💉 JabRef 5.3 Release 💉

We are proud to announce the release of the next milestone of JabRef, this time JabRef 5.3! It’s been roughly half a year since the previous release of 5.2, and we are happy to announce that despite Covid-19 we were all fortunately able to continue working on JabRef. We are also happy to have two students working as part of Google Summer of Code on some cool new features.

Notable Changes and New Features

The most notable new feature is the experimental implementation of a systematic literature review (SLR) functionality, one of our maintainers worked on for his bachelor thesis. Another major improvement is the “Find unlinked files” dialog. We improved the import performance of many files and also added options to filter the shown files by their modification date. A big thanks to the student team that worked on this feature. Additionally, we also simplified the “Select entry type” dialog to show some useful recommendations. Despite this new feature, we also fixed many bugs. Some of them were related to import/export and the handling of linked files. For a complete list of all our changes, take a look at the Changelog since our last official release!

You can get it from FOSShub .

In case you notice any bugs or problems, please check our bug tracker and consider submitting a new bug report if nobody else has been reporting the failure before.

Special Thanks

The JabRef Maintainers would like to give special thanks to all new and old contributors. We are delighted to see so many new contributors opening pull requests and making translations. As we all work on JabRef in our free time, we feel honored that people share our enthusiasm for free software and work together to make research easier. Some big news about how to be part of this project will follow soon.

We also want to thank all universities including JabRef in their academic teaching .

Finally, we want to thank all the users who are constantly testing the latest snapshots and giving feedback! We also hope that our users are all able to receive a vaccination (or two 💉💉) against Covid-19!

Trending Tags

Stay on top of your Literature

The efficient way to collect, organize & discover.

jabref systematic literature review

JabRef supports you in every step of your research

Read more about it below or get going straight away.

  • Import options for over 15 reference formats
  • Easily retrieve and link full-text articles
  • Fetch complete bibliographic information based on ISBN, DOI, PubMed-ID and arXiv-ID

Chrome

  • Complete and improve bibliographic data by comparing with curated online catalogues such as Google Scholar, Springer or MathSciNet
  • Automatically rename and move associated files according to customizable rules
  • Customize and add new metadata fields or reference types

jabref systematic literature review

  • Group your research into hierarchical collections
  • Organize articles based on keywords, tags, search terms or your manual assignments
  • Advanced search and filter features
  • Keep track of what you read: ranking, priority, printed, quality-assured

jabref systematic literature review

  • Native BibTeX and BibLaTeX support, perfect for text-based typesetting systems such as LaTeX and Markdown.
  • Cite-as-you-write functionality for external applications such as Emacs, Kile, LyX, Texmaker, TeXstudio, Vim and WinEdt.
  • Format references in one of the many thousand built-in citation styles or create your style
  • Support for Word and LibreOffice/OpenOffice for inserting and formatting citations

jabref systematic literature review

Get Involved!

JabRef was founded 2003 and has since been used by many students and researchers. Our mission is to advance knowledge and improve scientific research. We value open access to information and believe modern science can built on an open institutional structure. This is why we develop JabRef as free open-source software and save your data in a simple text-based file format with no vendor lock-in.

Created by researchers, for researchers.

JabRef is developed and maintained by a multidisciplinary core team of PhD students, postdocs, and researchers in industry who work on JabRef in their free time. Without the support of numerous volunteers, none of this would have been possible. We welcome anyone who would like to contribute to be part of an active user and developer community!

Help us build JabRef

You do not need to be a developer to improve the documentation, translate the user interface and help with support.

Support the development

Help us pay for project development and operating costs so that we can continue to innovate. Donations keep us going.

Make JabRef even better

JabRef is and always will be 100% free and open-source. Contribute new features and shape the future of JabRef.

Want to learn more?

Getting started, user documentation, propose a new feature, report a bug.

Thank you for viewing this beta site. Unfortunately you are using an out of date browser that we have yet to test on. Please upgrade your browser to improve your experience.

Training Room

Conducting a Systematic Literature Review Provider   Researcher Development Programme

Expand your knowledge of systematic literature reviews. Exporting data from repositories, establishing a unique naming convention, knowledge of JabRef, collating all studies using JabRef, data handling, screening studies using JabRef, creating inclusion and exclusion criteria

Duration 1 full day

Course type workshop, booking status waiting list, is this course right for me.

Target Audience: Postgraduate Researchers

By the end of the workshop participants will be able to: • determine researchers working on similar fields related to their research topic and PhD dissertation.

• clarify the state of knowledge, identify connections, and areas of potential further research.

• build a network due to identified researchers and their published research.

• develop a platform for motivated PGR students to produce succinct excellent review papers in the future.

This course will take place in a computer lab, however, it is suggested that PGRs bring their own laptops to the workshop just in case a computer is not working. 

Prerequisites

Pg certificate in researcher professional development.

All postgraduate research students are eligible to access the Researcher Development Programme workshops. This workshop can contribute towards the PG Certificate in Researcher Professional Development (PG Cert RPD).

You can find credit and class information in the Researcher Development Programme Handbook and in NEPTUNE (Engineering, HaSS) or SPIDER (Science).

Please check with your department or Supervisor to confirm if you are enrolled on the PG Cert RPD and how many credits you are expected to achieve if you are unsure.

A Systematic Literature Review on Numerical Weather Prediction Models and Provenance Data

  • Conference paper
  • First Online: 23 July 2022
  • Cite this conference paper

jabref systematic literature review

  • Alper Tufek   ORCID: orcid.org/0000-0003-1279-9318 12 &
  • Mehmet S. Aktas   ORCID: orcid.org/0000-0001-7908-5067 12  

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13380))

Included in the following conference series:

  • International Conference on Computational Science and Its Applications

1266 Accesses

The weather has been an important issue for mankind since the earliest times. The need to predict the weather accurately increases every day when considering the effects of natural disasters such as floods, hails, extreme winds, landslides, etc. on many sectors from transportation to agriculture, which all depend on weather conditions. Numerical weather prediction (NWP) models, today’s the de-facto tools used for weather forecasting, are scientific software that models atmospheric dynamics in accordance with the laws of physics. These models perform complex mathematical calculations on very large data (gridded) and require high computational power. For this reason, NWP models are scientific software that is usually run on distributed infrastructures and often takes hours to finish. On the other hand, provenance is another key concept as important as weather prediction. Provenance can be briefly defined as metadata that provides information about any kind of data, process, or workflow. In this SLR study, a comprehensive screening of literature was performed to discover primary studies that directly suggest systematic provenance structures for NWP models, or primary studies in which at least a case study was implemented on an NWP model even if considered in a broader perspective. Afterward, these primary studies were thoroughly examined in line with specific research questions, and the findings were presented in a systematic manner. An SLR study on primary studies which combines the two domains of NWP models and provenance research has never been done before. So we think that this work will fill an important gap in literature regarding studies combining the two domains and increase the interest in the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

jabref systematic literature review

On the Provenance Extraction Techniques from Large Scale Log Files: A Case Study for the Numerical Weather Prediction Models

jabref systematic literature review

Big Data Analytics in Weather Forecasting: A Systematic Review

jabref systematic literature review

Data Provenance

Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., Mock, S.: Kepler: an extensible system for design and execution of scientific workflows. In: Proceedings. 16th International Conference on Scientific and Statistical Database Management, pp. 423–424. IEEE (2004)

Google Scholar  

Freire, J., Koop, D., Santos, E., Silva, C.T.: Provenance for computational tasks: a survey. Comput. Sci. Eng. 10 (3), 11–21 (2008)

Article   Google Scholar  

Futrelle, J., et al.: Semantic middleware for e-science knowledge spaces. In: Proceedings of the 7th International Workshop on Middleware for Grids, Clouds and e-Science (2009)

Groth, P., et al.: An architecture for provenance system. Technical report (2006)

JabRef - Free JabRef Reference Management Tool. https://www.jabref.org . Accessed January 2022

Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in software engineering (2007)

Missier, P., et al.: Taverna, reloaded. In: Proceedings of the 22nd International Conference on Scientific and Statistical Database Nanagement (SSDBM 2010) (2010)

Missier, P., Belhajjame, K., Cheney, J.: The W3C PROV family of specifications for modeling provenance metadata. In: Proceedings of the 16th International Conference on Extending Database Technology, pp. 773–776 (2013). https://doi.org/10.1145/2452376.2452478

Moreau, L., et al.: The open provenance model core specification (v1.1). Futur. Gener. Comput. Syst. 27 (6), 743–756 (2011)

Muniswamy-Reddy, K.K., Holland, D.A., Braun, U., Seltzer, M.I.: Provenance-aware storage systems. In: USENIX Annual Technical Conference, General Track, pp. 43–56 (2006)

Muniswamy-Reddy, K.K., et al.: Layering in provenance systems. In: Proceedings of the 2009 USENIX Annual Technical Conference (USENIX 2009). USENIX Association (2009)

Pérez, B., Rubio, J., Sáenz-Adán, C.: A systematic review of provenance systems. Knowl. Inf. Syst. 57 (3), 495–543 (2018)

Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in software engineering. In: Proceedings of the 12th International Conference on Evaluation and Assessment in Software Engineering (EASE 2008) (2008)

PROV-Overview. https://www.w3.org/TR/2012/WD-prov-overview-20121211/ . Accessed 20 Dec 2021

Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science. ACM SIGMOD Rec. 34 (3), 31–36 (2005)

StArt - State of the Art through Systematic Review. LAPES Laboratory of Research on Software Engineering (LAPES). http://lapes.dc.ufscar.br/tools/start_tool . Accessed 10 Jan 2022

Simmhan, Y.L., Plale, B., Gannon, D.: Karma2: provenance management for datadriven workflows. Int. J. Web Serv. Res. (IJWSR) 5 (2), 1–22 (2008)

Suriarachchi, I., Zhou, Q., Plale, B.: Komadu: a capture and visualization system for scientific data provenance. J. Open Res. Softw. 3 (1) (2015)

W3C: SPARQL 1.1 Query Language (2013). https://www.w3.org/TR/sparql11-query/

Download references

Author information

Authors and affiliations.

Computer Engineering Department, Yildiz Technical University, Istanbul, Turkey

Alper Tufek & Mehmet S. Aktas

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Alper Tufek .

Editor information

Editors and affiliations.

University of Perugia, Perugia, Italy

Osvaldo Gervasi

University of Basilicata, Potenza, Potenza, Italy

Beniamino Murgante

Østfold University College, Halden, Norway

Sanjay Misra

University of Minho, Braga, Portugal

Ana Maria A. C. Rocha

University of Cagliari, Cagliari, Italy

Chiara Garau

A Appendix: Relevant Primary Studies

S01

Behrens, H. W., Candan, K. S., Chen, X., Gadkari, A., Garg, Y., Li, M. L., ..., Sapino, M. L. Datastorm-FE: A data-and decision-flow and coordination engine for coupled simulation ensembles. Proceedings of the VLDB Endowment, 11(12), 1906–1909 (2018)

S02

Cheah, Y. W., Plale, B. Provenance quality assessment methodology and framework. Journal of Data and Information Quality (JDIQ), 5(3), 1–20 (2014)

S03

Chen, P., Plale, B., Aktas, M. S. Temporal representation for scientific data provenance. In 2012 IEEE 8th International Conference on E-Science, IEEE, 1–8 (2012)

S04

Chen, P., Plale, B., Aktas, M. S. Temporal representation for mining scientific data provenance. Future generation computer systems, 36, 363–378 (2014)

S05

Cinquini, L., Crichton, D., Mattmann, C., Harney, J., Shipman, G., Wang, F., ..., Schweitzer, R. The Earth System Grid Federation: An open infrastructure for access to distributed geospatial data. Future Generation Computer Systems, 36, 400–417 (2014)

S06

Galizia, A., Roverelli, L., Zereik, G., Danovaro, E., Clematis, A., D’Agostino, D. Using Apache Airavata and EasyGateway for the creation of complex science gateway front-end. Future Generation Computer Systems, 94, 910–919 (2019)

S07

Liu, W., Ye, Q., Wu, C. Q., Liu, Y., Zhou, X., Shan, Y. Machine Learning-assisted Computational Steering of Large-scale Scientific Simulations. In 2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), 984–992 (2021)

S08

Lopez, J. L. A., Kalyuzhnaya, A. V., Kosukhin, S. S., Ivanov, S. V. Data quality control for St. Petersburg flood warning system. Procedia Computer Science, 80, 2128–2140 (2016)

S09

Puiu, D., Barnaghi, P., Tönjes, R., Kümper, D., Ali, M. I., Mileo, A., ..., Fernandes, J. Citypulse: Large scale data analytics framework for smart cities. IEEE Access, 4, 1086–1108 (2016)

S10

Tufek, A., Gurbuz, A., Ekuklu, O. F., Aktas, M. S. Provenance collection platform for the weather research and forecasting model. In 2018 14th International Conference on Semantics, Knowledge and Grids (SKG), IEEE, 17–24 (2018)

S11

Tufek, A., Aktas, M. S. On the provenance extraction techniques from large scale log files: a case study for the numerical weather prediction models. In European Conference on Parallel Processing, Springer, 249–260 (2020)

S12

Tufek, A, Aktas, MS. On the provenance extraction techniques from large scale log files. Concurrency and Computation: Practice and Experience (2021).

S13

Turuncoglu, U. U., Dalfes, N., Murphy, S., DeLuca, C. Toward self-describing and workflow integrated Earth system models: A coupled atmosphere-ocean modeling system application. Environmental modelling & software, 39, 247–262 (2013)

S14

Wu, C. Q., Lin, X., Yu, D., Xu, W., Li, L. End-to-end delay minimization for scientific workflows in clouds under budget constraint. IEEE Transactions on Cloud Computing, 3(2), 169–181 (2014)

S15

Xie, Y., Muniswamy-Reddy, K. K., Feng, D., Li, Y., Long, D. D. Evaluation of a hybrid approach for efficient provenance storage. ACM Transactions on Storage (TOS), 9(4), 1–29 (2013)

S16

Zhao, R., Atkinson, M., Papapanagiotou, P., Magnoni, F., Fleuriot, J. Dr. Aid: Supporting Data-governance Rule Compliance for Decentralized Collaboration in an Automated Way. Proceedings of the ACM on Human-Computer Interaction, 5(CSCW2), 1–43 (2021)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Cite this paper.

Tufek, A., Aktas, M.S. (2022). A Systematic Literature Review on Numerical Weather Prediction Models and Provenance Data. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol 13380. Springer, Cham. https://doi.org/10.1007/978-3-031-10542-5_42

Download citation

DOI : https://doi.org/10.1007/978-3-031-10542-5_42

Published : 23 July 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-10541-8

Online ISBN : 978-3-031-10542-5

eBook Packages : Computer Science Computer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Navigation Menu

Search code, repositories, users, issues, pull requests..., provide feedback.

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly.

To see all available qualifiers, see our documentation .

  • Notifications You must be signed in to change notification settings

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement . We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Create documentation for Systematic Literature Review (SLR) #391

@ThiloteE

ThiloteE commented Apr 26, 2022

attempted to add some documentation, but never was merged, because the info is outdated.

As it stands right now, people would need to experiment with the feature or to actually look into the code.

@koppor

koppor commented May 8, 2022

Blocked by .

We first need to finish the (new) SLR implementation and then work on the documentation.

Sorry, something went wrong.

No branches or pull requests

@koppor

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List

How-to conduct a systematic literature review: A quick guide for computer science research

Angela carrera-rivera.

a Faculty of Engineering, Mondragon University

William Ochoa

Felix larrinaga.

b Design Innovation Center(DBZ), Mondragon University

Associated Data

  • No data was used for the research described in the article.

Performing a literature review is a critical first step in research to understanding the state-of-the-art and identifying gaps and challenges in the field. A systematic literature review is a method which sets out a series of steps to methodically organize the review. In this paper, we present a guide designed for researchers and in particular early-stage researchers in the computer-science field. The contribution of the article is the following:

  • • Clearly defined strategies to follow for a systematic literature review in computer science research, and
  • • Algorithmic method to tackle a systematic literature review.

Graphical abstract

Image, graphical abstract

Specifications table

Subject area:Computer-science
More specific subject area:Software engineering
Name of your method:Systematic literature review
Name and reference of original method:
Resource availability:Resources referred to in this article: ) )

Method details

A Systematic Literature Review (SLR) is a research methodology to collect, identify, and critically analyze the available research studies (e.g., articles, conference proceedings, books, dissertations) through a systematic procedure [12] . An SLR updates the reader with current literature about a subject [6] . The goal is to review critical points of current knowledge on a topic about research questions to suggest areas for further examination [5] . Defining an “Initial Idea” or interest in a subject to be studied is the first step before starting the SLR. An early search of the relevant literature can help determine whether the topic is too broad to adequately cover in the time frame and whether it is necessary to narrow the focus. Reading some articles can assist in setting the direction for a formal review., and formulating a potential research question (e.g., how is semantics involved in Industry 4.0?) can further facilitate this process. Once the focus has been established, an SLR can be undertaken to find more specific studies related to the variables in this question. Although there are multiple approaches for performing an SLR ( [5] , [26] , [27] ), this work aims to provide a step-by-step and practical guide while citing useful examples for computer-science research. The methodology presented in this paper comprises two main phases: “Planning” described in section 2, and “Conducting” described in section 3, following the depiction of the graphical abstract.

Defining the protocol is the first step of an SLR since it describes the procedures involved in the review and acts as a log of the activities to be performed. Obtaining opinions from peers while developing the protocol, is encouraged to ensure the review's consistency and validity, and helps identify when modifications are necessary [20] . One final goal of the protocol is to ensure the replicability of the review.

Define PICOC and synonyms

The PICOC (Population, Intervention, Comparison, Outcome, and Context) criteria break down the SLR's objectives into searchable keywords and help formulate research questions [ 27 ]. PICOC is widely used in the medical and social sciences fields to encourage researchers to consider the components of the research questions [14] . Kitchenham & Charters [6] compiled the list of PICOC elements and their corresponding terms in computer science, as presented in Table 1 , which includes keywords derived from the PICOC elements. From that point on, it is essential to think of synonyms or “alike” terms that later can be used for building queries in the selected digital libraries. For instance, the keyword “context awareness” can also be linked to “context-aware”.

Planning Step 1 “Defining PICOC keywords and synonyms”.

DescriptionExample (PICOC)Example (Synonyms)
PopulationCan be a specific role, an application area, or an industry domain.Smart Manufacturing• Digital Factory
• Digital Manufacturing
• Smart Factory
InterventionThe methodology, tool, or technology that addresses a specific issue.Semantic Web• Ontology
• Semantic Reasoning
ComparisonThe methodology, tool, or technology in which the is being compared (if appropriate).Machine Learning• Supervised Learning
• Unsupervised Learning
OutcomeFactors of importance to practitioners and/or the results that could produce.Context-Awareness• Context-Aware
• Context-Reasoning
ContextThe context in which the comparison takes place. Some systematic reviews might choose to exclude this element.Business Process Management• BPM
• Business Process Modeling

Formulate research questions

Clearly defined research question(s) are the key elements which set the focus for study identification and data extraction [21] . These questions are formulated based on the PICOC criteria as presented in the example in Table 2 (PICOC keywords are underlined).

Research questions examples.

Research Questions examples
• : What are the current challenges of context-aware systems that support the decision-making of business processes in smart manufacturing?
• : Which technique is most appropriate to support decision-making for business process management in smart factories?
• : In which scenarios are semantic web and machine learning used to provide context-awareness in business process management for smart manufacturing?

Select digital library sources

The validity of a study will depend on the proper selection of a database since it must adequately cover the area under investigation [19] . The Web of Science (WoS) is an international and multidisciplinary tool for accessing literature in science, technology, biomedicine, and other disciplines. Scopus is a database that today indexes 40,562 peer-reviewed journals, compared to 24,831 for WoS. Thus, Scopus is currently the largest existing multidisciplinary database. However, it may also be necessary to include sources relevant to computer science, such as EI Compendex, IEEE Xplore, and ACM. Table 3 compares the area of expertise of a selection of databases.

Planning Step 3 “Select digital libraries”. Description of digital libraries in computer science and software engineering.

DatabaseDescriptionURLAreaAdvanced Search Y/N
ScopusFrom Elsevier. sOne of the largest databases. Very user-friendly interface InterdisciplinaryY
Web of ScienceFrom Clarivate. Multidisciplinary database with wide ranging content. InterdisciplinaryY
EI CompendexFrom Elsevier. Focused on engineering literature. EngineeringY (Query view not available)
IEEE Digital LibraryContains scientific and technical articles published by IEEE and its publishing partners. Engineering and TechnologyY
ACM Digital LibraryComplete collection of ACM publications. Computing and information technologyY

Define inclusion and exclusion criteria

Authors should define the inclusion and exclusion criteria before conducting the review to prevent bias, although these can be adjusted later, if necessary. The selection of primary studies will depend on these criteria. Articles are included or excluded in this first selection based on abstract and primary bibliographic data. When unsure, the article is skimmed to further decide the relevance for the review. Table 4 sets out some criteria types with descriptions and examples.

Planning Step 4 “Define inclusion and exclusion criteria”. Examples of criteria type.

Criteria TypeDescriptionExample
PeriodArticles can be selected based on the time period to review, e.g., reviewing the technology under study from the year it emerged, or reviewing progress in the field since the publication of a prior literature review. :
From 2015 to 2021

Articles prior 2015
LanguageArticles can be excluded based on language. :
Articles not in English
Type of LiteratureArticles can be excluded if they are fall into the category of grey literature.
Reports, policy literature, working papers, newsletters, government documents, speeches
Type of sourceArticles can be included or excluded by the type of origin, i.e., conference or journal articles or books. :
Articles from Conferences or Journals

Articles from books
Impact SourceArticles can be excluded if the author limits the impact factor or quartile of the source.
Articles from Q1, and Q2 sources
:
Articles with a Journal Impact Score (JIS) lower than
AccessibilityNot accessible in specific databases. :
Not accessible
Relevance to research questionsArticles can be excluded if they are not relevant to a particular question or to “ ” number of research questions.
Not relevant to at least 2 research questions

Define the Quality Assessment (QA) checklist

Assessing the quality of an article requires an artifact which describes how to perform a detailed assessment. A typical quality assessment is a checklist that contains multiple factors to evaluate. A numerical scale is used to assess the criteria and quantify the QA [22] . Zhou et al. [25] presented a detailed description of assessment criteria in software engineering, classified into four main aspects of study quality: Reporting, Rigor, Credibility, and Relevance. Each of these criteria can be evaluated using, for instance, a Likert-type scale [17] , as shown in Table 5 . It is essential to select the same scale for all criteria established on the quality assessment.

Planning Step 5 “Define QA assessment checklist”. Examples of QA scales and questions.


Do the researchers discuss any problems (limitations, threats) with the validity of their results (reliability)?

1 – No, and not considered (Score: 0)
2 – Partially (Score: 0.5)
3 – Yes (Score: 1)

Is there a clear definition/ description/ statement of the aims/ goals/ purposes/ motivations/ objectives/ questions of the research?

1 – Disagree (Score: 1)
2 – Somewhat disagree (Score: 2)
3 – Neither agree nor disagree (Score: 3)
4 – Somewhat agree (Score: 4)
5 – Agree (Score: 5)

Define the “Data Extraction” form

The data extraction form represents the information necessary to answer the research questions established for the review. Synthesizing the articles is a crucial step when conducting research. Ramesh et al. [15] presented a classification scheme for computer science research, based on topics, research methods, and levels of analysis that can be used to categorize the articles selected. Classification methods and fields to consider when conducting a review are presented in Table 6 .

Planning Step 6 “Define data extraction form”. Examples of fields.

Classification and fields to consider for data extractionDescription and examples
Research type• focuses on abstract ideas, concepts, and theories built on literature reviews .
• uses scientific data or case studies for explorative, descriptive, explanatory, or measurable findings .

an SLR on context-awareness for S-PSS and categorized the articles in theoretical and empirical research.
By process phases, stagesWhen analyzing a process or series of processes, an effective way to structure the data is to find a well-established framework of reference or architecture. :
• an SLR on self-adaptive systems uses the MAPE-K model to understand how the authors tackle each module stage.
• presented a context-awareness survey using the stages of context-aware lifecycle to review different methods.
By technology, framework, or platformWhen analyzing a computer science topic, it is important to know the technology currently employed to understand trends, benefits, or limitations.
:
• an SLR on the big data ecosystem in the manufacturing field that includes frameworks, tools, and platforms for each stage of the big data ecosystem.
By application field and/or industry domainIf the review is not limited to a specific “Context” or “Population" (industry domain), it can be useful  to identify the field of application
:
• an SLR on adaptive training using virtual reality (VR). The review presents an extensive description of multiple application domains and examines related work.
Gaps and challengesIdentifying gaps and challenges is important in reviews to determine the research needs and further establish research directions that can help scholars act on the topic.
Findings in researchResearch in computer science can deliver multiple types of findings, e.g.:
Evaluation methodCase studies, experiments, surveys, mathematical demonstrations, and performance indicators.

The data extraction must be relevant to the research questions, and the relationship to each of the questions should be included in the form. Kitchenham & Charters [6] presented more pertinent data that can be captured, such as conclusions, recommendations, strengths, and weaknesses. Although the data extraction form can be updated if more information is needed, this should be treated with caution since it can be time-consuming. It can therefore be helpful to first have a general background in the research topic to determine better data extraction criteria.

After defining the protocol, conducting the review requires following each of the steps previously described. Using tools can help simplify the performance of this task. Standard tools such as Excel or Google sheets allow multiple researchers to work collaboratively. Another online tool specifically designed for performing SLRs is Parsif.al 1 . This tool allows researchers, especially in the context of software engineering, to define goals and objectives, import articles using BibTeX files, eliminate duplicates, define selection criteria, and generate reports.

Build digital library search strings

Search strings are built considering the PICOC elements and synonyms to execute the search in each database library. A search string should separate the synonyms with the boolean operator OR. In comparison, the PICOC elements are separated with parentheses and the boolean operator AND. An example is presented next:

(“Smart Manufacturing” OR “Digital Manufacturing” OR “Smart Factory”) AND (“Business Process Management” OR “BPEL” OR “BPM” OR “BPMN”) AND (“Semantic Web” OR “Ontology” OR “Semantic” OR “Semantic Web Service”) AND (“Framework” OR “Extension” OR “Plugin” OR “Tool”

Gather studies

Databases that feature advanced searches enable researchers to perform search queries based on titles, abstracts, and keywords, as well as for years or areas of research. Fig. 1 presents the example of an advanced search in Scopus, using titles, abstracts, and keywords (TITLE-ABS-KEY). Most of the databases allow the use of logical operators (i.e., AND, OR). In the example, the search is for “BIG DATA” and “USER EXPERIENCE” or “UX” as a synonym.

Fig 1

Example of Advanced search on Scopus.

In general, bibliometric data of articles can be exported from the databases as a comma-separated-value file (CSV) or BibTeX file, which is helpful for data extraction and quantitative and qualitative analysis. In addition, researchers should take advantage of reference-management software such as Zotero, Mendeley, Endnote, or Jabref, which import bibliographic information onto the software easily.

Study Selection and Refinement

The first step in this stage is to identify any duplicates that appear in the different searches in the selected databases. Some automatic procedures, tools like Excel formulas, or programming languages (i.e., Python) can be convenient here.

In the second step, articles are included or excluded according to the selection criteria, mainly by reading titles and abstracts. Finally, the quality is assessed using the predefined scale. Fig. 2 shows an example of an article QA evaluation in Parsif.al, using a simple scale. In this scenario, the scoring procedure is the following YES= 1, PARTIALLY= 0.5, and NO or UNKNOWN = 0 . A cut-off score should be defined to filter those articles that do not pass the QA. The QA will require a light review of the full text of the article.

Fig 2

Performing quality assessment (QA) in Parsif.al.

Data extraction

Those articles that pass the study selection are then thoroughly and critically read. Next, the researcher completes the information required using the “data extraction” form, as illustrated in Fig. 3 , in this scenario using Parsif.al tool.

Fig 3

Example of data extraction form using Parsif.al.

The information required (study characteristics and findings) from each included study must be acquired and documented through careful reading. Data extraction is valuable, especially if the data requires manipulation or assumptions and inferences. Thus, information can be synthesized from the extracted data for qualitative or quantitative analysis [16] . This documentation supports clarity, precise reporting, and the ability to scrutinize and replicate the examination.

Analysis and Report

The analysis phase examines the synthesized data and extracts meaningful information from the selected articles [10] . There are two main goals in this phase.

The first goal is to analyze the literature in terms of leading authors, journals, countries, and organizations. Furthermore, it helps identify correlations among topic s . Even when not mandatory, this activity can be constructive for researchers to position their work, find trends, and find collaboration opportunities. Next, data from the selected articles can be analyzed using bibliometric analysis (BA). BA summarizes large amounts of bibliometric data to present the state of intellectual structure and emerging trends in a topic or field of research [4] . Table 7 sets out some of the most common bibliometric analysis representations.

Techniques for bibliometric analysis and examples.

Publication-related analysisDescriptionExample
Years of publicationsDetermine interest in the research topic by years or the period established by the SLR, by quantifying the number of papers published. Using this information, it is also possible to forecast the growth rate of research interest.[ ] identified the growth rate of research interest and the yearly publication trend.
Top contribution journals/conferencesIdentify the leading journals and conferences in which authors can share their current and future work. ,
Top countries' or affiliation contributionsExamine the impacts of countries or affiliations leading the research topic.[ , ] identified the most influential countries.
Leading authorsIdentify the most significant authors in a research field.-
Keyword correlation analysisExplore existing relationships between topics in a research field based on the written content of the publication or related keywords established in the articles. using keyword clustering analysis ( ). using frequency analysis.
Total and average citationIdentify the most relevant publications in a research field.
Scatter plot citation scores and journal factor impact

Several tools can perform this type of analysis, such as Excel and Google Sheets for statistical graphs or using programming languages such as Python that has available multiple  data visualization libraries (i.e. Matplotlib, Seaborn). Cluster maps based on bibliographic data(i.e keywords, authors) can be developed in VosViewer which makes it easy to identify clusters of related items [18] . In Fig. 4 , node size is representative of the number of papers related to the keyword, and lines represent the links among keyword terms.

Fig 4

[1] Keyword co-relationship analysis using clusterization in vos viewer.

This second and most important goal is to answer the formulated research questions, which should include a quantitative and qualitative analysis. The quantitative analysis can make use of data categorized, labelled, or coded in the extraction form (see Section 1.6). This data can be transformed into numerical values to perform statistical analysis. One of the most widely employed method is frequency analysis, which shows the recurrence of an event, and can also represent the percental distribution of the population (i.e., percentage by technology type, frequency of use of different frameworks, etc.). Q ualitative analysis includes the narration of the results, the discussion indicating the way forward in future research work, and inferring a conclusion.

Finally, the literature review report should state the protocol to ensure others researchers can replicate the process and understand how the analysis was performed. In the protocol, it is essential to present the inclusion and exclusion criteria, quality assessment, and rationality beyond these aspects.

The presentation and reporting of results will depend on the structure of the review given by the researchers conducting the SLR, there is no one answer. This structure should tie the studies together into key themes, characteristics, or subgroups [ 28 ].

SLR can be an extensive and demanding task, however the results are beneficial in providing a comprehensive overview of the available evidence on a given topic. For this reason, researchers should keep in mind that the entire process of the SLR is tailored to answer the research question(s). This article has detailed a practical guide with the essential steps to conducting an SLR in the context of computer science and software engineering while citing multiple helpful examples and tools. It is envisaged that this method will assist researchers, and particularly early-stage researchers, in following an algorithmic approach to fulfill this task. Finally, a quick checklist is presented in Appendix A as a companion of this article.

CRediT author statement

Angela Carrera-Rivera: Conceptualization, Methodology, Writing-Original. William Ochoa-Agurto : Methodology, Writing-Original. Felix Larrinaga : Reviewing and Supervision Ganix Lasa: Reviewing and Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

Funding : This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant No. 814078.

Carrera-Rivera, A., Larrinaga, F., & Lasa, G. (2022). Context-awareness for the design of Smart-product service systems: Literature review. Computers in Industry, 142, 103730.

1 https://parsif.al/

Data Availability

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • My Bibliography
  • Collections
  • Citation manager

Save citation to file

Email citation, add to collections.

  • Create a new collection
  • Add to an existing collection

Add to My Bibliography

Your saved search, create a file for external citation management software, your rss feed.

  • Search in PubMed
  • Search in NLM Catalog
  • Add to Search

Natural language processing in dermatology: A systematic literature review and state of the art

Affiliations.

  • 1 Dermatology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
  • 2 University of Modena and Reggio Emilia, Modena, Italy.
  • 3 Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Skin Cancer Center, Reggio Emilia, Italy.
  • 4 Melanoma and Skin Cancer Unit, Department of Dermatology, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
  • 5 Dermatology Clinic, IRCCS San Raffaele Scientific Institute, Milan, Italy.
  • 6 Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Dermatology Clinic, Sapienza University of Rome, Rome, Italy.
  • PMID: 39150311
  • DOI: 10.1111/jdv.20286

Background: Natural Language Processing (NLP) is a field of both computational linguistics and artificial intelligence (AI) dedicated to analysis and interpretation of human language.

Objectives: This systematic review aims at exploring all the possible applications of NLP techniques in the dermatological setting.

Methods: Extensive search on 'natural language processing' and 'dermatology' was performed on MEDLINE and Scopus electronic databases. Only journal articles with full text electronically available and English translation were considered. The PICO (Population, Intervention or exposure, Comparison, Outcome) algorithm was applied to our study protocol.

Results: Natural Language Processing (NLP) techniques have been utilized across various dermatological domains, including atopic dermatitis, acne/rosacea, skin infections, non-melanoma skin cancers (NMSCs), melanoma and skincare. There is versatility of NLP in data extraction from diverse sources such as electronic health records (EHRs), social media platforms and online forums. We found extensive utilization of NLP techniques across diverse dermatological domains, showcasing its potential in extracting valuable insights from various sources and informing diagnosis, treatment optimization, patient preferences and unmet needs in dermatological research and clinical practice.

Conclusions: While NLP shows promise in enhancing dermatological research and clinical practice, challenges such as data quality, ambiguity, lack of standardization and privacy concerns necessitate careful consideration. Collaborative efforts between dermatologists, data scientists and ethicists are essential for addressing these challenges and maximizing the potential of NLP in dermatology.

© 2024 The Author(s). Journal of the European Academy of Dermatology and Venereology published by John Wiley & Sons Ltd on behalf of European Academy of Dermatology and Venereology.

PubMed Disclaimer

Similar articles

  • Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K, Williams J, Qi YP, Gutman J, Yeung L, Mai C, Finkelstain J, Mehta S, Pons-Duran C, Menéndez C, Moraleda C, Rogers L, Daniels K, Green P. Crider K, et al. Cochrane Database Syst Rev. 2022 Feb 1;2(2022):CD014217. doi: 10.1002/14651858.CD014217. Cochrane Database Syst Rev. 2022. PMID: 36321557 Free PMC article.
  • Machine Learning and Natural Language Processing in Mental Health: Systematic Review. Le Glaz A, Haralambous Y, Kim-Dufor DH, Lenca P, Billot R, Ryan TC, Marsh J, DeVylder J, Walter M, Berrouiguet S, Lemey C. Le Glaz A, et al. J Med Internet Res. 2021 May 4;23(5):e15708. doi: 10.2196/15708. J Med Internet Res. 2021. PMID: 33944788 Free PMC article. Review.
  • Transforming epilepsy research: A systematic review on natural language processing applications. Yew ANJ, Schraagen M, Otte WM, van Diessen E. Yew ANJ, et al. Epilepsia. 2023 Feb;64(2):292-305. doi: 10.1111/epi.17474. Epub 2022 Dec 19. Epilepsia. 2023. PMID: 36462150 Free PMC article. Review.
  • Natural language processing with machine learning methods to analyze unstructured patient-reported outcomes derived from electronic health records: A systematic review. Sim JA, Huang X, Horan MR, Stewart CM, Robison LL, Hudson MM, Baker JN, Huang IC. Sim JA, et al. Artif Intell Med. 2023 Dec;146:102701. doi: 10.1016/j.artmed.2023.102701. Epub 2023 Nov 1. Artif Intell Med. 2023. PMID: 38042599 Review.
  • Applying Natural Language Processing to Textual Data From Clinical Data Warehouses: Systematic Review. Bazoge A, Morin E, Daille B, Gourraud PA. Bazoge A, et al. JMIR Med Inform. 2023 Dec 15;11:e42477. doi: 10.2196/42477. JMIR Med Inform. 2023. PMID: 38100200 Free PMC article. Review.
  • Guida G, Mauri G. Evaluation of natural language processing systems: issues and approaches. Proc IEEE. 1986;74:1026–1035.
  • Goldberg Y. A primer on neural network models for natural language processing. Jair. 2016;57:345–420.
  • Masoumi S, Amirkhani H, Sadeghian N, Shahraz S. Natural language processing (NLP) to facilitate abstract review in medical research: the application of BioBERT to exploring the 20‐year use of NLP in medical research. Syst Rev. 2024;13:107.
  • Bhatia A, Titus R, Porto JG, Katz J, Lopategui DM, Marcovich R, et al. Application of natural language processing in electronic health record data extraction for navigating prostate cancer care: a narrative review. J Endourol. 2024; 38:852–864.
  • Kariampuzha WZ, Alyea G, Qu S, Sanjak J, Mathé E, Sid E, et al. Precision information extraction for rare disease epidemiology at scale. J Transl Med. 2023;21:157.

Publication types

  • Search in MeSH

LinkOut - more resources

Full text sources.

  • Ovid Technologies, Inc.

full text provider logo

  • Citation Manager

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

applsci-logo

Article Menu

jabref systematic literature review

  • Subscribe SciFeed
  • Recommended Articles
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

Analysing near-miss incidents in construction: a systematic literature review.

jabref systematic literature review

1. Introduction

  • Q 1 —Are near-miss events in construction industry the subject of scientific research?
  • Q 2 —What methods have been employed thus far to obtain information on near misses and systems for recording incidents in construction companies?
  • Q 3 —What methods have been used to analyse the information and figures obtained?
  • Q 4 —What are the key aspects of near misses in the construction industry that have been of interest to the researchers?

2. Definition of Near-Miss Events

3. research methodology, 4.1. a statistical analysis of publications, 4.2. methods used to obtain information about near misses, 4.2.1. traditional methods.

  • Traditional registration forms
  • Computerized systems for the recording of events
  • Surveys and interviews

4.2.2. Real-Time Monitoring Systems

  • Employee-tracking systems
  • Video surveillance systems
  • Wearable technology
  • Motion sensors

4.3. Methods Used to Analyse the Information and Figures That Have Been Obtained

4.3.1. quantitative and qualitative statistical methods, 4.3.2. analysis using artificial intelligence (ai), 4.3.3. building information modelling, 4.4. key aspects of near-miss investigations in the construction industry, 4.4.1. occupational risk assessment, 4.4.2. causes of hazards in construction, 4.4.3. time series of near misses, 4.4.4. material factors of construction processes, 4.5. a comprehensive overview of the research questions and references on near misses in the construction industry, 5. discussion, 5.1. interest of researchers in near misses in construction (question 1), 5.2. methods used to obtain near-miss information (question 2), 5.3. methods used to analyse the information and data sets (question 3), 5.4. key aspects of near-miss investigations in the construction industry (question 4), 6. conclusions.

  • A quantitative analysis of the Q 1 question has revealed a positive trend, namely that there is a growing interest among researchers in studying near misses in construction. The greatest interest in NM topics is observed in the United States of America, China, the United Kingdom, Australia, Hong Kong, and Germany. Additionally, there has been a recent emergence of interest in Poland. The majority of articles are mainly published in journals such as Safety Science (10), Journal of Construction Engineering and Management (8), and Automation in Construction (5);
  • The analysis of question Q 2 illustrates that traditional paper-based event registration systems are currently being superseded by advanced IT systems. However, both traditional and advanced systems are subject to the disadvantage of relying on employee-reported data, which introduces a significant degree of uncertainty regarding in the quality of the information provided. A substantial proportion of the data and findings presented in the studies was obtained through surveys and interviews. The implementation of real-time monitoring systems is becoming increasingly prevalent in construction sites. The objective of such systems is to provide immediate alerts in the event of potential hazards, thereby preventing a significant number of near misses. Real-time monitoring systems employ a range of technologies, including ultrasonic technology, radio frequency identification (RFID), inertial measurement units (IMUs), real-time location systems (RTLSs), industrial cameras, wearable technology, motion sensors, and advanced IT technologies, among others;
  • The analysis of acquired near-miss data is primarily conducted through the utilisation of quantitative and qualitative statistical methods, as evidenced by the examination of the Q 3 question. In recent years, research utilising artificial intelligence (AI) has made significant advances. The most commonly employed artificial intelligence techniques include text mining, machine learning, and artificial neural networks. The growing deployment of Building Information Modelling (BIM) technology has precipitated a profound transformation in the safety management of construction sites, with the advent of sophisticated tools for the identification and management of hazardous occurrences;
  • In response to question Q 4 , the study of near misses in the construction industry has identified several key aspects that have attracted the attention of researchers. These include the utilisation of both quantitative and qualitative methodologies for risk assessment, the analysis of the causes of hazards, the identification of accident precursors through the creation of time series, and the examination of material factors pertaining to construction processes. Researchers are focusing on the utilisation of both databases and advanced technologies, such as real-time location tracking, for the assessment and analysis of occupational risks. Techniques such as Analytic Hierarchy Process (AHP) and clustering facilitate a comprehensive assessment and categorisation of incidents, thereby enabling the identification of patterns and susceptibility to specific types of accidents. Moreover, the impact of a company’s safety climate and organisational culture on the frequency and characteristics of near misses represents a pivotal area of investigation. The findings of this research indicate that effective safety management requires a holistic approach that integrates technology, risk management and safety culture, with the objective of reducing accidents and enhancing overall working conditions on construction sites.

7. Gaps and Future Research Directions, Limitations

  • Given the diversity and variability of construction sites and the changing conditions and circumstances of work, it is essential to create homogeneous clusters of near misses and to analyse the phenomena within these clusters. The formation of such clusters may be contingent upon the direct causes of the events in question;
  • Given the inherently dynamic nature of construction, it is essential to analyse time series of events that indicate trends in development and safety levels. The numerical characteristics of these trends may be used to construct predictive models for future accidents and near misses;
  • The authors have identified potential avenues for future research, which could involve the development of mathematical models using techniques such as linear regression, artificial intelligence, and machine learning. The objective of these models is to predict the probable timing of occupational accidents within defined incident categories, utilising data from near misses. Moreover, efforts are being made to gain access to the hazardous incident recording systems of different construction companies, with a view to facilitating comparison of the resulting data;
  • One significant limitation of near-miss research is the lack of an integrated database that encompasses a diverse range of construction sites and construction work. A data resource of this nature would be of immense value for the purpose of conducting comprehensive analyses and formulating effective risk management strategies. This issue can be attributed to two factors: firstly, the reluctance of company managers to share their databases with researchers specialising in risk assessment, and secondly, the reluctance of employees to report near-miss incidents. Such actions may result in adverse consequences for employees, including disciplinary action or negative perceptions from managers. This consequently results in the recording of only a subset of incidents, thereby distorting the true picture of safety on the site.

Author Contributions

Institutional review board statement, informed consent statement, data availability statement, conflicts of interest.

YearSource TitleDOI/ISBN/ISSNReference
1999Construction Management and Economics10.1080/014461999371691[ ]
2002Structural Engineer14665123[ ]
2009Building a Sustainable Future—Proceedings of the 2009 Construction Research Congress10.1061/41020(339)4[ ]
2010Safety Science10.1016/j.ssci.2010.04.009[ ]
2010Automation in Construction10.1016/j.autcon.2009.11.017[ ]
2010Safety Science10.1016/j.ssci.2009.06.006[ ]
2012Journal of Construction Engineering and Management10.1061/(ASCE)CO.1943-7862.0000518[ ]
2013ISARC 2013—30th International Symposium on Automation and Robotics in Construction and Mining, Held in Conjunction with the 23rd World Mining Congress10.22260/isarc2013/0113[ ]
2014Proceedings of the Institution of Civil Engineers: Civil Engineering10.1680/cien.14.00010[ ]
2014Safety Science10.1016/j.ssci.2013.12.012[ ]
2014Journal of Construction Engineering and Management10.1061/(ASCE)CO.1943-7862.0000795[ ]
201431st International Symposium on Automation and Robotics in Construction and Mining, ISARC 2014—Proceedings10.22260/isarc2014/0115[ ]
2014Construction Research Congress 2014: Construction in a Global Network—Proceedings of the 2014 Construction Research Congress10.1061/9780784413517.0181[ ]
2014Construction Research Congress 2014: Construction in a Global Network—Proceedings of the 2014 Construction Research Congress10.1061/9780784413517.0235[ ]
2014Construction Research Congress 2014: Construction in a Global Network—Proceedings of the 2014 Construction Research Congress10.1061/9780784413517.0096[ ]
2015Automation in Construction10.1016/j.autcon.2015.09.003[ ]
201532nd International Symposium on Automation and Robotics in Construction and Mining: Connected to the Future, Proceedings10.22260/isarc2015/0062[ ]
2015ASSE Professional Development Conference and Exposition 2015-[ ]
2015Congress on Computing in Civil Engineering, Proceedings10.1061/9780784479247.019[ ]
2016Automation in Construction10.1016/j.autcon.2016.03.008[ ]
2016Automation in Construction10.1016/j.autcon.2016.04.007[ ]
2016IEEE IAS Electrical Safety Workshop10.1109/ESW.2016.7499701[ ]
2016Journal of Construction Engineering and Management10.1061/(ASCE)CO.1943-7862.0001100[ ]
2016Safety Science10.1016/j.ssci.2015.11.025[ ]
2016Journal of Construction Engineering and Management10.1061/(ASCE)CO.1943-7862.0001049[ ]
2016IEEE Transactions on Industry Applications10.1109/TIA.2015.2461180[ ]
2017Safety Science10.1016/j.ssci.2017.06.012[ ]
2017ENR (Engineering News-Record)8919526[ ]
20176th CSCE-CRC International Construction Specialty Conference 2017—Held as Part of the Canadian Society for Civil Engineering Annual Conference and General Meeting 2017978-151087841-9[ ]
2017Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)10.1007/978-3-319-72323-5_12[ ]
2017Journal of Construction Engineering and Management10.1061/(ASCE)CO.1943-7862.0001209[ ]
2017Safety Science10.1016/j.ssci.2016.08.027[ ]
2017Safety Science10.1016/j.ssci.2016.08.022[ ]
2018Safety Science10.1016/j.ssci.2018.04.004[ ]
2018International Journal of Construction Management10.1080/15623599.2017.1382067[ ]
2018Journal of Construction Engineering and Management10.1061/(ASCE)CO.1943-7862.0001420[ ]
2018Proceedings of SPIE—The International Society for Optical Engineering10.1117/12.2296548[ ]
2019Automation in Construction10.1016/j.autcon.2019.102854[ ]
2019Physica A: Statistical Mechanics and its Applications10.1016/j.physa.2019.121495[ ]
2019Sustainability (Switzerland)10.3390/su11051264[ ]
2019Computing in Civil Engineering 2019: Data, Sensing, and Analytics—Selected Papers from the ASCE International Conference on Computing in Civil Engineering 2019978-078448243-8[ ]
2019Journal of Health, Safety and Environment18379362[ ]
2019Computing in Civil Engineering 2019: Data, Sensing, and Analytics—Selected Papers from the ASCE International Conference on Computing in Civil Engineering 2019978-078448243-8[ ]
2019Computing in Civil Engineering 2019: Smart Cities, Sustainability, and Resilience—Selected Papers from the ASCE International Conference on Computing in Civil Engineering 201910.1061/9780784482445.026[ ]
2019Journal of Construction Engineering and Management10.1061/(ASCE)CO.1943-7862.0001582[ ]
2019Advances in Intelligent Systems and Computing10.1007/978-3-030-02053-8_107[ ]
2020Accident Analysis and Prevention10.1016/j.aap.2020.105496[ ]
2020Advanced Engineering Informatics10.1016/j.aei.2020.101062[ ]
2020Advanced Engineering Informatics10.1016/j.aei.2020.101060[ ]
2020ARCOM 2020—Association of Researchers in Construction Management, 36th Annual Conference 2020—Proceedings978-099554633-2[ ]
2020International Journal of Building Pathology and Adaptation10.1108/IJBPA-03-2020-0018[ ]
2020Communications in Computer and Information Science10.1007/978-3-030-42852-5_8[ ]
2021Journal of Architectural Engineering10.1061/(ASCE)AE.1943-5568.0000501[ ]
2021Safety Science10.1016/j.ssci.2021.105368[ ]
2021ACM International Conference Proceeding Series10.1145/3482632.3487473[ ]
2021Reliability Engineering and System Safety10.1016/j.ress.2021.107687[ ]
2021Proceedings of the 37th Annual ARCOM Conference, ARCOM 2021-[ ]
2022Buildings10.3390/buildings12111855[ ]
2022Safety Science10.1016/j.ssci.2022.105704[ ]
2022Sensors10.3390/s22093482[ ]
2022Proceedings of International Structural Engineering and Construction10.14455/ISEC.2022.9(2).CSA-03[ ]
2022Journal of Information Technology in Construction10.36680/j.itcon.2022.045[ ]
2022Forensic Engineering 2022: Elevating Forensic Engineering—Selected Papers from the 9th Congress on Forensic Engineering10.1061/9780784484555.005[ ]
2022Computational Intelligence and Neuroscience10.1155/2022/4851615[ ]
2022International Journal of Construction Management10.1080/15623599.2020.1839704[ ]
2023Journal of Construction Engineering and Management10.1061/JCEMD4.COENG-13979[ ]
2023Heliyon10.1016/j.heliyon.2023.e21607[ ]
2023Accident Analysis and Prevention10.1016/j.aap.2023.107224[ ]
2023Safety10.3390/safety9030047[ ]
2023Engineering, Construction and Architectural Management10.1108/ECAM-09-2021-0797[ ]
2023Advanced Engineering Informatics10.1016/j.aei.2023.101929[ ]
2023Engineering, Construction and Architectural Management10.1108/ECAM-05-2023-0458[ ]
2023Intelligent Automation and Soft Computing10.32604/iasc.2023.031359[ ]
2023International Journal of Construction Management10.1080/15623599.2020.1847405[ ]
2024Heliyon10.1016/j.heliyon.2024.e26410[ ]
  • Occupational Risk|Safety and Health at Work EU-OSHA. Available online: https://osha.europa.eu/en/tools-and-resources/eu-osha-thesaurus/term/70194i (accessed on 28 June 2023).
  • Guo, S.; Zhou, X.; Tang, B.; Gong, P. Exploring the Behavioral Risk Chains of Accidents Using Complex Network Theory in the Construction Industry. Phys. A Stat. Mech. Its Appl. 2020 , 560 , 125012. [ Google Scholar ] [ CrossRef ]
  • Woźniak, Z.; Hoła, B. The Structure of near Misses and Occupational Accidents in the Polish Construction Industry. Heliyon 2024 , 10 , e26410. [ Google Scholar ] [ CrossRef ]
  • Li, X.; Sun, W.; Fu, H.; Bu, Q.; Zhang, Z.; Huang, J.; Zang, D.; Sun, Y.; Ma, Y.; Wang, R.; et al. Schedule Risk Model of Water Intake Tunnel Construction Considering Mood Factors and Its Application. Sci. Rep. 2024 , 14 , 3857. [ Google Scholar ] [ CrossRef ]
  • Li, X.; Huang, J.; Li, C.; Luo, N.; Lei, W.; Fan, H.; Sun, Y.; Chen, W. Study on Construction Resource Optimization and Uncertain Risk of Urban Sewage Pipe Network. Period. Polytech. Civ. Eng. 2022 , 66 , 335–343. [ Google Scholar ] [ CrossRef ]
  • Central Statistical Office Central Statistical Office/Thematic Areas/Labor Market/Working Conditions/Accidents at Work/Accidents at Work in the 1st Quarter of 2024. Available online: https://stat.gov.pl/obszary-tematyczne/rynek-pracy/warunki-pracy-wypadki-przy-pracy/wypadki-przy-pracy-w-1-kwartale-2024-roku,3,55.html (accessed on 17 July 2024).
  • Manzo, J. The $ 5 Billion Cost of Construction Fatalities in the United States: A 50 State Comparison ; The Midwest Economic Policy Institute (MEPI): Saint Paul, MN, USA, 2017. [ Google Scholar ]
  • Sousa, V.; Almeida, N.M.; Dias, L.A. Risk-Based Management of Occupational Safety and Health in the Construction Industry—Part 1: Background Knowledge. Saf. Sci. 2014 , 66 , 75–86. [ Google Scholar ] [ CrossRef ]
  • Amirah, N.A.; Him, N.F.N.; Rashid, A.; Rasheed, R.; Zaliha, T.N.; Afthanorhan, A. Fostering a Safety Culture in Manufacturing through Safety Behavior: A Structural Equation Modelling Approach. J. Saf. Sustain. 2024; in press . [ Google Scholar ] [ CrossRef ]
  • Heinrich, H.W. Industrial Accident Prevention ; A Scientific Approach; McGraw-Hill: New York, NY, USA, 1931. [ Google Scholar ]
  • Near Miss Definition Per OSHA—What Is a Near Miss? Available online: https://safetystage.com/osha-compliance/near-miss-definition-osha/ (accessed on 17 August 2024).
  • Cambraia, F.B.; Saurin, T.A.; Formoso, C.T. Identification, Analysis and Dissemination of Information on near Misses: A Case Study in the Construction Industry. Saf. Sci. 2010 , 48 , 91–99. [ Google Scholar ] [ CrossRef ]
  • Tan, J.; Li, M. How to Achieve Accurate Accountability under Current Administrative Accountability System for Work Safety Accidents in Chemical Industry in China: A Case Study on Major Work Safety Accidents during 2010–2020. J. Chin. Hum. Resour. Manag. 2022 , 13 , 26–40. [ Google Scholar ] [ CrossRef ]
  • Wu, W.; Gibb, A.G.F.; Li, Q. Accident Precursors and near Misses on Construction Sites: An Investigative Tool to Derive Information from Accident Databases. Saf. Sci. 2010 , 48 , 845–858. [ Google Scholar ] [ CrossRef ]
  • Janicak, C.A. Fall-Related Deaths in the Construction Industry. J. Saf. Res. 1998 , 29 , 35–42. [ Google Scholar ] [ CrossRef ]
  • Li, H.; Yang, X.; Wang, F.; Rose, T.; Chan, G.; Dong, S. Stochastic State Sequence Model to Predict Construction Site Safety States through Real-Time Location Systems. Saf. Sci. 2016 , 84 , 78–87. [ Google Scholar ] [ CrossRef ]
  • Yang, K.; Aria, S.; Ahn, C.R.; Stentz, T.L. Automated Detection of Near-Miss Fall Incidents in Iron Workers Using Inertial Measurement Units. In Proceedings of the Construction Research Congress 2014: Construction in a Global Network, Atlanta, GA, USA, 19–21 May 2014; pp. 935–944. [ Google Scholar ] [ CrossRef ]
  • Raviv, G.; Fishbain, B.; Shapira, A. Analyzing Risk Factors in Crane-Related near-Miss and Accident Reports. Saf. Sci. 2017 , 91 , 192–205. [ Google Scholar ] [ CrossRef ]
  • Zhao, X.; Zhang, M.; Cao, T. A Study of Using Smartphone to Detect and Identify Construction Workers’ near-Miss Falls Based on ANN. In Proceedings of the Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XII, Denver, CO, USA, 4–8 March 2018; p. 80. [ Google Scholar ] [ CrossRef ]
  • Santiago, K.; Yang, X.; Ruano-Herreria, E.C.; Chalmers, J.; Cavicchia, P.; Caban-Martinez, A.J. Characterising near Misses and Injuries in the Temporary Agency Construction Workforce: Qualitative Study Approach. Occup. Environ. Med. 2020 , 77 , 94–99. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • What Is OSHA’s Definition of a Near Miss. Available online: https://www.osha.com/blog/near-miss-definition (accessed on 4 August 2023).
  • Martins, I. Investigation of Occupational Accidents and Diseases a Practical Guide for Labour Inspectors ; International Labour Office: Geneva, Switzerland, 2015. [ Google Scholar ]
  • National Safety Council. Near Miss Reporting Systems ; National Safety Council: Singapore, 2013. [ Google Scholar ]
  • PKN PN-ISO 45001:2018-06 ; Occupational Health and Safety Management Systems—Requirements with Guidance for Use. CRC Press: Boca Raton, FL, USA, 2019.
  • PKN PN-N-18001:2004 ; Occupational Health and Safety Management Systems—Requirements. CRC Press: Boca Raton, FL, USA, 2004.
  • World Health Organisation. WHO Draft GuiDelines for Adverse Event Reporting and Learning Systems ; World Health Organisation: Geneva, Switzerland, 2005. [ Google Scholar ]
  • International Atomic Energy Agency IAEA Satety Glossary. Terminology Used in Nuclear Safety and Radiation Protection: 2007 Edition ; International Atomic Energy Agency: Vienna, Austria, 2007. [ Google Scholar ]
  • Marks, E.; Teizer, J.; Hinze, J. Near Miss Reporting Program to Enhance Construction Worker Safety Performance. In Proceedings of the Construction Research Congress 2014: Construction in a Global Network, Atlanta, GA, USA, 19 May 2014; pp. 2315–2324. [ Google Scholar ] [ CrossRef ]
  • Gnoni, M.G.; Saleh, J.H. Near-Miss Management Systems and Observability-in-Depth: Handling Safety Incidents and Accident Precursors in Light of Safety Principles. Saf. Sci. 2017 , 91 , 154–167. [ Google Scholar ] [ CrossRef ]
  • Thoroman, B.; Goode, N.; Salmon, P. System Thinking Applied to near Misses: A Review of Industry-Wide near Miss Reporting Systems. Theor. Issues Ergon. Sci. 2018 , 19 , 712–737. [ Google Scholar ] [ CrossRef ]
  • Gnoni, M.G.; Tornese, F.; Guglielmi, A.; Pellicci, M.; Campo, G.; De Merich, D. Near Miss Management Systems in the Industrial Sector: A Literature Review. Saf. Sci. 2022 , 150 , 105704. [ Google Scholar ] [ CrossRef ]
  • Bird, F. Management Guide to Loss Control ; Loss Control Publications: Houston, TX, USA, 1975. [ Google Scholar ]
  • Zimmermann. Bauer International Norms and Identity ; Zimmermann: Sydney, NSW, Australia, 2006; pp. 5–21. [ Google Scholar ]
  • Arslan, M.; Cruz, C.; Ginhac, D. Semantic Trajectory Insights for Worker Safety in Dynamic Environments. Autom. Constr. 2019 , 106 , 102854. [ Google Scholar ] [ CrossRef ]
  • Arslan, M.; Cruz, C.; Ginhac, D. Visualizing Intrusions in Dynamic Building Environments for Worker Safety. Saf. Sci. 2019 , 120 , 428–446. [ Google Scholar ] [ CrossRef ]
  • Zhou, C.; Chen, R.; Jiang, S.; Zhou, Y.; Ding, L.; Skibniewski, M.J.; Lin, X. Human Dynamics in Near-Miss Accidents Resulting from Unsafe Behavior of Construction Workers. Phys. A Stat. Mech. Its Appl. 2019 , 530 , 121495. [ Google Scholar ] [ CrossRef ]
  • Chen, F.; Wang, C.; Wang, J.; Zhi, Y.; Wang, Z. Risk Assessment of Chemical Process Considering Dynamic Probability of near Misses Based on Bayesian Theory and Event Tree Analysis. J. Loss Prev. Process Ind. 2020 , 68 , 104280. [ Google Scholar ] [ CrossRef ]
  • Wright, L.; Van Der Schaaf, T. Accident versus near Miss Causation: A Critical Review of the Literature, an Empirical Test in the UK Railway Domain, and Their Implications for Other Sectors. J. Hazard. Mater. 2004 , 111 , 105–110. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Saleh, J.H.; Saltmarsh, E.A.; Favar, F.M.; Loı¨c Brevault, L. Accident Precursors, near Misses, and Warning Signs: Critical Review and Formal Definitions within the Framework of Discrete Event Systems. Reliab. Eng. Syst. Saf. 2013 , 114 , 148–154. [ Google Scholar ] [ CrossRef ]
  • Fred, A. Manuele Reviewing Heinrich. Am. Soc. Saf. Prof. 2011 , 56 , 52–61. [ Google Scholar ]
  • Love, P.E.D.; Tenekedjiev, K. Understanding Near-Miss Count Data on Construction Sites Using Greedy D-Vine Copula Marginal Regression: A Comment. Reliab. Eng. Syst. Saf. 2022 , 217 , 108021. [ Google Scholar ] [ CrossRef ]
  • Jan van Eck, N.; Waltman, L. VOSviewer Manual ; Universiteit Leiden: Leiden, The Netherlands, 2015. [ Google Scholar ]
  • Scopus. Content Coverage Guide ; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–24. [ Google Scholar ]
  • Lukic, D.; Littlejohn, A.; Margaryan, A. A Framework for Learning from Incidents in the Workplace. Saf. Sci. 2012 , 50 , 950–957. [ Google Scholar ] [ CrossRef ]
  • Teizer, J.; Cheng, T. Proximity Hazard Indicator for Workers-on-Foot near Miss Interactions with Construction Equipment and Geo-Referenced Hazard Area. Autom. Constr. 2015 , 60 , 58–73. [ Google Scholar ] [ CrossRef ]
  • Zong, L.; Fu, G. A Study on Designing No-Penalty Reporting System about Enterprise Staff’s near Miss. Adv. Mater. Res. 2011 , 255–260 , 3846–3851. [ Google Scholar ] [ CrossRef ]
  • Golovina, O.; Teizer, J.; Pradhananga, N. Heat Map Generation for Predictive Safety Planning: Preventing Struck-by and near Miss Interactions between Workers-on-Foot and Construction Equipment. Autom. Constr. 2016 , 71 , 99–115. [ Google Scholar ] [ CrossRef ]
  • Zou, P.X.W.; Lun, P.; Cipolla, D.; Mohamed, S. Cloud-Based Safety Information and Communication System in Infrastructure Construction. Saf. Sci. 2017 , 98 , 50–69. [ Google Scholar ] [ CrossRef ]
  • Hinze, J.; Godfrey, R. An Evaluation of Safety Performance Measures for Construction Projects. J. Constr. Res. 2011 , 4 , 5–15. [ Google Scholar ] [ CrossRef ]
  • Construction Inspection Software|IAuditor by SafetyCulture. Available online: https://safetyculture.com/construction/ (accessed on 25 August 2023).
  • Incident Reporting Made Easy|Safety Compliance|Mobile EHS Solutions. Available online: https://www.safety-reports.com/lp/safety/incident/ (accessed on 25 August 2023).
  • Wu, F.; Wu, T.; Yuce, M.R. An Internet-of-Things (IoT) Network System for Connected Safety and Health Monitoring Applications. Sensors 2019 , 19 , 21. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Fang, W.; Luo, H.; Xu, S.; Love, P.E.D.; Lu, Z.; Ye, C. Automated Text Classification of Near-Misses from Safety Reports: An Improved Deep Learning Approach. Adv. Eng. Inform. 2020 , 44 , 101060. [ Google Scholar ] [ CrossRef ]
  • Gatti, U.C.; Lin, K.-Y.; Caldera, C.; Chiang, R. Exploring the Relationship between Chronic Sleep Deprivation and Safety on Construction Sites. In Proceedings of the Construction Research Congress 2014: Construction in a Global Network, Atlanta, GA, USA, 19–24 May 2014; pp. 1772–1781. [ Google Scholar ] [ CrossRef ]
  • Hon, C.K.H.; Chan, A.P.C.; Yam, M.C.H. Relationships between Safety Climate and Safety Performance of Building Repair, Maintenance, Minor Alteration, and Addition (RMAA) Works. Saf. Sci. 2014 , 65 , 10–19. [ Google Scholar ] [ CrossRef ]
  • Oni, O.; Olanrewaju, A.; Cheen, K.S. Accidents at construction sites and near-misses: A constant problem. Int. Struct. Eng. Constr. 2022 , 9 , 2022. [ Google Scholar ] [ CrossRef ]
  • Wu, W.; Yang, H.; Chew, D.A.S.; Yang, S.-H.; Gibb, A.G.F.; Li, Q. Towards an Autonomous Real-Time Tracking System of near-Miss Accidents on Construction Sites. Autom. Constr. 2010 , 19 , 134–141. [ Google Scholar ] [ CrossRef ]
  • Aria, S.S.; Yang, K.; Ahn, C.R.; Vuran, M.C. Near-Miss Accident Detection for Ironworkers Using Inertial Measurement Unit Sensors. In Proceedings of the International Symposium on Automation and Robotics in Construction, ISARC 2014, Sydney, Australia, 9–11 July 2014; Volume 31, pp. 854–859. [ Google Scholar ] [ CrossRef ]
  • Hasanzadeh, S.; Garza, J.M. de la Productivity-Safety Model: Debunking the Myth of the Productivity-Safety Divide through a Mixed-Reality Residential Roofing Task. J. Constr. Eng. Manag. 2020 , 146 , 04020124. [ Google Scholar ] [ CrossRef ]
  • Teizer, J. Magnetic Field Proximity Detection and Alert Technology for Safe Heavy Construction Equipment Operation. In Proceedings of the 32nd International Symposium on Automation and Robotics in Construction, Oulu, Finland, 15–18 June 2015. [ Google Scholar ] [ CrossRef ]
  • Mohajeri, M.; Ardeshir, A.; Banki, M.T.; Malekitabar, H. Discovering Causality Patterns of Unsafe Behavior Leading to Fall Hazards on Construction Sites. Int. J. Constr. Manag. 2022 , 22 , 3034–3044. [ Google Scholar ] [ CrossRef ]
  • Kisaezehra; Farooq, M.U.; Bhutto, M.A.; Kazi, A.K. Real-Time Safety Helmet Detection Using Yolov5 at Construction Sites. Intell. Autom. Soft Comput. 2023 , 36 , 911–927. [ Google Scholar ] [ CrossRef ]
  • Li, C.; Ding, L. Falling Objects Detection for near Miss Incidents Identification on Construction Site. In Proceedings of the ASCE International Conference on Computing in Civil Engineering, Atlanta, GA, USA, 17–19 June 2019; pp. 138–145. [ Google Scholar ] [ CrossRef ]
  • Jeelani, I.; Ramshankar, H.; Han, K.; Albert, A.; Asadi, K. Real-Time Hazard Proximity Detection—Localization of Workers Using Visual Data. In Proceedings of the ASCE International Conference on Computing in Civil Engineering, Atlanta, GA, USA, 17–19 June 2019; pp. 281–289. [ Google Scholar ] [ CrossRef ]
  • Lim, T.-K.; Park, S.-M.; Lee, H.-C.; Lee, D.-E. Artificial Neural Network–Based Slip-Trip Classifier Using Smart Sensor for Construction Workplace. J. Constr. Eng. Manag. 2015 , 142 , 04015065. [ Google Scholar ] [ CrossRef ]
  • Yang, K.; Jebelli, H.; Ahn, C.R.; Vuran, M.C. Threshold-Based Approach to Detect Near-Miss Falls of Iron Workers Using Inertial Measurement Units. In Proceedings of the 2015 International Workshop on Computing in Civil Engineering, Austin, TX, USA, 21–23 June 2015; 2015; 2015, pp. 148–155. [ Google Scholar ] [ CrossRef ]
  • Yang, K.; Ahn, C.R.; Vuran, M.C.; Aria, S.S. Semi-Supervised near-Miss Fall Detection for Ironworkers with a Wearable Inertial Measurement Unit. Autom. Constr. 2016 , 68 , 194–202. [ Google Scholar ] [ CrossRef ]
  • Raviv, G.; Shapira, A.; Fishbain, B. AHP-Based Analysis of the Risk Potential of Safety Incidents: Case Study of Cranes in the Construction Industry. Saf. Sci. 2017 , 91 , 298–309. [ Google Scholar ] [ CrossRef ]
  • Saurin, T.A.; Formoso, C.T.; Reck, R.; Beck da Silva Etges, B.M.; Ribeiro JL, D. Findings from the Analysis of Incident-Reporting Systems of Construction Companies. J. Constr. Eng. Manag. 2015 , 141 , 05015007. [ Google Scholar ] [ CrossRef ]
  • Williams, E.; Sherratt, F.; Norton, E. Exploring the Value in near Miss Reporting for Construction Safety. In Proceedings of the 37th Annual Conference, Virtual Event, 6–10 December 2021; pp. 319–328. [ Google Scholar ]
  • Baker, H.; Smith, S.; Masterton, G.; Hewlett, B. Data-Led Learning: Using Natural Language Processing (NLP) and Machine Learning to Learn from Construction Site Safety Failures. In Proceedings of the 36th Annual ARCOM Conference, Online, 7–8 September 2020; pp. 356–365. [ Google Scholar ]
  • Jin, R.; Wang, F.; Liu, D. Dynamic Probabilistic Analysis of Accidents in Construction Projects by Combining Precursor Data and Expert Judgments. Adv. Eng. Inform. 2020 , 44 , 101062. [ Google Scholar ] [ CrossRef ]
  • Zhou, Z.; Li, C.; Mi, C.; Qian, L. Exploring the Potential Use of Near-Miss Information to Improve Construction Safety Performance. Sustainability 2019 , 11 , 1264. [ Google Scholar ] [ CrossRef ]
  • Boateng, E.B.; Pillay, M.; Davis, P. Predicting the Level of Safety Performance Using an Artificial Neural Network. Adv. Intell. Syst. Comput. 2019 , 876 , 705–710. [ Google Scholar ] [ CrossRef ]
  • Zhang, M.; Cao, T.; Zhao, X. Using Smartphones to Detect and Identify Construction Workers’ Near-Miss Falls Based on ANN. J. Constr. Eng. Manag. 2018 , 145 , 04018120. [ Google Scholar ] [ CrossRef ]
  • Gadekar, H.; Bugalia, N. Automatic Classification of Construction Safety Reports Using Semi-Supervised YAKE-Guided LDA Approach. Adv. Eng. Inform. 2023 , 56 , 101929. [ Google Scholar ] [ CrossRef ]
  • Zhu, Y.; Liao, H.; Huang, D. Using Text Mining and Multilevel Association Rules to Process and Analyze Incident Reports in China. Accid. Anal. Prev. 2023 , 191 , 107224. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Li, M.; Lin, Q.; Jin, H. Research on Near-Miss Incidents Monitoring and Early Warning System for Building Construction Sites Based on Blockchain Technology. J. Constr. Eng. Manag. 2023 , 149 , 04023124. [ Google Scholar ] [ CrossRef ]
  • Chung, W.W.S.; Tariq, S.; Mohandes, S.R.; Zayed, T. IoT-Based Application for Construction Site Safety Monitoring. Int. J. Constr. Manag. 2020 , 23 , 58–74. [ Google Scholar ] [ CrossRef ]
  • Liu, X.; Xu, F.; Zhang, Z.; Sun, K. Fall-Portent Detection for Construction Sites Based on Computer Vision and Machine Learning. Eng. Constr. Archit. Manag. 2023; ahead-of-print . [ Google Scholar ] [ CrossRef ]
  • Abbasi, H.; Guerrieri, A.; Lee, J.; Yang, K. Mobile Device-Based Struck-By Hazard Recognition in Construction Using a High-Frequency Sound. Sensors 2022 , 22 , 3482. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Wang, F.; Li, H.; Dong, C. Understanding Near-Miss Count Data on Construction Sites Using Greedy D-Vine Copula Marginal Regression. Reliab. Eng. Syst. Saf. 2021 , 213 , 107687. [ Google Scholar ] [ CrossRef ]
  • Bugalia, N.; Tarani, V.; Student, G.; Kedia, J.; Gadekar, H. Machine Learning-Based Automated Classification Of Worker-Reported Safety Reports In Construction. J. Inf. Technol. Constr. 2022 , 27 , 926–950. [ Google Scholar ] [ CrossRef ]
  • Chen, S.; Xi, J.; Chen, Y.; Zhao, J. Association Mining of Near Misses in Hydropower Engineering Construction Based on Convolutional Neural Network Text Classification. Comput. Intell. Neurosci. 2022 , 2022 , 4851615. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Tang, S.; Golparvar-Fard, M.; Naphade, M.; Gopalakrishna, M.M. Video-Based Activity Forecasting for Construction Safety Monitoring Use Cases. In Proceedings of the ASCE International Conference on Computing in Civil Engineering, Atlanta, GA, USA, 17–19 June 2019; pp. 204–210. [ Google Scholar ] [ CrossRef ]
  • Rashid, K.M.; Behzadan, A.H. Risk Behavior-Based Trajectory Prediction for Construction Site Safety Monitoring. J. Constr. Eng. Manag. 2018 , 144 , 04017106. [ Google Scholar ] [ CrossRef ]
  • Shen, X.; Marks, E. Near-Miss Information Visualization Tool in BIM for Construction Safety. J. Constr. Eng. Manag. 2016 , 142 , 04015100. [ Google Scholar ] [ CrossRef ]
  • Erusta, N.E.; Sertyesilisik, B. An Investigation into Improving Occupational Health and Safety Performance of Construction Projects through Usage of BIM for Lean Management. In Communications in Computer and Information Science (CCIS) ; Springer: Berlin/Heidelberg, Germany, 2020; Volume 1188, pp. 91–100. [ Google Scholar ] [ CrossRef ]
  • Coffland, M.M.; Kim, A.; Sadatsafavi, H.; Uber, M.M. Improved Data Storage for Better Safety Analysis and Decision Making in Large Construction Management Firms. Available online: https://www.researchgate.net/publication/320474383_Improved_Data_Storage_for_Better_Safety_Analysis_and_Decision_Making_in_Large_Construction_Management_Firms (accessed on 12 June 2024).
  • Zhou, Z.; Li, Q.; Wu, W. Developing a Versatile Subway Construction Incident Database for Safety Management. J. Constr. Eng. Manag. 2011 , 138 , 1169–1180. [ Google Scholar ] [ CrossRef ]
  • Wu, W.; Yang, H.; Li, Q.; Chew, D. An Integrated Information Management Model for Proactive Prevention of Struck-by-Falling-Object Accidents on Construction Sites. Autom. Constr. 2013 , 34 , 67–74. [ Google Scholar ] [ CrossRef ]
  • Hoła, B. Identification and Evaluation of Processes in a Construction Enterprise. Arch. Civ. Mech. Eng. 2015 , 15 , 419–426. [ Google Scholar ] [ CrossRef ]
  • Zhou, C.; Ding, L.; Skibniewski, M.J.; Luo, H.; Jiang, S. Characterizing Time Series of Near-Miss Accidents in Metro Construction via Complex Network Theory. Saf. Sci. 2017 , 98 , 145–158. [ Google Scholar ] [ CrossRef ]
  • Woźniak, Z.; Hoła, B. Time Series Analysis of Hazardous Events Based on Data Recorded in a Polish Construction Company. Arch. Civ. Eng. 2024; in process . [ Google Scholar ]
  • Drozd, W. Characteristics of Construction Site in Terms of Occupational Safety. J. Civ. Eng. Environ. Archit. 2016 , 63 , 165–172. [ Google Scholar ]
  • Meliá, J.L.; Mearns, K.; Silva, S.A.; Lima, M.L. Safety Climate Responses and the Perceived Risk of Accidents in the Construction Industry. Saf. Sci. 2008 , 46 , 949–958. [ Google Scholar ] [ CrossRef ]
  • Bugalia, N.; Maemura, Y.; Ozawa, K. A System Dynamics Model for Near-Miss Reporting in Complex Systems. Saf. Sci. 2021 , 142 , 105368. [ Google Scholar ] [ CrossRef ]
  • Gyi, D.E.; Gibb, A.G.F.; Haslam, R.A. The Quality of Accident and Health Data in the Construction Industry: Interviews with Senior Managers. Constr. Manag. Econ. 1999 , 17 , 197–204. [ Google Scholar ] [ CrossRef ]
  • Menzies, J. Structural Safety: Learning and Warnings. Struct. Eng. 2002 , 80 , 15–16. [ Google Scholar ]
  • Fullerton, C.E.; Allread, B.S.; Teizer, J. Pro-Active-Real-Time Personnel Warning System. In Proceedings of the Construction Research Congress 2009: Building a Sustainable Future, Seattle, WA, USA, 5–7 April 2009; pp. 31–40. [ Google Scholar ] [ CrossRef ]
  • Marks, E.D.; Wetherford, J.E.; Teizer, J.; Yabuki, N. Potential of Leading Indicator Data Collection and Analysis for Proximity Detection and Alert Technology in Construction. In Proceedings of the 30th ISARC—International Symposium on Automation and Robotics in Construction Conference, Montreal, QC, Canada, 11–15 August 2013; pp. 1029–1036. [ Google Scholar ] [ CrossRef ]
  • Martin, H.; Lewis, T.M. Pinpointing Safety Leadership Factors for Safe Construction Sites in Trinidad and Tobago. J. Constr. Eng. Manag. 2014 , 140 , 04013046. [ Google Scholar ] [ CrossRef ]
  • Hobson, P.; Emery, D.; Brown, L.; Bashford, R.; Gill, J. People–Plant Interface Training: Targeting an Industry Fatal Risk. Proc. Inst. Civ. Eng. Civ. Eng. 2014 , 167 , 138–144. [ Google Scholar ] [ CrossRef ]
  • Marks, E.; Mckay, B.; Awolusi, I. Using near Misses to Enhance Safety Performance in Construction. In Proceedings of the ASSE Professional Development Conference and Exposition, Dallas, TX, USA, 7–10 June 2015. [ Google Scholar ]
  • Popp, J.D.; Scarborough, M.S. Investigations of near Miss Incidents—New Facility Construction and Commissioning Activities. IEEE Trans. Ind. Appl. 2016 , 53 , 615–621. [ Google Scholar ] [ CrossRef ]
  • Nickel, P.; Lungfiel, A.; Trabold, R.J. Reconstruction of near Misses and Accidents for Analyses from Virtual Reality Usability Study. In Lecture Notes in Computer Science ; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10700, pp. 182–191. [ Google Scholar ] [ CrossRef ]
  • Gambatese, J.A.; Pestana, C.; Lee, H.W. Alignment between Lean Principles and Practices and Worker Safety Behavior. J. Constr. Eng. Manag. 2017 , 143 , 04016083. [ Google Scholar ] [ CrossRef ]
  • Van Voorhis, S.; Korman, R. Reading Signs of Trouble. Eng. News-Rec. 2017 , 278 , 14–17. [ Google Scholar ]
  • Doan, D.R. Investigation of a near-miss shock incident. IEEE Trans. Ind. Appl. 2016 , 52 , 560–561. [ Google Scholar ] [ CrossRef ]
  • Oswald, D.; Sherratt, F.; Smith, S. Problems with safety observation reporting: A construction industry case study. Saf. Sci. 2018 , 107 , 35–45. [ Google Scholar ] [ CrossRef ]
  • Raviv, G.; Shapira, A. Systematic approach to crane-related near-miss analysis in the construction industry. Int. J. Constr. Manag. 2018 , 18 , 310–320. [ Google Scholar ] [ CrossRef ]
  • Whiteoak, J.; Appleby, J. Mate, that was bloody close! A case history of a nearmiss program in the Australian construction industry. J. Health Saf. Environ. 2019 , 35 , 31–43. [ Google Scholar ]
  • Duryan, M.; Smyth, H.; Roberts, A.; Rowlinson, S.; Sherratt, F. Knowledge transfer for occupational health and safety: Cultivating health and safety learning culture in construction firms. Accid. Anal. Prev. 2020 , 139 , 105496. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Shaikh, A.Y.; Osei-Kyei, R.; Hardie, M. A critical analysis of safety performance indicators in construction. Int. J. Build. Pathol. Adapt. 2020 , 39 , 547–580. [ Google Scholar ] [ CrossRef ]
  • Martin, H.; Mohan, N.; Ellis, L.; Dunne, S. Exploring the Role of PPE Knowledge, Attitude, and Correct Practices in Safety Outcomes on Construction Sites. J. Archit. Eng. 2021 , 27 , 05021011. [ Google Scholar ] [ CrossRef ]
  • Qin, Z.; Wu, S. A simulation model of engineering construction near-miss event disclosure strategy based on evolutionary game theory. In Proceedings of the 2021 4th International Conference on Information Systems and Computer Aided Education, Dalian, China, 24–26 September 2021; pp. 2572–2577. [ Google Scholar ] [ CrossRef ]
  • Alamoudi, M. The Integration of NOSACQ-50 with Importance-Performance Analysis Technique to Evaluate and Analyze Safety Climate Dimensions in the Construction Sector in Saudi Arabia. Buildings 2022 , 12 , 1855. [ Google Scholar ] [ CrossRef ]
  • Herrmann, A.W. Development of CROSS in the United States. In Proceedings of the Forensic Engineering 2022: Elevating Forensic Engineering—Selected Papers from the 9th Congress on Forensic Engineering, Denver, Colorado, 4–7 November 2022; Volume 2, pp. 40–43. [ Google Scholar ] [ CrossRef ]
  • Al Shaaili, M.; Al Alawi, M.; Ekyalimpa, R.; Al Mawli, B.; Al-Mamun, A.; Al Shahri, M. Near-miss accidents data analysis and knowledge dissemination in water construction projects in Oman. Heliyon 2023 , 9 , e21607. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Agnusdei, G.P.; Gnoni, M.G.; Tornese, F.; De Merich, D.; Guglielmi, A.; Pellicci, M. Application of Near-Miss Management Systems: An Exploratory Field Analysis in the Italian Industrial Sector. Safety 2023 , 9 , 47. [ Google Scholar ] [ CrossRef ]
  • Duan, P.; Zhou, J. A science mapping approach-based review of near-miss research in construction. Eng. Constr. Archit. Manag. 2023 , 30 , 2582–2601. [ Google Scholar ] [ CrossRef ]

Click here to enlarge figure

No.Name of Institution/OrganizationDefinition
1Occupational Safety and Health Administration (OSHA) [ ]“A near-miss is a potential hazard or incident in which no property was damaged and no personal injury was sustained, but where, given a slight shift in time or position, damage or injury easily could have occurred. Near misses also may be referred to as close calls, near accidents, or injury-free events.”
2International Labour Organization (ILO) [ ]“An event, not necessarily defined under national laws and regulations, that could have caused harm to persons at work or to the public, e.g., a brick that
falls off scaffolding but does not hit anyone”
3American National Safety Council (NSC) [ ]“A Near Miss is an unplanned event that did not result in injury, illness, or damage—but had the potential to do so”
4PN-ISO 45001:2018-06 [ ]A near-miss incident is described as an event that does not result in injury or health issues.
5PN-N-18001:2004 [ ]A near-miss incident is an accident event without injury.
6World Health Organization (WHO) [ ]Near misses have been defined as a serious error that has the potential to cause harm but are not due to chance or interception.
7International Atomic Energy Agency (IAEA) [ ]Near misses have been defined as potentially significant events that could have consequences but did not due to the conditions at the time.
No.JournalNumber of Publications
1Safety Science10
2Journal of Construction Engineering and Management8
3Automation in Construction5
4Advanced Engineering Informatics3
5Construction Research Congress 2014 Construction in a Global Network Proceedings of the 2014 Construction Research Congress3
6International Journal of Construction Management3
7Accident Analysis and Prevention2
8Computing in Civil Engineering 2019 Data Sensing and Analytics Selected Papers From The ASCE International Conference2
9Engineering Construction and Architectural Management2
10Heliyon2
Cluster NumberColourBasic Keywords
1blueconstruction, construction sites, decision making, machine learning, near misses, neural networks, project management, safety, workers
2greenbuilding industry, construction industry, construction projects, construction work, human, near miss, near misses, occupational accident, occupational safety, safety, management, safety performance
3redaccident prevention, construction equipment, construction, safety, construction workers, hazards, human resource management, leading indicators, machinery, occupational risks, risk management, safety engineering
4yellowaccidents, risk assessment, civil engineering, near miss, surveys
Number of QuestionQuestionReferences
Q Are near misses in the construction industry studied scientifically?[ , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ]
Q What methods have been used to obtain information on near misses and systems for recording incidents in construction companies?[ , , , , , , , , , , , , , , , , , , , , ]
Q What methods have been used to analyse the information and figures that have been obtained?[ , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ]
Q What are the key aspects of near misses in the construction industry that have been of interest to the researchers?[ , , , , , , , , , , , , ]
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

Woźniak, Z.; Hoła, B. Analysing Near-Miss Incidents in Construction: A Systematic Literature Review. Appl. Sci. 2024 , 14 , 7260. https://doi.org/10.3390/app14167260

Woźniak Z, Hoła B. Analysing Near-Miss Incidents in Construction: A Systematic Literature Review. Applied Sciences . 2024; 14(16):7260. https://doi.org/10.3390/app14167260

Woźniak, Zuzanna, and Bożena Hoła. 2024. "Analysing Near-Miss Incidents in Construction: A Systematic Literature Review" Applied Sciences 14, no. 16: 7260. https://doi.org/10.3390/app14167260

Article Metrics

Article access statistics, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

Web search option to fetch other pages of results

Add an option to select the 2nd, 3rd, etc page of results. The limit of 100 citations is a severe restriction for comprehensive literature review where all papers matching a search term need to be considered. The page option would permit fetching the second page of 100, the third page of 100, etc.

Please vote if you support this proposal:

  • I would like to have this feature, too!
  • I don’t care.

Related Topics

Topic Replies Views Activity
Help 3 1537 November 22, 2016
Help 3 1346 January 4, 2017
Help 1 778 February 14, 2019
Features 3 1771 July 4, 2016
Features 2 1666 August 28, 2022

COMMENTS

  1. How to use systematic literature review?

    Is there any documentation about the feature "systematic literature review". At least a motivating example how to define study parameters would help. I use JabRef 5.5

  2. JabRef 5.3 Release

    Notable Changes and New Features The most notable new feature is the experimental implementation of a systematic literature review (SLR) functionality, one of our maintainers worked on for his bachelor thesis. Another major improvement is the "Find unlinked files" dialog. We improved the import performance of many files and also added options to filter the shown files by their modification ...

  3. Systematic Review Tool feedback

    JabRef 5.3--2021-07-05--50c96a2 Windows 10 10.0 amd64 Java 16.0.1 JavaFX 16+8 Hi All, Knew about Jabref for a long time (through Docear). Just installed the new 5.3 version, did not know it was so recent but also discovered the Systematic Review tool for it. Several piece of feedback i'd like to share, here is a preamble. The tool is very attractive. I have to do a few (collaborative ...

  4. PDF A Guide to Using Jabref

    Introducing JabRef JabRef is open source software to manage references and the full text of papers. The native file format used by JabRef is BibTeX, the standard LaTeX bibliography format.

  5. JabRef

    A free reference manager that helps you to discover, collect, organize and cite your scholarly literature and research in an efficient way.

  6. How-to conduct a systematic literature review: A quick guide for

    Abstract Performing a literature review is a critical first step in research to understanding the state-of-the-art and identifying gaps and challenges in the field. A systematic literature review is a method which sets out a series of steps to methodically organize the review. In this paper, we present a guide designed for researchers and in particular early-stage researchers in the computer ...

  7. PDF JabRef as BibTeX-based literature management software

    Drag and Drop to import a PDF (including meta data) @TechReport{Steinmachera2014, author = {Igor Steinmachera and b and Marco Aurelio Graciotto Silvaa and Marco Aurelio Gerosab and David F. Redmilesc}, title = {A systematic literature review on the barriers faced by newcomers to open source software projects}, year = {2014}, number = {on},

  8. Conducting a Systematic Literature Review

    Conducting a Systematic Literature Review. Expand your knowledge of systematic literature reviews. Exporting data from repositories, establishing a unique naming convention, knowledge of JabRef, collating all studies using JabRef, data handling, screening studies using JabRef, creating inclusion and exclusion criteria.

  9. Releases · JabRef/jabref · GitHub

    An systematic literature review (SLR) can now be started from the SLR itself. #9131, koppor#601 On startup, JabRef notifies the user if there were parsing errors during opening.

  10. PDF Systematic Literature Review Tools: Are we there yet?

    Abstract. The number of publications is steadily growing. systematic literature reviews (SLRs) are one answer to this issue. A variety of tools exists designed to support the review process. This paper summarizes requirements for adequate tooling support and shows that existing tools do not meet all of them. We further investigate whether reference man-agement tools can be used in conjunction ...

  11. PDF Application Of Module to Coding Theory: A Systematic Literature Review

    A systematic literature review is a research process that identifies, evaluates, and interprets all relevant study findings connected to specific research questions, topics, or phenomena of interest.

  12. JabRef 5.3 Release

    The most notable new feature is the experimental implementation of a systematic literature review (SLR) functionality, one of our maintainers worked on for his bachelor thesis.

  13. The role of a protocol in a systematic literature review

    We introduce the notion of a literature review protocol as a critical tool that all researchers engaged in a systematic literature review should develop and use. We position the literature review protocol as a detailed blueprint of the end-to-end literature review journey. The protocol is a valuable planning and quality assurance tool which can ...

  14. New user interface for article recommendations for JabRef

    The present article illustrates a comprehensive and Systematic Literature Review (SLR) regarding the papers published in the field of the e-commerce recommender systems.

  15. A Systematic Literature Review on Numerical Weather

    EC2: Papers not in English; EC3: Surveys, Review Articles, Book Chapters, Posters, Tutorials, Technical Reports and Standards; During the SLR study, StArt [ 16] and JabRef [ 5] tools were used. StArt is a free tool that aids performing SLR studies in accordance with the systematic review procedure suggested by Kitchenham [ 6 ].

  16. Systematic literature review tool

    I've just used the systematic literature review feature for the first time. It is amazing. Excellent work. However, it seems that it always downloads 100 entries exactly. I have not seen anywhere a way to change this limit, and there doesn't seem to be any options relating to the systematic review tool in the options menu. Am I missing something?

  17. Guidance on Conducting a Systematic Literature Review

    Abstract Literature reviews establish the foundation of academic inquires. However, in the planning field, we lack rigorous systematic reviews. In this article, through a systematic search on the methodology of literature review, we categorize a typology of literature reviews, discuss steps in conducting a systematic literature review, and provide suggestions on how to enhance rigor in ...

  18. 170 PDFs

    Explore the latest full-text research PDFs, articles, conference papers, preprints and more on JABREF. Find methods information, sources, references or conduct a literature review on JABREF

  19. Systematic Literature Review Cannot create "Medline/PubMed" file on

    Systematic literature review creates (and looks for) files based on the query plus database name (if I understand correctly). It appears that on Linux file names cannot contain / whereas in Medline/PubMed there is a / and it wants to create a file with the database name which is not possible.

  20. Create documentation for Systematic Literature Review (SLR) #391

    koppor commented on May 8, 2022 Blocked by koppor/jabref#559. We first need to finish the (new) SLR implementation and then work on the documentation.

  21. A Systematic Literature Review of Digital Payments

    Technological factors of mobile payment: A systematic literature review. Procedia Computer Science, 157, 489-498. Crossref. Google Scholar. Keramati A., Taeb R., Larijani A. M., & Mojir N. (2010). A combinative model of behavioural and technical factors affecting "Mobile"-payment services adoption: An empirical study.

  22. How-to conduct a systematic literature review: A quick guide for

    Performing a literature review is a critical first step in research to understanding the state-of-the-art and identifying gaps and challenges in the field. A systematic literature review is a method which sets out a series of steps to methodically organize the review. In this paper, we present a guide designed for researchers and in particular ...

  23. More control on the Duplicate Finder

    At least in the context of a systematic literature review, it might be worth having the duplicate detection put its emphasis on a few key fields (such as author, title, date, doi, and url) irrespective of their entry type.

  24. Natural language processing in dermatology: A systematic literature

    Background: Natural Language Processing (NLP) is a field of both computational linguistics and artificial intelligence (AI) dedicated to analysis and interpretation of human language. Objectives: This systematic review aims at exploring all the possible applications of NLP techniques in the dermatological setting. Methods: Extensive search on 'natural language processing' and 'dermatology' was ...

  25. Forensic Investigation, Challenges, and Issues of Cloud Data: A ...

    Systematic literature review is a crucial research method used to thoroughly explore previous research and studies on a particular topic. Its main goal is to provide a complete collection of relevant papers in that field. It is an effective way to bring together past findings and fill any gaps in our knowledge. With the increasing amount of ...

  26. Analysing Near-Miss Incidents in Construction: A Systematic Literature

    The construction sector is notorious for its high rate of fatalities globally. Previous research has established that near-miss incidents act as precursors to accidents. This study aims to identify research gaps in the literature on near-miss events in construction and to define potential directions for future research. The Scopus database serves as the knowledge source for this study. To ...

  27. Web search option to fetch other pages of results

    Add an option to select the 2nd, 3rd, etc page of results. The limit of 100 citations is a severe restriction for comprehensive literature review where all papers matching a search term need to be considered. The page option would permit fetching the second page of 100, the third page of 100, etc.