceptions of Psychotherapy and Counseling
  • Attitudes Toward Medication for Mental Health Conditions
  • Psychological Well-being of Older Adults
  • Role of Cultural and Social Factors in Psychological Well-being
  • Technology Use and Its Impact on Mental Health

Social Sciences Qualitative Research Topics

  • Political Polarization and Online Echo Chambers
  • Immigration and Acculturation Experiences
  • Educational Inequality and School Policy
  • Youth Engagement in Environmental Activism
  • Identity and Social Media in the Digital Age
  • Social Media and Its Influence on Political Beliefs
  • Family Dynamics and Conflict Resolution
  • Social Support and Coping Strategies in College Students
  • Perceptions of Cyberbullying Among Adolescents
  • Impact of Social Movements on Societal Change

Interesting Sociology Qualitative Research Topics For STEM Students

  • Perceptions of Racial Inequality and Discrimination
  • Aging and Quality of Life in Elderly Populations
  • Gender Roles and Expectations in Relationships
  • Online Communities and Social Support
  • Cultural Practices and Beliefs Related to Marriage
  • Family Dynamics and Coping Mechanisms
  • Perceptions of Community Safety and Policing
  • Attitudes Toward Social Welfare Programs
  • Influence of Media on Perceptions of Social Issues
  • Youth Perspectives on Education and Career Aspirations

Anthropology Qualitative Research Topics

  • Traditional Knowledge and Biodiversity Conservation
  • Cultural Variation in Parenting Practices
  • Indigenous Language Revitalization Efforts
  • Social Impacts of Tourism on Indigenous Communities
  • Rituals and Ceremonies in Different Cultural Contexts
  • Food and Identity in Cultural Practices
  • Traditional Healing and Healthcare Practices
  • Indigenous Rights and Land Conservation
  • Ethnographic Studies of Marginalized Communities
  • Cultural Practices Surrounding Death and Mourning

Economics and Business Qualitative Research Topics

  • Small Business Resilience in Times of Crisis
  • Workplace Diversity and Inclusion
  • Corporate Social Responsibility Perceptions
  • International Trade and Cultural Perceptions
  • Consumer Behavior and Decision-Making in E-Commerce
  • Business Ethics and Ethical Decision-Making
  • Innovation and Entrepreneurship in Startups
  • Perceptions of Economic Inequality and Wealth Distribution
  • Impact of Economic Policies on Communities
  • Role of Economic Education in Financial Literacy

Good Education Qualitative Research Topics For STEM Students

  • Homeschooling Experiences and Outcomes
  • Teacher Burnout and Coping Strategies
  • Inclusive Education and Special Needs Integration
  • Student Perspectives on Online Learning
  • High-Stakes Testing and Its Impact on Students
  • Multilingual Education and Bilingualism
  • Perceptions of Educational Technology in Classrooms
  • School Climate and Student Well-being
  • Teacher-Student Relationships and Their Effects on Learning
  • Cultural Diversity in Education and Inclusion

Environmental Engineering Qualitative Research Topics

  • Sustainable Transportation and Community Preferences
  • Ethical Considerations in Waste Reduction and Recycling
  • Public Attitudes Toward Renewable Energy Projects
  • Environmental Impact Assessment and Community Engagement
  • Sustainable Urban Planning and Neighborhood Perceptions
  • Water Quality and Conservation Practices in Residential Areas
  • Green Building Practices and User Experiences
  • Community Resilience in the Face of Climate Change
  • Role of Environmental Engineers in Disaster Preparedness

Why Qualitative Research Topics Are Good for STEM Students

  • Deeper Understanding: Qualitative research encourages STEM students to explore complex issues from a human perspective. This deepens their understanding of the broader impact of scientific discoveries and technological advancements.
  • Critical Thinking: Qualitative research fosters critical thinking skills by requiring students to analyze and interpret data, consider diverse viewpoints, and draw nuanced conclusions.
  • Real-World Relevance: Many qualitative research topics have real-world applications. Students can address problems, inform policy, and contribute to society by investigating issues that matter.
  • Interdisciplinary Learning: Qualitative research often transcends traditional STEM boundaries, allowing students to draw on insights from psychology, sociology, anthropology, and other fields.
  • Preparation for Future Careers: Qualitative research skills are valuable in various STEM careers, as they enable students to communicate complex ideas and understand the human and social aspects of their work.

Qualitative Research Topics for High School STEM Students

High school STEM students can benefit from qualitative research by honing their critical thinking and problem-solving skills. Here are some qualitative research topics suitable for high school students:

  • Perceptions of STEM Education: Investigate students’ and teachers’ perceptions of STEM education and its effectiveness.
  • Environmental Awareness: Examine the factors influencing high school students’ environmental awareness and eco-friendly behaviors.
  • Digital Learning in the Classroom: Explore the impact of technology on learning experiences and student engagement.
  • STEM Gender Gap: Analyze the reasons behind the gender gap in STEM fields and potential strategies for closing it.
  • Science Communication: Study how high school students perceive and engage with popular science communication channels, like YouTube and podcasts.
  • Impact of Extracurricular STEM Activities: Investigate how participation in STEM clubs and competitions influences students’ interest and performance in science and technology.

In essence, these are the best qualitative research topics for STEM students in the Philippines and are usable for other countries students too. Qualitative research topics offer STEM students a unique opportunity to explore the multifaceted aspects of their fields, develop essential skills, and contribute to meaningful discoveries. With the right topic selection, a strong research design, and ethical considerations, STEM students can easily get the best knowledge on exciting qualitative research that benefits both their career growth. So, choose a topic that resonates with your interests and get best job in your interest field.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

research topics in stem strand

  • 2023 AERA in the News
  • 2022 AERA in the News
  • 2021 AERA In the News
  • 2020 AERA In the News
  • 2019 AERA In the News
  • 2018 AERA In the News
  • 2017 AERA In the News
  • 2016 AERA In the News
  • 2015 AERA In the News
  • 2014 AERA In the News
  • 2013 AERA In the News
  • AERA Speaking Out on Major Issues
  • 2023 AERA News Releases
  • 2022 AERA News Releases
  • 2021 AERA News Releases
  • 2020 AERA News Releases
  • 2019 AERA News Releases
  • 2018 AERA News Releases
  • 2017 AERA News Releases
  • 2016 AERA News Releases
  • 2015 AERA News Releases
  • 2014 AERA News Releases
  • 2013 AERA News Releases
  • 2012 AERA News Releases
  • 2011 News Releases
  • 2010 News Releases
  • 2009 News Releases
  • 2008 News Releases
  • 2007 News Releases
  • 2006 News Releases
  • 2005 News Releases
  • 2004 News Releases
  • AERA Research Archive
  • Trending Topic Research Files
  • Communication Resources for Researchers
  • AERA Highlights Archival Issues
  • AERA Video Gallery

research topics in stem strand

Share 

dept nd white

  • Mission & Vision
  • Core Beliefs
  • AdvancED Certification
  • Faculty & Staff
  • Research Fellows & Assistants
  • Research Projects
  • Evaluation Projects
  • AP Teacher Investment Program (AP-TIP)
  • Notre Dame STEM Teaching Fellows
  • Summer STEM Camps
  • Alliance for Catholic Education
  • 2021 Excellence in Teaching Conference
  • STEM Teaching Fellows
  • AP-TIP Team
  • Apply to Cohort 12
  • AP® Summer Institute
  • Fall Conference
  • Mock Exam Training
  • Remote Teacher Collaboratives
  • News and Announcements
  • Contact AP-TIP

Research by Topics

Underrepresented population in stem.

  • Teacher Leadership
  • Instruction
  • Informal Learning
  • Curriculum Studies
  • View All Projects
  • Center for STEM Education Lab
  • Kloser Science Education Lab
  • Svarovsky Early Engineering Lab
  • Trinter Math Education Lab
  • STEM and Catholic Schools
  • Underrepresented Populations in STEM
  • Frontiers in Education
  • Educational Psychology
  • Research Topics

Creativity and Innovation in STEAM Education

Total Downloads

Total Views and Downloads

About this Research Topic

STEM (Science, Technology, Engineer, and Mathematics) education refers to an interdisciplinary and applied approach of teaching and learning to increase scientific literacy and critical thinking of individuals. By merging the Arts with STEM subjects, STEAM education emphasizes the role of arts, creativity and ...

Important Note : All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Topic Editors

Topic coordinators, recent articles, submission deadlines.

Submission closed.

Participating Journals

Total views.

  • Demographics

No records found

total views article views downloads topic views

Top countries

Top referring sites, about frontiers research topics.

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

CodeAvail

Best 151+ Quantitative Research Topics for STEM Students

Quantitative Research Topics for STEM Students

In today’s rapidly evolving world, STEM (Science, Technology, Engineering, and Mathematics) fields have gained immense significance. For STEM students, engaging in quantitative research is a pivotal aspect of their academic journey. Quantitative research involves the systematic collection and interpretation of numerical data to address research questions or test hypotheses. Choosing the right research topic is essential to ensure a successful and meaningful research endeavor. 

In this blog, we will explore 151+ quantitative research topics for STEM students. Whether you are an aspiring scientist, engineer, or mathematician, this comprehensive list will inspire your research journey. But we understand that the journey through STEM education and research can be challenging at times. That’s why we’re here to support you every step of the way with our Engineering Assignment Help service. 

What is Quantitative Research in STEM?

Table of Contents

Quantitative research is a scientific approach that relies on numerical data and statistical analysis to draw conclusions and make predictions. In STEM fields, quantitative research encompasses a wide range of methodologies, including experiments, surveys, and data analysis. The key characteristics of quantitative research in STEM include:

  • Data Collection: Systematic gathering of numerical data through experiments, observations, or surveys.
  • Statistical Analysis: Application of statistical techniques to analyze data and draw meaningful conclusions.
  • Hypothesis Testing: Testing hypotheses and theories using quantitative data.
  • Replicability: The ability to replicate experiments and obtain consistent results.
  • Generalizability: Drawing conclusions that can be applied to larger populations or phenomena.

Importance of Quantitative Research Topics for STEM Students

Quantitative research plays a pivotal role in STEM education and research for several reasons:

1. Empirical Evidence

It provides empirical evidence to support or refute scientific theories and hypotheses.

2. Data-Driven Decision-Making

STEM professionals use quantitative research to make informed decisions, from designing experiments to developing new technologies.

3. Innovation

It fuels innovation by providing data-driven insights that lead to the creation of new products, processes, and technologies.

4. Problem Solving

STEM students learn critical problem-solving skills through quantitative research, which are invaluable in their future careers.

5. Interdisciplinary Applications 

Quantitative research transcends STEM disciplines, facilitating collaboration and the tackling of complex, real-world problems.

Also Read: Google Scholar Research Topics

Quantitative Research Topics for STEM Students

Now, let’s explore important quantitative research topics for STEM students:

Biology and Life Sciences

Here are some quantitative research topics in biology and life science:

1. The impact of climate change on biodiversity.

2. Analyzing the genetic basis of disease susceptibility.

3. Studying the effectiveness of vaccines in preventing infectious diseases.

4. Investigating the ecological consequences of invasive species.

5. Examining the role of genetics in aging.

6. Analyzing the effects of pollution on aquatic ecosystems.

7. Studying the evolution of antibiotic resistance.

8. Investigating the relationship between diet and lifespan.

9. Analyzing the impact of deforestation on wildlife.

10. Studying the genetics of cancer development.

11. Investigating the effectiveness of various plant fertilizers.

12. Analyzing the impact of microplastics on marine life.

13. Studying the genetics of human behavior.

14. Investigating the effects of pollution on plant growth.

15. Analyzing the microbiome’s role in human health.

16. Studying the impact of climate change on crop yields.

17. Investigating the genetics of rare diseases.

Let’s get started with some quantitative research topics for stem students in chemistry:

1. Studying the properties of superconductors at different temperatures.

2. Analyzing the efficiency of various catalysts in chemical reactions.

3. Investigating the synthesis of novel polymers with unique properties.

4. Studying the kinetics of chemical reactions.

5. Analyzing the environmental impact of chemical waste disposal.

6. Investigating the properties of nanomaterials for drug delivery.

7. Studying the behavior of nanoparticles in different solvents.

8. Analyzing the use of renewable energy sources in chemical processes.

9. Investigating the chemistry of atmospheric pollutants.

10. Studying the properties of graphene for electronic applications.

11. Analyzing the use of enzymes in industrial processes.

12. Investigating the chemistry of alternative fuels.

13. Studying the synthesis of pharmaceutical compounds.

14. Analyzing the properties of materials for battery technology.

15. Investigating the chemistry of natural products for drug discovery.

16. Analyzing the effects of chemical additives on food preservation.

17. Investigating the chemistry of carbon capture and utilization technologies.

Here are some quantitative research topics in physics for stem students:

1. Investigating the behavior of subatomic particles in high-energy collisions.

2. Analyzing the properties of dark matter and dark energy.

3. Studying the quantum properties of entangled particles.

4. Investigating the dynamics of black holes and their gravitational effects.

5. Analyzing the behavior of light in different mediums.

6. Studying the properties of superfluids at low temperatures.

7. Investigating the physics of renewable energy sources like solar cells.

8. Analyzing the properties of materials at extreme temperatures and pressures.

9. Studying the behavior of electromagnetic waves in various applications.

10. Investigating the physics of quantum computing.

11. Analyzing the properties of magnetic materials for data storage.

12. Studying the behavior of particles in plasma for fusion energy research.

13. Investigating the physics of nanoscale materials and devices.

14. Analyzing the properties of materials for use in semiconductors.

15. Studying the principles of thermodynamics in energy efficiency.

16. Investigating the physics of gravitational waves.

17. Analyzing the properties of materials for use in quantum technologies.

Engineering

Let’s explore some quantitative research topics for stem students in engineering: 

1. Investigating the efficiency of renewable energy systems in urban environments.

2. Analyzing the impact of 3D printing on manufacturing processes.

3. Studying the structural integrity of materials in aerospace engineering.

4. Investigating the use of artificial intelligence in autonomous vehicles.

5. Analyzing the efficiency of water treatment processes in civil engineering.

6. Studying the impact of robotics in healthcare.

7. Investigating the optimization of supply chain logistics using quantitative methods.

8. Analyzing the energy efficiency of smart buildings.

9. Studying the effects of vibration on structural engineering.

10. Investigating the use of drones in agricultural practices.

11. Analyzing the impact of machine learning in predictive maintenance.

12. Studying the optimization of transportation networks.

13. Investigating the use of nanomaterials in electronic devices.

14. Analyzing the efficiency of renewable energy storage systems.

15. Studying the impact of AI-driven design in architecture.

16. Investigating the optimization of manufacturing processes using Industry 4.0 technologies.

17. Analyzing the use of robotics in underwater exploration.

Environmental Science

Here are some top quantitative research topics in environmental science for students:

1. Investigating the effects of air pollution on respiratory health.

2. Analyzing the impact of deforestation on climate change.

3. Studying the biodiversity of coral reefs and their conservation.

4. Investigating the use of remote sensing in monitoring deforestation.

5. Analyzing the effects of plastic pollution on marine ecosystems.

6. Studying the impact of climate change on glacier retreat.

7. Investigating the use of wetlands for water quality improvement.

8. Analyzing the effects of urbanization on local microclimates.

9. Studying the impact of oil spills on aquatic ecosystems.

10. Investigating the use of renewable energy in mitigating greenhouse gas emissions.

11. Analyzing the effects of soil erosion on agricultural productivity.

12. Studying the impact of invasive species on native ecosystems.

13. Investigating the use of bioremediation for soil cleanup.

14. Analyzing the effects of climate change on migratory bird patterns.

15. Studying the impact of land use changes on water resources.

16. Investigating the use of green infrastructure for urban stormwater management.

17. Analyzing the effects of noise pollution on wildlife behavior.

Computer Science

Let’s get started with some simple quantitative research topics for stem students:

1. Investigating the efficiency of machine learning algorithms for image recognition.

2. Analyzing the security of blockchain technology in financial transactions.

3. Studying the impact of quantum computing on cryptography.

4. Investigating the use of natural language processing in chatbots and virtual assistants.

5. Analyzing the effectiveness of cybersecurity measures in protecting sensitive data.

6. Studying the impact of algorithmic trading in financial markets.

7. Investigating the use of deep learning in autonomous robotics.

8. Analyzing the efficiency of data compression algorithms for large datasets.

9. Studying the impact of virtual reality in medical simulations.

10. Investigating the use of artificial intelligence in personalized medicine.

11. Analyzing the effectiveness of recommendation systems in e-commerce.

12. Studying the impact of cloud computing on data storage and processing.

13. Investigating the use of neural networks in predicting disease outbreaks.

14. Analyzing the efficiency of data mining techniques in customer behavior analysis.

15. Studying the impact of social media algorithms on user behavior.

16. Investigating the use of machine learning in natural language translation.

17. Analyzing the effectiveness of sentiment analysis in social media monitoring.

Mathematics

Let’s explore the quantitative research topics in mathematics for students:

1. Investigating the properties of prime numbers and their distribution.

2. Analyzing the behavior of chaotic systems using differential equations.

3. Studying the optimization of algorithms for solving complex mathematical problems.

4. Investigating the use of graph theory in network analysis.

5. Analyzing the properties of fractals in natural phenomena.

6. Studying the application of probability theory in risk assessment.

7. Investigating the use of numerical methods in solving partial differential equations.

8. Analyzing the properties of mathematical models for population dynamics.

9. Studying the optimization of algorithms for data compression.

10. Investigating the use of topology in data analysis.

11. Analyzing the behavior of mathematical models in financial markets.

12. Studying the application of game theory in strategic decision-making.

13. Investigating the use of mathematical modeling in epidemiology.

14. Analyzing the properties of algebraic structures in coding theory.

15. Studying the optimization of algorithms for image processing.

16. Investigating the use of number theory in cryptography.

17. Analyzing the behavior of mathematical models in climate prediction.

Earth Sciences

Here are some quantitative research topics for stem students in earth science:

1. Investigating the impact of volcanic eruptions on climate patterns.

2. Analyzing the behavior of earthquakes along tectonic plate boundaries.

3. Studying the geomorphology of river systems and erosion.

4. Investigating the use of remote sensing in monitoring wildfires.

5. Analyzing the effects of glacier melt on sea-level rise.

6. Studying the impact of ocean currents on weather patterns.

7. Investigating the use of geothermal energy in renewable power generation.

8. Analyzing the behavior of tsunamis and their destructive potential.

9. Studying the impact of soil erosion on agricultural productivity.

10. Investigating the use of geological data in mineral resource exploration.

11. Analyzing the effects of climate change on coastal erosion.

12. Studying the geomagnetic field and its role in navigation.

13. Investigating the use of radar technology in weather forecasting.

14. Analyzing the behavior of landslides and their triggers.

15. Studying the impact of groundwater depletion on aquifer systems.

16. Investigating the use of GIS (Geographic Information Systems) in land-use planning.

17. Analyzing the effects of urbanization on heat island formation.

Health Sciences and Medicine

Here are some quantitative research topics for stem students in health science and medicine:

1. Investigating the effectiveness of telemedicine in improving healthcare access.

2. Analyzing the impact of personalized medicine in cancer treatment.

3. Studying the epidemiology of infectious diseases and their spread.

4. Investigating the use of wearable devices in monitoring patient health.

5. Analyzing the effects of nutrition and exercise on metabolic health.

6. Studying the impact of genetics in predicting disease susceptibility.

7. Investigating the use of artificial intelligence in medical diagnosis.

8. Analyzing the behavior of pharmaceutical drugs in clinical trials.

9. Studying the effectiveness of mental health interventions in schools.

10. Investigating the use of gene editing technologies in treating genetic disorders.

11. Analyzing the properties of medical imaging techniques for early disease detection.

12. Studying the impact of vaccination campaigns on public health.

13. Investigating the use of regenerative medicine in tissue repair.

14. Analyzing the behavior of pathogens in antimicrobial resistance.

15. Studying the epidemiology of chronic diseases like diabetes and heart disease.

16. Investigating the use of bioinformatics in genomics research.

17. Analyzing the effects of environmental factors on health outcomes.

Quantitative research is the backbone of STEM fields, providing the tools and methodologies needed to explore, understand, and innovate in the world of science and technology . As STEM students, embracing quantitative research not only enhances your analytical skills but also equips you to address complex real-world challenges. With the extensive list of 155+ quantitative research topics for stem students provided in this blog, you have a starting point for your own STEM research journey. Whether you’re interested in biology, chemistry, physics, engineering, or any other STEM discipline, there’s a wealth of quantitative research topics waiting to be explored. So, roll up your sleeves, grab your lab coat or laptop, and embark on your quest for knowledge and discovery in the exciting world of STEM.

I hope you enjoyed this blog post about quantitative research topics for stem students.

Related Posts

8 easiest programming language to learn for beginners.

There are so many programming languages you can learn. But if you’re looking to start with something easier. We bring to you a list of…

10 Online Tutoring Help Benefits

Do you need a computer science assignment help? Get the best quality assignment help from computer science tutors at affordable prices. They always presented to help…

STEM Education Research

Science isn’t merely for scientists. Understanding science is part of being a well-rounded and informed citizen. Science, technology, engineering, and mathematics (STEM) education research is dedicated to studying the nature of learning, the impact of different science teaching strategies, and the most effective ways to recruit and retain the next generation of scientists.

Center for Astrophysics | Harvard & Smithsonian STEM education researchers are engaged in a number of projects:

Developing research-based tests for use in evaluating students’ knowledge of science concepts. These tests are designed to check for common differences in the way non-scientists understand a subject as compared to scientists. When offered at the beginning and end of science courses, they assess whether instruction has resulted in students' conceptual growth. The tests are freely available for education researchers and teachers, and cover the full range of elementary, secondary, and university courses in science. Misconception-Orientation Standard-Based Assessment Resources for Teachers (MOSART)

Studying ways to improve students’ preparation for introductory STEM courses in college. Students arrive at college with varying pre-college educational experiences, which often influence how well they do in their first STEM classes. To keep interested students in STEM programs, researchers look at measurable factors that predict improved performance. Factors Influencing College Success in STEM (FICS)

Discerning factors that strengthen students’ interest in pursuing a STEM career. Education researchers look at a whole range of pre-college experiences in and out of school that can affect students’ interest in pursuing STEM careers, in order to see both what encourages and what drives them away. Persistence in STEM (PRiSE)

Examining predictors of student outcomes in MOOCs. Many universities have implemented MOOCs to provide academic resources beyond the university, but the research on how well they perform compared with ordinary classes is scant. In addition, MOOCs are frequently plagued by students dropping out. By studying actual implementations of MOOCs, SED researchers hope to gather evidence to explain why many students don’t stick with the course through the end. Massive Open Online Courses (MOOCs)

Advancing Science Teaching and Learning

Public understanding of science is essential for our democratic society. At the same time, white female students and students of color are underrepresented across STEM fields, which is a problem both from equity and workforce demand perspectives. For these reasons, researchers at the Center for Astrophysics | Harvard & Smithsonian study how to improve science teaching and learning.

The Science Education Department (SED) at the Center for Astrophysics is dedicated to researching how people learn, and identifying measurable ways to evaluate learning for students in STEM classes. SED researchers have developed assessment tools designed to evaluate students’ conceptual knowledge for all levels from elementary school through university. These tests are freely available for teachers and other education specialists. Experts in the program also study the educational outcomes of massive open online courses (MOOCs) , which are widely used by universities despite the current lack of evidence on their effectiveness.

A current challenge of STEM education is the substantial underrepresentation of white female scientists and scientists of color across STEM fields, which limits the potential for innovation and excellence in scientific research. To address this problem, SED researchers study variables that predict persistence of students within the STEM pipeline, factors that impact achievement by students in STEM courses, and the development of science identity.

In addition to pursuing fundamental STEM education research, Harvard and Smithsonian educators translate these findings into practice by developing innovative science programs, curricula, interactive media, and technology-based tools for STEM learning. These research-based resources are used by educational audiences in the United States and around the world. The significance of SED’s work has been recognized in the form of grants from the National Science Foundation, NASA, and the National Institutes of Health.

Students working at the CFA

Cambridge Explores the Universe 2018, held at the Center for Astrophysics | Harvard & Smithsonian in Cambridge, MA.

Students work with the CFA

A student working with a professional astronomer at the Cambridge Explores the Universe 2018, held at the Center for Astrophysics | Harvard & Smithsonian in Cambridge, MA.

  • How can astronomy improve life on earth?
  • Solar & Heliospheric Physics
  • Science Education Department

Related News

New grant supports teen air quality studies, michael foley elected first grad student on aas education committee, cfa job shadow event makes astronomy more accessible, to navigate the heavens, take a seat, thousands of new astronomical images highlighted in latest release of worldwide telescope, astronomy educators awarded $2.8m to inspire minority youth to pursue stem careers, factors influencing college success in stem (fics), massive open online courses (moocs), misconception-oriented standards-based assessment resources for teachers (mosart), persistence in stem (prise), sensing the dynamic universe, worldwide telescope (wwt), youthastronet, telescopes and instruments, microobservatory telescope network, spitzer space telescope.

Hot Topics in International Journal of STEM Education

New Content Item

Women in Science

Increasing STEM success: a near-peer mentoring program in the physical sciences   Mentoring supports professional success in a myriad of fields; in the physical sciences, mentoring increases the retention of diverse groups of students. While physics education has made progress in classifying...

New Content Item

Robotics competitions are increasingly popular and potentially provide an on-ramp to computer science, which is currently highly gender imbalanced. However, within competitive robotics teams, student participa...

New Content Item

Read more articles here .

Engaging students with science and retaining interest

Examining study habits in undergraduate STEM courses from a situative perspective

A growing body of research in cognitive psychology and education research is illuminating which study strategies are effective for optimal learning, but little descriptive research focuses on how undergraduate...

New Content Item

We report the results of an undergraduate course in astrophotography designed to engage non-STEM majors in the natural sciences to train future amateur astronomers and citizen scientists. Over 200,000 students...

New Content Item

Read more articles  h ere

How to build up inclusive science-focused schools

Inclusive STEM (traditionally known to stand for “Science, Technology, Engineering, and Math”) high schools are emerging across the country as a mechanism for improving STEM education and getting more and dive...

New Content Item

The teachers’ role in developing, opening, and nurturing an inclusive STEM-focused school  

This study is about teachers’ collective activity during the development and initial year of a science, technology, engineering, and mathematics (STEM)-focused school in the USA. The target school of this study...

New Content Item

Global urgency to improve STEM Education

The global urgency to improve STEM education may be driven by environmental and social impacts of the twenty-first century which in turn jeopardizes global security and economic stability. The complexity of th...

New Content Item

This commentary was stimulated by Yeping Li’s first editorial (2014) citing one of the journal’s goals as adding multidisciplinary perspectives to current studies of single disciplines comprising the focus of ...

New Content Item

Home

STEM Library Resources

  • What is the research process?
  • How do I choose or develop a research topic?
  • What are scholarly articles?
  • What are tips for reading scientific papers?
  • How can I identify a primary research article?
  • How can I make sure my sources are credible?
  • How can I cite my sources properly?
  • Use Library Resources
  • Find Discipline-Specific Guides
  • Best-Bet STEM Resources
  • Information Literacy & Generative AI This link opens in a new window
  • Does writing matter in STEM?

Getting started with research topics

The possibilities for selecting a research topic are nearly endless! While most initial research ideas will need some tweaking to be in line with your project’s or assignment's scope, you can take nearly any idea, interest, or phenomenon and turn it into a research topic. 

Please check with instructor for specific directions concerning topic selection for a research project or to confirm if a topic is acceptable.

Brainstorming initial topics

Tip #1: choose a topic you care about..

This could be a personal interest, related to something you have experienced, related to your job or future career, etc. You could even research a problem or barrier you’ve experienced or something that upsets you. What matters is that you have a vested interest in your research topic. This is going to help motivate you to keep working on the project. 

For example: Adrian works full-time and also has young child, and sometimes they get stressed out about work-life balance. Adrian could choose “working parent mental health” as an initial topic.

Tip #2: Be curious.

Have you ever wondered why something works (or doesn’t work) the way that it does? Are you curious about how something impact your life? Research that! 

For example: Traffic noise from I-215 sometimes keeps Gabi from falling asleep. Gabi could choose “noise pollution and insomnia” as an initial research topic.

Tip #3: Be observant.

Notice trends, phenomena, or occurrences in your daily life. You can research why those trends might occur.

For example: Rui has noticed more vehicles running red lights while commuting work. Rui could choose “distracted and aggressive driving” as an initial research topic.

Tip #4: Think about something you’ve recently learned or read in a class.

If a reading, assignment, or video from a class has stood out to you, explore that further. That topic or an aspect of it could serve as your initial research topic. 

For example: Almas was fascinated to learn in HLTH 1050 that former drug cartel leader Pablo Escobar imported hippos to Colombia and that the hippos are now causing significant issues as a non-native species. Almas could choose “impacts of non-native animal species” as an initial research topic. 

Developing your topic

Great! You’ve selected an initial topic that interests you. Now you will want to refine it so your topic fits within the scope of your project. 

Strategy #1: Ask self-reflective questions.

Ask yourself personal questions to help focus your topic. Ask yourself: Why did I choose this topic in the first place? What specifically interests me about it? Do I have personal experience with this? This reflective process can help you move from a general topic like "medical marijuana" to a more specific one that is also interesting to you. For example, perhaps you know someone who suffers from chronic pain and had medical marijuana recommended to them; you might want to learn more about how medical marijuana helps with chronic pain and if there are any negative medical side effects associated with its use.

Strategy #2: Ask what you want to learn and why.

Try answering this question by filling in the blanks: “I am researching [topic], because I want to find out [issue / question] in order to [application, or why it matters].” For example: I am researching sound pollution, because I want to learn if it impacts sleep cycles in order to understand how traffic noise may negatively impact human health.

Strategy #3: Create an argument.

Another way to refine your initial topic is to give your opinion, take a side to an argument, or present a different outlook. Try to keep an open mind and withhold your own judgement until you have done some research. It is a growth experience to consider other views! Ask something like: “What are the consequences of X on Y?” For example: What are the consequences of vehicle emissions on Utah’s air quality?

Strategy #4: Use the 3 P's

Identify a problem (your initial topic), a population (a specific group of people), and a place. Adding these three components together can help focus your topic.

  • The 3 P's: Population, Place, Problem Licensed under CC BY-NC by Sarah Hood

Evaluating the feasibility of your topic

The next step in developing your research topic is making sure that it is actually feasible for you to research. Sometimes great ideas have to be tabled for another point in time because of current limitations. Here are three questions/sets of questions to ask yourself before moving ahead with your research project.

Why do I care about this topic?

What about it interests me? Will I continue to be interested in this topic throughout the research process? If you cannot answer these questions, return to brainstorming possible topics.

Is my topic too broad or too narrow to fit within the project's scope?

If your topic is too broad, you may be overwhelmed by the amount of sources you find or feel like you have no clear goal of what to study or accomplish. If your topic is too narrow, you may have a very hard time finding sources or completing your project. Look for a topic that is “just right.” It should be specific enough that it is actionable.

  • Too broad: What causes air pollution in Utah?
  • Too narrow: How to pickup trucks driving on I-15 between Draper and South Salt Lake City contribute to the ozone levels in Salt Lake County’s air conditions?
  • Better: How do commuting vehicles in Salt Lake County contribute to air pollution?

Do I have the available resources (time, money, tools, support, etc.) to realistically accomplish this project in the set timeframe?

If your project is going to require you do an observational study, do you have the available time to do that? If your project requires specialized equipment, do you have access to it and knowledge of how to use it? If you need to acquire supplies or incentives for people to participate in your project, do you have the funding? These logistical questions are important, because having the appropriate resources available can help set you up for success. If you don’t have these resources available, you may need to table your research topic until another time.

  • << Previous: What is the research process?
  • Next: What are scholarly articles? >>
  • Last Updated: Jan 31, 2024 2:16 PM
  • URL: https://libguides.slcc.edu/STEM

IRSC Libraries Home

STEM Camp: STEM Research Topics

  • Starting Research
  • Evaluating Information
  • Interactive
  • DNA Fingerprinting
  • Ethics & Genetics
  • Humans & Wildlife
  • Malnutrition
  • Psychology of Plastic Surgery
  • Lying with Numbers
  • << Previous: Interactive
  • Next: DNA Fingerprinting >>
  • Last Updated: Apr 18, 2024 12:04 PM
  • URL: https://irsc.libguides.com/STEMCamp

research topics in stem strand

  • Skip to main content
  • Skip to FDA Search
  • Skip to in this section menu
  • Skip to footer links

U.S. flag

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

U.S. Food and Drug Administration

  •   Search
  •   Menu
  • Science & Research
  • Science and Research Special Topics
  • Advancing Regulatory Science

Leveraging human brain organoids for mixture neurotoxicity and the understanding of individual susceptibilities – BrainMixTox

CERSI Collaborators: Thomas Hartung, MD PhD, Chair for Evidence-Based Toxicology and Lena Smirnova, PhD, Assistant Professor, Bloomberg School of Public Health, Environmental Health and Engineering, Center for Alternatives to Animal Testing (CAAT)

FDA Collaborators:  Suzanne Fitzpatrick, PhD (CFSAN); John Talpos, PhD (NCTR); Barry Hooberman, PhD, MPH (CVM); Tracy MacGill, PhD (OCET); Tracy Chen, PhD (ORSI)

CERSI Subcontractors:  Weill Cornell Medicine Art Sedrakyan, MD, PhD; Jim C. Hu, MD, MPH; Jialin Mao, MD, MS; Miko Yu, MA; Sendong Zhao, PHD, Vahan Simonyan, PhD

Project Start Date: September 1, 2021

Regulatory Science Challenge

The incidence of Autism Spectrum Disorder (ASD) and other neurodevelopmental disorders has steadily risen over the last 50 years. Findings from the first studies on ASD prevalence in the 1960s and 1970s estimated rates of 2 to 4 ASD cases per 10,000 children , and in 2020, the Centers for Disease Control & Prevention (CDC) estimated the rate of ASD cases to be 276 per 10,000 children . Exposure to heavy metals, such as lead, arsenic, cadmium, and chromium, are known to alter neural development and may contribute to ASD pathophysiology. This project leverages the latest advances in the culture of human brain cells in 3D, also called brain organoids or brain microphysiological systems (bMPS), to test how exposure to different heavy metals (e.g., lead, arsenic, cadmium, and chromium) alter neural development and interact with autism-risk genes gene-environmental interactions.

Project Description and Goals

bMPS will be bioengineered from stem cells obtained from the skin or blood cells of typically developed (TD) donors, as well as from donors with ASD. The responses of the TD and ASD organoids to heavy metal exposure will be compared regarding key neurodevelopmental events, such as neuronal and glia differentiation, neurite outgrowth and neuronal network formation. To increase the translational validity of the approach, the model will include microglia, the primary immune cells of the human central nervous system. This inclusion enables the model to better mimic human biology and will aid the identification and modeling of possible contributions of inflammatory mechanisms to ASD. Under these conditions, individual heavy metals as well as their combination(s), will be assessed to identify gene-environmental interactions contributing to ASD pathophysiology. The work will be done collaboratively by researchers from Johns Hopkins University (JHU) CERSI and FDA's  Alternative Methods Working Group .

Research Outcomes/Results

bMPS have been established and the effect of heavy metals and their mixtures on neurodevelopment have been assessed with a panel of endpoints relevant for neurodevelopmental toxicity. The results from the study of the combination of genetic and exposure effects are currently being generated.

Research Impacts

Preliminary data from this project supported JHU’s successful NIH R01 grant proposal “ GEARs Combining advances in Genomics and Environmental science to accelerate Actionable Research and practice in ASD ” to establish the JHU Autism Center of Excellence. The aim of the JHU Autism Center of Excellence is to establish a network for the study of gene-environment interaction in ASD and health outcomes among people with ASD; creating infrastructure and processes to harmonize data from 18 sites to investigate gene-environment interaction at scale.

The work also supported JHU’s successful NIH R01 grant proposal “ Neurotoxicity due to Environmental Complex Metal Mixtures Exposure .” The goal of this project is to better understand the mechanisms by which metal mixtures act in concert to cause neurodegenerative Alzheimer's Disease-related effects. Findings may support the assessment of cumulative neurodegenerative disease risk.

Data collection is ongoing. Publications are expected in CY24.

  • Alzheimer's disease & dementia
  • Arthritis & Rheumatism
  • Attention deficit disorders
  • Autism spectrum disorders
  • Biomedical technology
  • Diseases, Conditions, Syndromes
  • Endocrinology & Metabolism
  • Gastroenterology
  • Gerontology & Geriatrics
  • Health informatics
  • Inflammatory disorders
  • Medical economics
  • Medical research
  • Medications
  • Neuroscience
  • Obstetrics & gynaecology
  • Oncology & Cancer
  • Ophthalmology
  • Overweight & Obesity
  • Parkinson's & Movement disorders
  • Psychology & Psychiatry
  • Radiology & Imaging
  • Sleep disorders
  • Sports medicine & Kinesiology
  • Vaccination
  • Breast cancer
  • Cardiovascular disease
  • Chronic obstructive pulmonary disease
  • Colon cancer
  • Coronary artery disease
  • Heart attack
  • Heart disease
  • High blood pressure
  • Kidney disease
  • Lung cancer
  • Multiple sclerosis
  • Myocardial infarction
  • Ovarian cancer
  • Post traumatic stress disorder
  • Rheumatoid arthritis
  • Schizophrenia
  • Skin cancer
  • Type 2 diabetes
  • Full List »

share this!

April 19, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

peer-reviewed publication

trusted source

New stem cell model can help personalize stem cell treatment for immunodeficiency patients

by The University of Hong Kong

Breakthrough in personalised stem cell treatment for immunodeficiency patients

A collaborative research team has pioneered a new stem cell model to help personalize treatment for patients suffering from rare forms of immunodeficiency. The research findings were published in the Journal of Allergy and Clinical Immunology .

Primary immunodeficiencies, also known as "inborn errors of immunity," are debilitating diseases that compromise the immune system, leaving patients highly vulnerable to infections, autoimmunity, and even cancer. To date, about 500 primary immunodeficiencies are known, but the list is growing yearly as new diseases emerge.

Although individually rare, the overall incidence of primary immunodeficiency is estimated at 1 in 10,000 individuals. Many of these diseases are also caused by genetic mutations and can be inherited across generations.

Owing to their rarity, a significant number of immunodeficiencies remain underdiagnosed and undertreated. Patients with these diseases often lack specific treatment options and receive suboptimal management, leading to a tremendous burden on patients and their families.

One example is a rare disorder called STAT1-Gain-of-Function (STAT1-GoF) disease. Patients with STAT1-GoF are born with an inheritable defect in their immune system , making them susceptible to life-threatening infections, autoimmune disorders, aneurysms, and cancers.

Collaborating with partners at the Centre for Translational Stem Cell Biology (CTSCB) and the University of Cambridge, HKUMed has pioneered a new stem cell platform to help patients with primary immunodeficiencies.

The research team led by Dr. Philip Li Hei, Professors Liu Pengtao, and Chak-sing Lau from the LKS Faculty of Medicine of the University of Hong Kong (HKUMed) took blood samples from patients and re-engineered the patients' cells into Expanded Potential Stem Cells (EPSCs), which can be used as personalized disease models, enabling various therapies to be tested to identify the most effective and safest treatment options without causing unnecessary risk to the patients.

The team has had remarkable success in identifying and repurposing drugs initially used to treat rheumatological conditions to treat individual STAT1-GoF patients in Hong Kong. The team's stem cell platform has demonstrated curative potential of individualized gene therapy for these conditions.

"Using our innovative platform, we successfully identified safe, effective and novel treatment options for individuals with rare immunological diseases," said Dr. Hei, division chief of Rheumatology And Clinical Immunology, and clinical assistant professor, Department of Medicine, School of Clinical Medicine, HKUMed.

"The capability to repurpose existing medications and explore their potential for gene therapy brings tremendous hope to both medical professionals and patients—as many of these orphan diseases were once thought to be untreatable or incurable."

"This study underscores the importance of collaborative research and the partnership among patients, doctors, and scientists," added Professor Pengtao, professor of the School of Biomedical Sciences and managing director of the Centre for Translational Stem Cell Biology at HKUMed.

CTSCB, supported by the InnoHK flagship program under the Innovation and Technology Commission of the HKSAR Government, aims to develop world-leading new stem cells from state-of-the-art technology. Professor Liu said that this novel stem cell platform has the potential to extend beyond a specific disease or patient, encompassing other inheritable conditions. They have already expanded this platform to study other rare immunological diseases, so hopefully, this is merely the beginning of an extraordinary journey.

Professor Lau, dean of medicine and chair of Rheumatology and Clinical Immunology, Department of Medicine, School of Clinical Medicine, HKUMed, said, "Patients with immunodeficiencies and other rare diseases are often underprivileged in Hong Kong. Delays in diagnoses and inadequate support for expensive diagnostic tests or treatments are common, putting the lives of these patients at risk."

"With the advent of new treatments, we also urge raising disease awareness, ensuring timely intervention, and providing robust support for immunodeficiency patients in the future."

Explore further

Feedback to editors

research topics in stem strand

Occupations that are cognitively stimulating may be protective against later-life dementia

Apr 20, 2024

research topics in stem strand

Researchers develop a new way to safely boost immune cells to fight cancer

Apr 19, 2024

research topics in stem strand

New compound from blessed thistle may promote functional nerve regeneration

research topics in stem strand

New research defines specific genomic changes associated with the transmissibility of the mpox virus

research topics in stem strand

New study confirms community pharmacies can help people quit smoking

research topics in stem strand

Researchers discover glial hyper-drive for triggering epileptic seizures

research topics in stem strand

Deeper dive into the gut microbiome shows changes linked to body weight

research topics in stem strand

A new therapeutic target for traumatic brain injury

research topics in stem strand

Dozens of COVID virus mutations arose in man with longest known case, research finds

research topics in stem strand

Researchers explore causal machine learning, a new advancement for AI in health care

Related stories.

research topics in stem strand

Researchers develop a robust platform to generate cells to enhance cancer immunotherapy efficacy

Feb 6, 2024

research topics in stem strand

Researchers develop shortcut to generate brain stem cells for age-related disease research

Mar 8, 2024

research topics in stem strand

Research identifies PLK4 as promising therapeutic target for TP53 mutated acute myeloid leukemia

Jan 4, 2024

research topics in stem strand

90% of penicillin allergy labels in Hong Kong found to be false

Nov 28, 2022

research topics in stem strand

Novel subtype of nasopharyngeal carcinoma and Epstein-Barr virus–associated immune suppression discovered

Dec 15, 2022

research topics in stem strand

New study shows promising evidence for sickle cell gene therapy

Aug 30, 2023

Recommended for you

research topics in stem strand

How myeloid cell replacement could help treat autoimmune encephalomyelitis

research topics in stem strand

Retrospective genomic characterization of the 2020 Ebola outbreak

research topics in stem strand

Signs of multiple sclerosis show up in blood years before symptoms, study finds

research topics in stem strand

Engineered peptides open new avenue for immunotherapy drug development

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Medical Xpress in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

IMAGES

  1. 55 Brilliant Research Topics For STEM Students

    research topics in stem strand

  2. Choosing STEM strand

    research topics in stem strand

  3. PPT

    research topics in stem strand

  4. INTRODUCTION TO STEM STRAND

    research topics in stem strand

  5. STEM At A Glance infographic.

    research topics in stem strand

  6. What are STEM Subjects?

    research topics in stem strand

COMMENTS

  1. 55 Brilliant Research Topics For STEM Students

    There are several science research topics for STEM students. Below are some possible quantitative research topics for STEM students. A study of protease inhibitor and how it operates. A study of how men's exercise impacts DNA traits passed to children. A study of the future of commercial space flight.

  2. Research and trends in STEM education: a systematic review of journal

    With the rapid increase in the number of scholarly publications on STEM education in recent years, reviews of the status and trends in STEM education research internationally support the development of the field. For this review, we conducted a systematic analysis of 798 articles in STEM education published between 2000 and the end of 2018 in 36 journals to get an overview about developments ...

  3. 200+ Experimental Quantitative Research Topics For Stem Students

    Here are 10 practical research topics for STEM students: Developing an affordable and sustainable water purification system for rural communities. Designing a low-cost, energy-efficient home heating and cooling system. Investigating strategies for reducing food waste in the supply chain and households.

  4. Factors Influencing Student STEM Learning: Self-Efficacy and ...

    Social, motivational, and instructional factors impact students' outcomes in STEM learning and their career paths. Based on prior research and expectancy-value theory, the study further explored how multiple factors affect students in the context of integrated STEM learning. High school STEM teachers participated in summer professional development and taught integrated STEM to students ...

  5. 11 STEM Research Topics for High School Students

    Topic 1: Artificial Intelligence (AI) AI stands at the forefront of technological innovation. Students can engage in research on AI applications in various sectors and the ethical implications of AI. This field is suitable for students with interests in computer science, AI, data analytics, and related areas. Topic 2: Applied Math and AI.

  6. Trends and Hot Topics of STEM and STEM Education: a Co-word ...

    This study explored research trends in science, technology, engineering, and mathematics (STEM) education. Descriptive analysis and co-word analysis were used to examine articles published in Social Science Citation Index journals from 2011 to 2020. From a search of the Web of Science database, a total of 761 articles were selected as target samples for analysis. A growing number of STEM ...

  7. Articles

    Laila El‑Hamamsy, Barbara Bruno, Catherine Audrin, Morgane Chevalier, Sunny Avry, Jessica Dehler Zufferey and Francesco Mondada. International Journal of STEM Education 2023 10 :63. Correction Published on: 2 November 2023. The original article was published in International Journal of STEM Education 2023 10 :60.

  8. Home

    Overview. The Journal for STEM Education Research is an interdisciplinary research journal that aims to promote STEM education as a distinct field. Offers a platform for interdisciplinary research on a broad spectrum of topics in STEM education. Publishes integrative reviews and syntheses of literature relevant to STEM education and research.

  9. Research and trends in STEM education: a systematic analysis of

    Taking publicly funded projects in STEM education as a special lens, we aimed to learn about research and trends in STEM education. We identified a total of 127 projects funded by the Institute of Education Sciences (IES) of the US Department of Education from 2003 to 2019. Both the number of funded projects in STEM education and their funding amounts were high, although there were ...

  10. Frontiers in Education

    5,284 views. 6 articles. Part of a multidisciplinary journal that explores research-based approaches to education, this section aims to contribute to the advancement of knowledge, research and practice in STEM Education.

  11. PDF International Scientific Collaboration and Research Topics on STEM ...

    This systematic review provides an in-depth overview of international STEM researcher collaborations and trends in STEM education's most recent research topics. We examined 49 peer-reviewed articles selected from 244 articles published in three reputable international journals from January 2014 to December 2018.

  12. 169+ Exciting Qualitative Research Topics For STEM Students

    Engineering Qualitative Research Topics For STEM Students. Ethics in Artificial Intelligence and Robotics. Human-Centered Design in Engineering. Innovation and Sustainability in Civil Engineering. Public Perception of Self-Driving Cars. Engineering Solutions for Climate Change Mitigation.

  13. Trending Topic Research: STEM

    STEM. Trending Topic Research File. Science, Technology Engineering, and Mathematics (STEM) is one of the most talked about topics in education, emphasizing research, problem solving, critical thinking, and creativity. The following compendium of open-access articles are inclusive of all substantive AERA journal content regarding STEM published ...

  14. STEM: Innovation on Teaching and Learning

    This Research Topic is focused on STEM education: based on this model, several studies have emerged on innovative approaches on teaching and learning. In order to meet the demands of developing students for the 21st century skills and given the appropriate characteristics for this goal of the STEM model, further research is needed on this topic.Being so, it is justified to carry out more ...

  15. Research by Topics

    Educational experiences in formal settings are shaped by curricular decisions. The Center's research in curriculum studies explores the questions of why STEM should be addressed as part of schooling, what ideas should be addressed, and how might they best be organized to engage young people in the core ideas and practices of the disciplines ...

  16. Creativity and Innovation in STEAM Education

    STEM (Science, Technology, Engineer, and Mathematics) education refers to an interdisciplinary and applied approach of teaching and learning to increase scientific literacy and critical thinking of individuals. By merging the Arts with STEM subjects, STEAM education emphasizes the role of arts, creativity and humanity, as in scientific breakthroughs and technological advancement in the 21st ...

  17. Best 151+ Quantitative Research Topics for STEM Students

    Chemistry. Let's get started with some quantitative research topics for stem students in chemistry: 1. Studying the properties of superconductors at different temperatures. 2. Analyzing the efficiency of various catalysts in chemical reactions. 3. Investigating the synthesis of novel polymers with unique properties. 4.

  18. STEM Education Research

    Science isn't merely for scientists. Understanding science is part of being a well-rounded and informed citizen. Science, technology, engineering, and mathematics (STEM) education research is dedicated to studying the nature of learning, the impact of different science teaching strategies, and the most effective ways to recruit and retain the next generation of scientists.

  19. Hot Topics in International Journal of STEM Education

    The International Journal of STEM Education is a multidisciplinary journal in subject-content education that focuses on the study of teaching and learning in science, technology, engineering, and mathematics (STEM). It is being established as a brand new, forward looking journal in the field of education. As a peer-reviewed journal, it is positioned to promote research and educational ...

  20. 55 Brilliant Research Topics For STEM Students (2024)

    There are several science research topics for STEM students. Below are some possible quantitative research topics for STEM students. A study of protease inhibitor and how it operates. A study of how men's exercise impacts DNA traits passed to children. A study of the future of commercial space flight.

  21. How do I choose or develop a research topic?

    Rui could choose "distracted and aggressive driving" as an initial research topic. Tip #4: Think about something you've recently learned or read in a class. If a reading, assignment, or video from a class has stood out to you, explore that further. That topic or an aspect of it could serve as your initial research topic.

  22. Research Titles for STEM Strand Student

    Here are some Research Titles and Topics for S.T.E.M. (STEM) Strand Students. Please take note that some of these titles are subject for revision if your tea...

  23. STEM Camp: STEM Research Topics

    Resources for participants at IRSC's 2013 STEM camp. Ideas for a research paper using a science, technology, engineering, or math topic.

  24. Leveraging human brain organoids for mixture neurotoxicity and the

    Brain microphysiological (bMPS) systems will be bioengineered from stem cells obtained from the skin or blood cells of typically developed donors, as well as donors with autism spectrum disorder ...

  25. New stem cell model can help personalize stem cell treatment for

    A collaborative research team has pioneered a new stem cell model to help personalize treatment for patients suffering from rare forms of immunodeficiency. The research findings were published in ...