Grad Coach

What Is Research Methodology? A Plain-Language Explanation & Definition (With Examples)

By Derek Jansen (MBA)  and Kerryn Warren (PhD) | June 2020 (Last updated April 2023)

If you’re new to formal academic research, it’s quite likely that you’re feeling a little overwhelmed by all the technical lingo that gets thrown around. And who could blame you – “research methodology”, “research methods”, “sampling strategies”… it all seems never-ending!

In this post, we’ll demystify the landscape with plain-language explanations and loads of examples (including easy-to-follow videos), so that you can approach your dissertation, thesis or research project with confidence. Let’s get started.

Research Methodology 101

  • What exactly research methodology means
  • What qualitative , quantitative and mixed methods are
  • What sampling strategy is
  • What data collection methods are
  • What data analysis methods are
  • How to choose your research methodology
  • Example of a research methodology

Free Webinar: Research Methodology 101

What is research methodology?

Research methodology simply refers to the practical “how” of a research study. More specifically, it’s about how  a researcher  systematically designs a study  to ensure valid and reliable results that address the research aims, objectives and research questions . Specifically, how the researcher went about deciding:

  • What type of data to collect (e.g., qualitative or quantitative data )
  • Who  to collect it from (i.e., the sampling strategy )
  • How to  collect  it (i.e., the data collection method )
  • How to  analyse  it (i.e., the data analysis methods )

Within any formal piece of academic research (be it a dissertation, thesis or journal article), you’ll find a research methodology chapter or section which covers the aspects mentioned above. Importantly, a good methodology chapter explains not just   what methodological choices were made, but also explains  why they were made. In other words, the methodology chapter should justify  the design choices, by showing that the chosen methods and techniques are the best fit for the research aims, objectives and research questions. 

So, it’s the same as research design?

Not quite. As we mentioned, research methodology refers to the collection of practical decisions regarding what data you’ll collect, from who, how you’ll collect it and how you’ll analyse it. Research design, on the other hand, is more about the overall strategy you’ll adopt in your study. For example, whether you’ll use an experimental design in which you manipulate one variable while controlling others. You can learn more about research design and the various design types here .

Need a helping hand?

the research methodology used

What are qualitative, quantitative and mixed-methods?

Qualitative, quantitative and mixed-methods are different types of methodological approaches, distinguished by their focus on words , numbers or both . This is a bit of an oversimplification, but its a good starting point for understanding.

Let’s take a closer look.

Qualitative research refers to research which focuses on collecting and analysing words (written or spoken) and textual or visual data, whereas quantitative research focuses on measurement and testing using numerical data . Qualitative analysis can also focus on other “softer” data points, such as body language or visual elements.

It’s quite common for a qualitative methodology to be used when the research aims and research questions are exploratory  in nature. For example, a qualitative methodology might be used to understand peoples’ perceptions about an event that took place, or a political candidate running for president. 

Contrasted to this, a quantitative methodology is typically used when the research aims and research questions are confirmatory  in nature. For example, a quantitative methodology might be used to measure the relationship between two variables (e.g. personality type and likelihood to commit a crime) or to test a set of hypotheses .

As you’ve probably guessed, the mixed-method methodology attempts to combine the best of both qualitative and quantitative methodologies to integrate perspectives and create a rich picture. If you’d like to learn more about these three methodological approaches, be sure to watch our explainer video below.

What is sampling strategy?

Simply put, sampling is about deciding who (or where) you’re going to collect your data from . Why does this matter? Well, generally it’s not possible to collect data from every single person in your group of interest (this is called the “population”), so you’ll need to engage a smaller portion of that group that’s accessible and manageable (this is called the “sample”).

How you go about selecting the sample (i.e., your sampling strategy) will have a major impact on your study.  There are many different sampling methods  you can choose from, but the two overarching categories are probability   sampling and  non-probability   sampling .

Probability sampling  involves using a completely random sample from the group of people you’re interested in. This is comparable to throwing the names all potential participants into a hat, shaking it up, and picking out the “winners”. By using a completely random sample, you’ll minimise the risk of selection bias and the results of your study will be more generalisable  to the entire population. 

Non-probability sampling , on the other hand,  doesn’t use a random sample . For example, it might involve using a convenience sample, which means you’d only interview or survey people that you have access to (perhaps your friends, family or work colleagues), rather than a truly random sample. With non-probability sampling, the results are typically not generalisable .

To learn more about sampling methods, be sure to check out the video below.

What are data collection methods?

As the name suggests, data collection methods simply refers to the way in which you go about collecting the data for your study. Some of the most common data collection methods include:

  • Interviews (which can be unstructured, semi-structured or structured)
  • Focus groups and group interviews
  • Surveys (online or physical surveys)
  • Observations (watching and recording activities)
  • Biophysical measurements (e.g., blood pressure, heart rate, etc.)
  • Documents and records (e.g., financial reports, court records, etc.)

The choice of which data collection method to use depends on your overall research aims and research questions , as well as practicalities and resource constraints. For example, if your research is exploratory in nature, qualitative methods such as interviews and focus groups would likely be a good fit. Conversely, if your research aims to measure specific variables or test hypotheses, large-scale surveys that produce large volumes of numerical data would likely be a better fit.

What are data analysis methods?

Data analysis methods refer to the methods and techniques that you’ll use to make sense of your data. These can be grouped according to whether the research is qualitative  (words-based) or quantitative (numbers-based).

Popular data analysis methods in qualitative research include:

  • Qualitative content analysis
  • Thematic analysis
  • Discourse analysis
  • Narrative analysis
  • Interpretative phenomenological analysis (IPA)
  • Visual analysis (of photographs, videos, art, etc.)

Qualitative data analysis all begins with data coding , after which an analysis method is applied. In some cases, more than one analysis method is used, depending on the research aims and research questions . In the video below, we explore some  common qualitative analysis methods, along with practical examples.  

Moving on to the quantitative side of things, popular data analysis methods in this type of research include:

  • Descriptive statistics (e.g. means, medians, modes )
  • Inferential statistics (e.g. correlation, regression, structural equation modelling)

Again, the choice of which data collection method to use depends on your overall research aims and objectives , as well as practicalities and resource constraints. In the video below, we explain some core concepts central to quantitative analysis.

How do I choose a research methodology?

As you’ve probably picked up by now, your research aims and objectives have a major influence on the research methodology . So, the starting point for developing your research methodology is to take a step back and look at the big picture of your research, before you make methodology decisions. The first question you need to ask yourself is whether your research is exploratory or confirmatory in nature.

If your research aims and objectives are primarily exploratory in nature, your research will likely be qualitative and therefore you might consider qualitative data collection methods (e.g. interviews) and analysis methods (e.g. qualitative content analysis). 

Conversely, if your research aims and objective are looking to measure or test something (i.e. they’re confirmatory), then your research will quite likely be quantitative in nature, and you might consider quantitative data collection methods (e.g. surveys) and analyses (e.g. statistical analysis).

Designing your research and working out your methodology is a large topic, which we cover extensively on the blog . For now, however, the key takeaway is that you should always start with your research aims, objectives and research questions (the golden thread). Every methodological choice you make needs align with those three components. 

Example of a research methodology chapter

In the video below, we provide a detailed walkthrough of a research methodology from an actual dissertation, as well as an overview of our free methodology template .

the research methodology used

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

What is descriptive statistics?

199 Comments

Leo Balanlay

Thank you for this simple yet comprehensive and easy to digest presentation. God Bless!

Derek Jansen

You’re most welcome, Leo. Best of luck with your research!

Asaf

I found it very useful. many thanks

Solomon F. Joel

This is really directional. A make-easy research knowledge.

Upendo Mmbaga

Thank you for this, I think will help my research proposal

vicky

Thanks for good interpretation,well understood.

Alhaji Alie Kanu

Good morning sorry I want to the search topic

Baraka Gombela

Thank u more

Boyd

Thank you, your explanation is simple and very helpful.

Suleiman Abubakar

Very educative a.nd exciting platform. A bigger thank you and I’ll like to always be with you

Daniel Mondela

That’s the best analysis

Okwuchukwu

So simple yet so insightful. Thank you.

Wendy Lushaba

This really easy to read as it is self-explanatory. Very much appreciated…

Lilian

Thanks for this. It’s so helpful and explicit. For those elements highlighted in orange, they were good sources of referrals for concepts I didn’t understand. A million thanks for this.

Tabe Solomon Matebesi

Good morning, I have been reading your research lessons through out a period of times. They are important, impressive and clear. Want to subscribe and be and be active with you.

Hafiz Tahir

Thankyou So much Sir Derek…

Good morning thanks so much for the on line lectures am a student of university of Makeni.select a research topic and deliberate on it so that we’ll continue to understand more.sorry that’s a suggestion.

James Olukoya

Beautiful presentation. I love it.

ATUL KUMAR

please provide a research mehodology example for zoology

Ogar , Praise

It’s very educative and well explained

Joseph Chan

Thanks for the concise and informative data.

Goja Terhemba John

This is really good for students to be safe and well understand that research is all about

Prakash thapa

Thank you so much Derek sir🖤🙏🤗

Abraham

Very simple and reliable

Chizor Adisa

This is really helpful. Thanks alot. God bless you.

Danushika

very useful, Thank you very much..

nakato justine

thanks a lot its really useful

karolina

in a nutshell..thank you!

Bitrus

Thanks for updating my understanding on this aspect of my Thesis writing.

VEDASTO DATIVA MATUNDA

thank you so much my through this video am competently going to do a good job my thesis

Jimmy

Thanks a lot. Very simple to understand. I appreciate 🙏

Mfumukazi

Very simple but yet insightful Thank you

Adegboyega ADaeBAYO

This has been an eye opening experience. Thank you grad coach team.

SHANTHi

Very useful message for research scholars

Teijili

Really very helpful thank you

sandokhan

yes you are right and i’m left

MAHAMUDUL HASSAN

Research methodology with a simplest way i have never seen before this article.

wogayehu tuji

wow thank u so much

Good morning thanks so much for the on line lectures am a student of university of Makeni.select a research topic and deliberate on is so that we will continue to understand more.sorry that’s a suggestion.

Gebregergish

Very precise and informative.

Javangwe Nyeketa

Thanks for simplifying these terms for us, really appreciate it.

Mary Benard Mwanganya

Thanks this has really helped me. It is very easy to understand.

mandla

I found the notes and the presentation assisting and opening my understanding on research methodology

Godfrey Martin Assenga

Good presentation

Nhubu Tawanda

Im so glad you clarified my misconceptions. Im now ready to fry my onions. Thank you so much. God bless

Odirile

Thank you a lot.

prathap

thanks for the easy way of learning and desirable presentation.

Ajala Tajudeen

Thanks a lot. I am inspired

Visor Likali

Well written

Pondris Patrick

I am writing a APA Format paper . I using questionnaire with 120 STDs teacher for my participant. Can you write me mthology for this research. Send it through email sent. Just need a sample as an example please. My topic is ” impacts of overcrowding on students learning

Thanks for your comment.

We can’t write your methodology for you. If you’re looking for samples, you should be able to find some sample methodologies on Google. Alternatively, you can download some previous dissertations from a dissertation directory and have a look at the methodology chapters therein.

All the best with your research.

Anon

Thank you so much for this!! God Bless

Keke

Thank you. Explicit explanation

Sophy

Thank you, Derek and Kerryn, for making this simple to understand. I’m currently at the inception stage of my research.

Luyanda

Thnks a lot , this was very usefull on my assignment

Beulah Emmanuel

excellent explanation

Gino Raz

I’m currently working on my master’s thesis, thanks for this! I’m certain that I will use Qualitative methodology.

Abigail

Thanks a lot for this concise piece, it was quite relieving and helpful. God bless you BIG…

Yonas Tesheme

I am currently doing my dissertation proposal and I am sure that I will do quantitative research. Thank you very much it was extremely helpful.

zahid t ahmad

Very interesting and informative yet I would like to know about examples of Research Questions as well, if possible.

Maisnam loyalakla

I’m about to submit a research presentation, I have come to understand from your simplification on understanding research methodology. My research will be mixed methodology, qualitative as well as quantitative. So aim and objective of mixed method would be both exploratory and confirmatory. Thanks you very much for your guidance.

Mila Milano

OMG thanks for that, you’re a life saver. You covered all the points I needed. Thank you so much ❤️ ❤️ ❤️

Christabel

Thank you immensely for this simple, easy to comprehend explanation of data collection methods. I have been stuck here for months 😩. Glad I found your piece. Super insightful.

Lika

I’m going to write synopsis which will be quantitative research method and I don’t know how to frame my topic, can I kindly get some ideas..

Arlene

Thanks for this, I was really struggling.

This was really informative I was struggling but this helped me.

Modie Maria Neswiswi

Thanks a lot for this information, simple and straightforward. I’m a last year student from the University of South Africa UNISA South Africa.

Mursel Amin

its very much informative and understandable. I have enlightened.

Mustapha Abubakar

An interesting nice exploration of a topic.

Sarah

Thank you. Accurate and simple🥰

Sikandar Ali Shah

This article was really helpful, it helped me understanding the basic concepts of the topic Research Methodology. The examples were very clear, and easy to understand. I would like to visit this website again. Thank you so much for such a great explanation of the subject.

Debbie

Thanks dude

Deborah

Thank you Doctor Derek for this wonderful piece, please help to provide your details for reference purpose. God bless.

Michael

Many compliments to you

Dana

Great work , thank you very much for the simple explanation

Aryan

Thank you. I had to give a presentation on this topic. I have looked everywhere on the internet but this is the best and simple explanation.

omodara beatrice

thank you, its very informative.

WALLACE

Well explained. Now I know my research methodology will be qualitative and exploratory. Thank you so much, keep up the good work

GEORGE REUBEN MSHEGAME

Well explained, thank you very much.

Ainembabazi Rose

This is good explanation, I have understood the different methods of research. Thanks a lot.

Kamran Saeed

Great work…very well explanation

Hyacinth Chebe Ukwuani

Thanks Derek. Kerryn was just fantastic!

Great to hear that, Hyacinth. Best of luck with your research!

Matobela Joel Marabi

Its a good templates very attractive and important to PhD students and lectuter

Thanks for the feedback, Matobela. Good luck with your research methodology.

Elie

Thank you. This is really helpful.

You’re very welcome, Elie. Good luck with your research methodology.

Sakina Dalal

Well explained thanks

Edward

This is a very helpful site especially for young researchers at college. It provides sufficient information to guide students and equip them with the necessary foundation to ask any other questions aimed at deepening their understanding.

Thanks for the kind words, Edward. Good luck with your research!

Ngwisa Marie-claire NJOTU

Thank you. I have learned a lot.

Great to hear that, Ngwisa. Good luck with your research methodology!

Claudine

Thank you for keeping your presentation simples and short and covering key information for research methodology. My key takeaway: Start with defining your research objective the other will depend on the aims of your research question.

Zanele

My name is Zanele I would like to be assisted with my research , and the topic is shortage of nursing staff globally want are the causes , effects on health, patients and community and also globally

Oluwafemi Taiwo

Thanks for making it simple and clear. It greatly helped in understanding research methodology. Regards.

Francis

This is well simplified and straight to the point

Gabriel mugangavari

Thank you Dr

Dina Haj Ibrahim

I was given an assignment to research 2 publications and describe their research methodology? I don’t know how to start this task can someone help me?

Sure. You’re welcome to book an initial consultation with one of our Research Coaches to discuss how we can assist – https://gradcoach.com/book/new/ .

BENSON ROSEMARY

Thanks a lot I am relieved of a heavy burden.keep up with the good work

Ngaka Mokoena

I’m very much grateful Dr Derek. I’m planning to pursue one of the careers that really needs one to be very much eager to know. There’s a lot of research to do and everything, but since I’ve gotten this information I will use it to the best of my potential.

Pritam Pal

Thank you so much, words are not enough to explain how helpful this session has been for me!

faith

Thanks this has thought me alot.

kenechukwu ambrose

Very concise and helpful. Thanks a lot

Eunice Shatila Sinyemu 32070

Thank Derek. This is very helpful. Your step by step explanation has made it easier for me to understand different concepts. Now i can get on with my research.

Michelle

I wish i had come across this sooner. So simple but yet insightful

yugine the

really nice explanation thank you so much

Goodness

I’m so grateful finding this site, it’s really helpful…….every term well explained and provide accurate understanding especially to student going into an in-depth research for the very first time, even though my lecturer already explained this topic to the class, I think I got the clear and efficient explanation here, much thanks to the author.

lavenda

It is very helpful material

Lubabalo Ntshebe

I would like to be assisted with my research topic : Literature Review and research methodologies. My topic is : what is the relationship between unemployment and economic growth?

Buddhi

Its really nice and good for us.

Ekokobe Aloysius

THANKS SO MUCH FOR EXPLANATION, ITS VERY CLEAR TO ME WHAT I WILL BE DOING FROM NOW .GREAT READS.

Asanka

Short but sweet.Thank you

Shishir Pokharel

Informative article. Thanks for your detailed information.

Badr Alharbi

I’m currently working on my Ph.D. thesis. Thanks a lot, Derek and Kerryn, Well-organized sequences, facilitate the readers’ following.

Tejal

great article for someone who does not have any background can even understand

Hasan Chowdhury

I am a bit confused about research design and methodology. Are they the same? If not, what are the differences and how are they related?

Thanks in advance.

Ndileka Myoli

concise and informative.

Sureka Batagoda

Thank you very much

More Smith

How can we site this article is Harvard style?

Anne

Very well written piece that afforded better understanding of the concept. Thank you!

Denis Eken Lomoro

Am a new researcher trying to learn how best to write a research proposal. I find your article spot on and want to download the free template but finding difficulties. Can u kindly send it to my email, the free download entitled, “Free Download: Research Proposal Template (with Examples)”.

fatima sani

Thank too much

Khamis

Thank you very much for your comprehensive explanation about research methodology so I like to thank you again for giving us such great things.

Aqsa Iftijhar

Good very well explained.Thanks for sharing it.

Krishna Dhakal

Thank u sir, it is really a good guideline.

Vimbainashe

so helpful thank you very much.

Joelma M Monteiro

Thanks for the video it was very explanatory and detailed, easy to comprehend and follow up. please, keep it up the good work

AVINASH KUMAR NIRALA

It was very helpful, a well-written document with precise information.

orebotswe morokane

how do i reference this?

Roy

MLA Jansen, Derek, and Kerryn Warren. “What (Exactly) Is Research Methodology?” Grad Coach, June 2021, gradcoach.com/what-is-research-methodology/.

APA Jansen, D., & Warren, K. (2021, June). What (Exactly) Is Research Methodology? Grad Coach. https://gradcoach.com/what-is-research-methodology/

sheryl

Your explanation is easily understood. Thank you

Dr Christie

Very help article. Now I can go my methodology chapter in my thesis with ease

Alice W. Mbuthia

I feel guided ,Thank you

Joseph B. Smith

This simplification is very helpful. It is simple but very educative, thanks ever so much

Dr. Ukpai Ukpai Eni

The write up is informative and educative. It is an academic intellectual representation that every good researcher can find useful. Thanks

chimbini Joseph

Wow, this is wonderful long live.

Tahir

Nice initiative

Thembsie

thank you the video was helpful to me.

JesusMalick

Thank you very much for your simple and clear explanations I’m really satisfied by the way you did it By now, I think I can realize a very good article by following your fastidious indications May God bless you

G.Horizon

Thanks very much, it was very concise and informational for a beginner like me to gain an insight into what i am about to undertake. I really appreciate.

Adv Asad Ali

very informative sir, it is amazing to understand the meaning of question hidden behind that, and simple language is used other than legislature to understand easily. stay happy.

Jonas Tan

This one is really amazing. All content in your youtube channel is a very helpful guide for doing research. Thanks, GradCoach.

mahmoud ali

research methodologies

Lucas Sinyangwe

Please send me more information concerning dissertation research.

Amamten Jr.

Nice piece of knowledge shared….. #Thump_UP

Hajara Salihu

This is amazing, it has said it all. Thanks to Gradcoach

Gerald Andrew Babu

This is wonderful,very elaborate and clear.I hope to reach out for your assistance in my research very soon.

Safaa

This is the answer I am searching about…

realy thanks a lot

Ahmed Saeed

Thank you very much for this awesome, to the point and inclusive article.

Soraya Kolli

Thank you very much I need validity and reliability explanation I have exams

KuzivaKwenda

Thank you for a well explained piece. This will help me going forward.

Emmanuel Chukwuma

Very simple and well detailed Many thanks

Zeeshan Ali Khan

This is so very simple yet so very effective and comprehensive. An Excellent piece of work.

Molly Wasonga

I wish I saw this earlier on! Great insights for a beginner(researcher) like me. Thanks a mil!

Blessings Chigodo

Thank you very much, for such a simplified, clear and practical step by step both for academic students and general research work. Holistic, effective to use and easy to read step by step. One can easily apply the steps in practical terms and produce a quality document/up-to standard

Thanks for simplifying these terms for us, really appreciated.

Joseph Kyereme

Thanks for a great work. well understood .

Julien

This was very helpful. It was simple but profound and very easy to understand. Thank you so much!

Kishimbo

Great and amazing research guidelines. Best site for learning research

ankita bhatt

hello sir/ma’am, i didn’t find yet that what type of research methodology i am using. because i am writing my report on CSR and collect all my data from websites and articles so which type of methodology i should write in dissertation report. please help me. i am from India.

memory

how does this really work?

princelow presley

perfect content, thanks a lot

George Nangpaak Duut

As a researcher, I commend you for the detailed and simplified information on the topic in question. I would like to remain in touch for the sharing of research ideas on other topics. Thank you

EPHRAIM MWANSA MULENGA

Impressive. Thank you, Grad Coach 😍

Thank you Grad Coach for this piece of information. I have at least learned about the different types of research methodologies.

Varinder singh Rana

Very useful content with easy way

Mbangu Jones Kashweeka

Thank you very much for the presentation. I am an MPH student with the Adventist University of Africa. I have successfully completed my theory and starting on my research this July. My topic is “Factors associated with Dental Caries in (one District) in Botswana. I need help on how to go about this quantitative research

Carolyn Russell

I am so grateful to run across something that was sooo helpful. I have been on my doctorate journey for quite some time. Your breakdown on methodology helped me to refresh my intent. Thank you.

Indabawa Musbahu

thanks so much for this good lecture. student from university of science and technology, Wudil. Kano Nigeria.

Limpho Mphutlane

It’s profound easy to understand I appreciate

Mustafa Salimi

Thanks a lot for sharing superb information in a detailed but concise manner. It was really helpful and helped a lot in getting into my own research methodology.

Rabilu yau

Comment * thanks very much

Ari M. Hussein

This was sooo helpful for me thank you so much i didn’t even know what i had to write thank you!

You’re most welcome 🙂

Varsha Patnaik

Simple and good. Very much helpful. Thank you so much.

STARNISLUS HAAMBOKOMA

This is very good work. I have benefited.

Dr Md Asraul Hoque

Thank you so much for sharing

Nkasa lizwi

This is powerful thank you so much guys

I am nkasa lizwi doing my research proposal on honors with the university of Walter Sisulu Komani I m on part 3 now can you assist me.my topic is: transitional challenges faced by educators in intermediate phase in the Alfred Nzo District.

Atonisah Jonathan

Appreciate the presentation. Very useful step-by-step guidelines to follow.

Bello Suleiman

I appreciate sir

Titilayo

wow! This is super insightful for me. Thank you!

Emerita Guzman

Indeed this material is very helpful! Kudos writers/authors.

TSEDEKE JOHN

I want to say thank you very much, I got a lot of info and knowledge. Be blessed.

Akanji wasiu

I want present a seminar paper on Optimisation of Deep learning-based models on vulnerability detection in digital transactions.

Need assistance

Clement Lokwar

Dear Sir, I want to be assisted on my research on Sanitation and Water management in emergencies areas.

Peter Sone Kome

I am deeply grateful for the knowledge gained. I will be getting in touch shortly as I want to be assisted in my ongoing research.

Nirmala

The information shared is informative, crisp and clear. Kudos Team! And thanks a lot!

Bipin pokhrel

hello i want to study

Kassahun

Hello!! Grad coach teams. I am extremely happy in your tutorial or consultation. i am really benefited all material and briefing. Thank you very much for your generous helps. Please keep it up. If you add in your briefing, references for further reading, it will be very nice.

Ezra

All I have to say is, thank u gyz.

Work

Good, l thanks

Artak Ghonyan

thank you, it is very useful

Trackbacks/Pingbacks

  • What Is A Literature Review (In A Dissertation Or Thesis) - Grad Coach - […] the literature review is to inform the choice of methodology for your own research. As we’ve discussed on the Grad Coach blog,…
  • Free Download: Research Proposal Template (With Examples) - Grad Coach - […] Research design (methodology) […]
  • Dissertation vs Thesis: What's the difference? - Grad Coach - […] and thesis writing on a daily basis – everything from how to find a good research topic to which…

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Get science-backed answers as you write with Paperpal's Research feature

What is Research Methodology? Definition, Types, and Examples

the research methodology used

Research methodology 1,2 is a structured and scientific approach used to collect, analyze, and interpret quantitative or qualitative data to answer research questions or test hypotheses. A research methodology is like a plan for carrying out research and helps keep researchers on track by limiting the scope of the research. Several aspects must be considered before selecting an appropriate research methodology, such as research limitations and ethical concerns that may affect your research.

The research methodology section in a scientific paper describes the different methodological choices made, such as the data collection and analysis methods, and why these choices were selected. The reasons should explain why the methods chosen are the most appropriate to answer the research question. A good research methodology also helps ensure the reliability and validity of the research findings. There are three types of research methodology—quantitative, qualitative, and mixed-method, which can be chosen based on the research objectives.

What is research methodology ?

A research methodology describes the techniques and procedures used to identify and analyze information regarding a specific research topic. It is a process by which researchers design their study so that they can achieve their objectives using the selected research instruments. It includes all the important aspects of research, including research design, data collection methods, data analysis methods, and the overall framework within which the research is conducted. While these points can help you understand what is research methodology, you also need to know why it is important to pick the right methodology.

Why is research methodology important?

Having a good research methodology in place has the following advantages: 3

  • Helps other researchers who may want to replicate your research; the explanations will be of benefit to them.
  • You can easily answer any questions about your research if they arise at a later stage.
  • A research methodology provides a framework and guidelines for researchers to clearly define research questions, hypotheses, and objectives.
  • It helps researchers identify the most appropriate research design, sampling technique, and data collection and analysis methods.
  • A sound research methodology helps researchers ensure that their findings are valid and reliable and free from biases and errors.
  • It also helps ensure that ethical guidelines are followed while conducting research.
  • A good research methodology helps researchers in planning their research efficiently, by ensuring optimum usage of their time and resources.

Writing the methods section of a research paper? Let Paperpal help you achieve perfection

Types of research methodology.

There are three types of research methodology based on the type of research and the data required. 1

  • Quantitative research methodology focuses on measuring and testing numerical data. This approach is good for reaching a large number of people in a short amount of time. This type of research helps in testing the causal relationships between variables, making predictions, and generalizing results to wider populations.
  • Qualitative research methodology examines the opinions, behaviors, and experiences of people. It collects and analyzes words and textual data. This research methodology requires fewer participants but is still more time consuming because the time spent per participant is quite large. This method is used in exploratory research where the research problem being investigated is not clearly defined.
  • Mixed-method research methodology uses the characteristics of both quantitative and qualitative research methodologies in the same study. This method allows researchers to validate their findings, verify if the results observed using both methods are complementary, and explain any unexpected results obtained from one method by using the other method.

What are the types of sampling designs in research methodology?

Sampling 4 is an important part of a research methodology and involves selecting a representative sample of the population to conduct the study, making statistical inferences about them, and estimating the characteristics of the whole population based on these inferences. There are two types of sampling designs in research methodology—probability and nonprobability.

  • Probability sampling

In this type of sampling design, a sample is chosen from a larger population using some form of random selection, that is, every member of the population has an equal chance of being selected. The different types of probability sampling are:

  • Systematic —sample members are chosen at regular intervals. It requires selecting a starting point for the sample and sample size determination that can be repeated at regular intervals. This type of sampling method has a predefined range; hence, it is the least time consuming.
  • Stratified —researchers divide the population into smaller groups that don’t overlap but represent the entire population. While sampling, these groups can be organized, and then a sample can be drawn from each group separately.
  • Cluster —the population is divided into clusters based on demographic parameters like age, sex, location, etc.
  • Convenience —selects participants who are most easily accessible to researchers due to geographical proximity, availability at a particular time, etc.
  • Purposive —participants are selected at the researcher’s discretion. Researchers consider the purpose of the study and the understanding of the target audience.
  • Snowball —already selected participants use their social networks to refer the researcher to other potential participants.
  • Quota —while designing the study, the researchers decide how many people with which characteristics to include as participants. The characteristics help in choosing people most likely to provide insights into the subject.

What are data collection methods?

During research, data are collected using various methods depending on the research methodology being followed and the research methods being undertaken. Both qualitative and quantitative research have different data collection methods, as listed below.

Qualitative research 5

  • One-on-one interviews: Helps the interviewers understand a respondent’s subjective opinion and experience pertaining to a specific topic or event
  • Document study/literature review/record keeping: Researchers’ review of already existing written materials such as archives, annual reports, research articles, guidelines, policy documents, etc.
  • Focus groups: Constructive discussions that usually include a small sample of about 6-10 people and a moderator, to understand the participants’ opinion on a given topic.
  • Qualitative observation : Researchers collect data using their five senses (sight, smell, touch, taste, and hearing).

Quantitative research 6

  • Sampling: The most common type is probability sampling.
  • Interviews: Commonly telephonic or done in-person.
  • Observations: Structured observations are most commonly used in quantitative research. In this method, researchers make observations about specific behaviors of individuals in a structured setting.
  • Document review: Reviewing existing research or documents to collect evidence for supporting the research.
  • Surveys and questionnaires. Surveys can be administered both online and offline depending on the requirement and sample size.

Let Paperpal help you write the perfect research methods section. Start now!

What are data analysis methods.

The data collected using the various methods for qualitative and quantitative research need to be analyzed to generate meaningful conclusions. These data analysis methods 7 also differ between quantitative and qualitative research.

Quantitative research involves a deductive method for data analysis where hypotheses are developed at the beginning of the research and precise measurement is required. The methods include statistical analysis applications to analyze numerical data and are grouped into two categories—descriptive and inferential.

Descriptive analysis is used to describe the basic features of different types of data to present it in a way that ensures the patterns become meaningful. The different types of descriptive analysis methods are:

  • Measures of frequency (count, percent, frequency)
  • Measures of central tendency (mean, median, mode)
  • Measures of dispersion or variation (range, variance, standard deviation)
  • Measure of position (percentile ranks, quartile ranks)

Inferential analysis is used to make predictions about a larger population based on the analysis of the data collected from a smaller population. This analysis is used to study the relationships between different variables. Some commonly used inferential data analysis methods are:

  • Correlation: To understand the relationship between two or more variables.
  • Cross-tabulation: Analyze the relationship between multiple variables.
  • Regression analysis: Study the impact of independent variables on the dependent variable.
  • Frequency tables: To understand the frequency of data.
  • Analysis of variance: To test the degree to which two or more variables differ in an experiment.

Qualitative research involves an inductive method for data analysis where hypotheses are developed after data collection. The methods include:

  • Content analysis: For analyzing documented information from text and images by determining the presence of certain words or concepts in texts.
  • Narrative analysis: For analyzing content obtained from sources such as interviews, field observations, and surveys. The stories and opinions shared by people are used to answer research questions.
  • Discourse analysis: For analyzing interactions with people considering the social context, that is, the lifestyle and environment, under which the interaction occurs.
  • Grounded theory: Involves hypothesis creation by data collection and analysis to explain why a phenomenon occurred.
  • Thematic analysis: To identify important themes or patterns in data and use these to address an issue.

How to choose a research methodology?

Here are some important factors to consider when choosing a research methodology: 8

  • Research objectives, aims, and questions —these would help structure the research design.
  • Review existing literature to identify any gaps in knowledge.
  • Check the statistical requirements —if data-driven or statistical results are needed then quantitative research is the best. If the research questions can be answered based on people’s opinions and perceptions, then qualitative research is most suitable.
  • Sample size —sample size can often determine the feasibility of a research methodology. For a large sample, less effort- and time-intensive methods are appropriate.
  • Constraints —constraints of time, geography, and resources can help define the appropriate methodology.

Got writer’s block? Kickstart your research paper writing with Paperpal now!

How to write a research methodology .

A research methodology should include the following components: 3,9

  • Research design —should be selected based on the research question and the data required. Common research designs include experimental, quasi-experimental, correlational, descriptive, and exploratory.
  • Research method —this can be quantitative, qualitative, or mixed-method.
  • Reason for selecting a specific methodology —explain why this methodology is the most suitable to answer your research problem.
  • Research instruments —explain the research instruments you plan to use, mainly referring to the data collection methods such as interviews, surveys, etc. Here as well, a reason should be mentioned for selecting the particular instrument.
  • Sampling —this involves selecting a representative subset of the population being studied.
  • Data collection —involves gathering data using several data collection methods, such as surveys, interviews, etc.
  • Data analysis —describe the data analysis methods you will use once you’ve collected the data.
  • Research limitations —mention any limitations you foresee while conducting your research.
  • Validity and reliability —validity helps identify the accuracy and truthfulness of the findings; reliability refers to the consistency and stability of the results over time and across different conditions.
  • Ethical considerations —research should be conducted ethically. The considerations include obtaining consent from participants, maintaining confidentiality, and addressing conflicts of interest.

Streamline Your Research Paper Writing Process with Paperpal

The methods section is a critical part of the research papers, allowing researchers to use this to understand your findings and replicate your work when pursuing their own research. However, it is usually also the most difficult section to write. This is where Paperpal can help you overcome the writer’s block and create the first draft in minutes with Paperpal Copilot, its secure generative AI feature suite.  

With Paperpal you can get research advice, write and refine your work, rephrase and verify the writing, and ensure submission readiness, all in one place. Here’s how you can use Paperpal to develop the first draft of your methods section.  

  • Generate an outline: Input some details about your research to instantly generate an outline for your methods section 
  • Develop the section: Use the outline and suggested sentence templates to expand your ideas and develop the first draft.  
  • P araph ras e and trim : Get clear, concise academic text with paraphrasing that conveys your work effectively and word reduction to fix redundancies. 
  • Choose the right words: Enhance text by choosing contextual synonyms based on how the words have been used in previously published work.  
  • Check and verify text : Make sure the generated text showcases your methods correctly, has all the right citations, and is original and authentic. .   

You can repeat this process to develop each section of your research manuscript, including the title, abstract and keywords. Ready to write your research papers faster, better, and without the stress? Sign up for Paperpal and start writing today!

Frequently Asked Questions

Q1. What are the key components of research methodology?

A1. A good research methodology has the following key components:

  • Research design
  • Data collection procedures
  • Data analysis methods
  • Ethical considerations

Q2. Why is ethical consideration important in research methodology?

A2. Ethical consideration is important in research methodology to ensure the readers of the reliability and validity of the study. Researchers must clearly mention the ethical norms and standards followed during the conduct of the research and also mention if the research has been cleared by any institutional board. The following 10 points are the important principles related to ethical considerations: 10

  • Participants should not be subjected to harm.
  • Respect for the dignity of participants should be prioritized.
  • Full consent should be obtained from participants before the study.
  • Participants’ privacy should be ensured.
  • Confidentiality of the research data should be ensured.
  • Anonymity of individuals and organizations participating in the research should be maintained.
  • The aims and objectives of the research should not be exaggerated.
  • Affiliations, sources of funding, and any possible conflicts of interest should be declared.
  • Communication in relation to the research should be honest and transparent.
  • Misleading information and biased representation of primary data findings should be avoided.

Q3. What is the difference between methodology and method?

A3. Research methodology is different from a research method, although both terms are often confused. Research methods are the tools used to gather data, while the research methodology provides a framework for how research is planned, conducted, and analyzed. The latter guides researchers in making decisions about the most appropriate methods for their research. Research methods refer to the specific techniques, procedures, and tools used by researchers to collect, analyze, and interpret data, for instance surveys, questionnaires, interviews, etc.

Research methodology is, thus, an integral part of a research study. It helps ensure that you stay on track to meet your research objectives and answer your research questions using the most appropriate data collection and analysis tools based on your research design.

Accelerate your research paper writing with Paperpal. Try for free now!

  • Research methodologies. Pfeiffer Library website. Accessed August 15, 2023. https://library.tiffin.edu/researchmethodologies/whatareresearchmethodologies
  • Types of research methodology. Eduvoice website. Accessed August 16, 2023. https://eduvoice.in/types-research-methodology/
  • The basics of research methodology: A key to quality research. Voxco. Accessed August 16, 2023. https://www.voxco.com/blog/what-is-research-methodology/
  • Sampling methods: Types with examples. QuestionPro website. Accessed August 16, 2023. https://www.questionpro.com/blog/types-of-sampling-for-social-research/
  • What is qualitative research? Methods, types, approaches, examples. Researcher.Life blog. Accessed August 15, 2023. https://researcher.life/blog/article/what-is-qualitative-research-methods-types-examples/
  • What is quantitative research? Definition, methods, types, and examples. Researcher.Life blog. Accessed August 15, 2023. https://researcher.life/blog/article/what-is-quantitative-research-types-and-examples/
  • Data analysis in research: Types & methods. QuestionPro website. Accessed August 16, 2023. https://www.questionpro.com/blog/data-analysis-in-research/#Data_analysis_in_qualitative_research
  • Factors to consider while choosing the right research methodology. PhD Monster website. Accessed August 17, 2023. https://www.phdmonster.com/factors-to-consider-while-choosing-the-right-research-methodology/
  • What is research methodology? Research and writing guides. Accessed August 14, 2023. https://paperpile.com/g/what-is-research-methodology/
  • Ethical considerations. Business research methodology website. Accessed August 17, 2023. https://research-methodology.net/research-methodology/ethical-considerations/

Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.  

Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.  

Experience the future of academic writing – Sign up to Paperpal and start writing for free!  

Related Reads:

  • Dangling Modifiers and How to Avoid Them in Your Writing 
  • Webinar: How to Use Generative AI Tools Ethically in Your Academic Writing
  • Research Outlines: How to Write An Introduction Section in Minutes with Paperpal Copilot
  • How to Paraphrase Research Papers Effectively

Language and Grammar Rules for Academic Writing

Climatic vs. climactic: difference and examples, you may also like, how to write a hypothesis types and examples , what is academic writing: tips for students, what is hedging in academic writing  , how to use ai to enhance your college..., how to use paperpal to generate emails &..., ai in education: it’s time to change the..., is it ethical to use ai-generated abstracts without..., do plagiarism checkers detect ai content, word choice problems: how to use the right..., how to avoid plagiarism when using generative ai....

  • How it works

Published by Nicolas at March 21st, 2024 , Revised On March 12, 2024

The Ultimate Guide To Research Methodology

Research methodology is a crucial aspect of any investigative process, serving as the blueprint for the entire research journey. If you are stuck in the methodology section of your research paper , then this blog will guide you on what is a research methodology, its types and how to successfully conduct one. 

Table of Contents

What Is Research Methodology?

Research methodology can be defined as the systematic framework that guides researchers in designing, conducting, and analyzing their investigations. It encompasses a structured set of processes, techniques, and tools employed to gather and interpret data, ensuring the reliability and validity of the research findings. 

Research methodology is not confined to a singular approach; rather, it encapsulates a diverse range of methods tailored to the specific requirements of the research objectives.

Here is why Research methodology is important in academic and professional settings.

Facilitating Rigorous Inquiry

Research methodology forms the backbone of rigorous inquiry. It provides a structured approach that aids researchers in formulating precise thesis statements , selecting appropriate methodologies, and executing systematic investigations. This, in turn, enhances the quality and credibility of the research outcomes.

Ensuring Reproducibility And Reliability

In both academic and professional contexts, the ability to reproduce research outcomes is paramount. A well-defined research methodology establishes clear procedures, making it possible for others to replicate the study. This not only validates the findings but also contributes to the cumulative nature of knowledge.

Guiding Decision-Making Processes

In professional settings, decisions often hinge on reliable data and insights. Research methodology equips professionals with the tools to gather pertinent information, analyze it rigorously, and derive meaningful conclusions.

This informed decision-making is instrumental in achieving organizational goals and staying ahead in competitive environments.

Contributing To Academic Excellence

For academic researchers, adherence to robust research methodology is a hallmark of excellence. Institutions value research that adheres to high standards of methodology, fostering a culture of academic rigour and intellectual integrity. Furthermore, it prepares students with critical skills applicable beyond academia.

Enhancing Problem-Solving Abilities

Research methodology instills a problem-solving mindset by encouraging researchers to approach challenges systematically. It equips individuals with the skills to dissect complex issues, formulate hypotheses , and devise effective strategies for investigation.

Understanding Research Methodology

In the pursuit of knowledge and discovery, understanding the fundamentals of research methodology is paramount. 

Basics Of Research

Research, in its essence, is a systematic and organized process of inquiry aimed at expanding our understanding of a particular subject or phenomenon. It involves the exploration of existing knowledge, the formulation of hypotheses, and the collection and analysis of data to draw meaningful conclusions. 

Research is a dynamic and iterative process that contributes to the continuous evolution of knowledge in various disciplines.

Types of Research

Research takes on various forms, each tailored to the nature of the inquiry. Broadly classified, research can be categorized into two main types:

  • Quantitative Research: This type involves the collection and analysis of numerical data to identify patterns, relationships, and statistical significance. It is particularly useful for testing hypotheses and making predictions.
  • Qualitative Research: Qualitative research focuses on understanding the depth and details of a phenomenon through non-numerical data. It often involves methods such as interviews, focus groups, and content analysis, providing rich insights into complex issues.

Components Of Research Methodology

To conduct effective research, one must go through the different components of research methodology. These components form the scaffolding that supports the entire research process, ensuring its coherence and validity.

Research Design

Research design serves as the blueprint for the entire research project. It outlines the overall structure and strategy for conducting the study. The three primary types of research design are:

  • Exploratory Research: Aimed at gaining insights and familiarity with the topic, often used in the early stages of research.
  • Descriptive Research: Involves portraying an accurate profile of a situation or phenomenon, answering the ‘what,’ ‘who,’ ‘where,’ and ‘when’ questions.
  • Explanatory Research: Seeks to identify the causes and effects of a phenomenon, explaining the ‘why’ and ‘how.’

Data Collection Methods

Choosing the right data collection methods is crucial for obtaining reliable and relevant information. Common methods include:

  • Surveys and Questionnaires: Employed to gather information from a large number of respondents through standardized questions.
  • Interviews: In-depth conversations with participants, offering qualitative insights.
  • Observation: Systematic watching and recording of behaviour, events, or processes in their natural setting.

Data Analysis Techniques

Once data is collected, analysis becomes imperative to derive meaningful conclusions. Different methodologies exist for quantitative and qualitative data:

  • Quantitative Data Analysis: Involves statistical techniques such as descriptive statistics, inferential statistics, and regression analysis to interpret numerical data.
  • Qualitative Data Analysis: Methods like content analysis, thematic analysis, and grounded theory are employed to extract patterns, themes, and meanings from non-numerical data.

The research paper we write have:

  • Precision and Clarity
  • Zero Plagiarism
  • High-level Encryption
  • Authentic Sources

Choosing a Research Method

Selecting an appropriate research method is a critical decision in the research process. It determines the approach, tools, and techniques that will be used to answer the research questions. 

Quantitative Research Methods

Quantitative research involves the collection and analysis of numerical data, providing a structured and objective approach to understanding and explaining phenomena.

Experimental Research

Experimental research involves manipulating variables to observe the effect on another variable under controlled conditions. It aims to establish cause-and-effect relationships.

Key Characteristics:

  • Controlled Environment: Experiments are conducted in a controlled setting to minimize external influences.
  • Random Assignment: Participants are randomly assigned to different experimental conditions.
  • Quantitative Data: Data collected is numerical, allowing for statistical analysis.

Applications: Commonly used in scientific studies and psychology to test hypotheses and identify causal relationships.

Survey Research

Survey research gathers information from a sample of individuals through standardized questionnaires or interviews. It aims to collect data on opinions, attitudes, and behaviours.

  • Structured Instruments: Surveys use structured instruments, such as questionnaires, to collect data.
  • Large Sample Size: Surveys often target a large and diverse group of participants.
  • Quantitative Data Analysis: Responses are quantified for statistical analysis.

Applications: Widely employed in social sciences, marketing, and public opinion research to understand trends and preferences.

Descriptive Research

Descriptive research seeks to portray an accurate profile of a situation or phenomenon. It focuses on answering the ‘what,’ ‘who,’ ‘where,’ and ‘when’ questions.

  • Observation and Data Collection: This involves observing and documenting without manipulating variables.
  • Objective Description: Aim to provide an unbiased and factual account of the subject.
  • Quantitative or Qualitative Data: T his can include both types of data, depending on the research focus.

Applications: Useful in situations where researchers want to understand and describe a phenomenon without altering it, common in social sciences and education.

Qualitative Research Methods

Qualitative research emphasizes exploring and understanding the depth and complexity of phenomena through non-numerical data.

A case study is an in-depth exploration of a particular person, group, event, or situation. It involves detailed, context-rich analysis.

  • Rich Data Collection: Uses various data sources, such as interviews, observations, and documents.
  • Contextual Understanding: Aims to understand the context and unique characteristics of the case.
  • Holistic Approach: Examines the case in its entirety.

Applications: Common in social sciences, psychology, and business to investigate complex and specific instances.

Ethnography

Ethnography involves immersing the researcher in the culture or community being studied to gain a deep understanding of their behaviours, beliefs, and practices.

  • Participant Observation: Researchers actively participate in the community or setting.
  • Holistic Perspective: Focuses on the interconnectedness of cultural elements.
  • Qualitative Data: In-depth narratives and descriptions are central to ethnographic studies.

Applications: Widely used in anthropology, sociology, and cultural studies to explore and document cultural practices.

Grounded Theory

Grounded theory aims to develop theories grounded in the data itself. It involves systematic data collection and analysis to construct theories from the ground up.

  • Constant Comparison: Data is continually compared and analyzed during the research process.
  • Inductive Reasoning: Theories emerge from the data rather than being imposed on it.
  • Iterative Process: The research design evolves as the study progresses.

Applications: Commonly applied in sociology, nursing, and management studies to generate theories from empirical data.

Research design is the structural framework that outlines the systematic process and plan for conducting a study. It serves as the blueprint, guiding researchers on how to collect, analyze, and interpret data.

Exploratory, Descriptive, And Explanatory Designs

Exploratory design.

Exploratory research design is employed when a researcher aims to explore a relatively unknown subject or gain insights into a complex phenomenon.

  • Flexibility: Allows for flexibility in data collection and analysis.
  • Open-Ended Questions: Uses open-ended questions to gather a broad range of information.
  • Preliminary Nature: Often used in the initial stages of research to formulate hypotheses.

Applications: Valuable in the early stages of investigation, especially when the researcher seeks a deeper understanding of a subject before formalizing research questions.

Descriptive Design

Descriptive research design focuses on portraying an accurate profile of a situation, group, or phenomenon.

  • Structured Data Collection: Involves systematic and structured data collection methods.
  • Objective Presentation: Aims to provide an unbiased and factual account of the subject.
  • Quantitative or Qualitative Data: Can incorporate both types of data, depending on the research objectives.

Applications: Widely used in social sciences, marketing, and educational research to provide detailed and objective descriptions.

Explanatory Design

Explanatory research design aims to identify the causes and effects of a phenomenon, explaining the ‘why’ and ‘how’ behind observed relationships.

  • Causal Relationships: Seeks to establish causal relationships between variables.
  • Controlled Variables : Often involves controlling certain variables to isolate causal factors.
  • Quantitative Analysis: Primarily relies on quantitative data analysis techniques.

Applications: Commonly employed in scientific studies and social sciences to delve into the underlying reasons behind observed patterns.

Cross-Sectional Vs. Longitudinal Designs

Cross-sectional design.

Cross-sectional designs collect data from participants at a single point in time.

  • Snapshot View: Provides a snapshot of a population at a specific moment.
  • Efficiency: More efficient in terms of time and resources.
  • Limited Temporal Insights: Offers limited insights into changes over time.

Applications: Suitable for studying characteristics or behaviours that are stable or not expected to change rapidly.

Longitudinal Design

Longitudinal designs involve the collection of data from the same participants over an extended period.

  • Temporal Sequence: Allows for the examination of changes over time.
  • Causality Assessment: Facilitates the assessment of cause-and-effect relationships.
  • Resource-Intensive: Requires more time and resources compared to cross-sectional designs.

Applications: Ideal for studying developmental processes, trends, or the impact of interventions over time.

Experimental Vs Non-experimental Designs

Experimental design.

Experimental designs involve manipulating variables under controlled conditions to observe the effect on another variable.

  • Causality Inference: Enables the inference of cause-and-effect relationships.
  • Quantitative Data: Primarily involves the collection and analysis of numerical data.

Applications: Commonly used in scientific studies, psychology, and medical research to establish causal relationships.

Non-Experimental Design

Non-experimental designs observe and describe phenomena without manipulating variables.

  • Natural Settings: Data is often collected in natural settings without intervention.
  • Descriptive or Correlational: Focuses on describing relationships or correlations between variables.
  • Quantitative or Qualitative Data: This can involve either type of data, depending on the research approach.

Applications: Suitable for studying complex phenomena in real-world settings where manipulation may not be ethical or feasible.

Effective data collection is fundamental to the success of any research endeavour. 

Designing Effective Surveys

Objective Design:

  • Clearly define the research objectives to guide the survey design.
  • Craft questions that align with the study’s goals and avoid ambiguity.

Structured Format:

  • Use a structured format with standardized questions for consistency.
  • Include a mix of closed-ended and open-ended questions for detailed insights.

Pilot Testing:

  • Conduct pilot tests to identify and rectify potential issues with survey design.
  • Ensure clarity, relevance, and appropriateness of questions.

Sampling Strategy:

  • Develop a robust sampling strategy to ensure a representative participant group.
  • Consider random sampling or stratified sampling based on the research goals.

Conducting Interviews

Establishing Rapport:

  • Build rapport with participants to create a comfortable and open environment.
  • Clearly communicate the purpose of the interview and the value of participants’ input.

Open-Ended Questions:

  • Frame open-ended questions to encourage detailed responses.
  • Allow participants to express their thoughts and perspectives freely.

Active Listening:

  • Practice active listening to understand areas and gather rich data.
  • Avoid interrupting and maintain a non-judgmental stance during the interview.

Ethical Considerations:

  • Obtain informed consent and assure participants of confidentiality.
  • Be transparent about the study’s purpose and potential implications.

Observation

1. participant observation.

Immersive Participation:

  • Actively immerse yourself in the setting or group being observed.
  • Develop a deep understanding of behaviours, interactions, and context.

Field Notes:

  • Maintain detailed and reflective field notes during observations.
  • Document observed patterns, unexpected events, and participant reactions.

Ethical Awareness:

  • Be conscious of ethical considerations, ensuring respect for participants.
  • Balance the role of observer and participant to minimize bias.

2. Non-participant Observation

Objective Observation:

  • Maintain a more detached and objective stance during non-participant observation.
  • Focus on recording behaviours, events, and patterns without direct involvement.

Data Reliability:

  • Enhance the reliability of data by reducing observer bias.
  • Develop clear observation protocols and guidelines.

Contextual Understanding:

  • Strive for a thorough understanding of the observed context.
  • Consider combining non-participant observation with other methods for triangulation.

Archival Research

1. using existing data.

Identifying Relevant Archives:

  • Locate and access archives relevant to the research topic.
  • Collaborate with institutions or repositories holding valuable data.

Data Verification:

  • Verify the accuracy and reliability of archived data.
  • Cross-reference with other sources to ensure data integrity.

Ethical Use:

  • Adhere to ethical guidelines when using existing data.
  • Respect copyright and intellectual property rights.

2. Challenges and Considerations

Incomplete or Inaccurate Archives:

  • Address the possibility of incomplete or inaccurate archival records.
  • Acknowledge limitations and uncertainties in the data.

Temporal Bias:

  • Recognize potential temporal biases in archived data.
  • Consider the historical context and changes that may impact interpretation.

Access Limitations:

  • Address potential limitations in accessing certain archives.
  • Seek alternative sources or collaborate with institutions to overcome barriers.

Common Challenges in Research Methodology

Conducting research is a complex and dynamic process, often accompanied by a myriad of challenges. Addressing these challenges is crucial to ensure the reliability and validity of research findings.

Sampling Issues

Sampling bias:.

  • The presence of sampling bias can lead to an unrepresentative sample, affecting the generalizability of findings.
  • Employ random sampling methods and ensure the inclusion of diverse participants to reduce bias.

Sample Size Determination:

  • Determining an appropriate sample size is a delicate balance. Too small a sample may lack statistical power, while an excessively large sample may strain resources.
  • Conduct a power analysis to determine the optimal sample size based on the research objectives and expected effect size.

Data Quality And Validity

Measurement error:.

  • Inaccuracies in measurement tools or data collection methods can introduce measurement errors, impacting the validity of results.
  • Pilot test instruments, calibrate equipment, and use standardized measures to enhance the reliability of data.

Construct Validity:

  • Ensuring that the chosen measures accurately capture the intended constructs is a persistent challenge.
  • Use established measurement instruments and employ multiple measures to assess the same construct for triangulation.

Time And Resource Constraints

Timeline pressures:.

  • Limited timeframes can compromise the depth and thoroughness of the research process.
  • Develop a realistic timeline, prioritize tasks, and communicate expectations with stakeholders to manage time constraints effectively.

Resource Availability:

  • Inadequate resources, whether financial or human, can impede the execution of research activities.
  • Seek external funding, collaborate with other researchers, and explore alternative methods that require fewer resources.

Managing Bias in Research

Selection bias:.

  • Selecting participants in a way that systematically skews the sample can introduce selection bias.
  • Employ randomization techniques, use stratified sampling, and transparently report participant recruitment methods.

Confirmation Bias:

  • Researchers may unintentionally favour information that confirms their preconceived beliefs or hypotheses.
  • Adopt a systematic and open-minded approach, use blinded study designs, and engage in peer review to mitigate confirmation bias.

Tips On How To Write A Research Methodology

Conducting successful research relies not only on the application of sound methodologies but also on strategic planning and effective collaboration. Here are some tips to enhance the success of your research methodology:

Tip 1. Clear Research Objectives

Well-defined research objectives guide the entire research process. Clearly articulate the purpose of your study, outlining specific research questions or hypotheses.

Tip 2. Comprehensive Literature Review

A thorough literature review provides a foundation for understanding existing knowledge and identifying gaps. Invest time in reviewing relevant literature to inform your research design and methodology.

Tip 3. Detailed Research Plan

A detailed plan serves as a roadmap, ensuring all aspects of the research are systematically addressed. Develop a detailed research plan outlining timelines, milestones, and tasks.

Tip 4. Ethical Considerations

Ethical practices are fundamental to maintaining the integrity of research. Address ethical considerations early, obtain necessary approvals, and ensure participant rights are safeguarded.

Tip 5. Stay Updated On Methodologies

Research methodologies evolve, and staying updated is essential for employing the most effective techniques. Engage in continuous learning by attending workshops, conferences, and reading recent publications.

Tip 6. Adaptability In Methods

Unforeseen challenges may arise during research, necessitating adaptability in methods. Be flexible and willing to modify your approach when needed, ensuring the integrity of the study.

Tip 7. Iterative Approach

Research is often an iterative process, and refining methods based on ongoing findings enhance the study’s robustness. Regularly review and refine your research design and methods as the study progresses.

Frequently Asked Questions

What is the research methodology.

Research methodology is the systematic process of planning, executing, and evaluating scientific investigation. It encompasses the techniques, tools, and procedures used to collect, analyze, and interpret data, ensuring the reliability and validity of research findings.

What are the methodologies in research?

Research methodologies include qualitative and quantitative approaches. Qualitative methods involve in-depth exploration of non-numerical data, while quantitative methods use statistical analysis to examine numerical data. Mixed methods combine both approaches for a comprehensive understanding of research questions.

How to write research methodology?

To write a research methodology, clearly outline the study’s design, data collection, and analysis procedures. Specify research tools, participants, and sampling methods. Justify choices and discuss limitations. Ensure clarity, coherence, and alignment with research objectives for a robust methodology section.

How to write the methodology section of a research paper?

In the methodology section of a research paper, describe the study’s design, data collection, and analysis methods. Detail procedures, tools, participants, and sampling. Justify choices, address ethical considerations, and explain how the methodology aligns with research objectives, ensuring clarity and rigour.

What is mixed research methodology?

Mixed research methodology combines both qualitative and quantitative research approaches within a single study. This approach aims to enhance the details and depth of research findings by providing a more comprehensive understanding of the research problem or question.

You May Also Like

The central idea of this excerpt revolves around the exploration of key themes, offering insights that illuminate the concepts within the text.

Common topics in Botany papers include taxonomy, plant physiology, ecology and biodiversity, plant pathology, and genetics.

Craft a compelling scholarship motivation letter by showcasing your passion, achievements, and future goals concisely and impactfully.

Ready to place an order?

USEFUL LINKS

Learning resources, company details.

  • How It Works

Automated page speed optimizations for fast site performance

Reference management. Clean and simple.

What is research methodology?

the research methodology used

The basics of research methodology

Why do you need a research methodology, what needs to be included, why do you need to document your research method, what are the different types of research instruments, qualitative / quantitative / mixed research methodologies, how do you choose the best research methodology for you, frequently asked questions about research methodology, related articles.

When you’re working on your first piece of academic research, there are many different things to focus on, and it can be overwhelming to stay on top of everything. This is especially true of budding or inexperienced researchers.

If you’ve never put together a research proposal before or find yourself in a position where you need to explain your research methodology decisions, there are a few things you need to be aware of.

Once you understand the ins and outs, handling academic research in the future will be less intimidating. We break down the basics below:

A research methodology encompasses the way in which you intend to carry out your research. This includes how you plan to tackle things like collection methods, statistical analysis, participant observations, and more.

You can think of your research methodology as being a formula. One part will be how you plan on putting your research into practice, and another will be why you feel this is the best way to approach it. Your research methodology is ultimately a methodological and systematic plan to resolve your research problem.

In short, you are explaining how you will take your idea and turn it into a study, which in turn will produce valid and reliable results that are in accordance with the aims and objectives of your research. This is true whether your paper plans to make use of qualitative methods or quantitative methods.

The purpose of a research methodology is to explain the reasoning behind your approach to your research - you'll need to support your collection methods, methods of analysis, and other key points of your work.

Think of it like writing a plan or an outline for you what you intend to do.

When carrying out research, it can be easy to go off-track or depart from your standard methodology.

Tip: Having a methodology keeps you accountable and on track with your original aims and objectives, and gives you a suitable and sound plan to keep your project manageable, smooth, and effective.

With all that said, how do you write out your standard approach to a research methodology?

As a general plan, your methodology should include the following information:

  • Your research method.  You need to state whether you plan to use quantitative analysis, qualitative analysis, or mixed-method research methods. This will often be determined by what you hope to achieve with your research.
  • Explain your reasoning. Why are you taking this methodological approach? Why is this particular methodology the best way to answer your research problem and achieve your objectives?
  • Explain your instruments.  This will mainly be about your collection methods. There are varying instruments to use such as interviews, physical surveys, questionnaires, for example. Your methodology will need to detail your reasoning in choosing a particular instrument for your research.
  • What will you do with your results?  How are you going to analyze the data once you have gathered it?
  • Advise your reader.  If there is anything in your research methodology that your reader might be unfamiliar with, you should explain it in more detail. For example, you should give any background information to your methods that might be relevant or provide your reasoning if you are conducting your research in a non-standard way.
  • How will your sampling process go?  What will your sampling procedure be and why? For example, if you will collect data by carrying out semi-structured or unstructured interviews, how will you choose your interviewees and how will you conduct the interviews themselves?
  • Any practical limitations?  You should discuss any limitations you foresee being an issue when you’re carrying out your research.

In any dissertation, thesis, or academic journal, you will always find a chapter dedicated to explaining the research methodology of the person who carried out the study, also referred to as the methodology section of the work.

A good research methodology will explain what you are going to do and why, while a poor methodology will lead to a messy or disorganized approach.

You should also be able to justify in this section your reasoning for why you intend to carry out your research in a particular way, especially if it might be a particularly unique method.

Having a sound methodology in place can also help you with the following:

  • When another researcher at a later date wishes to try and replicate your research, they will need your explanations and guidelines.
  • In the event that you receive any criticism or questioning on the research you carried out at a later point, you will be able to refer back to it and succinctly explain the how and why of your approach.
  • It provides you with a plan to follow throughout your research. When you are drafting your methodology approach, you need to be sure that the method you are using is the right one for your goal. This will help you with both explaining and understanding your method.
  • It affords you the opportunity to document from the outset what you intend to achieve with your research, from start to finish.

A research instrument is a tool you will use to help you collect, measure and analyze the data you use as part of your research.

The choice of research instrument will usually be yours to make as the researcher and will be whichever best suits your methodology.

There are many different research instruments you can use in collecting data for your research.

Generally, they can be grouped as follows:

  • Interviews (either as a group or one-on-one). You can carry out interviews in many different ways. For example, your interview can be structured, semi-structured, or unstructured. The difference between them is how formal the set of questions is that is asked of the interviewee. In a group interview, you may choose to ask the interviewees to give you their opinions or perceptions on certain topics.
  • Surveys (online or in-person). In survey research, you are posing questions in which you ask for a response from the person taking the survey. You may wish to have either free-answer questions such as essay-style questions, or you may wish to use closed questions such as multiple choice. You may even wish to make the survey a mixture of both.
  • Focus Groups.  Similar to the group interview above, you may wish to ask a focus group to discuss a particular topic or opinion while you make a note of the answers given.
  • Observations.  This is a good research instrument to use if you are looking into human behaviors. Different ways of researching this include studying the spontaneous behavior of participants in their everyday life, or something more structured. A structured observation is research conducted at a set time and place where researchers observe behavior as planned and agreed upon with participants.

These are the most common ways of carrying out research, but it is really dependent on your needs as a researcher and what approach you think is best to take.

It is also possible to combine a number of research instruments if this is necessary and appropriate in answering your research problem.

There are three different types of methodologies, and they are distinguished by whether they focus on words, numbers, or both.

➡️ Want to learn more about the differences between qualitative and quantitative research, and how to use both methods? Check out our guide for that!

If you've done your due diligence, you'll have an idea of which methodology approach is best suited to your research.

It’s likely that you will have carried out considerable reading and homework before you reach this point and you may have taken inspiration from other similar studies that have yielded good results.

Still, it is important to consider different options before setting your research in stone. Exploring different options available will help you to explain why the choice you ultimately make is preferable to other methods.

If proving your research problem requires you to gather large volumes of numerical data to test hypotheses, a quantitative research method is likely to provide you with the most usable results.

If instead you’re looking to try and learn more about people, and their perception of events, your methodology is more exploratory in nature and would therefore probably be better served using a qualitative research methodology.

It helps to always bring things back to the question: what do I want to achieve with my research?

Once you have conducted your research, you need to analyze it. Here are some helpful guides for qualitative data analysis:

➡️  How to do a content analysis

➡️  How to do a thematic analysis

➡️  How to do a rhetorical analysis

Research methodology refers to the techniques used to find and analyze information for a study, ensuring that the results are valid, reliable and that they address the research objective.

Data can typically be organized into four different categories or methods: observational, experimental, simulation, and derived.

Writing a methodology section is a process of introducing your methods and instruments, discussing your analysis, providing more background information, addressing your research limitations, and more.

Your research methodology section will need a clear research question and proposed research approach. You'll need to add a background, introduce your research question, write your methodology and add the works you cited during your data collecting phase.

The research methodology section of your study will indicate how valid your findings are and how well-informed your paper is. It also assists future researchers planning to use the same methodology, who want to cite your study or replicate it.

Rhetorical analysis illustration

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Dissertation
  • What Is a Research Methodology? | Steps & Tips

What Is a Research Methodology? | Steps & Tips

Published on 25 February 2019 by Shona McCombes . Revised on 10 October 2022.

Your research methodology discusses and explains the data collection and analysis methods you used in your research. A key part of your thesis, dissertation, or research paper, the methodology chapter explains what you did and how you did it, allowing readers to evaluate the reliability and validity of your research.

It should include:

  • The type of research you conducted
  • How you collected and analysed your data
  • Any tools or materials you used in the research
  • Why you chose these methods
  • Your methodology section should generally be written in the past tense .
  • Academic style guides in your field may provide detailed guidelines on what to include for different types of studies.
  • Your citation style might provide guidelines for your methodology section (e.g., an APA Style methods section ).

Instantly correct all language mistakes in your text

Be assured that you'll submit flawless writing. Upload your document to correct all your mistakes.

upload-your-document-ai-proofreader

Table of contents

How to write a research methodology, why is a methods section important, step 1: explain your methodological approach, step 2: describe your data collection methods, step 3: describe your analysis method, step 4: evaluate and justify the methodological choices you made, tips for writing a strong methodology chapter, frequently asked questions about methodology.

Prevent plagiarism, run a free check.

Your methods section is your opportunity to share how you conducted your research and why you chose the methods you chose. It’s also the place to show that your research was rigorously conducted and can be replicated .

It gives your research legitimacy and situates it within your field, and also gives your readers a place to refer to if they have any questions or critiques in other sections.

You can start by introducing your overall approach to your research. You have two options here.

Option 1: Start with your “what”

What research problem or question did you investigate?

  • Aim to describe the characteristics of something?
  • Explore an under-researched topic?
  • Establish a causal relationship?

And what type of data did you need to achieve this aim?

  • Quantitative data , qualitative data , or a mix of both?
  • Primary data collected yourself, or secondary data collected by someone else?
  • Experimental data gathered by controlling and manipulating variables, or descriptive data gathered via observations?

Option 2: Start with your “why”

Depending on your discipline, you can also start with a discussion of the rationale and assumptions underpinning your methodology. In other words, why did you choose these methods for your study?

  • Why is this the best way to answer your research question?
  • Is this a standard methodology in your field, or does it require justification?
  • Were there any ethical considerations involved in your choices?
  • What are the criteria for validity and reliability in this type of research ?

Once you have introduced your reader to your methodological approach, you should share full details about your data collection methods .

Quantitative methods

In order to be considered generalisable, you should describe quantitative research methods in enough detail for another researcher to replicate your study.

Here, explain how you operationalised your concepts and measured your variables. Discuss your sampling method or inclusion/exclusion criteria, as well as any tools, procedures, and materials you used to gather your data.

Surveys Describe where, when, and how the survey was conducted.

  • How did you design the questionnaire?
  • What form did your questions take (e.g., multiple choice, Likert scale )?
  • Were your surveys conducted in-person or virtually?
  • What sampling method did you use to select participants?
  • What was your sample size and response rate?

Experiments Share full details of the tools, techniques, and procedures you used to conduct your experiment.

  • How did you design the experiment ?
  • How did you recruit participants?
  • How did you manipulate and measure the variables ?
  • What tools did you use?

Existing data Explain how you gathered and selected the material (such as datasets or archival data) that you used in your analysis.

  • Where did you source the material?
  • How was the data originally produced?
  • What criteria did you use to select material (e.g., date range)?

The survey consisted of 5 multiple-choice questions and 10 questions measured on a 7-point Likert scale.

The goal was to collect survey responses from 350 customers visiting the fitness apparel company’s brick-and-mortar location in Boston on 4–8 July 2022, between 11:00 and 15:00.

Here, a customer was defined as a person who had purchased a product from the company on the day they took the survey. Participants were given 5 minutes to fill in the survey anonymously. In total, 408 customers responded, but not all surveys were fully completed. Due to this, 371 survey results were included in the analysis.

Qualitative methods

In qualitative research , methods are often more flexible and subjective. For this reason, it’s crucial to robustly explain the methodology choices you made.

Be sure to discuss the criteria you used to select your data, the context in which your research was conducted, and the role you played in collecting your data (e.g., were you an active participant, or a passive observer?)

Interviews or focus groups Describe where, when, and how the interviews were conducted.

  • How did you find and select participants?
  • How many participants took part?
  • What form did the interviews take ( structured , semi-structured , or unstructured )?
  • How long were the interviews?
  • How were they recorded?

Participant observation Describe where, when, and how you conducted the observation or ethnography .

  • What group or community did you observe? How long did you spend there?
  • How did you gain access to this group? What role did you play in the community?
  • How long did you spend conducting the research? Where was it located?
  • How did you record your data (e.g., audiovisual recordings, note-taking)?

Existing data Explain how you selected case study materials for your analysis.

  • What type of materials did you analyse?
  • How did you select them?

In order to gain better insight into possibilities for future improvement of the fitness shop’s product range, semi-structured interviews were conducted with 8 returning customers.

Here, a returning customer was defined as someone who usually bought products at least twice a week from the store.

Surveys were used to select participants. Interviews were conducted in a small office next to the cash register and lasted approximately 20 minutes each. Answers were recorded by note-taking, and seven interviews were also filmed with consent. One interviewee preferred not to be filmed.

Mixed methods

Mixed methods research combines quantitative and qualitative approaches. If a standalone quantitative or qualitative study is insufficient to answer your research question, mixed methods may be a good fit for you.

Mixed methods are less common than standalone analyses, largely because they require a great deal of effort to pull off successfully. If you choose to pursue mixed methods, it’s especially important to robustly justify your methods here.

The only proofreading tool specialized in correcting academic writing

The academic proofreading tool has been trained on 1000s of academic texts and by native English editors. Making it the most accurate and reliable proofreading tool for students.

the research methodology used

Correct my document today

Next, you should indicate how you processed and analysed your data. Avoid going into too much detail: you should not start introducing or discussing any of your results at this stage.

In quantitative research , your analysis will be based on numbers. In your methods section, you can include:

  • How you prepared the data before analysing it (e.g., checking for missing data , removing outliers , transforming variables)
  • Which software you used (e.g., SPSS, Stata or R)
  • Which statistical tests you used (e.g., two-tailed t test , simple linear regression )

In qualitative research, your analysis will be based on language, images, and observations (often involving some form of textual analysis ).

Specific methods might include:

  • Content analysis : Categorising and discussing the meaning of words, phrases and sentences
  • Thematic analysis : Coding and closely examining the data to identify broad themes and patterns
  • Discourse analysis : Studying communication and meaning in relation to their social context

Mixed methods combine the above two research methods, integrating both qualitative and quantitative approaches into one coherent analytical process.

Above all, your methodology section should clearly make the case for why you chose the methods you did. This is especially true if you did not take the most standard approach to your topic. In this case, discuss why other methods were not suitable for your objectives, and show how this approach contributes new knowledge or understanding.

In any case, it should be overwhelmingly clear to your reader that you set yourself up for success in terms of your methodology’s design. Show how your methods should lead to results that are valid and reliable, while leaving the analysis of the meaning, importance, and relevance of your results for your discussion section .

  • Quantitative: Lab-based experiments cannot always accurately simulate real-life situations and behaviours, but they are effective for testing causal relationships between variables .
  • Qualitative: Unstructured interviews usually produce results that cannot be generalised beyond the sample group , but they provide a more in-depth understanding of participants’ perceptions, motivations, and emotions.
  • Mixed methods: Despite issues systematically comparing differing types of data, a solely quantitative study would not sufficiently incorporate the lived experience of each participant, while a solely qualitative study would be insufficiently generalisable.

Remember that your aim is not just to describe your methods, but to show how and why you applied them. Again, it’s critical to demonstrate that your research was rigorously conducted and can be replicated.

1. Focus on your objectives and research questions

The methodology section should clearly show why your methods suit your objectives  and convince the reader that you chose the best possible approach to answering your problem statement and research questions .

2. Cite relevant sources

Your methodology can be strengthened by referencing existing research in your field. This can help you to:

  • Show that you followed established practice for your type of research
  • Discuss how you decided on your approach by evaluating existing research
  • Present a novel methodological approach to address a gap in the literature

3. Write for your audience

Consider how much information you need to give, and avoid getting too lengthy. If you are using methods that are standard for your discipline, you probably don’t need to give a lot of background or justification.

Regardless, your methodology should be a clear, well-structured text that makes an argument for your approach, not just a list of technical details and procedures.

Methodology refers to the overarching strategy and rationale of your research. Developing your methodology involves studying the research methods used in your field and the theories or principles that underpin them, in order to choose the approach that best matches your objectives.

Methods are the specific tools and procedures you use to collect and analyse data (e.g. interviews, experiments , surveys , statistical tests ).

In a dissertation or scientific paper, the methodology chapter or methods section comes after the introduction and before the results , discussion and conclusion .

Depending on the length and type of document, you might also include a literature review or theoretical framework before the methodology.

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to test a hypothesis by systematically collecting and analysing data, while qualitative methods allow you to explore ideas and experiences in depth.

A sample is a subset of individuals from a larger population. Sampling means selecting the group that you will actually collect data from in your research.

For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

Statistical sampling allows you to test a hypothesis about the characteristics of a population. There are various sampling methods you can use to ensure that your sample is representative of the population as a whole.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, October 10). What Is a Research Methodology? | Steps & Tips. Scribbr. Retrieved 22 April 2024, from https://www.scribbr.co.uk/thesis-dissertation/methodology/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, how to write a dissertation proposal | a step-by-step guide, what is a literature review | guide, template, & examples, what is a theoretical framework | a step-by-step guide.

News alert: UC Berkeley has announced its next university librarian

Secondary menu

  • Log in to your Library account
  • Hours and Maps
  • Connect from Off Campus
  • UC Berkeley Home

Search form

Research methods--quantitative, qualitative, and more: overview.

  • Quantitative Research
  • Qualitative Research
  • Data Science Methods (Machine Learning, AI, Big Data)
  • Text Mining and Computational Text Analysis
  • Evidence Synthesis/Systematic Reviews
  • Get Data, Get Help!

About Research Methods

This guide provides an overview of research methods, how to choose and use them, and supports and resources at UC Berkeley. 

As Patten and Newhart note in the book Understanding Research Methods , "Research methods are the building blocks of the scientific enterprise. They are the "how" for building systematic knowledge. The accumulation of knowledge through research is by its nature a collective endeavor. Each well-designed study provides evidence that may support, amend, refute, or deepen the understanding of existing knowledge...Decisions are important throughout the practice of research and are designed to help researchers collect evidence that includes the full spectrum of the phenomenon under study, to maintain logical rules, and to mitigate or account for possible sources of bias. In many ways, learning research methods is learning how to see and make these decisions."

The choice of methods varies by discipline, by the kind of phenomenon being studied and the data being used to study it, by the technology available, and more.  This guide is an introduction, but if you don't see what you need here, always contact your subject librarian, and/or take a look to see if there's a library research guide that will answer your question. 

Suggestions for changes and additions to this guide are welcome! 

START HERE: SAGE Research Methods

Without question, the most comprehensive resource available from the library is SAGE Research Methods.  HERE IS THE ONLINE GUIDE  to this one-stop shopping collection, and some helpful links are below:

  • SAGE Research Methods
  • Little Green Books  (Quantitative Methods)
  • Little Blue Books  (Qualitative Methods)
  • Dictionaries and Encyclopedias  
  • Case studies of real research projects
  • Sample datasets for hands-on practice
  • Streaming video--see methods come to life
  • Methodspace- -a community for researchers
  • SAGE Research Methods Course Mapping

Library Data Services at UC Berkeley

Library Data Services Program and Digital Scholarship Services

The LDSP offers a variety of services and tools !  From this link, check out pages for each of the following topics:  discovering data, managing data, collecting data, GIS data, text data mining, publishing data, digital scholarship, open science, and the Research Data Management Program.

Be sure also to check out the visual guide to where to seek assistance on campus with any research question you may have!

Library GIS Services

Other Data Services at Berkeley

D-Lab Supports Berkeley faculty, staff, and graduate students with research in data intensive social science, including a wide range of training and workshop offerings Dryad Dryad is a simple self-service tool for researchers to use in publishing their datasets. It provides tools for the effective publication of and access to research data. Geospatial Innovation Facility (GIF) Provides leadership and training across a broad array of integrated mapping technologies on campu Research Data Management A UC Berkeley guide and consulting service for research data management issues

General Research Methods Resources

Here are some general resources for assistance:

  • Assistance from ICPSR (must create an account to access): Getting Help with Data , and Resources for Students
  • Wiley Stats Ref for background information on statistics topics
  • Survey Documentation and Analysis (SDA) .  Program for easy web-based analysis of survey data.

Consultants

  • D-Lab/Data Science Discovery Consultants Request help with your research project from peer consultants.
  • Research data (RDM) consulting Meet with RDM consultants before designing the data security, storage, and sharing aspects of your qualitative project.
  • Statistics Department Consulting Services A service in which advanced graduate students, under faculty supervision, are available to consult during specified hours in the Fall and Spring semesters.

Related Resourcex

  • IRB / CPHS Qualitative research projects with human subjects often require that you go through an ethics review.
  • OURS (Office of Undergraduate Research and Scholarships) OURS supports undergraduates who want to embark on research projects and assistantships. In particular, check out their "Getting Started in Research" workshops
  • Sponsored Projects Sponsored projects works with researchers applying for major external grants.
  • Next: Quantitative Research >>
  • Last Updated: Apr 25, 2024 11:09 AM
  • URL: https://guides.lib.berkeley.edu/researchmethods
  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

A Comprehensive Guide to Methodology in Research

Sumalatha G

Table of Contents

Research methodology plays a crucial role in any study or investigation. It provides the framework for collecting, analyzing, and interpreting data, ensuring that the research is reliable, valid, and credible. Understanding the importance of research methodology is essential for conducting rigorous and meaningful research.

In this article, we'll explore the various aspects of research methodology, from its types to best practices, ensuring you have the knowledge needed to conduct impactful research.

What is Research Methodology?

Research methodology refers to the system of procedures, techniques, and tools used to carry out a research study. It encompasses the overall approach, including the research design, data collection methods, data analysis techniques, and the interpretation of findings.

Research methodology plays a crucial role in the field of research, as it sets the foundation for any study. It provides researchers with a structured framework to ensure that their investigations are conducted in a systematic and organized manner. By following a well-defined methodology, researchers can ensure that their findings are reliable, valid, and meaningful.

When defining research methodology, one of the first steps is to identify the research problem. This involves clearly understanding the issue or topic that the study aims to address. By defining the research problem, researchers can narrow down their focus and determine the specific objectives they want to achieve through their study.

How to Define Research Methodology

Once the research problem is identified, researchers move on to defining the research questions. These questions serve as a guide for the study, helping researchers to gather relevant information and analyze it effectively. The research questions should be clear, concise, and aligned with the overall goals of the study.

After defining the research questions, researchers need to determine how data will be collected and analyzed. This involves selecting appropriate data collection methods, such as surveys, interviews, observations, or experiments. The choice of data collection methods depends on various factors, including the nature of the research problem, the target population, and the available resources.

Once the data is collected, researchers need to analyze it using appropriate data analysis techniques. This may involve statistical analysis, qualitative analysis, or a combination of both, depending on the nature of the data and the research questions. The analysis of data helps researchers to draw meaningful conclusions and make informed decisions based on their findings.

Role of Methodology in Research

Methodology plays a crucial role in research, as it ensures that the study is conducted in a systematic and organized manner. It provides a clear roadmap for researchers to follow, ensuring that the research objectives are met effectively. By following a well-defined methodology, researchers can minimize bias, errors, and inconsistencies in their study, thus enhancing the reliability and validity of their findings.

In addition to providing a structured approach, research methodology also helps in establishing the reliability and validity of the study. Reliability refers to the consistency and stability of the research findings, while validity refers to the accuracy and truthfulness of the findings. By using appropriate research methods and techniques, researchers can ensure that their study produces reliable and valid results, which can be used to make informed decisions and contribute to the existing body of knowledge.

Steps in Choosing the Right Research Methodology

Choosing the appropriate research methodology for your study is a critical step in ensuring the success of your research. Let's explore some steps to help you select the right research methodology:

Identifying the Research Problem

The first step in choosing the right research methodology is to clearly identify and define the research problem. Understanding the research problem will help you determine which methodology will best address your research questions and objectives.

Identifying the research problem involves a thorough examination of the existing literature in your field of study. This step allows you to gain a comprehensive understanding of the current state of knowledge and identify any gaps that your research can fill. By identifying the research problem, you can ensure that your study contributes to the existing body of knowledge and addresses a significant research gap.

Once you have identified the research problem, you need to consider the scope of your study. Are you focusing on a specific population, geographic area, or time frame? Understanding the scope of your research will help you determine the appropriate research methodology to use.

Reviewing Previous Research

Before finalizing the research methodology, it is essential to review previous research conducted in the field. This will allow you to identify gaps, determine the most effective methodologies used in similar studies, and build upon existing knowledge.

Reviewing previous research involves conducting a systematic review of relevant literature. This process includes searching for and analyzing published studies, articles, and reports that are related to your research topic. By reviewing previous research, you can gain insights into the strengths and limitations of different methodologies and make informed decisions about which approach to adopt.

During the review process, it is important to critically evaluate the quality and reliability of the existing research. Consider factors such as the sample size, research design, data collection methods, and statistical analysis techniques used in previous studies. This evaluation will help you determine the most appropriate research methodology for your own study.

Formulating Research Questions

Once the research problem is identified, formulate specific and relevant research questions. These questions will guide your methodology selection process by helping you determine what type of data you need to collect and how to analyze it.

Formulating research questions involves breaking down the research problem into smaller, more manageable components. These questions should be clear, concise, and measurable. They should also align with the objectives of your study and provide a framework for data collection and analysis.

When formulating research questions, consider the different types of data that can be collected, such as qualitative or quantitative data. Depending on the nature of your research questions, you may need to employ different data collection methods, such as interviews, surveys, observations, or experiments. By carefully formulating research questions, you can ensure that your chosen methodology will enable you to collect the necessary data to answer your research questions effectively.

Implementing the Research Methodology

After choosing the appropriate research methodology, it is time to implement it. This stage involves collecting data using various techniques and analyzing the gathered information. Let's explore two crucial aspects of implementing the research methodology:

Data Collection Techniques

Data collection techniques depend on the chosen research methodology. They can include surveys, interviews, observations, experiments, or document analysis. Selecting the most suitable data collection techniques will ensure accurate and relevant data for your study.

Data Analysis Methods

Data analysis is a critical part of the research process. It involves interpreting and making sense of the collected data to draw meaningful conclusions. Depending on the research methodology, data analysis methods can include statistical analysis, content analysis, thematic analysis, or grounded theory.

Ensuring the Validity and Reliability of Your Research

In order to ensure the validity and reliability of your research findings, it is important to address these two key aspects:

Understanding Validity in Research

Validity refers to the accuracy and soundness of a research study. It is crucial to ensure that the research methods used effectively measure what they intend to measure. Researchers can enhance validity by using proper sampling techniques, carefully designing research instruments, and ensuring accurate data collection.

Ensuring Reliability in Your Study

Reliability refers to the consistency and stability of the research results. It is important to ensure that the research methods and instruments used yield consistent and reproducible results. Researchers can enhance reliability by using standardized procedures, ensuring inter-rater reliability, and conducting pilot studies.

A comprehensive understanding of research methodology is essential for conducting high-quality research. By selecting the right research methodology, researchers can ensure that their studies are rigorous, reliable, and valid. It is crucial to follow the steps in choosing the appropriate methodology, implement the chosen methodology effectively, and address validity and reliability concerns throughout the research process. By doing so, researchers can contribute valuable insights and advances in their respective fields.

You might also like

Introducing SciSpace’s Citation Booster To Increase Research Visibility

Introducing SciSpace’s Citation Booster To Increase Research Visibility

Sumalatha G

AI for Meta-Analysis — A Comprehensive Guide

Monali Ghosh

How To Write An Argumentative Essay

  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • 6. The Methodology
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

The methods section describes actions taken to investigate a research problem and the rationale for the application of specific procedures or techniques used to identify, select, process, and analyze information applied to understanding the problem, thereby, allowing the reader to critically evaluate a study’s overall validity and reliability. The methodology section of a research paper answers two main questions: How was the data collected or generated? And, how was it analyzed? The writing should be direct and precise and always written in the past tense.

Kallet, Richard H. "How to Write the Methods Section of a Research Paper." Respiratory Care 49 (October 2004): 1229-1232.

Importance of a Good Methodology Section

You must explain how you obtained and analyzed your results for the following reasons:

  • Readers need to know how the data was obtained because the method you chose affects the results and, by extension, how you interpreted their significance in the discussion section of your paper.
  • Methodology is crucial for any branch of scholarship because an unreliable method produces unreliable results and, as a consequence, undermines the value of your analysis of the findings.
  • In most cases, there are a variety of different methods you can choose to investigate a research problem. The methodology section of your paper should clearly articulate the reasons why you have chosen a particular procedure or technique.
  • The reader wants to know that the data was collected or generated in a way that is consistent with accepted practice in the field of study. For example, if you are using a multiple choice questionnaire, readers need to know that it offered your respondents a reasonable range of answers to choose from.
  • The method must be appropriate to fulfilling the overall aims of the study. For example, you need to ensure that you have a large enough sample size to be able to generalize and make recommendations based upon the findings.
  • The methodology should discuss the problems that were anticipated and the steps you took to prevent them from occurring. For any problems that do arise, you must describe the ways in which they were minimized or why these problems do not impact in any meaningful way your interpretation of the findings.
  • In the social and behavioral sciences, it is important to always provide sufficient information to allow other researchers to adopt or replicate your methodology. This information is particularly important when a new method has been developed or an innovative use of an existing method is utilized.

Bem, Daryl J. Writing the Empirical Journal Article. Psychology Writing Center. University of Washington; Denscombe, Martyn. The Good Research Guide: For Small-Scale Social Research Projects . 5th edition. Buckingham, UK: Open University Press, 2014; Lunenburg, Frederick C. Writing a Successful Thesis or Dissertation: Tips and Strategies for Students in the Social and Behavioral Sciences . Thousand Oaks, CA: Corwin Press, 2008.

Structure and Writing Style

I.  Groups of Research Methods

There are two main groups of research methods in the social sciences:

  • The e mpirical-analytical group approaches the study of social sciences in a similar manner that researchers study the natural sciences . This type of research focuses on objective knowledge, research questions that can be answered yes or no, and operational definitions of variables to be measured. The empirical-analytical group employs deductive reasoning that uses existing theory as a foundation for formulating hypotheses that need to be tested. This approach is focused on explanation.
  • The i nterpretative group of methods is focused on understanding phenomenon in a comprehensive, holistic way . Interpretive methods focus on analytically disclosing the meaning-making practices of human subjects [the why, how, or by what means people do what they do], while showing how those practices arrange so that it can be used to generate observable outcomes. Interpretive methods allow you to recognize your connection to the phenomena under investigation. However, the interpretative group requires careful examination of variables because it focuses more on subjective knowledge.

II.  Content

The introduction to your methodology section should begin by restating the research problem and underlying assumptions underpinning your study. This is followed by situating the methods you used to gather, analyze, and process information within the overall “tradition” of your field of study and within the particular research design you have chosen to study the problem. If the method you choose lies outside of the tradition of your field [i.e., your review of the literature demonstrates that the method is not commonly used], provide a justification for how your choice of methods specifically addresses the research problem in ways that have not been utilized in prior studies.

The remainder of your methodology section should describe the following:

  • Decisions made in selecting the data you have analyzed or, in the case of qualitative research, the subjects and research setting you have examined,
  • Tools and methods used to identify and collect information, and how you identified relevant variables,
  • The ways in which you processed the data and the procedures you used to analyze that data, and
  • The specific research tools or strategies that you utilized to study the underlying hypothesis and research questions.

In addition, an effectively written methodology section should:

  • Introduce the overall methodological approach for investigating your research problem . Is your study qualitative or quantitative or a combination of both (mixed method)? Are you going to take a special approach, such as action research, or a more neutral stance?
  • Indicate how the approach fits the overall research design . Your methods for gathering data should have a clear connection to your research problem. In other words, make sure that your methods will actually address the problem. One of the most common deficiencies found in research papers is that the proposed methodology is not suitable to achieving the stated objective of your paper.
  • Describe the specific methods of data collection you are going to use , such as, surveys, interviews, questionnaires, observation, archival research. If you are analyzing existing data, such as a data set or archival documents, describe how it was originally created or gathered and by whom. Also be sure to explain how older data is still relevant to investigating the current research problem.
  • Explain how you intend to analyze your results . Will you use statistical analysis? Will you use specific theoretical perspectives to help you analyze a text or explain observed behaviors? Describe how you plan to obtain an accurate assessment of relationships, patterns, trends, distributions, and possible contradictions found in the data.
  • Provide background and a rationale for methodologies that are unfamiliar for your readers . Very often in the social sciences, research problems and the methods for investigating them require more explanation/rationale than widely accepted rules governing the natural and physical sciences. Be clear and concise in your explanation.
  • Provide a justification for subject selection and sampling procedure . For instance, if you propose to conduct interviews, how do you intend to select the sample population? If you are analyzing texts, which texts have you chosen, and why? If you are using statistics, why is this set of data being used? If other data sources exist, explain why the data you chose is most appropriate to addressing the research problem.
  • Provide a justification for case study selection . A common method of analyzing research problems in the social sciences is to analyze specific cases. These can be a person, place, event, phenomenon, or other type of subject of analysis that are either examined as a singular topic of in-depth investigation or multiple topics of investigation studied for the purpose of comparing or contrasting findings. In either method, you should explain why a case or cases were chosen and how they specifically relate to the research problem.
  • Describe potential limitations . Are there any practical limitations that could affect your data collection? How will you attempt to control for potential confounding variables and errors? If your methodology may lead to problems you can anticipate, state this openly and show why pursuing this methodology outweighs the risk of these problems cropping up.

NOTE :   Once you have written all of the elements of the methods section, subsequent revisions should focus on how to present those elements as clearly and as logically as possibly. The description of how you prepared to study the research problem, how you gathered the data, and the protocol for analyzing the data should be organized chronologically. For clarity, when a large amount of detail must be presented, information should be presented in sub-sections according to topic. If necessary, consider using appendices for raw data.

ANOTHER NOTE : If you are conducting a qualitative analysis of a research problem , the methodology section generally requires a more elaborate description of the methods used as well as an explanation of the processes applied to gathering and analyzing of data than is generally required for studies using quantitative methods. Because you are the primary instrument for generating the data [e.g., through interviews or observations], the process for collecting that data has a significantly greater impact on producing the findings. Therefore, qualitative research requires a more detailed description of the methods used.

YET ANOTHER NOTE :   If your study involves interviews, observations, or other qualitative techniques involving human subjects , you may be required to obtain approval from the university's Office for the Protection of Research Subjects before beginning your research. This is not a common procedure for most undergraduate level student research assignments. However, i f your professor states you need approval, you must include a statement in your methods section that you received official endorsement and adequate informed consent from the office and that there was a clear assessment and minimization of risks to participants and to the university. This statement informs the reader that your study was conducted in an ethical and responsible manner. In some cases, the approval notice is included as an appendix to your paper.

III.  Problems to Avoid

Irrelevant Detail The methodology section of your paper should be thorough but concise. Do not provide any background information that does not directly help the reader understand why a particular method was chosen, how the data was gathered or obtained, and how the data was analyzed in relation to the research problem [note: analyzed, not interpreted! Save how you interpreted the findings for the discussion section]. With this in mind, the page length of your methods section will generally be less than any other section of your paper except the conclusion.

Unnecessary Explanation of Basic Procedures Remember that you are not writing a how-to guide about a particular method. You should make the assumption that readers possess a basic understanding of how to investigate the research problem on their own and, therefore, you do not have to go into great detail about specific methodological procedures. The focus should be on how you applied a method , not on the mechanics of doing a method. An exception to this rule is if you select an unconventional methodological approach; if this is the case, be sure to explain why this approach was chosen and how it enhances the overall process of discovery.

Problem Blindness It is almost a given that you will encounter problems when collecting or generating your data, or, gaps will exist in existing data or archival materials. Do not ignore these problems or pretend they did not occur. Often, documenting how you overcame obstacles can form an interesting part of the methodology. It demonstrates to the reader that you can provide a cogent rationale for the decisions you made to minimize the impact of any problems that arose.

Literature Review Just as the literature review section of your paper provides an overview of sources you have examined while researching a particular topic, the methodology section should cite any sources that informed your choice and application of a particular method [i.e., the choice of a survey should include any citations to the works you used to help construct the survey].

It’s More than Sources of Information! A description of a research study's method should not be confused with a description of the sources of information. Such a list of sources is useful in and of itself, especially if it is accompanied by an explanation about the selection and use of the sources. The description of the project's methodology complements a list of sources in that it sets forth the organization and interpretation of information emanating from those sources.

Azevedo, L.F. et al. "How to Write a Scientific Paper: Writing the Methods Section." Revista Portuguesa de Pneumologia 17 (2011): 232-238; Blair Lorrie. “Choosing a Methodology.” In Writing a Graduate Thesis or Dissertation , Teaching Writing Series. (Rotterdam: Sense Publishers 2016), pp. 49-72; Butin, Dan W. The Education Dissertation A Guide for Practitioner Scholars . Thousand Oaks, CA: Corwin, 2010; Carter, Susan. Structuring Your Research Thesis . New York: Palgrave Macmillan, 2012; Kallet, Richard H. “How to Write the Methods Section of a Research Paper.” Respiratory Care 49 (October 2004):1229-1232; Lunenburg, Frederick C. Writing a Successful Thesis or Dissertation: Tips and Strategies for Students in the Social and Behavioral Sciences . Thousand Oaks, CA: Corwin Press, 2008. Methods Section. The Writer’s Handbook. Writing Center. University of Wisconsin, Madison; Rudestam, Kjell Erik and Rae R. Newton. “The Method Chapter: Describing Your Research Plan.” In Surviving Your Dissertation: A Comprehensive Guide to Content and Process . (Thousand Oaks, Sage Publications, 2015), pp. 87-115; What is Interpretive Research. Institute of Public and International Affairs, University of Utah; Writing the Experimental Report: Methods, Results, and Discussion. The Writing Lab and The OWL. Purdue University; Methods and Materials. The Structure, Format, Content, and Style of a Journal-Style Scientific Paper. Department of Biology. Bates College.

Writing Tip

Statistical Designs and Tests? Do Not Fear Them!

Don't avoid using a quantitative approach to analyzing your research problem just because you fear the idea of applying statistical designs and tests. A qualitative approach, such as conducting interviews or content analysis of archival texts, can yield exciting new insights about a research problem, but it should not be undertaken simply because you have a disdain for running a simple regression. A well designed quantitative research study can often be accomplished in very clear and direct ways, whereas, a similar study of a qualitative nature usually requires considerable time to analyze large volumes of data and a tremendous burden to create new paths for analysis where previously no path associated with your research problem had existed.

To locate data and statistics, GO HERE .

Another Writing Tip

Knowing the Relationship Between Theories and Methods

There can be multiple meaning associated with the term "theories" and the term "methods" in social sciences research. A helpful way to delineate between them is to understand "theories" as representing different ways of characterizing the social world when you research it and "methods" as representing different ways of generating and analyzing data about that social world. Framed in this way, all empirical social sciences research involves theories and methods, whether they are stated explicitly or not. However, while theories and methods are often related, it is important that, as a researcher, you deliberately separate them in order to avoid your theories playing a disproportionate role in shaping what outcomes your chosen methods produce.

Introspectively engage in an ongoing dialectic between the application of theories and methods to help enable you to use the outcomes from your methods to interrogate and develop new theories, or ways of framing conceptually the research problem. This is how scholarship grows and branches out into new intellectual territory.

Reynolds, R. Larry. Ways of Knowing. Alternative Microeconomics . Part 1, Chapter 3. Boise State University; The Theory-Method Relationship. S-Cool Revision. United Kingdom.

Yet Another Writing Tip

Methods and the Methodology

Do not confuse the terms "methods" and "methodology." As Schneider notes, a method refers to the technical steps taken to do research . Descriptions of methods usually include defining and stating why you have chosen specific techniques to investigate a research problem, followed by an outline of the procedures you used to systematically select, gather, and process the data [remember to always save the interpretation of data for the discussion section of your paper].

The methodology refers to a discussion of the underlying reasoning why particular methods were used . This discussion includes describing the theoretical concepts that inform the choice of methods to be applied, placing the choice of methods within the more general nature of academic work, and reviewing its relevance to examining the research problem. The methodology section also includes a thorough review of the methods other scholars have used to study the topic.

Bryman, Alan. "Of Methods and Methodology." Qualitative Research in Organizations and Management: An International Journal 3 (2008): 159-168; Schneider, Florian. “What's in a Methodology: The Difference between Method, Methodology, and Theory…and How to Get the Balance Right?” PoliticsEastAsia.com. Chinese Department, University of Leiden, Netherlands.

  • << Previous: Scholarly vs. Popular Publications
  • Next: Qualitative Methods >>
  • Last Updated: Apr 24, 2024 10:51 AM
  • URL: https://libguides.usc.edu/writingguide

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • BMC Med Res Methodol

Logo of bmcmrm

A tutorial on methodological studies: the what, when, how and why

Lawrence mbuagbaw.

1 Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON Canada

2 Biostatistics Unit/FSORC, 50 Charlton Avenue East, St Joseph’s Healthcare—Hamilton, 3rd Floor Martha Wing, Room H321, Hamilton, Ontario L8N 4A6 Canada

3 Centre for the Development of Best Practices in Health, Yaoundé, Cameroon

Daeria O. Lawson

Livia puljak.

4 Center for Evidence-Based Medicine and Health Care, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia

David B. Allison

5 Department of Epidemiology and Biostatistics, School of Public Health – Bloomington, Indiana University, Bloomington, IN 47405 USA

Lehana Thabane

6 Departments of Paediatrics and Anaesthesia, McMaster University, Hamilton, ON Canada

7 Centre for Evaluation of Medicine, St. Joseph’s Healthcare-Hamilton, Hamilton, ON Canada

8 Population Health Research Institute, Hamilton Health Sciences, Hamilton, ON Canada

Associated Data

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Methodological studies – studies that evaluate the design, analysis or reporting of other research-related reports – play an important role in health research. They help to highlight issues in the conduct of research with the aim of improving health research methodology, and ultimately reducing research waste.

We provide an overview of some of the key aspects of methodological studies such as what they are, and when, how and why they are done. We adopt a “frequently asked questions” format to facilitate reading this paper and provide multiple examples to help guide researchers interested in conducting methodological studies. Some of the topics addressed include: is it necessary to publish a study protocol? How to select relevant research reports and databases for a methodological study? What approaches to data extraction and statistical analysis should be considered when conducting a methodological study? What are potential threats to validity and is there a way to appraise the quality of methodological studies?

Appropriate reflection and application of basic principles of epidemiology and biostatistics are required in the design and analysis of methodological studies. This paper provides an introduction for further discussion about the conduct of methodological studies.

The field of meta-research (or research-on-research) has proliferated in recent years in response to issues with research quality and conduct [ 1 – 3 ]. As the name suggests, this field targets issues with research design, conduct, analysis and reporting. Various types of research reports are often examined as the unit of analysis in these studies (e.g. abstracts, full manuscripts, trial registry entries). Like many other novel fields of research, meta-research has seen a proliferation of use before the development of reporting guidance. For example, this was the case with randomized trials for which risk of bias tools and reporting guidelines were only developed much later – after many trials had been published and noted to have limitations [ 4 , 5 ]; and for systematic reviews as well [ 6 – 8 ]. However, in the absence of formal guidance, studies that report on research differ substantially in how they are named, conducted and reported [ 9 , 10 ]. This creates challenges in identifying, summarizing and comparing them. In this tutorial paper, we will use the term methodological study to refer to any study that reports on the design, conduct, analysis or reporting of primary or secondary research-related reports (such as trial registry entries and conference abstracts).

In the past 10 years, there has been an increase in the use of terms related to methodological studies (based on records retrieved with a keyword search [in the title and abstract] for “methodological review” and “meta-epidemiological study” in PubMed up to December 2019), suggesting that these studies may be appearing more frequently in the literature. See Fig.  1 .

An external file that holds a picture, illustration, etc.
Object name is 12874_2020_1107_Fig1_HTML.jpg

Trends in the number studies that mention “methodological review” or “meta-

epidemiological study” in PubMed.

The methods used in many methodological studies have been borrowed from systematic and scoping reviews. This practice has influenced the direction of the field, with many methodological studies including searches of electronic databases, screening of records, duplicate data extraction and assessments of risk of bias in the included studies. However, the research questions posed in methodological studies do not always require the approaches listed above, and guidance is needed on when and how to apply these methods to a methodological study. Even though methodological studies can be conducted on qualitative or mixed methods research, this paper focuses on and draws examples exclusively from quantitative research.

The objectives of this paper are to provide some insights on how to conduct methodological studies so that there is greater consistency between the research questions posed, and the design, analysis and reporting of findings. We provide multiple examples to illustrate concepts and a proposed framework for categorizing methodological studies in quantitative research.

What is a methodological study?

Any study that describes or analyzes methods (design, conduct, analysis or reporting) in published (or unpublished) literature is a methodological study. Consequently, the scope of methodological studies is quite extensive and includes, but is not limited to, topics as diverse as: research question formulation [ 11 ]; adherence to reporting guidelines [ 12 – 14 ] and consistency in reporting [ 15 ]; approaches to study analysis [ 16 ]; investigating the credibility of analyses [ 17 ]; and studies that synthesize these methodological studies [ 18 ]. While the nomenclature of methodological studies is not uniform, the intents and purposes of these studies remain fairly consistent – to describe or analyze methods in primary or secondary studies. As such, methodological studies may also be classified as a subtype of observational studies.

Parallel to this are experimental studies that compare different methods. Even though they play an important role in informing optimal research methods, experimental methodological studies are beyond the scope of this paper. Examples of such studies include the randomized trials by Buscemi et al., comparing single data extraction to double data extraction [ 19 ], and Carrasco-Labra et al., comparing approaches to presenting findings in Grading of Recommendations, Assessment, Development and Evaluations (GRADE) summary of findings tables [ 20 ]. In these studies, the unit of analysis is the person or groups of individuals applying the methods. We also direct readers to the Studies Within a Trial (SWAT) and Studies Within a Review (SWAR) programme operated through the Hub for Trials Methodology Research, for further reading as a potential useful resource for these types of experimental studies [ 21 ]. Lastly, this paper is not meant to inform the conduct of research using computational simulation and mathematical modeling for which some guidance already exists [ 22 ], or studies on the development of methods using consensus-based approaches.

When should we conduct a methodological study?

Methodological studies occupy a unique niche in health research that allows them to inform methodological advances. Methodological studies should also be conducted as pre-cursors to reporting guideline development, as they provide an opportunity to understand current practices, and help to identify the need for guidance and gaps in methodological or reporting quality. For example, the development of the popular Preferred Reporting Items of Systematic reviews and Meta-Analyses (PRISMA) guidelines were preceded by methodological studies identifying poor reporting practices [ 23 , 24 ]. In these instances, after the reporting guidelines are published, methodological studies can also be used to monitor uptake of the guidelines.

These studies can also be conducted to inform the state of the art for design, analysis and reporting practices across different types of health research fields, with the aim of improving research practices, and preventing or reducing research waste. For example, Samaan et al. conducted a scoping review of adherence to different reporting guidelines in health care literature [ 18 ]. Methodological studies can also be used to determine the factors associated with reporting practices. For example, Abbade et al. investigated journal characteristics associated with the use of the Participants, Intervention, Comparison, Outcome, Timeframe (PICOT) format in framing research questions in trials of venous ulcer disease [ 11 ].

How often are methodological studies conducted?

There is no clear answer to this question. Based on a search of PubMed, the use of related terms (“methodological review” and “meta-epidemiological study”) – and therefore, the number of methodological studies – is on the rise. However, many other terms are used to describe methodological studies. There are also many studies that explore design, conduct, analysis or reporting of research reports, but that do not use any specific terms to describe or label their study design in terms of “methodology”. This diversity in nomenclature makes a census of methodological studies elusive. Appropriate terminology and key words for methodological studies are needed to facilitate improved accessibility for end-users.

Why do we conduct methodological studies?

Methodological studies provide information on the design, conduct, analysis or reporting of primary and secondary research and can be used to appraise quality, quantity, completeness, accuracy and consistency of health research. These issues can be explored in specific fields, journals, databases, geographical regions and time periods. For example, Areia et al. explored the quality of reporting of endoscopic diagnostic studies in gastroenterology [ 25 ]; Knol et al. investigated the reporting of p -values in baseline tables in randomized trial published in high impact journals [ 26 ]; Chen et al. describe adherence to the Consolidated Standards of Reporting Trials (CONSORT) statement in Chinese Journals [ 27 ]; and Hopewell et al. describe the effect of editors’ implementation of CONSORT guidelines on reporting of abstracts over time [ 28 ]. Methodological studies provide useful information to researchers, clinicians, editors, publishers and users of health literature. As a result, these studies have been at the cornerstone of important methodological developments in the past two decades and have informed the development of many health research guidelines including the highly cited CONSORT statement [ 5 ].

Where can we find methodological studies?

Methodological studies can be found in most common biomedical bibliographic databases (e.g. Embase, MEDLINE, PubMed, Web of Science). However, the biggest caveat is that methodological studies are hard to identify in the literature due to the wide variety of names used and the lack of comprehensive databases dedicated to them. A handful can be found in the Cochrane Library as “Cochrane Methodology Reviews”, but these studies only cover methodological issues related to systematic reviews. Previous attempts to catalogue all empirical studies of methods used in reviews were abandoned 10 years ago [ 29 ]. In other databases, a variety of search terms may be applied with different levels of sensitivity and specificity.

Some frequently asked questions about methodological studies

In this section, we have outlined responses to questions that might help inform the conduct of methodological studies.

Q: How should I select research reports for my methodological study?

A: Selection of research reports for a methodological study depends on the research question and eligibility criteria. Once a clear research question is set and the nature of literature one desires to review is known, one can then begin the selection process. Selection may begin with a broad search, especially if the eligibility criteria are not apparent. For example, a methodological study of Cochrane Reviews of HIV would not require a complex search as all eligible studies can easily be retrieved from the Cochrane Library after checking a few boxes [ 30 ]. On the other hand, a methodological study of subgroup analyses in trials of gastrointestinal oncology would require a search to find such trials, and further screening to identify trials that conducted a subgroup analysis [ 31 ].

The strategies used for identifying participants in observational studies can apply here. One may use a systematic search to identify all eligible studies. If the number of eligible studies is unmanageable, a random sample of articles can be expected to provide comparable results if it is sufficiently large [ 32 ]. For example, Wilson et al. used a random sample of trials from the Cochrane Stroke Group’s Trial Register to investigate completeness of reporting [ 33 ]. It is possible that a simple random sample would lead to underrepresentation of units (i.e. research reports) that are smaller in number. This is relevant if the investigators wish to compare multiple groups but have too few units in one group. In this case a stratified sample would help to create equal groups. For example, in a methodological study comparing Cochrane and non-Cochrane reviews, Kahale et al. drew random samples from both groups [ 34 ]. Alternatively, systematic or purposeful sampling strategies can be used and we encourage researchers to justify their selected approaches based on the study objective.

Q: How many databases should I search?

A: The number of databases one should search would depend on the approach to sampling, which can include targeting the entire “population” of interest or a sample of that population. If you are interested in including the entire target population for your research question, or drawing a random or systematic sample from it, then a comprehensive and exhaustive search for relevant articles is required. In this case, we recommend using systematic approaches for searching electronic databases (i.e. at least 2 databases with a replicable and time stamped search strategy). The results of your search will constitute a sampling frame from which eligible studies can be drawn.

Alternatively, if your approach to sampling is purposeful, then we recommend targeting the database(s) or data sources (e.g. journals, registries) that include the information you need. For example, if you are conducting a methodological study of high impact journals in plastic surgery and they are all indexed in PubMed, you likely do not need to search any other databases. You may also have a comprehensive list of all journals of interest and can approach your search using the journal names in your database search (or by accessing the journal archives directly from the journal’s website). Even though one could also search journals’ web pages directly, using a database such as PubMed has multiple advantages, such as the use of filters, so the search can be narrowed down to a certain period, or study types of interest. Furthermore, individual journals’ web sites may have different search functionalities, which do not necessarily yield a consistent output.

Q: Should I publish a protocol for my methodological study?

A: A protocol is a description of intended research methods. Currently, only protocols for clinical trials require registration [ 35 ]. Protocols for systematic reviews are encouraged but no formal recommendation exists. The scientific community welcomes the publication of protocols because they help protect against selective outcome reporting, the use of post hoc methodologies to embellish results, and to help avoid duplication of efforts [ 36 ]. While the latter two risks exist in methodological research, the negative consequences may be substantially less than for clinical outcomes. In a sample of 31 methodological studies, 7 (22.6%) referenced a published protocol [ 9 ]. In the Cochrane Library, there are 15 protocols for methodological reviews (21 July 2020). This suggests that publishing protocols for methodological studies is not uncommon.

Authors can consider publishing their study protocol in a scholarly journal as a manuscript. Advantages of such publication include obtaining peer-review feedback about the planned study, and easy retrieval by searching databases such as PubMed. The disadvantages in trying to publish protocols includes delays associated with manuscript handling and peer review, as well as costs, as few journals publish study protocols, and those journals mostly charge article-processing fees [ 37 ]. Authors who would like to make their protocol publicly available without publishing it in scholarly journals, could deposit their study protocols in publicly available repositories, such as the Open Science Framework ( https://osf.io/ ).

Q: How to appraise the quality of a methodological study?

A: To date, there is no published tool for appraising the risk of bias in a methodological study, but in principle, a methodological study could be considered as a type of observational study. Therefore, during conduct or appraisal, care should be taken to avoid the biases common in observational studies [ 38 ]. These biases include selection bias, comparability of groups, and ascertainment of exposure or outcome. In other words, to generate a representative sample, a comprehensive reproducible search may be necessary to build a sampling frame. Additionally, random sampling may be necessary to ensure that all the included research reports have the same probability of being selected, and the screening and selection processes should be transparent and reproducible. To ensure that the groups compared are similar in all characteristics, matching, random sampling or stratified sampling can be used. Statistical adjustments for between-group differences can also be applied at the analysis stage. Finally, duplicate data extraction can reduce errors in assessment of exposures or outcomes.

Q: Should I justify a sample size?

A: In all instances where one is not using the target population (i.e. the group to which inferences from the research report are directed) [ 39 ], a sample size justification is good practice. The sample size justification may take the form of a description of what is expected to be achieved with the number of articles selected, or a formal sample size estimation that outlines the number of articles required to answer the research question with a certain precision and power. Sample size justifications in methodological studies are reasonable in the following instances:

  • Comparing two groups
  • Determining a proportion, mean or another quantifier
  • Determining factors associated with an outcome using regression-based analyses

For example, El Dib et al. computed a sample size requirement for a methodological study of diagnostic strategies in randomized trials, based on a confidence interval approach [ 40 ].

Q: What should I call my study?

A: Other terms which have been used to describe/label methodological studies include “ methodological review ”, “methodological survey” , “meta-epidemiological study” , “systematic review” , “systematic survey”, “meta-research”, “research-on-research” and many others. We recommend that the study nomenclature be clear, unambiguous, informative and allow for appropriate indexing. Methodological study nomenclature that should be avoided includes “ systematic review” – as this will likely be confused with a systematic review of a clinical question. “ Systematic survey” may also lead to confusion about whether the survey was systematic (i.e. using a preplanned methodology) or a survey using “ systematic” sampling (i.e. a sampling approach using specific intervals to determine who is selected) [ 32 ]. Any of the above meanings of the words “ systematic” may be true for methodological studies and could be potentially misleading. “ Meta-epidemiological study” is ideal for indexing, but not very informative as it describes an entire field. The term “ review ” may point towards an appraisal or “review” of the design, conduct, analysis or reporting (or methodological components) of the targeted research reports, yet it has also been used to describe narrative reviews [ 41 , 42 ]. The term “ survey ” is also in line with the approaches used in many methodological studies [ 9 ], and would be indicative of the sampling procedures of this study design. However, in the absence of guidelines on nomenclature, the term “ methodological study ” is broad enough to capture most of the scenarios of such studies.

Q: Should I account for clustering in my methodological study?

A: Data from methodological studies are often clustered. For example, articles coming from a specific source may have different reporting standards (e.g. the Cochrane Library). Articles within the same journal may be similar due to editorial practices and policies, reporting requirements and endorsement of guidelines. There is emerging evidence that these are real concerns that should be accounted for in analyses [ 43 ]. Some cluster variables are described in the section: “ What variables are relevant to methodological studies?”

A variety of modelling approaches can be used to account for correlated data, including the use of marginal, fixed or mixed effects regression models with appropriate computation of standard errors [ 44 ]. For example, Kosa et al. used generalized estimation equations to account for correlation of articles within journals [ 15 ]. Not accounting for clustering could lead to incorrect p -values, unduly narrow confidence intervals, and biased estimates [ 45 ].

Q: Should I extract data in duplicate?

A: Yes. Duplicate data extraction takes more time but results in less errors [ 19 ]. Data extraction errors in turn affect the effect estimate [ 46 ], and therefore should be mitigated. Duplicate data extraction should be considered in the absence of other approaches to minimize extraction errors. However, much like systematic reviews, this area will likely see rapid new advances with machine learning and natural language processing technologies to support researchers with screening and data extraction [ 47 , 48 ]. However, experience plays an important role in the quality of extracted data and inexperienced extractors should be paired with experienced extractors [ 46 , 49 ].

Q: Should I assess the risk of bias of research reports included in my methodological study?

A : Risk of bias is most useful in determining the certainty that can be placed in the effect measure from a study. In methodological studies, risk of bias may not serve the purpose of determining the trustworthiness of results, as effect measures are often not the primary goal of methodological studies. Determining risk of bias in methodological studies is likely a practice borrowed from systematic review methodology, but whose intrinsic value is not obvious in methodological studies. When it is part of the research question, investigators often focus on one aspect of risk of bias. For example, Speich investigated how blinding was reported in surgical trials [ 50 ], and Abraha et al., investigated the application of intention-to-treat analyses in systematic reviews and trials [ 51 ].

Q: What variables are relevant to methodological studies?

A: There is empirical evidence that certain variables may inform the findings in a methodological study. We outline some of these and provide a brief overview below:

  • Country: Countries and regions differ in their research cultures, and the resources available to conduct research. Therefore, it is reasonable to believe that there may be differences in methodological features across countries. Methodological studies have reported loco-regional differences in reporting quality [ 52 , 53 ]. This may also be related to challenges non-English speakers face in publishing papers in English.
  • Authors’ expertise: The inclusion of authors with expertise in research methodology, biostatistics, and scientific writing is likely to influence the end-product. Oltean et al. found that among randomized trials in orthopaedic surgery, the use of analyses that accounted for clustering was more likely when specialists (e.g. statistician, epidemiologist or clinical trials methodologist) were included on the study team [ 54 ]. Fleming et al. found that including methodologists in the review team was associated with appropriate use of reporting guidelines [ 55 ].
  • Source of funding and conflicts of interest: Some studies have found that funded studies report better [ 56 , 57 ], while others do not [ 53 , 58 ]. The presence of funding would indicate the availability of resources deployed to ensure optimal design, conduct, analysis and reporting. However, the source of funding may introduce conflicts of interest and warrant assessment. For example, Kaiser et al. investigated the effect of industry funding on obesity or nutrition randomized trials and found that reporting quality was similar [ 59 ]. Thomas et al. looked at reporting quality of long-term weight loss trials and found that industry funded studies were better [ 60 ]. Kan et al. examined the association between industry funding and “positive trials” (trials reporting a significant intervention effect) and found that industry funding was highly predictive of a positive trial [ 61 ]. This finding is similar to that of a recent Cochrane Methodology Review by Hansen et al. [ 62 ]
  • Journal characteristics: Certain journals’ characteristics may influence the study design, analysis or reporting. Characteristics such as journal endorsement of guidelines [ 63 , 64 ], and Journal Impact Factor (JIF) have been shown to be associated with reporting [ 63 , 65 – 67 ].
  • Study size (sample size/number of sites): Some studies have shown that reporting is better in larger studies [ 53 , 56 , 58 ].
  • Year of publication: It is reasonable to assume that design, conduct, analysis and reporting of research will change over time. Many studies have demonstrated improvements in reporting over time or after the publication of reporting guidelines [ 68 , 69 ].
  • Type of intervention: In a methodological study of reporting quality of weight loss intervention studies, Thabane et al. found that trials of pharmacologic interventions were reported better than trials of non-pharmacologic interventions [ 70 ].
  • Interactions between variables: Complex interactions between the previously listed variables are possible. High income countries with more resources may be more likely to conduct larger studies and incorporate a variety of experts. Authors in certain countries may prefer certain journals, and journal endorsement of guidelines and editorial policies may change over time.

Q: Should I focus only on high impact journals?

A: Investigators may choose to investigate only high impact journals because they are more likely to influence practice and policy, or because they assume that methodological standards would be higher. However, the JIF may severely limit the scope of articles included and may skew the sample towards articles with positive findings. The generalizability and applicability of findings from a handful of journals must be examined carefully, especially since the JIF varies over time. Even among journals that are all “high impact”, variations exist in methodological standards.

Q: Can I conduct a methodological study of qualitative research?

A: Yes. Even though a lot of methodological research has been conducted in the quantitative research field, methodological studies of qualitative studies are feasible. Certain databases that catalogue qualitative research including the Cumulative Index to Nursing & Allied Health Literature (CINAHL) have defined subject headings that are specific to methodological research (e.g. “research methodology”). Alternatively, one could also conduct a qualitative methodological review; that is, use qualitative approaches to synthesize methodological issues in qualitative studies.

Q: What reporting guidelines should I use for my methodological study?

A: There is no guideline that covers the entire scope of methodological studies. One adaptation of the PRISMA guidelines has been published, which works well for studies that aim to use the entire target population of research reports [ 71 ]. However, it is not widely used (40 citations in 2 years as of 09 December 2019), and methodological studies that are designed as cross-sectional or before-after studies require a more fit-for purpose guideline. A more encompassing reporting guideline for a broad range of methodological studies is currently under development [ 72 ]. However, in the absence of formal guidance, the requirements for scientific reporting should be respected, and authors of methodological studies should focus on transparency and reproducibility.

Q: What are the potential threats to validity and how can I avoid them?

A: Methodological studies may be compromised by a lack of internal or external validity. The main threats to internal validity in methodological studies are selection and confounding bias. Investigators must ensure that the methods used to select articles does not make them differ systematically from the set of articles to which they would like to make inferences. For example, attempting to make extrapolations to all journals after analyzing high-impact journals would be misleading.

Many factors (confounders) may distort the association between the exposure and outcome if the included research reports differ with respect to these factors [ 73 ]. For example, when examining the association between source of funding and completeness of reporting, it may be necessary to account for journals that endorse the guidelines. Confounding bias can be addressed by restriction, matching and statistical adjustment [ 73 ]. Restriction appears to be the method of choice for many investigators who choose to include only high impact journals or articles in a specific field. For example, Knol et al. examined the reporting of p -values in baseline tables of high impact journals [ 26 ]. Matching is also sometimes used. In the methodological study of non-randomized interventional studies of elective ventral hernia repair, Parker et al. matched prospective studies with retrospective studies and compared reporting standards [ 74 ]. Some other methodological studies use statistical adjustments. For example, Zhang et al. used regression techniques to determine the factors associated with missing participant data in trials [ 16 ].

With regard to external validity, researchers interested in conducting methodological studies must consider how generalizable or applicable their findings are. This should tie in closely with the research question and should be explicit. For example. Findings from methodological studies on trials published in high impact cardiology journals cannot be assumed to be applicable to trials in other fields. However, investigators must ensure that their sample truly represents the target sample either by a) conducting a comprehensive and exhaustive search, or b) using an appropriate and justified, randomly selected sample of research reports.

Even applicability to high impact journals may vary based on the investigators’ definition, and over time. For example, for high impact journals in the field of general medicine, Bouwmeester et al. included the Annals of Internal Medicine (AIM), BMJ, the Journal of the American Medical Association (JAMA), Lancet, the New England Journal of Medicine (NEJM), and PLoS Medicine ( n  = 6) [ 75 ]. In contrast, the high impact journals selected in the methodological study by Schiller et al. were BMJ, JAMA, Lancet, and NEJM ( n  = 4) [ 76 ]. Another methodological study by Kosa et al. included AIM, BMJ, JAMA, Lancet and NEJM ( n  = 5). In the methodological study by Thabut et al., journals with a JIF greater than 5 were considered to be high impact. Riado Minguez et al. used first quartile journals in the Journal Citation Reports (JCR) for a specific year to determine “high impact” [ 77 ]. Ultimately, the definition of high impact will be based on the number of journals the investigators are willing to include, the year of impact and the JIF cut-off [ 78 ]. We acknowledge that the term “generalizability” may apply differently for methodological studies, especially when in many instances it is possible to include the entire target population in the sample studied.

Finally, methodological studies are not exempt from information bias which may stem from discrepancies in the included research reports [ 79 ], errors in data extraction, or inappropriate interpretation of the information extracted. Likewise, publication bias may also be a concern in methodological studies, but such concepts have not yet been explored.

A proposed framework

In order to inform discussions about methodological studies, the development of guidance for what should be reported, we have outlined some key features of methodological studies that can be used to classify them. For each of the categories outlined below, we provide an example. In our experience, the choice of approach to completing a methodological study can be informed by asking the following four questions:

  • What is the aim?

A methodological study may be focused on exploring sources of bias in primary or secondary studies (meta-bias), or how bias is analyzed. We have taken care to distinguish bias (i.e. systematic deviations from the truth irrespective of the source) from reporting quality or completeness (i.e. not adhering to a specific reporting guideline or norm). An example of where this distinction would be important is in the case of a randomized trial with no blinding. This study (depending on the nature of the intervention) would be at risk of performance bias. However, if the authors report that their study was not blinded, they would have reported adequately. In fact, some methodological studies attempt to capture both “quality of conduct” and “quality of reporting”, such as Richie et al., who reported on the risk of bias in randomized trials of pharmacy practice interventions [ 80 ]. Babic et al. investigated how risk of bias was used to inform sensitivity analyses in Cochrane reviews [ 81 ]. Further, biases related to choice of outcomes can also be explored. For example, Tan et al investigated differences in treatment effect size based on the outcome reported [ 82 ].

Methodological studies may report quality of reporting against a reporting checklist (i.e. adherence to guidelines) or against expected norms. For example, Croituro et al. report on the quality of reporting in systematic reviews published in dermatology journals based on their adherence to the PRISMA statement [ 83 ], and Khan et al. described the quality of reporting of harms in randomized controlled trials published in high impact cardiovascular journals based on the CONSORT extension for harms [ 84 ]. Other methodological studies investigate reporting of certain features of interest that may not be part of formally published checklists or guidelines. For example, Mbuagbaw et al. described how often the implications for research are elaborated using the Evidence, Participants, Intervention, Comparison, Outcome, Timeframe (EPICOT) format [ 30 ].

Sometimes investigators may be interested in how consistent reports of the same research are, as it is expected that there should be consistency between: conference abstracts and published manuscripts; manuscript abstracts and manuscript main text; and trial registration and published manuscript. For example, Rosmarakis et al. investigated consistency between conference abstracts and full text manuscripts [ 85 ].

In addition to identifying issues with reporting in primary and secondary studies, authors of methodological studies may be interested in determining the factors that are associated with certain reporting practices. Many methodological studies incorporate this, albeit as a secondary outcome. For example, Farrokhyar et al. investigated the factors associated with reporting quality in randomized trials of coronary artery bypass grafting surgery [ 53 ].

Methodological studies may also be used to describe methods or compare methods, and the factors associated with methods. Muller et al. described the methods used for systematic reviews and meta-analyses of observational studies [ 86 ].

Some methodological studies synthesize results from other methodological studies. For example, Li et al. conducted a scoping review of methodological reviews that investigated consistency between full text and abstracts in primary biomedical research [ 87 ].

Some methodological studies may investigate the use of names and terms in health research. For example, Martinic et al. investigated the definitions of systematic reviews used in overviews of systematic reviews (OSRs), meta-epidemiological studies and epidemiology textbooks [ 88 ].

In addition to the previously mentioned experimental methodological studies, there may exist other types of methodological studies not captured here.

  • 2. What is the design?

Most methodological studies are purely descriptive and report their findings as counts (percent) and means (standard deviation) or medians (interquartile range). For example, Mbuagbaw et al. described the reporting of research recommendations in Cochrane HIV systematic reviews [ 30 ]. Gohari et al. described the quality of reporting of randomized trials in diabetes in Iran [ 12 ].

Some methodological studies are analytical wherein “analytical studies identify and quantify associations, test hypotheses, identify causes and determine whether an association exists between variables, such as between an exposure and a disease.” [ 89 ] In the case of methodological studies all these investigations are possible. For example, Kosa et al. investigated the association between agreement in primary outcome from trial registry to published manuscript and study covariates. They found that larger and more recent studies were more likely to have agreement [ 15 ]. Tricco et al. compared the conclusion statements from Cochrane and non-Cochrane systematic reviews with a meta-analysis of the primary outcome and found that non-Cochrane reviews were more likely to report positive findings. These results are a test of the null hypothesis that the proportions of Cochrane and non-Cochrane reviews that report positive results are equal [ 90 ].

  • 3. What is the sampling strategy?

Methodological reviews with narrow research questions may be able to include the entire target population. For example, in the methodological study of Cochrane HIV systematic reviews, Mbuagbaw et al. included all of the available studies ( n  = 103) [ 30 ].

Many methodological studies use random samples of the target population [ 33 , 91 , 92 ]. Alternatively, purposeful sampling may be used, limiting the sample to a subset of research-related reports published within a certain time period, or in journals with a certain ranking or on a topic. Systematic sampling can also be used when random sampling may be challenging to implement.

  • 4. What is the unit of analysis?

Many methodological studies use a research report (e.g. full manuscript of study, abstract portion of the study) as the unit of analysis, and inferences can be made at the study-level. However, both published and unpublished research-related reports can be studied. These may include articles, conference abstracts, registry entries etc.

Some methodological studies report on items which may occur more than once per article. For example, Paquette et al. report on subgroup analyses in Cochrane reviews of atrial fibrillation in which 17 systematic reviews planned 56 subgroup analyses [ 93 ].

This framework is outlined in Fig.  2 .

An external file that holds a picture, illustration, etc.
Object name is 12874_2020_1107_Fig2_HTML.jpg

A proposed framework for methodological studies

Conclusions

Methodological studies have examined different aspects of reporting such as quality, completeness, consistency and adherence to reporting guidelines. As such, many of the methodological study examples cited in this tutorial are related to reporting. However, as an evolving field, the scope of research questions that can be addressed by methodological studies is expected to increase.

In this paper we have outlined the scope and purpose of methodological studies, along with examples of instances in which various approaches have been used. In the absence of formal guidance on the design, conduct, analysis and reporting of methodological studies, we have provided some advice to help make methodological studies consistent. This advice is grounded in good contemporary scientific practice. Generally, the research question should tie in with the sampling approach and planned analysis. We have also highlighted the variables that may inform findings from methodological studies. Lastly, we have provided suggestions for ways in which authors can categorize their methodological studies to inform their design and analysis.

Acknowledgements

Abbreviations, authors’ contributions.

LM conceived the idea and drafted the outline and paper. DOL and LT commented on the idea and draft outline. LM, LP and DOL performed literature searches and data extraction. All authors (LM, DOL, LT, LP, DBA) reviewed several draft versions of the manuscript and approved the final manuscript.

This work did not receive any dedicated funding.

Availability of data and materials

Ethics approval and consent to participate.

Not applicable.

Consent for publication

Competing interests.

DOL, DBA, LM, LP and LT are involved in the development of a reporting guideline for methodological studies.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

  • Privacy Policy

Research Method

Home » Research Methods – Types, Examples and Guide

Research Methods – Types, Examples and Guide

Table of Contents

Research Methods

Research Methods

Definition:

Research Methods refer to the techniques, procedures, and processes used by researchers to collect , analyze, and interpret data in order to answer research questions or test hypotheses. The methods used in research can vary depending on the research questions, the type of data that is being collected, and the research design.

Types of Research Methods

Types of Research Methods are as follows:

Qualitative research Method

Qualitative research methods are used to collect and analyze non-numerical data. This type of research is useful when the objective is to explore the meaning of phenomena, understand the experiences of individuals, or gain insights into complex social processes. Qualitative research methods include interviews, focus groups, ethnography, and content analysis.

Quantitative Research Method

Quantitative research methods are used to collect and analyze numerical data. This type of research is useful when the objective is to test a hypothesis, determine cause-and-effect relationships, and measure the prevalence of certain phenomena. Quantitative research methods include surveys, experiments, and secondary data analysis.

Mixed Method Research

Mixed Method Research refers to the combination of both qualitative and quantitative research methods in a single study. This approach aims to overcome the limitations of each individual method and to provide a more comprehensive understanding of the research topic. This approach allows researchers to gather both quantitative data, which is often used to test hypotheses and make generalizations about a population, and qualitative data, which provides a more in-depth understanding of the experiences and perspectives of individuals.

Key Differences Between Research Methods

The following Table shows the key differences between Quantitative, Qualitative and Mixed Research Methods

Examples of Research Methods

Examples of Research Methods are as follows:

Qualitative Research Example:

A researcher wants to study the experience of cancer patients during their treatment. They conduct in-depth interviews with patients to gather data on their emotional state, coping mechanisms, and support systems.

Quantitative Research Example:

A company wants to determine the effectiveness of a new advertisement campaign. They survey a large group of people, asking them to rate their awareness of the product and their likelihood of purchasing it.

Mixed Research Example:

A university wants to evaluate the effectiveness of a new teaching method in improving student performance. They collect both quantitative data (such as test scores) and qualitative data (such as feedback from students and teachers) to get a complete picture of the impact of the new method.

Applications of Research Methods

Research methods are used in various fields to investigate, analyze, and answer research questions. Here are some examples of how research methods are applied in different fields:

  • Psychology : Research methods are widely used in psychology to study human behavior, emotions, and mental processes. For example, researchers may use experiments, surveys, and observational studies to understand how people behave in different situations, how they respond to different stimuli, and how their brains process information.
  • Sociology : Sociologists use research methods to study social phenomena, such as social inequality, social change, and social relationships. Researchers may use surveys, interviews, and observational studies to collect data on social attitudes, beliefs, and behaviors.
  • Medicine : Research methods are essential in medical research to study diseases, test new treatments, and evaluate their effectiveness. Researchers may use clinical trials, case studies, and laboratory experiments to collect data on the efficacy and safety of different medical treatments.
  • Education : Research methods are used in education to understand how students learn, how teachers teach, and how educational policies affect student outcomes. Researchers may use surveys, experiments, and observational studies to collect data on student performance, teacher effectiveness, and educational programs.
  • Business : Research methods are used in business to understand consumer behavior, market trends, and business strategies. Researchers may use surveys, focus groups, and observational studies to collect data on consumer preferences, market trends, and industry competition.
  • Environmental science : Research methods are used in environmental science to study the natural world and its ecosystems. Researchers may use field studies, laboratory experiments, and observational studies to collect data on environmental factors, such as air and water quality, and the impact of human activities on the environment.
  • Political science : Research methods are used in political science to study political systems, institutions, and behavior. Researchers may use surveys, experiments, and observational studies to collect data on political attitudes, voting behavior, and the impact of policies on society.

Purpose of Research Methods

Research methods serve several purposes, including:

  • Identify research problems: Research methods are used to identify research problems or questions that need to be addressed through empirical investigation.
  • Develop hypotheses: Research methods help researchers develop hypotheses, which are tentative explanations for the observed phenomenon or relationship.
  • Collect data: Research methods enable researchers to collect data in a systematic and objective way, which is necessary to test hypotheses and draw meaningful conclusions.
  • Analyze data: Research methods provide tools and techniques for analyzing data, such as statistical analysis, content analysis, and discourse analysis.
  • Test hypotheses: Research methods allow researchers to test hypotheses by examining the relationships between variables in a systematic and controlled manner.
  • Draw conclusions : Research methods facilitate the drawing of conclusions based on empirical evidence and help researchers make generalizations about a population based on their sample data.
  • Enhance understanding: Research methods contribute to the development of knowledge and enhance our understanding of various phenomena and relationships, which can inform policy, practice, and theory.

When to Use Research Methods

Research methods are used when you need to gather information or data to answer a question or to gain insights into a particular phenomenon.

Here are some situations when research methods may be appropriate:

  • To investigate a problem : Research methods can be used to investigate a problem or a research question in a particular field. This can help in identifying the root cause of the problem and developing solutions.
  • To gather data: Research methods can be used to collect data on a particular subject. This can be done through surveys, interviews, observations, experiments, and more.
  • To evaluate programs : Research methods can be used to evaluate the effectiveness of a program, intervention, or policy. This can help in determining whether the program is meeting its goals and objectives.
  • To explore new areas : Research methods can be used to explore new areas of inquiry or to test new hypotheses. This can help in advancing knowledge in a particular field.
  • To make informed decisions : Research methods can be used to gather information and data to support informed decision-making. This can be useful in various fields such as healthcare, business, and education.

Advantages of Research Methods

Research methods provide several advantages, including:

  • Objectivity : Research methods enable researchers to gather data in a systematic and objective manner, minimizing personal biases and subjectivity. This leads to more reliable and valid results.
  • Replicability : A key advantage of research methods is that they allow for replication of studies by other researchers. This helps to confirm the validity of the findings and ensures that the results are not specific to the particular research team.
  • Generalizability : Research methods enable researchers to gather data from a representative sample of the population, allowing for generalizability of the findings to a larger population. This increases the external validity of the research.
  • Precision : Research methods enable researchers to gather data using standardized procedures, ensuring that the data is accurate and precise. This allows researchers to make accurate predictions and draw meaningful conclusions.
  • Efficiency : Research methods enable researchers to gather data efficiently, saving time and resources. This is especially important when studying large populations or complex phenomena.
  • Innovation : Research methods enable researchers to develop new techniques and tools for data collection and analysis, leading to innovation and advancement in the field.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Questionnaire

Questionnaire – Definition, Types, and Examples

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Research Methods In Psychology

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

Research methods in psychology are systematic procedures used to observe, describe, predict, and explain behavior and mental processes. They include experiments, surveys, case studies, and naturalistic observations, ensuring data collection is objective and reliable to understand and explain psychological phenomena.

research methods3

Hypotheses are statements about the prediction of the results, that can be verified or disproved by some investigation.

There are four types of hypotheses :
  • Null Hypotheses (H0 ) – these predict that no difference will be found in the results between the conditions. Typically these are written ‘There will be no difference…’
  • Alternative Hypotheses (Ha or H1) – these predict that there will be a significant difference in the results between the two conditions. This is also known as the experimental hypothesis.
  • One-tailed (directional) hypotheses – these state the specific direction the researcher expects the results to move in, e.g. higher, lower, more, less. In a correlation study, the predicted direction of the correlation can be either positive or negative.
  • Two-tailed (non-directional) hypotheses – these state that a difference will be found between the conditions of the independent variable but does not state the direction of a difference or relationship. Typically these are always written ‘There will be a difference ….’

All research has an alternative hypothesis (either a one-tailed or two-tailed) and a corresponding null hypothesis.

Once the research is conducted and results are found, psychologists must accept one hypothesis and reject the other. 

So, if a difference is found, the Psychologist would accept the alternative hypothesis and reject the null.  The opposite applies if no difference is found.

Sampling techniques

Sampling is the process of selecting a representative group from the population under study.

Sample Target Population

A sample is the participants you select from a target population (the group you are interested in) to make generalizations about.

Representative means the extent to which a sample mirrors a researcher’s target population and reflects its characteristics.

Generalisability means the extent to which their findings can be applied to the larger population of which their sample was a part.

  • Volunteer sample : where participants pick themselves through newspaper adverts, noticeboards or online.
  • Opportunity sampling : also known as convenience sampling , uses people who are available at the time the study is carried out and willing to take part. It is based on convenience.
  • Random sampling : when every person in the target population has an equal chance of being selected. An example of random sampling would be picking names out of a hat.
  • Systematic sampling : when a system is used to select participants. Picking every Nth person from all possible participants. N = the number of people in the research population / the number of people needed for the sample.
  • Stratified sampling : when you identify the subgroups and select participants in proportion to their occurrences.
  • Snowball sampling : when researchers find a few participants, and then ask them to find participants themselves and so on.
  • Quota sampling : when researchers will be told to ensure the sample fits certain quotas, for example they might be told to find 90 participants, with 30 of them being unemployed.

Experiments always have an independent and dependent variable .

  • The independent variable is the one the experimenter manipulates (the thing that changes between the conditions the participants are placed into). It is assumed to have a direct effect on the dependent variable.
  • The dependent variable is the thing being measured, or the results of the experiment.

variables

Operationalization of variables means making them measurable/quantifiable. We must use operationalization to ensure that variables are in a form that can be easily tested.

For instance, we can’t really measure ‘happiness’, but we can measure how many times a person smiles within a two-hour period. 

By operationalizing variables, we make it easy for someone else to replicate our research. Remember, this is important because we can check if our findings are reliable.

Extraneous variables are all variables which are not independent variable but could affect the results of the experiment.

It can be a natural characteristic of the participant, such as intelligence levels, gender, or age for example, or it could be a situational feature of the environment such as lighting or noise.

Demand characteristics are a type of extraneous variable that occurs if the participants work out the aims of the research study, they may begin to behave in a certain way.

For example, in Milgram’s research , critics argued that participants worked out that the shocks were not real and they administered them as they thought this was what was required of them. 

Extraneous variables must be controlled so that they do not affect (confound) the results.

Randomly allocating participants to their conditions or using a matched pairs experimental design can help to reduce participant variables. 

Situational variables are controlled by using standardized procedures, ensuring every participant in a given condition is treated in the same way

Experimental Design

Experimental design refers to how participants are allocated to each condition of the independent variable, such as a control or experimental group.
  • Independent design ( between-groups design ): each participant is selected for only one group. With the independent design, the most common way of deciding which participants go into which group is by means of randomization. 
  • Matched participants design : each participant is selected for only one group, but the participants in the two groups are matched for some relevant factor or factors (e.g. ability; sex; age).
  • Repeated measures design ( within groups) : each participant appears in both groups, so that there are exactly the same participants in each group.
  • The main problem with the repeated measures design is that there may well be order effects. Their experiences during the experiment may change the participants in various ways.
  • They may perform better when they appear in the second group because they have gained useful information about the experiment or about the task. On the other hand, they may perform less well on the second occasion because of tiredness or boredom.
  • Counterbalancing is the best way of preventing order effects from disrupting the findings of an experiment, and involves ensuring that each condition is equally likely to be used first and second by the participants.

If we wish to compare two groups with respect to a given independent variable, it is essential to make sure that the two groups do not differ in any other important way. 

Experimental Methods

All experimental methods involve an iv (independent variable) and dv (dependent variable)..

  • Field experiments are conducted in the everyday (natural) environment of the participants. The experimenter still manipulates the IV, but in a real-life setting. It may be possible to control extraneous variables, though such control is more difficult than in a lab experiment.
  • Natural experiments are when a naturally occurring IV is investigated that isn’t deliberately manipulated, it exists anyway. Participants are not randomly allocated, and the natural event may only occur rarely.

Case studies are in-depth investigations of a person, group, event, or community. It uses information from a range of sources, such as from the person concerned and also from their family and friends.

Many techniques may be used such as interviews, psychological tests, observations and experiments. Case studies are generally longitudinal: in other words, they follow the individual or group over an extended period of time. 

Case studies are widely used in psychology and among the best-known ones carried out were by Sigmund Freud . He conducted very detailed investigations into the private lives of his patients in an attempt to both understand and help them overcome their illnesses.

Case studies provide rich qualitative data and have high levels of ecological validity. However, it is difficult to generalize from individual cases as each one has unique characteristics.

Correlational Studies

Correlation means association; it is a measure of the extent to which two variables are related. One of the variables can be regarded as the predictor variable with the other one as the outcome variable.

Correlational studies typically involve obtaining two different measures from a group of participants, and then assessing the degree of association between the measures. 

The predictor variable can be seen as occurring before the outcome variable in some sense. It is called the predictor variable, because it forms the basis for predicting the value of the outcome variable.

Relationships between variables can be displayed on a graph or as a numerical score called a correlation coefficient.

types of correlation. Scatter plot. Positive negative and no correlation

  • If an increase in one variable tends to be associated with an increase in the other, then this is known as a positive correlation .
  • If an increase in one variable tends to be associated with a decrease in the other, then this is known as a negative correlation .
  • A zero correlation occurs when there is no relationship between variables.

After looking at the scattergraph, if we want to be sure that a significant relationship does exist between the two variables, a statistical test of correlation can be conducted, such as Spearman’s rho.

The test will give us a score, called a correlation coefficient . This is a value between 0 and 1, and the closer to 1 the score is, the stronger the relationship between the variables. This value can be both positive e.g. 0.63, or negative -0.63.

Types of correlation. Strong, weak, and perfect positive correlation, strong, weak, and perfect negative correlation, no correlation. Graphs or charts ...

A correlation between variables, however, does not automatically mean that the change in one variable is the cause of the change in the values of the other variable. A correlation only shows if there is a relationship between variables.

Correlation does not always prove causation, as a third variable may be involved. 

causation correlation

Interview Methods

Interviews are commonly divided into two types: structured and unstructured.

A fixed, predetermined set of questions is put to every participant in the same order and in the same way. 

Responses are recorded on a questionnaire, and the researcher presets the order and wording of questions, and sometimes the range of alternative answers.

The interviewer stays within their role and maintains social distance from the interviewee.

There are no set questions, and the participant can raise whatever topics he/she feels are relevant and ask them in their own way. Questions are posed about participants’ answers to the subject

Unstructured interviews are most useful in qualitative research to analyze attitudes and values.

Though they rarely provide a valid basis for generalization, their main advantage is that they enable the researcher to probe social actors’ subjective point of view. 

Questionnaire Method

Questionnaires can be thought of as a kind of written interview. They can be carried out face to face, by telephone, or post.

The choice of questions is important because of the need to avoid bias or ambiguity in the questions, ‘leading’ the respondent or causing offense.

  • Open questions are designed to encourage a full, meaningful answer using the subject’s own knowledge and feelings. They provide insights into feelings, opinions, and understanding. Example: “How do you feel about that situation?”
  • Closed questions can be answered with a simple “yes” or “no” or specific information, limiting the depth of response. They are useful for gathering specific facts or confirming details. Example: “Do you feel anxious in crowds?”

Its other practical advantages are that it is cheaper than face-to-face interviews and can be used to contact many respondents scattered over a wide area relatively quickly.

Observations

There are different types of observation methods :
  • Covert observation is where the researcher doesn’t tell the participants they are being observed until after the study is complete. There could be ethical problems or deception and consent with this particular observation method.
  • Overt observation is where a researcher tells the participants they are being observed and what they are being observed for.
  • Controlled : behavior is observed under controlled laboratory conditions (e.g., Bandura’s Bobo doll study).
  • Natural : Here, spontaneous behavior is recorded in a natural setting.
  • Participant : Here, the observer has direct contact with the group of people they are observing. The researcher becomes a member of the group they are researching.  
  • Non-participant (aka “fly on the wall): The researcher does not have direct contact with the people being observed. The observation of participants’ behavior is from a distance

Pilot Study

A pilot  study is a small scale preliminary study conducted in order to evaluate the feasibility of the key s teps in a future, full-scale project.

A pilot study is an initial run-through of the procedures to be used in an investigation; it involves selecting a few people and trying out the study on them. It is possible to save time, and in some cases, money, by identifying any flaws in the procedures designed by the researcher.

A pilot study can help the researcher spot any ambiguities (i.e. unusual things) or confusion in the information given to participants or problems with the task devised.

Sometimes the task is too hard, and the researcher may get a floor effect, because none of the participants can score at all or can complete the task – all performances are low.

The opposite effect is a ceiling effect, when the task is so easy that all achieve virtually full marks or top performances and are “hitting the ceiling”.

Research Design

In cross-sectional research , a researcher compares multiple segments of the population at the same time

Sometimes, we want to see how people change over time, as in studies of human development and lifespan. Longitudinal research is a research design in which data-gathering is administered repeatedly over an extended period of time.

In cohort studies , the participants must share a common factor or characteristic such as age, demographic, or occupation. A cohort study is a type of longitudinal study in which researchers monitor and observe a chosen population over an extended period.

Triangulation means using more than one research method to improve the study’s validity.

Reliability

Reliability is a measure of consistency, if a particular measurement is repeated and the same result is obtained then it is described as being reliable.

  • Test-retest reliability :  assessing the same person on two different occasions which shows the extent to which the test produces the same answers.
  • Inter-observer reliability : the extent to which there is an agreement between two or more observers.

Meta-Analysis

A meta-analysis is a systematic review that involves identifying an aim and then searching for research studies that have addressed similar aims/hypotheses.

This is done by looking through various databases, and then decisions are made about what studies are to be included/excluded.

Strengths: Increases the conclusions’ validity as they’re based on a wider range.

Weaknesses: Research designs in studies can vary, so they are not truly comparable.

Peer Review

A researcher submits an article to a journal. The choice of the journal may be determined by the journal’s audience or prestige.

The journal selects two or more appropriate experts (psychologists working in a similar field) to peer review the article without payment. The peer reviewers assess: the methods and designs used, originality of the findings, the validity of the original research findings and its content, structure and language.

Feedback from the reviewer determines whether the article is accepted. The article may be: Accepted as it is, accepted with revisions, sent back to the author to revise and re-submit or rejected without the possibility of submission.

The editor makes the final decision whether to accept or reject the research report based on the reviewers comments/ recommendations.

Peer review is important because it prevent faulty data from entering the public domain, it provides a way of checking the validity of findings and the quality of the methodology and is used to assess the research rating of university departments.

Peer reviews may be an ideal, whereas in practice there are lots of problems. For example, it slows publication down and may prevent unusual, new work being published. Some reviewers might use it as an opportunity to prevent competing researchers from publishing work.

Some people doubt whether peer review can really prevent the publication of fraudulent research.

The advent of the internet means that a lot of research and academic comment is being published without official peer reviews than before, though systems are evolving on the internet where everyone really has a chance to offer their opinions and police the quality of research.

Types of Data

  • Quantitative data is numerical data e.g. reaction time or number of mistakes. It represents how much or how long, how many there are of something. A tally of behavioral categories and closed questions in a questionnaire collect quantitative data.
  • Qualitative data is virtually any type of information that can be observed and recorded that is not numerical in nature and can be in the form of written or verbal communication. Open questions in questionnaires and accounts from observational studies collect qualitative data.
  • Primary data is first-hand data collected for the purpose of the investigation.
  • Secondary data is information that has been collected by someone other than the person who is conducting the research e.g. taken from journals, books or articles.

Validity means how well a piece of research actually measures what it sets out to, or how well it reflects the reality it claims to represent.

Validity is whether the observed effect is genuine and represents what is actually out there in the world.

  • Concurrent validity is the extent to which a psychological measure relates to an existing similar measure and obtains close results. For example, a new intelligence test compared to an established test.
  • Face validity : does the test measure what it’s supposed to measure ‘on the face of it’. This is done by ‘eyeballing’ the measuring or by passing it to an expert to check.
  • Ecological validit y is the extent to which findings from a research study can be generalized to other settings / real life.
  • Temporal validity is the extent to which findings from a research study can be generalized to other historical times.

Features of Science

  • Paradigm – A set of shared assumptions and agreed methods within a scientific discipline.
  • Paradigm shift – The result of the scientific revolution: a significant change in the dominant unifying theory within a scientific discipline.
  • Objectivity – When all sources of personal bias are minimised so not to distort or influence the research process.
  • Empirical method – Scientific approaches that are based on the gathering of evidence through direct observation and experience.
  • Replicability – The extent to which scientific procedures and findings can be repeated by other researchers.
  • Falsifiability – The principle that a theory cannot be considered scientific unless it admits the possibility of being proved untrue.

Statistical Testing

A significant result is one where there is a low probability that chance factors were responsible for any observed difference, correlation, or association in the variables tested.

If our test is significant, we can reject our null hypothesis and accept our alternative hypothesis.

If our test is not significant, we can accept our null hypothesis and reject our alternative hypothesis. A null hypothesis is a statement of no effect.

In Psychology, we use p < 0.05 (as it strikes a balance between making a type I and II error) but p < 0.01 is used in tests that could cause harm like introducing a new drug.

A type I error is when the null hypothesis is rejected when it should have been accepted (happens when a lenient significance level is used, an error of optimism).

A type II error is when the null hypothesis is accepted when it should have been rejected (happens when a stringent significance level is used, an error of pessimism).

Ethical Issues

  • Informed consent is when participants are able to make an informed judgment about whether to take part. It causes them to guess the aims of the study and change their behavior.
  • To deal with it, we can gain presumptive consent or ask them to formally indicate their agreement to participate but it may invalidate the purpose of the study and it is not guaranteed that the participants would understand.
  • Deception should only be used when it is approved by an ethics committee, as it involves deliberately misleading or withholding information. Participants should be fully debriefed after the study but debriefing can’t turn the clock back.
  • All participants should be informed at the beginning that they have the right to withdraw if they ever feel distressed or uncomfortable.
  • It causes bias as the ones that stayed are obedient and some may not withdraw as they may have been given incentives or feel like they’re spoiling the study. Researchers can offer the right to withdraw data after participation.
  • Participants should all have protection from harm . The researcher should avoid risks greater than those experienced in everyday life and they should stop the study if any harm is suspected. However, the harm may not be apparent at the time of the study.
  • Confidentiality concerns the communication of personal information. The researchers should not record any names but use numbers or false names though it may not be possible as it is sometimes possible to work out who the researchers were.

Print Friendly, PDF & Email

Pfeiffer Library

Research Methodologies

  • What are research designs?
  • What are research methodologies?

What are research methods?

Quantitative research methods, qualitative research methods, mixed method approach, selecting the best research method.

  • Additional Sources

Research methods are different from research methodologies because they are the ways in which you will collect the data for your research project.  The best method for your project largely depends on your topic, the type of data you will need, and the people or items from which you will be collecting data.  The following boxes below contain a list of quantitative, qualitative, and mixed research methods.

  • Closed-ended questionnaires/survey: These types of questionnaires or surveys are like "multiple choice" tests, where participants must select from a list of premade answers.  According to the content of the question, they must select the one that they agree with the most.  This approach is the simplest form of quantitative research because the data is easy to combine and quantify.
  • Structured interviews: These are a common research method in market research because the data can be quantified.  They are strictly designed for little "wiggle room" in the interview process so that the data will not be skewed.  You can conduct structured interviews in-person, online, or over the phone (Dawson, 2019).

Constructing Questionnaires

When constructing your questions for a survey or questionnaire, there are things you can do to ensure that your questions are accurate and easy to understand (Dawson, 2019):

  • Keep the questions brief and simple.
  • Eliminate any potential bias from your questions.  Make sure that they do not word things in a way that favor one perspective over another.
  • If your topic is very sensitive, you may want to ask indirect questions rather than direct ones.  This prevents participants from being intimidated and becoming unwilling to share their true responses.
  • If you are using a closed-ended question, try to offer every possible answer that a participant could give to that question.
  • Do not ask questions that assume something of the participant.  The question "How often do you exercise?" assumes that the participant exercises (when they may not), so you would want to include a question that asks if they exercise at all before asking them how often.
  • Try and keep the questionnaire as short as possible.  The longer a questionnaire takes, the more likely the participant will not complete it or get too tired to put truthful answers.
  • Promise confidentiality to your participants at the beginning of the questionnaire.

Quantitative Research Measures

When you are considering a quantitative approach to your research, you need to identify why types of measures you will use in your study.  This will determine what type of numbers you will be using to collect your data.  There are four levels of measurement:

  • Nominal: These are numbers where the order of the numbers do not matter.  They aim to identify separate information.  One example is collecting zip codes from research participants.  The order of the numbers does not matter, but the series of numbers in each zip code indicate different information (Adamson and Prion, 2013).
  • Ordinal: Also known as rankings because the order of these numbers matter.  This is when items are given a specific rank according to specific criteria.  A common example of ordinal measurements include ranking-based questionnaires, where participants are asked to rank items from least favorite to most favorite.  Another common example is a pain scale, where a patient is asked to rank their pain on a scale from 1 to 10 (Adamson and Prion, 2013).
  • Interval: This is when the data are ordered and the distance between the numbers matters to the researcher (Adamson and Prion, 2013).  The distance between each number is the same.  An example of interval data is test grades.
  • Ratio: This is when the data are ordered and have a consistent distance between numbers, but has a "zero point."  This means that there could be a measurement of zero of whatever you are measuring in your study (Adamson and Prion, 2013).  An example of ratio data is measuring the height of something because the "zero point" remains constant in all measurements.  The height of something could also be zero.

Focus Groups

This is when a select group of people gather to talk about a particular topic.  They can also be called discussion groups or group interviews (Dawson, 2019).  They are usually lead by a moderator  to help guide the discussion and ask certain questions.  It is critical that a moderator allows everyone in the group to get a chance to speak so that no one dominates the discussion.  The data that are gathered from focus groups tend to be thoughts, opinions, and perspectives about an issue.

Advantages of Focus Groups

  • Only requires one meeting to get different types of responses.
  • Less researcher bias due to participants being able to speak openly.
  • Helps participants overcome insecurities or fears about a topic.
  • The researcher can also consider the impact of participant interaction.

Disadvantages of Focus Groups

  • Participants may feel uncomfortable to speak in front of an audience, especially if the topic is sensitive or controversial.
  • Since participation is voluntary, not every participant may contribute equally to the discussion.
  • Participants may impact what others say or think.
  • A researcher may feel intimidated by running a focus group on their own.
  • A researcher may need extra funds/resources to provide a safe space to host the focus group.
  • Because the data is collective, it may be difficult to determine a participant's individual thoughts about the research topic.

Observation

There are two ways to conduct research observations:

  • Direct Observation: The researcher observes a participant in an environment.  The researcher often takes notes or uses technology to gather data, such as a voice recorder or video camera.  The researcher does not interact or interfere with the participants.  This approach is often used in psychology and health studies (Dawson, 2019).
  • Participant Observation:  The researcher interacts directly with the participants to get a better understanding of the research topic.  This is a common research method when trying to understand another culture or community.  It is important to decide if you will conduct a covert (participants do not know they are part of the research) or overt (participants know the researcher is observing them) observation because it can be unethical in some situations (Dawson, 2019).

Open-Ended Questionnaires

These types of questionnaires are the opposite of "multiple choice" questionnaires because the answer boxes are left open for the participant to complete.  This means that participants can write short or extended answers to the questions.  Upon gathering the responses, researchers will often "quantify" the data by organizing the responses into different categories.  This can be time consuming because the researcher needs to read all responses carefully.

Semi-structured Interviews

This is the most common type of interview where researchers aim to get specific information so they can compare it to other interview data.  This requires asking the same questions for each interview, but keeping their responses flexible.  This means including follow-up questions if a subject answers a certain way.  Interview schedules are commonly used to aid the interviewers, which list topics or questions that will be discussed at each interview (Dawson, 2019).

Theoretical Analysis

Often used for nonhuman research, theoretical analysis is a qualitative approach where the researcher applies a theoretical framework to analyze something about their topic.  A theoretical framework gives the researcher a specific "lens" to view the topic and think about it critically. it also serves as context to guide the entire study.  This is a popular research method for analyzing works of literature, films, and other forms of media.  You can implement more than one theoretical framework with this method, as many theories complement one another.

Common theoretical frameworks for qualitative research are (Grant and Osanloo, 2014):

  • Behavioral theory
  • Change theory
  • Cognitive theory
  • Content analysis
  • Cross-sectional analysis
  • Developmental theory
  • Feminist theory
  • Gender theory
  • Marxist theory
  • Queer theory
  • Systems theory
  • Transformational theory

Unstructured Interviews

These are in-depth interviews where the researcher tries to understand an interviewee's perspective on a situation or issue.  They are sometimes called life history interviews.  It is important not to bombard the interviewee with too many questions so they can freely disclose their thoughts (Dawson, 2019).

  • Open-ended and closed-ended questionnaires: This approach means implementing elements of both questionnaire types into your data collection.  Participants may answer some questions with premade answers and write their own answers to other questions.  The advantage to this method is that you benefit from both types of data collection to get a broader understanding of you participants.  However, you must think carefully about how you will analyze this data to arrive at a conclusion.

Other mixed method approaches that incorporate quantitative and qualitative research methods depend heavily on the research topic.  It is strongly recommended that you collaborate with your academic advisor before finalizing a mixed method approach.

How do you determine which research method would be best for your proposal?  This heavily depends on your research objective.  According to Dawson (2019), there are several questions to ask yourself when determining the best research method for your project:

  • Are you good with numbers and mathematics?
  • Would you be interested in conducting interviews with human subjects?
  • Would you enjoy creating a questionnaire for participants to complete?
  • Do you prefer written communication or face-to-face interaction?
  • What skills or experiences do you have that might help you with your research?  Do you have any experiences from past research projects that can help with this one?
  • How much time do you have to complete the research?  Some methods take longer to collect data than others.
  • What is your budget?  Do you have adequate funding to conduct the research in the method you  want?
  • How much data do you need?  Some research topics need only a small amount of data while others may need significantly larger amounts.
  • What is the purpose of your research? This can provide a good indicator as to what research method will be most appropriate.
  • << Previous: What are research methodologies?
  • Next: Additional Sources >>
  • Last Updated: Aug 2, 2022 2:36 PM
  • URL: https://library.tiffin.edu/researchmethodologies

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 05 March 2024

A systematic review of the methodology of trade-off analysis in agriculture

  • Timo S. Breure   ORCID: orcid.org/0000-0001-5695-8064 1 ,
  • Natalia Estrada-Carmona   ORCID: orcid.org/0000-0003-4329-5470 2 ,
  • Athanasios Petsakos   ORCID: orcid.org/0000-0003-0224-4087 3 ,
  • Elisabetta Gotor   ORCID: orcid.org/0000-0003-0533-3077 3 ,
  • Boris Jansen   ORCID: orcid.org/0000-0002-4493-1734 4 &
  • Jeroen C. J. Groot   ORCID: orcid.org/0000-0001-6516-5170 1  

Nature Food volume  5 ,  pages 211–220 ( 2024 ) Cite this article

4799 Accesses

33 Altmetric

Metrics details

  • Agroecology
  • Ecological modelling
  • Ecosystem services
  • Environmental impact
  • Sustainability

Trade-off analysis (TOA) is central to policy and decision-making aimed at promoting sustainable agricultural landscapes. Yet, a generic methodological framework to assess trade-offs in agriculture is absent, largely due to the wide range of research disciplines and objectives for which TOA is used. In this study, we systematically reviewed 119 studies that have implemented TOAs in landscapes and regions dominated by agricultural systems around the world. Our results highlight that TOAs tend to be unbalanced, with a strong emphasis on productivity rather than environmental and socio-cultural services. TOAs have mostly been performed at farm or regional scales, rarely considering multiple spatial scales simultaneously. Mostly, TOAs fail to include stakeholders at study development stage, disregard recommendation uncertainty due to outcome variability and overlook risks associated with the TOA outcomes. Increased attention to these aspects is critical for TOAs to guide agricultural landscapes towards sustainability.

Similar content being viewed by others

the research methodology used

Long-term evidence for ecological intensification as a pathway to sustainable agriculture

the research methodology used

An interactive model to assess pathways for agriculture and food sector contributions to country-level net-zero targets

the research methodology used

Ecological sensitivity within human realities concept for improved functional biodiversity outcomes in agricultural systems and landscapes

Contemporary agriculture should not only provide food, fibre, feed and fuel but also environmental and socio-economic benefits for rural communities and beyond 1 . To ensure that agriculture delivers multiple services while minimizing its negative impacts, society must be aware of the trade-offs and synergies that may arise. The nature of these trade-offs depends on location-specific natural, social and cultural conditions that place constraints on the inputs and outputs of an agricultural system. For example, market-based farmers are concerned with enhancing commodity production, whereas the priority of subsistence farmers lies with improving food security 2 . The global imperative to achieve the United Nations Sustainable Development Goals (SDGs) underscores the need to reduce the environmental impact of land use practices and strengthen equitable social outcomes at both landscape and community levels. However, achieving the SDGs might require sacrifices to primary productivity and economic revenues. Thus, to reconcile the demands of agriculture and inform decision-making, an analysis is required of potential trade-offs measured against agronomic, environmental, economic and social indicators 3 .

Trade-off analysis (TOA) was established as a concept to generate quantitative information on competing (trade-offs) or complementary (synergies) indicators that can be used to guide policy and decision-making 4 . A typical TOA project starts with three preparatory steps: formulation of the research question, identification of which indicators to assess, and formulation of hypotheses about the relationships between the indicators and the associated trade-offs and synergies. Subsequently, the management, policy or technological changes that affect the TOA indicators can be identified and included in the analysis framework. Then, the trade-offs and synergies under changing conditions or scenarios can be quantified and, finally, the results are communicated to relevant stakeholders to inform decision-making and policy 4 . Since its first implementation in the context of agriculture, a wide range of methods have been used to conduct TOAs, including optimization, simulations, qualitative, econometric and narrative-based approaches. In some cases, these approaches are deployed in a spatially explicit manner with the support of geographic information systems (GIS) 5 .

Although important advances have been made regarding TOA in agricultural contexts, researchers have expressed concerns about the scope and methodological limitations of published studies. These concerns relate to the limited transfer of the academic knowledge generated by TOA into decision- and policy-making due to the inability to take into account social and cultural factors 6 , the sparsity of multi- and cross-scale assessments 3 , 5 , 6 , 7 , and the limited representation of uncertainty 8 , 9 and risk analysis 5 .

The concerns reported in the literature on the limitations of TOA analysis can indeed have important implications. First, failure to recognize the importance of scale (spatial, temporal, jurisdictional and legislative) in TOA may lead to erroneous inferences on how the relationships between trade-offs and indicators develop across scales. Multiple scales can be analysed without interactions between them or a cross-scale analysis can be performed that accounts for interactions between scales 10 . Furthermore, adverse effects appearing outside the TOA case study area (off-site effects) may offset any gains stemming from a TOA-informed policy 11 . Second, recognition of social interactions and cultural values is needed to assure representation of beneficiaries and non-beneficiaries relevant to the topic at hand, that is, distributional justice 9 , 10 . Representation among stakeholders and their involvement in the design and implementation of a TOA can increase the legitimacy of its findings, assure that the data used are relevant to the context and thus enhance adoption of a study’s findings 12 . Third, validation and acknowledgement of uncertainty in both data and model estimates increase the robustness of a TOA and can facilitate risk-based decision-making 13 , 14 , 15 .

Previous literature reviews on TOA in agriculture adopted a ‘storytelling’ approach, where key studies were selected from the literature to discuss research trends. However, given the wide scope of TOAs applied in the context of agriculture, a systematic review could reveal the variety of approaches used and potential knowledge gaps, as well as the indicators that were studied and by which methods, ultimately facilitating the comparability of results.

Here we report on the TOA indicators, methodology and analysis used in 119 peer-reviewed articles. Descriptive statistics are used to characterize articles based on the extent to which they considered (1) indicators relevant to environmental and socio-economic services, (2) multiple spatial scales and their interactions, (3) the comprehensive involvement of stakeholders, and (4) the validity of trade-offs and recommendations in the context of associated uncertainties and risks (see Table 1 for further details). Finally, a cluster analysis shows which indicators were frequently studied together and which TOA methods were associated with each cluster.

The aim of this study was thus to provide an overview of the peer-reviewed literature on TOA in the context of agriculture using a systematic approach. For this purpose, we sought to define how trade-offs in agriculture are conceptualized, characterized and analysed in the TOA literature. Based on these findings, we have identified common gaps in the implementation of TOA.

The distribution of publication dates for the articles in the sample was mainly centred in the years 2015–2021 (Extended Data Fig. 1a ). Specifically, 73% of the articles were published after 2014, which indicates an increasing research effort directed towards TOAs in an agricultural context (Extended Data Fig. 1b ).

Common interrelationships and co-occurrences among TOA indicators

The articles examined included a median of 3.8 ± 1.9 (s.d.) TOA indicators, ranging from 1 to 10. Based on the cumulative distribution, 52% of the articles included three or fewer TOA indicators, while 90% included six or fewer TOA indicators (Extended Data Fig. 2a ). The most prevalent indicators across all articles were ‘profitability’ (57%, economic), ‘yield’ (44%, agronomic) and ‘water quantity’ (34%, sustainable resource management). The second most common set of indicators encompassed a selection of biophysical (for example, ‘water quality’ and ‘greenhouse gases’), agronomic (for example, ‘input efficiency’ and ‘land use efficiency’) and economic indicators (for example, ‘assets’), ranging between 13% and 21% (Fig. 1 ). The remaining TOA indicators were used less frequently and related to economic (that is, ‘labour productivity’ and ‘poverty’), human health (for example, ‘nutrition’, ‘health’ or ‘food security’) and agronomic (that is, ‘self-sufficiency’) aspects, representing a share of 5–6% (Fig. 1 ). Rarely considered TOA indicators (less than 5%) included ‘market supply or demand’ (economic), ‘yield stability’ (agronomic), ‘empowerment’ and ‘gender equity’ (both human health; Fig. 1 ).

figure 1

Percentage of articles that include a TOA indicator (black dotted line and circles) and the share of each TOA method M1–M9 used to study that indicator (coloured bars). The prefixes of the TOA indicators refer to their class association (A, E, H, S) and number of occurrence within that class as provided in Table 1 . Table 1 also describes the TOA methods M1–M9.

The articles were grouped into 11 clusters, depending on which TOA indicators were assessed (left y -axis dendrogram in Fig. 2 ). These clusters show a dominant theme based on the co-occurrence of TOA indicators (right y- axis in Fig. 2 ). For example, in cluster 7, ‘poverty’ was studied in conjunction with ‘soil nutrients’, whereas in cluster 5, ‘poverty’ was studied in conjunction with ‘profitability’, ‘food security’ and ‘nutrition’. The clustering of articles by TOA indicator reveals which TOA indicators are often studied together. Indicators of ‘profitability’ and ‘yield’ were the most commonly used (Figs. 1 and 2 ) and were generally combined with case-specific environmental and social indicators (Fig. 2 ). This suggests that agronomic and economic viability are conditional for the exploration of improvements in agricultural system sustainability. The cluster with the largest number of articles (cluster 6, Fig. 2 ) concerned agricultural production and water quality. This highlights the strong focus on solving pressing issues related to pollution by surplus nutrients from fertilizers and manure.

figure 2

The articles were clustered by TOA indicator (row-wise) and TOA indicator clusters (column-wise). The associations of articles with clusters are indicated by the colours and labels on the left of the figure; the colours are arbitrary. TOA indicator clusters (top x axis) are specified by colour, corresponding to the main indicator categories (legend in top left of the figure), and their name (bottom x axis). The matrix indicates whether a TOA indicator has been included in an article (red) or not (beige). The labels on the right list the main TOA indicators included in each cluster. GHG, greenhouse gases; SOC, soil organic carbon; supp./dem., supply or demand.

The clustering of TOA indicators (top x -axis dendrogram in Fig. 2 ) shows that for 50% of the indicators, the indicator closest in the dendrogram belongs to the same category (sustainable resource management, agronomic, economic or human health). In particular, four out of five human health indicators were studied in isolation from other indicators, forming closely paired branches (top x -axis dendrogram, orange colour, in Fig. 2 ).

The application of TOA methods varied across different TOA indicators and clusters. For example, the TOA indicators ‘labour productivity’, ‘empowerment’, ‘gender equity’ and ‘yield stability’ lacked cases involving spatially explicit methods (M1 or M8; Fig. 1 ). This same observation applies to the clusters in which these TOA indicators belong (Fig. 3 ). While the absence of spatially explicit methods for social indicators such as ‘empowerment’ and ‘gender equity’ is expected, given that their spatial dimension is often disregarded, it is worth noting that gender and empowerment may relate to the spatial distribution of fields and resources in the landscape. For instance, their distance from the location of the homestead or decision-making processes regarding the (distribution of) use and ownership of these resources. Clusters of articles associated with ‘yield’, ‘energy’, ‘biodiversity’ and ‘land use’ exhibited a high use of GIS (M8), qualitative (M6) and other (M9) methods, with fewer articles applying optimization methods (M3; Fig. 3 ). Lastly, an interesting anomaly is the ‘health’ indicator, where methods M1–M3, encompassing (spatially explicit) simulations and optimization methods, were conspicuously absent (Fig. 1 ).

figure 3

Cluster associations are as per Fig. 2 and the number of articles within each cluster is given by n .

Frequency of criteria levels

The majority of TOAs were conducted at regional (65%) and farm (17%) scales, followed by field (7%) and national (6%) scales. The TOAs conducted at multi-country (4%) and global scales, along with ‘other’, accounted for only a small proportion of the analyses (Fig. 4a ). The spatial scales for TOAs differed from the scales at which modelling was performed or data were collected, with the farm and field scale contributing to a combined share of 48%. Of the articles considered, 12% implemented cross-scale analyses and 17% considered off-site effects (Fig. 4a ). Case study areas were predominantly delineated using administrative borders (54%), followed by biophysical delineation (24%), with 18% of the articles using both methods (Fig. 4b ).

figure 4

a , Criteria related to the scale of the analysis. TOA: the spatial scale at which the TOA was conducted. The numbers refer to the spatial scales of field (1), farm (2), regional (3), national (4), multi-country (5) and global (6). Off-site: whether off-site effects have been considered in the TOA. Discipline: the spatial scale at which modelling or data collection was performed for a discipline. The numbers refer to the spatial scales detailed above for TOA. Cross-scale: whether aggregative (1), interactive (2) or no cross-scale modelling was performed (3). b , Criteria related to the TOA framework. TOA method: the methods used to perform the TOAs. The numbers refer to the TOA methods M1–M9 defined in Table 1 . System border: which boundaries were used to define the TOA case study area. Scenario: whether the article considered a scenario and, if so, which type of scenario. The numbers refer to the scenarios 1–8 defined in Table 1 . c , Criteria related to stakeholders. Type: whether local beneficiaries and non-beneficiaries, experts, government, farmers, distant beneficiaries and non-beneficiaries, academics, private organizations or environmental organizations were involved. Inclusion: whether the study included stakeholders. Implementation: whether stakeholders were involved in consultation, co-development, valuation or validation. d , Criteria related to TOA robustness: whether the article performed a validation, risk analysis or acknowledged uncertainty. e , The frequency (shown in the circles) for each spatial scale at which the modelling or data collection was performed for a given discipline. f , The frequency (shown in the circles) at which an article considered a given scenario in TOA for each spatial scale. The scenario numbers 1–8 are defined in Table 1 .

Including a scenario in the TOA allows investigation of the effect of a postulated event or driver on the TOA indicators. In our analysis, scenarios focusing on climate, behavioural or demographic change accounted for 14% of the articles, while scenarios involving alternative intensities of resource use constituted 37% of the articles. Scenarios were absent in 25% of the articles (Fig. 4b ). Over half of the articles included stakeholders in their analysis, with a relatively equal spread across stakeholder types, except for ‘distant beneficiaries and non-beneficiaries’, which were under-represented. Farmers and experts constituted a larger share (48%) compared to other categories (Fig. 4c ). Stakeholders were mainly involved in consultation and valuation, with co-development and validation implemented in less than 25% of the articles considered (Fig. 4c ). Overall, the robustness of the TOA results was not widely considered, as the criteria ‘uncertainty’ and ‘validation’ were logged for less than 50% of the articles. Articles incorporating risk analysis constituted 12% of the sample (Fig. 4d ).

Links between spatial scales and criteria

Of the articles considered, ‘livestock’, ‘fisheries’ and ‘forestry’ accounted for a relatively small share (16%) compared with ‘crop’, ‘economic’ and ‘environmental’ disciplines. For the livestock discipline, modelling and data collection were predominantly carried out at the farm scale, while for forestry, they were primarily conducted at the field or regional scale (Fig. 4e ). For the economic discipline, modelling and data collection were evenly distributed between the farm ( n  = 34) and regional ( n  = 34) scales (Fig. 4e ), in contrast to the overall share of these scales across all of the articles, where ‘regional’ constituted 65% and ‘farm’ constituted 17% of the articles (Fig. 4a ). In general, for a large share of the reviewed articles, data were collected and modelling was performed at the field and farm scales, but the TOA was conducted at the regional scale. These findings show that, before the TOA, some form of aggregation occurs in the majority of the reviewed articles. Regarding the spatial scale at which the TOA was conducted for articles including a scenario, two observations can be made. First, all of the scenarios (except the resource use scenario) were rarely studied at scales larger than the national scale. Second, the climate, behavioural and demographic change scenarios were almost exclusively studied at the regional scale (Fig. 4f ). These results show that few studies investigated how scenarios unfolding at smaller or larger scales affect the indicators at the TOA scale.

Multi-scale, cross-scale and robustness criteria

Figure 5 shows the percentage of articles that include a TOA indicator (black line, the same as shown in Fig. 1 ). The articles were then divided into subsets according to whether they included a cross-scale, multi-scale or robustness criterion. The coloured lines represent the percentage of articles in the subset that include a specific TOA indicator. With the exception of indicators rarely included in all articles (for example, those related to nutrition or health), most TOA indicators were present in articles adopting a cross-scale modelling framework (Fig. 5a ). These findings occur despite the overall low number of articles (<20%) reporting cross-scale analyses (Fig. 5a ). Notably, articles applying an interactive modelling framework did not include ‘water quality’, ‘soil erosion’, ‘soil organic carbon’ and ‘biodiversity’, despite these indicators having a relatively high frequency across all articles (Fig. 5a ).

figure 5

The percentages of all reviewed articles and subsets of articles that include specific TOA indicators. a – c , The subsets comprise articles that included cross-scale ( a ), multi-scale ( b ) and robustness ( c ) criteria. In b , TOA refers to articles in which the TOA was conducted on multiple spatial scales, ‘Discipline’ refers to articles that considered multiple spatial scales for modelling or data collection, and ‘Off-site’ refers to articles in which effects outside the TOA case study area were considered.

Across all articles, 17% considered off-site effects (Fig. 4a ). Notably, the ‘poverty’ and ‘soil erosion’ indicators were under-represented in articles considering off-site effects (Fig. 5b ). Eight indicators were excluded in articles considering multiple spatial scales in modelling or data collection (‘discipline’ in Fig. 5b ). This finding is particularly striking for ‘biodiversity’, given that it constitutes a large share of spatially explicit TOA methods (Fig. 1 ).

Thirteen per cent of articles reported TOA on multiple spatial scales, with seven indicators excluded in these cases (‘TOA’ in Fig. 5b ). Among the excluded indicators, those related to human health dominated (except for ‘nutrition’). For certain indicators, these findings are to be expected. For instance, market supply or demand (economic) is irrelevant at low geographical scales (field and farm) as prices are determined at the regional (local), national or international scale. The articles that included a risk analysis showed stark contrasts between TOA indicators with respect to their representation relative to all articles. Economic and human health indicators were particularly over-represented, while ‘yield’, ‘input efficiency’ and a set of biophysical indicators were under-represented (Fig. 5c ). For articles in which uncertainty was acknowledged or validation was performed, no indicators were over- or under-represented relative to their inclusion across all articles (Fig. 5c ).

Limitations on the inclusion of TOA indicators

Recent reviews on TOA have stated that there is little to no representation of indicators related to social interactions, justice and gender issues in TOAs for agricultural systems 5 , 6 . These studies referred in particular to intra-household equity, asset ownership, health, education and nutrition. Our results also demonstrate that social and cultural TOA indicators are largely absent, mostly considered in isolation and studied by statistical approaches. These findings are probably a result of the limited data availability and the inability of TOA methods to include socio-cultural indicators for features and processes that are difficult to capture quantitatively 16 , 17 . We further note a similarly low frequency for the following indicators: food security, self-sufficiency and yield stability. These findings raise questions about the rationale behind the selection of TOA indicators. That is, the prevalent use of profitability and crop yield as primary indicators reflects the focus on profit and crop yield maximization in the literature 5 . The outcomes and priorities of a TOA depend on the chosen objectives and indicators. Alternative indicators might therefore facilitate a more comprehensive analysis of the delivery of environmental, economic and socio-cultural services from agriculture. One illustrative example is the metric ‘nutritional yield’, defined as “the number of hectares required to provide sufficient quantity to fulfil 100% of dietary reference intake for a nutrient for one adult” 2 . Nutritional yield thus allows the assessment of land use efficiency in both agronomic and social terms. Integrating nutritional yield into TOA in the context of subsistence agriculture could unveil the need for changes in farmers’ crop plans to balance food security and economic profitability objectives.

TOA methodologies

The formulation of research objectives, questions and methodology determines the information base that a TOA can provide 16 , 18 . Decisions regarding TOA objectives and methodology determine the degree to which scales, disciplines and indicators are compartmentalized. In addition, these decisions influence the range of interventions and scenarios explored for alternative agro-environmental management of land, resources and technologies 7 , 18 . The results of our analysis reveal associations between TOA methods and indicators, indicating common gaps, such as the absence of articles reporting the use of spatially explicit methods to study the indicators ‘human health’ and ‘yield stability’. Studying these indicators in a spatially explicit manner could allow for targeted land use planning at the local scale. For instance, Prestele and Verburg demonstrated that spatially explicit analysis of climate-smart agriculture adoptions unveils local-scale trade-offs affecting yield and soil carbon sequestration at an aggregated scale 19 . Our results also underscore expected patterns, with socio-economic indicators predominantly studied through statistical approaches and qualitative methods. These methods, static and based on existing datasets, differ from mechanistic models, which allow extrapolation and ex ante assessment under alternative future scenarios. Simulations based on mechanistic models hold the potential to explore scenarios that minimize trade-offs between indicators 3 , 7 . However, the validity of this kind of optimization depends on having sufficient understanding of relevant processes and feedbacks in the socio-environmental system 3 . For example, while crop models vary in their capacity to assess climate change impacts, they share common limitations, such as inadequate representation of low-intensity agricultural systems 20 . We found that a description of study limitations in the context of the TOA framework, for example, excluded aspects, was often absent. Ideally, models and associated uncertainties would be assessed in the design phase of the TOA. This could ensure the availability of adequate information for quantifying all desired parameters at the desired resolution, allowing the study to comprehensively represent the agricultural system. Such an approach is crucial to guide planning in future management decisions aligned with research objectives 17 .

Involvement of stakeholders and practical application of TOA results

One recurring concern in the literature is the frequent omission of stakeholders at the onset of the TOA, potentially limiting the practical application of TOA results 6 , 8 . Our findings partially support these concerns, given that co-development with stakeholders was observed in only 10% of the articles. However, making a definitive statement on equal representation among stakeholders proved challenging as there was generally an absence of a systematic inventory outlining the relevance of different stakeholders to the decision-making process based on their interests and influence 21 . Our analysis shows that farmers and experts were the primary stakeholders included in the articles. Nonetheless, the omission of distant beneficiaries and non-beneficiaries is noteworthy as they are likely to be relevant to the decision-making process in numerous cases, especially when off-site effects are considered in TOAs conducted on multiple scales.

Multi- and cross-scale analysis

Depending on the research objectives, the TOA literature underscores the importance of acknowledging processes across scales and including them in research 3 , 6 , 7 , 8 , 9 , 22 . In many of the articles, data were collected or modelling was performed at field and farm scales, yet the TOA was conducted at the regional scale. This highlights an opportunity for multi-scale TOA analysis, potentially enhancing the relevance of TOA studies to policy. For example, bilevel optimization is a promising approach to facilitating nested decision-making processes at different scales. In this approach, the solution at the higher level (for example, larger spatial scale) depends on the solution at the lower level (for example, smaller spatial scale). Bostian et al. demonstrated the application of this methodology in recognizing multiple spatial scales inherent to non-point pollution regulation 23 . However, the restricted application of cross-scale analysis in our sample (12%) shows the limited extent to which TOA in agriculture captures the hierarchical nature of social, cultural, environmental, economic and agronomic processes.

Furthermore, 17% of the articles considered effects outside the TOA case study area, considering off-site effects in a diverse array of subjects, including transnational emission permits, water trading and increased demand for scarce resources, anticipated to influence their shadow prices 24 , 25 , 26 . However, off-site effects might have feedbacks, such as dependencies between alternative production systems within a supply chain 27 . In such cases, the delineation of the system boundary must be considered in the context of these feedbacks to ensure their inclusion within the system. In cases where off-site effects do not have feedbacks, these can be classified as ‘teleconnections’, denoting processes whose cause and effect are widely separated 28 . A case in point is a study of the water quality of the Danube River, in which distant beneficiaries and non-beneficiaries, represented by an international committee, were considered in the TOA 29 . The results also show that climate, behavioural and demographic scenarios were rarely assessed at lower or higher scales (compared to the regional scale). This underscores that the extent to which these scales are relevant to TOA is understudied and merits further research. For example, generic methods, such as the carbon 30 or water 31 footprint, can provide a broad assessment of which off-site effects at larger scales are relevant to TOA outcomes. These approaches may facilitate the inclusion of underlying causes, the involvement of more inclusive stakeholders and account for leakage effects, such as the expansion of agricultural lands beyond the TOA case study area 32 .

Ideally, a TOA methodological framework is conceptualized such that (1) it recognizes multi- and cross-scale interactions where applicable, (2) the system boundary aligns with substantiated biophysical and relevant socio-institutional boundaries, and (3) it recognizes the heterogeneity in which scales and associated consequences are perceived as well as valued by different stakeholders 10 .

Robustness of TOA results

The risk associated with TOA extends across spatial, temporal and jurisdictional scales, carrying implications for the dissemination of TOA results 13 . The under-representation of ‘yield’ in articles considering risk analysis highlights the dichotomy between yield and profitability as the most prominent indicators. That is, risk analysis appears to be mainly associated with the economic domain 5 . However, it is important to recognize that the evaluation of risk and the formulation of relevant strategies (risk aversion, mitigation or offsetting) are critical for farmers adopting system transformations, such as alternative forms of land use to mitigate inputs and associated greenhouse gas emissions. Integrating risk into TOA enables the study of the policies and incentives necessary for achieving whole-system transformations towards sustainable agricultural practices 13 , 14 . Decision-making under uncertainty becomes interpretable when recommendations are accompanied by an assessment of associated risks. Ideally, these risks are context-specific. For example, Hochman et al. provided TOA results on crop rotations alongside a minimum risk threshold quantified as the highest gross margin for the poorest 20% of years 33 .

While a moderate number of the articles considered uncertainty, only a few articles quantified changes in trade-offs as a function of uncertainty. The inclusion of stochastic components and the associated uncertainty inherent in biological systems could facilitate a more realistic description of outcomes, proving valuable for decision-making 13 , 15 . Varying input data or model parameterization within an expected range could reveal the sensitivity of results. For instance, when climate scenarios are used, realizations of these scenarios can be used to assess the stochasticity of the objectives for which the TOA is implemented 34 . This approach enables the acknowledgement of both the frequency and pattern of stochastic events, including extreme weather events, and their impact on TOA outcomes. Consequently, an analysis of the adaptability of a farming system would not solely rely on optimal solutions given the mean output but would also account for associated variability and unexpected events 15 . However, it is crucial to contextualize the effect of stochasticity. For example, the relative impact of model or parameter uncertainty on optimization outcomes has been shown to vary depending on the prioritization of objectives and site conditions 35 .

Limitations of this study

An important limitation of our review lies in the use of ‘trade-off analysis’ as a single term in our Web of Science search string. There are research areas that address trade-offs and synergies across various disciplines, scales and methods without explicitly using the term ‘trade-off analysis’ to describe their research objectives. Examples include the ‘food–energy–water nexus’ literature 36 , as well as research under the auspices of the Agricultural Model Intercomparison and Improvement Project (AgMIP) ( https://agmip.org/ ) and the Food, Agriculture, Biodiversity, Land-Use and Energy (FABLE) Consortium 37 . Both AgMIP and FABLE are particularly concerned with the relevance of TOA to policy. AgMIP explicitly states the use of “multiple scenarios and models to assess and probabilistically manage risk” 38 . Given the focus of these studies on global and regional assessments, we anticipate that our findings for those spatial scales could be affected. Indeed, the identified gaps in TOA implementation need to be viewed in the context of our sample, which mostly comprises studies in which modelling or data analysis was performed up to the regional level and TOA at the regional scale.

The method used to log the occurrence of pre-set criteria not only affects the variance within a criterion but also influences its abundance. For example, Sanon et al. included a large number of TOA indicators that were all classified under ‘biodiversity’ 29 . Thus, binary criteria logging does not capture the intensity with which a criterion is considered, a well-known phenomenon in the field of ecology 39 . This limitation may have resulted in the underestimation of both the intensity with which certain TOA indicators and their classes have been studied (Fig. 1 ) and the total number of TOA indicators considered per article (Extended Data Fig. 2 ).

Conclusions

Based on our analysis, it is possible to identify some actions that would increase the contribution of TOAs to SDG-aligned agricultural landscapes.

For instance, future studies should include multi- and cross-scale effects when relevant to the research objectives. We have identified an opportunity for multi-scale analysis, given that many studies aggregated farm- or field-scale data before performing TOA at a regional scale. As the inclusion of multiple scales, indicators and methods may in some cases reduce the generalizability of results and make them more context-specific, an alternative would be to discuss the anticipated implications of multi- and cross-scale effects on the study findings.

Furthermore, the relevance of TOA to society and policy can be improved by formulating research objectives such that TOA indicators lie within the scope of frameworks such as the SDGs. The most frequent indicators were biophysical or informed by profit maximization theory (for example, profitability and yield). However, indicators relevant to human well-being, security and farm resilience (for example, empowerment, nutrition and yield stability) occurred less frequently. To aid the interpretation of TOA results, the rationale behind the TOA methodology that is used to assess indicators should be listed together with a critical review of how the agricultural system under study is represented and what is excluded as a consequence.

In the reviewed articles, the most consulted stakeholders were farmers and experts, stakeholder co-development and validation were rare, and scenarios were predominantly based on resource use with little consideration of off-site effects. These findings suggest that TOAs mostly explore alternative management across a set of farms rather than policies and incentives that would facilitate whole landscape and food system transformations.

Agricultural policy- and decision-making carry an inherent risk. TOAs will become more operational when they evaluate associated risks and list strategies to manage these risks. This process could promote the robustness of quantified trade-offs with respect to the associated uncertainty of data and variability in outcomes. Finally, an inventory of stakeholders that are relevant to the decision-making process and their respective roles in the study would provide legitimacy of results. While this element has already been recognized in the literature 12 , 29 , some of the shortcomings that we have identified here would probably occur less frequently, particularly the lack of stakeholder inclusion and the over-representation of specific stakeholder types and methods of stakeholder engagement.

Closer adherence to these guidelines could enhance the relevance of TOA to the scientific community, policy-makers and farmers.

We followed the approach of Lautenbach et al. and Seppelt et al. in their systematic review of the literature on ecosystem services 9 , 22 . The generic structure involved (1) the identification, screening and selection of relevant peer-reviewed literature from a global repository, (2) formulation of the criteria against which to evaluate each article (Table 1 and Supplementary Table 1 ), and (3) descriptive statistics and cluster analysis to assess common interrelationships between criteria and identify knowledge gaps.

We used the following search string “ALL=agricultur* AND (“trade off* analysis” OR “trade-off* analysis” OR “tradeoff* analysis”)” in the Web of Science (on 14 September 2021) to identify peer-reviewed articles in English reporting TOA. We found 153 articles with publication dates spanning from 1993 to 2021. We excluded studies that mentioned the existence of trade-offs but did not assess relationships between indicators. For this reason, review and opinion papers were considered off-topic and were excluded from the search results. Furthermore, methodological papers that did not involve a case study were also excluded, leading to a total sample of 119 articles.

We selected criteria based on current TOA research 5 , 6 , 7 , 8 , 9 , 16 , 22 and recorded information on these criteria that were relevant to the conceptualization, characterization and analysis of trade-offs in agriculture (research objective 1). Briefly, the criteria included the type of TOA methods used, the spatial scales at which the analyses were performed and/or data collected, the indicators assessed in the TOA, which stakeholder types were included as well as how the stakeholders were engaged in the case study, whether the case study included alternative scenarios and of what type, how the case study area was delineated, whether effects outside the case study area were considered, and whether the case study acknowledged and accounted for uncertainty, validated results or performed a risk analysis. To assess whether cross-scale analyses were performed in case studies, we adopted the definition of Kanter et al., who distinguished between model frameworks that aggregate outputs at lower scales to use as inputs at higher scales (aggregative) and model frameworks that have submodels operating at different spatial and temporal resolutions (interactive) 6 . Thus, whereas an aggregative model framework follows a sequential approach, an interactive model framework performs analysis across scales simultaneously, allowing for interactions between scales and emergent indicators at higher levels. Furthermore, descriptive information was collected for three criteria: the agricultural system(s) studied, agricultural activities and knowledge gaps reported in the discussion section of the article. All of the criteria are listed in Table 1 with a generic description. We refer the reader to Supplementary Table 1 for more detailed information on the criteria. Based on these criteria, knowledge gaps were then assessed through descriptive statistics and cluster analysis (research objective 2).

The decision of which TOA indicators to include is a major methodological decision in TOA as it determines which interrelations are considered and analysed, and therefore which trade-offs and synergies can be identified. We anticipated thematic clusters of TOA indicators based on the discipline, scale, geography and method considered. To identify co-occurrences between TOA indicators, we performed hierarchical Ward clustering to group articles by TOA indicators as well as the TOA indicators themselves based on the Jaccard similarity coefficient 40 . Through the use of the Jaccard similarity metric, we accounted for the double-zero problem. Namely, the absence of a TOA indicator in two articles does not indicate a similarity, whereas its presence does 9 . For the clustering of articles by the TOA indicators used, the number of clusters to be retained was decided by the ‘elbow’ method based on the Mantel correlation between the data for each cluster and the raw distance matrix 40 . For the clustering of TOA indicators, the dendrogram was not cut to visualize common co-occurrences for all of the TOA indicators.

Criteria were logged in a Microsoft Office Excel (2021) spreadsheet (Supplementary Data 1 ). The data collected during this systematic review were further analysed and visualized in R (ref. 41 ). Data handling, visualizations and analysis were performed using the following R packages: tidyverse 42 , dendextend 43 , cluster 44 , vegan 45 and pheatmap 46 .

Reporting summary

Further information on research design is available in the Nature Portfolio Reporting Summary linked to this article.

Data availability

The dataset created has been made available as extended data.

Code availability

The code created for data handling, analysis and visualizations is available on request.

Renting, H. et al. Exploring multifunctional agriculture. A review of conceptual approaches and prospects for an integrative transitional framework. J. Environ. Manag. 90 , 112–123 (2009).

Article   Google Scholar  

DeFries, R. et al. Synergies and trade-offs for sustainable agriculture: nutritional yields and climate-resilience for cereal crops in Central India. Glob. Food Sec. 11 , 44–53 (2016).

Seppelt, R., Lautenbach, S. & Volk, M. Identifying trade-offs between ecosystem services, land use, and biodiversity: a plea for combining scenario analysis and optimization on different spatial scales. Curr. Opin. Environ. Sustain. 5 , 458–463 (2013).

Stoorvogel, J. J., Antle, J. M., Crissman, C. C. & Bowen, W. The tradeoff analysis model: integrated bio-physical and economic modeling of agricultural production systems. Agric. Syst. 80 , 43–66 (2004).

Antle, J. M. & Valdivia, R. O. Trade-off analysis of agri-food systems for sustainable research and development. Q Open https://doi.org/10.1093/qopen/qoaa005 (2021).

Kanter, D. R. et al. Evaluating agricultural trade-offs in the age of sustainable development. Agric. Syst. 163 , 73–88 (2018).

Groot, J. C. J. et al. On the contribution of modelling to multifunctional agriculture: learning from comparisons. J. Environ. Manag. 90 , 147–160 (2009).

Klapwijk, C. J. et al. Analysis of trade-offs in agricultural systems: current status and way forward. Curr. Opin. Environ. Sustain. 6 , 110–115 (2014).

Lautenbach, S. et al. Blind spots in ecosystem services research and challenges for implementation. Reg. Environ. Change 19 , 2151–2172 (2019).

Cash, D. W. et al. Scale and cross-scale dynamics: governance and information in a multilevel world. Ecol. Soc . https://www.jstor.org/stable/26265993 (2006).

Gibson, R. B. Sustainability assessment: basic components of a practical approach. Impact Assess. Proj. Apprais. 24 , 170–182 (2006).

Cash, D. W. et al. Knowledge systems for sustainable development. Proc. Natl Acad. Sci. USA 100 , 8086–8091 (2003).

Article   ADS   CAS   PubMed   PubMed Central   Google Scholar  

Anderson, J. R. Risk in rural development: challenges for managers and policy makers. Agric. Syst. 75 , 161–197 (2003).

Hardaker, J. B., Lien, G., Anderson, J. R. & Huirne, R. B. Coping with Risk in Agriculture: Applied Decision Analysis (Cabi, 2015).

Uusitalo, L., Lehikoinen, A., Helle, I. & Myrberg, K. An overview of methods to evaluate uncertainty of deterministic models in decision support. Environ. Model. Softw. 63 , 24–31 (2015).

Thornton, P. K. et al. A framework for priority-setting in climate smart agriculture research. Agric. Syst. 167 , 161–175 (2018).

Jones, J. W. et al. Toward a new generation of agricultural system data, models, and knowledge products: state of agricultural systems science. Agric. Syst. 155 , 269–288 (2017).

Article   PubMed   PubMed Central   Google Scholar  

Morrison-Saunders, A. & Pope, J. Conceptualising and managing trade-offs in sustainability assessment. Environ. Impact Assess. Rev. 38 , 54–63 (2013).

Prestele, R. & Verburg, P. H. The overlooked spatial dimension of climate‐smart agriculture. Glob. Change Biol. 26 , 1045–1054 (2020).

Article   ADS   Google Scholar  

Ewert, F. et al. Crop modelling for integrated assessment of risk to food production from climate change. Environ. Model. Softw. 72 , 287–303 (2015).

Norström, A. V. et al. Principles for knowledge co-production in sustainability research. Nat. Sustain. 3 , 182–190 (2020).

Seppelt, R., Dormann, C. F., Eppink, F. V., Lautenbach, S. & Schmidt, S. A quantitative review of ecosystem service studies: approaches, shortcomings and the road ahead. J. Appl. Ecol. 48 , 630–636 (2011).

Bostian, M., Whittaker, G., Barnhart, B., Fare, R. & Grosskopf, S. Valuing water quality tradeoffs at different spatial scales: an integrated approach using bilevel optimization. Water Res. Econ. 11 , 1–12 (2015).

Google Scholar  

Popp, A. et al. The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system. Environ. Res. Lett . https://doi.org/10.1088/1748-9326/6/3/034017 (2011).

Hayha, T., Franzese, P. P., Paletto, A. & Fath, B. D. Assessing, valuing, and mapping ecosystem services in Alpine forests. Ecosyst. Serv. 14 , 12–23 (2015).

Maraseni, T., An-Vo, D. A., Mushtaq, S. & Reardon-Smith, K. Carbon smart agriculture: an integrated regional approach offers significant potential to increase profit and resource use efficiency, and reduce emissions. J. Clean. Prod . https://doi.org/10.1016/j.jclepro.2020.124555 (2021).

Modongo, O. & Kulshreshtha, S. N. Economics of mitigating greenhouse gas emissions from beef production in western Canada. Agric. Syst. 162 , 229–238 (2018).

Kinzig, A. P. in The Princeton Guide to Ecology (eds Levin, S. A. et al.) 573–670 (Princeton Univ. Press, 2012).

Sanon, S., Hein, T., Douven, W. & Winkler, P. Quantifying ecosystem service trade-offs: the case of an urban floodplain in Vienna, Austria. J. Environ. Manag. 111 , 159–172 (2012).

Wright, L. A., Kemp, S. & Williams, I. ‘Carbon footprinting’: towards a universally accepted definition. Carbon Manag. 2 , 61–72 (2011).

Chapagain, A. K. & Hoekstra, A. Y. The water footprint of Morocco and the Netherlands: global water use as a result of domestic consumption of agricultural commodities. Ecol. Econ. 64 , 109–118 (2007).

Lambin, E. F. & Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl Acad. Sci. USA 108 , 3465–3472 (2011).

Hochman, Z. et al. Cropping system yield gaps can be narrowed with more optimal rotations in dryland subtropical Australia. Agric. Syst. 184 , 102896 (2020).

Karner, K., Schmid, E., Schneider, U. A. & Mitter, H. Computing stochastic Pareto frontiers between economic and environmental goals for a semi-arid agricultural production region in Austria. Ecol. Econ . https://doi.org/10.1016/j.ecolecon.2021.107044 (2021).

Holzkämper, A., Klein, T., Seppelt, R. & Fuhrer, J. Assessing the propagation of uncertainties in multi-objective optimization for agro-ecosystem adaptation to climate change. Environ. Model. Softw. 66 , 27–35 (2015).

D’Odorico, P. et al. The global food–energy–water nexus. Rev. Geophys. 56 , 456–531 (2018).

FABLE Consortium. Pathways to Sustainable Land-Use and Food Systems. 2020 Report of the FABLE Consortium (International Institute of Applied Systems Analysis and Sustainable Development Solutions Network, 2020); https://doi.org/10.22022/ESM/12-2020.16896

Agricultural Model Intercomparison and Improvement Project. Approach. Track 2: Climate change multi-model assessment AgMIP https://agmip.org/approach-4/ (2023).

Royle, J. A. & Nichols, J. D. Estimating abundance from repeated presence–absence data or point counts. Ecology 84 , 777–790 (2003).

Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, 2012).

R Core Team. R: A language and environment for statistical computing. R package version 4.1.2. https://www.R-project.org/ (2021).

Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw . https://doi.org/10.21105/joss.01686 (2019).

Galili, T. dendextend: an R package for visualizing, adjusting, and comparing trees of hierarchical clustering. Bioinformatics 31 , 3718–3720 (2015).

Article   CAS   PubMed   PubMed Central   Google Scholar  

Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. & Hornik, K. cluster: Cluster analysis basics and extensions. R package version 2.1.2 (2021).

Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-7 https://CRAN.R-project.org/package=vegan (2020).

Kolde, R. pheatmap: Pretty heatmaps. R package version 1.0.12 https://CRAN.R-project.org/package=pheatmap (2019).

Download references

Acknowledgements

We acknowledge R. Seppelt for his comments on the initial methodology. This work was made possible by the CGIAR Research Program on Roots, Tubers and Bananas (RTB) and the One CGIAR Initiatives ‘Nexus Gains—Realizing Multiple Benefits Across Water, Energy, Food and Ecosystems’ and ‘Nature Positive Solutions’, together with all of the donors who supported this research through their contributions to the CGIAR and One CGIAR Fund. For a list of One CGIAR Fund donors, please see http://www.cgiar.org/our-funders . This research was partly funded by the United States Agency for International Development (USAID; AID-BFS-G-11-00002) as part of the US government’s Feed the Future Initiative. The contents of this Article are the responsibility of the producing organizations and do not necessarily reflect the opinion of USAID or the US government.

Author information

Authors and affiliations.

Farming Systems Ecology, Wageningen University and Research, Wageningen, The Netherlands

Timo S. Breure & Jeroen C. J. Groot

Bioversity International, Montpellier, France

Natalia Estrada-Carmona

Bioversity International, Rome, Italy

Athanasios Petsakos & Elisabetta Gotor

Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands

Boris Jansen

You can also search for this author in PubMed   Google Scholar

Contributions

T.S.B. conceived and designed the study, led and performed the review and data analyses, interpretations and writing. N.E.-C. contributed to the study’s design, interpretations and writing. A.P., E.G. and B.J. contributed to interpretations and writing. J.C.J.G. contributed to the study’s design, analysis, interpretations and writing.

Corresponding author

Correspondence to Jeroen C. J. Groot .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Peer review

Peer review information.

Nature Food thanks John Antle and Emma Stephens for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended data fig. 1 articles per year of publication..

Number of articles by publication year ( a ) and its cumulative distribution ( b ).

Extended Data Fig. 2 Figures on the number of trade-off analysis (TOA) indicators considered.

Cumulative distribution of articles per number of TOA indicators included within an article ( a ). Frequency (%) of the number of TOA indicators included within an article, color-coded by cluster as specified in Fig. 2 in the main text ( b ).

Supplementary information

Supplementary information.

Supplementary Table 1, Figs. 1–9 and a list of articles included in the systematic review.

Reporting Summary

Supplementary data 1.

Criteria assessed in the systematic review. This file was used to perform the analysis and create the figures.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Breure, T.S., Estrada-Carmona, N., Petsakos, A. et al. A systematic review of the methodology of trade-off analysis in agriculture. Nat Food 5 , 211–220 (2024). https://doi.org/10.1038/s43016-024-00926-x

Download citation

Received : 25 August 2022

Accepted : 15 January 2024

Published : 05 March 2024

Issue Date : March 2024

DOI : https://doi.org/10.1038/s43016-024-00926-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

the research methodology used

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

About 1 in 5 U.S. teens who’ve heard of ChatGPT have used it for schoolwork

(Maskot/Getty Images)

Roughly one-in-five teenagers who have heard of ChatGPT say they have used it to help them do their schoolwork, according to a new Pew Research Center survey of U.S. teens ages 13 to 17. With a majority of teens having heard of ChatGPT, that amounts to 13% of all U.S. teens who have used the generative artificial intelligence (AI) chatbot in their schoolwork.

A bar chart showing that, among teens who know of ChatGPT, 19% say they’ve used it for schoolwork.

Teens in higher grade levels are particularly likely to have used the chatbot to help them with schoolwork. About one-quarter of 11th and 12th graders who have heard of ChatGPT say they have done this. This share drops to 17% among 9th and 10th graders and 12% among 7th and 8th graders.

There is no significant difference between teen boys and girls who have used ChatGPT in this way.

The introduction of ChatGPT last year has led to much discussion about its role in schools , especially whether schools should integrate the new technology into the classroom or ban it .

Pew Research Center conducted this analysis to understand American teens’ use and understanding of ChatGPT in the school setting.

The Center conducted an online survey of 1,453 U.S. teens from Sept. 26 to Oct. 23, 2023, via Ipsos. Ipsos recruited the teens via their parents, who were part of its KnowledgePanel . The KnowledgePanel is a probability-based web panel recruited primarily through national, random sampling of residential addresses. The survey was weighted to be representative of U.S. teens ages 13 to 17 who live with their parents by age, gender, race and ethnicity, household income, and other categories.

This research was reviewed and approved by an external institutional review board (IRB), Advarra, an independent committee of experts specializing in helping to protect the rights of research participants.

Here are the  questions used for this analysis , along with responses, and its  methodology .

Teens’ awareness of ChatGPT

Overall, two-thirds of U.S. teens say they have heard of ChatGPT, including 23% who have heard a lot about it. But awareness varies by race and ethnicity, as well as by household income:

A horizontal stacked bar chart showing that most teens have heard of ChatGPT, but awareness varies by race and ethnicity, household income.

  • 72% of White teens say they’ve heard at least a little about ChatGPT, compared with 63% of Hispanic teens and 56% of Black teens.
  • 75% of teens living in households that make $75,000 or more annually have heard of ChatGPT. Much smaller shares in households with incomes between $30,000 and $74,999 (58%) and less than $30,000 (41%) say the same.

Teens who are more aware of ChatGPT are more likely to use it for schoolwork. Roughly a third of teens who have heard a lot about ChatGPT (36%) have used it for schoolwork, far higher than the 10% among those who have heard a little about it.

When do teens think it’s OK for students to use ChatGPT?

For teens, whether it is – or is not – acceptable for students to use ChatGPT depends on what it is being used for.

There is a fair amount of support for using the chatbot to explore a topic. Roughly seven-in-ten teens who have heard of ChatGPT say it’s acceptable to use when they are researching something new, while 13% say it is not acceptable.

A diverging bar chart showing that many teens say it’s acceptable to use ChatGPT for research; few say it’s OK to use it for writing essays.

However, there is much less support for using ChatGPT to do the work itself. Just one-in-five teens who have heard of ChatGPT say it’s acceptable to use it to write essays, while 57% say it is not acceptable. And 39% say it’s acceptable to use ChatGPT to solve math problems, while a similar share of teens (36%) say it’s not acceptable.

Some teens are uncertain about whether it’s acceptable to use ChatGPT for these tasks. Between 18% and 24% say they aren’t sure whether these are acceptable use cases for ChatGPT.

Those who have heard a lot about ChatGPT are more likely than those who have only heard a little about it to say it’s acceptable to use the chatbot to research topics, solve math problems and write essays. For instance, 54% of teens who have heard a lot about ChatGPT say it’s acceptable to use it to solve math problems, compared with 32% among those who have heard a little about it.

Note: Here are the  questions used for this analysis , along with responses, and its  methodology .

  • Artificial Intelligence
  • Technology Adoption
  • Teens & Tech

Olivia Sidoti's photo

Olivia Sidoti is a research assistant focusing on internet and technology research at Pew Research Center

Jeffrey Gottfried's photo

Jeffrey Gottfried is an associate director focusing on internet and technology research at Pew Research Center

Many Americans think generative AI programs should credit the sources they rely on

Americans’ use of chatgpt is ticking up, but few trust its election information, q&a: how we used large language models to identify guests on popular podcasts, striking findings from 2023, what the data says about americans’ views of artificial intelligence, most popular.

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Age & Generations
  • Coronavirus (COVID-19)
  • Economy & Work
  • Family & Relationships
  • Gender & LGBTQ
  • Immigration & Migration
  • International Affairs
  • Internet & Technology
  • Methodological Research
  • News Habits & Media
  • Non-U.S. Governments
  • Other Topics
  • Politics & Policy
  • Race & Ethnicity
  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

Copyright 2024 Pew Research Center

Terms & Conditions

Privacy Policy

Cookie Settings

Reprints, Permissions & Use Policy

Find Info For

  • Current Students
  • Prospective Students
  • Research and Partnerships
  • Entrepreneurship and Commercialization

Quick Links

  • Health and Life Sciences
  • Info Security and AI
  • Transformative Education
  • Purdue Today
  • Purdue Global
  • Purdue in the News

April 22, 2024

Genetically engineering a treatment for incurable brain tumors

Matosevic

Sandro Matosevic, associate professor in the Department of Industrial and Molecular Pharmaceutics in Purdue’s College of Pharmacy, leads a team of researchers that is developing a novel immunotherapy to be used against glioblastoma. (Purdue University photo/Shambhavi Borde)

Purdue researchers develop fully off-the-shelf, stem cell-derived, natural killer cells against glioblastoma

WEST LAFAYETTE, Ind. — Purdue University researchers are developing and validating a patent-pending treatment for incurable glioblastoma brain tumors. Glioblastomas are almost always lethal with a median survival time of 14 months. Traditional methods used against other cancers, like chemotherapy and immunotherapy, are often ineffective on glioblastoma. 

Sandro Matosevic , associate professor in the Department of Industrial and Molecular Pharmaceutics in Purdue’s College of Pharmacy , leads a team of researchers that is developing a novel immunotherapy to be used against glioblastoma. Matosevic is also on the faculty of the Purdue Institute for Cancer Research and the Purdue Institute for Drug Discovery .

The Matosevic-led research has been published in the peer-reviewed journal Nature Communications .

The Purdue glioblastoma treatment

Matosevic said traditional cell therapies have almost exclusively been autologous, meaning taken from and returned to the same patient. Blood cells from a patient are engineered to better recognize and bind to proteins on cancer cells, then given back to the same patient to bind to and attack cancer cells. Unfortunately, these therapies have limited to no effect on glioblastoma. 

“By contrast, we are developing immunotherapy based on novel, genetically engineered, fully off-the-shelf or allogeneic immune cells. Allogeneic cells are not sourced from the same patient, but rather another source,” Matosevic said. “In our study, we sourced — or rather engineered — cells from induced pluripotent stem cells. So we eliminated the need for blood and instead differentiated stem cells into immune cells, or natural killer cells, and then genetically engineered those.”

Matosevic said novel Purdue immunotherapy can be considered to have a true off-the-shelf source.

“We can envision having unlimited supplies of these stem cells ready to be engineered,” Matosevic said. “This does not require blood to be sourced. And because these are human cells, they are directly usable in human patients.” 

Validation and next development steps

The research team tested its treatment by conducting animal studies with mice bearing human brain tumors, which were treated by direct injection of the newly engineered immune cells.

“Our preclinical studies showed these immune cells to be particularly remarkable in targeting and completely eliminating the growth of the tumors,” Matosevic said. “We found that we can engineer these cells at doses suitable for clinical use in humans. This is significant because one of the major hurdles to clinical translation of cell-based therapies to humans has been the poor expansion and lack of potency of cells that were sourced directly from patients. Using an off-the-shelf, fully synthetic approach breaks down significant barriers to the manufacturing of these cells.”

Matosevic said the next step to develop the glioblastoma treatment is to conduct clinical trials to treat patients with brain tumors, including those that were not successfully eliminated by surgery.

“Our ultimate goal is to bring this therapy to patients with brain tumors,” Matosevic said. “These patients urgently deserve better, and more effective, treatment options. We believe there is true potential for this therapy, and we have the motivation and capacity to bring it to the clinic.

“We are working with neurosurgical clinician collaborators to not only obtain funding, but also initiate clinical protocols,” he added. “We are also open to and always seeking new collaborations and partnerships with those who have interest in supporting our mission to translate this therapy to the clinic, where it is needed the most.”

Matosevic disclosed the innovative glioblastoma treatment to the Purdue Innovates Office of Technology Commercialization , which has applied for a patent from the U.S. Patent and Trademark Office to protect the intellectual property. Inquiries about the status of the intellectual property may be directed to Joe Kasper, assistant director of business development and licensing — life sciences, at [email protected] .

Matosevic and the research team received funding from the National Institutes of Health, the V Foundation for Cancer Research, the Purdue Institute for Cancer Research and industry partners.

About Purdue Innovates Office of Technology Commercialization  

The Purdue Innovates Office of Technology Commercialization operates one of the most comprehensive technology transfer programs among leading research universities in the U.S. Services provided by this office support the economic development initiatives of Purdue University and benefit the university’s academic activities through commercializing, licensing and protecting Purdue intellectual property. In fiscal year 2023, the office reported 150 deals finalized with 203 technologies signed, 400 disclosures received and 218 issued U.S. patents. The office is managed by the Purdue Research Foundation, which received the 2019 Innovation & Economic Prosperity Universities Award for Place from the Association of Public and Land-grant Universities. In 2020, IPWatchdog Institute ranked Purdue third nationally in startup creation and in the top 20 for patents. The Purdue Research Foundation is a private, nonprofit foundation created to advance the mission of Purdue University. Contact [email protected] for more information. 

About Purdue University

Purdue University is a public research institution demonstrating excellence at scale. Ranked among top 10 public universities and with two colleges in the top four in the United States, Purdue discovers and disseminates knowledge with a quality and at a scale second to none. More than 105,000 students study at Purdue across modalities and locations, including nearly 50,000 in person on the West Lafayette campus. Committed to affordability and accessibility, Purdue’s main campus has frozen tuition 13 years in a row. See how Purdue never stops in the persistent pursuit of the next giant leap — including its first comprehensive urban campus in Indianapolis, the new Mitchell E. Daniels, Jr. School of Business, and Purdue Computes — at https://www.purdue.edu/president/strategic-initiatives .

Writer/Media contact: Steve Martin, [email protected]

Source: Sandro Matosevic, [email protected]

Research Foundation News

Communication.

  • OneCampus Portal
  • Brightspace
  • BoilerConnect
  • Faculty and Staff
  • Human Resources
  • Colleges and Schools

Info for Staff

  • Purdue Moves
  • Board of Trustees
  • University Senate
  • Center for Healthy Living
  • Information Technology
  • Ethics & Compliance
  • Campus Disruptions

Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, (765) 494-4600

© 2015-24 Purdue University | An equal access/equal opportunity university | Copyright Complaints | Maintained by Office of Strategic Communications

Trouble with this page? Disability-related accessibility issue? Please contact News Service at [email protected] .

  • Open supplemental data
  • Reference Manager
  • Simple TEXT file

People also looked at

Original research article, a retrospective study on the correction of distal arthrogryposis with a progressive extension brace.

the research methodology used

  • 1 Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
  • 2 Department of Rehabilitation Engineering, Yangzhi Rehabilitation Hospital, Tongji University, Shanghai, China

Purpose: Camptodactyly, clasped thumbs, and windblown hands are distinctive features of distal arthrogryposis (DA). Current therapeutic interventions often yield suboptimal effects, predisposing patients to relapses and complications. This study explicates a corrective approach involving a progressive extension brace for the management of DA and evaluates its clinical outcomes.

Methods: Between 2015 and 2023, progressive extension braces were used in 32 DA patients, with an average follow-up of 4.8 years. Patients were stratified by age into four groups: 0–1, 1–3, 3–7, and above 7 years. The correction of camptodactyly was assessed based on the total active movement (TAM) of metacarpophalangeal joints (MPJ) and proximal interphalangeal joints (PIPJ), as well as the extensor lag of PIPJ. Clasped thumb correction was evaluated by measuring the thumb-to-index finger metacarpal angle (M1M2 angle) and the degree of deviation at the first MPJ (M1P1 angle). The quality of life for the children was measured using PedsQL 4.0, while parental satisfaction was gauged using the FACE questionnaire.

Results: Earlier intervention with a progressive extension brace yielded superior corrective results. Infants aged 0–1 year and toddlers aged 1–3 years achieved average TAM scores of 152° and 126° after correction; however, patients older than 3 years experienced a significant decrease in TAM with the same treatment. Infants and toddlers with DA showed improvement in the average extensor lag from 46° to 6°. The M1M2 angle increased from an average of 38° to 65°, with the M1P1 angle decreasing from an average of 43° to 5°. After the treatment, average PedsQL scores of 94.7 (parent-reported) and 89.3 (child-reported) were achieved. Among the 32 parents, 24 expressed high satisfaction, 5 expressed moderate satisfaction, and 3 expressed fair satisfaction.

Conclusion: The early, progressive, and consistent use of an extension brace significantly improved joint mobility and corrected camptodactyly and clasped thumbs. It can be an effective approach to addressing hand deformities in patients with DA.

1 Introduction

Distal arthrogryposis (DA) was defined in 1996 as a group of heterogeneous syndromes characterized by congenital arthrogryposis affecting at least two body regions. It predominantly affects the extremities with varying degrees of involvement in proximal joints while excluding primary neurological disorders and muscular diseases that impair limb functions ( 1 , 2 ). As a common subtype of arthrogryposis multiplex congenita (AMC), second only to amyoplasia, the exact incidence of DA remains unclear. A study conducted in Sweden identified approximately one-fifth of 131 AMC cases as DA ( 3 ).

The most common and functionally impactful deformities of DA involve joint contractures of the fingers, which primarily encompass camptodactyly of multiple fingers, clasped thumbs, and windblown hands ( 4 ). The reconstruction of hand function is crucial for the daily lives of individuals with distal arthrogryposis.

Camptodactyly is almost ubiquitous in all patients diagnosed with distal arthrogryposis ( 5 ). Its severity varies and can affect multiple fingers bilaterally, leading to reduced finger mobility and limited extension for grasping activities ( 6 ). Patients with ineffective conservative treatment, functional impairment, or proximal interphalangeal joint (PIPJ) flexion angles exceeding 50°–60° are generally considered for surgical intervention ( 7 ). However, due to the involvement of multiple joints in DA, current surgical methods often fail to completely correct camptodactyly and clasped thumbs, resulting in recurrence in approximately one-fourth to one-half of patients ( 8 , 9 ).

While many clinicians advocate early manipulation, plaster casting, and brace interventions for correcting DA, the lack of precise studies on the timing of intervention and standardized operation procedures has resulted in unsatisfactory outcomes. This could lead to painful treatment processes, a high likelihood of relapse, and potential complications such as joint stiffness and skin breakdown.

We report a retrospective study evaluating the clinical efficacy of a progressive extension brace for correcting DA.

2 Patients and methods

2.1 patients’ information.

This retrospective study included 32 patients diagnosed with DA who underwent brace treatment between January 2015 and January 2023. Supplementary Table S1 provides demographic information about the patients. All patients exhibited flexion contractures at multiple finger joints, with amyoplasia and other primary neurological or muscular disorders ruled out through history taking and physical examination based on published classification ( 10 – 12 ). They subsequently underwent progressive extension brace treatment and were followed up for over 2 years. Informed consent was obtained from all parents/guardians of the patients included in this study. Ethical approval for this study was granted by the ethics committee of the Shanghai Ninth People's Hospital, affiliated to the Shanghai Jiaotong University School of Medicine.

2.2 Brace correction strategy

We propose a clinical strategy for correcting DA using a progressive extension brace. The brace employs the method of static progressive stretching with low strength over a long time, whereby soft tissues elongate with stress relaxation and creep, transitioning from elastic deformation to plastic deformation. The use of the brace follows three principles: progressive extension to rectify camptodactyly, maintaining an open web space to straighten the clasped thumb, and continuous application throughout development. Patients with DA can commence braces from infancy, starting at around 1-month-old. It is recommended that children wear the braces during both night-time and daytime sleep for 8–12 h per day, whereas they engage in joint activities and hand function training during the remaining time. Continuous wear and regular follow-up visits facilitate ongoing adjustments of the brace, which transitions from a flexed to an extended position and eventually to an overextended position ( Figure 1 ). Each phase is maintained for 2–3 months after achieving the desired adjustment; afterward, the brace is maintained throughout the hand developmental period (up to age 12).

www.frontiersin.org

Figure 1 . Progressive extension brace. ( A ) Schematic description of brace correction. ( B ) Physical representation of the progressive extension brace.

2.3 Clinical evaluation

To assess the clinical effects of early intervention on the correction of these hand deformities, we categorized the patients into four groups based on the age at treatment: 0–1 year ( n  = 11), 1–3 years ( n  = 9), 3–7 years ( n  = 7), and above 7 years ( n  = 5). The total active movement (TAM) of metacarpophalangeal joints (MPJ) and PIPJ and the extensor lag of PIPJ of the affected fingers were recorded using a goniometer to evaluate camptodactyly. The thumb-to-index finger metacarpal angle (M1M2 angle) and the degree of deviation at the first MPJ (M1P1 angle) were measured with the first web space open to assess the clasped thumb ( 13 ). The PedsQL 4.0 Generic Core Scales were used to assess the quality of life patients. Parental satisfaction with brace correction was evaluated using the FACE questionnaire ( 14 ). Results were expressed as mean ± SD. Between-group comparisons were conducted using unpaired t -tests, and a p -value < 0.05 was considered statistically significant (* p  < 0.05, ** p  < 0.01, and *** p  < 0.001). All statistical analyses were performed with GraphPad Prism 9 software.

3.1 Clinical evaluation of progressive extension braces

Thirty-two DA patients underwent progressive extension brace treatment with an average follow-up of 4.8 years (4.8 ± 1.2 years). Patient compliance was very good, with no occurrence of skin breakdown or related complications. We found that the most favorable outcomes in progressive extension brace correction were observed in infants (under 1 year), who achieved an average TAM of up to 152° after correction. Toddlers (1–3 years old) with DA also demonstrated significant improvement, reaching an average TAM of 126°. They are rated as excellent and good according to the Strickland criteria. Patients aged 3–7 years old and above 7 years old achieved average TAM scores of only 83° and 72°, respectively, rated as poor based on the Strickland criteria ( Figure 2A , Supplementary Table S2 ). These findings reveal superior brace treatment outcomes in DA patients when initiated during infancy or early childhood and underscore the imperative for early intervention.

www.frontiersin.org

Figure 2 . Clinical evaluation of a progressive extension brace. ( A ) The TAM of PIP and MP joints after brace correction in DA patients of different age groups. ( B ) The PIP joint extensor lag before and after brace correction in the I&T group of DA patients. ( C ) The M1M2 angle before and after brace correction in the I&T group of DA patients with clasped thumbs. ( D ) The M1P1 angle before and after brace correction in the I&T group of DA patients with clasped thumbs. *** p - < 0.001, unpaired t -test.

By comparing the changes in the extensor lag of infants and toddlers with DA (I&T group) before and after brace correction, we observed a decrease from an average of 46° to 6° after treatment, demonstrating effective rectification of camptodactyly ( Figure 2B ).

The clinical presentation of a clasped thumb primarily involves a narrowed first web space. A smaller M1M2 angle and a larger M1P1 angle correspond to a more severely clasped thumb. In the I&T group, 10 cases exhibited pronounced clasped thumbs. Brace correction significantly reduced the M1P1 angle (decreased from an average of 43° to 5°) and increased the M1M2 angle (increased from an average of 38° to 65°), demonstrating effective correction of the clasped thumb ( Figures 2C,D ) in the I&T group.

In addition, DA patients achieved average PedsQL scores of 94.7 (parent-reported) and 89.3 (child-reported) after brace correction. Specifically, the I&T group attained average scores of 95.7 (parent-reported) and 90.2 (child-reported) after receiving brace intervention, indicating a quality of life close to that of normal children ( Supplementary Table S3 ). Among all the parents, 24 expressed high satisfaction with the treatment for their children, 5 reported moderate satisfaction, and 3 expressed a fair outcome ( Supplementary Table S3 ).

3.2 Typical cases of progressive extension brace correction

A female DA patient, 2 months old with a cleft palate, presented a clasped thumb and severe camptodactyly with the extensor lag exceeding 90° in multiple fingers ( Figure 3A ). A remarkable reduction in the extensor lag was observed after just 1 month of progressive extension brace correction ( Figure 3B ), and the brace use was continued to prevent subsequent contracture recurrence. Partial deformities in the PIP joints appeared in the patient after 5 years of treatment due to rapid finger growth and development ( Figure 3C ). However, thanks to the correction of joint contractures by the brace, we only needed to perform the double-opposing Z-plasty with a Y to V advancement on the little finger and Z-plasty on other fingers to complete the surgical correction without the need for additional skin grafting on the palm ( Figure 3D , Supplementary Figure S1 ). At the 3-month postoperative follow-up, remarkable improvement in the patient's left fingers was observed ( Figure 3E ).

www.frontiersin.org

Figure 3 . A 2-month-old female patient with distal arthrogryposis in both hands was treated with a progressive extension brace and surgery. ( A ) The patient presented severe bilateral camptodactyly along with a cleft palate and underwent progressive extension brace treatment for correcting the hand deformities. ( B ) The appearance of the hands after 1 month of brace correction. ( C ) The appearance of the hands after 5 years of brace correction. ( D ) Left-hand corrective surgery. ( E ) The appearance of the left hand 3 months after surgery.

In a DA patient with a clasped thumb and ulnar deviation deformities ( Figure 4A ), the correction of camptodactyly was noticed after 10 months of brace treatment, although some degree of thumb adduction and ulnar deviation persisted ( Figure 4B ). Subsequently, after 30 months of continuous brace use, significant improvements were observed in finger flexion and extension function, the first web space dimensions, and ulnar deviation. Both hands achieved nearly normal function without the need for surgical intervention ( Figure 4C ). Another toddler with distal arthrogryposis in both hands also exhibited favorable corrective outcomes after progressive extension brace treatment ( Figure 5 ).

www.frontiersin.org

Figure 4 . A 6-month-old male patient with distal arthrogryposis in both hands was treated with a progressive extension brace. ( A ) Correction of bilateral camptodactyly with the associated clasped thumb using a progressive extension brace. ( B ) The appearance and flexion-extension function of the hands after 10 months of brace correction. ( C ) The appearance and flexion-extension function of the hands after 30 months of brace correction.

www.frontiersin.org

Figure 5 . A 2-year-old male patient with distal arthrogryposis in both hands was treated with a progressive extension brace. ( A ) Bilateral camptodactyly. ( B ) The appearance of the hands after 8 months of brace correction.

4 Discussion

The clinical phenotype of distal arthrogryposis patients most commonly presents camptodactyly, clasped thumbs, and windblown hands. Despite the advocacy of many clinicians for early traction, splinting, and brace correction, there is a lack of systematic studies on the timing and methods of intervention. Due to the absence of standardized treatment protocols, many patients miss the optimal intervention window, which could result in extensive contractures of the palm, tendons, and skin, and require an extensive surgical intervention at a later stage. In severe cases, heightened vascular tension is high can lead to circulatory disturbances at surgical release.

In this study, we propose a strategy utilizing a progressive extension brace to correct hand deformities in DA patients and demonstrate its consistent clinical efficacy. Camptodactyly in DA patients involves a wide range of tissues, including the flexor digitorum superficialis, lumbrical muscles, volar plate, and generic retinaculum cutis. Continuous and progressive use of the brace gradually relaxes these soft tissues. Through repeated follow-up visits, we systematically adjust the degree of brace extension and effectively rectify hand deformities while significantly enhancing patient compliance without any complications. Previous studies have discussed the effect of brace correction on camptodactyly ( 6 ); however, the impact of intervention age needs to be emphasized to ensure the best treatment outcomes. Some researchers advocate for early surgical intervention in children where tissue adhesions due to camptodactyly are not severe to prevent secondary changes and suboptimal surgical outcomes resulting from delayed treatment ( 15 ). Our study findings indicate that the earlier the intervention age for brace treatment, the better the outcomes will be. Satisfactory clinical results are often achieved in infants and toddlers (0–3 years), whereas the effectiveness of brace correction significantly decreased after the age of 3. Furthermore, we recommend continuous brace application throughout the child's hand developmental period to maintain corrective effects and reduce recurrence rates. This approach simplifies surgical treatments later and reduces the need for skin grafting for camptodactyly and clasped thumbs that cannot be completely corrected by a progressive extension brace.

A clasped thumb is characterized by thumb supination, adduction, and flexion contracture, often accompanied by a narrowed first web space and weakness of the extensor muscles. Patients with clasped thumbs can adapt to certain functional activities, but their grip function is significantly impaired due to the thumb's inability to oppose the fingers ( 16 ). We found that a progressive extension brace can widen the narrowed first web space, promote extensor tendon development, and establish a solid foundation for later corrections. For clasped thumbs that are challenging to fully rectify, we often achieved satisfactory outcomes through muscle endpoint repositioning and local skin flap transposition, which prevented the extensor indicis proprius transfers.

5 Conclusion

Early, progressive, and continuous use of an extension brace significantly improves joint mobility and corrects camptodactyly and clasped thumbs. It is an effective approach to rectify hand deformities in DA patients.

Data availability statement

The original contributions presented in the study are included in the article/ Supplementary Material , further inquiries can be directed to the corresponding authors.

Ethics statement

The studies involving humans were approved by the Independent Ethics Committee, the Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine. The studies were conducted in accordance with the local legislation and institutional requirements. Written informed consent for participation in this study was provided by the participants’ legal guardians/next of kin.

Author contributions

JZ: Writing – review & editing, Writing – original draft, Data curation, Conceptualization. TZ: Writing – review & editing, Investigation, Data curation. ZW: Writing – review & editing, Investigation, Data curation. DL: Writing – review & editing, Investigation, Data curation. XW: Writing – review & editing, Data curation. QY: Writing – review & editing, Resources, Methodology, Funding acquisition, Conceptualization. BW: Writing – review & editing, Resources, Methodology, Funding acquisition, Conceptualization.

The authors declare that financial support was received for the research, authorship, and/or publication of this article.

This study was supported by the National Key R&D Program of China (2022YFC2703700, 2022YFC2703704), Shanghai Clinical Research Center of Plastic and Reconstructive Surgery supported by the Science and Technology Commission of Shanghai Municipality (Grant No. 22MC1940300), the Clinical Research Project of Multi-Disciplinary Team of Shanghai Ninth People’s Hospital (201907), and the Research Project of China Disabled Persons’ Federation—on assistive technology (2021 CDPFAT-40).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fped.2024.1385938/full#supplementary-material

1. Bamshad M, Jorde LB, Carey JC. A revised and extended classification of the distal arthrogryposes. Am J Med Genet . (1996) 65(4):277–81. doi: 10.1002/(sici)1096-8628(19961111)65:4%3C277::Aid-ajmg6%3E3.0.Co;2-m

PubMed Abstract | Crossref Full Text | Google Scholar

2. Hall JG, Kimber E, Dieterich K. Classification of arthrogryposis. Am J Med Genet C Semin Med Genet . (2019) 181(3):300–3. doi: 10.1002/ajmg.c.31716

3. Kimber E. Causes, consequences and clinical course in amyoplasia and distal arthrogryposis (doctoral thesis). University of Gothenburg, Sahlgrenska Academy, Gothenburg (2009).

Google Scholar

4. Alzahrani MA, Farr S. The hand in distal arthrogryposis. J Hand Surg Am . (2022) 47(5):460–9. doi: 10.1016/j.jhsa.2021.10.027

5. Wall LB, Ezaki M, Goldfarb CA. Camptodactyly treatment for the lesser digits. J Hand Surg Am . (2018) 43(9):874.e1–4. doi: 10.1016/j.jhsa.2018.03.023

6. Almeida SF, Monteiro AV, Lanes RC. Evaluation of treatment for camptodactyly: retrospective analysis on 40 fingers. Rev Bras Ortop . (2014) 49(2):134–9. doi: 10.1016/j.rboe.2014.03.002

7. Yannascoli SM, Goldfarb CA. Treating congenital proximal interphalangeal joint contracture. Hand Clin . (2018) 34(2):237–49. doi: 10.1016/j.hcl.2017.12.013

8. Bennett JB, Hansen PE, Granberry WM, Cain TE. Surgical management of arthrogryposis in the upper extremity. J Pediatr Orthop . (1985) 5(3):281–6. doi: 10.1097/01241398-198505000-00004

9. Yonenobu K, Tada K, Swanson AB. Arthrogryposis of the hand. J Pediatr Orthop . (1984) 4(5):599–603. doi: 10.1097/01241398-198409000-00014

10. Hall JG, Aldinger KA, Tanaka KI. Amyoplasia revisited. Am J Med Genet A . (2014) 164a(3):700–30. doi: 10.1002/ajmg.a.36395

11. Bamshad M, Van Heest AE, Pleasure D. Arthrogryposis: a review and update. J Bone Joint Surg Am . (2009) 91(Suppl 4):40–6. doi: 10.2106/jbjs.I.00281

12. Hall JG, Kimber E, van Bosse HJP. Genetics and classifications. J Pediatr Orthop . (2017) 37(Suppl 1):S4–8. doi: 10.1097/bpo.0000000000000997

13. Anbarasan A, Takagi T, Seki A, Takayama S. Abductor pollicis brevis rerouting and first web deepening for clasped thumb deformity in arthrogryposis multiplex congenita. J Hand Surg Eur . (2022) 47(10):1039–44. doi: 10.1177/17531934221101998

Crossref Full Text | Google Scholar

14. Ni F, Mao H, Yang X, Zhou S, Jiang Y, Wang B. The use of an hourglass dorsal advancement flap without skin graft for congenital syndactyly. J Hand Surg Am . (2015) 40(9):1748–54.e1. doi: 10.1016/j.jhsa.2015.04.031

15. Miranda BH, Talwar C, Horwitz MD, Smith PJ. Aggressive paediatric camptodactyly: the evolution of a proposed treatment algorithm. J Plast Reconstr Aesthet Surg . (2022) 75(6):1907–15. doi: 10.1016/j.bjps.2022.01.020

16. Zlotolow DA, Tiedeken NC. Reorientation osteotomy for the atypical clasp thumb in children with arthrogryposis. Tech Hand Up Extrem Surg . (2014) 18(4):165–9. doi: 10.1097/bth.0000000000000059

Keywords: distal arthrogryposis, camptodactyly, clasped thumb, brace correction, retrospective study

Citation: Zhou J, Zhang T, Wang Z, Li D, Wu X, Yu Q and Wang B (2024) A retrospective study on the correction of distal arthrogryposis with a progressive extension brace. Front. Pediatr. 12:1385938. doi: 10.3389/fped.2024.1385938

Received: 14 February 2024; Accepted: 11 April 2024; Published: 29 April 2024.

Reviewed by:

© 2024 Zhou, Zhang, Wang, Li, Wu, Yu and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Qinyuan Yu [email protected] Bin Wang [email protected]

  • Open access
  • Published: 17 April 2024

A data-driven combined prediction method for the demand for intensive care unit healthcare resources in public health emergencies

  • Weiwei Zhang 1 &
  • Xinchun Li 1  

BMC Health Services Research volume  24 , Article number:  477 ( 2024 ) Cite this article

228 Accesses

1 Altmetric

Metrics details

Public health emergencies are characterized by uncertainty, rapid transmission, a large number of cases, a high rate of critical illness, and a high case fatality rate. The intensive care unit (ICU) is the “last line of defense” for saving lives. And ICU resources play a critical role in the treatment of critical illness and combating public health emergencies.

This study estimates the demand for ICU healthcare resources based on an accurate prediction of the surge in the number of critically ill patients in the short term. The aim is to provide hospitals with a basis for scientific decision-making, to improve rescue efficiency, and to avoid excessive costs due to overly large resource reserves.

A demand forecasting method for ICU healthcare resources is proposed based on the number of current confirmed cases. The number of current confirmed cases is estimated using a bilateral long-short-term memory and genetic algorithm support vector regression (BILSTM-GASVR) combined prediction model. Based on this, this paper constructs demand forecasting models for ICU healthcare workers and healthcare material resources to more accurately understand the patterns of changes in the demand for ICU healthcare resources and more precisely meet the treatment needs of critically ill patients.

Data on the number of COVID-19-infected cases in Shanghai between January 20, 2020, and September 24, 2022, is used to perform a numerical example analysis. Compared to individual prediction models (GASVR, LSTM, BILSTM and Informer), the combined prediction model BILSTM-GASVR produced results that are closer to the real values. The demand forecasting results for ICU healthcare resources showed that the first (ICU human resources) and third (medical equipment resources) categories did not require replenishment during the early stages but experienced a lag in replenishment when shortages occurred during the peak period. The second category (drug resources) is consumed rapidly in the early stages and required earlier replenishment, but replenishment is timelier compared to the first and third categories. However, replenishment is needed throughout the course of the epidemic.

The first category of resources (human resources) requires long-term planning and the deployment of emergency expansion measures. The second category of resources (drugs) is suitable for the combination of dynamic physical reserves in healthcare institutions with the production capacity reserves of corporations. The third category of resources (medical equipment) is more dependent on the physical reserves in healthcare institutions, but care must be taken to strike a balance between normalcy and emergencies.

Peer Review reports

Introduction

The outbreak of severe acute respiratory syndrome (SARS) in 2003 was the first global public health emergency of the 21st century. From SARS to the coronavirus disease (COVID-19) pandemic at the end of 2019, followed shortly by the monkeypox epidemic of 2022, the global community has witnessed eight major public health events within the span of only 20 years [ 1 ]. These events are all characterized by high infection and fatality rates. For example, the number of confirmed COVID-19 cases worldwide is over 700 million, and the number of deaths has exceeded 7 million [ 2 ]. Every major public health emergency typically consists of four stages: incubation, outbreak, peak, and decline. During the outbreak and transmission, surges in the number of infected individuals and the number of critically ill patients led to a corresponding increase in the urgent demand for intensive care unit (ICU) medical resources. ICU healthcare resources provide material security for rescue work during major public health events as they allow critically ill patients to be treated, which decreases the case fatality rate and facilitates the prevention and control of epidemics. Nevertheless, in actual cases of prevention and control, the surge in patients has often led to shortages of ICU healthcare resources and a short-term mismatch of supply and demand, which are problems that have occurred several times in different regions. These issues can drastically impact anti-epidemic frontline healthcare workers and the treatment outcomes of infected patients. According to COVID-19 data from recent years, many infected individuals take about two weeks to progress from mild to severe disease. As the peak of severe cases tends to lag behind that of infected cases, predicting the changes in the number of new infections can serve as a valuable reference for healthcare institutions in forecasting the demand for ICU healthcare resources. The accurate forecasting of the demand for ICU healthcare resources can facilitate the rational resource allocation of hospitals under changes in demand patterns, which is crucial for improving the provision of critical care and rescue efficiency. Therefore, in this study, we combined a support vector regression (SVR) prediction model optimized by a genetic algorithm (GA) with bidirectional long-short-term memory (BILSTM), with the aim of enhancing the dynamic and accurate prediction of the number of current confirmed cases. Based on this, we forecasted the demand for ICU healthcare resources, which in turn may enable more efficient resource deployment during severe epidemic outbreaks and improve the precise supply of ICU healthcare resources.

Research on the demand forecasting of emergency materials generally employs quantitative methods, and traditional approaches mainly include linear regression and GM (1,1). Linear regression involves the use of regression equations to make predictions based on data. Sui et al. proposed a method based on multiple regression that aimed to predict the demand for emergency supplies in the power grid system following natural disasters [ 3 ]. Historical data was used to obtain the impact coefficient of each factor on emergency resource forecasting, enabling the quick calculation of the demand for each emergency resource during a given type of disaster. However, to ensure prediction accuracy, regression analysis needs to be supported by data from a large sample size. Other researchers have carried out demand forecasting for emergency supplies from the perspective of grey prediction models. Li et al. calculated the development coefficient and grey action of the grey GM (1,1) model using the particle swarm optimization algorithm to minimize the relative errors between the real and predicted values [ 4 ]. Although these studies have improved the prediction accuracy of grey models, they mainly involve pre-processing the initial data series without considering the issue of the excessively fast increase in predicted values by traditional grey GM (1,1) models. In emergency situations, the excessively fast increase in predicted values compared to real values will result in the consumption of a large number of unnecessary resources, thereby decreasing efficiency and increasing costs. As traditional demand forecasting models for emergency supplies have relatively poor perfect order rates in demand analysis, which result in low prediction accuracy, they are not mainstream.

At present, dynamic models of infectious diseases and demand forecasting models based on machine learning are at the cutting edge of research. With regard to the dynamic models of infectious diseases, susceptible infected recovered model (SIR) is a classic mathematical model employed by researchers [ 5 , 6 , 7 ]. After many years of development, the SIR model has been expanded into various forms within the field of disease transmission, including susceptible exposed infected recovered model (SEIR) and susceptible exposed infected recovered dead model (SEIRD) [ 8 , 9 ]. Nevertheless, with the outbreak of COVID-19, dynamic models of infectious diseases have once again come under the spotlight, with researchers combining individual and group variables and accounting for different factors to improve the initial models and reflect the state of COVID-19 [ 10 , 11 , 12 , 13 ]. Based on the first round of epidemic data from Wuhan, Li et al. predicted the time-delay distributions, epidemic doubling time, and basic reproductive number [ 14 ]. Upon discovering the presence of asymptomatic COVID-19 infections, researchers began constructing different SEIR models that considered the infectivity of various viral incubation periods, yielding their respective predictions of the inflection point. Based on this, Anggriani et al. further considered the impact of the status of infected individuals and established a transmission model with seven compartments [ 15 ]. Efimov et al. set the model parameters for separating the recovered and the dead as uncertain and applied the improved SEIR model to analyze the transmission trend of the pandemic [ 16 ]. In addition to analyzing the transmission characteristics of normal COVID-19 infection to predict the status of the epidemic, many researchers have also used infectious disease models to evaluate the effects of various epidemic preventive measures. Lin et al. applied an SEIR model that considered individual behavioral responses, government restrictions on public gatherings, pet-related transmission, and short-term population movements [ 17 ]. Cao et al. considered the containment effect of isolation measures on the pandemic and solved the model using Euler’s numerical method [ 18 ]. Reiner et al. employed an improved SEIR model to study the impact of non-pharmaceutical interventions implemented by the government (e.g., restricting population movement, enhancing disease testing, and increasing mask use) on disease transmission and evaluated the effectiveness of social distancing and the closure of public spaces [ 19 ]. These studies have mainly focused on modeling the COVID-19 pandemic to perform dynamic forecasting and analyze the effectiveness of control measures during the epidemic. Infectious disease dynamics offer good predictions for the early transmission trends of epidemics. However, this approach is unable to accurately estimate the spread of the virus in open-flow environments. Furthermore, it is also impossible to set hypothetical parameters, such as disease transmissibility and the recovery probability constant, that are consistent with the conditions in reality. Hence, with the increase in COVID-19 data, this approach has become inadequate for the accurate long-term analysis of epidemic trends.

Machine learning has shown significant advantages in this regard [ 20 , 21 ]. Some researchers have adopted the classic case-based reasoning approach in machine learning to make predictions. However, it is not feasible to find historical cases that fully match the current emergency event, so this approach has limited operability. Other researchers have also employed neural network training in machine learning to make predictions. For example, Hamou et al. predicted the number of injuries and deaths, which in turn were used to forecast the demand for emergency supplies [ 22 ]. However, this approach requires a large initial dataset and a high number of training epochs, while uncertainty due to large changes in intelligence information can lead to significant errors in data prediction [ 23 , 24 , 25 ]. To address these problems, researchers have conducted investigations that account (to varying degrees) for data characterized by time-series and non-linearity and have employed time-series models with good non-linear fitting [ 26 , 27 , 28 ]. The use of LSTM to explore relationships within the data can improve the accuracy of predicting COVID-19 to some extent. However, there are two problems with this approach. First, LSTM neural networks require extremely large datasets, and each wave of the epidemic development cycle would be insufficient to support a dataset suitable for LSTM. Second, neural networks involve a large number of parameters and highly complex models and, hence, are susceptible to overfitting, which can prevent them from achieving their true and expected advantages in prediction.

Overall, Our study differs from other papers in the following three ways. First, the research object of this paper focuses on the specific point of ICU healthcare resource demand prediction, aiming to improve the rate of critical care patient treatment. However, past research on public health emergencies has focused more on resource prediction , such as N95 masks, vaccines, and generalized medical supplies during the epidemic , to mitigate the impact of rapid transmission and high morbidity rates. This has led to less attention being paid to the reality of the surge in critically ill patients due to their high rates of severe illness and mortality.

Second, the idea of this paper is to further forecast resource needs based on the projected number of people with confirmed diagnoses, which is more applicable to healthcare organizations than most other papers that only predict the number of people involved. However, in terms of the methodology for projecting the number of people, this paper adopts a combined prediction method that combines regression algorithms and recurrent neural networks to propose a BILSTM-GASVR prediction model for the number of confirmed diagnoses. It capitalizes on both the suitability of SVR for small samples and non-linear prediction as well as the learning and memory abilities of BILSTM in processing time-series data. On the basis of the prediction model for the number of infected cases, by considering the characteristics of ICU healthcare resources, we constructed a demand forecasting model of emergency healthcare supplies. Past public health emergencies are more likely to use infectious disease models or a single prediction model in deep learning. some of the articles, although using a combination of prediction, but also more for the same method domain combination, such as CNN-LSTM, GRU-LSTM, etc., which are all recurrent neural networks.

Third, in terms of specific categorization of resources to be forecasted, considering the specificity of ICU medical resources, we introduce human resource prediction on the basis of previous studies focusing on material security, and classified ICU medical resources into three categories: ICU human resources, drugs and medical equipment. The purpose of this classification is to match the real-life prediction scenarios of public health emergencies and improve the demand forecasting performance for local ICU healthcare resources. Thus, it is easy for healthcare institutions to grasp the overall development of events, optimizing decision-making, and reducing the risk of healthcare systems collapsing during the outbreak stage.

In this section, we accomplish the following two tasks. Firstly, we introduce the idea of predicting the number of infected cases and show the principle of the relevant models. Secondly, based on the number of infected cases, ICU healthcare resources are divided into two categories (healthcare workers and healthcare supplies), and their respective demand forecasting models are constructed.

Prediction model for the number of infected cases

Gasvr model.

Support vector machine (SVM) is a machine-learning language for classification developed by Vapnik [ 29 ]. Suppose there are two categories of samples: H1 and H2. If hyperplane H is able to correctly classify the samples into these two categories and maximize the margin between the two categories, it is known as the optimal separating hyperplane (OSH). The sample vectors closest to the OSH in H1 and H2 are known as the support vectors. To apply SVM to prediction, it is essential to perform regression fitting. By introducing the \(\varepsilon\) -insensitive loss function, SVM can be converted to a support vector regression machine, where the role of the OSH is to minimize the error of all samples from this plane. SVR has a theoretical basis in statistical learning and relatively high learning performance, making it suitable for performing predictions in small-sample, non-linear, and multi-dimensional fields [ 30 , 31 ].

Assume the training sample set containing \(l\) training samples is given by \(\{({x}_{i},{y}_{i}),i=\mathrm{1,2},...,l\}\) , where \({x}_{i}=[{x}_{i}^{1},{x}_{i}^{2},...,{x}_{i}^{d}{]}^{\rm T}\) and \({y}_{i}\in R\) are the corresponding output values.

Let the regression function be \(f(x)=w\Phi (x)+b\) , where \(\phi (x)\) is the non-linear mapping function. The linear \(\varepsilon\) -insensitive loss function is defined as shown in formula ( 1 ).

Among the rest, \(f(x)\) is the predicted value returned by the regression function, and \(y\) is the corresponding real value. If the error between \(f(x)\) and \(y\) is ≤ \(\varepsilon\) , the loss is 0; otherwise, the loss is \(\left|y-f(x)\right|-\varepsilon\) .

The slack variables \({\xi }_{i}\) and \({\xi }_{i}^{*}\) are introduced, and \(w\) , \(b\) are solved using the following equation as shown in formula ( 2 ).

Among the rest, \(C\) is the penalty factor, with larger values indicating a greater penalty for errors > \(\varepsilon\) ; \(\varepsilon\) is defined as the error requirement, with smaller values indicating a smaller error of the regression function.

The Lagrange function is introduced to solve the above function and transformed into the dual form to give the formula ( 3 ).

Among the rest, \(K({x}_{i},{x}_{j})=\Phi ({x}_{i})\Phi ({x}_{j})\) is the kernel function. The kernel function determines the structure of high-dimensional feature space and the complexity of the final solution. The Gaussian kernel is selected for this study with the function \(K({x}_{i},{x}_{j})=\mathit{exp}(-\frac{\Vert {x}_{i}-{x}_{j}\Vert }{2{\sigma }^{2}})\) .

Let the optimal solution be \(a=[{a}_{1},{a}_{2},...,{a}_{l}]\) and \({a}^{*}=[{a}_{1}^{*},{a}_{2}^{*},...,{a}_{l}]\) to give the formula ( 4 ) and formula ( 5 ).

Among the rest, \({N}_{nsv}\) is the number of support vectors.

In sum, the regression function is as shown in formula ( 6 ).

when some of the parameters are not 0, the corresponding samples are the support vectors in the problem. This is the principle of SVR. The values of the three unknown parameters (penalty factor C, ε -insensitive loss function, and kernel function coefficient \(\sigma )\) , can directly impact the model effect. The penalty factor C affects the degree of function fitting through the selection of outliers in the sample by the function. Thus, excessively large values lead to better fit but poorer generalization, and vice versa. The ε value in the ε-insensitive loss function determines the accuracy of the model by affecting the width of support vector selection. Thus, excessively large values lead to lower accuracy that does not meet the requirements and excessively small values are overly complex and increase the difficulty. The kernel function coefficient \(\sigma\) determines the distribution and range of the training sample by controlling the size of inner product scaling in high-dimensional space, which can affect overfitting.

Therefore, we introduce other algorithms for optimization of the three parameters in SVR. Currently the commonly used algorithms are 32and some heuristic algorithms. Although the grid search method is able to find the highest classification accuracy, which is the global optimal solution. However, sometimes it can be time-consuming to find the optimal parameters for larger scales. If a heuristic algorithm is used, we could find the global optimal solution without having to trace over all the parameter points in the grid. And GA is one of the most commonly used heuristic algorithms, compared to other heuristic algorithms, it has the advantages of strong global search, generalizability, and broader blending with other algorithms.

Given these factors, we employ a GA to encode and optimize the relevant parameters of the model. The inputs are the experimental training dataset, the Gaussian kernel function expression, the maximum number of generations taken by the GA, the accuracy range of the optimized parameters, the GA population size, the fitness function, the probability of crossover, and the probability of mutation. The outputs are the optimal penalty factor C, ε-insensitive loss function parameter \(\varepsilon ,\) and optimal Gaussian kernel parameter \(\sigma\) of SVR, thus achieving the optimization of SVR. The basic steps involved in GA optimization are described in detail below, and the model prediction process is shown in Fig. 1 .

figure 1

Prediction process of the GASVR model

Population initialization

The three parameters are encoded using binary arrays composed of 0–1 bit-strings. Each parameter consisted of six bits, and the initial population is randomly generated. The population size is set at 60, and the number of iterations is 200.

Fitness calculation

In the same dataset, the K-fold cross-validation technique is used to test each individual in the population, with K = 5. K-fold cross validation effectively avoids the occurrence of model over-learning and under-learning. For the judgment of the individual, this paper evaluates it in terms of fitness calculations. Therefore, combining the two enables the effective optimization of the model’s selected parameters and improves the accuracy of regression prediction.

Fitness is calculated using the mean error method, with smaller mean errors indicating better fitness. The fitness function is shown in formula ( 7 ) [ 32 ].

The individual’s genotype is decoded and mapped to the corresponding parameter value, which is substituted into the SVR model for training. The parameter optimization range is 0.01 ≤ C ≤ 100, 0.1 ≤ \(\sigma\) ≤ 20, and 0.001 ≤ ε ≤ 1.

Selection: The selection operator is performed using the roulette wheel method.

Crossover: The multi-point crossover operator, in which two chromosomes are selected and multiple crossover points are randomly chosen for swapping, is employed. The crossover probability is set at 0.9.

Mutation: The inversion mutation operator, in which two points are randomly selected and the gene values between them are reinserted to the original position in reverse order, is employed. The mutation probability is set at 0.09.

Decoding: The bit strings are converted to parameter sets.

The parameter settings of the GASVR model built in this paper are shown in Table 1 .

BILSTM model

The LSTM model is a special recurrent neural network algorithm that can remember the long-term dependencies of data series and has an excellent capacity for self-learning and non-linear fitting. LSTM automatically connects hidden layers across time points, such that the output of one time point can arbitrarily enter the output terminal or the hidden layer of the next time point. Therefore, it is suitable for the sample prediction of time-series data and can predict future data based on stored data. Details of the model are shown in Fig. 2 .

figure 2

Schematic diagram of the LSTM model

LSTM consists of a forget gate, an input gate, and an output gate.

The forget gate combines the previous and current time steps to give the output of the sigmoid activation function. Its role is to screen the information from the previous state and identify useful information that truly impacts the subsequent time step. The equation for the forget gate is shown in formula ( 8 ).

Among the number, \(W_{f}\) is the weight of the forget gate, \({b}_{f}\) is the bias, \(\sigma\) is the sigmoid activation function, \({f}_{t}\) is the output of the sigmoid activation function, \(t-1\) is the previous time step, \(t\) is the current time step, and \({x}_{t}\) is the input time-series data at time step \(t\) .

The input gate is composed of the output of the sigmoid and tanh activation functions, and its role is to control the ratio of input information entering the information of a given time step. The equation for the input gate is shown in formula ( 9 ).

Among the number, \({W}_{i}\) is the output weight of the input gate, \({i}_{t}\) is the output of the sigmoid activation function, \({b}_{i}\) and \({b}_{C}\) are the biases of the input gate, and \({W}_{C}\) is the output of the tanh activation function.

The role of the output gate is to control the amount of information output at the current state, and its equation is shown in formula ( 10 ).

Among the number, \({W}_{o}\) is the weight of \({o}_{t}\) , and \({b}_{o}\) is the bias of the output gate.

The values of the above activation functions \(\sigma\) and tanh are generally shown in formulas ( 11 ) and ( 12 ).

\({C}_{t}\) is the data state of the current time step, and its value is determined by the input information of the current state and the information of the previous state. It is shown in formula ( 13 ).

Among the number, \(\widetilde{{C}_{t}}=\mathit{tan}h({W}_{c}[{h}_{t-1},{x}_{t}]+{b}_{c})\) .

\({h}_{t}\) is the state information of the hidden layer at the current time step, \({h}_{t}={o}_{t}\times \mathit{tan}h({c}_{t})\) .Each time step \({T}_{n}\) has a corresponding state \({C}_{t}\) . By undergoing the training process, the model can learn how to modify state \({C}_{t}\) through the forget, output, and input gates. Therefore, this state is consistently passed on, implying that important distant information will neither be forgotten nor significantly affected by unimportant information.

The above describes the principle of LSTM, which involves forward processing when applied. BILSTM consists of two LSTM networks, one of which processes the input sequence in the forward direction (i.e., the original order), while the other inputs the time series in the backward direction into the LSTM model. After processing both LSTM networks, the outputs are combined, which eventually gives the output results of the BILSTM model. Details of the model are presented in Fig. 3 .

figure 3

Schematic diagram of the BILSTM model

Compared to LSTM, BILSTM can achieve bidirectional information extraction of the time-series and connect the two LSTM layers onto the same output layer. Therefore, in theory, its predictive performance should be superior to that of LSTM. In BILSTM, the equations of the forward hidden layer( \(\overrightarrow{{h}_{t}}\) ) , backward hidden layer( \(\overleftarrow{{h}_{t}}\) ) , and output layer( \({o}_{t}\) ) are shown in formulas ( 14 ) , ( 15 ) and ( 16 ).

The parameter settings of the BILSTM model built in this paper are shown in Table 2 .

Informer model

The Informer model follows the compiler-interpreter architecture in the Transformer model, and based on this, structural optimizations have been made to reduce the computational time complexity of the algorithm and to optimize the output form of the interpreter. The two optimization methods are described in detail next.

With large amounts of input data, neural network models can have difficulty capturing long-term interdependencies in sequences, which can produce gradient explosions or gradient vanishing and affect the model's prediction accuracy. Informer model solves the existential gradient problem by using a ProbSparse Self-attention mechanism to make more efficient than conventional self-attention.

The value of Transformer self-attention is shown in formula ( 17 ).

Among them, \(Q\in {R}^{{L}_{Q}\times d}\) is the query matrix, \(K\in {R}^{{L}_{K}\times d}\) is the key matrix, and \(V\in {R}^{{L}_{V}\times d}\) is the value matrix, which are obtained by multiplying the input matrix X with the corresponding weight matrices \({W}^{Q}\) , \({W}^{K}\) , \({W}^{V}\) respectively, and d is the dimensionality of Q, K, and V. Let \({q}_{i}\) , \({k}_{i}\) , \(v_{i}\) represent the ith row in the Q, K, V matrices respectively, then the ith attention coefficient is shown in formula ( 18 ) as follows.

Therein, \(p({k}_{j}|{q}_{i})\) denotes the traditional Transformer's probability distribution formula, and \(k({q}_{i},{K}_{l})\) denotes the asymmetric exponential sum function. Firstly, q=1 is assumed, which implies that the value of each moment is equally important; secondly, the difference between the observed distribution and the assumed one is evaluated by the KL scatter, if the value of KL is bigger, the bigger the difference with the assumed distribution, which represents the more important this moment is. Then through inequality \(ln{L}_{k}\le M({q}_{i},K)\le {\mathit{max}}_{j}\left\{\frac{{q}_{i}{k}_{j}^{\rm T}}{\sqrt{d}}\right\}-\frac{1}{{L}_{k}}{\sum }_{j=1}^{{L}_{k}}\left\{\frac{{q}_{i}{k}_{j}^{\rm T}}{\sqrt{d}}\right\}+ln{L}_{k}\) , \(M({q}_{i},K)\) is transformed into \(\overline{M}({q}_{i},K)\) . According to the above steps, the ith sparsity evaluation formula is obtained as shown in formula ( 19 ) [ 33 ].

One of them, \(M({q}_{i},K)\) denotes the ith sparsity measure; \(\overline{M}({q}_{i},K)\) denotes the ith approximate sparsity measure; \({L}_{k}\) is the length of query vector. \(TOP-u\) quantities of \(\overline{M}\) are selected to form \(\overline{Q}\) , \(\overline{Q}\) is the first u sparse matrices, and the final sparse self-attention is shown in Formula ( 20 ). At this point, the time complexity is still \(O({n}^{2})\) , and to solve this problem, only l moments of M2 are computed to reduce the time complexity to \(O(L\cdot \mathit{ln}(L))\) .

Informer uses a generative decoder to obtain long sequence outputs.Informer uses the standard decoder architecture shown in Fig. 4 , in long time prediction, the input given to the decoder is shown in formula ( 21 ).

figure 4

Informer uses a generative decoder to obtain long sequence outputs

Therein, \({X}_{de}^{t}\) denotes the input to the decoder; \({X}_{token}^{t}\in {R}^{({L}_{token}+{L}_{y})\times {d}_{\mathit{mod}el}}\) is the dimension of the encoder output, which is the starting token without using all the output dimensions; \({X}_{0}^{t}\in {R}^{({L}_{token}+{L}_{y})\times {d}_{\mathit{mod}el}}\) is the dimension of the target sequence, which is uniformly set to 0; and finally the splicing input is performed to the encoder for prediction.

The parameter settings of Informer model created in this paper are shown in Table 3 .

BILSTM-GASVR combined prediction model

SVR has demonstrated good performance in solving problems like finite samples and non-linearity. Compared to deep learning methods, it offers faster predictions and smaller empirical risks. BILSTM has the capacity for long-term memory, can effectively identify data periodicity and trends, and is suitable for the processing of time-series data. Hence, it can be used to identify the effect of time-series on the number of confirmed cases. Given the advantages of these two methods in different scenarios, we combined them to perform predictions using GASVR, followed by error repair using BILSTM. The basic steps for prediction based on the BILSTM-GASVR model are as follows:

Normalization is performed on the initial data.

The GASVR model is applied to perform training and parameter optimization of the data to obtain the predicted value \(\widehat{{y}_{i}}\) .

After outputting the predicted value of GASVR, the residual sequence between the predicted value and real data is extracted to obtain the error \({\gamma }_{i}\) (i.e., \({\gamma }_{i}={y}_{i}-\widehat{{y}_{i}}\) ).

The BILSTM model is applied to perform training of the error to improve prediction accuracy. The BILSTM model in this paper is a multiple input single output model. Its inputs are the true and predicted error values \({\gamma }_{i}\) and its output is the new error value \(\widehat{{\gamma }_{i}}\) predicted by BILSTM.

The final predicted value is the sum of the GASVR predicted value and the BILSTM residual predicted value (i.e., \({Y}_{i}=\widehat{{y}_{i}}+\widehat{{\gamma }_{i}}\) ).

The parameter settings of the BILSTM-GASVR model built in this paper are shown in Table 4 .

Model testing criteria

To test the effect of the model, the prediction results of the BILSTM-GASVR model are compared to those of GASVR, LSTM, BILSTM and Informer. The prediction error is mainly quantified using three indicators: mean squared error (MSE), root mean squared error (RMSE), and correlation coefficient ( \(R^{2}\) ). Their respective equations are shown in formulas ( 22 ), ( 23 ) and ( 24 ).

Demand forecasting model of ICU healthcare resources

ICU healthcare resources can be divided into human and material resources. Human resources refer specifically to the professional healthcare workers in the ICU. Material resources, which are combined with the actual consumption of medical supplies, can be divided into consumables and non-consumables. Consumables refer to the commonly used drugs in the ICU, which include drugs for treating cardiac insufficiency, vasodilators, anti-shock vasoactive drugs, analgesics, sedatives, muscle relaxants, anti-asthmatic drugs, and anticholinergics. Given that public health emergencies have a relatively high probability of affecting the respiratory system, we compiled a list of commonly used drugs for respiratory diseases in the ICU (Table 5 ).

Non-consumables refer to therapeutic medical equipment, including electrocardiogram machines, blood gas analyzers, electrolyte analyzers, bedside diagnostic ultrasound machines, central infusion workstations, non-invasive ventilators, invasive ventilators, airway clearance devices, defibrillators, monitoring devices, cardiopulmonary resuscitation devices, and bedside hemofiltration devices.

The demand forecasting model of ICU healthcare resources constructed in this study, as well as its relevant parameters and definitions, are described below. \({R}_{ij}^{n}\) is the forecasted demand for the \(i\) th category of resources on the \(n\) th day in region \(j\) . \({Y}_{j}^{n}\) is the predicted number of current confirmed cases on the \(n\) th day in region \(j\) . \({M}_{j}^{n}\) is the number of ICU healthcare workers on the \(n\) th day in region \(j\) , which is given by the following formula: number of healthcare workers the previous day + number of new recruits − reduction in number the previous day, where the reduction in number refers to the number of healthcare workers who are unable to work due to infection or overwork. In general, the number of ICU healthcare workers should not exceed 5% of the number of current confirmed cases (i.e., it takes the value range [0, \(Y_{j}^{n}\) ×5%]). \(U_{i}\) is the maximum working hours or duration of action of the \(i\) th resource category within one day. \({A}_{j}\) is the number of resources in the \(i\) th category allocated to patients (i.e., how many units of resources in the \(i\) th category is needed for a patient who need the \(i\) th unit of the given resource). \({\varphi }_{i}\) is the demand conversion coefficient (i.e., the proportion of the current number of confirmed cases who need to use the \(i\) th resource category). \({C}_{ij}^{n}\) is the available quantity of material resources of the \(i\) th category on the \(n\) th day in region \(j\) . At the start, this quantity is the initial reserve, and once the initial reserve is exhausted, it is the surplus from the previous day. The formula for this parameter is given as follows: available quantity from the previous day + replenishment on the previous day − quantity consumed on the previous day, where if \({C}_{ij}^{n}\) is a negative number, it indicates the amount of shortage for the given category of resources on the previous day.

In summary, the demand forecast for emergency medical supplies constructed in this study is shown in formula ( 25 ).

The number of confirmed cases based on data-driven prediction is introduced into the demand forecasting model for ICU resources to forecast the demand for the various categories of resources. In addition to the number of current confirmed cases, the main variables of the first demand forecasting model for human resources are the available quantity and maximum working hours. The main variable of the second demand forecasting model for consumable resources is the number of units consumed by the available quantity. The main variable of the third model for non-consumable resources is the allocated quantity. These three resource types can be predicted using the demand forecasting model constructed in this study.

Prediction of the number of current infected cases

The COVID-19 situation in Shanghai is selected for our experiment. A total of 978 entries of epidemic-related data in Shanghai between January 20, 2020, and September 24, 2022, are collected from the epidemic reporting platform. This dataset is distributed over a large range and belongs to a right-skewed leptokurtic distribution. The specific statistical description of data is shown in Table 6 . Part of the data is shown in Table 7 .

And we divided the data training set and test set in an approximate 8:2 ratio, namely, 798 days for training (January 20, 2020 to March 27, 2022) and 180 days for prediction (March 28, 2022 to September 24, 2022).

Due to the large difference in order of magnitude between the various input features, directly implementing training and model construction would lead to suboptimal model performance. Such effects are usually eliminated through normalization. In terms of interval selection, [0, 1] reflects the probability distribution of the sample, whereas [-1, 1] mostly reflects the state distribution or coordinate distribution of the sample. Therefore, [-1, 1] is selected for the normalization interval in this study, and the processing method is shown in formula ( 26 ).

Among the rest, \(X\) is the input sample, \({X}_{min}\) and \({X}_{max}\) are the minimum and maximum values of the input sample, and \({X}_{new}\) is the input feature after normalization.

In addition, we divide the data normalization into two parts, considering that the amount of data in the training set is much more than the test set in the real operating environment. In the first step, we normalize the training set data directly according to the above formula; in the second step, we normalize the test data set using the maximum and minimum values of the training data set.

The values of the preprocessed data are inserted into the GASVR, LSTM, Informer, BILSTM models and the BILSTM-GASVR model is constructed. Figures 5 , 6 , 7 , 8 and 9 show the prediction results. From Figs. 5 , 6 , and 7 , it can be seen that in terms of data accuracy, GASVR more closely matches the real number of infected people relative to BILSTM and LSTM. Especially in the most serious period of the epidemic in Shanghai (April 17, 2022 to April 30, 2022), the advantage of the accuracy of the predicted data of GASVR is even more obvious, which is due to the characteristics of GASVR for small samples and nonlinear prediction. However, in the overall trend of the epidemic, BILSTM and LSTM, which have the ability to learn and memorize to process time series data, are superior. It is clearly seen that in April 1, 2022-April 7, 2022 and May 10, 2022-May 15, 2022, there is a sudden and substantial increase in GASVR in these two time phases, and a sudden and substantial decrease in April 10, 2022-April 14, 2022. These errors also emphasize the stability of BILSTM and LSTM, which are more closely matched to the real epidemic development situation in the whole process of prediction, and the difference between BILSTM and LSTM prediction is that the former predicts data more accurately than the latter, which is focused on the early stage of prediction as well as the peak period of the epidemic. Informer is currently an advanced time series forecasting method. From Fig. 8 , it can be seen that the prediction data accuracy and the overall trend of the epidemic are better than the single prediction models of GASVR, LSTM and BILSTM. However, Informer is more suitable for long time series and more complex and large prediction problems, so the total sample size of less than one thousand cases is not in the comfort zone of Informer model. Figure 9 shows that the BILSTM-GASVR model constructed in this paper is more suitable for this smaller scale prediction problem, with the best prediction results, closest to the actual parameter (number of current confirmed cases), demonstrating small sample and time series advantages. In Short, the prediction effect of models is ranked as follows: BILSTM-GASVR> Informer> GASVR> BILSTM> LSTM.

figure 5

The prediction result of the GASVR model

figure 6

The prediction result of the LSTM model

figure 7

The prediction result of the BILSTM model

figure 8

The prediction result of the Informer model

figure 9

The prediction result of the BILSTM-GASVR model

The values of the three indicators (MSE, RMSE, and correlation coefficient \({R}^{2}\) ) for the five models are shown in Table 8 . MSE squares the error so that the larger the model error, the larger the value, which help capture the model's prediction error more sensitively. RMSE is MSE with a root sign added to it, which allows for a more intuitive representation of the order of magnitude difference from the true value. \({R}^{2}\) is a statistical indicator used to assess the overall goodness of fit of the model, which reflects the overall consistency of the predicted trend and does not specifically reflect the degree of data. The results in the Table 8 are consistent with the prediction results in the figure above, while the ranking of MSE, RMSE, and \({R}^{2}\) are also the same (i.e., BILSTM-GASVR> Informer> GASVR> BILSTM> LSTM).

In addition, we analyze the five model prediction data using significance tests as a way of demonstrating whether the model used is truly superior to the other baseline models. The test dataset with kurtosis higher than 4 does not belong to the approximate normal distribution, so parametric tests are not used in this paper. Given that the datasets predicted by each of the five models are continuous and independent datasets, this paper uses the Kruskal-Wallis test, which is a nonparametric test. The test steps are as follows.

Determine hypotheses (H0, H1) and significance level ( \(\alpha\) ).

For each data set, all its sample data are combined and ranked from smallest to largest. Then find the number of data items ( \({n}_{i}\) ), rank sum ( \({R}_{i}\) ) and mean rank of each group of data respectively.

Based on the rank sum, the test statistic (H) is calculated for each data set in the Kruskal-Wallis test. The specific calculation is shown in formula ( 27 ).

According to the test statistic and degrees of freedom, find the corresponding p-value in the Kruskal-Wallis distribution table. Based on the P-value, determine whether the original hypothesis is valid.

In the significance test, we set the significance setting original hypothesis (H0) as there is no significant difference between the five data sets obtained from the five predictive models. We set the alternative hypothesis (H1) as there is a significant difference between the five data sets obtained from the five predictive models. At the same time, we choose the most commonly used significance level taken in the significance test, namely 0.05. In this paper, multiple comparisons and two-by-two comparisons of the five data sets obtained from the five predictive models are performed through the SPSS software. The results of the test show that in the multiple comparison session, P=0.001<0.05, so H0 is rejected, which means that the difference between the five groups of data is significant. In the two-by-two comparison session, BILSTM-GASVR is less than 0.05 from the other four prediction models. The specific order of differences is Informer < GASVR < BILSTM < LSTM, which means that the BILSTM-GASVR prediction model does get a statistically significant difference between the dataset and the other models.

In summary, combined prediction using the BILSTM-GASVR model is superior to the other four single models in various aspects in the case study analysis of Shanghai epidemic with a sample size of 978.

Demand forecasting of ICU healthcare resources

Combined with the predicted number of current infected cases, representatives are selected from the three categories of resources for forecasting. The demand for nurses is selected as the representative for the first category of resources.

In view of the fact that there are currently no specific medications that are especially effective for this public health emergency, many ICU treatment measures involved helping patients survive as their own immune systems eliminated the virus. This involved, for example, administering antibiotics when patients developed a secondary bacterial infection. glucocorticoids are used to temporarily suppress the immune system when their immune system attacked and damaged lung tissues causing patients to have difficulty breathing. extracorporeal membrane oxygenation (ECMO) is used for performing cardiopulmonary resuscitation when patients are suffering from cardiac arrest. In this study, we take dexamethasone injection (5 mg), a typical glucocorticoid drug, as the second category of ICU resources (i.e., drugs); and invasive ventilators as the third category of ICU resources (i.e., medical equipment).

During the actual epidemic in Shanghai, the municipal government organized nine critical care teams, which are stationed in eight municipally designated hospitals and are dedicated to the treatment of critically ill patients. In this study, the ICU nurses, dexamethasone injections, and invasive ventilators in Shanghai are selected as the prediction targets and introduced into their respective demand forecasting models. Forecasting of ICU healthcare resources is then performed for the period from March 28, 2022, to April 28, 2022, as an example. Part of the parameter settings for the three types of resources are shown in Tables 9 , 10 , and 11 , respectively.

Table 12 shows the forecasting results of the demand for ICU nurses, dexamethasone injections, and invasive ventilators during the epidemic wave in Shanghai between March 28, 2022, and April 28, 2022.

For the first category (i.e., ICU nurses), human resource support is only needed near the peak period, but the supply could not be replenished immediately. In the early stages, Shanghai could only rely on the nurses’ perseverance, alleviating the shortage of human resources by reducing the number of shifts and increasing working hours. This situation persisted until about April 10 and is only resolved when nurses from other provinces and regions successively arrived in Shanghai.

The second category of ICU resources is drugs, which are rapidly consumed. The pre-event reserve of 30,000 dexamethasone injections could only be maintained for a short period and is fully consumed during the outbreak. Furthermore, daily replenishment is still needed, even when the epidemic has passed its peak and begun its decline.

The third category is invasive ventilators, which are non-consumables. Thus, the reserve lasted for a relatively long period of time in the early stages and did not require replenishment after its maximum usage during the peak period.

Demand forecasting models are constructed based on the classification of healthcare resources according to their respective features. We choose ICU nurses, dexamethasone injections, and invasive ventilators as examples, and then forecast demand for the epidemic wave in Shanghai between March 28, 2022, and April 28, 2022. The main conclusions are as follows:

A long period of time is needed to train ICU healthcare workers who can independently be on duty, taking at least one year from graduation to entering the hospital, in addition to their requiring continuous learning, regular theoretical training, and the accumulation of clinical experience during this process. Therefore, for the first category of ICU healthcare resources, in the long term, healthcare institutions should place a greater emphasis on their talent reserves. Using China as an example, according to the third ICU census, the ratio of the number of ICU physicians to the number of beds is 0.62:1 and the ratio of the number of nurses to the number of beds is 1.96:1, which are far lower than those stipulated by China itself and those of developed countries. Therefore, a fundamental solution is to undertake proactive and systematic planning and construction to ensure the more effective deployment of human resources in the event of a severe outbreak. In the short term, healthcare institutions should focus on the emergency expansion capacity of their human resources. In case there are healthcare worker shortages during emergencies, the situation can be alleviated by summoning retired workers back to work and asking senior medical students from various universities to help in the hospitals to prevent the passive scenario of severely compressing the rest time of existing staff or waiting for external aid. However, it is worth noting that to ensure the effectiveness of such a strategy of using retired healthcare workers or senior students of university medical faculties, it is necessary for healthcare organizations to provide them with regular training in the norm, such as organizing 2-3 drills a year, to ensure the professionalism and proficiency of healthcare workers who are temporarily and suddenly put on the job. At the same time, it is also necessary to fully mobilize the will of individuals. Medical institutions can provide certain subsidies to retired health-care workers and award them with honorable titles. For senior university medical students, volunteer certificates are issued and priority is given to their internships, so that health-care workers can be motivated to self-realization through spiritual and material rewards.

Regarding the second category of ICU resources (i.e., drugs), healthcare institutions perform the subdivision of drug types and carry out dynamic physical preparations based on 15–20% of the service recipient population for clinically essential drugs. This will enable a combination of good preparedness during normal times and emergency situations. In addition, in-depth collaboration with corporations is needed to fully capitalize on their production capacity reserves. This helps medical institutions to be able to scientifically and rationally optimize the structure and quantity of their drug stockpiles to prevent themselves from being over-stressed. Yet the lower demand for medicines at the end of the epidemic led to the problem of excess inventory of enterprises at a certain point in time must be taken into account. So, the medical institutions should sign a strategic agreement on stockpiling with enterprises, take the initiative to bear the guaranteed acquisition measures, and consider the production costs of the cooperative enterprises. These measures are used to truly safeguard the enthusiasm of the cooperative enterprises to invest in the production capacity.

Regarding the third category of ICU resources (i.e., medical equipment), large-scale medical equipment cannot be rapidly mass-produced due to limitations in the capacity for emergency production and conversion of materials. In addition, the bulk procurement of high-end medical equipment is also relatively difficult in the short term. Therefore, it is more feasible for healthcare institutions to have physical reserves of medical equipment, such as invasive ventilators. However, the investment costs of medical equipment are relatively high. Ventilators, for example, cost up to USD $50,000, and subsequent maintenance costs are also relatively high. After all, according to the depreciable life of specialized hospital equipment, the ventilator, as a surgical emergency equipment, is depreciated over five years. And its depreciation rate is calculated at 20% annually for the first five years, which means a monthly depreciation of $835. Thus, the excessively low utilization rate of such equipment will also impact the hospital. Healthcare institutions should, therefore, conduct further investigations on the number of beds and the reserves of ancillary large-scale medical equipment to find a balance between capital investment and patient needs.

The limitations of this paper are reflected in the following three points. Firstly, in the prediction of the number of infections, the specific research object in this paper is COVID-19, and other public health events such as SARS, H1N1, and Ebola are not comparatively analyzed. The main reason for this is the issue of data accessibility, and it is easier for us to analyze events that have occurred in recent years. In addition, using the Shanghai epidemic as a specific case may be more representative of the epidemic situation in an international metropolis with high population density and mobility. Hence, it has certain regional limitations, and subsequent studies should expand the scope of the case study to reflect the characteristics of epidemic transmission in different types of urban areas and enhance the generalizability.

Secondly, the main emphasis of this study is on forecasting the demand for ICU healthcare resources across the entire region of the epidemic, with a greater focus on patient demand during public emergencies. Our aims are to help all local healthcare institutions more accurately identify changes in ICU healthcare resource demand during this local epidemic wave, gain a more accurate understanding of the treatment demands of critically ill patients, and carry out comprehensive, scientifically based decision-making. Therefore, future studies can examine individual healthcare institutions instead and incorporate the actual conditions of individual units to construct multi-objective models. In this way, medical institutions can further grasp the relationship between different resource inputs and the recovery rate of critically ill patients, and achieve the balance between economic and social benefits.

Finally, for the BILSTM-GASVR prediction method, in addition to the number of confirmed diagnoses predicted for an outbreak in a given region, other potential applications beyond this type of medium-sized dataset still require further experimentation. For example, whether the method is suitable for procurement planning of a certain supply in production management, forecasting of goods sales volume in marketing management, and other long-period, large-scale and other situations.

Within the context of major public health events, the fluctuations and uncertainties in the demand for ICU resources can lead to large errors between the healthcare supply and actual demand. Therefore, this study focuses on the question of forecasting the demand for ICU healthcare resources. Based on the number of current confirmed cases, we construct the BILSTM-GASVR model for predicting the number of patients. By comparing the three indicators (MSE, MAPE, and correlation coefficient \(R^{2}\) ) and the results of the BILSTM, LSTM, and GASVR models, we demonstrate that our model have a higher accuracy. Our findings can improve the timeliness and accuracy of predicting ICU healthcare resources and enhance the dynamics of demand forecasting. Hence, this study may serve as a reference for the scientific deployment of ICU resources in healthcare institutions during major public events.

Given the difficulty in data acquisition, only the Shanghai epidemic dataset is selected in this paper, which is one of the limitations mentioned in Part 4. Although the current experimental cases of papers in the same field do not fully conform to this paper, the results of the study cannot be directly compared. However, after studying the relevant reviews and the results of the latest papers, we realize that there is consistency in the prediction ideas and prediction methods [ 34 , 35 ]. Therefore, we summarize the similarities and differences between the results of the study and other research papers in epidemic forecasting as shown below.

Similarities: on the one hand, we all characterize trends in the spread of the epidemic and predict the number of infections over 14 days. On the other hand, we all select the current mainstream predictive models as the basis and combine or improve them. Moreover, we all use the same evaluation method (comparison of metrics such as MSE and realistic values) to evaluate the improvements against other popular predictive models.

Differences: on the one hand, other papers focus more on predictions at the point of the number of patients, such as hospitalization rate, number of infections, etc. This paper extends the prediction from the number of patients to the specific healthcare resources. This paper extends the prediction from the number of patients to specific healthcare resources. We have divided the medical resources and summarized the demand regularities of the three types of information in the epidemic, which provides the basis for decision-making on epidemic prevention to the government or medical institutions. On the other hand, in addition to the two assessment methods mentioned in the same point, this paper assesses the performance of the prediction methods with the help of significance tests, which is a statistical approach to data. This can make the practicality of the forecasting methodology more convincing.

Availability of data and materials

The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

Yuan, R., Yang, Y., Wang, X., Duo, J. & Li, J. Study on the forecasting and allocation of emergency medical material needs in the event of a major infectious disease outbreak. J Saf Environ. https://doi.org/10.13637/j.issn.1009-6094.2023.2448 .

Total epidemic data (global). 2024. Retrieved March 30, 2024, from: https://www.sy72.com/world/ .

Sui, K., Wang, Y., Wang, S., Chen, C., & Sun, X. A multiple regression analysis-based method for forecasting the demand of emergency materials for power grids. Electron Technol Softw Eng. 2016; (23), 195-197.

Li K, Liu L, Zhai J, Khoshgoftaar TM, Li T. The improved grey model based on particle swarm optimization algorithm for time series prediction. Eng Appl Artif Intell. 2016;55:285–91. https://doi.org/10.1016/j.engappai.2016.07.005 .

Article   Google Scholar  

Fan R, Wang Y, Luo M. SEIR-based COVID-19 transmission model and inflection point prediction analysis. J Univ Electron Sci Technol China. 2020;49(3):369–74.

Google Scholar  

Neves AGM, Guerrero G. Predicting the evolution of the COVID-19 epidemic with the A-SIR model: Lombardy, Italy and São Paulo state Brazil. Physica D. 2020;413:132693. https://doi.org/10.1016/j.physd.2020.132693 .

Article   PubMed   PubMed Central   Google Scholar  

Li R, Pei S, Chen B, Song Y, Zhang T, Wan Y, Shaman J. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science. 2020;368(6490):489–93. https://doi.org/10.1126/science.abb3221 .

Article   CAS   PubMed   PubMed Central   Google Scholar  

Kermack WO, McKendrick AG. A contribution to the mathematical theory of epidemics. Proc R Soc Lond. 1927;115(772):700–21. https://doi.org/10.1098/rspa.1927.0118 .

Hethcote HW. The mathematics of infectious diseases. Siam Rev. 2000;42(4):599–653. https://doi.org/10.1137/SIREAD000042000004000655000001 .

Estrada E. COVID-19 and SARS-CoV-2. Modeling the present, looking at the future. Phys Rep. 2020;869:1–51. https://doi.org/10.1016/j.physrep.2020.07.005 .

Mizumoto K, Chowell G. Transmission potential of the novel coronavirus (COVID-19) onboard the diamond Princess Cruises Ship, 2020. Infect Dis Model. 2020;5:264–70. https://doi.org/10.1016/j.idm.2020.02.003 .

Delamater PL, Street EJ, Leslie TF, Yang YT, Jacobsen KH. Complexity of the Basic Reproduction Number. Emerg Infect Dis. 2019;25(1):1–4. https://doi.org/10.3201/eid2501.171901 .

Annas S, Isbar Pratama M, Rifandi M, Sanusi W, Side S. Stability analysis and numerical simulation of SEIR model for pandemic COVID-19 spread in Indonesia. Chaos Solit Fract. 2020;139:110072. https://doi.org/10.1016/j.chaos.2020.110072 .

Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med. 2020;382(13):1199–209. https://doi.org/10.1056/NEJMoa2001316 .

Anggriani N, Ndii MZ, Amelia R, Suryaningrat W, Pratama MAA. A mathematical COVID-19 model considering asymptomatic and symptomatic classes with waning immunity. Alexandria Eng J. 2022;61(1):113–24. https://doi.org/10.1016/j.aej.2021.04.104 .

Efimov D, Ushirobira R. On an interval prediction of COVID-19 development based on a SEIR epidemic model. Ann Rev Control. 2021;51:477–87. https://doi.org/10.1016/j.arcontrol.2021.01.006 .

Lin Q, Zhao S, Gao D, Lou Y, Yang S, Musa SS, Wang MH. A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action. Int J Infect Dis. 2020;93:211–16.

Chao L, Feng P, Shi P. Study on the epidemic development of COVID-19 in Hubei. J Zhejiang Univ (Med Sci). 2020;49(2):178–84.

Reiner RC, Barber RM, Collins JK, et al. Modeling COVID-19 scenarios for the United States. Nat Med. 2021;27(1):94–105. https://doi.org/10.1038/s41591-020-1132-9 .

Article   CAS   Google Scholar  

Shahid F, Zameer A, Muneeb M. Predictions for COVID-19 with deep learning models of LSTM GRU and Bi-LSTM. Chaos Solit Fract. 2020;140:110212. https://doi.org/10.1016/j.chaos.2020.110212 .

Chimmula VKR, Zhang L. Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chaos Solit Fract. 2020;135:109864. https://doi.org/10.1016/j.chaos.2020.109864 .

Hamou AA, Azroul E, Hammouch Z, Alaoui AAL. A fractional multi-order model to predict the COVID-19 outbreak in Morocco. Appl Comput Math. 2021;20(1):177–203.

Zhou, L., Zhao, C., Liu, N., Yao, X., & Cheng, Z. Improved LSTM-based deep learning model for COVID-19 prediction using optimized approach. Eng Appl Artif Intell. 2023; 122. https://doi.org/10.1016/j.engappai.2023.106157 .

Huang C, Chen Y, Ma Y, Kuo P. Multiple-Input Deep Convolutional Neural Network Model for COVID-19 Forecasting in China. medRxiv. 2020;74822–34.

Gautam Y. Transfer Learning for COVID-19 cases and deaths forecast using LSTM network. Isa Trans. 2022;124:41–56. https://doi.org/10.1016/j.isatra.2020.12.057 .

Article   PubMed   Google Scholar  

Ghany KKA, Zawbaa HM, Sabri HM. COVID-19 prediction using LSTM algorithm: GCC case study. Inform Med Unlock. 2021;23:100566. https://doi.org/10.1016/j.imu.2021.100566 .

Devaraj J, Madurai Elavarasan R, Pugazhendhi R, Shafiullah GM, Ganesan S, Jeysree AK, Khan IA, Hossain E. Forecasting of COVID-19 cases using deep learning models: Is it reliable and practically significant? Results Phys. 2021;21:103817. https://doi.org/10.1016/j.rinp.2021.103817 .

Arora P, Kumar H, Panigrahi BK. Prediction and analysis of COVID-19 positive cases using deep learning models: a descriptive case study of India. Chaos Solit Fract. 2020;139:110017. https://doi.org/10.1016/j.chaos.2020.110017 .

Liu Q, Fung DLX, Lac L, Hu P. A Novel Matrix Profile-Guided Attention LSTM Model for Forecasting COVID-19 Cases in USA. Front Public Health. 2021;9:741030. https://doi.org/10.3389/fpubh.2021.741030 .

Ribeiro MHDM, Da Silva RG, Mariani VC, Coelho LDS. Short-term forecasting COVID-19 cumulative confirmed cases: perspectives for Brazil. Chaos Solit Fract. 2020;135:109853. https://doi.org/10.1016/j.chaos.2020.109853 .

Shoko C, Sigauke C. Short-term forecasting of COVID-19 using support vector regression: an application using Zimbabwean data. Am J Infect Control. 2023. https://doi.org/10.1016/j.ajic.2023.03.010 .

Feng T, Peng Y, Wang J. ISGS: A Combinatorial Model for Hysteresis Effects. Acta Electronica Sinica. 2023;09:2504–9.

Zhou H, Zhang S, Peng J, Zhang S, Li J, Xiong H, Zhang W. Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. AAAI Conference Artif Intell. 2020;35(12):11106–15.

Rahimi I, Chen F, Gandomi AH. A review on COVID-19 forecasting models. Neural Comput Applic. 2023;35:23671–81. https://doi.org/10.1007/s00521-020-05626-8 .

Chen J, Creamer GG, Ning Y, Ben-Zvi T. Healthcare Sustainability: Hospitalization Rate Forecasting with Transfer Learning and Location-Aware News Analysis. Sustainability. 2023;15(22):15840. https://doi.org/10.3390/su152215840 .

Download references

Acknowledgements

We would like to acknowledge the hard and dedicated work of all the staff that implemented the intervention and evaluation components of the study.

No external funding received to conduct this study.

Author information

Authors and affiliations.

School of Logistics, Beijing Wuzi University, No.321, Fuhe Street, Tongzhou District, Beijing, 101149, China

Weiwei Zhang & Xinchun Li

You can also search for this author in PubMed   Google Scholar

Contributions

WWZ and XCL conceived the idea and conceptualised the study. XCL collected the data. WWZ analysed the data. WWZ and XCL drafted the manuscript, then WWZ and XCLreviewed the manuscript. WWZ and XCL read and approved the final draft.

Corresponding author

Correspondence to Xinchun Li .

Ethics declarations

Ethics approval and consent to participate.

Not applicable.

Consent for publication

Competing interests.

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Zhang, W., Li, X. A data-driven combined prediction method for the demand for intensive care unit healthcare resources in public health emergencies. BMC Health Serv Res 24 , 477 (2024). https://doi.org/10.1186/s12913-024-10955-8

Download citation

Received : 21 September 2023

Accepted : 05 April 2024

Published : 17 April 2024

DOI : https://doi.org/10.1186/s12913-024-10955-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Public health emergency
  • ICU healthcare resource demand
  • Machine learning
  • Combined prediction

BMC Health Services Research

ISSN: 1472-6963

the research methodology used

The independent source for health policy research, polling, and news.

A New Use for Wegovy Opens the Door to Medicare Coverage for Millions of People with Obesity

Juliette Cubanski , Tricia Neuman , Nolan Sroczynski , and Anthony Damico Published: Apr 24, 2024

The FDA recently approved a new use for Wegovy (semaglutide), the blockbuster anti-obesity drug, to reduce the risk of heart attacks and stroke in people with cardiovascular disease who are overweight or obese. Wegovy belongs to a class of medications called GLP-1 (glucagon-like peptide-1) agonists that were initially approved to treat type 2 diabetes but are also highly effective anti-obesity drugs. The new FDA-approved indication for Wegovy paves the way for Medicare coverage of this drug and broader coverage by other insurers. Medicare is currently prohibited by law from covering Wegovy and other medications when used specifically for obesity. However, semaglutide is covered by Medicare as a treatment for diabetes, branded as Ozempic.

What does the FDA’s decision mean for Medicare coverage of Wegovy?

The FDA’s decision opens the door to Medicare coverage of Wegovy, which was first approved by the FDA as an anti-obesity medication. Soon after the FDA’s approval of the new use for Wegovy, the Centers for Medicare & Medicaid Services (CMS) issued a memo indicating that Medicare Part D plans can add Wegovy to their formularies now that it has a medically-accepted indication that is not specifically excluded from Medicare coverage . Because Wegovy is a self-administered injectable drug, coverage will be provided under Part D , Medicare’s outpatient drug benefit offered by private stand-alone drug plans and Medicare Advantage plans, not Part B, which covers physician-administered drugs.

How many Medicare beneficiaries could be eligible for coverage of Wegovy for its new use?

Figure 1: An Estimated 1 in 4 Medicare Beneficiaries With Obesity or Overweight Could Be Eligible for Medicare Part D Coverage of Wegovy to Reduce the Risk of Serious Heart Problems

Of these 3.6 million beneficiaries, 1.9 million also had diabetes (other than Type 1) and may already have been eligible for Medicare coverage of GLP-1s as diabetes treatments prior to the FDA’s approval of the new use of Wegovy.

Not all people who are eligible based on the new indication are likely to take Wegovy, however. Some might be dissuaded by the potential side effects and adverse reactions . Out-of-pocket costs could also be a barrier. Based on the list price of $1,300 per month (not including rebates or other discounts negotiated by pharmacy benefit managers), Wegovy could be covered as a specialty tier drug, where Part D plans are allowed to charge coinsurance of 25% to 33%. Because coinsurance amounts are pegged to the list price, Medicare beneficiaries required to pay coinsurance could face monthly costs of $325 to $430 before they reach the new cap on annual out-of-pocket drug spending established by the Inflation Reduction Act – around $3,300 in 2024, based on brand drugs only, and $2,000 in 2025. But even paying $2,000 out of pocket would still be beyond the reach of many people with Medicare who live on modest incomes . Ultimately, how much beneficiaries pay out of pocket will depend on Part D plan coverage and formulary tier placement of Wegovy.

Further, some people may have difficulty accessing Wegovy if Part D plans apply prior authorization and step therapy tools to manage costs and ensure appropriate use. These factors could have a dampening effect on use by Medicare beneficiaries, even among the target population.

When will Medicare Part D plans begin covering Wegovy?

Some Part D plans have already announced that they will begin covering Wegovy this year, although it is not yet clear how widespread coverage will be in 2024. While Medicare drug plans can add new drugs to their formularies during the year to reflect new approvals and expanded indications, plans are not required to cover every new drug that comes to market. Part D plans are required to cover at least two drugs in each category or class and all or substantially all drugs in six protected classes . However, facing a relatively high price and potentially large patient population for Wegovy, many Part D plans might be reluctant to expand coverage now, since they can’t adjust their premiums mid-year to account for higher costs associated with use of this drug. So, broader coverage in 2025 could be more likely.

How might expanded coverage of Wegovy affect Medicare spending?

The impact on Medicare spending associated with expanded coverage of Wegovy will depend in part on how many Part D plans add coverage for it and the extent to which plans apply restrictions on use like prior authorization; how many people who qualify to take the drug use it; and negotiated prices paid by plans. For example, if plans receive a 50% rebate on the list price of $1,300 per month (or $15,600 per year), that could mean annual net costs per person around $7,800. If 10% of the target population (an estimated 360,000 people) uses Wegovy for a full year, that would amount to additional net Medicare Part D spending of $2.8 billion for one year for this one drug alone.

It’s possible that Medicare could select semaglutide for drug price negotiation as early as 2025, based on the earliest FDA approval of Ozempic in late 2017 . For small-molecule drugs like semaglutide, at least seven years must have passed from its FDA approval date to be eligible for selection, and for drugs with multiple FDA approvals, CMS will use the earliest approval date to make this determination. If semaglutide is selected for negotiation next year, a negotiated price would be available beginning in 2027. This could help to lower Medicare and out-of-pocket spending on semaglutide products, including Wegovy as well as Ozempic and Rybelsus, the oral formulation approved for type 2 diabetes. As of 2022, gross Medicare spending on Ozempic alone placed it sixth among the 10 top-selling drugs in Medicare Part D, with annual gross spending of $4.6 billion, based on KFF analysis . This estimate does not include rebates, which Medicare’s actuaries estimated to be  31.5% overall in 2022  but could be as high as  69%  for Ozempic, according to one estimate.

What does this mean for Medicare coverage of anti-obesity drugs?

For now, use of GLP-1s specifically for obesity continues to be excluded from Medicare coverage by law. But the FDA’s decision signals a turning point for broader Medicare coverage of GLP-1s since Wegovy can now be used to reduce the risk of heart attack and stroke by people with cardiovascular disease and obesity or overweight, and not only as an anti-obesity drug. And more pathways to Medicare coverage could open up if these drugs gain FDA approval for other uses . For example, Eli Lilly has just reported clinical trial results showing the benefits of its GLP-1, Zepbound (tirzepatide), in reducing the occurrence of sleep apnea events among people with obesity or overweight. Lilly reportedly plans to seek FDA approval for this use and if approved, the drug would be the first pharmaceutical treatment on the market for sleep apnea.

If more Medicare beneficiaries with obesity or overweight gain access to GLP-1s based on other approved uses for these medications, that could reduce the cost of proposed legislation to lift the statutory prohibition on Medicare coverage of anti-obesity drugs. This is because the Congressional Budget Office (CBO), Congress’s official scorekeeper for proposed legislation, would incorporate the cost of coverage for these other uses into its baseline estimates for Medicare spending, which means that the incremental cost of changing the law to allow Medicare coverage for anti-obesity drugs would be lower than it would be without FDA’s approval of these drugs for other uses. Ultimately how widely Medicare Part D coverage of GLP-1s expands could have far-reaching effects on people with obesity and on Medicare spending.

  • Medicare Part D
  • Chronic Diseases
  • Heart Disease
  • Medicare Advantage

news release

  • An Estimated 1 in 4 Medicare Beneficiaries With Obesity or Overweight Could Be Eligible for Medicare Coverage of Wegovy, an Anti-Obesity Drug, to Reduce Heart Risk

Also of Interest

  • An Overview of the Medicare Part D Prescription Drug Benefit
  • FAQs about the Inflation Reduction Act’s Medicare Drug Price Negotiation Program
  • What Could New Anti-Obesity Drugs Mean for Medicare?
  • Medicare Spending on Ozempic and Other GLP-1s Is Skyrocketing

Some results uranium dioxide powder structure investigation

  • Processes of Obtaining and Properties of Powders
  • Published: 28 June 2009
  • Volume 50 , pages 281–285, ( 2009 )

Cite this article

the research methodology used

  • E. I. Andreev 1 ,
  • K. V. Glavin 2 ,
  • A. V. Ivanov 3 ,
  • V. V. Malovik 3 ,
  • V. V. Martynov 3 &
  • V. S. Panov 2  

116 Accesses

7 Citations

Explore all metrics

Features of the macrostructure and microstructure of uranium dioxide powders are considered. Assumptions are made on the mechanisms of the behavior of powders of various natures during pelletizing. Experimental data that reflect the effect of these powders on the quality of fuel pellets, which is evaluated by modern procedures, are presented. To investigate the structure of the powders, modern methods of electron microscopy, helium pycnometry, etc., are used. The presented results indicate the disadvantages of wet methods for obtaining the starting UO 2 powders by the ammonium diuranate (ADU) flow sheet because strong agglomerates and conglomerates, which complicate the process of pelletizing, are formed. The main directions of investigation that can lead to understanding the regularities of formation of the structure of starting UO 2 powders, which will allow one to control the process of their fabrication and stabilize the properties of powders and pellets, are emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

Similar content being viewed by others

the research methodology used

Investigation of the Properties of Uranium-Molybdenum Pellet Fuel for VVER

the research methodology used

Investigation of the Influence of the Energy of Thermal Plasma on the Morphology and Phase Composition of Aluminosilicate Microspheres

Evaluation of the possibility of fabricating uranium-molybdenum fuel for vver by powder metallurgy methods.

Patlazhan, S.A., Poristost’ i mikrostruktura sluchainykh upakovok tverdykh sharov raznykh razmerov (Porosity and Microstructure of Chaotic Packings of Solid Spheres of Different Sizes), Chernogolovka: IKhF RAN, 1993.

Google Scholar  

Andreev, E.I., Bocharov, A.S., Ivanov, A.V., et al., Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall. , 2003, no. 1, p. 48.

Assmann, H., Dörr, W., and Peehs, M., “Control of HO 2 Microstructure by Oxidative Sintering,” J. Nucl. Mater. , 1986, vol. 140,issue 1, pp. 1–6.

Article   ADS   CAS   Google Scholar  

Download references

Author information

Authors and affiliations.

Elektrostal’ Polytechnical Institute (Branch), Moscow Institute of Steel and Alloys, ul. Pervomaiskaya 7, Elektrostal’, Moscow oblast, 144000, Russia

E. I. Andreev

Moscow Institute of Steel and Alloys (State Technical University), Leninskii pr. 4, Moscow, 119049, Russia

K. V. Glavin & V. S. Panov

JSC “Mashinostroitelny Zavod”, ul. K. Marksa 12, Elektrostal’, Moscow oblast, 144001, Russia

A. V. Ivanov, V. V. Malovik & V. V. Martynov

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to K. V. Glavin .

Additional information

Original Russian Text © E.I. Andreev, K.V. Glavin, A.V. Ivanov, V.V. Malovik, V.V. Martynov, V.S. Panov, 2009, published in Izvestiya VUZ. Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya, 2008, No. 4, pp. 19–24.

About this article

Andreev, E.I., Glavin, K.V., Ivanov, A.V. et al. Some results uranium dioxide powder structure investigation. Russ. J. Non-ferrous Metals 50 , 281–285 (2009). https://doi.org/10.3103/S1067821209030183

Download citation

Published : 28 June 2009

Issue Date : June 2009

DOI : https://doi.org/10.3103/S1067821209030183

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • nuclear fuel
  • uranium dioxide
  • uranium protoxide-oxide
  • crystallite
  • agglomerate
  • conglomerate
  • surface morphology
  • ADU-ammonium diuranate
  • Find a journal
  • Publish with us
  • Track your research

19th Edition of Global Conference on Catalysis, Chemical Engineering & Technology

Victor Mukhin

  • Scientific Program

Victor Mukhin, Speaker at Chemical Engineering Conferences

Title : Active carbons as nanoporous materials for solving of environmental problems

However, up to now, the main carriers of catalytic additives have been mineral sorbents: silica gels, alumogels. This is obviously due to the fact that they consist of pure homogeneous components SiO2 and Al2O3, respectively. It is generally known that impurities, especially the ash elements, are catalytic poisons that reduce the effectiveness of the catalyst. Therefore, carbon sorbents with 5-15% by weight of ash elements in their composition are not used in the above mentioned technologies. However, in such an important field as a gas-mask technique, carbon sorbents (active carbons) are carriers of catalytic additives, providing effective protection of a person against any types of potent poisonous substances (PPS). In ESPE “JSC "Neorganika" there has been developed the technology of unique ashless spherical carbon carrier-catalysts by the method of liquid forming of furfural copolymers with subsequent gas-vapor activation, brand PAC. Active carbons PAC have 100% qualitative characteristics of the three main properties of carbon sorbents: strength - 100%, the proportion of sorbing pores in the pore space – 100%, purity - 100% (ash content is close to zero). A particularly outstanding feature of active PAC carbons is their uniquely high mechanical compressive strength of 740 ± 40 MPa, which is 3-7 times larger than that of  such materials as granite, quartzite, electric coal, and is comparable to the value for cast iron - 400-1000 MPa. This allows the PAC to operate under severe conditions in moving and fluidized beds.  Obviously, it is time to actively develop catalysts based on PAC sorbents for oil refining, petrochemicals, gas processing and various technologies of organic synthesis.

Victor M. Mukhin was born in 1946 in the town of Orsk, Russia. In 1970 he graduated the Technological Institute in Leningrad. Victor M. Mukhin was directed to work to the scientific-industrial organization "Neorganika" (Elektrostal, Moscow region) where he is working during 47 years, at present as the head of the laboratory of carbon sorbents.     Victor M. Mukhin defended a Ph. D. thesis and a doctoral thesis at the Mendeleev University of Chemical Technology of Russia (in 1979 and 1997 accordingly). Professor of Mendeleev University of Chemical Technology of Russia. Scientific interests: production, investigation and application of active carbons, technological and ecological carbon-adsorptive processes, environmental protection, production of ecologically clean food.   

Quick Links

  • Conference Brochure
  • Tentative Program

Watsapp

IMAGES

  1. 15 Research Methodology Examples (2023)

    the research methodology used

  2. Types of Research Methodology: Uses, Types & Benefits

    the research methodology used

  3. Different Types of Research

    the research methodology used

  4. Module 1: Introduction: What is Research?

    the research methodology used

  5. Research Methods

    the research methodology used

  6. How to Write Research Methodology: Overview, Tips, and Techniques

    the research methodology used

VIDEO

  1. Research Methodology: Why it Matters?

  2. 2102590 Research Methodology 2/2023 by 6672066021 Valgeir

  3. Social Psychology: Chapter 2 (Methodology) Part 2

  4. Research Methodology Differences

  5. Research Methodology Differences

  6. Metho 6: The Research Process (Introduction)

COMMENTS

  1. Research Methodology

    Qualitative Research Methodology. This is a research methodology that involves the collection and analysis of non-numerical data such as words, images, and observations. This type of research is often used to explore complex phenomena, to gain an in-depth understanding of a particular topic, and to generate hypotheses.

  2. What Is a Research Methodology?

    Your research methodology discusses and explains the data collection and analysis methods you used in your research. A key part of your thesis, dissertation, or research paper, the methodology chapter explains what you did and how you did it, allowing readers to evaluate the reliability and validity of your research and your dissertation topic.

  3. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  4. What Is Research Methodology? Definition + Examples

    As we mentioned, research methodology refers to the collection of practical decisions regarding what data you'll collect, from who, how you'll collect it and how you'll analyse it. Research design, on the other hand, is more about the overall strategy you'll adopt in your study. For example, whether you'll use an experimental design ...

  5. What is Research Methodology? Definition, Types, and Examples

    Definition, Types, and Examples. Research methodology 1,2 is a structured and scientific approach used to collect, analyze, and interpret quantitative or qualitative data to answer research questions or test hypotheses. A research methodology is like a plan for carrying out research and helps keep researchers on track by limiting the scope of ...

  6. The Ultimate Guide To Research Methodology

    Research methodology is the systematic process of planning, executing, and evaluating scientific investigation. It encompasses the techniques, tools, and procedures used to collect, analyze, and interpret data, ensuring the reliability and validity of research findings.

  7. What is research methodology? [Update 2024]

    A research methodology encompasses the way in which you intend to carry out your research. This includes how you plan to tackle things like collection methods, statistical analysis, participant observations, and more. You can think of your research methodology as being a formula. One part will be how you plan on putting your research into ...

  8. What Is a Research Methodology?

    Revised on 10 October 2022. Your research methodology discusses and explains the data collection and analysis methods you used in your research. A key part of your thesis, dissertation, or research paper, the methodology chapter explains what you did and how you did it, allowing readers to evaluate the reliability and validity of your research.

  9. Research Methods--Quantitative, Qualitative, and More: Overview

    About Research Methods. This guide provides an overview of research methods, how to choose and use them, and supports and resources at UC Berkeley. As Patten and Newhart note in the book Understanding Research Methods, "Research methods are the building blocks of the scientific enterprise. They are the "how" for building systematic knowledge.

  10. A Comprehensive Guide to Methodology in Research

    Research methodology refers to the system of procedures, techniques, and tools used to carry out a research study. It encompasses the overall approach, including the research design, data collection methods, data analysis techniques, and the interpretation of findings. Research methodology plays a crucial role in the field of research, as it ...

  11. 6. The Methodology

    The methods section describes actions taken to investigate a research problem and the rationale for the application of specific procedures or techniques used to identify, select, process, and analyze information applied to understanding the problem, thereby, allowing the reader to critically evaluate a study's overall validity and reliability.

  12. A tutorial on methodological studies: the what, when, how and why

    The methods used in many methodological studies have been borrowed from systematic and scoping reviews. This practice has influenced the direction of the field, with many methodological studies including searches of electronic databases, screening of records, duplicate data extraction and assessments of risk of bias in the included studies.

  13. Research Methodology

    Methodology refers to the overarching strategy and rationale of your research. Developing your methodology involves studying the research methods used in your field and the theories or principles that underpin them, in order to choose the approach that best matches your research objectives. Methodology is the first step in planning a research project.

  14. What Is a Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

  15. What Is Research Methodology? (Why It's Important and Types)

    A research methodology gives research legitimacy and provides scientifically sound findings. It also provides a detailed plan that helps to keep researchers on track, making the process smooth, effective and manageable. A researcher's methodology allows the reader to understand the approach and methods used to reach conclusions.

  16. Research Methods

    Quantitative research methods are used to collect and analyze numerical data. This type of research is useful when the objective is to test a hypothesis, determine cause-and-effect relationships, and measure the prevalence of certain phenomena. Quantitative research methods include surveys, experiments, and secondary data analysis.

  17. What are research methodologies?

    According to Dawson (2019),a research methodology is the primary principle that will guide your research. It becomes the general approach in conducting research on your topic and determines what research method you will use. A research methodology is different from a research method because research methods are the tools you use to gather your ...

  18. Research Methods In Psychology

    Olivia Guy-Evans, MSc. Research methods in psychology are systematic procedures used to observe, describe, predict, and explain behavior and mental processes. They include experiments, surveys, case studies, and naturalistic observations, ensuring data collection is objective and reliable to understand and explain psychological phenomena.

  19. What are research methods?

    Research methods are different from research methodologies because they are the ways in which you will collect the data for your research project. The best method for your project largely depends on your topic, the type of data you will need, and the people or items from which you will be collecting data. The following boxes below contain a ...

  20. A systematic review of the methodology of trade-off analysis in

    The formulation of research objectives, questions and methodology determines the information base that a TOA can provide 16,18. Decisions regarding TOA objectives and methodology determine the ...

  21. Use of ChatGPT for schoolwork among US teens

    This research was reviewed and approved by an external institutional review board (IRB), Advarra, an independent committee of experts specializing in helping to protect the rights of research participants. Here are the questions used for this analysis, along with responses, and its methodology.

  22. Genetically engineering a treatment for incurable brain tumors

    Purdue University researchers are developing and validating a patent-pending treatment for incurable glioblastoma brain tumors. Glioblastomas are almost always lethal with a median survival time of 14 months. Traditional methods used against other cancers, like chemotherapy and immunotherapy, are often ineffective on glioblastoma.

  23. Frontiers

    2.3 Clinical evaluation. To assess the clinical effects of early intervention on the correction of these hand deformities, we categorized the patients into four groups based on the age at treatment: 0-1 year (n = 11), 1-3 years (n = 9), 3-7 years (n = 7), and above 7 years (n = 5).The total active movement (TAM) of metacarpophalangeal joints (MPJ) and PIPJ and the extensor lag of PIPJ of ...

  24. A data-driven combined prediction method for the demand for intensive

    A demand forecasting method for ICU healthcare resources is proposed based on the number of current confirmed cases. The number of current confirmed cases is estimated using a bilateral long-short-term memory and genetic algorithm support vector regression (BILSTM-GASVR) combined prediction model. ... However, past research on public health ...

  25. A New Use for Wegovy Opens the Door to Medicare Coverage for ...

    We used the ICD10Data website to convert the ICD-9 codes used in the Hirsch and Jaff studies to corresponding ICD-10 codes for our analysis based on the 2020 data (ICD-9 codes were replaced by ICD ...

  26. Some results uranium dioxide powder structure investigation

    To investigate the structure of the powders, modern methods of electron microscopy, helium pycnometry, etc., are used. The presented results indicate the disadvantages of wet methods for obtaining the starting UO 2 powders by the ammonium diuranate (ADU) flow sheet because strong agglomerates and conglomerates, which complicate the process of ...

  27. Alexey TROFIMOV

    Alexey V Trofimov. Chemiluminescence quantum yields for the reactions of permanganate with oxalic, tartaric, and citric acids; hydrazine; KBr; and FeSO4 in aqueous solutions of sulfuric acid have ...

  28. Applied Sciences

    This study was conducted to compare the quality characteristics of White Kołuda goose breast muscle products, heated using the sous vide (SV) and the convection-steam oven (OV) methods. The qualitative analysis included instrumental evaluation of texture and colour parameters and the content of histidine dipeptide anserine. The research material consisted of breast muscles without skin ...

  29. Semenov VLADIMIR

    The method of obtaining strong magnetic field and high plasma pressure by using quasispherical compression of azimuthal or poloidal magnetic field by heavy collapsing liner is investigated in the ...

  30. Active carbons as nanoporous materials for solving of environmental

    Therefore, carbon sorbents with 5-15% by weight of ash elements in their composition are not used in the above mentioned technologies. However, in such an important field as a gas-mask technique, carbon sorbents (active carbons) are carriers of catalytic additives, providing effective protection of a person against any types of potent poisonous ...