Advisory boards aren’t only for executives. Join the LogRocket Content Advisory Board today →

LogRocket blog logo

  • Product Management
  • Solve User-Reported Issues
  • Find Issues Faster
  • Optimize Conversion and Adoption

A guide to problem-solving techniques, steps, and skills

problem solving skills wiki

You might associate problem-solving with the math exercises that a seven-year-old would do at school. But problem-solving isn’t just about math — it’s a crucial skill that helps everyone make better decisions in everyday life or work.

A guide to problem-solving techniques, steps, and skills

Problem-solving involves finding effective solutions to address complex challenges, in any context they may arise.

Unfortunately, structured and systematic problem-solving methods aren’t commonly taught. Instead, when solving a problem, PMs tend to rely heavily on intuition. While for simple issues this might work well, solving a complex problem with a straightforward solution is often ineffective and can even create more problems.

In this article, you’ll learn a framework for approaching problem-solving, alongside how you can improve your problem-solving skills.

The 7 steps to problem-solving

When it comes to problem-solving there are seven key steps that you should follow: define the problem, disaggregate, prioritize problem branches, create an analysis plan, conduct analysis, synthesis, and communication.

1. Define the problem

Problem-solving begins with a clear understanding of the issue at hand. Without a well-defined problem statement, confusion and misunderstandings can hinder progress. It’s crucial to ensure that the problem statement is outcome-focused, specific, measurable whenever possible, and time-bound.

Additionally, aligning the problem definition with relevant stakeholders and decision-makers is essential to ensure efforts are directed towards addressing the actual problem rather than side issues.

2. Disaggregate

Complex issues often require deeper analysis. Instead of tackling the entire problem at once, the next step is to break it down into smaller, more manageable components.

Various types of logic trees (also known as issue trees or decision trees) can be used to break down the problem. At each stage where new branches are created, it’s important for them to be “MECE” – mutually exclusive and collectively exhaustive. This process of breaking down continues until manageable components are identified, allowing for individual examination.

The decomposition of the problem demands looking at the problem from various perspectives. That is why collaboration within a team often yields more valuable results, as diverse viewpoints lead to a richer pool of ideas and solutions.

3. Prioritize problem branches

The next step involves prioritization. Not all branches of the problem tree have the same impact, so it’s important to understand the significance of each and focus attention on the most impactful areas. Prioritizing helps streamline efforts and minimize the time required to solve the problem.

problem solving skills wiki

Over 200k developers and product managers use LogRocket to create better digital experiences

problem solving skills wiki

4. Create an analysis plan

For prioritized components, you may need to conduct in-depth analysis. Before proceeding, a work plan is created for data gathering and analysis. If work is conducted within a team, having a plan provides guidance on what needs to be achieved, who is responsible for which tasks, and the timelines involved.

5. Conduct analysis

Data gathering and analysis are central to the problem-solving process. It’s a good practice to set time limits for this phase to prevent excessive time spent on perfecting details. You can employ heuristics and rule-of-thumb reasoning to improve efficiency and direct efforts towards the most impactful work.

6. Synthesis

After each individual branch component has been researched, the problem isn’t solved yet. The next step is synthesizing the data logically to address the initial question. The synthesis process and the logical relationship between the individual branch results depend on the logic tree used.

7. Communication

The last step is communicating the story and the solution of the problem to the stakeholders and decision-makers. Clear effective communication is necessary to build trust in the solution and facilitates understanding among all parties involved. It ensures that stakeholders grasp the intricacies of the problem and the proposed solution, leading to informed decision-making.

Exploring problem-solving in various contexts

While problem-solving has traditionally been associated with fields like engineering and science, today it has become a fundamental skill for individuals across all professions. In fact, problem-solving consistently ranks as one of the top skills required by employers.

Problem-solving techniques can be applied in diverse contexts:

  • Individuals — What career path should I choose? Where should I live? These are examples of simple and common personal challenges that require effective problem-solving skills
  • Organizations — Businesses also face many decisions that are not trivial to answer. Should we expand into new markets this year? How can we enhance the quality of our product development? Will our office accommodate the upcoming year’s growth in terms of capacity?
  • Societal issues — The biggest world challenges are also complex problems that can be addressed with the same technique. How can we minimize the impact of climate change? How do we fight cancer?

Despite the variation in domains and contexts, the fundamental approach to solving these questions remains the same. It starts with gaining a clear understanding of the problem, followed by decomposition, conducting analysis of the decomposed branches, and synthesizing it into a result that answers the initial problem.

Real-world examples of problem-solving

Let’s now explore some examples where we can apply the problem solving framework.

Problem: In the production of electronic devices, you observe an increasing number of defects. How can you reduce the error rate and improve the quality?

Electric Devices

Before delving into analysis, you can deprioritize branches that you already have information for or ones you deem less important. For instance, while transportation delays may occur, the resulting material degradation is likely negligible. For other branches, additional research and data gathering may be necessary.

Once results are obtained, synthesis is crucial to address the core question: How can you decrease the defect rate?

While all factors listed may play a role, their significance varies. Your task is to prioritize effectively. Through data analysis, you may discover that altering the equipment would bring the most substantial positive outcome. However, executing a solution isn’t always straightforward. In prioritizing, you should consider both the potential impact and the level of effort needed for implementation.

By evaluating impact and effort, you can systematically prioritize areas for improvement, focusing on those with high impact and requiring minimal effort to address. This approach ensures efficient allocation of resources towards improvements that offer the greatest return on investment.

Problem : What should be my next job role?

Next Job

When breaking down this problem, you need to consider various factors that are important for your future happiness in the role. This includes aspects like the company culture, our interest in the work itself, and the lifestyle that you can afford with the role.

However, not all factors carry the same weight for us. To make sense of the results, we can assign a weight factor to each branch. For instance, passion for the job role may have a weight factor of 1, while interest in the industry may have a weight factor of 0.5, because that is less important for you.

By applying these weights to a specific role and summing the values, you can have an estimate of how suitable that role is for you. Moreover, you can compare two roles and make an informed decision based on these weighted indicators.

Key problem-solving skills

This framework provides the foundation and guidance needed to effectively solve problems. However, successfully applying this framework requires the following:

  • Creativity — During the decomposition phase, it’s essential to approach the problem from various perspectives and think outside the box to generate innovative ideas for breaking down the problem tree
  • Decision-making — Throughout the process, decisions must be made, even when full confidence is lacking. Employing rules of thumb to simplify analysis or selecting one tree cut over another requires decisiveness and comfort with choices made
  • Analytical skills — Analytical and research skills are necessary for the phase following decomposition, involving data gathering and analysis on selected tree branches
  • Teamwork — Collaboration and teamwork are crucial when working within a team setting. Solving problems effectively often requires collective effort and shared responsibility
  • Communication — Clear and structured communication is essential to convey the problem solution to stakeholders and decision-makers and build trust

How to enhance your problem-solving skills

Problem-solving requires practice and a certain mindset. The more you practice, the easier it becomes. Here are some strategies to enhance your skills:

  • Practice structured thinking in your daily life — Break down problems or questions into manageable parts. You don’t need to go through the entire problem-solving process and conduct detailed analysis. When conveying a message, simplify the conversation by breaking the message into smaller, more understandable segments
  • Regularly challenging yourself with games and puzzles — Solving puzzles, riddles, or strategy games can boost your problem-solving skills and cognitive agility.
  • Engage with individuals from diverse backgrounds and viewpoints — Conversing with people who offer different perspectives provides fresh insights and alternative solutions to problems. This boosts creativity and helps in approaching challenges from new angles

Final thoughts

Problem-solving extends far beyond mathematics or scientific fields; it’s a critical skill for making informed decisions in every area of life and work. The seven-step framework presented here provides a systematic approach to problem-solving, relevant across various domains.

Now, consider this: What’s one question currently on your mind? Grab a piece of paper and try to apply the problem-solving framework. You might uncover fresh insights you hadn’t considered before.

Featured image source: IconScout

LogRocket generates product insights that lead to meaningful action

Get your teams on the same page — try LogRocket today.

Share this:

  • Click to share on Twitter (Opens in new window)
  • Click to share on Reddit (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Facebook (Opens in new window)
  • #career development
  • #tools and resources

problem solving skills wiki

Stop guessing about your digital experience with LogRocket

Recent posts:.

A Guide To Success Metrics

A guide to success metrics

Success metrics are measurable parameters used to measure progress, effectiveness, and ultimately, success.

Chris Baltusnik Leader Spotlight

Leader Spotlight: Leveraging data to understand buying behavior, with Chris Baltusnik

Chris Baltusni talks about the difference between adopting an omnichannel approach versus a multichannel one.

problem solving skills wiki

A guide to the V2MOM framework

The V2MOM framework encourages continuous communication and updates, making it a dynamic tool for managing progress towards goals.

problem solving skills wiki

Leader Spotlight: Empowering analytics and business intelligence teams, with Akash Gupta

Akash Gupta discusses the importance of empowering analytics and business intelligence teams to find “golden nuggets” of insights.

Leave a Reply Cancel reply

  • PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
  • EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
  • Browse Articles
  • Learn Something New
  • Quizzes Hot
  • This Or That Game New
  • Train Your Brain
  • Explore More
  • Support wikiHow
  • About wikiHow
  • Log in / Sign up
  • Education and Communications
  • Thinking Skills

Problem Solving

Articles about problem solving.

problem solving skills wiki

Deal With Problems

problem solving skills wiki

Face Problems in Your Life

problem solving skills wiki

Solve a Problem

problem solving skills wiki

Define a Problem

problem solving skills wiki

Improve Problem Solving Skills

problem solving skills wiki

Solve a Mystery

problem solving skills wiki

Be Resourceful

problem solving skills wiki

Be a Creative Thinker and Problem Solver

problem solving skills wiki

Live Life Without Having Problems

problem solving skills wiki

Handle Problems

wikiHow

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

wikiHow Tech Help Pro:

Develop the tech skills you need for work and life

How to improve your problem solving skills and build effective problem solving strategies

problem solving skills wiki

Design your next session with SessionLab

Join the 150,000+ facilitators 
using SessionLab.

Recommended Articles

A step-by-step guide to planning a workshop, how to create an unforgettable training session in 8 simple steps, 47 useful online tools for workshop planning and meeting facilitation.

Effective problem solving is all about using the right process and following a plan tailored to the issue at hand. Recognizing your team or organization has an issue isn’t enough to come up with effective problem solving strategies. 

To truly understand a problem and develop appropriate solutions, you will want to follow a solid process, follow the necessary problem solving steps, and bring all of your problem solving skills to the table.  

We’ll first guide you through the seven step problem solving process you and your team can use to effectively solve complex business challenges. We’ll also look at what problem solving strategies you can employ with your team when looking for a way to approach the process. We’ll then discuss the problem solving skills you need to be more effective at solving problems, complete with an activity from the SessionLab library you can use to develop that skill in your team.

Let’s get to it! 

What is a problem solving process?

  • What are the problem solving steps I need to follow?

Problem solving strategies

What skills do i need to be an effective problem solver, how can i improve my problem solving skills.

Solving problems is like baking a cake. You can go straight into the kitchen without a recipe or the right ingredients and do your best, but the end result is unlikely to be very tasty!

Using a process to bake a cake allows you to use the best ingredients without waste, collect the right tools, account for allergies, decide whether it is a birthday or wedding cake, and then bake efficiently and on time. The result is a better cake that is fit for purpose, tastes better and has created less mess in the kitchen. Also, it should have chocolate sprinkles. Having a step by step process to solve organizational problems allows you to go through each stage methodically and ensure you are trying to solve the right problems and select the most appropriate, effective solutions.

What are the problem solving steps I need to follow? 

All problem solving processes go through a number of steps in order to move from identifying a problem to resolving it.

Depending on your problem solving model and who you ask, there can be anything between four and nine problem solving steps you should follow in order to find the right solution. Whatever framework you and your group use, there are some key items that should be addressed in order to have an effective process.

We’ve looked at problem solving processes from sources such as the American Society for Quality and their four step approach , and Mediate ‘s six step process. By reflecting on those and our own problem solving processes, we’ve come up with a sequence of seven problem solving steps we feel best covers everything you need in order to effectively solve problems.

seven step problem solving process

1. Problem identification 

The first stage of any problem solving process is to identify the problem or problems you might want to solve. Effective problem solving strategies always begin by allowing a group scope to articulate what they believe the problem to be and then coming to some consensus over which problem they approach first. Problem solving activities used at this stage often have a focus on creating frank, open discussion so that potential problems can be brought to the surface.

2. Problem analysis 

Though this step is not a million miles from problem identification, problem analysis deserves to be considered separately. It can often be an overlooked part of the process and is instrumental when it comes to developing effective solutions.

The process of problem analysis means ensuring that the problem you are seeking to solve is the right problem . As part of this stage, you may look deeper and try to find the root cause of a specific problem at a team or organizational level.

Remember that problem solving strategies should not only be focused on putting out fires in the short term but developing long term solutions that deal with the root cause of organizational challenges. 

Whatever your approach, analyzing a problem is crucial in being able to select an appropriate solution and the problem solving skills deployed in this stage are beneficial for the rest of the process and ensuring the solutions you create are fit for purpose.

3. Solution generation

Once your group has nailed down the particulars of the problem you wish to solve, you want to encourage a free flow of ideas connecting to solving that problem. This can take the form of problem solving games that encourage creative thinking or problem solving activities designed to produce working prototypes of possible solutions. 

The key to ensuring the success of this stage of the problem solving process is to encourage quick, creative thinking and create an open space where all ideas are considered. The best solutions can come from unlikely places and by using problem solving techniques that celebrate invention, you might come up with solution gold. 

4. Solution development

No solution is likely to be perfect right out of the gate. It’s important to discuss and develop the solutions your group has come up with over the course of following the previous problem solving steps in order to arrive at the best possible solution. Problem solving games used in this stage involve lots of critical thinking, measuring potential effort and impact, and looking at possible solutions analytically. 

During this stage, you will often ask your team to iterate and improve upon your frontrunning solutions and develop them further. Remember that problem solving strategies always benefit from a multitude of voices and opinions, and not to let ego get involved when it comes to choosing which solutions to develop and take further.

Finding the best solution is the goal of all problem solving workshops and here is the place to ensure that your solution is well thought out, sufficiently robust and fit for purpose. 

5. Decision making 

Nearly there! Once your group has reached consensus and selected a solution that applies to the problem at hand you have some decisions to make. You will want to work on allocating ownership of the project, figure out who will do what, how the success of the solution will be measured and decide the next course of action.

The decision making stage is a part of the problem solving process that can get missed or taken as for granted. Fail to properly allocate roles and plan out how a solution will actually be implemented and it less likely to be successful in solving the problem.

Have clear accountabilities, actions, timeframes, and follow-ups. Make these decisions and set clear next-steps in the problem solving workshop so that everyone is aligned and you can move forward effectively as a group. 

Ensuring that you plan for the roll-out of a solution is one of the most important problem solving steps. Without adequate planning or oversight, it can prove impossible to measure success or iterate further if the problem was not solved. 

6. Solution implementation 

This is what we were waiting for! All problem solving strategies have the end goal of implementing a solution and solving a problem in mind. 

Remember that in order for any solution to be successful, you need to help your group through all of the previous problem solving steps thoughtfully. Only then can you ensure that you are solving the right problem but also that you have developed the correct solution and can then successfully implement and measure the impact of that solution.

Project management and communication skills are key here – your solution may need to adjust when out in the wild or you might discover new challenges along the way.

7. Solution evaluation 

So you and your team developed a great solution to a problem and have a gut feeling its been solved. Work done, right? Wrong. All problem solving strategies benefit from evaluation, consideration, and feedback. You might find that the solution does not work for everyone, might create new problems, or is potentially so successful that you will want to roll it out to larger teams or as part of other initiatives. 

None of that is possible without taking the time to evaluate the success of the solution you developed in your problem solving model and adjust if necessary.

Remember that the problem solving process is often iterative and it can be common to not solve complex issues on the first try. Even when this is the case, you and your team will have generated learning that will be important for future problem solving workshops or in other parts of the organization. 

It’s worth underlining how important record keeping is throughout the problem solving process. If a solution didn’t work, you need to have the data and records to see why that was the case. If you go back to the drawing board, notes from the previous workshop can help save time. Data and insight is invaluable at every stage of the problem solving process and this one is no different.

Problem solving workshops made easy

problem solving skills wiki

Problem solving strategies are methods of approaching and facilitating the process of problem-solving with a set of techniques , actions, and processes. Different strategies are more effective if you are trying to solve broad problems such as achieving higher growth versus more focused problems like, how do we improve our customer onboarding process?

Broadly, the problem solving steps outlined above should be included in any problem solving strategy though choosing where to focus your time and what approaches should be taken is where they begin to differ. You might find that some strategies ask for the problem identification to be done prior to the session or that everything happens in the course of a one day workshop.

The key similarity is that all good problem solving strategies are structured and designed. Four hours of open discussion is never going to be as productive as a four-hour workshop designed to lead a group through a problem solving process.

Good problem solving strategies are tailored to the team, organization and problem you will be attempting to solve. Here are some example problem solving strategies you can learn from or use to get started.

Use a workshop to lead a team through a group process

Often, the first step to solving problems or organizational challenges is bringing a group together effectively. Most teams have the tools, knowledge, and expertise necessary to solve their challenges – they just need some guidance in how to use leverage those skills and a structure and format that allows people to focus their energies.

Facilitated workshops are one of the most effective ways of solving problems of any scale. By designing and planning your workshop carefully, you can tailor the approach and scope to best fit the needs of your team and organization. 

Problem solving workshop

  • Creating a bespoke, tailored process
  • Tackling problems of any size
  • Building in-house workshop ability and encouraging their use

Workshops are an effective strategy for solving problems. By using tried and test facilitation techniques and methods, you can design and deliver a workshop that is perfectly suited to the unique variables of your organization. You may only have the capacity for a half-day workshop and so need a problem solving process to match. 

By using our session planner tool and importing methods from our library of 700+ facilitation techniques, you can create the right problem solving workshop for your team. It might be that you want to encourage creative thinking or look at things from a new angle to unblock your groups approach to problem solving. By tailoring your workshop design to the purpose, you can help ensure great results.

One of the main benefits of a workshop is the structured approach to problem solving. Not only does this mean that the workshop itself will be successful, but many of the methods and techniques will help your team improve their working processes outside of the workshop. 

We believe that workshops are one of the best tools you can use to improve the way your team works together. Start with a problem solving workshop and then see what team building, culture or design workshops can do for your organization!

Run a design sprint

Great for: 

  • aligning large, multi-discipline teams
  • quickly designing and testing solutions
  • tackling large, complex organizational challenges and breaking them down into smaller tasks

By using design thinking principles and methods, a design sprint is a great way of identifying, prioritizing and prototyping solutions to long term challenges that can help solve major organizational problems with quick action and measurable results.

Some familiarity with design thinking is useful, though not integral, and this strategy can really help a team align if there is some discussion around which problems should be approached first. 

The stage-based structure of the design sprint is also very useful for teams new to design thinking.  The inspiration phase, where you look to competitors that have solved your problem, and the rapid prototyping and testing phases are great for introducing new concepts that will benefit a team in all their future work. 

It can be common for teams to look inward for solutions and so looking to the market for solutions you can iterate on can be very productive. Instilling an agile prototyping and testing mindset can also be great when helping teams move forwards – generating and testing solutions quickly can help save time in the long run and is also pretty exciting!

Break problems down into smaller issues

Organizational challenges and problems are often complicated and large scale in nature. Sometimes, trying to resolve such an issue in one swoop is simply unachievable or overwhelming. Try breaking down such problems into smaller issues that you can work on step by step. You may not be able to solve the problem of churning customers off the bat, but you can work with your team to identify smaller effort but high impact elements and work on those first.

This problem solving strategy can help a team generate momentum, prioritize and get some easy wins. It’s also a great strategy to employ with teams who are just beginning to learn how to approach the problem solving process. If you want some insight into a way to employ this strategy, we recommend looking at our design sprint template below!

Use guiding frameworks or try new methodologies

Some problems are best solved by introducing a major shift in perspective or by using new methodologies that encourage your team to think differently.

Props and tools such as Methodkit , which uses a card-based toolkit for facilitation, or Lego Serious Play can be great ways to engage your team and find an inclusive, democratic problem solving strategy. Remember that play and creativity are great tools for achieving change and whatever the challenge, engaging your participants can be very effective where other strategies may have failed.

LEGO Serious Play

  • Improving core problem solving skills
  • Thinking outside of the box
  • Encouraging creative solutions

LEGO Serious Play is a problem solving methodology designed to get participants thinking differently by using 3D models and kinesthetic learning styles. By physically building LEGO models based on questions and exercises, participants are encouraged to think outside of the box and create their own responses. 

Collaborate LEGO Serious Play exercises are also used to encourage communication and build problem solving skills in a group. By using this problem solving process, you can often help different kinds of learners and personality types contribute and unblock organizational problems with creative thinking. 

Problem solving strategies like LEGO Serious Play are super effective at helping a team solve more skills-based problems such as communication between teams or a lack of creative thinking. Some problems are not suited to LEGO Serious Play and require a different problem solving strategy.

Card Decks and Method Kits

  • New facilitators or non-facilitators 
  • Approaching difficult subjects with a simple, creative framework
  • Engaging those with varied learning styles

Card decks and method kids are great tools for those new to facilitation or for whom facilitation is not the primary role. Card decks such as the emotional culture deck can be used for complete workshops and in many cases, can be used right out of the box. Methodkit has a variety of kits designed for scenarios ranging from personal development through to personas and global challenges so you can find the right deck for your particular needs.

Having an easy to use framework that encourages creativity or a new approach can take some of the friction or planning difficulties out of the workshop process and energize a team in any setting. Simplicity is the key with these methods. By ensuring everyone on your team can get involved and engage with the process as quickly as possible can really contribute to the success of your problem solving strategy.

Source external advice

Looking to peers, experts and external facilitators can be a great way of approaching the problem solving process. Your team may not have the necessary expertise, insights of experience to tackle some issues, or you might simply benefit from a fresh perspective. Some problems may require bringing together an entire team, and coaching managers or team members individually might be the right approach. Remember that not all problems are best resolved in the same manner.

If you’re a solo entrepreneur, peer groups, coaches and mentors can also be invaluable at not only solving specific business problems, but in providing a support network for resolving future challenges. One great approach is to join a Mastermind Group and link up with like-minded individuals and all grow together. Remember that however you approach the sourcing of external advice, do so thoughtfully, respectfully and honestly. Reciprocate where you can and prepare to be surprised by just how kind and helpful your peers can be!

Mastermind Group

  • Solo entrepreneurs or small teams with low capacity
  • Peer learning and gaining outside expertise
  • Getting multiple external points of view quickly

Problem solving in large organizations with lots of skilled team members is one thing, but how about if you work for yourself or in a very small team without the capacity to get the most from a design sprint or LEGO Serious Play session? 

A mastermind group – sometimes known as a peer advisory board – is where a group of people come together to support one another in their own goals, challenges, and businesses. Each participant comes to the group with their own purpose and the other members of the group will help them create solutions, brainstorm ideas, and support one another. 

Mastermind groups are very effective in creating an energized, supportive atmosphere that can deliver meaningful results. Learning from peers from outside of your organization or industry can really help unlock new ways of thinking and drive growth. Access to the experience and skills of your peers can be invaluable in helping fill the gaps in your own ability, particularly in young companies.

A mastermind group is a great solution for solo entrepreneurs, small teams, or for organizations that feel that external expertise or fresh perspectives will be beneficial for them. It is worth noting that Mastermind groups are often only as good as the participants and what they can bring to the group. Participants need to be committed, engaged and understand how to work in this context. 

Coaching and mentoring

  • Focused learning and development
  • Filling skills gaps
  • Working on a range of challenges over time

Receiving advice from a business coach or building a mentor/mentee relationship can be an effective way of resolving certain challenges. The one-to-one format of most coaching and mentor relationships can really help solve the challenges those individuals are having and benefit the organization as a result.

A great mentor can be invaluable when it comes to spotting potential problems before they arise and coming to understand a mentee very well has a host of other business benefits. You might run an internal mentorship program to help develop your team’s problem solving skills and strategies or as part of a large learning and development program. External coaches can also be an important part of your problem solving strategy, filling skills gaps for your management team or helping with specific business issues. 

Now we’ve explored the problem solving process and the steps you will want to go through in order to have an effective session, let’s look at the skills you and your team need to be more effective problem solvers.

Problem solving skills are highly sought after, whatever industry or team you work in. Organizations are keen to employ people who are able to approach problems thoughtfully and find strong, realistic solutions. Whether you are a facilitator , a team leader or a developer, being an effective problem solver is a skill you’ll want to develop.

Problem solving skills form a whole suite of techniques and approaches that an individual uses to not only identify problems but to discuss them productively before then developing appropriate solutions.

Here are some of the most important problem solving skills everyone from executives to junior staff members should learn. We’ve also included an activity or exercise from the SessionLab library that can help you and your team develop that skill. 

If you’re running a workshop or training session to try and improve problem solving skills in your team, try using these methods to supercharge your process!

Problem solving skills checklist

Active listening

Active listening is one of the most important skills anyone who works with people can possess. In short, active listening is a technique used to not only better understand what is being said by an individual, but also to be more aware of the underlying message the speaker is trying to convey. When it comes to problem solving, active listening is integral for understanding the position of every participant and to clarify the challenges, ideas and solutions they bring to the table.

Some active listening skills include:

  • Paying complete attention to the speaker.
  • Removing distractions.
  • Avoid interruption.
  • Taking the time to fully understand before preparing a rebuttal.
  • Responding respectfully and appropriately.
  • Demonstrate attentiveness and positivity with an open posture, making eye contact with the speaker, smiling and nodding if appropriate. Show that you are listening and encourage them to continue.
  • Be aware of and respectful of feelings. Judge the situation and respond appropriately. You can disagree without being disrespectful.   
  • Observe body language. 
  • Paraphrase what was said in your own words, either mentally or verbally.
  • Remain neutral. 
  • Reflect and take a moment before responding.
  • Ask deeper questions based on what is said and clarify points where necessary.   
Active Listening   #hyperisland   #skills   #active listening   #remote-friendly   This activity supports participants to reflect on a question and generate their own solutions using simple principles of active listening and peer coaching. It’s an excellent introduction to active listening but can also be used with groups that are already familiar with it. Participants work in groups of three and take turns being: “the subject”, the listener, and the observer.

Analytical skills

All problem solving models require strong analytical skills, particularly during the beginning of the process and when it comes to analyzing how solutions have performed.

Analytical skills are primarily focused on performing an effective analysis by collecting, studying and parsing data related to a problem or opportunity. 

It often involves spotting patterns, being able to see things from different perspectives and using observable facts and data to make suggestions or produce insight. 

Analytical skills are also important at every stage of the problem solving process and by having these skills, you can ensure that any ideas or solutions you create or backed up analytically and have been sufficiently thought out.

Nine Whys   #innovation   #issue analysis   #liberating structures   With breathtaking simplicity, you can rapidly clarify for individuals and a group what is essentially important in their work. You can quickly reveal when a compelling purpose is missing in a gathering and avoid moving forward without clarity. When a group discovers an unambiguous shared purpose, more freedom and more responsibility are unleashed. You have laid the foundation for spreading and scaling innovations with fidelity.

Collaboration

Trying to solve problems on your own is difficult. Being able to collaborate effectively, with a free exchange of ideas, to delegate and be a productive member of a team is hugely important to all problem solving strategies.

Remember that whatever your role, collaboration is integral, and in a problem solving process, you are all working together to find the best solution for everyone. 

Marshmallow challenge with debriefing   #teamwork   #team   #leadership   #collaboration   In eighteen minutes, teams must build the tallest free-standing structure out of 20 sticks of spaghetti, one yard of tape, one yard of string, and one marshmallow. The marshmallow needs to be on top. The Marshmallow Challenge was developed by Tom Wujec, who has done the activity with hundreds of groups around the world. Visit the Marshmallow Challenge website for more information. This version has an extra debriefing question added with sample questions focusing on roles within the team.

Communication  

Being an effective communicator means being empathetic, clear and succinct, asking the right questions, and demonstrating active listening skills throughout any discussion or meeting. 

In a problem solving setting, you need to communicate well in order to progress through each stage of the process effectively. As a team leader, it may also fall to you to facilitate communication between parties who may not see eye to eye. Effective communication also means helping others to express themselves and be heard in a group.

Bus Trip   #feedback   #communication   #appreciation   #closing   #thiagi   #team   This is one of my favourite feedback games. I use Bus Trip at the end of a training session or a meeting, and I use it all the time. The game creates a massive amount of energy with lots of smiles, laughs, and sometimes even a teardrop or two.

Creative problem solving skills can be some of the best tools in your arsenal. Thinking creatively, being able to generate lots of ideas and come up with out of the box solutions is useful at every step of the process. 

The kinds of problems you will likely discuss in a problem solving workshop are often difficult to solve, and by approaching things in a fresh, creative manner, you can often create more innovative solutions.

Having practical creative skills is also a boon when it comes to problem solving. If you can help create quality design sketches and prototypes in record time, it can help bring a team to alignment more quickly or provide a base for further iteration.

The paper clip method   #sharing   #creativity   #warm up   #idea generation   #brainstorming   The power of brainstorming. A training for project leaders, creativity training, and to catalyse getting new solutions.

Critical thinking

Critical thinking is one of the fundamental problem solving skills you’ll want to develop when working on developing solutions. Critical thinking is the ability to analyze, rationalize and evaluate while being aware of personal bias, outlying factors and remaining open-minded.

Defining and analyzing problems without deploying critical thinking skills can mean you and your team go down the wrong path. Developing solutions to complex issues requires critical thinking too – ensuring your team considers all possibilities and rationally evaluating them. 

Agreement-Certainty Matrix   #issue analysis   #liberating structures   #problem solving   You can help individuals or groups avoid the frequent mistake of trying to solve a problem with methods that are not adapted to the nature of their challenge. The combination of two questions makes it possible to easily sort challenges into four categories: simple, complicated, complex , and chaotic .  A problem is simple when it can be solved reliably with practices that are easy to duplicate.  It is complicated when experts are required to devise a sophisticated solution that will yield the desired results predictably.  A problem is complex when there are several valid ways to proceed but outcomes are not predictable in detail.  Chaotic is when the context is too turbulent to identify a path forward.  A loose analogy may be used to describe these differences: simple is like following a recipe, complicated like sending a rocket to the moon, complex like raising a child, and chaotic is like the game “Pin the Tail on the Donkey.”  The Liberating Structures Matching Matrix in Chapter 5 can be used as the first step to clarify the nature of a challenge and avoid the mismatches between problems and solutions that are frequently at the root of chronic, recurring problems.

Data analysis 

Though it shares lots of space with general analytical skills, data analysis skills are something you want to cultivate in their own right in order to be an effective problem solver.

Being good at data analysis doesn’t just mean being able to find insights from data, but also selecting the appropriate data for a given issue, interpreting it effectively and knowing how to model and present that data. Depending on the problem at hand, it might also include a working knowledge of specific data analysis tools and procedures. 

Having a solid grasp of data analysis techniques is useful if you’re leading a problem solving workshop but if you’re not an expert, don’t worry. Bring people into the group who has this skill set and help your team be more effective as a result.

Decision making

All problems need a solution and all solutions require that someone make the decision to implement them. Without strong decision making skills, teams can become bogged down in discussion and less effective as a result. 

Making decisions is a key part of the problem solving process. It’s important to remember that decision making is not restricted to the leadership team. Every staff member makes decisions every day and developing these skills ensures that your team is able to solve problems at any scale. Remember that making decisions does not mean leaping to the first solution but weighing up the options and coming to an informed, well thought out solution to any given problem that works for the whole team.

Lightning Decision Jam (LDJ)   #action   #decision making   #problem solving   #issue analysis   #innovation   #design   #remote-friendly   The problem with anything that requires creative thinking is that it’s easy to get lost—lose focus and fall into the trap of having useless, open-ended, unstructured discussions. Here’s the most effective solution I’ve found: Replace all open, unstructured discussion with a clear process. What to use this exercise for: Anything which requires a group of people to make decisions, solve problems or discuss challenges. It’s always good to frame an LDJ session with a broad topic, here are some examples: The conversion flow of our checkout Our internal design process How we organise events Keeping up with our competition Improving sales flow

Dependability

Most complex organizational problems require multiple people to be involved in delivering the solution. Ensuring that the team and organization can depend on you to take the necessary actions and communicate where necessary is key to ensuring problems are solved effectively.

Being dependable also means working to deadlines and to brief. It is often a matter of creating trust in a team so that everyone can depend on one another to complete the agreed actions in the agreed time frame so that the team can move forward together. Being undependable can create problems of friction and can limit the effectiveness of your solutions so be sure to bear this in mind throughout a project. 

Team Purpose & Culture   #team   #hyperisland   #culture   #remote-friendly   This is an essential process designed to help teams define their purpose (why they exist) and their culture (how they work together to achieve that purpose). Defining these two things will help any team to be more focused and aligned. With support of tangible examples from other companies, the team members work as individuals and a group to codify the way they work together. The goal is a visual manifestation of both the purpose and culture that can be put up in the team’s work space.

Emotional intelligence

Emotional intelligence is an important skill for any successful team member, whether communicating internally or with clients or users. In the problem solving process, emotional intelligence means being attuned to how people are feeling and thinking, communicating effectively and being self-aware of what you bring to a room. 

There are often differences of opinion when working through problem solving processes, and it can be easy to let things become impassioned or combative. Developing your emotional intelligence means being empathetic to your colleagues and managing your own emotions throughout the problem and solution process. Be kind, be thoughtful and put your points across care and attention. 

Being emotionally intelligent is a skill for life and by deploying it at work, you can not only work efficiently but empathetically. Check out the emotional culture workshop template for more!

Facilitation

As we’ve clarified in our facilitation skills post, facilitation is the art of leading people through processes towards agreed-upon objectives in a manner that encourages participation, ownership, and creativity by all those involved. While facilitation is a set of interrelated skills in itself, the broad definition of facilitation can be invaluable when it comes to problem solving. Leading a team through a problem solving process is made more effective if you improve and utilize facilitation skills – whether you’re a manager, team leader or external stakeholder.

The Six Thinking Hats   #creative thinking   #meeting facilitation   #problem solving   #issue resolution   #idea generation   #conflict resolution   The Six Thinking Hats are used by individuals and groups to separate out conflicting styles of thinking. They enable and encourage a group of people to think constructively together in exploring and implementing change, rather than using argument to fight over who is right and who is wrong.

Flexibility 

Being flexible is a vital skill when it comes to problem solving. This does not mean immediately bowing to pressure or changing your opinion quickly: instead, being flexible is all about seeing things from new perspectives, receiving new information and factoring it into your thought process.

Flexibility is also important when it comes to rolling out solutions. It might be that other organizational projects have greater priority or require the same resources as your chosen solution. Being flexible means understanding needs and challenges across the team and being open to shifting or arranging your own schedule as necessary. Again, this does not mean immediately making way for other projects. It’s about articulating your own needs, understanding the needs of others and being able to come to a meaningful compromise.

The Creativity Dice   #creativity   #problem solving   #thiagi   #issue analysis   Too much linear thinking is hazardous to creative problem solving. To be creative, you should approach the problem (or the opportunity) from different points of view. You should leave a thought hanging in mid-air and move to another. This skipping around prevents premature closure and lets your brain incubate one line of thought while you consciously pursue another.

Working in any group can lead to unconscious elements of groupthink or situations in which you may not wish to be entirely honest. Disagreeing with the opinions of the executive team or wishing to save the feelings of a coworker can be tricky to navigate, but being honest is absolutely vital when to comes to developing effective solutions and ensuring your voice is heard. 

Remember that being honest does not mean being brutally candid. You can deliver your honest feedback and opinions thoughtfully and without creating friction by using other skills such as emotional intelligence. 

Explore your Values   #hyperisland   #skills   #values   #remote-friendly   Your Values is an exercise for participants to explore what their most important values are. It’s done in an intuitive and rapid way to encourage participants to follow their intuitive feeling rather than over-thinking and finding the “correct” values. It is a good exercise to use to initiate reflection and dialogue around personal values.

Initiative 

The problem solving process is multi-faceted and requires different approaches at certain points of the process. Taking initiative to bring problems to the attention of the team, collect data or lead the solution creating process is always valuable. You might even roadtest your own small scale solutions or brainstorm before a session. Taking initiative is particularly effective if you have good deal of knowledge in that area or have ownership of a particular project and want to get things kickstarted.

That said, be sure to remember to honor the process and work in service of the team. If you are asked to own one part of the problem solving process and you don’t complete that task because your initiative leads you to work on something else, that’s not an effective method of solving business challenges.

15% Solutions   #action   #liberating structures   #remote-friendly   You can reveal the actions, however small, that everyone can do immediately. At a minimum, these will create momentum, and that may make a BIG difference.  15% Solutions show that there is no reason to wait around, feel powerless, or fearful. They help people pick it up a level. They get individuals and the group to focus on what is within their discretion instead of what they cannot change.  With a very simple question, you can flip the conversation to what can be done and find solutions to big problems that are often distributed widely in places not known in advance. Shifting a few grains of sand may trigger a landslide and change the whole landscape.

Impartiality

A particularly useful problem solving skill for product owners or managers is the ability to remain impartial throughout much of the process. In practice, this means treating all points of view and ideas brought forward in a meeting equally and ensuring that your own areas of interest or ownership are not favored over others. 

There may be a stage in the process where a decision maker has to weigh the cost and ROI of possible solutions against the company roadmap though even then, ensuring that the decision made is based on merit and not personal opinion. 

Empathy map   #frame insights   #create   #design   #issue analysis   An empathy map is a tool to help a design team to empathize with the people they are designing for. You can make an empathy map for a group of people or for a persona. To be used after doing personas when more insights are needed.

Being a good leader means getting a team aligned, energized and focused around a common goal. In the problem solving process, strong leadership helps ensure that the process is efficient, that any conflicts are resolved and that a team is managed in the direction of success.

It’s common for managers or executives to assume this role in a problem solving workshop, though it’s important that the leader maintains impartiality and does not bulldoze the group in a particular direction. Remember that good leadership means working in service of the purpose and team and ensuring the workshop is a safe space for employees of any level to contribute. Take a look at our leadership games and activities post for more exercises and methods to help improve leadership in your organization.

Leadership Pizza   #leadership   #team   #remote-friendly   This leadership development activity offers a self-assessment framework for people to first identify what skills, attributes and attitudes they find important for effective leadership, and then assess their own development and initiate goal setting.

In the context of problem solving, mediation is important in keeping a team engaged, happy and free of conflict. When leading or facilitating a problem solving workshop, you are likely to run into differences of opinion. Depending on the nature of the problem, certain issues may be brought up that are emotive in nature. 

Being an effective mediator means helping those people on either side of such a divide are heard, listen to one another and encouraged to find common ground and a resolution. Mediating skills are useful for leaders and managers in many situations and the problem solving process is no different.

Conflict Responses   #hyperisland   #team   #issue resolution   A workshop for a team to reflect on past conflicts, and use them to generate guidelines for effective conflict handling. The workshop uses the Thomas-Killman model of conflict responses to frame a reflective discussion. Use it to open up a discussion around conflict with a team.

Planning 

Solving organizational problems is much more effective when following a process or problem solving model. Planning skills are vital in order to structure, deliver and follow-through on a problem solving workshop and ensure your solutions are intelligently deployed.

Planning skills include the ability to organize tasks and a team, plan and design the process and take into account any potential challenges. Taking the time to plan carefully can save time and frustration later in the process and is valuable for ensuring a team is positioned for success.

3 Action Steps   #hyperisland   #action   #remote-friendly   This is a small-scale strategic planning session that helps groups and individuals to take action toward a desired change. It is often used at the end of a workshop or programme. The group discusses and agrees on a vision, then creates some action steps that will lead them towards that vision. The scope of the challenge is also defined, through discussion of the helpful and harmful factors influencing the group.

Prioritization

As organisations grow, the scale and variation of problems they face multiplies. Your team or is likely to face numerous challenges in different areas and so having the skills to analyze and prioritize becomes very important, particularly for those in leadership roles.

A thorough problem solving process is likely to deliver multiple solutions and you may have several different problems you wish to solve simultaneously. Prioritization is the ability to measure the importance, value, and effectiveness of those possible solutions and choose which to enact and in what order. The process of prioritization is integral in ensuring the biggest challenges are addressed with the most impactful solutions.

Impact and Effort Matrix   #gamestorming   #decision making   #action   #remote-friendly   In this decision-making exercise, possible actions are mapped based on two factors: effort required to implement and potential impact. Categorizing ideas along these lines is a useful technique in decision making, as it obliges contributors to balance and evaluate suggested actions before committing to them.

Project management

Some problem solving skills are utilized in a workshop or ideation phases, while others come in useful when it comes to decision making. Overseeing an entire problem solving process and ensuring its success requires strong project management skills. 

While project management incorporates many of the other skills listed here, it is important to note the distinction of considering all of the factors of a project and managing them successfully. Being able to negotiate with stakeholders, manage tasks, time and people, consider costs and ROI, and tie everything together is massively helpful when going through the problem solving process. 

Record keeping

Working out meaningful solutions to organizational challenges is only one part of the process.  Thoughtfully documenting and keeping records of each problem solving step for future consultation is important in ensuring efficiency and meaningful change. 

For example, some problems may be lower priority than others but can be revisited in the future. If the team has ideated on solutions and found some are not up to the task, record those so you can rule them out and avoiding repeating work. Keeping records of the process also helps you improve and refine your problem solving model next time around!

Personal Kanban   #gamestorming   #action   #agile   #project planning   Personal Kanban is a tool for organizing your work to be more efficient and productive. It is based on agile methods and principles.

Research skills

Conducting research to support both the identification of problems and the development of appropriate solutions is important for an effective process. Knowing where to go to collect research, how to conduct research efficiently, and identifying pieces of research are relevant are all things a good researcher can do well. 

In larger groups, not everyone has to demonstrate this ability in order for a problem solving workshop to be effective. That said, having people with research skills involved in the process, particularly if they have existing area knowledge, can help ensure the solutions that are developed with data that supports their intention. Remember that being able to deliver the results of research efficiently and in a way the team can easily understand is also important. The best data in the world is only as effective as how it is delivered and interpreted.

Customer experience map   #ideation   #concepts   #research   #design   #issue analysis   #remote-friendly   Customer experience mapping is a method of documenting and visualizing the experience a customer has as they use the product or service. It also maps out their responses to their experiences. To be used when there is a solution (even in a conceptual stage) that can be analyzed.

Risk management

Managing risk is an often overlooked part of the problem solving process. Solutions are often developed with the intention of reducing exposure to risk or solving issues that create risk but sometimes, great solutions are more experimental in nature and as such, deploying them needs to be carefully considered. 

Managing risk means acknowledging that there may be risks associated with more out of the box solutions or trying new things, but that this must be measured against the possible benefits and other organizational factors. 

Be informed, get the right data and stakeholders in the room and you can appropriately factor risk into your decision making process. 

Decisions, Decisions…   #communication   #decision making   #thiagi   #action   #issue analysis   When it comes to decision-making, why are some of us more prone to take risks while others are risk-averse? One explanation might be the way the decision and options were presented.  This exercise, based on Kahneman and Tversky’s classic study , illustrates how the framing effect influences our judgement and our ability to make decisions . The participants are divided into two groups. Both groups are presented with the same problem and two alternative programs for solving them. The two programs both have the same consequences but are presented differently. The debriefing discussion examines how the framing of the program impacted the participant’s decision.

Team-building 

No single person is as good at problem solving as a team. Building an effective team and helping them come together around a common purpose is one of the most important problem solving skills, doubly so for leaders. By bringing a team together and helping them work efficiently, you pave the way for team ownership of a problem and the development of effective solutions. 

In a problem solving workshop, it can be tempting to jump right into the deep end, though taking the time to break the ice, energize the team and align them with a game or exercise will pay off over the course of the day.

Remember that you will likely go through the problem solving process multiple times over an organization’s lifespan and building a strong team culture will make future problem solving more effective. It’s also great to work with people you know, trust and have fun with. Working on team building in and out of the problem solving process is a hallmark of successful teams that can work together to solve business problems.

9 Dimensions Team Building Activity   #ice breaker   #teambuilding   #team   #remote-friendly   9 Dimensions is a powerful activity designed to build relationships and trust among team members. There are 2 variations of this icebreaker. The first version is for teams who want to get to know each other better. The second version is for teams who want to explore how they are working together as a team.

Time management 

The problem solving process is designed to lead a team from identifying a problem through to delivering a solution and evaluating its effectiveness. Without effective time management skills or timeboxing of tasks, it can be easy for a team to get bogged down or be inefficient.

By using a problem solving model and carefully designing your workshop, you can allocate time efficiently and trust that the process will deliver the results you need in a good timeframe.

Time management also comes into play when it comes to rolling out solutions, particularly those that are experimental in nature. Having a clear timeframe for implementing and evaluating solutions is vital for ensuring their success and being able to pivot if necessary.

Improving your skills at problem solving is often a career-long pursuit though there are methods you can use to make the learning process more efficient and to supercharge your problem solving skillset.

Remember that the skills you need to be a great problem solver have a large overlap with those skills you need to be effective in any role. Investing time and effort to develop your active listening or critical thinking skills is valuable in any context. Here are 7 ways to improve your problem solving skills.

Share best practices

Remember that your team is an excellent source of skills, wisdom, and techniques and that you should all take advantage of one another where possible. Best practices that one team has for solving problems, conducting research or making decisions should be shared across the organization. If you have in-house staff that have done active listening training or are data analysis pros, have them lead a training session. 

Your team is one of your best resources. Create space and internal processes for the sharing of skills so that you can all grow together. 

Ask for help and attend training

Once you’ve figured out you have a skills gap, the next step is to take action to fill that skills gap. That might be by asking your superior for training or coaching, or liaising with team members with that skill set. You might even attend specialized training for certain skills – active listening or critical thinking, for example, are business-critical skills that are regularly offered as part of a training scheme.

Whatever method you choose, remember that taking action of some description is necessary for growth. Whether that means practicing, getting help, attending training or doing some background reading, taking active steps to improve your skills is the way to go.

Learn a process 

Problem solving can be complicated, particularly when attempting to solve large problems for the first time. Using a problem solving process helps give structure to your problem solving efforts and focus on creating outcomes, rather than worrying about the format. 

Tools such as the seven-step problem solving process above are effective because not only do they feature steps that will help a team solve problems, they also develop skills along the way. Each step asks for people to engage with the process using different skills and in doing so, helps the team learn and grow together. Group processes of varying complexity and purpose can also be found in the SessionLab library of facilitation techniques . Using a tried and tested process and really help ease the learning curve for both those leading such a process, as well as those undergoing the purpose.

Effective teams make decisions about where they should and shouldn’t expend additional effort. By using a problem solving process, you can focus on the things that matter, rather than stumbling towards a solution haphazardly. 

Create a feedback loop

Some skills gaps are more obvious than others. It’s possible that your perception of your active listening skills differs from those of your colleagues. 

It’s valuable to create a system where team members can provide feedback in an ordered and friendly manner so they can all learn from one another. Only by identifying areas of improvement can you then work to improve them. 

Remember that feedback systems require oversight and consideration so that they don’t turn into a place to complain about colleagues. Design the system intelligently so that you encourage the creation of learning opportunities, rather than encouraging people to list their pet peeves.

While practice might not make perfect, it does make the problem solving process easier. If you are having trouble with critical thinking, don’t shy away from doing it. Get involved where you can and stretch those muscles as regularly as possible. 

Problem solving skills come more naturally to some than to others and that’s okay. Take opportunities to get involved and see where you can practice your skills in situations outside of a workshop context. Try collaborating in other circumstances at work or conduct data analysis on your own projects. You can often develop those skills you need for problem solving simply by doing them. Get involved!

Use expert exercises and methods

Learn from the best. Our library of 700+ facilitation techniques is full of activities and methods that help develop the skills you need to be an effective problem solver. Check out our templates to see how to approach problem solving and other organizational challenges in a structured and intelligent manner.

There is no single approach to improving problem solving skills, but by using the techniques employed by others you can learn from their example and develop processes that have seen proven results. 

Try new ways of thinking and change your mindset

Using tried and tested exercises that you know well can help deliver results, but you do run the risk of missing out on the learning opportunities offered by new approaches. As with the problem solving process, changing your mindset can remove blockages and be used to develop your problem solving skills.

Most teams have members with mixed skill sets and specialties. Mix people from different teams and share skills and different points of view. Teach your customer support team how to use design thinking methods or help your developers with conflict resolution techniques. Try switching perspectives with facilitation techniques like Flip It! or by using new problem solving methodologies or models. Give design thinking, liberating structures or lego serious play a try if you want to try a new approach. You will find that framing problems in new ways and using existing skills in new contexts can be hugely useful for personal development and improving your skillset. It’s also a lot of fun to try new things. Give it a go!

Encountering business challenges and needing to find appropriate solutions is not unique to your organization. Lots of very smart people have developed methods, theories and approaches to help develop problem solving skills and create effective solutions. Learn from them!

Books like The Art of Thinking Clearly , Think Smarter, or Thinking Fast, Thinking Slow are great places to start, though it’s also worth looking at blogs related to organizations facing similar problems to yours, or browsing for success stories. Seeing how Dropbox massively increased growth and working backward can help you see the skills or approach you might be lacking to solve that same problem. Learning from others by reading their stories or approaches can be time-consuming but ultimately rewarding.

A tired, distracted mind is not in the best position to learn new skills. It can be tempted to burn the candle at both ends and develop problem solving skills outside of work. Absolutely use your time effectively and take opportunities for self-improvement, though remember that rest is hugely important and that without letting your brain rest, you cannot be at your most effective. 

Creating distance between yourself and the problem you might be facing can also be useful. By letting an idea sit, you can find that a better one presents itself or you can develop it further. Take regular breaks when working and create a space for downtime. Remember that working smarter is preferable to working harder and that self-care is important for any effective learning or improvement process.

Want to design better group processes?

problem solving skills wiki

Over to you

Now we’ve explored some of the key problem solving skills and the problem solving steps necessary for an effective process, you’re ready to begin developing more effective solutions and leading problem solving workshops.

Need more inspiration? Check out our post on problem solving activities you can use when guiding a group towards a great solution in your next workshop or meeting. Have questions? Did you have a great problem solving technique you use with your team? Get in touch in the comments below. We’d love to chat!

Leave a Comment Cancel reply

Your email address will not be published. Required fields are marked *

cycle of workshop planning steps

Going from a mere idea to a workshop that delivers results for your clients can feel like a daunting task. In this piece, we will shine a light on all the work behind the scenes and help you learn how to plan a workshop from start to finish. On a good day, facilitation can feel like effortless magic, but that is mostly the result of backstage work, foresight, and a lot of careful planning. Read on to learn a step-by-step approach to breaking the process of planning a workshop into small, manageable chunks.  The flow starts with the first meeting with a client to define the purposes of a workshop.…

problem solving skills wiki

How does learning work? A clever 9-year-old once told me: “I know I am learning something new when I am surprised.” The science of adult learning tells us that, in order to learn new skills (which, unsurprisingly, is harder for adults to do than kids) grown-ups need to first get into a specific headspace.  In a business, this approach is often employed in a training session where employees learn new skills or work on professional development. But how do you ensure your training is effective? In this guide, we'll explore how to create an effective training session plan and run engaging training sessions. As team leader, project manager, or consultant,…

problem solving skills wiki

Effective online tools are a necessity for smooth and engaging virtual workshops and meetings. But how do you choose the right ones? Do you sometimes feel that the good old pen and paper or MS Office toolkit and email leaves you struggling to stay on top of managing and delivering your workshop? Fortunately, there are plenty of online tools to make your life easier when you need to facilitate a meeting and lead workshops. In this post, we’ll share our favorite online tools you can use to make your job as a facilitator easier. In fact, there are plenty of free online workshop tools and meeting facilitation software you can…

Design your next workshop with SessionLab

Join the 150,000 facilitators using SessionLab

Sign up for free

  • Solving Problems

—Creating solutions

problem solving skills wiki

  • 1 Introduction
  • 2 Objectives
  • 4.1 Assignment
  • 4.2 Assignment
  • 5.1 Assignment
  • 6 Enumerating Solution Approaches
  • 7 Evaluating Solution Approaches
  • 8 Planning the solution
  • 9 Developing the solution
  • 10 Launching the solution
  • 11 Evaluating the solution
  • 12 Continuous Improvement
  • 13 Extra Credit Assignment
  • 14 Recommended Reading
  • 15 References

Introduction [ edit | edit source ]

Life consists primarily of solving problems; they are a normal part of life. Learn to expect them and enjoy solving them. Often “a problem is nothing more than an opportunity in work clothes.” [1] Life would be boring if there were no problems to solve. Treat them as expected rather than as anomalies. [2]

This course describes various approaches, processes, and thinking tools useful for solving problems. Although the title of this course is solving problems, the materials apply equally well to both solving problems and seizing opportunities. A problem describes the gap between the way things are now and the way we would like them to be. Solving a problem often requires taking some action to remove some troublesome deficit or deficiency. Opportunities arise when we notice that conditions have changed. Amazon, Google, Facebook, and eBay all seized opportunities when the emergence of the internet created new ways to provide new conveniences and services to customers. Whenever the word problem appears in the text, it also refers to opportunities .

A list of example problem topics is available to use throughout this course, in case you do not have enough problems of your own! A list of Thinking tools useful for solving problems is also provided.

Objectives [ edit | edit source ]

The objectives of this course are to help students identify problems, solve problems, and assess the success of the solution.

This course uses many useful thinking tools, and many others exist. Please browse this inventory of problem solving thinking tools and this list of additional thinking tools to continue to improve your ability to solve problems and think creatively.

This is a course in the possibilities curriculum , currently being developed as part of the Applied Wisdom Curriculum .

If you wish to contact the instructor, please click here to send me an email or leave a comment or question on the discussion page .

Stages [ edit | edit source ]

The work of solving problems often proceeds through a series of stages. The nature of the tasks changes as the work proceeds from what we know today to understanding how it can be in the future. Solving problems requires several disciplined shifts between divergent thinking , which expands the number, character, and scope of ideas that are considered to convergent thinking which narrows the number of alternatives being considered and increases focus. These shifts occur within some stages, between certain stages, and across the entire problem-solving process.

In each stage there is some transformation from the unknown to known, vague to specific, concepts to actions, general to detailed, expansion and divergence to convergence , and past to future. Problems are often solved through some process of stepwise refinement . The path toward solutions requires investigation, analysis, conception, elaboration, clarification, experimentation, evaluation, iteration, refinement, verification, and sometimes breakthroughs.

Although this text is presented serially, the path forward is rarely straightforward. Solving problems requires iteration, recursion, feedback loops, retracing steps, non-linear imagination, and often more.

Several organizations and authors, including ASC [3] , Xerox [4] , [5] , Crestcom [6] , AT&T [7] , McKinsey & Company [8] , The Ideal Problem Solver [9] , Phase-gate processes , and others describe general problem solving systems, presented as a series of stages. The number of stages and description of each stage varies across these various systems. This course uses a blend of these recommendations to identify and describe problem solving stages. These stages establish the next nine high-level headings in this course.

Adjust the level of rigor to fit the problem at hand. When deciding what to eat for lunch you are likely to speed through these stages almost instantly. Solving engineering, medical, environmental, behavioral, family, social, economic, or political problems requires more depth, more expertise, and more effort at each stage.

Persevere and a solution will appear.

Discovering the Real Problem [ edit | edit source ]

The goal of this first stage is to write, refine, and agree on a problem statement that clearly defines the real problem to be solved.

Begin by considering the question, what do we want to change? Consider: What do we want to have happen? What is true? and What are we going to do about it? Because problems are often accompanied by many symptoms and may arise from many causes, it is often difficult to identify the real problem. Persevere to ask: What is the problem? What is the real problem, and what is the problem really? Iterate these questions until you are confident you have identified the real problem.

problem solving skills wiki

The figure on the right illustrates the many sources of problems and opportunities that are likely to exist at any time. These stimuli may include considerations of: adding value, aesthetics, benchmarking , bigger picture, business as usual, competitor analysis , complaints, context, contributing causes, cost, creative destruction , critics, cultural trends, dangers, delay, discomfort, discontent, disruptions , emerging technologies, errors, errors, expanding scope, externalities, fads, failures, false starts, inconveniences, insights, interactions, irrelevancies, market research , misfits, needs, new viewpoints, opportunities, performance, pollution, possibilities, reality, reliability, scrap, symptoms, rework, voice of the customer , and many more.

During the expansive phase of this stage, work to expand the list of problems that may be considered. This can be done using tools that assist in generating ideas. Use the ideation tools described in the thinking tools course, other thinking tools , or other approaches you find useful.

A creative environment is especially important during this problem-solving phase.

Assignment [ edit | edit source ]

  • Complete the course on unleashing creativity .
  • Find an environment that will help you unleash creativity.

During the convergence phase, work to clarify the problem statement. Use the clarifying tools described in the thinking tools course, other thinking tools, or other approaches you find useful.

This stage is complete when there is a written and agreed to problem statement that clearly defines the real problem to be solved. The desired state to be achieved when this problem is solved should be clearly specified.

  • Complete the Wikiversity course on Problem Finding .
  • Find the real problem.
  • Write a well-chosen and well-written problem statement , as described here .
  • Assess the problem statement by sharing it with various stakeholders and encouraging their candid feedback, comments, or suggestions. This may include customers, suppliers, others in your organization, and especially those people who are now most affected by the existing problems and may be the most to benefit from any solution.
  • Revise the problem statement based on what is learned.
  • Repeat steps 1-5 as often as necessary until the problem really is found.

Deconstructing the problem [ edit | edit source ]

It is often helpful to deconstruct a problem into component parts to assist in the analysis. [10] This can often be done by cleaving (subdividing, disaggregating) the problem into complementary factors or subcomponents. For example, if the problem is “lose weight” then eating healthier and exercising more can both contribute to the solution. Each factor can be considered largely independently of the other.

Here are some suggested “cleaving frames”: [11]

  • For resource problems, consider input/outputs, supply/demand, sources/sinks, producer/consumer, create/conserve, generation/consumption, or MacGyver (improvising) a solution. For example, if the problem is to reduce disease rates, decompose the problem in to “New infections” and “Recoveries”.
  • For general problems consider local/global, temporary/permanent, short term/long term, common causes/special causes, internal/external, assistors/resistors, power/reason, frame-up/drill down.
  • For disease, accidents, crime, or other mishaps, consider number of incidents/severity of incidents.
  • For revenue generation consider price/volume, diversify/focus, direct/distributer, direct/broker, increase value/reduce cost product/price/place/promotion, Porter's five forces , SWOT .
  • For product or services consider increasing quality/quantity.
  • For process design, consider throughput/delay, serial/parallel.
  • For policy decisions, consider equality/liberty, regulate/incent, or public/private.
  • For reducing harm, consider prevention/repair, or mitigate/adapt.
  • For addressing regional shortages, consider generate/redistribute
  • For reducing pollution, consider reduce/reuse/recycle.
  • For obtaining resources consider make/buy/reuse.
  • For achieving a goal, consider work harder/work smarter, advance/retreat.
  • For modifying behavior consider rewards/punishments, training/assisting/constraining, passion/reason.
  • For communications issues consider advocacy/inquiry.
  • For reducing costs consider fixed costs/variable costs, purchase costs/life cycle costs, material costs/labor costs.

As the problem is deconstructed, strive to identify factors that are mutually exclusive and collectively exhaustive ( MECE ). Creating a cause-effect diagram can help.

problem solving skills wiki

The deconstruction can be represented in outline form, or graphically as a tree as shown on the right.

Here is an outline showing a deconstruction of the problem “lose weight”

Problem: Lose Weight

  • Three healthy meals each day.
  • Whole grains
  • Fruits and vegetables
  • Avoid fast foods
  • Take the stairs.
  • Walk rather than drive.
  • Go for walks.
  • Play pickleball
  • Go to the gym and work out

Create a deconstruction of your problem, represented as either an outline or a graphic. Use the cleaving frames listed above, other helpful cleaving frames, and any helpful thinking tools .

If not already in place, it is likely that a team leader will have to be identified and recognized at this stage.

Enumerating Solution Approaches [ edit | edit source ]

problem solving skills wiki

The goal of this stage is to identify and briefly describe several approaches that may provide a useful solution to the identified problem.

A solution approach is some high-level description of an architecture, technology, or plan for solving a problem. For example, if the problem to be solved is “what to eat for lunch”, several solution approaches are available. You can sit down at a restaurant, go to the drive through, order out, have lunch delivered, eat a sandwich at home, or eat a power bar on the go. As another example, the variety of bridge designs represent a wide variety of solution approaches to the problem of crossing a river.

During the expansive phase of this stage, work to expand the list of solution approaches that may be considered. This can be done using tools that assist in generating ideas. Use the ideation tools described in the thinking tools course , other thinking tools , or other approaches you find useful. The SCAMPER tool can provide a good starting point for this enumeration.

This stage is complete when several feasible solution approaches are identified and described in enough detail to communicate each approach to others on the team.

This stage has no convergence phase, the next stage provides convergence by evaluating the candidate solution approaches.

Evaluating Solution Approaches [ edit | edit source ]

The goal of this stage is to choose the most suitable solution approach from several approaches described above.

Begin by establishing the most important criteria for selecting the most suitable approach. These criteria might include a few chosen from this list: accessibility, aesthetics, availability, bandwidth, benefits, competitive advantage, cost, durability, efficiency, elegance, ergonomics, externalities, feasibility, features, flexibility, leverage, lifespan, novelty, performance, profitability, reliability, risk, robustness, ruggedness, safety, scalability, security, serviceability, signal to noise ratio, size, standards, strategic fit, usability, weight, and others. Consider establishing relative weights (importance), or at least some ordering, of these criteria to identify the critical, more important, and less important criteria.

Use the tools described in the develop section of the thinking tools course to select the most suitable solution approach, based on the established criteria.

Other useful tools include focus groups , Pugh concept selection [13] , the Analytic Hierarchy process [14] and other thinking tools .

This stage is complete when one solution approach that can solve the problem has been selected. In some circumstances, when resources are abundant and time is short, it may be useful to select more than one approach to be developed in parallel. This was done during the 2010 Copiapó mining accident rescue where time was critical.

Planning the solution [ edit | edit source ]

The goals of this stage are to plan the remaining work, and to complete the detailed design of the chosen solution. The outputs will include a project plan along with detailed designs and specifications . Prototype models , computer aided designs , or simulations may be used to better understand, analyze, and communicate the solution.

Difficult problems are likely to require a team of people providing the range of expertise required to solve the problem. As the team grows, ensure competencies, communications, decision making, governance, teamwork skills, and working conditions are suitable to the work being performed.

Two major project approaches are possible at this stage. These are the waterfall model and the spiral model . Many other approaches are also possible that seek to blend and gain the advantages of these two major approaches. Choose the approach that is most suitable to the work being performed.

Larger project will require appointing a project manager or a program manager at this stage, or earlier.

Developing the solution [ edit | edit source ]

The goal of this stage is to execute the plans created in the previous stage. This results in solutions that are verified to solve the problem.

Specification documents guide the creation of working products or services. Resources are gathered, and tasks are accomplished according to the project plan. Obstacles are identified and overcome. Replanning occurs as needed to resolve emergent or otherwise unforeseen problems.

Use the tools described in the implement section of the thinking tools course during this stage, or any other helpful thinking tools .

Samples of the solution need to be suitably verified to ensure that design output meets design input requirements.

This stage is complete when it is verified that the solution solves the identified problem.

Launching the solution [ edit | edit source ]

In this stage the solution is introduced to the users. The goal of the stage is to have some planned number of users make use of the solution. Previews , beta tests , soft launches , controlled introductions, early adopter programs, friendly users, clinical trials , and other approaches to introducing the solution to users are used.

For the solution to become effective, it must be used. Tell the story of the problem as it originally existed and how the problem has been solved. Emphasize the benefits and be candid about the shortcomings. This story may become part of a sales campaign, and education campaign, investment requests, policy advocacy work, or some other work to highlight the advantages provided by this solution.

Use the skills taught in this course to solve the problem of using the solution to solve problems.

Use the tools described in the implement section of the thinking tools course , or any other useful thinking tools as you launch the solution.

Often systems are put in place to gather feedback from these first users to be used to improve the product.

This stage is complete when the planned number of users are making use of the solution and the planned feedback is gathered and acted on.

Evaluating the solution [ edit | edit source ]

In this stage the effectiveness of the solution, as assessed by users, is evaluated. The rate of adoption, user reactions, focus group findings, unexpected problems and benefits, and other assessments of the solution effectiveness are collected and analyzed.

Is the problem solved? How do you know?

Deployment of the solution continues until each of the users who can benefit from this solution are reached.

Continuous Improvement [ edit | edit source ]

On-going work to improve results is known as continuous improvement . The existing solution can be evaluated and improved based on the answers to these questions:

  • What are the results?
  • Are the results adequate?
  • How do we know?
  • What problems remain to be addressed?
  • What opportunities are now available to address?
  • How can we act on this information?

Extra Credit Assignment [ edit | edit source ]

  • Study the Grand Challenges course.
  • Choose one grand challenge to address.
  • Use problem solving skills to solve the grand challenge.

Recommended Reading [ edit | edit source ]

Students who are interested in learning more about solving problems may wish to read these books:

  • Corpeño, E (October 6, 2021). The Top-Down Approach to Problem Solving: How to Stop Struggling in Class and Start Learning . ISBN 979-8464073296.
  • Bransford, John D. (February 15, 1993). The Ideal Problem Solver: A Guide to Improving Thinking, Learning, and Creativity . Worth Publishers. ISBN  978-0716722052 .  
  • Conn, Charles; McLean, Robert (March 6, 2019). Bulletproof Problem Solving: The One Skill That Changes Everything . Wiley. ISBN  978-1119553021 .  
  • Rosenau, Milton D. (1996-09-27). The PDMA Handbook of New Product Development . Wiley. pp. 636. ISBN  0-471-14189-5 .  
  • Glegg, Gordon Lindsay (January 1, 1969). Design of Design Hardcover . Cambridge University Press. pp. 93.  
  • Pugh, Stuart (February 1, 1991). Total Design: Integrated Methods for Successful Product Engineering . Addison-Wesley. pp. 278. ISBN  978-0201416398 .  
  • Deming, W. Edwards (January 1, 1986). Out of the Crisis . Massachusetts Inst Technology. pp. 448. ISBN  9780262350037 .  
  • Juran, J. M. (January 1, 1987). Juran on Planning for Quality . The Free Press. ISBN  978-0029166819 .  
  • Process Quality Management and Improvement Guidelines, Roger B. Ackerman
  • Clausing, Don (April 1, 1994). Total Quality Development: A Step-By-Step Guide to World-Class Concurrent Engineering . Amer Society of Mechanical. pp. 506. ISBN  978-0791800355 .  
  • Kidder, Tracy (January 1, 1982). The Soul of a New Machine by Tracy Kidder . ISBN  0140062491 .  
  • Ackroff, Russell L. (June 1, 1978). The Art of Problem Solving: Accompanied by Ackoff's Fables . John Wiley & Sons Inc. pp. 214. ISBN  978-0471042891 .  
  • Williams, Christopher G (January 1, 1974). Craftsmen of necessity . Random House. pp. 182. ISBN  978-0394489834 .  
  • Stone Zander, Rosamund; Zander, Benjamin (224). The Art of Possibility: Transforming Professional and Personal Life . Penguin. pp. 224. ISBN  978-0142001103 .  
  • Nierenberg, Gerard (1996). The Art of Creative Thinking . Barnes Noble Books. pp. 240. ISBN  978-0760701249 .  
  • Maeda, John (August 21, 2006). The Laws of Simplicity . The MIT Press. ISBN  978-0262134729 .  

Creating Ideas

  • von Oech, Roger (May 5, 2008). A Whack on the Side of the Head: How You Can Be More Creative . Grand Central Publishing. pp. 256. ISBN  978-0446404662 .  
  • Gause, Donald C. ; Weinberg, Gerald M. (March 1, 1990). Are Your Lights On?: How to Figure Out What the Problem Really Is . Dorset House Publishing Company. pp. 176. ISBN  978-0932633163 .  
  • Gelb, Michael J. (February 8, 2000). How to Think Like Leonardo da Vinci: Seven Steps to Genius Every Day . Dell. pp. 336. ISBN  978-0440508274 .  
  • Christensen, Clayton M. (January 5, 2016). The Innovator's Dilemma: When New Technologies Cause Great Firms to Fail . Harvard Business Review Press. pp. 288. ISBN  978-1633691780 .  
  • Ridley, Matt . How Innovation Works: And Why It Flourishes in Freedom . Harper. pp. 416. ISBN  978-0062916594 .  
  • De Bono, Edward (August 18, 1999). Six Thinking Hats . pp. 192. ISBN  978-0316178310 .  
  • Jones, Morgan D. (June 30, 1998). The Thinker's Toolkit: 14 Powerful Techniques for Problem Solving . Crown Business. pp. 384. ISBN  978-0812928082 .  
  • Michalko, Michael (June 8, 2006). Thinkertoys: A Handbook of Creative-Thinking Techniques . Ten Speed Press. pp. 416. ISBN  978-1580087735 .  
  • Plucker, Jonathan (September 1, 2016). Creativity and Innovation: Theory, Research, and Practice . Prufrock Press. pp. 400. ISBN  978-1618215956 .  
  • De Bono, Edward (February 24, 2015). Lateral Thinking: Creativity Step by Step . Harper Colophon. pp. 300. ISBN  978-0060903251 .  
  • Lakoff, George ; Johnson, Mark (April 15, 2003). Metaphors We Live By . pp. 242. ISBN  978-0226468013 .  
  • Camp, Robert C.. Benchmarking: The Search for Industry Best Practices that Lead to Superior Performance . Productivity Press. pp. 320. ISBN  978-1563273520 .  
  • Cameron, Julia (October 25, 2016). The Artist's Way . TarcherPerigee. pp. 272. ISBN  978-0143129257 .  
  • Edwards, Betty (April 6, 1987). Drawing on the Artist Within: An Inspirational and Practical Guide to Increasing Your Creative Powers . Touchstone. pp. 256. ISBN  978-0671635145 .  
  • Wilson, Paul F. (September 1, 1993). Root Cause Analysis : A Tool for Total Quality Management . American Society for Quality. pp. 216. ISBN  978-0873891639 .  

Product Development

  • Smith, Preston G. (October 10, 1997). Developing Products in Half the Time: New Rules, New Tools . Wiley. pp. 320. ISBN  978-0471292524 .  
  • Meyer, Christopher (June 1, 1993). Fast Cycle Time: How to Align Purpose, Strategy, and Structure for Speed . Free Press. pp. 290. ISBN  978-0029211816 .  
  • Rosenau, Milton D. (April 12, 1990). Faster New Product Development: Getting the Right Product to Market Quickly . AMACOM. pp. 432. ISBN  978-0814459423 .  
  • Rosenau, Milton D. (January 1, 1993). Managing the Development of New Products: Achieving Speed and Quality Simultaneously Through Multifunctional Teamwork . John Wiley & Sons Inc. ISBN  978-0442013950 .  
  • Wheelwright, Steven C.; Clark, Kim B.. Revolutionizing Product Development: Quantum Leaps in Speed, Efficiency, and Quality . Free Press. pp. 364. ISBN  978-0029055151 .  
  • Cooper, Robert G. (May 24, 2001). Winning at New Products: Accelerating the Process from Idea to Launch . Basic Books. pp. 416. ISBN  978-0738204635 .  
  • Cooper, Robert G. (October 19, 1998). Product Leadership: Creating And Launching Superior New Products . Basic Books. pp. 336. ISBN  978-0738200101 .  
  • Phadke, Madhav S. (January 1, 1989). Quality Engineering Using Robust Design . Prentice Hall PTR. pp. 334.  

Decision Making

  • Fisher, Roger; Ury, William L.; Patton, Bruce (May 3, 2011). Getting to Yes: Negotiating Agreement Without Giving In . enguin Books. pp. 240. ISBN  978-0143118756 .  
  • Saaty, Thomas L. (October 1, 1990). Multicriteria Decision Making: The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation . RWS Pubns. ISBN  978-0962031724 .  
  • Saaty, Thomas L. (September 3, 2012). Decision Making for Leaders: The Analytic Hierarchy Process for Decisions in a Complex World . RWS Publications. pp. 323. ISBN  978-0962031786 .  
  • King, Bob (December 1, 1989). Better Designs in Half the Time: Implementing Qfd Quality Function Deployment in America . Goal Q P C Inc. pp. 315. ISBN  978-1879364011 .  

I have not yet read the following books, but they seem interesting and relevant. They are listed here to invite further research.

  • Strategies for Creative Problem-Solving, H. Scott Fogler
  • Problem Solving 101: A simple Book for smart people, Ken Watanabe
  • 101 Creative Problem Solving Techniques, James M. Higgins
  • Solving Tough Problems: An open way of talking, listening, and creating, Adam Kahane
  • Eating Problems for Breakfast, Tim Hansel
  • The art and craft of problem solving, Paul Zeitz
  • How to solve problems, Wayne A. Wickelgren
  • Its not about the shark, David Niven
  • The complete problem solver, John D. Arnold
  • The art of systems thinking, Joseph O’Conner, Ian McDermott
  • What’s your problem, Thomas Wedell-Wedellsborg
  • Patterns of Problem Solving, Moshe F. Rubinstein
  • Creative problem solver’s toolbox, Richard Fobes
  • The Wright Way, Mark Eppler
  • Creative Problem Solving, Donald J. Noone
  • Techniques of Structured Problem Solving
  • Techniques of Problem Solving, Steven G. Krants
  • The 3rd Alternative, Stephen Covey

References [ edit | edit source ]

  • ↑ Sam Harris , The Waking Up Course, Solving Problems lesson .
  • ↑ What is problem solving? , ASQ
  • ↑ 5 simple steps to problem solving , xerox website.
  • ↑ Building a Learning Organization , by David A. Garvin, Harvard Business Review July-August 1993.
  • ↑ 7 Steps to Effective Problem Solving , Crestcom, September 1, 2016.
  • ↑ Process Quality Management and Improvement Guidelines, Roger B. Ackerman
  • ↑ Conn, Charles; McLean, Robert (March 6, 2019). Bulletproof Problem Solving: The One Skill That Changes Everything . Wiley. ISBN  978-1119553021 .  
  • ↑ Bransford, John D. (February 15, 1993). The Ideal Problem Solver: A Guide to Improving Thinking, Learning, and Creativity . Worth Publishers. ISBN  978-0716722052 .  
  • ↑ Cleaving frames , Bill Synnot and Associates , Technique 2.93
  • ↑ Food Rules: An Eater’s Manual , Michael Pollan
  • ↑ Pugh, Stuart (February 1, 1991). Total Design: Integrated Methods for Successful Product Engineering . Addison-Wesley. pp. 278. ISBN  978-0201416398 .  
  • ↑ Saaty, Thomas L. (September 3, 2012). Decision Making for Leaders: The Analytic Hierarchy Process for Decisions in a Complex World . RWS Publications. pp. 323. ISBN  978-0962031786 .  

problem solving skills wiki

  • Completed resources
  • Resources with an attribution
  • Life skills
  • Applied Wisdom
  • Problem solving

Navigation menu

Cognition and Instruction/Problem Solving, Critical Thinking and Argumentation

We are constantly surrounded by ambiguities, falsehoods, challenges or situations in our daily lives that require our Critical Thinking , Problem Solving Skills , and Argumentation skills . While these three terms are often used interchangeably, they are notably different. Critical thinking enables us to actively engage with information that we are presented with through all of our senses, and to think deeply about such information. This empowers us to analyse, critique, and apply knowledge, as well as create new ideas. Critical thinking can be considered the overarching cognitive skill of problem solving and argumentation. With critical thinking, although there are logical conclusions we can arrive at, there is not necessarily a 'right' idea. What may seem 'right' is often very subjective. Problem solving is a form of critical thinking that confronts learners with decisions to be made about best possible solutions, with no specific right answer for well-defined and ill-defined problems. One method of engaging with Problem Solving is with tutor systems such as Cognitive Tutor which can modify problems for individual students as well as track their progress in learning. Particular to Problem Solving is Project Based Learning which focuses the learner on solving a driving question, placing the student in the centre of learning experience by conducting an extensive investigation. Problem Based Learning focuses on real-life problems that motivate the student with experiential learning. Further, Design Thinking uses a specific scaffold system to encourage learners to develop a prototype to solve a real-world problem through a series of steps. Empathy, practical design principles, and refinement of prototyping demonstrate critical thought throughout this process. Likewise, argumentation is a critical thinking process that does not necessarily involve singular answers, hence the requirement for negotiation in argumentative thought. More specifically, argumentation involves using reasoning to support or refute a claim or idea. In comparison problem solving may lead to one solution that could be considered to be empirical.

This chapter provides a theoretical overview of these three key topics: the qualities of each, their relationship to each other, as well as practical classroom applications.

Learning Outcomes:

  • Defining Critical Thought and its interaction with knowledge
  • Defining Problem Solving and how it uses Critical Thought to develop solutions to problems
  • Introduce a Cognitive Tutor as a cognitive learning tool that employs problem solving to enhance learning
  • Explore Project Based Learning as a specific method of Problem Solving
  • Examine Design Thinking as a sub-set of Project Based Learning and its scaffold process for learning
  • Define Argumentation and how it employs a Critical Though process
  • Examine specific methodologies and instruments of application for argumentation
  • 1.1 Defining critical thinking
  • 1.2 Critical thinking as a western construct
  • 1.3 Critical thinking in other parts of the world
  • 1.4 Disposition and critical thinking
  • 1.5 Self-regulation and critical thinking
  • 1.6.1 Venn Diagrams
  • 1.6.2.1 The classroom environment
  • 1.6.3.1 Socratic Method
  • 1.6.3.2 Bloom’s Taxonomy
  • 1.6.3.3 Norman Webb’s Depth of Knowledge
  • 1.6.3.4 Williams Model
  • 1.6.3.5 Wiggins & McTighe’s Six Facets of Understanding
  • 2.1.1.1.1 Structure Of The Classroom
  • 2.2.1.1 Instructional Implications
  • 2.2.2.1 Instructional Implications
  • 2.3.1 Mind set
  • 2.3.2.1.1 Instructional Implications
  • 2.4 Novice Versus Expert In Problem Solving
  • 2.5.1 An overview of Cognitive Tutor
  • 2.5.2.1 ACT-R theory
  • 2.5.2.2 Production rules
  • 2.5.2.3 Cognitive model and model tracing
  • 2.5.2.4 Knowledge tracing
  • 2.5.3.1 Cognitive Tutor® Geometry
  • 2.5.3.2 Genetics Cognitive Tutor
  • 2.6.1 Theorizing Solutions for Real World Problems
  • 2.6.2 Experience is the Foundation of Learning
  • 2.6.3 Self-Motivation Furthers Student Learning
  • 2.6.4 Educators Find Challenges in Project Based Learning Implementation
  • 2.6.5 Learner Need for Authentic Results through Critical Thought
  • 2.7.1 Using the Process of Practical Design for Real-World Solutions
  • 2.7.2 Critical Thought on Design in the Artificial World
  • 2.7.3 Critical Thinking as Disruptive Achievement
  • 2.7.4 Designers are Not Scientific?
  • 2.7.5 21st Century Learners and the Need for Divergent Thinking
  • 3.1 Educators Find Challenges in Project Based Learning Implementation
  • 3.2 Learner Need for Authentic Results through Critical Thought
  • 3.3 Critical Thinking as Disruptive Achievement
  • 3.4.1 Argumentation Stages
  • 3.5 The Impact of Argumentation on Learning
  • 4.1.1 Production, Analysis, and Evaluation
  • 4.2 How Argumentation Improves Critical Thinking
  • 5.1 Teaching Tactics
  • 5.2.1 The CoRT Thinking Materials
  • 5.2.2 The Feuerstein Instrumental Enrichment Program (FIE)
  • 5.2.3 The Productive Thinking Program
  • 5.2.4 The IDEAL Problem Solver
  • 5.3.1 Dialogue and Argumentation
  • 5.3.2 Science and Argumentation
  • 5.3.3.1 Historical Thinking - The Big Six
  • 5.4 Instructing through Academic Controversy
  • 7.1 External links
  • 8 References

Critical thinking [ edit | edit source ]

Critical thinking and its relationship to other cognitive skills

Critical thinking is an extremely valuable aspect of education. The ability to think critically often increases over the lifespan as knowledge and experience is acquired, but it is crucial to begin the process of this development as early on as possible. Research has indicated that critical thinking skills are correlated with better transfer of knowledge, while a lack of critical thinking skills has been associated with biased reasoning [1] . Before children even begin formal schooling, they develop critical thinking skills at home because of interactions with parents and caregivers [2] . As well, critical thinking appears to improve with explicit instruction [3] . Being able to engage in critical thought is what allows us to make informed decisions in situations like elections, in which candidates present skewed views of themselves and other candidates. Without critical thinking, people would fall prey to fallacious information and biased reasoning. It is therefore important that students are introduced to critical thought and are encouraged to utilize critical thinking skills as they face problems.

Defining critical thinking [ edit | edit source ]

In general, critical thinking can be defined as the process of evaluating arguments and evidence to reach a conclusion that is the most appropriate and valid among other possible conclusions. Critical thinking is a dynamic and reflective process, and it is primarily evidence-based [4] . Thinking critically involves being able to criticize information objectively and explore opposing views, eventually leading to a conclusion based on evidence and careful thought. Critical thinkers are skeptical of information given to them, actively seek out evidence, and are not hesitant to take on decision-making and complex problem solving tasks [5] . Asking questions, debating topics, and critiquing the credibility of sources are all activities that involve thinking critically. As outlined by Glaser (1941), critical thinking involves three main components: a disposition for critical thought, knowledge of critical thinking strategies, and some ability to apply the strategies [6] . Having a disposition for critical thought is necessary for applying known strategies.

Critical thinking, which includes cognitive processes such as weighing and evaluating information, leads to more thorough understanding of an issue or problem. As a type of reflection, critical thinking also promotes an awareness of one's own perceptions, intentions, feelings and actions. [7]

Critical thinking as a western construct [ edit | edit source ]

Critical thinking is considered to be essential for all democratic citizens

In modern education, critical thinking is taken for granted as something that people universally need and should acquire, especially at a higher educational level [8] [9] . However, critical thinking is a human construct [10] - not a scientific fact - that is tied to Ancient Greek philosophy and beliefs [11] .

The link to Ancient Greece relates both to Ancient Greek priorities of logic over emotion [11] , as well as its democratic principles. Various authors, including Elder & Paul [12] , Moon [8] , and Stanlick & Strawser [13] share the view that critical thinking questioning back to the time of Socrates . Likewise, Morgan & Saxton (2006) associate critical thinking with a fundamental requirement of all democratic citizens [14] .

An additional connection with Ancient Greece involves the Socratic Method. The Socratic Method involves a conversation between two or more people in which they ask and answer questions to challenge each other’s theses using logic and reason [15] . Such debates are subject to the issue of objective/subjective dualism in that the purpose of debate is the belief that there is a ‘right answer’, yet the ability to conduct such a debate demonstrates the subjectivity of any thesis [15] .

Because of this strong connection to Ancient Greece, critical thinking is generally considered to be a western construct. This is further amplified another western construct called Bloom’s Taxonomy , which is considered to be the essence of critical thinking in modern education [16] .

Since critical thinking is a human construct, notions of what constitutes critical thinking vary considerably from person to person. Moon (2007) lists 21 common notions of critical thinking provided by people from her workshops, and then provides her own 2-page definition of the term [8] . One view of critical thinking is that it involves a set of skills that enables one to reach defensible conclusions and make decisions in a domain or context in which one has some prior knowledge [10] . Another view is that critical thinking involves the use of systematic logic and reasoning, which while not necessarily producing empirical answers nevertheless uses a rational and scientific approach [17] . Ultimately, Moon concludes that there is no right or wrong definition [8] .

Critical thinking in other parts of the world [ edit | edit source ]

Scholars argue that while the critical thinking construct is linked to western, democratic nations, that does not mean that other non-western cultures do not possess or use similar constructs that involve critical thinking [18] . Instead, “there are different ways or forms of reasoning” [19] ; for example, Asian approaches to debates involve finding connections between conflictive arguments in order for such ideas to coexist [18] . This is due to eastern values regarding face-saving [8] . In contrast, western approaches are often viewed as being competitive: attacking the views of others while defending one's own position. Despite this dichotomous generalisation, eastern and western approaches have more similarities than they would first seem. With regards to the diplomatic Asian approach to debating, western approaches also involve compromise and negotiation for the very reason that ideas are often complex and that there can be many ‘right’ answers [14] . Similarly, the extent to which other cultures adopt western notions of critical thinking is determined by cultural values. In Muslim cultures, for example, the value of critical thinking is link to views on the appropriateness of voicing one’s views [20] .

Disposition and critical thinking [ edit | edit source ]

It has been suggested that critical thinking skills alone are not sufficient for the application of critical thinking – a disposition for critical thinking is also necessary [5] . A disposition for critical thought differs from cognitive skills. A disposition is better explained as the ability to consciously choose a skill, rather than just the ability to execute the skill [4] . Having a disposition for critical thinking can include such things as genuine interest and ability in intellectual activities. Perkins et al. (2000) expand on the idea of the necessity for a critical thinking disposition, and indicate three aspects involved in critical thinking disposition: an inclination for engaging in intellectual behaviours; a sensitivity to opportunities, in which such behaviours may be engaged; and a general ability for engaging in critical thought [5] . Halpern (1998) suggests that this critical thinking disposition must include a willingness to continue with tasks that seem difficult, openmindedness, and a habit of planning [5] . In fact, in a cognitive skills study conducted by Clifford et al. (2004), they discovered that a disposition for critical thinking was associated with better overall critical thinking skills [4] .

These are characteristics of one's attitude or personality that facilitate the process of developing CT skills:

  • Inquisitive
  • Truthseeking
  • Open-minded
  • Confidence in reasoning

There are many factors that can influence one's disposition towards CT; the first of these is culture [5] . There are many aspects of culture that can impact the ability for people to think critically. For instance, religion can negatively impact the development of CT [5] . Many religions are founded upon faith, which often requires wholehearted belief without evidence or support. The nature of organized religion counters the very premise of CT, which is to evaluate the validity and credibility of any claim. Growing up in an environment such as this can be detrimental to the development of CT skills. This kind of environment can dampen dispositions that question religious views or examine the validity of religion. Another cultural factor that can be detrimental to a CT disposition is that of authority [5] . When a child is raised under the conditions of an authoritarian parenting style, it can be detrimental to many aspects of their lives, but especially to their CT skills, as they are taught not to question the credibility of authority and often receive punishment if they do. This is also applicable in the classroom [5] . Classroom environments that foster a disposition for critical thinking in which teachers who do not foster an atmosphere of openness or allow students to question what they are taught can impact CT development as well. Classrooms where questions are rejected or home environments in which there is a high level of parental power and control can all affect the ability of students to think critically. What is more, students will have been conditioned not to think this way for their entire lives [5] . However, despite these cultural limitations, there are ways in which a disposition for CT can be fostered in both the home and the classroom.

Classroom structure is a primary way in which CT dispositions can be highlighted. Fostering a classroom structure in which students are a part of the decision making process of what they are studying can be very helpful in creating CT dispositions [5] . Such structures help students become invested in what they are learning as well as promote a classroom atmosphere in which students may feel free to question the teacher, as well as other students' opinions and beliefs about different subjects. Allowing the freedom to scrutinize and evaluate information that has been given to students is an effective way of creating a classroom environment that can encourage students to develop CT dispositions. This freedom allows for the students to remain individuals within the larger classroom context, and gives them the power to evaluate and make decisions on their own. Allowing the students to share power in the classroom can be extremely beneficial in helping the students stay motivated and analytical of classroom teachings [5] . Teachers can also employ a variety of techniques that can help students become autonomous in the classroom. Giving students the opportunity to take on different roles can be effective in creating CT dispositions, such as making predictions and contemplating problems [5] . Allowing students to engage with problems that are presented, instead of just teaching them what the teacher or textbook believes to be true, is essential for students to develop their own opinions and individual, though. In addition to this, gathering data and information on the subject is an important part of developing CT dispositions. Doing so allows for students to go out and find resources that they themselves can analyze and come to conclusions on their own [5] . Using these aspects of CT students can most effectively relate to the predictions that were first made and critique the validity of the findings [5] .

Self-regulation and critical thinking [ edit | edit source ]

In conjunction with instructing CT, teachers also need to keep in mind the self-regulation of their students. Students need to be able to maintain motivation and have a proactive attitude towards their own learning when learning a new skill. In an article by Phan (2010), he argues that self-regulated students that have better goal setting have more personal responsibility for their learning, can maintain their motivation, are more cognitively flexible, and hence are more inclined to utilize CT. Since CT skills are highly reflective, they help in self-regulated learning (SRL), and in turn, self-regulatory strategies aid in developing CT skills. These two cognitive practices are assets to students’ growth and development [7] .

Self-Regulation provides students with the basic meta-cognitive awareness required for proactive learning. This pro-activity allows students to engage in the cognitive processes of CT, such as evaluation, reflection and inference. Through one’s meta-cognitive ability to assess one’s own thoughts, one develops the capability to become autonomous in one’s learning [7] . Instead of having a supervisor overlook every task, the learner can progress at their own pace while monitoring their performance, thereby engaging in SRL. Part of this process would include periodic reflection upon the strategies that one uses when completing a task. This reflection can facilitate the student’s learning by using CT to evaluate which strategies best suit their own learning based on their cognitive needs.

The complex nature of CT suggests that it requires a long developmental process requiring guidance, practice and reinforcement. To facilitate this process, self-monitoring as a first step to self-regulation can jump-start reflective thought through assessing one’s own educational performance. This assessment promotes self-efficacy through generating motivational beliefs about one’s academic capabilities [7] . From there, through practice, students can extend their CT skills beyond themselves and into their educational contexts. With practice, students use their meta-cognitive strategies as a basis for developing CT in the long run.

Critical thinking strategies [ edit | edit source ]

problem solving skills wiki

Psychologists and educators have discovered many different strategies for the development of critical thinking. Among these strategies are some that may be very familiar, such as concept maps or Venn diagrams , as well as some that may be less familiar, such as appeal-question stimuli strategies [21] . Concept mapping is particularly useful for illustrating the relationships between ideas and concepts, while Venn diagrams are often used to represent contrasting ideas [21] .

Venn Diagrams [ edit | edit source ]

Venn diagrams are used frequently in elementary grade levels and continue to be used as a contrast/compare tool throughout secondary school. An example of a situation in which a Venn diagram activity may be appropriate is during a science class. Instructors may direct students to develop a Venn diagram comparing and contrasting different plants or animals. Concept maps may be introduced in elementary grades, although they are most often used in the secondary and post-secondary levels. Concept maps are an interactive and versatile way to encourage students to engage with the course material. A key aspect of concept mapping is how it requires students to reflect on previously learned information and make connections. In elementary grades, concept maps can be introduced as a project, while later, possibly in college or university, students may use them as a study strategy. At the elementary level, students can use concept maps to make connections about the characters, settings, or plot in a story they have read. When introducing concept maps, teachers may provide students with a list of words or phrases and instruct the students to illustrate the connections between them in the form of a concept map. Asking questions can also be a simple and engaging way to develop critical thought. Teachers may begin by asking the students questions about the material, and then encouraging students to come up with their own questions. In secondary and post-secondary education, students may use questions as a way to assess the credibility of a source. At the elementary school level, questions can be used to assess students' understanding of the material, while also encouraging them to engage in critical thought by questioning the actions of characters in a story or the validity of an experiment. Appeal-question stimuli, founded by Svobodová, involves a process of students asking questions regarding their reading comprehension [21] .

Discussions [ edit | edit source ]

Using discussions as a way to develop students’ critical thinking skills can be a particularly valuable strategy for teachers. Peer interactions provide a basis for developing particular critical thinking skills, such as perspective taking and cooperation, which may not be as easily taught through instruction. A large part of discussions, of course, is language. Klooster (2002) suggested that critical thinking begins with asking questions [21] . Similarly, Vygotsky has claimed that language skills can be a crucial precursor for higher level thought processes [2] . As children develop larger vocabularies, they are better able to understand reading material and can then begin to think abstractly about the material and engage in thoughtful discussions with peers about what they understood [2] .

Studies have indicated that cross-age peer discussions may be particularly helpful in facilitating the development of critical thinking. Cross-age peer groups can be effective because of the motivation children tend to have when working with peers of different ages [2] . Younger children often look up to the older children as mentors and valuable sources of knowledge and experience, while older children feel a sense of maturity and a responsibility to share their knowledge and experience with younger students [2] . These cross-age peer discussions also provide students with the challenge of tailoring their use of language to the other group members in order to make their points understandable [2] . An example of cross-age peer groups that is relatively common in Canadian schools is the big buddy programs, where intermediate grade students are assigned a primary grade buddy to help over the course of the school year. Big buddies may help their little buddies with projects, advice, or school events. The big buddy/little buddy programs can be effective as younger students look up to their big buddies, and the big buddies feel a responsibility to help their little buddy. One important factor to be considered with cross-age peer discussions, as noted by Hattie (2006), is that these discussions should be highly structured activities facilitated by a teacher in order to ensure that students understand their group responsibilities [2] .

The classroom environment [ edit | edit source ]

Having an environment that is a safe place for students to ask questions and share ideas is extremely valuable for creating a classroom that encourages critical thinking. It has been suggested that students are more likely to develop a disposition for critical thinking when they are able to participate in the organization and planning of their classroom and class activities [5] . In these classrooms, students are legitimately encouraged by their teacher to engage in the decision making process regarding the functioning of the classroom [5] . It is also important for teachers to model the desired types of critical thought, by questioning themselves and other authorities in a respectful and appropriate manner [5] . Studies have indicated higher levels of cognitive engagement among students in classrooms with teachers who are enthusiastic and responsive [22] . Therefore, teachers should be encouraging and inclusive, and allow student engagement in classroom planning processes when possible.

Critical questions [ edit | edit source ]

Research is increasingly supporting the idea that critical thinking can be explicitly taught [23] . The use of critical questioning in education is of particular importance, because by teaching critical questioning, educators are actively modelling critical thinking processes. One of the key issues with teaching critical thinking in education is that students merely witness the product of critical thinking on the part of the teacher, i.e. they hear the conclusions that the teacher has reached through critical thinking [9] . Whereas an experienced critical thinker uses critical questions, these questions are implicit and not normally verbalised. However, for students to understand critical questioning and critical thinking strategies, the students must see the process of critical thinking. Modelling the formation and sequencing of critical questions explicitly demonstrates the thought process of how one can reach a logical conclusion.

There various methods of teaching critical questioning. The frameworks discussed below are among the most famous of these. All have their own strengths and weaknesses in terms of ease-of-use, complexity, and universality. Each of these methods approaches critical thinking with a specific definition of this human concept. As such, one’s own definition of critical thinking will likely affect one’s receptiveness to a specific critical questioning framework.

 Socrates

Socratic Method [ edit | edit source ]

One of the key features of western approaches to critical thinking involves the importance of critical questioning, which is linked to the Socratic Method from Ancient Greece traditions. Whether answering existing questions posed or creating new questions to be considered, critical thinking involves questions, whether explicitly / implicitly, consciously / unconsciously [13] . Browne & Keeley (2006) base their definition of critical thinking specifically on the involvement of critical questions [24] .

Answers to critical questions are not necessarily empirical. They may involve reasoning and be logical, but are nevertheless subject to alternative views from others, thus making all views both subjective and objective at the same time. Elder & Paul (2009) separate such critical questions into three categories [12] :

  • Questions that have a correct answer, which can be determined using knowledge
  • Questions that are open to subjective answers that cannot be judged
  • Questions that produce objective answers that are judged based the quality of evidence and reasoning used

Books on critical questioning tend to be influenced heavily by the Socratic Method, and they make a distinction between ‘good’ and ‘bad’ questions. Good questions are those that are relevant to the topic at hand and that take a logical, systematic approach [14] [13] , while bad questions are those that are not relevant to the topic, are superficial, and are sequenced haphazardly. Elder & Paul (2009) argue that “[i]t is not possible to be a good thinker and a poor questioner.” [25] In other words, if a person cannot thinking of relevant and logical questions, they will be unable to reach any rational conclusions.

Additionally, as indicated above, critical thinking requires more than just asking the right questions. There is a direct relationship between critical thinking and knowledge [23] . One can possess knowledge, but not know how to apply it. Conversely, one can have good critical questioning skills, but lack the knowledge to judge the merits of an answer.

In terms of teaching critical questioning using the Socratic Method, it is essential to appreciate that there is no set of questions that one can follow, since the type of critical questions needed is based on the actual context. Consequently, the examples presented by different authors vary quite considerably. Nevertheless, there are specific guidelines one can follow [26] :

  • Use critical questions to identify and understand the situation, issues, viewpoints and conclusions
  • Use critical questions to search for assumptions, ambiguity, conflicts, or fallacies
  • Use critical questions to evaluate the effects of the ideas

Part 1 of the Socratic Method is more of an information gathering stage, using questions to find out essential details, to clarify ideas or opinions, and to determine objectives. Part 2 uses the information from Part 1 and then uses questions to probe for underlying details that could provide reasons for critiquing the accuracy of the idea. Part 3 uses questions to reflect upon the consequences of such ideas.

Conklin (2012) separates the above three parts into six parts [27] :

  • Using questions to understand
  • Using questions to determine assumptions
  • Using questions to discover reasons / evidence
  • Using questions to determine perspectives
  • Using questions to determine consequences
  • Using questions to evaluate a given question

Here are some sample questions for each part [28] :

Questions for understanding:

  • Why do you think that?
  • What have you studied about this topic so far?
  • How does this relate to what you are studying now?

Questions that determine assumptions

  • How could you check that assumption?
  • What else could be assumed?
  • What are your views on that? Do you agree or disagree?

Questions that discover reasons / evidence

  • How can you be sure?
  • Why is this happening?
  • What evidence do you have to back up your opinion?

Questions that determine perspectives

  • How could you look at this argument another way?
  • Which perspective is better?

Questions that determine consequences

  • How does it affect you?
  • What impact does that have?

Questions that evaluate a given question

  • Why was I asked this question?
  • Which questions led to the most interesting answers?
  • What other questions should be asked?

Depending on the text, the Socratic Method can be extraordinarily elaborate, making it challenging for educators to apply. Conklin (2012) states that a teacher would need to spend time planning such questions in advance, rather than expect to produce them during a lesson [27] .

Bloom’s Taxonomy [ edit | edit source ]

Bloom’s Taxonomy was originally designed in 1956 to determine cognitive educational objectives and assess students’ higher-order thinking skills [29] . Since then, though, it has become adapted and used as a useful tool for promoting critical thinking skills, particularly through critical questioning [30] . These critical questions involve Bloom’s categories of understanding, applying, analysing, synthesising and evaluating. Such categories can be seen to relate to the Socratic Method promoted by other authors, i.e. the importance of questioning to understanding, analyse and evaluate. Moon (2007) believes that “‘evaluation’, ‘reflection’ and ‘understanding’” are key aspects of critical thinking [8] , which should therefore appear in any notion of critical thinking. At the same time, Bloom’s Taxonomy generates a natural set of questions that can be adapted to various contexts [31] .

In one example, a teacher uses a picture of a New York speakeasy bar. Using Bloom’s Taxonomy, the teacher could ask and model the following critical questions [14] :

  • KNOWLEDGE: What do you see in the picture?
  • COMPREHENSION: What do people do in places like that?
  • ANALYSIS: Why are there so many policemen in the picture?
  • APPLICATION: What similar situations do we see nowadays?
  • SYNTHESIS: What if there were no laws prohibiting such behaviour?
  • EVALUATION: How would you feel if you were one of these people? Why?

Norman Webb's Depth of Knowledge

Norman Webb’s Depth of Knowledge [ edit | edit source ]

Webb’s Depth of Knowledge (DOK) taxonomy was produced in 2002 in response to Bloom’s Taxonomy [32] . In contrast with Bloom’s Taxonomy, Webb’s DOK focuses on considering thinking in terms of complexity of thinking rather than difficulty [32] .

Webb’s DOK has four levels:

  • Recall & reproduction
  • Working with skills & concepts
  • Short-term strategic thinking
  • Extended strategic thinking

Level 1 aligns with Bloom’s level of remembering and recalling information. Example critical questions in this level would include:

  • What is the name of the protagonist?
  • What did Oliver Twist ask Fagin?

Level 2 involves various skills, such as classifying, comparing, predicting, gathering, and displaying. Critical questions can be derived from these skill sets, including the following:

  • How do these two ideas compare?
  • How would you categorise these objects?
  • How would you summarize the text?

Level 3 involves analysis and evaluation, once again aligning with Bloom’s Taxonomy.

  • What conclusions can you reach?
  • What theory can you generate to explain this?
  • What is the best answer? Why?

At the same time, Level 3 of DOK shares similarities with the Socratic Method in that the individual must defend their views.

Level 4 is the most elaborate and challenging level. It involves making interdisciplinary connections and the creation of new ideas / solutions.

Since DOK becomes increasingly elaborate with levels and leads to the requirement to defend one’s position using logic and evidence, there are parallels with the Socratic Method. At the same time, because is used to develop standards in assessing critical thinking, it shares similarities with Bloom’s Taxonomy.

Williams Model [ edit | edit source ]

 The KWL method shares some similarities to the 'wonder' aspect of the Williams Model

The Williams Model was designed by Frank Williams in the 1970s [27] . Unlike other methods, the Williams Model was designed specifically to promote creative thinking using critical questioning [27] . This model involves the following aspects:

  • Flexibility
  • Elaboration
  • Originality
  • Risk taking
  • Imagination

Critical questions regarding fluency follow a sort of brainstorming approach in that the questions are designed to generates ideas and options [27] . For ‘flexibility’, the questions are designed to produce variations on existing ideas. ‘Elaboration’ questions are about building upon existing ideas and developing the level of detail. As the name suggests, critical questions for ‘originality’ are for promoting the development of new ideas. The ‘curiosity’ aspect of the Williams Model bears a similarity with that of the ‘Wonder’ stage of the Know Wonder Learn (KWL) system [33] . ‘Risk taking’ questions are designed to provoke experimentation. Although the name ‘complexity’ may sound similar to ‘elaboration’, it is instead about finding order among chaos, making connections, and filling in gaps of information. The final aspect is ‘Imagination’, which involves using questions to visualise.

Wiggins & McTighe’s Six Facets of Understanding

Wiggins & McTighe’s Six Facets of Understanding [ edit | edit source ]

Wiggins & McTighe’s ‘Six Facets of Understanding’ are all based on deep understanding aspects of critical thinking [34] . The method is used for teachers to design questions for students to promote critical thinking [34] . The six facets are Explanation, Interpretation, Application, Perspective, Empathy, and Self-Knowledge [35] .

‘Why’ and ‘How’ questions dominate the ‘Explanation’ facet in developing theory and reasoning [36] :

  • How did this happen? Why do you think this?
  • How does this connect to the other theory?

Interpretation questions encourage reading between the lines, creating analogies or metaphors, and creating written or visual scenarios to illustrate the idea. Questions include:

  • How would you explain this idea in other words?
  • Why do you think that there is conflict between the two sides?
  • Why is it important to know this?

Application questions are about getting students to use knowledge. Part of this comes from predicting what will happen based on prior experience. Another aspect involves learning from the past. Critical questions in this facet include:

  • How might we prevent this happening again?
  • What do you think will happen?
  • How does this work?

Perspective questions involves not only looking at ideas from other people’s perspectives, but also determining what people’s points of views are. In comparison with Empathy questions, though, Perspective questions involve more of an analytical and critical examination [35] . Here are some example questions:

  • What are the different points of view concerning this topic?
  • Whose is speaking in the poem?
  • Whose point of view is being expressed?
  • How might this look from the other person’s perspective?

Empathy questions involve perspective-taking, including empathy, in order to show an open mind to considering what it would feel like to walk in another person’s shoes.

  • How would you feel in the same situation?
  • What would it be like to live in those conditions?
  • How would you react if someone did that your family?

Self-knowledge questions are primarily designed to encourage self reflection and to develop greater self awareness [35] . In particular, Self-Knowledge questions reveal one’s biases, values, and prejudices and how they influence our judgment of others. Critical questions in this facet include:

  • How has my life shaped my view on this topic?
  • What do I really know about the lives of people in that community?
  • What knowledge or experience do I lack?
  • How do I know what I know? Where did that information / idea come from?

Questions within the Six Facets of Understanding all incorporate the following attributes [36] :

  • They are open ended
  • They require deep thought
  • They require critical thinking
  • They promote transfer of knowledge
  • They are designed to lead to follow-up questions
  • They require answers that are substantiated

For examples of critical questioning in action in a classroom environment, view the External Link section at the bottom of this page.

Problem Solving [ edit | edit source ]

In everyday life we are surrounded by a plethora of problems that require solutions and our attention to resolve them to reach our goals [37] . We may be confronted with problems such as: needing to determine the best route to get to work, what to wear for an interview, how to do well on an argumentative essay or needing to find the solution to a quadratic equation. A problem is present in situations where there is a desire to solve the problem, however the solution is not obvious to the solver [38] . Problem solving is the process of finding the solutions to these problems. [39] . Although they are related, critical thinking differs fundamentally from problem solving. Critical thought is actually a process that can be applied to problem solving. For example, students may find themselves engaging in critical thought when they encounter ill-defined problems that require them to consider many options or possible answers. In essence, those who are able to think critically are able to solve problems effectively [40] .

problem solving skills wiki

This chapter on problem solving will first differentiate between Well-defined Problems and Ill-defined Problems , then explain uses of conceptualizing and visually representing problems within the context of problem solving and finally we will discuss how mental set may impede successful problem solving.

Well-defined and Ill-defined Problems [ edit | edit source ]

Problems can be categorized into two types: ill-defined or well-defined [37] Cognitive Psychology and Instruction (5th Ed). New York: Pearson.</ref> to the problem at hand. An example of a well-defined problem is an algebraic problem (ex: 2x - 29 = 7) where one must find the value of x. Another example may be converting the weight of the turkey from kilograms to pounds. In both instances these represent well-defined problems as there is one correct solution and a clearly defined way of finding that solution.

In contrast, ill-defined problems represent those we may face in our daily lives, the goals are unclear and they have information that is conflicting, incomplete or inconclusive [41] . An example of an ill-defined problem may be “how do we solve climate change?” or “how should we resolve poverty” as there is no one right answer to these problems. These problems yield the possibility to many different solutions as there isn’t a universally agreed upon strategy for solving them. People approach these problems differently depending on their assumptions, application of theory or values that they use to inform their approach [42] . Furthermore, each solution to a problem has its own unique strengths and weaknesses. [42] .

Table 1. Summarizes the difference between well-defined and ill-defined problems.

Differences in Solving Ill-defined and Well-defined Problems [ edit | edit source ]

In earlier times, researchers assumed both types of problems were solved in similar ways [44] , more contemporary research highlights some distinct differences between processes behind finding a solution.

Kitchener (1983) proposed that well-defined problems did not involve assumptions regarding Epistemological Beliefs [37] because they have a clear and definite solution, while ill-defined problems require these beliefs due to not having a clear and particular solution [45] . In support of this idea, Schraw, Dunkle and Bendixen conducted an experiment with 200 participants, where they found that performance in well-defined problems is not predictive of one's performance on ill-defined problems, as ill-defined problems activated different beliefs about knowledge. [46]

Furthermore Shin, Jonassen and McGee (2003), [43] found that solving ill-defined problems brought forth different skills than those found in well-structured problems. In well-structured problems domain knowledge and justification skills highly predicted problem-solving scores, whereas scores on ill-structured tasks were predictive of argumentation, attitudes and metacognition in an astronomy simulation.

Aligned with these findings, Cho and Jonassen (2002) [47] found that groups solving ill-structured problems produced more argumentation and problem solving strategies due to the importance of considering a wide variety of solutions and perspectives. In contrast, the same argumentation technique distracted the participant's activities when they dealt with well-defined problems. This research highlights the potential differences in the processes behind solving ill-defined and well-defined problems.

Implications Of The Classroom Environment [ edit | edit source ]

The fundamental differences between well-structured and ill-structured problems implicate that solving ill-structured problems calls for different skills, strategies, and approaches than well-structured problems [43] . Meanwhile, most tasks in the educational setting are designed around engaging learners in solving well-structured problems that are found at the end of textbook chapters or on standardized tests. [48] . Unfortunately the strategies used for well-defined problems have little application to ill-defined problems that are likely to be encountered day to day [49] as simplified problem solving strategies used for the well-structured designs have been found to have almost no similarities to real-life problems [48]

This demonstrates the need to restructure classrooms in a way that facilitates the student problem solving of ill-structured problems. One way we may facilitate this is through asking students questions that exemplify the problems found in everyday life [50] . This type of approach is called problem based learning and this type of classroom structure students are given the opportunity to address questions by collecting and compiling evidence, data and information from a plethora of sources [51] . In doing so students learn to analyze the information,data and information, while taking into consideration the vast interpretations and perspectives in order to present and explain their findings [51] .

Structure Of The Classroom [ edit | edit source ]

In problem-based learning, students work in small groups to where they explore meaningful problems, identify the information needed to solve the given problem, and devise effective approaches for the solution [50] . Students utilize these strategies, analyze and consider their results to devise new strategies until they have come up with an effective solution [50] . The teacher’s role in this classroom structure is to guide the process, facilitate participation and pose questions to elicit reflections and critical thinking about their findings [50] . In addition teachers may also provide traditional lectures and explanations that are intended to support student inquiry [50] .

In support of the argument to implement a problem-based approach to problem solving, a meta-analysis conducted by Dochy, Segers, Van den Bossche, & Gijbels (2003), found problem-based learning to be superior to traditional styles of learning though in supporting flexible problem solving, application of knowledge, and hypothesis generation. [52] Furthermore, Williams, Hemstreet, Liu, and Smith (1998) found that this approach fostered greater gains in conceptual understanding in science [53] . Lastly Gallagher, Stepien, & Rosenthal (1992), found that in comparing traditional vs. project-based approaches students in problem-based learning demonstrate an ability to define problems. [54] These findings highlight the benefits of problem-based learning on understanding and defining problems in science. Given the positive effects of defining problems this education approach may also be applied to our next sub-topic of conceptualizing problems.

Steps to Problem Solving [ edit | edit source ]

There have been five stages consistently found within the literature of problem solving: (1) identifying the problem, (2) representing the problem, (3) choosing the appropriate strategy, (4) implementing the strategy, and (5) assessing the solutions [37] . This overview will focus on the first two stages of problem solving and examine how they influence problem solving.

problem solving skills wiki

Conceptualizing Problems [ edit | edit source ]

One of the most tedious and taxing aspects of problem solving is identifying the problem as it requires one to consider the problem through multiple lenses and perspectives without being attached to one particular solution to early on in the task [39] . In addition it is also important to spend time clearly identifying the problem due to the association between time spent "conceptualizing a particular problem and the quality of one's solutions". [37] For example consider the following problem:

Becka baked a chocolate cake in her oven for twenty five minutes. How long would it take her to bake three chocolate cakes?

Most people would jump to the conclusion to multiply twenty five by three, however if we place all three cakes in the oven at a time we find it would take the same time to bake three cakes as it would take to bake one. This example highlights the need to properly conceptualize the problem and look at it from different viewpoints, before rushing to solutions.

Taking this one step further, break down the five steps as the would be used to conceptualize the problem:

Stage 1 - Define the Problem

Stage 2 - Brainstorm Solutions

Stage 3 - Pick a Solution

Stage 4 - Implement the Solution

Stage 5 - Review the Result

Research also supports the importance of taking one's time to clearly identifying the problem before proceeding to other stages. In support of this argument, Getzel and Csikszentmihalyi found that artist students that spend more time identifying the problem when producing their art were rated as having more creative and original pieces than artists who spent less time at this stage [37] . These researchers postulated that in considering a wider scope of options during this initial stage they were able to come up with more original and dynamic solutions.

Furthermore, when comparing the approaches of experienced teachers and novice post-secondary students studying to be teachers, it was found that experienced teachers spent a greater amount of time lesson planning in comparison to post-secondary students when in a placed in a hypothetical classroom. [37] In addition these teachers offered significantly more solutions to problems posed in both ill-defined and well-defined problems. Therefore it is implicated that successful problem solving is associated with the time spent finding the correct problem and the consideration of multiple solutions.

Instructional Implications [ edit | edit source ]

One instructional implication we may draw from the literature that supports that the direct relationship between time spent on conceptualizing a problem and the quality of the solution, is that teachers should encourage students to spend as much time as possible at this stage [37] . In providing this knowledge and by monitoring student’s problem solving processes to ensure that they “linger” when conceptualizing problems, we may facilitate effective problem solving [37] .

Representing the Problem [ edit | edit source ]

Problem Representation refers to how the known information about a particular problem is organized [37] . In abstract representation of a problem, we merely think or speak about the problem without externally visually representing [37] . In representing a problem tangibly this is done by creating a visual representation on paper, computer, etc. of the data though graphs, stories, symbols, pictures or equations. These visual representations [37] may be helpful they can help us keep track of solutions and steps to a problem, which can particularly be useful when encountering complex problems.

problem solving skills wiki

For example if we look at Dunker's Buddhist Monk example [37]  :

In the morning a Buddhist monk walks outside at sunrise to climb up the mountain to get to the temple at the peak. He reaches the temple just prior to sunset. A couple days later, he departs from the temple at sunrise to climb back down the mountain, travelling quicker than he did during his ascent as he is going down the mountain. Can you show a location along the path that the monk would have passed on both at the exact time of the day? [37]

In solely using abstraction, this problem is seemingly impossible to solve due to the vast amount of information, how it is verbally presented and the amount of irrelevant information present in the question. In using a visual representation we are able to create a mental image of where the two points would intersect and are better able to come up with a solution [55] .

Research supports the benefits of visual representation when confronted with difficult problems. Martin and Schwartz [56] found greater usage of external representations when confronted with a difficult task and they had intermittent access to resources, which suggests that these representations are used as a tool when problems are too complex without external aids. Results found that while creating the initial visual representation itself took up time, those who created these visual representations solved tasks with greater efficiency and accuracy.

Another benefit is that these visual representations may foster problem solving abilities by enabling us to overcome our cognitive biases. In a study conducted by Chambers and Reisberg [57] , participants were asked to look at the image below then close their eyes and form a mental image. When asked to recall their mental image of the photo and see if there were any alternate possibilities of what the photo could be, none of the participants were able to do so. However when participants were given the visual representation of the photo they were quickly able to manipulate the position of the photo to come up with an alternate explanation of what the photo could be. This shows how visual representations may be used in education by learners to counteract mental sets, which will be discussed in the next section.

As shown above, relying on abstraction can often overload one’s cognitive resources due to short- term memory being limited to seven items of information at a time [37] . Many problems surpass these limits disabling us being able to hold all the relevant information needed to solve a problem in our working memory [37] . Therefore it is implicated that in posing problems teachers should represent them written or visually in order to reduce the cognitive load. Lastly another implication is that as teachers we may increase problem-solving skills through demonstrating to students different types of external representations that can be used to show the relevant information pertaining to the problem. These representations may include different types of graphs, charts and imagery, which all can serve as tools for students in coming up with an effective solution, representing relevant information and reducing cognitive load

Challenges of Problem Solving [ edit | edit source ]

As discussed above there are many techniques to facilitate the problem solving process, however there are factors that can also hinder this process. For example: one’s past experiences can often impede problem solving as they can provide a barrier in looking at novel solutions, approaches or ideas [58] .

Mind set [ edit | edit source ]

A mind set refers to one's tendency to be influenced by one's past experiences in approaching tasks. [58] Mental set refers to confining ourselves to using solutions that have worked in the past rather than seeking out alternative approaches. Mental sets can be functional in certain situation as in using strategies that have worked before we are quickly able to come up with solutions. However, they can also eliminate other potential and more effective solutions.

problem solving skills wiki

Functional Fixedness [ edit | edit source ]

Functional Fixedness is a type of mental set that refers to our tendency to focus on a specific function of an object (ie. what we traditionally use it for) while overlooking other potential novel functions of that object. [37]

A classic example of functional fixedness is the candle problem [59] . Consider you are at a table with a box full of tacks, one candle, and matches, you are then asked to mount the lit candle on the wall corkscrew board wall as quickly as possible, and make sure that this doesn't cause any wax to melt on the table. Due to functional fixedness you might first be inclined to pin the candle to the wall as that is what tacks are typically used for, similar to participants in this experiment. However, this is the incorrect solution as it would cause the wax to melt on the table.

The most effective solution requires you to view the box containing the tacks as a platform for the candle rather than it's traditional use as a receptacle. In emptying the box, we may use it as a platform for the candle and then use the tacks inside to attach the box to the wall. It is difficult to initially arrive at this solution as we tend to fixate on the function of the box of holding the tacks and have difficulty designating an alternate function to the box (ie. as a platform as opposed to a receptacle). This experiment demonstrates how prior knowledge can lead to fixation and can hinder problem solving.

Techniques to Overcome Functional Fixedness [ edit | edit source ]

As proposed by McCaffrey (2012), [60] one way to overcome functional fixedness is to break the object into parts. In doing so we may ask two fundamental questions “can it be broken down further” and “does my description of the part imply a use”. To explain this we can use McCaffrey’s steel ring figure-8 example. In this scenario the subject is given two steel rings, a candle and a match, they are asked to make the two steel rings into a figure 8. Looking at the tools provided to the subject they might decide that the wax from the candle could potentially hold the two pieces of steel together when heated up. However the wax would not be strong enough. It leaves them with a problem, how do they attach the two steel rings to make them a figure eight.

In being left with the wick as a tool, and labelling it as such we become fixated on seeing the primary function of the wick as giving off light, which hinders our ability to come up with a solution for creating a figure-8. In order to effectively solve problem we must break down our concept of the wick down further. In seeing a wick as just a waxed piece of string, we are able to get past functional fixedness and see the alternate functions of the string. In doing so we may come to the conclusion and see the waxed string as being able to be used to tie the two rings together. In showing the effectiveness of this approach McCaffrey (2012) found that people trained to use this technique solved 67% more problems than the control group [60] .

Given the effectiveness of this approach, it is implicated that one way we may promote Divergent Thinking is through teaching students to consider: "whether the object may be broken down further" [60] and "whether the description of the part imply a use" in doing so we may teach students to break down objects to their purest form and make salient the obscure features of a problem. This connects to the previously discussed idea of conceptualization where problem solving effectiveness can be increased through focusing time on defining the problem rather than jumping to conclusions based on our own preconceptions. In the following section we will discuss what strategies experts use when solving problems.

Novice Versus Expert In Problem Solving [ edit | edit source ]

Many researchers view effective problem solving as being dependent on two important variables: the amount of experience we have in trying to solve a particular category of problems [61] , which we addressed earlier by demonstrating that in practicing problem solving through engaging in a problem-based approach we may increase problem solving skills. However, the second factor to consider is the amount of domain-specific knowledge that we have to draw upon [61] . Experts possess a vast amount of domain knowledge, which allows them to efficiently apply their knowledge to relevant problems. Experts have a well-organized knowledge of their domain, which impacts they notice and how they arrange, represent and interpret information, this in turn enables them to better recall, reason and solve problems in comparison to novices. [62]

In comparing experts to novices in their problem strategies, experts are able to organize their knowledge around the deep structure in important ideas or concepts in their domain, such as what kind of solution strategy is required to solve the problem [63] . In contrast novices group problems based on surface structure of the problems, such as the objects that appear in the problem. [63]

Experts also spend more time than novices analyzing and identifying problems at the beginning of the problem-solving process. Experts take more time in thinking and planning before implementing solutions and use a limited set of strategies that are optimal in allowing them to richer and more effective solutions to the given problem. [64]

In addition experts will engage in deeper and more complete problem representation novices, in using external representations such as sketches and diagrams to represent information and solve problems. In doing so they are able to solve problems quicker and come up with better solutions. [65]

Given the literature above it is evident that problem solving and expertise overlap as the key strategies that experts utilize are also provided as effective problem solving strategies. Therefore, we may conclude that experts not only have a vast knowledge of their domain, they also know and implement the most effective strategies in order to solve problem more efficiently and effectively in comparison to novices. [65] In the next section we will discuss the connection between problem solving and critical thinking.

Cognitive Tutor for Problem Solving [ edit | edit source ]

Cognitive Tutor is a kind of Intelligent Tutoring Systems. [66] It can assign different problems to students according to their individual basis, trace users’ solution steps, provide just-in-time feedback and hint, and implement mastery learning criteria. [67]

According to Anderson and colleague, [67] the students who worked with LISP tutors completed the problems 30% faster and 43% outperformed than their peers with the help of teachers in mini-course. Also, college students who employed ACT Programming Tutor (APT) with the function of immediate feedback finished faster on a set of problems and 25% better on tests than the students who received the conventional instruction. [68] In addition, in high school geometry school settings, students who used Geometry Proof Tutor (GPT) for in- class problem solving had a letter grade scores higher than their peers who participated in traditional classroom problem-solving activities on a subsequent test. [69]

An overview of Cognitive Tutor [ edit | edit source ]

In 1985, Anderson, Boyle, and Reigser added the discipline of cognitive psychology to the Intelligent Tutoring Systems. Since then, the intelligent tutoring system adopted this approach to construct cognitive models for students to gain knowledge was named Cognitive Tutors. [67] The most widely used Cognitive Tutor is Cognitive Tutor® Algebra I. [69] Carnegie Learning, Inc., the trademark owner, is developing full- scale Cognitive Tutor®, including Algebra I, II, Bridge to Algebra, Geometry, and Integrated Math I, II, III. Cognitive Tutor® now includes Spanish Modules, as well.

Cognitive Tutors support the idea of learning by doing, an important part of human tutoring, which to provide students the performance opportunities to apply the objective skills or concepts and content related feedback. [69] To monitor students’ performance, Cognitive Tutors adopt two Algorithms , model tracing and knowledge tracing. Model tracing can provide immediate feedback, and give content-specific advice based on every step of the students’ performance trace. [67] Knowledge tracing can select appropriate tasks for every user to achieve mastery learning according to the calculation of one’s prior knowledge. [67] [69]

Cognitive Tutors can be created and applied to different curriculum or domains to help students learn, as well as being integrated into classroom learning as adaptive software. The curriculum and domains include mathematics in middle school and high school, [66] [68] [70] genetics in post-secondary institutions, [71] and programming. [67] [68] [72] [73]

Cognitive Tutors yielded huge impacts on the classroom, student motivation, and student achievement. [74] Regarding the effectiveness of Cognitive Tutors, research evidence supports more effectiveness of Cognitive Tutors than classroom instruction. [67] [75] [76] [68]

The Theoretical Background of Cognitive Tutor [ edit | edit source ]

Act-r theory [ edit | edit source ].

The theoretical background of Cognitive Tutors is ACT-R theory of learning and performance, which distinguishes between procedural knowledge and declarative knowledge. [67] According to the ACT-R theory, procedural knowledge cannot be directly absorbed into people’s heads, and it can be presented in the notation of if-then Production rules. The only way to acquire procedural knowledge is learning by doing.

Production rules [ edit | edit source ]

Production rules characterize how students, whether they beginning learners or advanced learners, think in a domain or subject. [67] Production rules can represent students' informal or intuitive thinking. [77] The informal or intuitive forms of thinking are usually different from what textbook taught, and students might gain such patterns of thinking outside from school. [78] Heuristic methods, such us providing a plan of actions for problem-solving instead of giving particular operation; [79] and non-traditional strategies, such as working with graphics rather than symbols when solving equation, [69] can be represented in production rules as well.

Cognitive model and model tracing [ edit | edit source ]


Cognitive model is constructed on both ACT-R theory and empirical studies of learners. [69] All the solutions and typical misconceptions of learners are represented in the production system of the cognitive model.

For example, there are three strategies of solving an algebra equation, 2(3+X)=10. Strategy 1 is multiplying 2 across the sum (3+X); Strategy 2 is dividing both sides of the equation by 2; Strategy 3 shows the misconception of failing to multiply 2 across the sum (3+X). Since there are various methods of each task, students can choose their way of solving problems.

Model tracing is an algorithm that can run forward along every student’s learning steps and provide instant context-specific feedback. If a student chooses the correct answer, for example, using strategy 1 or strategy 2 to solve the equation, the Cognitive Tutor® will accept the action and provide the student next task. If the student’s mistake match a common misconception, such as using strategy 3, the Cognitive Tutor will highlight this step as incorrect and provide a just-in- time feedback, such as you also need to multiply X by 2. If the student’s mistake does not match any of the production rule in the cognitive model, which means that the student does not use any of the strategies above, the Cognitive Tutor® will flag this step as an error in red and italicized. Students can ask for advice or hint any time when solving problems. According to Corbett, [68] there are three levels of advice. The first level is to accomplish a particular goal; the second level is to offer general ideas of achieving the goal, and the third level is to give students detailed advice on how to solve the problem in the current context.

Knowledge tracing [ edit | edit source ]

Knowledge tracing can monitor the growing number of production rules during the problem solving process. Every student can choose one production rule every step of his or her way of solving problems, and Cognitive Tutors can calculate an updated estimate of the probability of the student has learned the particular rule. [68] [69] The probability estimates of the rules are integrated into the interface and displayed in the skill-meter. Using probability estimates, the Cognitive Tutors can select appropriate tasks or problems according to students’ individual needs.

Effectiveness [ edit | edit source ]

Cognitive tutor® geometry [ edit | edit source ].

Aleven and Koedinger conducted two experiments to examine whether Cognitive Tutor® can scaffold self-explanation effectively in high school geometry class settings. [66] The findings suggested that “problem-solving practice with a Cognitive Tutor® is even more effective when the students explain their steps by providing references to problem-solving principles.” [80]

In geometry learning, it could happen when students have over-generalized production rules in their prior knowledge, and thus leading shallow encoding and learning. For instance, a student may choose the correct answer and go to next step base on the over-generalized production rule, if an angle looks equal to another, then it is , instead of real understanding. According to Aleven & Koedinger, self-explanation can promote more general encoding during problem-solving practice for it can push students to think more and reflect explicitly on the rules in the domain of geometry. [66]

All the geometry class in the experiments includes classroom discussion, small-group activities, lectures, and solving problems with Cognitive Tutor®. In both of the experiments, students are required to solve problems with the help of the Cognitive Tutor®. However, the Cognitive Tutor® were provided with two different versions, the new version can support self-explanation which is also called guided learning by doing and explaining, [66] and the other cannot. Theses additional features of the new version required students to justify each step by entering geometry principles or referring the principles to an online glossary of geometry knowledge, as well as providing explanations and solutions according to students’ individual choice. Also, the form of explanation in the new version is different from speech-based explanations mentioned in another experiment on self-explanation. The researchers found that students who use the new version of the Cognitive Tutor® were not only better able to give accurate explanation, but also able to deeper understand the domain rules. Thus, the students were able to transfer those learned rules to new situations better, avoiding shallow encoding and learning.

Genetics Cognitive Tutor [ edit | edit source ]

Corbett et al. (2010) conducted two evaluations of the Genetics Cognitive Tutor in seven different kinds of biology courses in 12 universities in America. The findings suggested the effectiveness of implementing Genetics Cognitive Tutor in post-secondary institution genetic problem-solving practice settings. [81]

In the first evaluation, the participants used the Genetics Cognitive Tutor with their class activities or homework assignments. The software has 16 modules with about 125 problems in five general genetic topics. Genetics Cognitive Tutor utilized the cognitive model of genetics problem solving knowledge to provide step-by-step help, and both model tracing and knowledge tracing. With the average correctness of pretest (43%) and post-test (61%), the average improvements of using Genetic Cognitive Tutors was 18%. In the second empirical evaluations, the researchers examined whether the knowledge tracing can correctly predict students’ knowledge. The finding suggested that the algorithm of knowledge tracing is capable of accurately estimating every student performance on the paper- and-pencil post-test.

Project Based Learning and Design Thinking [ edit | edit source ]

Theorizing solutions for real world problems [ edit | edit source ].

Project Based Learning is a concept that is meant to place the student at the center of learning. The learner is expected to take on an active role in their learning by responding to a complex challenge or question through an extended period of investigation. Project Based Learning is meant for students to acknowledge the curriculum of their class, but also access the knowledge that they already have to solve the problem challenge. At its roots, project-based learning is an activity in which students develop an understanding of a topic based on a real-life problem or issue and requires learners to have a degree of responsibility in designing their learning activity [82] . Blummenfeld et al. (1991) states that Project Based Learning allows students to be responsible for both their initial question, activities, and nature of their artifacts [83] .

Project based learning is based on five criteria [84]

problem solving skills wiki

Challenges are based on authentic, real-world problems that require learners to engage through an inquiry process and demonstrate understanding through active or experiential learning. An example would be elementary or secondary students being asked by their teacher to solve a school problem – such as how to deal with cafeteria compost. Students would be encouraged to work in groups to develop solutions for this problem within specific criteria for research, construction, and demonstration of their idea as learners are cognitively engaged with subject matter over an extended period of time keeping them motivated [83] . The result is complex learning that defines its success is more than as more than the sum of the parts [85] . Project Based Learning aims at learners coordinating skills of knowledge, collaboration, and a final project presentation. This type of schema construction allows learners to use concrete training to perform concrete results. The learner uses previous knowledge to connect with new information and elaborate on their revised perception of a topic [85] . In Project Based Learning this would constitute the process of information gathering and discussing this information within a team to decide on a final solution for the group-instructed problem.

Unlike Problem-Based Learning, experiential learning within a constructivist pedagogy, is the basis of Project Based Learning, and learners show their knowledge, or lack there of, by working towards a real solution through trial and error on a specific driving question. The philosophy of Experiential experiential learning education comes from the theories developed by John Dewey in his work Education and Experience. Dewey argues that experience is shown to be a continuous process of learning by arousing curiosity, strengthen initiative, and is a force in moving the learner towards further knowledge [86] . The experiential aspect of Project Based Learning through working towards solutions for real world problems ties learner’s solutions to practical constructs. Learners must make up the expected gap in their knowledge through research and working together in a collaborative group. The experiential learning through Project Based Learning is focused on a driving question usually presented by the teacher. It is this focus that students must respond to with a designed artifact to show acquired knowledge.

The constructivist methodology of Project Based Learning is invoked through the guided discovery process set forth by the instructor, unlike pure discovery which has been criticised for student having too much freedom [87] , Project Based Learning involves a specific question driven by the instructor to focus the process of investigation. This form of constructivist pedagogy has shown to promote cognitive processing that is most effective in this type of learning environment [87] . Project Based Learning provides a platform for learners to find their own solutions to the teacher driven question, but also have a system in which to discover, analyze, and present. Therefore, Project Based Learning delivers beneficial cognitive meaningful learning by selecting, organizing, and integrating knowledge [87] .

Experience is the Foundation of Learning [ edit | edit source ]

Project Based Learning is a branch of education theory that is based on the idea of learning through doing. John Dewey indicated that teachers and schools should help learners to achieve greater depth in correlation between theory and real-world through experiential and constructivist methods. Dewey stated that education should contain an experiential continuum and a democratization of education to promote a better quality of human experience [86] . These two elements are consistent with Project Based Learning through the application of authentic, real world problems and production of artifacts as solutions, and the learner finding their own solutions through a collaborative effort with in a group. Blumenfeld et al. mentions that the value in Project Based Learning comes from questions that students can relate to including personal health and welfare, community concerns, or current events [83] .

Project Based Learning has basis also in the work of Jean Piaget who surmised that the learner is best served to learn in a constructivist manner – using previous knowledge as a foundation for new learning and connections. The learner’s intelligence is progressed from the assimilation of things in the learner’s environment to alter their original schema by accommodating multiple new schema and assimilating all of this experienced knowledge [88] . Piaget believed in the learner discovering new knowledge for themselves, but that without collaboration the individual would not be able to coherently organize their solution [87] . Project Based Learning acknowledges Piaget’s beliefs on the need for collective communication and its use in assembling new knowledge for the learner.

Self-Motivation Furthers Student Learning [ edit | edit source ]

Project Based Learning is perceived as beneficial to learners in various ways including gained knowledge, communication, and creativity. While engaging on a single challenge, learners obtain a greater depth of knowledge. Moreover, abilities in communication, leadership, and inter-social skills are strengthened due to the collaborative nature of Project Based Learning. Students retain content longer and have a better understanding of what they are learning. There are at least four strands of cognitive research to support Project Based Learning [84] – motivation, expertise, contextual factors, and technology.

Motivation of students that is centred on the learning and mastery of subject matter are more inclined to have sustained engagement with their work [89] . Therefore, Project Based Learning discourages public competition in favour of cooperative goals to reduce the threat to individual students and increase focus on learning and mastery [84] . Project Based Learning is designed to allow students to reach goals together, without fear of reprisal or individual criticism. For instance, Helle, et al. completed a study of information system design students who were asked to work on a specific assignment over a seven-month timeline. Students were given questionnaires about their experience during this assignment to determine their motivation level. Helle, et al. examined the motivation of learners in project groups and found intrinsic motivation increased by 0.52 standard deviations, showing that Project Based learner groups used self-motivation more often to complete assignments. Further, the study implied intrinsic motivation increase substantially for those who were lowest in self-regulation [90] .

Learner metacognitive and self-regulation skills are lacking in many students and these are important to master in student development in domains [84] . In the Project Based Learning system the relationship between student and teacher allows the instructor to use scaffolding to introduce more advance forms of inquiry for students to model, thus middle school students and older are very capable of meaningful learning and sophisticated results [91] . Learners would then become experts over time of additional skills sets that they developed on their own within this system.

Contextually, situated cognition is best realized when the material to be used resembles real-life as much as possible [84] , therefore, Project Based Learning provides confidence in learners to succeed in similar tasks outside of school because they no longer associate subjects as artificial boundaries to knowledge transfer. Gorges and Goke (2015) investigated the relationship between student perception of their abilities in major high school subjects and their relating these skills to real-world problem application through an online survey. Learners showed confidence in problem-solving skills and how to apply their learning to real-life situations, as Gorges and Goke [92] report, and that students who used Project Based Learning style learning have increased self-efficacy and self-concepts of ability in math (SD .77), history (SD .72), etc. [92] . Therefore, students are more likely to use domain-specific knowledge outside of an academic setting through increased confidence. Further, a comparison between students immediately after finishing a course and 12 weeks to 2 years provided effect sizes that showed Project Based Learning helped retain much knowledge [92] .

Technology use allows learners to have a more authentic experience by providing users with an environment that includes data, expanded interaction and collaboration, and emulates the use of artifacts [84] . The learner, in accessing technology, can enhance the benefits of Project Based Learning by having more autonomy is finding knowledge and connecting with group members. Creativity is enhanced as students must find innovative solutions to their authentic problem challenges. For instance, using digital-story-telling techniques through Project Based Learning, as stated by Hung and Hwang [93] , to collect data (photos) in elementary class to help answer a specific project question on global warming in science provided a significant increase in tests results (SD 0.64). As well, in order to find answers, learners must access a broad range of knowledge, usually crossing over various disciplines. The end result is that projects are resolved by student groups that use their knowledge and access to additional knowledge (usually through technology) to build a solution to the specific problem.

Educators Find Challenges in Project Based Learning Implementation [ edit | edit source ]

One of the main arguments against this type of learning is that the project can become unfocused and not have the appropriate amount of classroom time to build solutions. Educators themselves marginalized Project Based Learning because they lack the training and background knowledge in its implementation. Further financial constraints to provide effective evaluation through technology dissuades teachers as well [94] . The information gained by students could be provided in a lecture-style instruction and can be just as effective according to critics. Further, the danger is in learners becoming off-task in their time spent in the classroom, and if they are not continually focused on the task and the learning content, then the project will not be successful. Educators with traditional backgrounds in teaching find Project Based Learning requires instructors to maintain student connection to content and management of their time – this is not necessarily a style that all teachers can accomplish [94] .Blumenfeld et al. (1998) state that real success from Project Based Learning begins and ends with a focused structure that allows teacher modelling, examples, suggested strategies, distributing guidelines, giving feedback during the activity, and allowing for revision of work [91] .

Learner Need for Authentic Results through Critical Thought [ edit | edit source ]

problem solving skills wiki

Project Based Learning is applicable to a number of different disciplines since it has various applications in learning, and is specifically relevant with the 21st century redefinition of education (differentiated, technologically-focused, collaboration, cross-curricular). STEM (Science, Technology, Engineering, Mathematics) is one form of 21st century education that benefits from instructors using Project Based Learning since it natural bridges between domains. The focus of STEM is to prepare secondary students for the rigors of post-secondary education and being able to solve complex problems in teams as would be expected when performing these jobs in the real world after graduation. Many potential occupational areas could benefit from Project Based Learning including medical, engineering, computer design, and education. Project Based Learning allows secondary students the opportunity to broaden their knowledge and become successful in high-stakes situation [95] . Moreover, these same students then develop a depth in knowledge when it comes to reflecting upon their strengths and limitations [95] . The result would be a learner who has developed critical thinking and has had a chance to apply it to real situations. Further the construction of a finished product is a realistic expectation in presenting an authentic result from learning. The product result demands accountability, and learner adherent to instructor expectations as well as constraints for the project [95] .

The learner is disciplined to focus on specific outcomes, understand the parameters of the task, and demonstrate a viable artifact. The implication is that students will be ready to meet the challenges of a high-technology, fast-paced work world where innovation, collaboration, and results-driven product is essential for success. Technology is one area where Project Based Learning can be applied by developing skills in real-world application, thus cognitive tools aforded by new technology will be useful if perceived as essential for the project (as is the case in many real-world applications) [83] .. For example, designers of computer systems with prior knowledge may be able to know how to trouble-shoot an operating system, but they do not really understand how things fit or work together, and they have a false sense of security about their skills [96] .

Design-Thinking as a Sub-set of Project-Based Learning [ edit | edit source ]

Using the process of practical design for real-world solutions [ edit | edit source ].

problem solving skills wiki

Design Thinking is a pedagogical approach to teaching through a constructionist methodology of challenge-based problem solving branching off of Project Based learning. It should be understood as a combination of sub-disciplines having design as the subject of their cognitive interests [97] .

An example of design-thinking would be learners engaged with finding a solution to a real-world problem. However, unlike Project Based Learning, design-thinking asks the learner to create a practical solution within a scaffolding process (Figure 3) such as finding a method to deliver clean drinking water to a village. Designers would consider social, economic, and political considerations, but would deliver a final presentation of a working prototype that could be marketable. Hence a water system could be produced to deliver water to villagers, but within the limits of the materials, finances, and local policies in mind. It designates cores principles of empathy, define, ideate, prototype, and test to fulfill the challenges of design. Starting with a goal (solution) in mind, empathise is placed upon creative and practical decision making through design to achieve an improved future result. It draws upon a thinking that requires investigation into the details of a problem to find hidden parameters for a solution-based result. The achieved goal then becomes the launching point for further goal-setting and problem solving. [97]

This type of approach to education is based on the premise that the modern world is full of artificial constructs, and that our civilization historically has relied upon these artifacts to further our progress in technological advances. Herbert Simon, a founder of design-thinking, states that the world that students find themselves in today is much more man-made and artificial that it is a natural world [98] . The challenge of design-thinking is to foster innovation by enhancing student creative thinking abilities [99] . Design-thinking is a tool for scaffolding conventional educational projects into Project Based thinking. Van Merrienbroer (2004) views design-learning as a scaffolding for whole-task practice. It decreases intrinsic cognitive load while learners can practice on the simplest of worked-out examples [87] . Therefore, Design-thinking is currently becoming popular due to its ability to bridge between the justification of what the learner knows and what the learner discovers within the context of 21st century skills and learning. A further example of this process is the design of a product that children will use to increase their physical activity (see video on Design Thinking) and can be explained using the scaffold of Design Thinking:

Critical Thought on Design in the Artificial World [ edit | edit source ]

Design-thinking is can be traced back to a specific scholars including Herbert Simon, Donald Schon, and Nigel Cross. Simon published his findings on the gap he found in education of professions in 1969. He observed that techniques in the natural sciences and that just as science strove to show simplicity in the natural world of underlying complex systems, and Simon determined the it was the same for the artificial world as well [100] . Not only should this include the process behind the sciences, but the arts and humanities as well since music, for example involves formal patterns like mathematics (Simon, 136). Hence, the creative designs of everyone is based upon a common language and its application. While Schon builds upon the empathetic characteristics of design-thinking as a Ford Professor of Urban Planning and Education at MIT, referring to this process as an artistic and intuitive process for problem-solving [101] . Schon realized that part of the design process was also the reflection-in-action that must be involved during critical thinking and ideating. Moreover, the solutions for problems do not lie in text-books, but in the designer’s ability to frame their own understanding of the situation [100] . Cross fuses these earlier ideas into a pedagogy surrounding education stating that design-thinking should be part of the general education of both sciences and humanities [97] . He implies that students encouraged to use this style of thinking will improve cognitive development of non-verbal thought and communication [97] .

Critical Thinking as Disruptive Achievement [ edit | edit source ]

Design-thinking follows a specific flow from theoretical to practical. It relies upon guided learning to promote effective learner solutions and goes beyond inquiry which has been argued does not work because it goes beyond the limits of long-term memory [97] . Design-thinking requires the learner to have a meta-analysis of their process. Creativity (innovative thought) is evident in design thinking through studies in defocused and focused attention to stimuli in memory activation [97] . Hu et al. (2010) developed a process of disrupted thinking in elementary students by having them use logical methods of critical thought towards specific design projects, over a four-year period, through specific lesson techniques. The results show that these students had increased thinking ability (SD .78) and that these effects have a long-term transfer increasing student academic achievement [102] . This shows use of divergent and convergent thinking in the creative process, and both of these process of thought has been noted to be important in the process of creativity (Goldschmidt, 2016, p 2) and demonstrates the Higher Order Thinking that is associated with long-term memory. Design-thinking specifically demonstrates the capability of having learners develop

Designers are Not Scientific? [ edit | edit source ]

Design-thinking critics comment that design is in itself not a science or cognitive method of learning, and is a non-scientific activity due to the use of intuitive processes [97] . The learner is not truly involved within a cognitive practice (scientific process of reasoning). However, the belief of Cross is that design itself is a science to be studied, hence it can be investigated with systematic and reliable methods of investigation [97] . Further, Schon states that there is connection between theory and practice that in design thinking means that there is a loyalty to developing a theoretical idea into a real world prototype [101] . Design-thinking is a process of scientific cognitive practice that does constitute technical rationality [101] and using this practice to understand the limits of their design that includes a reflective practice and meta. Further, this pedagogy is the application for the natural gap between theory and practice for most ideas, by allowing the learner to step beyond normal instruction and practice to try something new and innovative to come up with a solution. Design-thinking rejects heuristically-derived responses based on client or expert appreciation to take on an unforeseen form [101] .

21st Century Learners and the Need for Divergent Thinking [ edit | edit source ]

Design-thinking is exceptionally positioned for use with 21st century skills based around technological literacy. Specifically, it is meant to assist the learner in developing creative and critical skills towards the application of technology. Designing is a distinct form of thinking that creates a qualitative relationship to satisfy a purpose [103] . Moreover, in a world that is rapidly becoming technologized, design-thinking the ability to make decisions based upon feel, be able to pay attention to nuances, and appraise the consequences of one’s actions [103] . The designer needs to be able to think outside the perceived acceptable solution and look to use current technology. Therefore, learners using design thinking are approaching all forms of technology as potential applications for a solution. Prototyping might include not just a hardware application, but also the use of software. Cutting-edge technologies such as Augmented Reality and Virtual Reality would be acceptable forms of solutions for design challenges. Specific application of design-thinking is, therefore applicable to areas of study that require technological adaptation and innovation. Specifically, the K-12 BC new curriculum (2016) has a specific focus on Applied Design, Skills, and Technologies that calls for all students to have knowledge of design-thinking throughout their entire education career and its application towards the advancement of technology. Therefore, Design Thinking is a relative and essential component to engaging student critical thought process.

Argumentation [ edit | edit source ]

Argumentation is the process of assembling and communicating reasons for or against an idea, that is, the act of making and presenting arguments. CT in addition to clear communication makes a good argument. It is the process through which one rationally solves problems, issues and disputes as well as resolving questions [104] .

The practice of argumentation consists of two dimensions: dialogue and structure [105] . The dialogue in argumentative discussions focus on specific speech acts – actions done through language (i.e. accept, reject, refute, etc.) – that help advance the speaker’s position. The structure of an argument helps distinguish the different perspectives in discussion and highlight positions for which speakers are arguing [105] .

One of the main arguments against this type of learning is that the project can become unfocused and not have the appropriate amount of classroom time to build solutions. Educators themselves marginalize PBL* because they lack the training and background knowledge in its implementation. Further financial constraints to provide effective evaluation through technology dissuades teachers as well (Efstratia, 2014, p 1258). The information gained by students could be provided in a lecture-style instruction and can be just as effective according to critics. Further, the danger is in learners becoming off-task in their time spent in the classroom, and if they are not continually focused on the task and the learning content, then the project will not be successful. Educators with traditional backgrounds in teaching find Project Based Learning requires instructors to maintain student connection to content and management of their time – this is not necessarily a style that all teachers can accomplish (Efstratia, 2014, p 1258).

Project Based Learning is applicable to a number of different disciplines since it has various applications in learning, and is specifically relevant with the 21st century redefinition of education (differentiated, technologically-focused, collaboration, cross-curricular). STEM (Science, Technology, Engineering, Mathematics) is one form of 21st century education that benefits from instructors using Project Based Learning since it natural bridges between domains. The focus of STEM is to prepare secondary students for the rigors of post-secondary education and being able to solve complex problems in teams as would be expected when performing these jobs in the real world after graduation. Many potential occupational areas could benefit from Project Based Learning including medical, engineering, computer design, and education.

Project Based Learning allows secondary students the opportunity to broaden their knowledge and become successful in high-stakes situation (Capraro, et al., 2013, p 2). Moreover, these same students then develop a depth in knowledge when it comes to reflecting upon their strengths and limitations (Capraro, et al., 2013, p 2). The result would be a learner who has developed critical thinking and has had a chance to apply it to real situations. Further the construction of a finished product is a realistic expectation in presenting an authentic result from learning. The product result demands accountability, and learner adherent to instructor expectations as well as constraints for the project (Capraro, et al., 2013, p 2). The learner is disciplined to focus on specific outcomes, understand the parameters of the task, and demonstrate a viable artifact. The implication is that students will be ready to meet the challenges of a high-technology, fast-paced work world where innovation, collaboration, and results-driven product is essential for success. Technology is one area where Project Based Learning can be applied by developing skills in real-world application. For example, designers of computer systems with prior knowledge may be able to know how to trouble-shoot an operating system, but they do not really understand how things fit or work together, and they have a false sense of security about their skills (Gary, 2013, p 1).

Design-thinking follows a specific flow from theoretical to practical. It relies upon guided learning to promote effective learner solutions and goes beyond inquiry which has been argued does not work because it goes beyond the limits of long-term memory (Lazonder and Harmsen, 2016, p 2). Design-thinking requires the learner to have a meta-analysis of their process. Creativity (innovative thought) is evident in design thinking through studies in defocused and focused attention to stimuli in memory activation (Goldschmidt, 2016, p 1). Hu et al. (2010) developed a process of disrupted thinking in elementary students by having them use logical methods of critical thought towards specific design projects, over a four-year period, through specific lesson techniques. The results show that these students had increased thinking ability (SD .78) and that these effects have a long-term transfer increasing student academic achievement (Hu, et al. 2010, p 554). This shows use of divergent and convergent thinking in the creative process, and both of these process of thought has been noted to be important in the process of creativity (Goldschmidt, 2016, p 2) and demonstrates the Higher Order Thinking that is associated with long-term memory. Design-thinking specifically demonstrates the capability of having learners develop.

The Process of Argumentation [ edit | edit source ]

Argumentation stages [ edit | edit source ].

The psychological process of argumentation that allows one the produce, analyze and evaluate arguments [106] . These stages will be discussed in more detail later in this chapter.

The Impact of Argumentation on Learning [ edit | edit source ]

Argumentation does not only impact the development of CT and vice versa, it affects many other aspects of learning as well. For instance, a study conducted in a junior high school science class showed that when students engaged in argumentation, they drew heavily on their prior knowledge and experiences [107] . Not only did argumentation enable the students to use their prior knowledge, it also helped them consolidate knowledge and elaborate on their understanding of the subject at a higher level [107] . These are just a few of the ways in which argumentation can be seen to impact aspects of learning other than the development of CT.

Video: Argumentation in Education: https://www.youtube.com/watch?v=YHm5xUZmCDg

The Relationship between Critical Thinking and Argumentation [ edit | edit source ]

Argumentation and CT appear to have a close relationship in instruction. Many studies have shown the impact that both of these elements can have on one another. Data suggests that when CT is infused into instruction it impacts the ability of students to argue [108] tasks that involve both critical thinking and creative thinking must be of an argumentative nature [109] , and that argument analysis and storytelling can improve CT [110] . In other words it would appear that both CT and argumentation impact the development of each other in students and that both impact other aspects of learning and cognition.

How Critical Thinking Improves Argumentation [ edit | edit source ]

CT facilitates the evaluation of the information necessary to make an argument. It aids in the judgement of the validity of each position. It is used to assess the credibility of sources and helps in approaching the issue from multiple points of view. The elements of CT and argumentation have many common features. For example, examining evidence and counter-evidence of a statement and the information that backs up these claims are both facets of creating a sound argument and thinking critically.

The impact of how CT explicitly impacts one’s ability to argue and reason with reference to the aforementioned four CT components will be examined in this section. First, there needs to be an examination of the aspects of CT and how they can be impacted by argumentation. The first component, knowledge, as stated by Bruning et. al (2011), actively shapes the way in which one resolves problems [111] . Therefore, it is essential that students have a solid foundation of knowledge of whatever it is that they are arguing. The ability to use well founded information in order to effectively analyze the credibility of new information is imperative for students who wish to increase their argumentative abilities. The second component of CT that is important for argumentation is inference . As Chesñevar and Simari (2007) discuss in their examination of how we develop arguments, inference and deduction are essential aspects of reaching new conclusions from knowledge that is already known or proven [112] .

problem solving skills wiki

In other words, the ability to reach conclusions from known information is pivotal in developing and elaborating an argument. As well, the use of induction , a part of the CT process, is important to argumentation. As Bruning et al. suggest, the ability to make a general conclusion from known information is an essential part of the CT process [111] . Ontañón and Plaza (2015) make the argument that induction can be used in argumentation through communication with one another. Moreover, making inductions of general conclusions using the complete information that every member of the group can provide shows how interaction can be helpful through the use of induction in argumentation [113] . Therefore, it can be seen how induction, an important part of CT, can have a significant impact on argumentation and collaboration. The final component of CT, that may be the most important in its relationship to argumentation, is evaluation . The components of Evaluation indicated by Bruning et al. are analyzing, judging and weighing. These are three essential aspects of creating a successful argument [111] . Hornikx and Hahn (2012) provide a framework for three key elements of argumentation that are heavily attached in these Bruning et al.'s three aspects of CT [106] .

Production, Analysis, and Evaluation [ edit | edit source ]

The three aspects of argumentation that Hornikx and Hahn focus on in their research is the production , analysis and evaluation of arguments [106] . Producing an argument uses the key aspects of CT; there must be evaluation, analysis, judgement and weighing of the argument that one wishes to make a stand on. Analysis of arguments and analysis in CT go hand in hand, there must be a critical analysis of information and viewpoints in order to create a successful and fully supported argument. As well, evaluation is used similarly in argumentation as it is derived from CT. Assessing the credibility of sources and information is an essential part in finding articles and papers that can assist someone in making an informed decision. The final aspect of evaluation in critical thinking is metacognition, thinking about thinking or monitoring one's own thoughts [111] . Monitoring one's own thoughts and taking time to understand the rationality of the decisions that one makes is also a significant part of argumentation. According to Pinto et al.’s research, there is a strong correlation between one's argumentation ability and metacognition. [114] In other words, the ability to think about one’s own thoughts and the validity of those thoughts correlates positively with the ability to formulate sound arguments. The transfer of thoughts into speech/argumentation shows that CT influences argumentation dramatically, however some research suggests that the two interact in different ways as well. It can clearly be seen through the research presented that argumentation is heavily influenced by CT skills, such as knowledge, inference, evaluation and metacognition. However there are also strong implications that instruction of CT in a curriculum can bolster argumentation. A study conducted by Bensley et. al (2010) suggests that when CT skills are directly infused into a course compared to groups that received no CT instruction, those who received CT instruction showed significant gains in their ability of argument analysis [115] . There can be many arguments made for the implication of specific CT skills to impact argumentation, but this research shows that explicit teaching of CT in general can increase the ability of students to more effectively analyze arguments as well. This should be taken into account that Skills Programs mentioned later in this chapter should be instituted if teachers wish to foster argumentation as well as CT in the classroom.

How Argumentation Improves Critical Thinking [ edit | edit source ]

Argumentation is a part of the CT process, it clarifies reasoning and the increases one's ability to assess viable information. It is a part of metacognition in the sense that one needs to evaluate their own ideas. CT skills such as induction and/or deduction are used to create a structured and clear argument.

Research by Glassner and Schwarz (2007) shows that argumentation lies at the intersection of critical and creative thinking. They argue that reasoning, which is both critical and creative, is done through argumentation in adolescents. They suggest that reasoning is constantly being influenced by other perspectives and information. The ability to think creatively as well as critically about new information is managed by argumentation [116] . The back and forth process of accommodating, evaluating, and being open minded to new information can be argued as critical and creative thinking working together. However, the way in which one reaches conclusions from information is created from the ability to weigh this information, and then to successfully draw a conclusion regarding the validity of the solution that students come to. There is also a clear correlation of how argumentation helps students to nurture CT skills as well.

It is clear that CT can directly impact argumentation, but this relationship can also be seen as bidirectional, with argumentation instruction developing the CT skills. A study by Gold et al. shows that CT skills can be fostered through the use of argument analysis and storytelling in instruction [117] . This research suggests that argumentation and argument analysis are not only be beneficial to students, but also to older adults. This study was conducted using mature adult managers as participants. The article outlines four skills of CT that can be impacted by the use of argument analysis and storytelling: critique of rhetoric, tradition, authority, and knowledge. These four skills of CT are somewhat deeper than many instructed in high schools and extremely important to develop. The ability of argumentation to impact CT in a way that enables a person to gain a better perspective on their view about these things is essential to developing personal values as well as being able to use argumentation and CT to critique those values when presented with new information. The ability of argumentation to influence the ability of individuals to analyze their own traditions and knowledge is important for all students as it can give them better insight into what they value.

Argumentation is beneficial to CT skills as well as creative thinking skills in high school students. Research done by Demir and İsleyen (2015) shows that argumentation based a science learning approach in 9th graders improves both of types of thinking [118] . The ability of students to use argumentation to foster CT as well as creative thinking can be seen as being very beneficial, as mentioned earlier creative and CT skills use argumentation as a means of reasoning to draw conclusions, it is therefore not surprising that argumentation in instruction also fosters both of these abilities. In summation, it can clearly be seen that there is a link between both argumentation and CT along with many skills in the subset of CT skills. Explicit instruction of both of these concepts seems to foster the growth of the other and can be seen as complementary. In the next sections of this chapter how these aspects can be beneficial if taught within the curriculum and how they go hand in hand in fostering sound reasoning as well as skills that will help students throughout their lives will be examined.

Instructional Application of Argumentation and Critical Thinking [ edit | edit source ]

problem solving skills wiki

Teaching Tactics [ edit | edit source ]

An effective method for structuring the instruction of CT is to organize the thinking skills into a clear and sequential steps. The order in which these steps aid in guiding the student towards internalizing those steps in order to apply them in their daily lives. By taking a deductive approach, starting from broader skills and narrowing them down to task-specific skills helps the student begin from what they know and generate something that they hadn't known before through CT. In the spirit of CT, a student's awareness of their own skills also plays an important role in their learning. In the classroom, they should be encouraged to reflect upon the process through which they completed a goal rather than just the result. Through the encouragement of reflection, students can become more aware of the necessary thinking skills necessary for tasks, such as Argumentation.

Instructing CT and Argumentation predisposes the instruction to using CT skills first. In designing a plan to teach CT, one must be able to critically evaluate and assess different methods and make an informed decision on which would work best for one's class. There are a variety of approaches towards instructing CT. Descriptive Models consist of explanations of how "good" thinking occurs. Specifically, it focuses on thinking strategies such as heuristics to assess information and how to make decisions. Prescriptive Models consist of explanations of what good thinking should be. In a sense, these models give a prototype, a "prescription", of what good thinking is. This approach is comparatively less applicable and sets a high standard of what is expected of higher order thinking. In addition to evaluating which approach would work best for them, prior to teaching CT, instructors need to carefully select the specific types of CT skills that they want students to learn. This process involves assessing factors such as age range, performance level as well as cognitive ability of one's class in order to create a program that can benefit most of, if not all, the students. A final aspect of instruction to consider as an educator is whether direct or indirect instruction will be used to teach CT. Direct Instruction refers to the explicit teaching of CT skills that emphasizes rules and steps for thinking. This is most effective when solutions to problems are limited or when the cognitive task is easy. In contrast, Indirect Instruction refers to a learner-oriented type of teaching that focuses on the student building their own understanding of thinking. This is most effective when problems are ambiguous, unclear or open to interpretation such as moral or ethical decisions [111] .

One example of indirect CT instruction is through the process of writing literature reviews. According to Chandler and Dedman, having the skills to collect, assess and write literature reviews as well as summarize results of studies requires CT. In a teaching note, they evaluated a BSW (Baccalaureate of Social Work) program that strived to improve CT in undergraduate students. Specifically, they assert that practical writing assignments, such as creating literature reviews, help students combine revision and reflection while expanding their thinking to evaluate multiple perspectives on a topic. They found that upon reframing the assignment as a tool to facilitate students in becoming critical reviewers, students viewed the literature review as a summation of course material in addition to an opportunity to improve critical reading and writing skills. Through questioning during discussions, students were guided to analyze the authority and credibility of their articles. The students actively sought for more evidence to support articles on their topics. They found that students successfully created well synthesized literature reviews at the end of the BSW program [119] . This program used implicit instruction of CT skills through dialogue between instructor and students as well as peer engagement. Instead of explicitly stating specific skills or steps to learn CT, the instructors lead the students to practice CT through an assignment. As students worked on the assignment, they needed to use reasoning, analysis and inferential skills in order to synthesize and draw conclusions around the evidence they found on their topics. Practical application of CT skills through an assignment helped students develop CT through indirect instruction.

problem solving skills wiki

Argument mapping is a way to visualize argumentation. The following are links to argument mapping software: https://www.rationaleonline.com/ http://www.argunet.org/editor/ http://debategraph.org/planet https://www.truthmapping.com/map/1021/#s7164

Skills Programs for CT [ edit | edit source ]

These programs aid in the formulation of critical thinking skills through alternative methods of instruction such as problem-solving. They are usually targeted towards special populations such as students with learning disabilities or cognitive deficits.

The CoRT Thinking Materials [ edit | edit source ]

The CoRT (Cognitive Research Trust) program is based on de Bono’s idea that thinking skills should be taught in school as a subject [120] . The Thinking Materials are geared towards the improvement of thinking skills. This skills program takes on a Gestalt approach and emphasizes the perceptual factor of problem solving. It usually spans over the course of 2 years and is suitable for a wide age range of children. The lessons strive to develop creative thinking, problem-solving as well as interpersonal skills. The materials are split into 6 units and cover topics such as planning, analyzing, comparing, selecting, evaluating and generating alternatives. A typical unit has leaflets covering a single topic, followed by examples using practice items. The leaflets are usually effective in group settings. The focus of these units are to practice thinking skills, therefore much of the instructional time is spent on practicing the topics brought up in the leaflets [111] .

Much of the empirical research on this stand-alone program revolves around the development of creative thinking, however, it is relatively more extensive in comparison to the other programs mentioned in this chapter. The CoRT program has been shown to improve creativity in gifted students. Al-Faoury and Khwaileh (2014) assessed the effectiveness of the CoRT on gifted students’ creative writing abilities. The students were given a pretest that evaluated the fluency, flexibility and originality in writing creative short stories [120] . Students in the experimental group were taught 20 CoRT lessons in total with 10 from CoRT 1 “Breadth” and 10 from CoRT 4 “Creativity” over the course of three months while the control group received traditional lessons on creative writing. The posttest followed the same parameters as the pretest and the results were analyzed by comparing pre and posttest scores. The researchers found a statistically significant effect of CoRT on the experimental group’s fluency, flexibility and originality scores. The mean scores of the experimental groups in all three elements were higher than the control group [120] . These findings suggest that the CoRT program aids gifted students in creative writing skills as indicated through the use of rhetorical devices (metaphor, analogy, etc.), developing characters through dialogue and the control of complex structures [120] . The flexibility and fluency of writing is also applicable to the practice of argumentation and CT. In developing the ability to articulate and modify ideas, students can transfer these skills from creative writing towards higher-order cognitive processes such as CT and argumentation.

The Feuerstein Instrumental Enrichment Program (FIE) [ edit | edit source ]

The FIE is a specialized program focused on mediated learning experiences that strives to develop critical thinking and problem solving skills. Mediation is learning through interaction between the student and the mediator. Similar to Vygotsky's scaffolding, mediation is student-oriented and hinges upon 4 parameters: Intentionality, Reciprocity, Transcendence and Meaning. [121] Intentionality emphasizes the differences between mediation and interaction where the student and mediator have a common goal in mind. Reciprocity involves the student-oriented mentality of mediation, the response of the student hold most importance over academic results. Transcendence focuses on the connectivity of the mediation, it encourages the formation of associations and applications that stretch beyond the scope of the immediate material. Lastly, Meaning in mediation is where the student and mediator explicitly identify "why" and "what for" which promotes dialogue between the two during mediation. [121] [122]

The "instruments" used to facilitate instruction are a series of paper and pencil exercises geared towards practicing internalizing higher order thinking strategies. The instruments cover domains such as analytic perception, spatial organization, categorization, comparison and many more. The implementation of this program varies across countries and is also dependent on the targeted population. A typical program contains 14 units with 3-4 sessions for a few hours every week administered by trained IE staff and teachers. [121]

The Productive Thinking Program [ edit | edit source ]

The Productive Thinking Program consists of the development of planning skills, generating and checking hypotheses as well as creating new ideas. This program is designed as a set of 15 lessons aimed at being completed over one semester. The target population of the program is upper-level elementary school students. The lessons are administered through the use of narrative booklets, often taking a detective-like approach to problem solving where the student is the detective solving a mystery. A structured sequence of steps guides the student to attain an objective specific to the lesson at hand. [123] Following the booklet or story, supplementary problems are given in order for students to apply and practice learned skills. [111]

The IDEAL Problem Solver [ edit | edit source ]

The IDEAL Problem Solver structures problem-solving as 5 steps using the acronym IDEAL. First, (I)dentify the problem, the solver needs to find out what the problem is. Second, (D)efine the problem involves having a clear picture of the entire problem before trying to solve it. Third, (E)xplore the alternatives, meaning that the solver needs to assess the potential solutions available. Fourth, (A)cting on a plan, that is, applying the solution and doing the act of solving. Lastly, (L)ooking at the effects which encompasses the evaluation of the consequences of the chosen solution. IDEAL is flexible in that it can be adapted to suit a wide age range and different levels of ability in its application. It can also be applied to different domains such as composition or physics. [111]

Instructing Argumentation [ edit | edit source ]

Research on argumentation is a comparatively new field of study for education, but has been noted to be of significant importance to almost all educational settings. Grade schools, high schools, and colleges now emphasize the use of argumentation in the classroom as it is seen as the best way for communication and debate in a both vocational and educational settings around the world. [124] A longitudinal study done by Crowell and Kuhn showed that an effective way to help students gain argumentative skills was through consistent and dense application of argumentation in the classroom and as homework. [124] During this longitudinal study, students were exposed to a variety of different methods from which they gained argumentative abilities. The activities employed such as peer collaboration, using computers, reflection activities, individual essays, and small group work all have implications for being valuable in teaching argumentation although it is not clear which ones are the most effective. [124] Data also showed that students all rose to a similar level of argumentative ability, no matter what they scored on argumentative tests before the study began. This shows that even students with seemingly no argumentative skills can be instructed to become as skilled or more skilled than their peers who tested higher than them at the beginning of the study. [124]

Dialogue and Argumentation [ edit | edit source ]

Research by Crowell and Kuhn (2011) highlights collaborative dialogical activities as practical interventions in the development of argumentative skills. The researchers implemented a longitudinal argumentative intervention that used topic cycles to structure a middle school philosophy class [125] . The students had class twice a week for 50 minutes each class over the span of three years. The intervention is as follows: first, students were split into small groups on the same side of the argument to generate ideas around the topic (“for” and “against” teams). Then individuals from either side argue with an opponent through an electronic medium. Finally, the students engage in a whole class debate. These three stages were termed Pregame, Game and Endgame, respectively. After the intervention, students were required to write individual essays regarding the topic through which their argumentative skills would be assessed [125] . The results showed an increased in the generation of dual perspective arguments in the intervention group. Such arguments require the arguer to assume the opposing stance to one’s own and reason its implications. This type of argument reflects a higher-order reasoning that requires critical assessment of multiple perspectives. These results did not begin to appear until year two and was only found statistically significant in year three suggesting that argumentative skills have a longer development trajectory than other lower-level cognitive skills [125] . Through this stand-alone intervention, the collaborative aspect of dialogical activities facilitates the development of intellectual dispositions necessary for good argumentation [125] .

problem solving skills wiki

Further research suggests that teaching through the use of collaborative discussions and argumentative dialogue is an effective teaching strategy [105] . Through argumentation, students can acquire knowledge of concepts as well as the foundational ideas behind these concepts. In formulating arguments, students need to generate premises that provide structure to an argument through accepted definitions or claims. Argumentation helps students reveal and clarify misconceptions as well as elaborate on background knowledge. The two aforementioned dimensions of argumentation – dialogue and structure – are often used in assessing and measuring argumentative performance [105] . Specifically, through student-expert dialogue, the students can be guided to give certain arguments and counterarguments depending on the expert’s dialectical decisions [105] . This scaffolding helps the student engage in more critical evaluations that delve deeper into the topic in discussion.

In a study using content and functional coding schemes of argumentative behavior during peer-peer and peer-expert dialogue pairings, Macagno, Mayweg-Paus and Kuhn (2014) found that through student-expert dialogues, students were able to later formulate arguments that dealt with abstract concepts at the root of the issue at hand (i.e. ethical principles, conflict of values) in comparison to peer-peer dialogues [105] . The expert used more specific and sophisticated ways of attacking the student’s argument, such as suggesting an alternative solution to the problem at hand, which in turn enhanced the performance of the student in later meta-dialogues [105] . The results suggest that the practical application of argumentation through collaborate activities facilitates the development of argumentation skills. Similar to CT skills development, rather than teaching, implicit instruction through the practice of argumentation in interactive settings helps its development.

Science and Argumentation [ edit | edit source ]

Much of the literature surrounding the application of argumentation in the classroom revolves around the scientific domain. Argumentation is often used as a tool in scientific learning to enhance CT skills, improve class engagement and activate prior knowledge and beliefs around the subject [105] . In order to articulate and refine scientific theories and knowledge, scientists themselves utilize argumentation [104] . Jonassen and Kim (2010) assert that science educators often emphasize the role of argumentation more than other disciplines [126] . Argumentation supports the learning of how to solve well-structures problems as well as ill-structured ones in science, and from there by extension, in daily life. Specifically, the ill-structured ones reflect more practical everyday problems where goals and limitations are unclear and there are multiple solution pathways as well as multiple factors for evaluating possible solutions [104] .

Through argumentation, students learn to use sound reasoning and CT in order to assess and justify their solution to a problem. For example, a well-structured problem would be one posed in a physics class where concrete laws and formulas dictate the solution pathway to a problem or review questions found at the end textbook chapters which require the application of a finite set of concepts and theories. An ill-structured problem would be finding the cause of heart disease in an individual. Multiple developmental and lifestyle factors contribute to this one problem in addition to the various different forms of heart disease that need to be evaluated. This sort of problem requires the application of knowledge from other domains such as nutrition, emotional well-being and genetics. Since ill-structured problems do not have a definite answer, students are provided with an opportunity to formulate arguments that justify their solutions [104] . Through the practice of resolving problems in science, such as these, students can use CT to develop their argumentative ability.

One’s willingness to argue as well as one's ability to argue also play a significant role in learning science [127] . For one science is at its core, extremely argumentative.

If students have to ability to engage in argumentation at an early age then there knowledge of specific content such as science can grow immensely. The main reason for this is argumentative discourse, being able to disagree with others is extremely important because for adolescents they are at an age which is fundamentally social (ie junior to senior high) using this social ability is pivotal as students at this point may have the confidence to disagree with one another. When a student disagrees with another in argument in a classroom setting it gives them an opportunity to explain the way in which they think about the material. This verbalization of one’s own thoughts and ideas on a subject can help with learning the subject immensely [127] . It also allows for the student to reflect upon and expand their ideas as they have to present them to the class which helps with learning. This also provides the opportunity for the student to identify any misconceptions they have about the subject at hand as more than likely they will receive rebuttal arguments from others in their class [127] . All these factors are aspects of CT and contribute to the learning of the concept and conceptual change in the student which is what learning is all about. The nature of adolescent social behaviour could provide a window through which argumentation could benefit their learning in dramatic ways in learning science [127] .

Argumentation, Problem Solving and Critical Thinking in History Education [ edit | edit source ]

History education offers learners an abundant opportunity to develop their problem solving and critical thinking skills while broadening their perspective on the human condition. The study of history addresses a knowledge gap; specifically, it is the difference between our knowledge of present day and the “infinite, unorganized and unknowable everything that ever happened”. [128] It has long been understood that the study of history requires critical thought and analytical problem-solving skills. In order to become proficient at the study of history, learners must interpret and construct how we come to know about the past and navigate the connection between the past and the body of knowledge we call history. [129] Unfortunately, history education has been demoted to simply recalling factual information - via the overuse of rote memorization and multiple-choice testing - all of which is placed outside the context of present day. This approach does little to inspire a love of history nor does it support the learner’s ability to construct an understanding of how the past and present are connected.

On the other hand, the study of science and mathematics has for many years been centred around developing skills through problem-solving activities. Students learn basic skills and build upon these skills through a progression of increasingly complex problems in order to further their understanding of scientific theory and mathematical relationships. Specific to science education, learners are taught to think like scientists and approach problems using the scientific method. If this approach works well for science and math education, why should it not be utilized for the teaching of history? [128] . Therefore, to develop historical thinking skills it is necessary for instructors to teach the strategies and problem-solving approaches that are used by professional historians. However, unlike science and mathematics, the problems we solve in history are often ill-defined and may be unanswerable in a definitive sense making it more challenging for students to learn and transfer these skills. The following section will address these challenges and provide support for teaching historical thinking via The Big Six Historical Thinking Concepts (2013).

Historical Thinking - The Big Six [ edit | edit source ]

Based upon years of research and first-hand classroom experience, Seixas and Morton (2013) established a set of six competencies essential to the development of historical thinking skills. Much like science and mathematics education discussed above, the Big Six approach to history education allows the learner to progress from simplistic to advanced tasks. Moreover, the Big Six approach is intended to help the learner “move from depending on easily available, commonsense notions of the past to using the culture’s most powerful intellectual tools for understanding history”. (pg 1) [128] Additionally, the Big Six concepts reveal to the learner the difficulties we encounter while attempting to construct a history of the past. The Big Six competencies include the following: historical significance, evidence, continuity and change, cause and consequence, historical perspectives, and the ethical dimension.

Historical Significance

To develop a critical view of history the learner must recognize and define the qualities that makes something (e.g., person, event, social change) historically significant and why they should spend their time learning about this thing. Behaviourist approaches to history education, focusing on the textbook as the main source of information, have caused learners to become passive in their approach to learning about the past. The textbook becomes the authority on what they need to know. Moreover, the sole use of textbooks to teach national history may contribute to the creation of a “master narrative” that limits a student’s access to what is controversial about their country’s past. [130] By shifting the focus away from the textbook, learners may be able to further their critical thinking skills by following the steps historians take to study the past and constructing their own “reasoned decisions about historical significance”. [128] However, even if a learner is provided primary source evidence to construct a narrative of the past but is not taught to recognize the subjective side to historical thinking - why these pieces of evidence were selected, why this topic was selected, and why they are both historically significant - they may not recognize the impacts of human motivation on the construction of historic understanding. Unlike scientific inquiry that relies on a “positivistic definition of rationality”, historical thinking requires learners to acknowledge human motivation - their own motivation in studying the past, their instructors motivation for selecting certain topics of study, and the motivation of those living in the past [131]

Seixas & Morton (2013) cite two elements involved in constructing historical significance: “big, compelling concerns that exist in our lives today, such as environmental sustainability, justice, power, [and] welfare” and “particular events, objects, and people whose historical significance is in question” (pg 16) [128] The intersection between these two elements is where historical significance is found. It is useful here to add Freedman’s (2015), definition of critical historical reasoning . Critical historical reasoning requires us to recognize that the study of history is not objective. Historians “frame their investigations through the questions they pose and the theories they advance” and therefore, learners of history must analyze the “integrity of historical narratives and their pattern of emphasis and omission” (pg 360). [131] Critical historical reasoning aims towards “conscious awareness of the frame one has adopted and the affordances and constraints it imposes” (pg 360) [131] . Therefore, both historians and learners of history must recognize that historical significance is assigned and not an inherent feature of the past, and, importantly, is subject to change.

The second set of competencies described by Seixas and Morton (2013) are based on using evidence to address an inquiry about the past. In a study of the cognitive processes involved in evaluating source documents, Wineburg (1991) lists three heuristics: corroboration, sourcing, and contextualization. Corroboration refers to comparing one piece of evidence to another, sourcing is identifying the author(s) of the evidence prior to reading or viewing the material, and contextualization refers to situating evidence in a specific time and place (pg 77). [132]

This study utilized an expert/novice design to compare how historians and high school students make sense of historic documents. Wineburg (1991) argues that the historians were more successful in the task not because of the “schema-driven processing” common to science and mathematics, but by building a model of the [historic] event through the construction of “context-specific schema tailored to this specific event” (pg 83). [132] Additionally, historians demonstrated greater appreciation for the source of the historic documents compared to the students. This suggests that the students did not make the connection between a document's author and the reliability of the source. As Wineburg states, the historian understands “that there are no free-floating details, only details tied to witnesses, and if witnesses are suspect, so are their details” (pg. 84). [132] This study suggests the potential for historical understanding to be improved by teaching the cognitive strategies historians use to construct history.

Multiple narratives of the past exist as individuals bring their own values and experiences to their interpretations of historical evidence. Recognizing this may push learners beyond accepting historic accounts at face value and pull them towards a more critical approach to history. Inquiry-based guided discovery activities, such as Freedman’s (2015) Vietnam war narrative study, suggest that students may gain an awareness of the way they and others “frame” history through exploring primary source documents and comparing their accounts with standardized accounts (i.e. a textbook). [133] By allowing learners to view history as an interpretation of evidence rather than a fixed body of knowledge, we can promote critical thought through the learners’ creation of inferences based on evidence and construction of arguments to support their inferences.

Continuity and Change

Developing an understanding of continuity and change requires the learner to recognize that these two elements overlap over the chronology of history; some things are changing at the same time that other things remain the same. If students are able to recognize continuity and the processes of change in their own lives they should be able to transfer this understanding to their study of the past. [134] Students should be encouraged to describe and question the rate and depth of historic change as well as consider whether the change should be viewed as progress or decline. [134] The evaluation of historic change as positive or negative is, of course, dependent on the perspective taken by the viewer. An example of continuity through history is the development of cultural identity. Carretero and van Alphen (2014), explored this concept in their study of master narratives in Argentinian high school students. They suggest that identity can be useful to facilitate history education, but could also create misconceptions by the learner confounding past with present (or, presentism), as demonstrated when using “we” to discuss people involved in victorious battles or revolutions of the past which gave shape to a nation (pg 308-309). [130] It is useful, then to teach students to differentiate between periods of history. However, periodization of history, much like everything else in the knowledge domain, is based on interpretation and is dependent on the questions historians ask [134]

Educational technology such as interactive timelines, narrative history games, and online discussion groups may help learners make connections between the past and present. For example, the Museum of Civilization offers a teaching tool on the history of Canadian medicare ( http://www.museedelhistoire.ca/cmc/exhibitions/hist/medicare/medic01e.shtml ). Interactive timelines allow students to see connections between continuity, change, cause, and consequences by visually representing where these elements can be found over historic time. Also, guiding the learners’ exploration of interactive timelines by selecting strong inquiry questions may improve students understanding and facilitate the development of historical thinking. For example, an investigation into the European Renaissance could be framed by the following question: “Did everyone in Europe experience the Renaissance the same way?” Questions such as this are open-ended so as to not restrict where the students takes their inquiry but also suggest a relationship between the changes of the Renaissance and the continuity of European society. Other examples of educational technology that support historical thinking include the “Wold History for us All” ( http://worldhistoryforusall.sdsu.edu/ ) project. This website offers world history units separated into large-scale and local-scale topics and organized by historic period. The lesson plans and resources may allow the learner to making connections between local issues and the broader, global conditions affecting world history. Finally, a case study by Blackenship (2009) suggests that online discussion groups are a useful for developing critical thinking by allowing the teacher to view the students’ thought processes and thereby facilitating formative assessment and informing the type of instructional interventions required by the teacher. Blackenship (2009) cites additional research supporting the use of online discussion because it allows the learners to collect their thoughts before responding to a discussion prompt; they have more time to access prior knowledge and consider their own ideas. [135]

Cause and Consequence

The historical thinking competencies of cause and consequence require learners to become proficient at identifying direct and indirect causes of historic events as well as their immediate and long-term consequences. Effective understanding of the causes of historic change requires the recognition of both the actions of individuals as well as the prevailing conditions of the time. Historical thinking requires students to go beyond simplistic immediate causes and think of history as web of “interrelated causes and consequences, each with various influences” (pg 110). [134] In addition to improving understanding of the past, these competencies may help learners to better understand present-day conflicts and issues. Shreiner (2014) used the novice/expert format to evaluate how people utilize their knowledge of history to make reasoned conclusions about events of the present. Similar to the Wineburg (1991) study discussed above, Shreiner (2014) found the experts were better at contextualizing and using sourcing to critically analyze documents for reliability and utility in establishing a reasoned judgement. Additionally, the study found that while students would use narrative to construct meaning, they typically created schematic narrative templates - general statements about the past which lack specific details & events. [136] Seixas and Morton (2013) caution the use of overly-simplistic timelines of history because they could create a misconception that history is nothing more than a list of isolated events.The study indicates that historical narratives that follow periodization schemes and are characterized by cause-and-effect relationships, as well as change over time, are helpful for understanding contemporary issues. [134] Therefore, it is important that educators work to develop these competencies in students. Much like historic change, the consequences of certain actions in history can be viewed as positive and negative, depending on perspective. This will be discussed in further detail below.

Historical Perspectives and Ethics

The final two historical thinking competencies proposed by Seixas and Morton are historical perspectives and ethics. Historical perspectives refers to analyzing the historical context for conditions that would influence a historic figure to view an event or act in a particular way. This could include religious beliefs, social status, geographic location, time period, prevailing economic and political conditions, and social/cultural conditions. This again requires some interpretation of evidence as oftentimes we do not have evidence that explicitly describes a historic figure’s attitudes and reasons for acting. Primary source documents, such as letters and journals can provide insight but still require the historian to use inference to make sense of the documents and connect the information to a wider historical narrative or biographical sketch of an individual. Additionally, “[h]ard statistics, such as birth and death rates, ages of marriage, literacy rates, and family size... can all help us make inferences about people's experiences, thoughts, and feelings” (pg 143). [134] There are, of course, limitations to how much we can infer about the past; however, Seixas and Morton (2013) suggest that acknowledging the limitations of what we can know about the past is part of “healthy historical thinking” (pg 143). [134] Learners can develop their understanding of historical perspective by observing the contrast between past and present ways of life and worldviews, identifying universal human traits that transcend time periods (e.g., love for a child), and avoiding presentism and anachronism . [134] A greater understanding of historical perspective will be useful for students when encountering conflicting historical accounts as they will be able to see where the historical actors are “coming from” and therefore better understand their actions. Historical perspective and ethics are related. Seixas and Morton (2013) argue that “the ethical dimension of historical thinking helps to imbue the study of history with meaning” (pg 170). [134] To understand the moral reasons for an individual's actions we need to understand the influence of historical, geographical, and cultural context. Additionally, to understand ethical consequences of the past we make moral judgments which require “empathetic understanding[;] an understanding of the differences between our moral universe and theirs” (Seixas and Peck, 2004, pg 113). [137] People with little experience with historical thinking have difficulty separating the moral standards of today’s society with the societies of the past. Additionally, students tend to judge other cultures more critically than their own; oftentimes defending or justifying actions of their own nations. [138] Therefore, Lopez, Carretero and Rodriguez-Moneo (2014) suggest using national narratives of nations different from the learner’s own nation to more effectively develop critical historical thinking. As the learner becomes proficient at analyzing the ethical decisions of the past, they can translate these skills to analyzing present-day ethical questions. Role playing is a useful instructional strategy for teaching historical perspective. Traditional, face-to-face classrooms allow for dramatic role play activities, debates, and mock trials where students can take on the role of an individual or social group from history. Additionally, educational games and websites allow for the integration of technology while using the role play strategy. Whitworth and Berson (2003) found that, in the 1990-2000s, technology in the social studies classroom was focused mostly on using the internet as a digital version of material that would have otherwise been presented in the classroom. They suggest that alternative uses of technology - such as inquiry-based webquests, simulations, and collaborative working environments - promote interaction and critical thinking skills. [139] One example of a learning object that promotes critical thinking through role playing is the Musee-Mccord’s online game collection ( http://www.mccord-museum.qc.ca/en/keys/games/ ). Specifically, the Victorian Period and the Roaring Twenties games allow the learner to progress through the time period and make decisions appropriate to the historic context of the period. These games are paired with relevant resources from the museum collections which can enhance the learner’s depth of understanding of the period. In terms of teaching strategies for the ethical component of history can be explored through historical narratives, debating ethical positions on historic events, and evaluating and critiquing secondary sources of information for ethical judgements.

To summarize, introducing professional historians’ strategies for studying history is widely regarded as a way to improve historical thinking in students. Professional historian’s cognitive processes of corroborating accounts, critically analyzing sources, and establishing historic context are reflected well by Seixas and Morton’s Big Six Historical Thinking Concepts (2013). Historical thinking gives students the skills to problem solve within the context of history and make sense of the past and connect it to the present in order to broaden the learner’s perspective, understand prevailing social conditions, and influence how they interact with the world. See the Historical Thinking Project’s webpage ( http://historicalthinking.ca/lessons ) for instructional ideas for all the historical competencies.

Instructing through Academic Controversy [ edit | edit source ]

Using the technique of Academic Controversy could be an effective way of teaching both argumentation and CT skills to students. Academic controversy involves dividing a cooperative group of four in two pairs of students and assigning them opposing positions of an argument or issue, after which the two pairs each argue for their position. The groups then switch their positions and argue again, finally the group of four is asked to come up with an all-around solution to the problem [140] . This activity can be effective in instructing both aspects of argumentation and CT, though it may be a bit dated. The activity is argumentative by nature, making students come up with reasons and claims for two sets of arguments. This equilibrium is important to the argumentative process because provides the students with an opportunity to evaluate the key points of their argument and the opposition's which could be beneficial in any debate. As well, this activity is geared to engage students in a few aspects of CT such as evaluation, since the students must assess each side of the argument. It also engages metacognitive processes as the students must come up with a synthesized conclusion with their peers of their own arguments, a process which requires them to be both analytical and open minded. This activity is a good way of increasing both CT skills and argumentation as it requires students to be open-minded, but also engage in analytical debate.

Glossary [ edit | edit source ]

Suggested readings [ edit | edit source ].

  • Abrami, P.C., Bernard, R.M., Borokhovski, E., Wade, A., Surkes, M.A., Tamim, R., & Zhang, D. (2008). Instructional Interventions Affecting Critical Thinking Skills and Dispositions: A Stage 1 Meta-Analysis. Review of Educational Research, 78(4). 1102-1134. DOI: 10.3102/0034654308326084.
  • Phan, H.P. (2010). Critical thinking as a self-regulatory process component in teaching and learning. Psicothema, 22(2). 284-292.
  • Kozulin, A. & Presseisen, B.Z. (1995). Mediated Learning Experience and Psychological Tools: Vygotsky’s and Feuerstein’s Perspective in a Study of Student Learning. Educational Psychologist, 30(2), 67-75.
  • Crowell, A., & Kuhn, D. (2011). Dialogic Argumentation as a Vehicle for Developing Young Adolescents’ Thinking. Psychological Science, 22(4), 545-552. DOI: 10.1177/0956797611402512.

External links [ edit | edit source ]

  • Critical Thinking: How Children Can Start Thinking Deeply, Part 1
  • Critical Thinking for Kids In Action, Part 2
  • Critical Thinking for Kids In Action, Part 3
  • Critical Thinking for Kids In Action, Part 4
  • Critical Thinking Exercises for Kids

References [ edit | edit source ]

  • ↑ Heijltjes, A., Van Gog, T., & Paas, F. (2014). Improving Students' Critical Thinking: Empirical Support for Explicit Instructions Combined with Practice. Applied Cognitive Psychology, 28(4), 518-530.
  • ↑ a b c d e f g Murphy, K. P., Rowe, M. L., Ramani, G., & Silverman, R. (2014). Promoting Critical-Analytic Thinking in Children and Adolescents at Home and in School. Educational Psychology Review, 26(4), 561-578.
  • ↑ Gick, M. L. (1986). Problem-Solving Strategies. Educational Psychologist, 21(1/2), 99-121.
  • ↑ a b c Ku, K. Y., Ho, I. T., Hau, K., & Lau, E. C. (2014). Integrating direct and Inquiry_Based Instruction in the teaching of critical thinking: An intervention study. Instructional Science, 42(2), 251-169.
  • ↑ a b c d e f g h i j k l m n o p q Mathews, S. R., & Lowe, K. (2011). Classroom environments that foster a Disposition for Critical Thinking . Learning Environments Research, 14(1), 59-73.
  • ↑ Glaser, E. M. (1941). An Experiment in the Development of Critical Thinking. Columbia University.
  • ↑ a b c d Phan, H.P. (2010). Critical thinking as a self-regulatory process component in teaching and learning. Psicothema, 22(2). 284-292.
  • ↑ a b c d e f Moon, J. (2007). Critical Thinking: An Exploration of Theory and Practice (1st ed.). London ; New York: Routledge.
  • ↑ a b Kurfiss, J. G. (1988). Critical Thinking: Theory, Research, Practice, and Possibilities: ASHE-ERIC/Higher Education Research Report, Volume 17, Number 2, 1988 (1st ed.). Washington, D.C: Jossey-Bass.
  • ↑ a b Board on Testing and Assessment, Division of Behavioral and Social Sciences and Education, & National Research Council. (2011). Assessing 21st Century Skills: Summary of a Workshop. National Academies Press.
  • ↑ a b Mason, M. (2009). Critical Thinking and Learning. John Wiley & Sons.
  • ↑ a b Elder, L., & Paul, R. (2009). The Art of Asking Essential Questions (5th Edition). Dillon Beach, CA: Foundation for Critical Thinking
  • ↑ a b c Paul, R., & Elder, L. (2007). The Thinker’s Guide to The Art of Socratic Questioning. Dillon Beach, CA: The Foundation for Critical Thinking.
  • ↑ a b c d Morgan, N., & Saxton, J. (2006). Asking Better Questions (2nd ed.). Markham, ON: Pembroke Publishers.
  • ↑ a b Cain, R. B. (2007). The Socratic Method: Plato’s Use of Philosophical Drama. A&C Black.
  • ↑ Harmon, D. A., & Jones, T. S. (2005). Elementary Education: A Reference Handbook. ABC-CLIO.
  • ↑ Stanley, T., & Moore, B. (2013). Critical Thinking and Formative Assessments: Increasing the Rigor in Your Classroom. Routledge.
  • ↑ a b Jung, I., Nishimura, M., & Sasao, T. (2016). Liberal Arts Education and Colleges in East Asia: Possibilities and Challenges in the Global Age. Springer.
  • ↑ Mason, M. (2009). Critical Thinking and Learning. John Wiley & Sons. p. 8.
  • ↑ Davies, M., & Barnett, R. (2015). The Palgrave Handbook of Critical Thinking in Higher Education. Springer.
  • ↑ a b c d Cibáková, D. (2015). Methods of developing critical thinking when working with educative texts. E-Pedagogium, (2), 135-145.
  • ↑ Garcia, T., & Pintrich, P. R. (1992). Critical Thinking and Its Relationship to Motivation, Learning Strategies, and Classroom Experience. 2-30.
  • ↑ a b Halpern, D. F. (2013). Thought and Knowledge: An Introduction to Critical Thinking. Psychology Press.
  • ↑ Browne, M. N., & Keeley, S. M. (2006). Asking the Right Questions: A Guide to Critical Thinking (8th ed.). Upper Saddle River, N.J: Prentice Hall.
  • ↑ Elder, L., & Paul, R. (2009). The Art of Asking Essential Questions (5th Edition). Dillon Beach, CA: Foundation for Critical Thinking. p. 3.
  • ↑ Micarelli, A., Stamper, J., & Panourgia, K. (2016). Intelligent Tutoring Systems: 13th International Conference, ITS 2016, Zagreb, Croatia, June 7-10, 2016. Proceedings. Springer.
  • ↑ a b c d e Conklin, W., & Teacher Created Materials. (2012). Strategies for Developing Higher-Order Thinking Skills, Grades 6 - 12. Shell Education.
  • ↑ http://www.janinesmusicroom.com/socratic-questioning-part-i-the-framework.html
  • ↑ Bloom, B. S., Krathwohl, D. R., & Masia, B. B. (1984). Taxonomy of educational objectives: the classification of educational goals. Longman.
  • ↑ Blosser, P. E. (1991). How to Ask the Right Questions. NSTA Press.
  • ↑ Wang, J.-F., & Lau, R. (2013). Advances in Web-Based Learning -- ICWL 2013: 12th International Conference, Kenting, Taiwan, October 6-9, 2013, Proceedings. Springer.
  • ↑ a b Gregory, G., & Kaufeldt, M. (2015). The Motivated Brain: Improving Student Attention, Engagement, and Perseverance. ASCD.
  • ↑ Carol, K., & Sandi, Z. (2014). Q Tasks, 2nd Edition: How to empower students to ask questions and care about answers. Pembroke Publishers Limited.
  • ↑ a b Doubet, K. J., & Hockett, J. A. (2015). Differentiation in Middle and High School: Strategies to Engage All Learners. ASCD.
  • ↑ a b c http://www.educ.kent.edu/fundedprojects/tspt/units/sixfacets.htm
  • ↑ a b McTighe, J., & Wiggins, G. (2013). Essential Questions: Opening Doors to Student Understanding (1st ed.). Alexandria, Va. USA: Association for Supervision & Curriculum Development.
  • ↑ a b c d e f g h i j k l m n o p q Bruning, G.J. Schraw & M.M. Norby (2011) Cognitive Psychology and Instruction (5th Ed). New York: Pearson.
  • ↑ Anderson, J. R. Cognitive Psychology and Its Implications. New York: Freeman, 1980
  • ↑ a b Mayer, R. E., & Wittrock, R. C. (2006). Problem solving. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (2nd ed., pp. 287–304). Mahwah, NJ: Erlbaum.
  • ↑ Snyder, M. J., & Snyder, L. G. (2008). Teaching critical thinking and Problem solving skills. Delta Pi Epsilon Journal, L(2), 90-99.
  • ↑ a b c Voss, J. F. (1988). Problem solving and reasoning in ill-structured domains. In C. Antaki (Ed.), Analyzing everyday explanation: A casebook of methods (pp. 74-93). London: SAGE Publications.
  • ↑ a b Pretz, J. E., Naples, A. J., & Sternberg, R. J. (2003). Recognizing, defining, and representing problems. In J. E. Davidson and R. J. Sternberg (Eds.), The psychology of problem solving (pp. 3–30). Cambridge, UK: Cam- bridge University Press.
  • ↑ a b c d Shin, N., Jonassen, D. H., & McGee, S. (2003). Predictors of Well-Structured and Ill-Structured Problem Solving in an Astronomy Simulation. Journal Of Research In Science Teaching, 40(1), 6-33.8
  • ↑ Simon, D. P. (1978). Information processing theory of human problem solving. In W. K. Estes (Ed.), Handbook of learning and cognitive process. Hillsdale, NJ: Lawrence Erlbau
  • ↑ Kitchener, K.S., Cognition, metacognition, and epistemic cognition. Human Development, 1983. 26: p. 222-232.
  • ↑ Schraw G., Dunkle, M. E., & Bendixen L. D. (1995). Cognitive processes in well-structured and ill-structured problem solving. Applied Cognitive Psychology, 9, 523–538.
  • ↑ Cho, K. L., & Jonassen, D. H. (2002) The effects of argumentation scaffolds on argumentation and problem solving. Educational Technology: Research & Development, 50(3), 5-22.
  • ↑ a b Jonassen, D. H. (2000). Revisiting activity theory as a framework for designing student-centered learning environments. In D. H. Jonassen, S. M. Land, D. H. Jonassen, S. M. Land (Eds.) , Theoretical foundations of learning environments (pp. 89-121). Mahwah, NJ, US: Lawrence Erlbaum Associates Publishers.
  • ↑ Spiro, R. J., Feltovich, P. J., Jacobson, M. J., & Coulson, R. L. (1992). Cognitive flexibility, constructivism, and hypertext: Random access instruction for advanced knowledge acquisition in ill-structured domains. In T. M. Duffy, D. H. Jonassen, T. M. Duffy, D. H. Jonassen (Eds.) , Constructivism and the technology of instruction: A conversation (pp. 57-75). Hillsdale, NJ, England: Lawrence Erlbaum Associates, Inc.
  • ↑ a b c d e Barrows, H. S. (1996). “Problem-based learning in medicine and beyond: A brief overview.” In L. Wilkerson & W. H. Gijselaers (Eds.), Bringing Problem-Based Learning to higher education: Theory and practice (pp. 3-12). San Francisco: Jossey Bass.
  • ↑ a b (Barron, B., & Darling-Hammond, L. (2008). Teaching for meaningful learning: A review of research on inquiry-based and cooperative learning. Powerful Learning: What We Know About Teaching for Understanding (pp. 11-70). San Francisco, CA: Jossey-Bass.)
  • ↑ Dochy, F., Segers, M., Van den Bossche, P., & Gijbels, D. (2003). Effects of problembased learning: A meta-analysis. Learning and Instruction, 13, 533–568.
  • ↑ Williams, D., Hemstreet, S., Liu, M.& Smith, V. (1998). Examining how middle school students use problem-based learning software. Unpublished paper presented at the ED-Media/ED Telecom ‘98 world Conference on Educational Multimedia and Hypermedia & World Conference on Educational Telecommunications, Freiberg, Germany.
  • ↑ Gallagher, S. A., Stepien, W. J., & Rosenthal, H. (1992). The effects of problem based learning on problem solving. Gifted Child Quarterly, 36, 195–200. Gertzman, A., & Kolodner, J. L.
  • ↑ Bruning, G.J. Schraw & M.M. Norby (2011) Cognitive Psychology and Instruction (5th Ed). New York: Pearson.
  • ↑ Martin, L., and D. L. Schwartz. 2009. “Prospective Adaptation in the Use of External Representations.” Cognition and Instruction 27 (4): 370–400. doi:10.1080/
  • ↑ Chambers, D., and D. Reisberg. 1985. “Can Mental Images Be Ambiguous?” Journal of Experimental Psychology: Human A pragmatic perspective on visual representation and creative thinking Perception and Performance 11 (3): 317–328.
  • ↑ a b Öllinger, M., Jones, G., & Knoblich, G. (2008). Investigating the effect of mental set on insight problem solving. Experimental Psychology, 55(4), 269-282. doi:10.1027/1618-3169.55.4.269
  • ↑ Duncker, K. (1945). On Problem Solving. Psychological Monograph, Whole No. 270.
  • ↑ a b c McCaffrey, T. (2012). Innovation relies on the obscure: A key to overcoming the classic problem of functional fixedness. Psychological Science, 23(3), 215-218.
  • ↑ a b Taconis, R., Ferguson-Hessler, M. G. M., & Broekkamp, H. (2002). Teaching science problem solving: An overview of experimental work. Journal of Research in Science Teaching, 38, 442–46
  • ↑ Bransford, J. D., Brown, A. L., & Cocking, R. R. (Eds.). (2000). How people learn: Brain, mind, experience, and school. Washington, DC: National Academies Press.
  • ↑ a b Novick, L. R., & Bassok, M. (2005). Problem solving. In K. Holyoak & R. Morrison (Eds.), The Cambridge handbook of thinking and reasoning (pp. 321–350). Cambridge, UK: Cambridge University Press.
  • ↑ Fuchs, L. S., Fuchs, D., Stuebing, K., Fletcher, J. M., Hamlett, C. L., & Lambert, W. (2008). Problem solving and computational skills: Are they shared or distinct aspects of mathematical cognition? Journal of Educa- tional Psychology, 100, 30–
  • ↑ a b McNeill, K., & Krajcik, J. (2008). Scientific explanations: Characterizing and evaluating the effects of teachers’ instructional practices on student learning. Journal of Research in Science Teaching, 45, 53–78.
  • ↑ a b c d e Aleven, V. A. W. M. M., & Koedinger, K. R. (2002) An effective meta-cognitive strategy: learning by doing and explaining with a computer-based Cognitive Tutor. Cognitive Science, 26(2), 147–179.
  • ↑ a b c d e f g h i Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive Tutors: Lessons learned. Journal of the Learning Sciences, 4(2), 167.
  • ↑ a b c d e f Corbett, A. T., & Anderson, J. R. (2001). Locus of feedback control in computer-based tutoring: Impact on learning rate, achievement and attitudes. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 245–252). New York, NY, USA: ACM.
  • ↑ a b c d e f g Koedinger, K. R., & Corbett, A. (2006). Cognitive tutors. The Cambridge handbook of the learning sciences, 61-77.
  • ↑ Koedinger, K. R. (2002). Toward evidence for instructional design principles: Examples from Cognitive Tutor Math 6. In Proceedings of PME-NA XXXIII (The North American Chapter of the International Group for the Psychology of Mathematics Education).
  • ↑ Corbett, A., Kauffman, L., Maclaren, B., Wagner, A., & J,.ones, E. (2010). A Cognitive Tutor for genetics problem solving: Learning gains and student modeling. Journal of Educational Computing Research, 42(2), 219–239.
  • ↑ Corbett, A. T., & Anderson, J. R. (2008). Knowledge decomposition and sub-goal reification in the ACT programming tutor. Department of Psychology, 81.
  • ↑ Corbett, A. T., & Bhatnagar, A. (1997). Student modelling in the ACT programming tutor: Adjusting a procedural learning model with declarative knowledge. In User modelling (pp. 243-254). Springer Vienna.
  • ↑ Corbett, A. (2002). Cognitive tutor algebra I: Adaptive student modelling in widespread classroom use. In Technology and assessment: Thinking ahead. proceedings from a workshop (pp. 50-62).
  • ↑ Koedinger, K. R. & Anderson, J. R. (1993). Effective use of intelligent software in high school math classrooms. In Proceedings of the World Conference on Artificial Intelligence in Education, (pp. 241-248). Charlottesv
  • ↑ Koedinger, K., Anderson, J., Hadley, W., & Mark, M. (1997). Intelligent tutoring goes to school in the big city. Human-Computer Interaction Institute.
  • ↑ Koedinger, K. R., & Corbett, A. (2006). Cognitive tutors. The Cambridge handbook of the learning sciences, 61-77.
  • ↑ Resnick, L. B. (1987). Learning in school and out. Educational Researcher, 16(9), 13-20.
  • ↑ Polya, G. (1957). How to Solve It: A New Aspect of Mathematical Method. (2nd ed.). Princeton, NJ: Princeton University Press.
  • ↑ <Aleven, V. A. W. M. M., & Koedinger, K. R. (2002). An effective metacognitive strategy: learning by doing and explaining with a computer-based Cognitive Tutor. Cognitive Science, 26(2), 147–179. p. 173
  • ↑ Corbett, A., Kauffman, L., Maclaren, B., Wagner, A., & Jones, E. (2010). A Cognitive Tutor for genetics problem solving: Learning gains and student modelling. Journal of Educational Computing Research, 42(2), 219–239.
  • ↑ Morgan, Alistar. (1983). Theoretical Aspects of Project-Based Learning in Higher Education. British Journal of Educational Technology, 14(1), 66-78.
  • ↑ a b c d Blumenfeld, Phyllis C., Elliot Soloway, Ronald W. MArx, Joseph S. Krajick, Mark Guzdial, Annemarie Palincsar.. (1991). Motivating Project-Based Learning: Sustaining the Doing, Supporting the Learning. Educational Psychologist, 26(3&4), 369-398.
  • ↑ a b c d e f Thomas, John W. (2000). A Review of Research on Project-Based Learning. San Rafael: Autodesk Press.
  • ↑ a b van Merriënboer, J. J. G., Clark, R. E., & de Croock, M. B. M. (2002). Blueprints for complex learning: The 4C/ID-model. Educational Technology Research and Development, 50(2), 39–61. doi:10.1007/bf02504993.
  • ↑ a b Dewey, J. (1938). Experience and education. New York: Macmillan.
  • ↑ a b c d e van Merrienboer, J. J. G., Paul A. Kirschner, & Liesbeth Kester. (2004). Taking the Load off a Learner’s Mind: Instructional Design for Complex Learning. Amsterdam: Open University of the Netherlands.
  • ↑ Piaget, Jean; Cook, Margaret (Trans). The construction of reality in the child. New York, NY, US: Basic Books The construction of reality in the child. (1954). xiii 386 pp. http://dx.doi.org/10.1037/11168-000 .
  • ↑ Ames, C. (1992). Classrooms: goals, structures, and student motivation. Journal of Educational Psychology, 84, 261-271.
  • ↑ Helle, Laura, Paivi Tynjara, Erkki Olkinora, Kristi Lonka. (2007). “Aint nothin’ like the real thing”. Motivation and study processes on a work-based project course in information systems design. British Journal of Educational Psychology, 70(2), 397-411.
  • ↑ a b Joseph Krajcik , Phyllis C. Blumenfeld , Ronald W. Marx , Kristin M. Bass , Jennifer Fredricks & Elliot Soloway (1998) Inquiry in Project-Based Science Classrooms: Initial Attempts by Middle School Students, Journal of the Learning Sciences, 7:3-4, 313-350, DOI: 10.1080/10508406.1998.9672057
  • ↑ a b c Gorges, Julia, Thomas Goke. (2015). How do I Know what I can do? Anticipating expectancy of success regarding novel academic tasks. British Journal of Educational Psyschology, 85(1), 75-90.
  • ↑ Hung, C.-M., Hwang, G.-J., & Huang, I. (2012). A Project-based Digital Storytelling Approach for Improving Students' Learning Motivation, Problem-Solving Competence and Learning Achievement. Educational Technology & Society , 15 (4), 368–379. 
  • ↑ a b Efstratia, Douladeli. (2014). Experiential education through project based learning. Procedia – Social and Behavioral Sciences . 152, 1256-1260.
  • ↑ a b c Capraro, R. M., Capraro, M. M., & Morgan, J. (2013). STEM Project-Based Learning: An Integrated Science, Technology, Engineering, and Mathematics (STEM) Approach (2nd Edition). New York, NY: Sense. 
  • ↑ Gary, Kevin. (2013), Project-Based Learning. Computer. (Vol 48:9). Tempe: Arizona State. 
  • ↑ a b c d e f g h Cross, N. (2007). Designerly ways of knowing . Basel, Switzerland: Birkha¨user.
  • ↑ Simon, H. A. (1996). The sciences of the artificial . Cambridge, MA: MIT Press.
  • ↑ Aflatoony, Leila & Ron Wakkary, (2015). Thoughtful Thinkers: Secondary Schooler’s Learning about Design Thinking. Simon Fraser University: Surrey, BC.
  • ↑ a b Koh, Joyce Hwee Ling, Chin Sing Chai, Benjamin Wong, & Huang-Yao Hong. (2015) Design Thinking for Education. Singapore: Springer Science + Business Media.
  • ↑ a b c d Schon, D. A. (1983). The reflective practitioner: How professionals think in action (Vol. 5126). New York, NY: Basic Books.
  • ↑ Hu, Weiping, Philip Adey, Xiaojuan Jia, Jia Liu, Lei Zhang, Jing Li, Xiaomei Dong. (2010). Effects of a “Learn to Think” Intervention programme on primary school students. British Journal of Educational Psychology . 81(4) 537-557.
  • ↑ a b Wells, Alastair. (2013). The importance of design thinking for technological literacy: a phenomenological perspective . International Journal Technol Des Educ. (23:623-636). DOI 10.1007/s10798-012-9207-7.
  • ↑ a b c d Jonassen, D.H., & Kim, B. (2010). Arguing to learn ad learning to argue: design justifications and guidelines. Education Technology & Research Development, 58(4), 439-457. DOI 10.1007/s11423-009-9143-8.
  • ↑ a b c d e f g h Macagno, F., Mayweg-Paus, W., & Kuhn, D. (2014). Argumentation theory in Education Studies: Coding and Improving Students’ Argumentative Strategies. Topoi, 34, 523-537.
  • ↑ a b c Hornikx, J., & Hahn, U. (2012). Reasoning and argumentation: Towards an integrated psychology of argumentation. Thinking & Reasoning, 18(3), 225-243. DOI: 10.1080/13546783.2012.674715.
  • ↑ a b Aufschnaiter, C., Erduran, S., Osborne, J., & Simon, S. (2008). Arguing to learn and learning to argue: Case studies of how students' argumentation relates to their scientific knowledge. Journal of Research in Science Teaching, 45(1), 101-131. doi:10.1002/tea.20213
  • ↑ Bensley, A., Crowe, D., Bernhardt, P., Buckner, C., & Allman, A. (2010). Teaching and assessing CT skills for argument analysis in psychology. Teaching of Psychology, 37(2), 91-96. doi:10.1080/00986281003626656
  • ↑ Glassner, A., & Schwarz, B. B. (2007). What stands and develops between creative and critical thinking? argumentation?. Thinking Skills and Creativity, 2(1), 10-18. doi:10.1016/j.tsc.2006.10.001
  • ↑ Gold J., Holman D., & Thorpe R. (2002). The role of argument analysis and story telling in facilitating critical thinking. Management Learning, 33(3), 371-388. doi:10.1177/1350507602333005
  • ↑ a b c d e f g h Bruning, R. H., Schraw, G. J., & Norby, M. M. (2011). Cognitive psychology and instruction (5th ed.) Pearson.
  • ↑ Chesñevar, I., & Simari, G. (2007). Modelling inference in argumentation through labelled deduction: Formalization and logical properties. Logica Universalis, 2007, Volume 1, Number 1, Page 93, 1(1), 93-124. doi:10.1007/s11787-006-0005-4
  • ↑ Ontañón, S., & Plaza, E. (2015). Coordinated inductive learning using argumentation-based communication. Autonomous Agents and Multi-Agent Systems, 29(2), 266-304. doi:10.1007/s10458-014-9256-2
  • ↑ Pinto, M., Iliceto, P., & Melagno, S. (2012). Argumentative abilities in metacognition and in metalinguistics: A study on university students. European Journal of Psychology of Education, 27(1), 35-58. doi:10.1007/s10212-011-0064-7
  • ↑ Bensley, A., Crowe, D., Bernhardt, P., Buckner, C., & Allman, A. (2010). Teaching and assessing critical thinking skills for argument analysis in psychology. Teaching of Psychology, 37(2), 91-96. doi:10.1080/00986281003626656
  • ↑ Demir, B., & İsleyen, T. (2015). The effects of argumentation based science learning approach on creative thinking skills of students. Educational Research Quarterly, 39(1), 49-82.
  • ↑ Chandler, S. & Dedman, D.E. (2012). Writing a Literature Review: An Essential Component of Critical Thinking. The Journal of Baccalaureate Social Work, 17. 160-165.
  • ↑ a b c d Al-Faoury, O.H., & Khwaileh, F. (2014). The Effect of Teaching CoRT Program No. (4) Entitles “Creativity” on the Gifted Learners’ Writing in Ein El-Basha Center for Gifted Students. Theory and Practice in Language Studies, 4(11), 2249-2257. doi:10.4304/tpls.4.11.2249-2257.
  • ↑ a b c Kozulin, A. & Presseisen, B.Z. (1995). Mediated Learning Experience and Psychological Tools: Vygotsky’s and Feuerstein’s Perspective in a Study of Student Learning. Educational Psychologist, 30(2), 67-75.
  • ↑ Presseisen, B.Z. & Kozulin, A. (1992). Mediated Learning – The Contributions of Vygotsky and Feuerstein in Theory and Practice.
  • ↑ Schuler, G. (1974). The Effectiveness of the Productive Thinking Program. Paper presented at the Annual Meeting of the American Educational Research Association. Retrieved from: http://www.eric.ed.gov/contentdelivery/servlet/ERICServlet?accno=ED103479 .
  • ↑ a b c d Crowell, A., & Kuhn, D. (2014). Developing dialogic argumentation skills: A 3-year intervention study. Journal of Cognition and Development, 15(2), 363-381. doi:10.1080/15248372.2012.725187
  • ↑ a b c d Crowell, A., & Kuhn, D. (2011). Dialogic Argumentation as a Vehicle for Developing Young Adolescents’ Thinking. Psychological Science, 22(4), 545-552. DOI: 10.1177/0956797611402512.
  • ↑ Jonassen, D.H., & Kim, B. (2010). Arguing to learn ad learning to argue: design justifications and guidelines. Education Technology & Research Development, 58(4), 439-457. DOI 10.1007/s11423-009-9143-8.
  • ↑ a b c d Bathgate, M., Crowell, A., Schunn, C., Cannady, M., & Dorph, R. (2015). The learning benefits of being willing and able to engage in scientific argumentation. International Journal of Science Education, 37(10), 1590-1612. doi:10.1080/09500693.2015.1045958
  • ↑ a b c d e Seixas, P., Morton, T., Colyer, J., & Fornazzari, S. (2013). The Big Six: Historical thinking Concepts. Toronto: Nelson Education.
  • ↑ Osborne, K. (2013). Forward. Seixas, P., Morton, T., Colyer, J., & Fornazzari, S. The Big Six: Historical thinking Concepts. Toronto: Nelson Education.
  • ↑ a b Carretero, M., & van Alphen, F. (2014). Do Master Narratives Change Among High School Students? A Characterization of How National History Is Represented. Cognition and Instruction, 32(3), 290–312. http://doi.org/10.1080/07370008.2014.919298
  • ↑ a b c Freedman, E. B. (2015). “What Happened Needs to Be Told”: Fostering Critical Historical Reasoning in the Classroom. Cognition and Instruction, 33(4), 357–398. http://doi.org/10.1080/07370008.2015.1101465
  • ↑ a b c Wineburg, S. S. (1991). Historical problem solving: A study of the cognitive processes used in the evaluation of documentary and pictorial evidence. Journal of Educational Psychology, 83(1), 73–87. http://doi.org/10.1037/0022-0663.83.1.73
  • ↑ Freedman, E. B. (2015). “What Happened Needs to Be Told”: Fostering Critical Historical Reasoning in the Classroom. Cognition and Instruction, 33(4), 357–398. http://doi.org/10.1080/07370008.2015.1101465
  • ↑ a b c d e f g h i Seixas, P., Morton, T., Colyer, J., & Fornazzari, S. (2013). The Big Six: Historical thinking Concepts. Toronto: Nelson Education.
  • ↑ Blackenship, W. (2009). Making connections: Using online discussion forums to engage students in historical inquiry. Social Education, 73(3), 127-130.
  • ↑ Shreiner, T. L. (2014). Using Historical Knowledge to Reason About Contemporary Political Issues: An Expert–Novice Study. Cognition and Instruction, 32(4), 313–352. http://doi.org/10.1080/07370008.2014.948680
  • ↑ Seixas, P., & Peck, C. (2004). Teaching Historical Thinking. Challenges and Prospects for Canadian Social Studies, 109–117.
  • ↑ Lopez, C., Carretero, M., & Rodriguez-Moneo, M. (2014). Telling a national narrative that is not your own. Does it enable critical historical consumption? Culture & Psychology , 20 (4 ), 547–571. http://doi.org/10.1177/1354067X14554156
  • ↑ Whitworth, S. A., & Berson, M. J. (2003). Computer technology in the social studies: An examination of the effectiveness literature (1996-2001). Contemporary Issues in Technology and Teacher Education [Online serial], 2(4). Retrieved from http://www.citejournal.org/volume-2/issue-4-02/social-studies/computer-technology-in-the-social-studies-an-examination-of-the-effectiveness-literature-1996-2001
  • ↑ Johnson, D. W., & Johnson, R. T. (1993). Creative and critical thinking through academic controversy. The American Behavioral Scientist, 37(1), 40-53. Retrieved from https://www.proquest.com/docview/1306753602

problem solving skills wiki

  • Book:Cognition and Instruction

Navigation menu

  • Resume Writing
  • Resume Examples
  • Cover Letter
  • Remote Work
  • Famous Resumes
  • Try Kickresume

7 Problem Solving Skills That Aren’t Just Buzzwords (+ Resume Example)

  • Julia Mlcuchova , 
  • Updated April 8, 2024 9 min read

Problem-solving skills are something everybody should include on their resume, yet only a few seem to understand what these skills actually are. If you've always felt that the term "problem-solving skills" is rather vague and wanted to know more, you've come to the right place.

In this article, we're going to explain what problem-solving skills really mean. We'll talk about what makes up good problem-solving skills and give you tips on how to get better at them. You'll also find out how to make your problem-solving abilities look more impressive to those who might want to hire you.

Sounds good, right? Curious to learn more? 

In this article we’ll show you:

  • What are problem solving skills;
  • Why are they important; 
  • Specific problem solving skills examples;
  • How to develop your problem solving skills;
  • And, how to showcase them on your resume.

Table of Contents

Click on a section to skip

What are problem solving skills?

Why are problem solving skills important, the best 7 problem solving skills examples, how to develop problem solving skills, problem solving skills resume example, key takeaways: problem solving skills.

First of all, they're more than just a buzzword!

Problem-solving skills are a set of specific abilities that allow you to deal with unexpected situations in the workplace, whether it be job related or team related. 

It's a complex process that involves several “sub skills” or “sub steps,” namely:

  • Recognizing and identifying the issue at hand.
  • Breaking the problem down into smaller parts and analyzing how they relate to one another. 
  • Creating potential solutions to the problem, evaluating them and picking the best one.  
  • Applying the chosen solution and assessing its outcome. 
  • Learning from the whole process to deal with future problems more effectively. 

As you can see, it's not just about solving problems that are right in front of us, but also about predicting potential issues and being prepared to deal with them before they arise.  

Despite what you may believe, problem-solving skills aren't just for managers . 

Think about it this way: Why do employers hire employees in the first place? To solve problems for them!

And, as we all know, problems don't discriminate. In other words, it doesn't matter whether you're just an intern, an entry-level professional, or a seasoned veteran, you'll constantly face some kind of challenges. And the only difference is in how complex they will get.

This is also reflected in the way employers assess suitability of potential job candidates. 

In fact, research shows that the ability to deal with unexpected complications is prioritized by an overwhelming 60% of employers across all industries, making it one of the most compelling skills on your resume.

So, regardless of your job description or your career level, you're always expected to find solutions for problems, either independently or as a part of a team. 

And that's precisely what makes problem-solving skills so invaluable and universal ! 

Wondering how good is your resume?

Find out with our AI Resume Checker! Just upload your resume and see what can be improved.

As we've said before, problem-solving isn't really just one single skill. 

Instead, your ability to handle workplace issues with composure depends on several different “sub-skills”. 

So, which specific skills make an employee desirable even for the most demanding of recruiters? 

In no particular order, you should focus on these 7 skills : 

  • Analytical skills
  • Research skills
  • Critical thinking 
  • Decision-making
  • Collaboration
  • Having a growth mindset

Let's have a look at each of them in greater detail!

#1 Analytical skills

Firstly, to truly understand complex problems, you need to break them down into more manageable parts . Then, you observe them closely and ask yourself: “ Which parts work and which don't,” How do these parts contribute to the problem as a whole,” and "What exactly needs to be fixed?” In other words, you gather data , you study it, and compare it - all to pinpoint the cause of the issue as closely as possible.

#2 Research skills

Another priceless tool is your research skills (sometimes relying on just one source of information isn't enough). Besides, to make a truly informed decision , you'll have to dig a little deeper. Being a good researcher means looking for potential solutions to a problem in a wider context. For example: going through team reports, customer feedback, quarterly sales or current market trends.  

#3 Critical thinking

Every employer wants to hire people who can think critically. Yet, the ability to evaluate situations objectively and from different perspectives , is actually pretty hard to come by. But as long as you stay open-minded, inquisitive, and with a healthy dose of skepticism, you'll be able to assess situations based on facts and evidence more successfully. Plus, critical thinking comes in especially handy when you need to examine your own actions and processes. 

 #4 Creativity

Instead of following the old established processes that don't work anymore, you should feel comfortable thinking outside the box. The thing is, problems have a nasty habit of popping up unexpectedly and rapidly. And sometimes, you have to get creative in order to solve them fast. Especially those that have no precedence. But this requires a blend of intuition, industry knowledge, and quick thinking - a truly rare combination. 

#5 Decision-making

The analysis, research, and brainstorming are done. Now, you need to look at the possible solutions, and make the final decision (informed, of course). And not only that, you also have to stand by it ! Because once the train gets moving, there's no room for second guessing. Also, keep in mind that you need to be prepared to take responsibility for all decisions you make. That's no small feat! 

#6 Collaboration

Not every problem you encounter can be solved by yourself alone. And this is especially true when it comes to complex projects. So, being able to actively listen to your colleagues, take their ideas into account, and being respectful of their opinions enables you to solve problems together. Because every individual can offer a unique perspective and skill set. Yes, democracy is hard, but at the end of the day, it's teamwork that makes the corporate world go round. 

#7 Having a growth mindset

Let's be honest, no one wants their work to be riddled with problems. But facing constant challenges and changes is inevitable. And that can be scary! However, when you're able to see these situations as opportunities to grow instead of issues that hold you back, your problem solving skills reach new heights. And the employers know that too!

Now that we've shown you the value problem-solving skills can add to your resume, let's ask the all-important question: “How can I learn them?”

Well…you can't. At least not in the traditional sense of the word. 

Let us explain: Since problem-solving skills fall under the umbrella of soft skills , they can't be taught through formal education, unlike computer skills for example. There's no university course that you can take and graduate as a professional problem solver. 

But, just like other interpersonal skills, they can be nurtured and refined over time through practice and experience. 

Unfortunately, there's no one-size-fits-all approach, but the following tips can offer you inspiration on how to improve your problem solving skills:

  • Cultivate a growth mindset. Remember what we've said before? Your attitude towards obstacles is the first step to unlocking your problem-solving potential. 
  • Gain further knowledge in your specialized field. Secondly, it's a good idea to delve a little deeper into your chosen profession. Because the more you read on a subject, the easier it becomes to spot certain patterns and relations.  
  • Start with small steps. Don't attack the big questions straight away — you'll only set yourself up for failure. Instead, start with more straightforward tasks and work your way up to more complex problems. 
  • Break problems down into more digestible pieces. Complex issues are made up of smaller problems. And those can be further divided into even smaller problems, and so on. Until you're left with only the basics. 
  • Don't settle for a single solution. Instead, keep on exploring other possible answers.
  • Accept failure as a part of the learning process. Finally, don't let your failures discourage you. After all, you're bound to misstep a couple of times before you find your footing. Just keep on practicing. 

How to improve problem solving skills with online courses

While it’s true that formal education won’t turn you into a master problem solver, you can still hone your skills with courses and certifications offered by online learning platforms :

  • Analytical skills. You can sharpen your analytical skills with Data Analytics Basics for Everyone from IBM provided by edX (Free); or Decision Making and Analytical Thinking: Fortune 500 provided by Udemy ($21,74).
  • Creativity. And, to unlock your inner creative mind, you can try Creative Thinking: Techniques and Tools for Success from the Imperial College London provided by Coursera (Free).
  • Critical thinking. Try Introduction to Logic and Critical Thinking Specialization from Duke University provided by Coursera (Free); or Logical and Critical Thinking offered by The University of Auckland via FutureLearn.  
  • Decision-making. Or, you can learn how to become more confident when it's time to make a decision with Decision-Making Strategies and Executive Decision-Making both offered by LinkedIn Learning (1 month free trial).
  • Communication skills . Lastly, to improve your collaborative skills, check out Communicating for Influence and Impact online at University of Cambridge. 

The fact that everybody and their grandmothers put “ problem-solving skills ” on their CVs has turned the phrase into a cliche. 

But there's a way to incorporate these skills into your resume without sounding pretentious and empty. Below, we've prepared a mock-up resume that manages to do just that.

FYI, if you like this design, you can use the template to create your very own resume. Just click the red button and fill in your information (or let the AI do it for you).

Problem solving skills on resume example

This resume was written by our experienced resume writers specifically for this profession.

Why this example works?

  • Firstly, the job description itself is neatly organized into bullet points .  
  • Instead of simply listing soft skills in a skills section , you can incorporate them into the description of your work experience entry.  
  • Also, the language here isn't vague . This resume puts each problem-solving skill into a real-life context by detailing specific situations and obstacles. 
  • And, to highlight the impact of each skill on your previous job position, we recommend quantifying your results whenever possible. 
  • Finally, starting each bullet point with an action verb (in bold) makes you look more dynamic and proactive.

To sum it all up, problem-solving skills continue gaining popularity among employers and employees alike. And for a good reason!

Because of them, you can overcome any obstacles that stand in the way of your professional life more efficiently and systematically. 

In essence, problem-solving skills refer to the ability to recognize a challenge, identify its root cause, think of possible solutions , and then implement the most effective one. 

Believing that these skills are all the same would be a serious misconception. In reality, this term encompasses a variety of different abilities , including:

In short, understanding, developing, and showcasing these skills, can greatly boost your chances at getting noticed by the hiring managers. So, don't hesitate and start working on your problem-solving skills right now!

Julia has recently joined Kickresume as a career writer. From helping people with their English to get admitted to the uni of their dreams to advising them on how to succeed in the job market. It would seem that her career is on a steadfast trajectory. Julia holds a degree in Anglophone studies from Metropolitan University in Prague, where she also resides. Apart from creative writing and languages, she takes a keen interest in literature and theatre.

Related Posts

Resume header: what to include, what to skip, & how to format it.

  • 10 min read

Resume Analysis: System Administrator Hired by Amazon

Share this article, join our newsletter.

Every month, we’ll send you resume advice, job search tips, career hacks and more in pithy, bite-sized chunks. Sounds good?

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How Bloom's Taxonomy Can Help You Learn More Effectively

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

problem solving skills wiki

monkeybusinessimages/iStock/Getty Images

  • The Six Levels
  • How It Works
  • Applications
  • How to Use It

Bloom’s Taxonomy in Online Learning

  • Limitations

Bloom's taxonomy is an educational framework that classifies learning in different levels of cognition. This model aims to help educators better understand and evaluate the different types of complex mental skills needed for effective learning .

The taxonomy is often characterized as a ladder or pyramid. Each step on the taxonomy represents a progressively more complex level of learning. The lower levels of learning serve as a base for the subsequent levels that follow.

Bloom’s taxonomy was developed by a committee of educators through a series of conferences held between 1949 to 1953. It was published in “Taxonomy of Educational Objectives: The Classification of Educational Goals” and is named after Benjamin Bloom, the educational psychologist who chaired the committee and edited the book.

The Six Levels of Bloom’s Taxonomy

There are six levels of Bloom’s taxonomy. The original six levels were: knowledge, comprehension, application, analysis, synthesis, and evaluation.

In 2001, the original Bloom's taxonomy was revised by a group of instructional theorists, curriculum researchers, and cognitive psychologists. The goal was to move away from the more static objectives that Bloom described to utilize action works that better capture the dynamic, active learning process. The six levels of the revised Bloom’s taxonomy:

At the lowest level of the taxonomy, learners recognize and recall the information they have learned. This level focuses on memorizing information and recalling the concepts and facts learned.

This level of the taxonomy involves demonstrating a comprehension of what has been learned. People are able to explain the ideas in their own words and explain what the concepts mean.

At this level of Bloom's taxonomy, learners are able to use the information and knowledge they have acquired in new situations. For example, they can apply a skill they have learned in order to solve a different problem or complete a new task.

At this level, learners are able to break down information in order to analyze the components and examine their relationships. Here, learners are able to compare and contrast to spot similarities and differences. They can also make connections and spot patterns.

This level involves being able to make an assessment of the quality of information that has been presented. Learners are able to evaluate arguments that have been presented in order to make judgments and form their own opinions.

This represents the highest level of Bloom's taxonomy. Learners who reach this point are able to form ideas by utilizing the skills and knowledge they have obtained. This level involves the generation of creative, original ideas.

How Bloom's Taxonomy Works

Understanding and utilizing Bloom's taxonomy allows educators and instructional designers to create activities and assessments that encourage students to progress through the levels of learning. These activities allow students to go from the acquisition of basic knowledge and work their way through the levels of learning to the point where they can think critically and creatively.

The progression of knowledge matters because each level builds on the previous ones. In other words, it is important to remember that students must have a solid foundation before continuing to build higher-order thinking skills.

The basic knowledge they learn at the beginning of the process allows them to think about this knowledge in progressively more complex ways.

"To successfully use Bloom’s taxonomy, it’s essential to follow the steps in the correct order because the taxonomy's steps naturally progress and reinforce learning at every level," explains Marnix Broer, co-founder and CEO of Studocu .

While the foundational stages of learning provide a solid base, it is essential to keep building on those skills. Challenge yourself to learn in new ways and hone those high-level skills that are so critical to cognitive flexibility and critical thinking

Marnix Broer, Co-Founder and CEO, Studocu

While you can review a set of study notes repeatedly, you’re really only hitting the 'remember' and 'understand' stages and limiting your skills and retention. Seeking out opportunities to analyze, evaluate, and create based on the subject matter will help you solidify your knowledge beyond being able to regurgitate it on a test.

The purpose of Bloom's taxonomy is to guide educators as they create instruction that fosters cognitive skills. Instead of focusing on memorization and repetition, the goal is to help students develop higher-order thinking skills that allow them to engage in critical, creative thinking that they can apply in different areas of their lives.

3 Domains of Bloom’s Taxonomy

Bloom's taxonomy targets three key learning domains. These domains are focused on a number of desired educational outcomes.  

Cognitive Domain

This domain is focused on the development of intellectual skills. It involves the acquisition of knowledge and the development of problem-solving , decision-making , and critical-thinking abilities. 

Affective Domain

This domain is centered on developing emotional abilities, values, and attitudes. It's focus is on helping learners develop perspectives on different subjects as well as cultivating motivation, empathy , and social abilities.

Psychomotor Domain

This domain focuses on the physical skills that are needed to carry out different activities. This includes physical coordination and the ability to control and manipulate the body. Using the proper technique to hold a pencil while writing is an example of a psychomotor skills that is important in the learning process.

Applications for Bloom’s Taxonomy

Teachers utilize Bloom's taxonomy to design instruction that maximizes learning and helps students learn more effectively. For example:

  • An educator would create a lesson that teaches students basic knowledge about a subject.
  • Next, students would summarize and explain these ideas in their own words.
  • Then, learners would take this knowledge and use it to solve problems.
  • The educator would then provide activities where students must break down, compare, and connect different ideas.
  • Next, educational activities would focus on giving students critical assessments of the quality, value, or effectiveness of what they have learned.
  • Finally, at the end of this process, students would use what they have learned to create something independently.

One of the benefits of using this approach is that it can lead to deeper learning that allows skills to be transferred to various domains and situations. One study found that teaching Bloom's taxonomy helped improve learners' ability to learn independently. This approach also helped better stimulate critical thinking skills and boosted student motivation and interest in learning.

Uses for Bloom’s Taxonomy

The taxonomy is widely used today for a variety of purposes, including to:

  • Develop classroom instruction and lesson plans
  • Create instructional strategies
  • Design and develop curricula
  • Assess courses
  • Identify assessment objectives
  • Create effective written assessments
  • Measure learning outcomes

How Can You Use Bloom's Taxonomy?

Bloom’s taxonomy is also something you can use to make learning new information and acquiring new skills easier. Understanding and applying the taxonomy can enhance learning efficacy to develop a richer understanding of the subject matter.

Utilizing different learning strategies at each level of the taxonomy can help you get the most out of your learning experiences:

Improving Remembering

Strategies that can be helpful during the first level of learning include:

  • Making flashcards and repeating the information regularly to help reinforce your memory
  • Quizzing yourself on what you have learned
  • Using mnemonic devices to help improve your recall
  • Reviewing your notes and readings often to help improve your retention of the information

Improving Understanding

At the second level of the taxonomy, you can enhance your understanding of the material by:

  • Having discussions with others to help reinforce the ideas and clarify points you are confused about
  • Writing down questions you might have about the material
  • Teaching what you have learned to someone else
  • Summarizing key points in your own words to ensure understanding

Improving Application

To apply knowledge more effectively, it can be helpful to:

  • Work on projects that require you to solve real-world problems
  • Solve practice problems that rely on the information you have learned
  • Role-play different scenarios in groups
  • Do lab experiments that require applying what you've learned

Improving Analysis

Activities that can help improve your analytical skills at this level of Bloom's taxonomy include:

  • Creating mind maps to make connections between different ideas
  • Comparing and contrasting different ideas or theories using tables, Venn diagrams, and charts
  • Debating the topic with peers
  • Writing your critical analysis of the topic

Improving Evaluation

You can help enhance your evaluation skills by:

  • Utilizing peer review to give feedback on what other learners have written
  • Listing the pros and cons of a concept
  • Writing in a journal to track your thoughts
  • Writing a review paper or giving a presentation on the subject
  • Writing a persuasive or argumentative essay

Improving Creation

At the final level of Bloom's taxonomy, the goal is to take what you have learned as use that knowledge to produce original work. This might involve:

  • Brainstorming new ideas
  • Making decisions based on your knowledge
  • Developing recommendations and presenting them to your peers
  • Asking open-ended questions to encourage creative thought
  • Integrating multiple ideas and perspectives into a new product or idea
  • Designing a creative work based on your ideas

Use of the taxonomy may of course differ amongst individuals at different age levels.

How can online, self-directed learners utilize Bloom’s taxonomy to enhance their educational experience? Broer recommends looking for ways to mentally, physically, and emotionally connect to educational material.

“If online learning resources don’t offer opportunities to apply the knowledge, you may need to find those opportunities yourself,” he suggests. “Completing mock assignments or creating flow charts can help you shift from the learning to the application stage quickly, especially with quick access to online forums, apps, and social media.” 

What Are the Limitations of Bloom's Taxonomy?

While Bloom's taxonomy is still an influential theory and continues to influence classroom education and instructional design, it has limitations. Some of the primary criticisms of the framework:

Simplistic Hierarchy

One of the main complaints about the taxonomy is that the hierarchical structure oversimplifies the learning process. By breaking down thinking skills into discrete levels, it fails to capture the complexity of the learning process and how these different skills overlap and interact.

The taxonomy is typically framed as a hierarchy in which higher-level learning depends on foundational knowledge. However, learning often doesn't occur in distinct, separate steps. Learning experiences are often dynamic, involving many levels at the same time.

Rigid Structure

The taxonomy's lack of flexibility is another common critique. By suggesting that learning follows a fixed progression that starts with lower-order skills before progressing to higher-level thinking skills, it ignores the fact that learning is complex, dynamic, and frequently involves engaging multiple cognitive skills simultaneously.

Some critics suggest that the taxonomy may stifle creativity when designing instruction, limiting an educator's ability to develop effective learning strategies.

Cultural Bias

Because Bloom's taxonomy was developed from a Western perspective and educational context, it may not reflect learning methods from other cultural backgrounds. Educators should consider this factor when developing culturally-inclusive instruction.

Bloom's taxonomy was originally introduced during the 1950s as a framework for categorizing cognitive skills and understanding the learning process. While Bloom’s taxonomy has limitations, it is still a helpful framework for developing educational materials. Teachers, instructional designers, and curriculum developers can utilize the framework and incorporate other educational perspectives to create well-rounded instruction that benefits all students.

Bloom BS. Taxonomy of educational objectives: The classification of educational goals . New York, NY: Longmans, Green; 1956.

Anderson LW, Krathwohl DR, eds.  A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives . Complete ed. Longman; 2001.

Adams NE. Bloom's taxonomy of cognitive learning objectives . J Med Libr Assoc . 2015;103(3):152-153. doi:10.3163/1536-5050.103.3.010

Zheng J, Tayag J, Cui Y, Chen J. Bloom's classification of educational objectives based on deep learning theory teaching design of nursing specialty . Comput Intell Neurosci . 2022;2022:3324477. doi:10.1155/2022/3324477

Larsen TM, Endo BH, Yee AT, Do T, Lo SM. Probing internal assumptions of the revised Bloom's Taxonomy . CBE Life Sci Educ . 2022;21(4):ar66. doi:10.1187/cbe.20-08-0170

Newton PM, Da Silva A, Peters LG. A pragmatic master list of action verbs for Bloom’s taxonomy . Front Educ . 2020;5:107. doi:10.3389/feduc.2020.00107

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Explore Jobs

  • Jobs Near Me
  • Remote Jobs
  • Full Time Jobs
  • Part Time Jobs
  • Entry Level Jobs
  • Work From Home Jobs

Find Specific Jobs

  • $15 Per Hour Jobs
  • $20 Per Hour Jobs
  • Hiring Immediately Jobs
  • High School Jobs
  • H1b Visa Jobs

Explore Careers

  • Business And Financial
  • Architecture And Engineering
  • Computer And Mathematical

Explore Professions

  • What They Do
  • Certifications
  • Demographics

Best Companies

  • Health Care
  • Fortune 500

Explore Companies

  • CEO And Executies
  • Resume Builder
  • Career Advice
  • Explore Majors
  • Questions And Answers
  • Interview Questions

What Are Problem-Solving Skills? (Definition, Examples, And How To List On A Resume)

  • What Are Skills Employers Look For?
  • What Are Inductive Reasoning?
  • What Are Problem Solving Skills?
  • What Are Active Listening Skills?
  • What Are Management Skills?
  • What Are Attention To Detail?
  • What Are Detail Oriented Skills?
  • What Are Domain Knowledge?
  • What Is Professionalism?
  • What Are Rhetorical Skills?
  • What Is Integrity?
  • What Are Persuasion Skills?
  • How To Start A Conversation
  • How To Write A Conclusion For A Research Paper
  • Team Player
  • Visual Learner
  • High Income Skills
  • The Most Important Professional Skills

Find a Job You Really Want In

Summary. Problem-solving skills include analysis, creativity, prioritization, organization, and troubleshooting. To solve a problem, you need to use a variety of skills based on the needs of the situation.

Most jobs essentially boil down to identifying and solving problems consistently and effectively. That’s why employers value problem-solving skills in job candidates for just about every role.

We’ll cover problem-solving methods, ways to improve your problem-solving skills, and examples of showcasing your problem-solving skills during your job search .

Key Takeaways:

If you can show off your problem-solving skills on your resume , in your cover letter , and during a job interview, you’ll be one step closer to landing a job.

Companies rely on employees who can handle unexpected challenges, identify persistent issues, and offer workable solutions in a positive way.

It is important to improve problem solving skill because this is a skill that can be cultivated and nurtured so you can become better at dealing with problems over time.

What are problem solving skills (definition, examples, and how to list on a resume)

Types of Problem-Solving Skills

How to improve your problem-solving skills, example answers to problem-solving interview questions, how to show off problem-solving skills on a resume, example resume and cover letter with problem-solving skills, more about problem-solving skills, problem solving skills faqs.

  • Sign Up For More Advice and Jobs

Problem-solving skills are skills that help you identify and solve problems effectively and efficiently . Your ability to solve problems is one of the main ways that hiring managers and recruiters assess candidates, as those with excellent problem-solving skills are more likely to autonomously carry out their responsibilities.

A true problem solver can look at a situation, find the cause of the problem (or causes, because there are often many issues at play), and then come up with a reasonable solution that effectively fixes the problem or at least remedies most of it.

The ability to solve problems is considered a soft skill , meaning that it’s more of a personality trait than a skill you’ve learned at school, on the job, or through technical training.

That being said, your proficiency with various hard skills will have a direct bearing on your ability to solve problems. For example, it doesn’t matter if you’re a great problem-solver; if you have no experience with astrophysics, you probably won’t be hired as a space station technician .

Problem-solving is considered a skill on its own, but it’s supported by many other skills that can help you be a better problem solver. These skills fall into a few different categories of problem-solving skills.

Problem recognition and analysis. The first step is to recognize that there is a problem and discover what it is or what the root cause of it is.

You can’t begin to solve a problem unless you’re aware of it. Sometimes you’ll see the problem yourself and other times you’ll be told about the problem. Both methods of discovery are very important, but they can require some different skills. The following can be an important part of the process:

Active listening

Data analysis

Historical analysis

Communication

Create possible solutions. You know what the problem is, and you might even know the why of it, but then what? Your next step is the come up with some solutions.

Most of the time, the first solution you come up with won’t be the right one. Don’t fall victim to knee-jerk reactions; try some of the following methods to give you solution options.

Brainstorming

Forecasting

Decision-making

Topic knowledge/understanding

Process flow

Evaluation of solution options. Now that you have a lot of solution options, it’s time to weed through them and start casting some aside. There might be some ridiculous ones, bad ones, and ones you know could never be implemented. Throw them away and focus on the potentially winning ideas.

This step is probably the one where a true, natural problem solver will shine. They intuitively can put together mental scenarios and try out solutions to see their plusses and minuses. If you’re still working on your skill set — try listing the pros and cons on a sheet of paper.

Prioritizing

Evaluating and weighing

Solution implementation. This is your “take action” step. Once you’ve decided which way to go, it’s time to head down that path and see if you were right. This step takes a lot of people and management skills to make it work for you.

Dependability

Teambuilding

Troubleshooting

Follow-Through

Believability

Trustworthiness

Project management

Evaluation of the solution. Was it a good solution? Did your plan work or did it fail miserably? Sometimes the evaluation step takes a lot of work and review to accurately determine effectiveness. The following skills might be essential for a thorough evaluation.

Customer service

Feedback responses

Flexibility

You now have a ton of skills in front of you. Some of them you have naturally and some — not so much. If you want to solve a problem, and you want to be known for doing that well and consistently, then it’s time to sharpen those skills.

Develop industry knowledge. Whether it’s broad-based industry knowledge, on-the-job training , or very specific knowledge about a small sector — knowing all that you can and feeling very confident in your knowledge goes a long way to learning how to solve problems.

Be a part of a solution. Step up and become involved in the problem-solving process. Don’t lead — but follow. Watch an expert solve the problem and, if you pay attention, you’ll learn how to solve a problem, too. Pay attention to the steps and the skills that a person uses.

Practice solving problems. Do some role-playing with a mentor , a professor , co-workers, other students — just start throwing problems out there and coming up with solutions and then detail how those solutions may play out.

Go a step further, find some real-world problems and create your solutions, then find out what they did to solve the problem in actuality.

Identify your weaknesses. If you could easily point out a few of your weaknesses in the list of skills above, then those are the areas you need to focus on improving. How you do it is incredibly varied, so find a method that works for you.

Solve some problems — for real. If the opportunity arises, step in and use your problem-solving skills. You’ll never really know how good (or bad) you are at it until you fail.

That’s right, failing will teach you so much more than succeeding will. You’ll learn how to go back and readdress the problem, find out where you went wrong, learn more from listening even better. Failure will be your best teacher ; it might not make you feel good, but it’ll make you a better problem-solver in the long run.

Once you’ve impressed a hiring manager with top-notch problem-solving skills on your resume and cover letter , you’ll need to continue selling yourself as a problem-solver in the job interview.

There are three main ways that employers can assess your problem-solving skills during an interview:

By asking questions that relate to your past experiences solving problems

Posing hypothetical problems for you to solve

By administering problem-solving tests and exercises

The third method varies wildly depending on what job you’re applying for, so we won’t attempt to cover all the possible problem-solving tests and exercises that may be a part of your application process.

Luckily, interview questions focused on problem-solving are pretty well-known, and most can be answered using the STAR method . STAR stands for situation, task, action, result, and it’s a great way to organize your answers to behavioral interview questions .

Let’s take a look at how to answer some common interview questions built to assess your problem-solving capabilities:

At my current job as an operations analyst at XYZ Inc., my boss set a quarterly goal to cut contractor spending by 25% while maintaining the same level of production and moving more processes in-house. It turned out that achieving this goal required hiring an additional 6 full-time employees, which got stalled due to the pandemic. I suggested that we widen our net and hire remote employees after our initial applicant pool had no solid candidates. I ran the analysis on overhead costs and found that if even 4 of the 6 employees were remote, we’d save 16% annually compared to the contractors’ rates. In the end, all 6 employees we hired were fully remote, and we cut costs by 26% while production rose by a modest amount.
I try to step back and gather research as my first step. For instance, I had a client who needed a graphic designer to work with Crello, which I had never seen before, let alone used. After getting the project details straight, I began meticulously studying the program the YouTube tutorials, and the quick course Crello provides. I also reached out to coworkers who had worked on projects for this same client in the past. Once I felt comfortable with the software, I started work immediately. It was a slower process because I had to be more methodical in my approach, but by putting in some extra hours, I turned in the project ahead of schedule. The client was thrilled with my work and was shocked to hear me joke afterward that it was my first time using Crello.
As a digital marketer , website traffic and conversion rates are my ultimate metrics. However, I also track less visible metrics that can illuminate the story behind the results. For instance, using Google Analytics, I found that 78% of our referral traffic was coming from one affiliate, but that these referrals were only accounting for 5% of our conversions. Another affiliate, who only accounted for about 10% of our referral traffic, was responsible for upwards of 30% of our conversions. I investigated further and found that the second, more effective affiliate was essentially qualifying our leads for us before sending them our way, which made it easier for us to close. I figured out exactly how they were sending us better customers, and reached out to the first, more prolific but less effective affiliate with my understanding of the results. They were able to change their pages that were referring us traffic, and our conversions from that source tripled in just a month. It showed me the importance of digging below the “big picture” metrics to see the mechanics of how revenue was really being generated through digital marketing.

You can bring up your problem-solving skills in your resume summary statement , in your work experience , and under your education section , if you’re a recent graduate. The key is to include items on your resume that speak direclty to your ability to solve problems and generate results.

If you can, quantify your problem-solving accomplishments on your your resume . Hiring managers and recruiters are always more impressed with results that include numbers because they provide much-needed context.

This sample resume for a Customer Service Representative will give you an idea of how you can work problem solving into your resume.

Michelle Beattle 111 Millennial Parkway Chicago, IL 60007 (555) 987-6543 [email protected] Professional Summary Qualified Customer Services Representative with 3 years in a high-pressure customer service environment. Professional, personable, and a true problem solver. Work History ABC Store — Customer Service Representative 01/2015 — 12/2017 Managed in-person and phone relations with customers coming in to pick up purchases, return purchased products, helped find and order items not on store shelves, and explained details and care of merchandise. Became a key player in the customer service department and was promoted to team lead. XYZ Store — Customer Service Representative/Night Manager 01/2018 — 03/2020, released due to Covid-19 layoffs Worked as the night manager of the customer service department and filled in daytime hours when needed. Streamlined a process of moving customers to the right department through an app to ease the burden on the phone lines and reduce customer wait time by 50%. Was working on additional wait time problems when the Covid-19 pandemic caused our stores to close permanently. Education Chicago Tech 2014-2016 Earned an Associate’s Degree in Principles of Customer Care Skills Strong customer service skills Excellent customer complaint resolution Stock record management Order fulfillment New product information Cash register skills and proficiency Leader in problem solving initiatives

You can see how the resume gives you a chance to point out your problem-solving skills and to show where you used them a few times. Your cover letter is your chance to introduce yourself and list a few things that make you stand out from the crowd.

Michelle Beattle 111 Millennial Parkway Chicago, IL 60007 (555) 987-6543 [email protected] Dear Mary McDonald, I am writing in response to your ad on Zippia for a Customer Service Representative . Thank you for taking the time to consider me for this position. Many people believe that a job in customer service is simply listening to people complain all day. I see the job as much more than that. It’s an opportunity to help people solve problems, make their experience with your company more enjoyable, and turn them into life-long advocates of your brand. Through my years of experience and my educational background at Chicago Tech, where I earned an Associate’s Degree in the Principles of Customer Care, I have learned that the customers are the lifeline of the business and without good customer service representatives, a business will falter. I see it as my mission to make each and every customer I come in contact with a fan. I have more than five years of experience in the Customer Services industry and had advanced my role at my last job to Night Manager. I am eager to again prove myself as a hard worker, a dedicated people person, and a problem solver that can be relied upon. I have built a professional reputation as an employee that respects all other employees and customers, as a manager who gets the job done and finds solutions when necessary, and a worker who dives in to learn all she can about the business. Most of my customers have been very satisfied with my resolution ideas and have returned to do business with us again. I believe my expertise would make me a great match for LMNO Store. I have enclosed my resume for your review, and I would appreciate having the opportunity to meet with you to further discuss my qualifications. Thank you again for your time and consideration. Sincerely, Michelle Beattle

You’ve no doubt noticed that many of the skills listed in the problem-solving process are repeated. This is because having these abilities or talents is so important to the entire course of getting a problem solved.

In fact, they’re worthy of a little more attention. Many of them are similar, so we’ll pull them together and discuss how they’re important and how they work together.

Communication, active listening, and customer service skills. No matter where you are in the process of problem-solving, you need to be able to show that you’re listening and engaged and really hearing what the problem is or what a solution may be.

Obviously, the other part of this is being able to communicate effectively so people understand what you’re saying without confusion. Rolled into this are customer service skills , which really are all about listening and responding appropriately — it’s the ultimate in interpersonal communications.

Analysis (data and historical), research, and topic knowledge/understanding. This is how you intellectually grasp the issue and approach it. This can come from studying the topic and the process or it can come from knowledge you’ve gained after years in the business. But the best solutions come from people who thoroughly understand the problem.

Creativity, brainstorming, troubleshooting, and flexibility. All of you creative thinkers will like this area because it’s when your brain is at its best.

Coming up with ideas, collaborating with others, leaping over hurdles, and then being able to change courses immediately, if need be, are all essential. If you’re not creative by nature, then having a team of diverse thinkers can help you in this area.

Dependability, believability, trustworthiness, and follow-through. Think about it, these are all traits a person needs to have to make change happen and to make you comfortable taking that next step with them. Someone who is shifty and shady and never follows through, well, you’re simply not going to do what they ask, are you?

Leadership, teambuilding, decision-making, and project management. These are the skills that someone who is in charge is brimming with. These are the leaders you enjoy working for because you know they’re doing what they can to keep everything in working order. These skills can be learned but they’re often innate.

Prioritizing, prediction, forecasting, evaluating and weighing, and process flow. If you love flow charts, data analysis, prediction modeling, and all of that part of the equation, then you might have some great problem-solving abilities.

These are all great skills because they can help you weed out bad ideas, see flaws, and save massive amounts of time in trial and error.

What is a good example of problem-solving skills?

Good examples of porblem-solving skills include research, analysis, creativity, communciation, and decision-making. Each of these skills build off one another to contribute to the problem solving process. Research and analysis allow you to identify a problem.

Creativity and analysis help you consider different solutions. Meanwhile, communication and decision-making are key to working with others to solve a problem on a large scale.

What are 3 key attributes of a good problem solver?

3 key attributes of a good problem solver are persistence, intellegince, and empathy. Persistence is crucial to remain motivated to work through challenges. Inellegince is needed to make smart, informed choices. Empathy is crucial to maintain positive relationships with others as well as yourself.

What can I say instead of problem-solving skills?

Instead of saying problem-solving skills, you can say the following:

Critical thinker

Solutions-oriented

Engineering

Using different words is helpful, especially when writing your resume and cover letter.

What is problem-solving in the workplace?

Problem-solving in the workplace is the ability to work through any sort of challenge, conflict, or unexpected situation and still achieve business goals. Though it varies by profession, roblem-solving in the workplace is very important for almost any job, because probelms are inevitable. You need to have the appropriate level of problem-solving skills if you want to succeed in your career, whatever it may be.

Department of Labor – Problem Solving and Critical Thinking

How useful was this post?

Click on a star to rate it!

Average rating / 5. Vote count:

No votes so far! Be the first to rate this post.

' src=

Kristin Kizer is an award-winning writer, television and documentary producer, and content specialist who has worked on a wide variety of written, broadcast, and electronic publications. A former writer/producer for The Discovery Channel, she is now a freelance writer and delighted to be sharing her talents and time with the wonderful Zippia audience.

Recent Job Searches

  • Registered Nurse Jobs Resume Location
  • Truck Driver Jobs Resume Location
  • Call Center Representative Jobs Resume Location
  • Customer Service Representative Jobs Resume
  • Delivery Driver Jobs Resume Location
  • Warehouse Worker Jobs Resume Location
  • Account Executive Jobs Resume Location
  • Sales Associate Jobs Resume Location
  • Licensed Practical Nurse Jobs Resume Location
  • Company Driver Jobs Resume

Related posts

problem solving skills wiki

What Is Professional Networking? (With Examples)

problem solving skills wiki

Domain Knowledge: What Is It And Examples

problem solving skills wiki

The Most Important Transferable Skills (With Examples)

problem solving skills wiki

50 Jobs That Use Payroll The Most

  • Career Advice >
  • Desired Traits >
  • Problem Solving Skills

Learn by doing

Guided interactive problem solving that’s effective and fun. master concepts in 15 minutes a day., data analysis, computer science, programming & ai, science & engineering, join over 10 million people learning on brilliant, over 50,000 5-star reviews on ios app store and google play.

App of the day award

Master concepts in 15 minutes a day

Whether you’re a complete beginner or ready to dive into machine learning and beyond, Brilliant makes it easy to level up fast with fun, bite-sized lessons.

Effective, hands-on learning

Visual, interactive lessons make concepts feel intuitive — so even complex ideas just click. Our real-time feedback and simple explanations make learning efficient.

Learn at your level

Students and professionals alike can hone dormant skills or learn new ones. Progress through lessons and challenges tailored to your level. Designed for ages 13 to 113.

Guided bite-sized lessons

Guided bite-sized lessons

We make it easy to stay on track, see your progress, and build your problem solving skills one concept at a time.

Stay motivated

Form a real learning habit with fun content that’s always well-paced, game-like progress tracking, and friendly reminders.

Guided courses for every journey

All of our courses are crafted by award-winning teachers, researchers, and professionals from MIT, Caltech, Duke, Microsoft, Google, and more.

  • Foundational Math
  • Software Development
  • Foundational Logic
  • Data Science
  • High School Math
  • Engineering
  • Statistics and Finance

Courses in Foundational Math

  • Solving Equations
  • Measurement
  • Mathematical Fundamentals
  • Reasoning with Algebra
  • Functions and Quadratics

iOS

10k+ Ratings

android

60k+ Ratings

We use cookies to improve your experience on Brilliant. Learn more about our cookie policy and settings .

  • View history

Abilities and powers related to skills and proficiencies. Not to be confused with Attribute Enhancement .

Omnicompetence

All items (679)

  • Category:Martial Arts
  • Category:Medical Powers
  • Category:Supernatural Arts
  • Category:Weapon Proficiencies

Ability Teaching

  • Fanon:Dimensiobatics

Disco Mastery

IMAGES

  1. 8 Important Problem Solving Skills

    problem solving skills wiki

  2. Developing Problem-Solving Skills for Kids

    problem solving skills wiki

  3. Introduction to Problem Solving Skills

    problem solving skills wiki

  4. 7 Steps to Improve Your Problem Solving Skills

    problem solving skills wiki

  5. 10 Problem Solving Skills Examples: How To Improve

    problem solving skills wiki

  6. Top 10 Skills Of Problem Solving With Examples

    problem solving skills wiki

VIDEO

  1. problem solving skills training

  2. Problem solving skills on 100

  3. Problem Solving Techniques

  4. How To Develop Analytical & Problem Solving Skills ?

  5. 5 principles to solve any problem|problem solving skills|Urdu|Hindi|

  6. Problem-Solving skills for UX Designers #uxdesign

COMMENTS

  1. Problem solving

    Problem solving is the process of achieving a goal by overcoming obstacles, a frequent part of most activities. Problems in need of solutions range from simple personal tasks (e.g. how to turn on an appliance) to complex issues in business and technical fields. The former is an example of simple problem solving (SPS) addressing one issue ...

  2. 12 Ways to Improve Problem Solving Skills

    Not all games are created equal, however. While first-person shooter games can improve your spatial reasoning, they are not as effective as others at developing problem solving skills. [13] Play something that will force you to think strategically or analytically. Try a puzzle game like Tetris.

  3. A guide to problem-solving techniques, steps, and skills

    The 7 steps to problem-solving. When it comes to problem-solving there are seven key steps that you should follow: define the problem, disaggregate, prioritize problem branches, create an analysis plan, conduct analysis, synthesis, and communication. 1. Define the problem. Problem-solving begins with a clear understanding of the issue at hand.

  4. Problem-based learning

    Problem-based learning (PBL) is a student-centered pedagogy in which students learn about a subject through the experience of solving an open-ended problem found in trigger material. The PBL process does not focus on problem solving with a defined solution, but it allows for the development of other desirable skills and attributes.

  5. Art of Problem Solving

    There are many paths to strong problem solving skills. Mathematics is the shortest. Problem solving is crucial in mathematics education because it transcends mathematics. By developing problem solving skills, we learn not only how to tackle math problems, but also how to logically work our way through any problems we may face. The memorizer can ...

  6. Problem-Solving Skills: What They Are and How to Improve Yours

    Problem-solving skills defined. Problem-solving skills are skills that allow individuals to efficiently and effectively find solutions to issues. This attribute is a primary skill that employers look for in job candidates and is essential in a variety of careers. This skill is considered to be a soft skill, or an individual strength, as opposed ...

  7. 7 Problem-Solving Skills That Can Help You Be a More ...

    Although problem-solving is a skill in its own right, a subset of seven skills can help make the process of problem-solving easier. These include analysis, communication, emotional intelligence, resilience, creativity, adaptability, and teamwork. 1. Analysis. As a manager, you'll solve each problem by assessing the situation first.

  8. What Are Problem-Solving Skills? Definition and Examples

    Problem-Solving Skills Definition. Problem-solving skills are the ability to identify problems, brainstorm and analyze answers, and implement the best solutions. An employee with good problem-solving skills is both a self-starter and a collaborative teammate; they are proactive in understanding the root of a problem and work with others to ...

  9. Critical thinking

    Critical thinking is the analysis of available facts, evidence, observations, and arguments in order to form a judgement by the application of rational, skeptical, and unbiased analyses and evaluation. The application of critical thinking includes self-directed, self-disciplined, self-monitored, and self-corrective habits of the mind, thus a critical thinker is a person who practices the ...

  10. Problem Solving

    Articles about Problem Solving. Learn everything you want about Problem Solving with the wikiHow Problem Solving Category. Learn about topics such as How to Deal With Problems, How to Face Problems in Your Life, How to Solve a Problem, and more with our helpful step-by-step instructions with photos and videos.

  11. How to improve your problem solving skills and strategies

    6. Solution implementation. This is what we were waiting for! All problem solving strategies have the end goal of implementing a solution and solving a problem in mind. Remember that in order for any solution to be successful, you need to help your group through all of the previous problem solving steps thoughtfully.

  12. Solving Problems

    Solving problems requires several disciplined shifts between divergent thinking, which expands the number, character, and scope of ideas that are considered to convergent thinking which narrows the number of alternatives being considered and increases focus. These shifts occur within some stages, between certain stages, and across the entire ...

  13. Cognition and Instruction/Problem Solving, Critical Thinking and

    It has long been understood that the study of history requires critical thought and analytical problem-solving skills. In order to become proficient at the study of history, learners must interpret and construct how we come to know about the past and navigate the connection between the past and the body of knowledge we call history. ...

  14. 7 Problem Solving Skills That Aren't Just Buzzwords (+ Examples)

    Collaboration. Having a growth mindset. In short, understanding, developing, and showcasing these skills, can greatly boost your chances at getting noticed by the hiring managers. So, don't hesitate and start working on your problem-solving skills right now! 0.

  15. How Bloom's Taxonomy Can Help You Learn More Effectively

    Bloom's taxonomy is an educational framework that outlines several progressively more complex cognitive skills. Here's how you can use it to learn more effectively. ... It involves the acquisition of knowledge and the development of problem-solving, decision-making, and critical-thinking abilities. Affective Domain .

  16. Category:Problem solving skills

    Ideation (creative process) Inductive reasoning. Integrative thinking.

  17. What Are Problem-Solving Skills? (Definition, Examples, And ...

    Problem-solving skills include analysis, creativity, prioritization, organization, and troubleshooting. To solve a problem, you need to use a variety of skills based on the needs of the situation. Most jobs essentially boil down to identifying and solving problems consistently and effectively. That's why employers value problem-solving skills ...

  18. How should I prepare?

    The best way to prepare for math contests is to do lots of practice problems and learn the material necessary to solve the problems. There are also many books and online handouts/lectures you can use to improve your problem-solving skills. Depending on your current abilities, you will want to start out with different practice problems ...

  19. How to Develop Problem Solving Skills: 4 Tips

    Learning problem-solving techniques is a must for working professionals in any field. No matter your title or job description, the ability to find the root cause of a difficult problem and formulate viable solutions is a skill that employers value. Learning the soft skills and critical thinking techniques that good problem solvers use can help ...

  20. What Are Problem-Solving Skills? Definitions and Examples

    Creativity. Communication. Decision-making. Team-building. Problem-solving skills are important in every career at every level. As a result, effective problem-solving may also require industry or job-specific technical skills. For example, a registered nurse will need active listening and communication skills when interacting with patients but ...

  21. Brilliant

    Brilliant - Build quantitative skills in math, science, and computer science with hands-on, interactive lessons. Log in. Learn by doing Guided interactive problem solving that's effective ... and build your problem solving skills one concept at a time. Stay motivated. Form a real learning habit with fun content that's always well-paced ...

  22. 21st century skills

    critical-thinking, problem-solving, analytical thinking; communication; SCANS. Following the release of A Nation at Risk, the U.S. Secretary of Labor appointed the Secretary's Commission on Achieving Necessary Skills (SCANS) to determine the skills needed for young people to succeed in the workplace fostering a high-performance economy. SCANS ...

  23. Category:Skills

    Abilities and powers related to skills and proficiencies. Not to be confused with Attribute Enhancement . Category:Martial Arts. Category:Medical Powers. Category:Supernatural Arts. Category:Weapon Proficiencies. A. Ability Intuition. Ability Learning.