U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • HHS Author Manuscripts

Logo of nihpa

Single-Case Design, Analysis, and Quality Assessment for Intervention Research

Michele a. lobo.

1 Biomechanics & Movement Science Program, Department of Physical Therapy, University of Delaware, Newark, DE, USA

Mariola Moeyaert

2 Division of Educational Psychology & Methodology, State University of New York at Albany, Albany, NY, USA

Andrea Baraldi Cunha

Iryna babik, background and purpose.

The purpose of this article is to describe single-case studies, and contrast them with case studies and randomized clinical trials. We will highlight current research designs, analysis techniques, and quality appraisal tools relevant for single-case rehabilitation research.

Summary of Key Points

Single-case studies can provide a viable alternative to large group studies such as randomized clinical trials. Single case studies involve repeated measures, and manipulation of and independent variable. They can be designed to have strong internal validity for assessing causal relationships between interventions and outcomes, and external validity for generalizability of results, particularly when the study designs incorporate replication, randomization, and multiple participants. Single case studies should not be confused with case studies/series (ie, case reports), which are reports of clinical management of one patient or a small series of patients.

Recommendations for Clinical Practice

When rigorously designed, single-case studies can be particularly useful experimental designs in a variety of situations, even when researcher resources are limited, studied conditions have low incidences, or when examining effects of novel or expensive interventions. Readers will be directed to examples from the published literature in which these techniques have been discussed, evaluated for quality, and implemented.

Introduction

The purpose of this article is to present current tools and techniques relevant for single-case rehabilitation research. Single-case (SC) studies have been identified by a variety of names, including “n of 1 studies” and “single-subject” studies. The term “single-case study” is preferred over the previously mentioned terms because previous terms suggest these studies include only one participant. In fact, as will be discussed below, for purposes of replication and improved generalizability, the strongest SC studies commonly include more than one participant.

A SC study should not be confused with a “case study/series “ (also called “case report”. In a typical case study/series, a single patient or small series of patients is involved, but there is not a purposeful manipulation of an independent variable, nor are there necessarily repeated measures. Most case studies/series are reported in a narrative way while results of SC studies are presented numerically or graphically. 1 , 2 This article defines SC studies, contrasts them with randomized clinical trials, discusses how they can be used to scientifically test hypotheses, and highlights current research designs, analysis techniques, and quality appraisal tools that may be useful for rehabilitation researchers.

In SC studies, measurements of outcome (dependent variables) are recorded repeatedly for individual participants across time and varying levels of an intervention (independent variables). 1 – 5 These varying levels of intervention are referred to as “phases” with one phase serving as a baseline or comparison, so each participant serves as his/her own control. 2 In contrast to case studies and case series in which participants are observed across time without experimental manipulation of the independent variable, SC studies employ systematic manipulation of the independent variable to allow for hypothesis testing. 1 , 6 As a result, SC studies allow for rigorous experimental evaluation of intervention effects and provide a strong basis for establishing causal inferences. Advances in design and analysis techniques for SC studies observed in recent decades have made SC studies increasingly popular in educational and psychological research. Yet, the authors believe SC studies have been undervalued in rehabilitation research, where randomized clinical trials (RCTs) are typically recommended as the optimal research design to answer questions related to interventions. 7 In reality, there are advantages and disadvantages to both SC studies and RCTs that should be carefully considered in order to select the best design to answer individual research questions. While there are a variety of other research designs that could be utilized in rehabilitation research, only SC studies and RCTs are discussed here because SC studies are the focus of this article and RCTs are the most highly recommended design for intervention studies. 7

When designed and conducted properly, RCTs offer strong evidence that changes in outcomes may be related to provision of an intervention. However, RCTs require monetary, time, and personnel resources that many researchers, especially those in clinical settings, may not have available. 8 RCTs also require access to large numbers of consenting participants that meet strict inclusion and exclusion criteria that can limit variability of the sample and generalizability of results. 9 The requirement for large participant numbers may make RCTs difficult to perform in many settings, such as rural and suburban settings, and for many populations, such as those with diagnoses marked by lower prevalence. 8 To rely exclusively on RCTs has the potential to result in bodies of research that are skewed to address the needs of some individuals while neglecting the needs of others. RCTs aim to include a large number of participants and to use random group assignment to create study groups that are similar to one another in terms of all potential confounding variables, but it is challenging to identify all confounding variables. Finally, the results of RCTs are typically presented in terms of group means and standard deviations that may not represent true performance of any one participant. 10 This can present as a challenge for clinicians aiming to translate and implement these group findings at the level of the individual.

SC studies can provide a scientifically rigorous alternative to RCTs for experimentally determining the effectiveness of interventions. 1 , 2 SC studies can assess a variety of research questions, settings, cases, independent variables, and outcomes. 11 There are many benefits to SC studies that make them appealing for intervention research. SC studies may require fewer resources than RCTs and can be performed in settings and with populations that do not allow for large numbers of participants. 1 , 2 In SC studies, each participant serves as his/her own comparison, thus controlling for many confounding variables that can impact outcome in rehabilitation research, such as gender, age, socioeconomic level, cognition, home environment, and concurrent interventions. 2 , 11 Results can be analyzed and presented to determine whether interventions resulted in changes at the level of the individual, the level at which rehabilitation professionals intervene. 2 , 12 When properly designed and executed, SC studies can demonstrate strong internal validity to determine the likelihood of a causal relationship between the intervention and outcomes and external validity to generalize the findings to broader settings and populations. 2 , 12 , 13

Single Case Research Designs for Intervention Research

There are a variety of SC designs that can be used to study the effectiveness of interventions. Here we discuss: 1) AB designs, 2) reversal designs, 3) multiple baseline designs, and 4) alternating treatment designs, as well as ways replication and randomization techniques can be used to improve internal validity of all of these designs. 1 – 3 , 12 – 14

The simplest of these designs is the AB Design 15 ( Figure 1 ). This design involves repeated measurement of outcome variables throughout a baseline control/comparison phase (A ) and then throughout an intervention phase (B). When possible, it is recommended that a stable level and/or rate of change in performance be observed within the baseline phase before transitioning into the intervention phase. 2 As with all SC designs, it is also recommended that there be a minimum of five data points in each phase. 1 , 2 There is no randomization or replication of the baseline or intervention phases in the basic AB design. 2 Therefore, AB designs have problems with internal validity and generalizability of results. 12 They are weak in establishing causality because changes in outcome variables could be related to a variety of other factors, including maturation, experience, learning, and practice effects. 2 , 12 Sample data from a single case AB study performed to assess the impact of Floor Play intervention on social interaction and communication skills for a child with autism 15 are shown in Figure 1 .

An external file that holds a picture, illustration, etc.
Object name is nihms870756f1.jpg

An example of results from a single-case AB study conducted on one participant with autism; two weeks of observation (baseline phase A) were followed by seven weeks of Floor Time Play (intervention phase B). The outcome measure Circles of Communications (reciprocal communication with two participants responding to each other verbally or nonverbally) served as a behavioral indicator of the child’s social interaction and communication skills (higher scores indicating better performance). A statistically significant improvement in Circles of Communication was found during the intervention phase as compared to the baseline. Note that although a stable baseline is recommended for SC studies, it is not always possible to satisfy this requirement, as you will see in Figures 1 – 4 . Data were extracted from Dionne and Martini (2011) 15 utilizing Rohatgi’s WebPlotDigitizer software. 78

If an intervention does not have carry-over effects, it is recommended to use a Reversal Design . 2 For example, a reversal A 1 BA 2 design 16 ( Figure 2 ) includes alternation of the baseline and intervention phases, whereas a reversal A 1 B 1 A 2 B 2 design 17 ( Figure 3 ) consists of alternation of two baseline (A 1 , A 2 ) and two intervention (B 1 , B 2 ) phases. Incorporating at least four phases in the reversal design (i.e., A 1 B 1 A 2 B 2 or A 1 B 1 A 2 B 2 A 3 B 3 …) allows for a stronger determination of a causal relationship between the intervention and outcome variables, because the relationship can be demonstrated across at least three different points in time – change in outcome from A 1 to B 1 , from B 1 to A 2 , and from A 2 to B 2 . 18 Before using this design, however, researchers must determine that it is safe and ethical to withdraw the intervention, especially in cases where the intervention is effective and necessary. 12

An external file that holds a picture, illustration, etc.
Object name is nihms870756f2.jpg

An example of results from a single-case A 1 BA 2 study conducted on eight participants with stable multiple sclerosis (data on three participants were used for this example). Four weeks of observation (baseline phase A 1 ) were followed by eight weeks of core stability training (intervention phase B), then another four weeks of observation (baseline phase A 2 ). Forward functional reach test (the maximal distance the participant can reach forward or lateral beyond arm’s length, maintaining a fixed base of support in the standing position; higher scores indicating better performance) significantly improved during intervention for Participants 1 and 3 without further improvement observed following withdrawal of the intervention (during baseline phase A 2 ). Data were extracted from Freeman et al. (2010) 16 utilizing Rohatgi’s WebPlotDigitizer software. 78

An external file that holds a picture, illustration, etc.
Object name is nihms870756f3a.jpg

An example of results from a single-case A 1 B 1 A 2 B 2 study conducted on two participants with severe unilateral neglect after a right-hemisphere stroke. Two weeks of conventional treatment (baseline phases A 1, A 2 ) alternated with two weeks of visuo-spatio-motor cueing (intervention phases B 1 , B 2 ). Performance was assessed in two tests of lateral neglect, the Bells Cancellation Test (Figure A; lower scores indicating better performance) and the Line Bisection Test (Figure B; higher scores indicating better performance). There was a statistically significant intervention-related improvement in participants’ performance on the Line Bisection Test, but not on the Bells Test. Data were extracted from Samuel at al. (2000) 17 utilizing Rohatgi’s WebPlotDigitizer software. 78

A recent study used an ABA reversal SC study to determine the effectiveness of core stability training in 8 participants with multiple sclerosis. 16 During the first four weekly data collections, the researchers ensured a stable baseline, which was followed by eight weekly intervention data points, and concluded with four weekly withdrawal data points. Intervention significantly improved participants’ walking and reaching performance ( Figure 2 ). 16 This A 1 BA 2 design could have been strengthened by the addition of a second intervention phase for replication (A 1 B 1 A 2 B 2 ). For instance, a single-case A 1 B 1 A 2 B 2 withdrawal design aimed to assess the efficacy of rehabilitation using visuo-spatio-motor cueing for two participants with severe unilateral neglect after a severe right-hemisphere stroke. 17 Each phase included 8 data points. Statistically significant intervention-related improvement was observed, suggesting that visuo-spatio-motor cueing might be promising for treating individuals with very severe neglect ( Figure 3 ). 17

The reversal design can also incorporate a cross over design where each participant experiences more than one type of intervention. For instance, a B 1 C 1 B 2 C 2 design could be used to study the effects of two different interventions (B and C) on outcome measures. Challenges with including more than one intervention involve potential carry-over effects from earlier interventions and order effects that may impact the measured effectiveness of the interventions. 2 , 12 Including multiple participants and randomizing the order of intervention phase presentations are tools to help control for these types of effects. 19

When an intervention permanently changes an individual’s ability, a return to baseline performance is not feasible and reversal designs are not appropriate. Multiple Baseline Designs (MBDs) are useful in these situations ( Figure 4 ). 20 MBDs feature staggered introduction of the intervention across time: each participant is randomly assigned to one of at least 3 experimental conditions characterized by the length of the baseline phase. 21 These studies involve more than one participant, thus functioning as SC studies with replication across participants. Staggered introduction of the intervention allows for separation of intervention effects from those of maturation, experience, learning, and practice. For example, a multiple baseline SC study was used to investigate the effect of an anti-spasticity baclofen medication on stiffness in five adult males with spinal cord injury. 20 The subjects were randomly assigned to receive 5–9 baseline data points with a placebo treatment prior to the initiation of the intervention phase with the medication. Both participants and assessors were blind to the experimental condition. The results suggested that baclofen might not be a universal treatment choice for all individuals with spasticity resulting from a traumatic spinal cord injury ( Figure 4 ). 20

An external file that holds a picture, illustration, etc.
Object name is nihms870756f4.jpg

An example of results from a single-case multiple baseline study conducted on five participants with spasticity due to traumatic spinal cord injury. Total duration of data collection was nine weeks. The first participant was switched from placebo treatment (baseline) to baclofen treatment (intervention) after five data collection sessions, whereas each consecutive participant was switched to baclofen intervention at the subsequent sessions through the ninth session. There was no statistically significant effect of baclofen on viscous stiffness at the ankle joint. Data were extracted from Hinderer at al. (1990) 20 utilizing Rohatgi’s WebPlotDigitizer software. 78

The impact of two or more interventions can also be assessed via Alternating Treatment Designs (ATDs) . In ATDs, after establishing the baseline, the experimenter exposes subjects to different intervention conditions administered in close proximity for equal intervals ( Figure 5 ). 22 ATDs are prone to “carry-over effects” when the effects of one intervention influence the observed outcomes of another intervention. 1 As a result, such designs introduce unique challenges when attempting to determine the effects of any one intervention and have been less commonly utilized in rehabilitation. An ATD was used to monitor disruptive behaviors in the school setting throughout a baseline followed by an alternating treatment phase with randomized presentation of a control condition or an exercise condition. 23 Results showed that 30 minutes of moderate to intense physical activity decreased behavioral disruptions through 90 minutes after the intervention. 23 An ATD was also used to compare the effects of commercially available and custom-made video prompts on the performance of multi-step cooking tasks in four participants with autism. 22 Results showed that participants independently performed more steps with the custom-made video prompts ( Figure 5 ). 22

An external file that holds a picture, illustration, etc.
Object name is nihms870756f5a.jpg

An example of results from a single case alternating treatment study conducted on four participants with autism (data on two participants were used for this example). After the observation phase (baseline), effects of commercially available and custom-made video prompts on the performance of multi-step cooking tasks were identified (treatment phase), after which only the best treatment was used (best treatment phase). Custom-made video prompts were most effective for improving participants’ performance of multi-step cooking tasks. Data were extracted from Mechling at al. (2013) 22 utilizing Rohatgi’s WebPlotDigitizer software. 78

Regardless of the SC study design, replication and randomization should be incorporated when possible to improve internal and external validity. 11 The reversal design is an example of replication across study phases. The minimum number of phase replications needed to meet quality standards is three (A 1 B 1 A 2 B 2 ), but having four or more replications is highly recommended (A 1 B 1 A 2 B 2 A 3 …). 11 , 14 In cases when interventions aim to produce lasting changes in participants’ abilities, replication of findings may be demonstrated by replicating intervention effects across multiple participants (as in multiple-participant AB designs), or across multiple settings, tasks, or service providers. When the results of an intervention are replicated across multiple reversals, participants, and/or contexts, there is an increased likelihood a causal relationship exists between the intervention and the outcome. 2 , 12

Randomization should be incorporated in SC studies to improve internal validity and the ability to assess for causal relationships among interventions and outcomes. 11 In contrast to traditional group designs, SC studies often do not have multiple participants or units that can be randomly assigned to different intervention conditions. Instead, in randomized phase-order designs , the sequence of phases is randomized. Simple or block randomization is possible. For example, with simple randomization for an A 1 B 1 A 2 B 2 design, the A and B conditions are treated as separate units and are randomly assigned to be administered for each of the pre-defined data collection points. As a result, any combination of A-B sequences is possible without restrictions on the number of times each condition is administered or regard for repetitions of conditions (e.g., A 1 B 1 B 2 A 2 B 3 B 4 B 5 A 3 B 6 A 4 A 5 A 6 ). With block randomization for an A 1 B 1 A 2 B 2 design, two conditions (e.g., A and B) would be blocked into a single unit (AB or BA), randomization of which to different time periods would ensure that each condition appears in the resulting sequence more than two times (e.g., A 1 B 1 B 2 A 2 A 3 B 3 A 4 B 4 ). Note that AB and reversal designs require that the baseline (A) always precedes the first intervention (B), which should be accounted for in the randomization scheme. 2 , 11

In randomized phase start-point designs , the lengths of the A and B phases can be randomized. 2 , 11 , 24 – 26 For example, for an AB design, researchers could specify the number of time points at which outcome data will be collected, (e.g., 20), define the minimum number of data points desired in each phase (e.g., 4 for A, 3 for B), and then randomize the initiation of the intervention so that it occurs anywhere between the remaining time points (points 5 and 17 in the current example). 27 , 28 For multiple-baseline designs, a dual-randomization, or “regulated randomization” procedure has been recommended. 29 If multiple-baseline randomization depends solely on chance, it could be the case that all units are assigned to begin intervention at points not really separated in time. 30 Such randomly selected initiation of the intervention would result in the drastic reduction of the discriminant and internal validity of the study. 29 To eliminate this issue, investigators should first specify appropriate intervals between the start points for different units, then randomly select from those intervals, and finally randomly assign each unit to a start point. 29

Single Case Analysis Techniques for Intervention Research

The What Works Clearinghouse (WWC) single-case design technical documentation provides an excellent overview of appropriate SC study analysis techniques to evaluate the effectiveness of intervention effects. 1 , 18 First, visual analyses are recommended to determine whether there is a functional relation between the intervention and the outcome. Second, if evidence for a functional effect is present, the visual analysis is supplemented with quantitative analysis methods evaluating the magnitude of the intervention effect. Third, effect sizes are combined across cases to estimate overall average intervention effects which contributes to evidence-based practice, theory, and future applications. 2 , 18

Visual Analysis

Traditionally, SC study data are presented graphically. When more than one participant engages in a study, a spaghetti plot showing all of their data in the same figure can be helpful for visualization. Visual analysis of graphed data has been the traditional method for evaluating treatment effects in SC research. 1 , 12 , 31 , 32 The visual analysis involves evaluating level, trend, and stability of the data within each phase (i.e., within-phase data examination) followed by examination of the immediacy of effect, consistency of data patterns, and overlap of data between baseline and intervention phases (i.e., between-phase comparisons). When the changes (and/or variability) in level are in the desired direction, are immediate, readily discernible, and maintained over time, it is concluded that the changes in behavior across phases result from the implemented treatment and are indicative of improvement. 33 Three demonstrations of an intervention effect are necessary for establishing a functional relation. 1

Within-phase examination

Level, trend, and stability of the data within each phase are evaluated. Mean and/or median can be used to report the level, and trend can be evaluated by determining whether the data points are monotonically increasing or decreasing. Within-phase stability can be evaluated by calculating the percentage of data points within 15% of the phase median (or mean). The stability criterion is satisfied if about 85% (80% – 90%) of the data in a phase fall within a 15% range of the median (or average) of all data points for that phase. 34

Between-phase examination

Immediacy of effect, consistency of data patterns, and overlap of data between baseline and intervention phases are evaluated next. For this, several nonoverlap indices have been proposed that all quantify the proportion of measurements in the intervention phase not overlapping with the baseline measurements. 35 Nonoverlap statistics are typically scaled as percent from 0 to 100, or as a proportion from 0 to 1. Here, we briefly discuss the Nonoverlap of All Pairs ( NAP ), 36 the Extended Celeration Line ( ECL ), the Improvement Rate Difference ( IRD) , 37 and the TauU and the TauU-adjusted, TauU adj , 35 as these are the most recent and complete techniques. We also examine the Percentage of Nonoverlapping Data ( PND ) 38 and the Two Standard Deviations Band Method, as these are frequently used techniques. In addition, we include the Percentage of Nonoverlapping Corrected Data ( PNCD ) – an index applying to the PND after controlling for baseline trend. 39

Nonoverlap of all pairs (NAP)

Each baseline observation can be paired with each intervention phase observation to make n pairs (i.e., N = n A * n B ). Count the number of overlapping pairs, n o , counting all ties as 0.5. Then define the percent of the pairs that show no overlap. Alternatively, one can count the number of positive (P), negative (N), and tied (T) pairs 2 , 36 :

Extended Celeration Line (ECL)

ECL or split middle line allows control for a positive Phase A trend. Nonoverlap is defined as the proportion of Phase B ( n b ) data that are above the median trend plotted from Phase A data ( n B< sub > Above Median trend A </ sub > ), but then extended into Phase B: ECL = n B Above Median trend A n b ∗ 100

As a consequence, this method depends on a straight line and makes an assumption of linearity in the baseline. 2 , 12

Improvement rate difference (IRD)

This analysis is conceptualized as the difference in improvement rates (IR) between baseline ( IR B ) and intervention phases ( IR T ). 38 The IR for each phase is defined as the number of “improved data points” divided by the total data points in that phase. IRD, commonly employed in medical group research under the name of “risk reduction” or “risk difference” attempts to provide an intuitive interpretation for nonoverlap and to make use of an established, respected effect size, IR B - IR B , or the difference between two proportions. 37

TauU and TauU adj

Each baseline observation can be paired with each intervention phase observation to make n pairs (i.e., n = n A * n B ). Count the number of positive (P), negative (N), and tied (T) pairs, and use the following formula: TauU = P - N P + N + τ

The TauU adj is an adjustment of TauU for monotonic trend in baseline. Each baseline observation can be paired with each intervention phase observation to make n pairs (i.e., n = n A * n B ). Each baseline observation can be paired with all later baseline observations (n A *(n A -1)/2). 2 , 35 Then the baseline trend can be computed: TauU adf = P - N - S trend P + N + τ ; S trend = P A – NA

Online calculators might assist researchers in obtaining the TauU and TauU adjusted coefficients ( http://www.singlecaseresearch.org/calculators/tau-u ).

Percentage of nonoverlapping data (PND)

If anticipating an increase in the outcome, locate the highest data point in the baseline phase and then calculate the percent of the intervention phase data points that exceed it. If anticipating a decrease in the outcome, find the lowest data point in the baseline phase and then calculate the percent of the treatment phase data points that are below it: PND = n B Overlap A n b ∗ 100 . A PND < 50 would mark no observed effect, PND = 50–70 signifies a questionable effect, and PND > 70 suggests the intervention was effective. 40 The percentage of nonoverlapping (PNDC) corrected was proposed in 2009 as an extension of the PND. 39 Prior to applying the PND, a data correction procedure is applied eliminating pre-existing baseline trend. 38

Two Standard Deviation Band Method

When the stability criterion described above is met within phases, it is possible to apply the two standard deviation band method. 12 , 41 First, the mean of the data for a specific condition is calculated and represented with a solid line. In the next step, the standard deviation of the same data is computed and two dashed lines are represented: one located two standard deviations above the mean and the other – two standard deviations below. For normally distributed data, few points (less than 5%) are expected to be outside the two standard deviation bands if there is no change in the outcome score due to the intervention. However, this method is not considered a formal statistical procedure, as the data cannot typically be assumed to be normal, continuous, or independent. 41

Statistical Analysis

If the visual analysis indicates a functional relationship (i.e., three demonstrations of the effectiveness of the intervention effect), it is recommended to proceed with the quantitative analyses, reflecting the magnitude of the intervention effect. First, effect sizes are calculated for each participant (individual-level analysis). Moreover, if the research interest lies in the generalizability of the effect size across participants, effect sizes can be combined across cases to achieve an overall average effect size estimate (across-case effect size).

Note that quantitative analysis methods are still being developed in the domain of SC research 1 and statistical challenges of producing an acceptable measure of treatment effect remain. 14 , 42 , 43 Therefore, the WWC standards strongly recommend conducting sensitivity analysis and reporting multiple effect size estimators. If consistency across different effect size estimators is identified, there is stronger evidence for the effectiveness of the treatment. 1 , 18

Individual-level effect size analysis

The most common effect sizes recommended for SC analysis are: 1) standardized mean difference Cohen’s d ; 2) standardized mean difference with correction for small sample sizes Hedges’ g ; and 3) the regression-based approach which has the most potential and is strongly recommended by the WWC standards. 1 , 44 , 45 Cohen’s d can be calculated using following formula: d = X A ¯ - X B ¯ s p , with X A ¯ being the baseline mean, X B ¯ being the treatment mean, and s p indicating the pooled within-case standard deviation. Hedges’ g is an extension of Cohen’s d , recommended in the context of SC studies as it corrects for small sample sizes. The piecewise regression-based approach does not only reflect the immediate intervention effect, but also the intervention effect across time:

i stands for the measurement occasion ( i = 0, 1,… I ). The dependent variable is regressed on a time indicator, T , which is centered around the first observation of the intervention phase, D , a dummy variable for the intervention phase, and an interaction term of these variables. The equation shows that the expected score, Ŷ i , equals β 0 + β 1 T i in the baseline phase, and ( β 0 + β 2 ) + ( β 1 + β 3 ) T i in the intervention phase. β 0 , therefore, indicates the expected baseline level at the start of the intervention phase (when T = 0), whereas β 1 marks the linear time trend in the baseline scores. The coefficient β 2 can then be interpreted as an immediate effect of the intervention on the outcome, whereas β 3 signifies the effect of the intervention across time. The e i ’s are residuals assumed to be normally distributed around a mean of zero with a variance of σ e 2 . The assumption of independence of errors is usually not met in the context of SC studies because repeated measures are obtained within a person. As a consequence, it can be the case that the residuals are autocorrelated, meaning that errors closer in time are more related to each other compared to errors further away in time. 46 – 48 As a consequence, a lag-1 autocorrelation is appropriate (taking into account the correlation between two consecutive errors: e i and e i –1 ; for more details see Verbeke & Molenberghs, (2000). 49 In Equation 1 , ρ indicates the autocorrelation parameter. If ρ is positive, the errors closer in time are more similar; if ρ is negative, the errors closer in time are more different, and if ρ equals zero, there is no correlation between the errors.

Across-case effect sizes

Two-level modeling to estimate the intervention effects across cases can be used to evaluate across-case effect sizes. 44 , 45 , 50 Multilevel modeling is recommended by the WWC standards because it takes the hierarchical nature of SC studies into account: measurements are nested within cases and cases, in turn, are nested within studies. By conducting a multilevel analysis, important research questions can be addressed (which cannot be answered by single-level analysis of SC study data), such as: 1) What is the magnitude of the average treatment effect across cases? 2) What is the magnitude and direction of the case-specific intervention effect? 3) How much does the treatment effect vary within cases and across cases? 4) Does a case and/or study level predictor influence the treatment’s effect? The two-level model has been validated in previous research using extensive simulation studies. 45 , 46 , 51 The two-level model appears to have sufficient power (> .80) to detect large treatment effects in at least six participants with six measurements. 21

Furthermore, to estimate the across-case effect sizes, the HPS (Hedges, Pustejovsky, and Shadish) , or single-case educational design ( SCEdD)-specific mean difference, index can be calculated. 52 This is a standardized mean difference index specifically designed for SCEdD data, with the aim of making it comparable to Cohen’s d of group-comparison designs. The standard deviation takes into account both within-participant and between-participant variability, and is typically used to get an across-case estimator for a standardized change in level. The advantage of using the HPS across-case effect size estimator is that it is directly comparable with Cohen’s d for group comparison research, thus enabling the use of Cohen’s (1988) benchmarks. 53

Valuable recommendations on SC data analyses have recently been provided. 54 , 55 They suggest that a specific SC study data analytic technique can be chosen based on: (1) the study aims and the desired quantification (e.g., overall quantification, between-phase quantifications, randomization, etc.), (2) the data characteristics as assessed by visual inspection and the assumptions one is willing to make about the data, and (3) the knowledge and computational resources. 54 , 55 Table 1 lists recommended readings and some commonly used resources related to the design and analysis of single-case studies.

Recommend readings and resources related to the design and analysis of single-case studies.

Quality Appraisal Tools for Single-Case Design Research

Quality appraisal tools are important to guide researchers in designing strong experiments and conducting high-quality systematic reviews of the literature. Unfortunately, quality assessment tools for SC studies are relatively novel, ratings across tools demonstrate variability, and there is currently no “gold standard” tool. 56 Table 2 lists important SC study quality appraisal criteria compiled from the most common scales; when planning studies or reviewing the literature, we recommend readers consider these criteria. Table 3 lists some commonly used SC quality assessment and reporting tools and references to resources where the tools can be located.

Summary of important single-case study quality appraisal criteria.

Quality assessment and reporting tools related to single-case studies.

When an established tool is required for systematic review, we recommend use of the What Works Clearinghouse (WWC) Tool because it has well-defined criteria and is developed and supported by leading experts in the SC research field in association with the Institute of Education Sciences. 18 The WWC documentation provides clear standards and procedures to evaluate the quality of SC research; it assesses the internal validity of SC studies, classifying them as “Meeting Standards”, “Meeting Standards with Reservations”, or “Not Meeting Standards”. 1 , 18 Only studies classified in the first two categories are recommended for further visual analysis. Also, WWC evaluates the evidence of effect, classifying studies into “Strong Evidence of a Causal Relation”, “Moderate Evidence of a Causal Relation”, or “No Evidence of a Causal Relation”. Effect size should only be calculated for studies providing strong or moderate evidence of a causal relation.

The Single-Case Reporting Guideline In BEhavioural Interventions (SCRIBE) 2016 is another useful SC research tool developed recently to improve the quality of single-case designs. 57 SCRIBE consists of a 26-item checklist that researchers need to address while reporting the results of SC studies. This practical checklist allows for critical evaluation of SC studies during study planning, manuscript preparation, and review.

Single-case studies can be designed and analyzed in a rigorous manner that allows researchers strength in assessing causal relationships among interventions and outcomes, and in generalizing their results. 2 , 12 These studies can be strengthened via incorporating replication of findings across multiple study phases, participants, settings, or contexts, and by using randomization of conditions or phase lengths. 11 There are a variety of tools that can allow researchers to objectively analyze findings from SC studies. 56 While a variety of quality assessment tools exist for SC studies, they can be difficult to locate and utilize without experience, and different tools can provide variable results. The WWC quality assessment tool is recommended for those aiming to systematically review SC studies. 1 , 18

SC studies, like all types of study designs, have a variety of limitations. First, it can be challenging to collect at least five data points in a given study phase. This may be especially true when traveling for data collection is difficult for participants, or during the baseline phase when delaying intervention may not be safe or ethical. Power in SC studies is related to the number of data points gathered for each participant so it is important to avoid having a limited number of data points. 12 , 58 Second, SC studies are not always designed in a rigorous manner and, thus, may have poor internal validity. This limitation can be overcome by addressing key characteristics that strengthen SC designs ( Table 2 ). 1 , 14 , 18 Third, SC studies may have poor generalizability. This limitation can be overcome by including a greater number of participants, or units. Fourth, SC studies may require consultation from expert methodologists and statisticians to ensure proper study design and data analysis, especially to manage issues like autocorrelation and variability of data. 2 Fifth, while it is recommended to achieve a stable level and rate of performance throughout the baseline, human performance is quite variable and can make this requirement challenging. Finally, the most important validity threat to SC studies is maturation. This challenge must be considered during the design process in order to strengthen SC studies. 1 , 2 , 12 , 58

SC studies can be particularly useful for rehabilitation research. They allow researchers to closely track and report change at the level of the individual. They may require fewer resources and, thus, can allow for high-quality experimental research, even in clinical settings. Furthermore, they provide a tool for assessing causal relationships in populations and settings where large numbers of participants are not accessible. For all of these reasons, SC studies can serve as an effective method for assessing the impact of interventions.

Acknowledgments

This research was supported by the National Institute of Health, Eunice Kennedy Shriver National Institute of Child Health & Human Development (1R21HD076092-01A1, Lobo PI) and the Delaware Economic Development Office (Grant #109).

Some of the information in this manuscript was presented at the IV Step Meeting in Columbus, OH, June 2016.

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

10.1 Overview of Single-Subject Research

Learning objectives.

  • Explain what single-subject research is, including how it differs from other types of psychological research.
  • Explain what case studies are, including some of their strengths and weaknesses.
  • Explain who uses single-subject research and why.

What Is Single-Subject Research?

Single-subject research is a type of quantitative research that involves studying in detail the behavior of each of a small number of participants. Note that the term single-subject does not mean that only one participant is studied; it is more typical for there to be somewhere between two and 10 participants. (This is why single-subject research designs are sometimes called small- n designs, where n is the statistical symbol for the sample size.) Single-subject research can be contrasted with group research , which typically involves studying large numbers of participants and examining their behavior primarily in terms of group means, standard deviations, and so on. The majority of this book is devoted to understanding group research, which is the most common approach in psychology. But single-subject research is an important alternative, and it is the primary approach in some areas of psychology.

Before continuing, it is important to distinguish single-subject research from two other approaches, both of which involve studying in detail a small number of participants. One is qualitative research, which focuses on understanding people’s subjective experience by collecting relatively unstructured data (e.g., detailed interviews) and analyzing those data using narrative rather than quantitative techniques. Single-subject research, in contrast, focuses on understanding objective behavior through experimental manipulation and control, collecting highly structured data, and analyzing those data quantitatively.

It is also important to distinguish single-subject research from case studies. A case study is a detailed description of an individual, which can include both qualitative and quantitative analyses. (Case studies that include only qualitative analyses can be considered a type of qualitative research.) The history of psychology is filled with influential cases studies, such as Sigmund Freud’s description of “Anna O.” (see Note 10.5 “The Case of “Anna O.”” ) and John Watson and Rosalie Rayner’s description of Little Albert (Watson & Rayner, 1920), who learned to fear a white rat—along with other furry objects—when the researchers made a loud noise while he was playing with the rat. Case studies can be useful for suggesting new research questions and for illustrating general principles. They can also help researchers understand rare phenomena, such as the effects of damage to a specific part of the human brain. As a general rule, however, case studies cannot substitute for carefully designed group or single-subject research studies. One reason is that case studies usually do not allow researchers to determine whether specific events are causally related, or even related at all. For example, if a patient is described in a case study as having been sexually abused as a child and then as having developed an eating disorder as a teenager, there is no way to determine whether these two events had anything to do with each other. A second reason is that an individual case can always be unusual in some way and therefore be unrepresentative of people more generally. Thus case studies have serious problems with both internal and external validity.

The Case of “Anna O.”

Sigmund Freud used the case of a young woman he called “Anna O.” to illustrate many principles of his theory of psychoanalysis (Freud, 1961). (Her real name was Bertha Pappenheim, and she was an early feminist who went on to make important contributions to the field of social work.) Anna had come to Freud’s colleague Josef Breuer around 1880 with a variety of odd physical and psychological symptoms. One of them was that for several weeks she was unable to drink any fluids. According to Freud,

She would take up the glass of water that she longed for, but as soon as it touched her lips she would push it away like someone suffering from hydrophobia.…She lived only on fruit, such as melons, etc., so as to lessen her tormenting thirst (p. 9).

But according to Freud, a breakthrough came one day while Anna was under hypnosis.

[S]he grumbled about her English “lady-companion,” whom she did not care for, and went on to describe, with every sign of disgust, how she had once gone into this lady’s room and how her little dog—horrid creature!—had drunk out of a glass there. The patient had said nothing, as she had wanted to be polite. After giving further energetic expression to the anger she had held back, she asked for something to drink, drank a large quantity of water without any difficulty, and awoke from her hypnosis with the glass at her lips; and thereupon the disturbance vanished, never to return.

Freud’s interpretation was that Anna had repressed the memory of this incident along with the emotion that it triggered and that this was what had caused her inability to drink. Furthermore, her recollection of the incident, along with her expression of the emotion she had repressed, caused the symptom to go away.

As an illustration of Freud’s theory, the case study of Anna O. is quite effective. As evidence for the theory, however, it is essentially worthless. The description provides no way of knowing whether Anna had really repressed the memory of the dog drinking from the glass, whether this repression had caused her inability to drink, or whether recalling this “trauma” relieved the symptom. It is also unclear from this case study how typical or atypical Anna’s experience was.

Figure 10.2

Freud's

“Anna O.” was the subject of a famous case study used by Freud to illustrate the principles of psychoanalysis.

Wikimedia Commons – public domain.

Assumptions of Single-Subject Research

Again, single-subject research involves studying a small number of participants and focusing intensively on the behavior of each one. But why take this approach instead of the group approach? There are several important assumptions underlying single-subject research, and it will help to consider them now.

First and foremost is the assumption that it is important to focus intensively on the behavior of individual participants. One reason for this is that group research can hide individual differences and generate results that do not represent the behavior of any individual. For example, a treatment that has a positive effect for half the people exposed to it but a negative effect for the other half would, on average, appear to have no effect at all. Single-subject research, however, would likely reveal these individual differences. A second reason to focus intensively on individuals is that sometimes it is the behavior of a particular individual that is primarily of interest. A school psychologist, for example, might be interested in changing the behavior of a particular disruptive student. Although previous published research (both single-subject and group research) is likely to provide some guidance on how to do this, conducting a study on this student would be more direct and probably more effective.

A second assumption of single-subject research is that it is important to discover causal relationships through the manipulation of an independent variable, the careful measurement of a dependent variable, and the control of extraneous variables. For this reason, single-subject research is often considered a type of experimental research with good internal validity. Recall, for example, that Hall and his colleagues measured their dependent variable (studying) many times—first under a no-treatment control condition, then under a treatment condition (positive teacher attention), and then again under the control condition. Because there was a clear increase in studying when the treatment was introduced, a decrease when it was removed, and an increase when it was reintroduced, there is little doubt that the treatment was the cause of the improvement.

A third assumption of single-subject research is that it is important to study strong and consistent effects that have biological or social importance. Applied researchers, in particular, are interested in treatments that have substantial effects on important behaviors and that can be implemented reliably in the real-world contexts in which they occur. This is sometimes referred to as social validity (Wolf, 1976). The study by Hall and his colleagues, for example, had good social validity because it showed strong and consistent effects of positive teacher attention on a behavior that is of obvious importance to teachers, parents, and students. Furthermore, the teachers found the treatment easy to implement, even in their often chaotic elementary school classrooms.

Who Uses Single-Subject Research?

Single-subject research has been around as long as the field of psychology itself. In the late 1800s, one of psychology’s founders, Wilhelm Wundt, studied sensation and consciousness by focusing intensively on each of a small number of research participants. Herman Ebbinghaus’s research on memory and Ivan Pavlov’s research on classical conditioning are other early examples, both of which are still described in almost every introductory psychology textbook.

In the middle of the 20th century, B. F. Skinner clarified many of the assumptions underlying single-subject research and refined many of its techniques (Skinner, 1938). He and other researchers then used it to describe how rewards, punishments, and other external factors affect behavior over time. This work was carried out primarily using nonhuman subjects—mostly rats and pigeons. This approach, which Skinner called the experimental analysis of behavior —remains an important subfield of psychology and continues to rely almost exclusively on single-subject research. For excellent examples of this work, look at any issue of the Journal of the Experimental Analysis of Behavior . By the 1960s, many researchers were interested in using this approach to conduct applied research primarily with humans—a subfield now called applied behavior analysis (Baer, Wolf, & Risley, 1968). Applied behavior analysis plays an especially important role in contemporary research on developmental disabilities, education, organizational behavior, and health, among many other areas. Excellent examples of this work (including the study by Hall and his colleagues) can be found in the Journal of Applied Behavior Analysis .

Although most contemporary single-subject research is conducted from the behavioral perspective, it can in principle be used to address questions framed in terms of any theoretical perspective. For example, a studying technique based on cognitive principles of learning and memory could be evaluated by testing it on individual high school students using the single-subject approach. The single-subject approach can also be used by clinicians who take any theoretical perspective—behavioral, cognitive, psychodynamic, or humanistic—to study processes of therapeutic change with individual clients and to document their clients’ improvement (Kazdin, 1982).

Key Takeaways

  • Single-subject research—which involves testing a small number of participants and focusing intensively on the behavior of each individual—is an important alternative to group research in psychology.
  • Single-subject studies must be distinguished from case studies, in which an individual case is described in detail. Case studies can be useful for generating new research questions, for studying rare phenomena, and for illustrating general principles. However, they cannot substitute for carefully controlled experimental or correlational studies because they are low in internal and external validity.
  • Single-subject research has been around since the beginning of the field of psychology. Today it is most strongly associated with the behavioral theoretical perspective, but it can in principle be used to study behavior from any perspective.
  • Practice: Find and read a published article in psychology that reports new single-subject research. (A good source of articles published in the Journal of Applied Behavior Analysis can be found at http://seab.envmed.rochester.edu/jaba/jabaMostPop-2011.html .) Write a short summary of the study.

Practice: Find and read a published case study in psychology. (Use case study as a key term in a PsycINFO search.) Then do the following:

  • Describe one problem related to internal validity.
  • Describe one problem related to external validity.
  • Generate one hypothesis suggested by the case study that might be interesting to test in a systematic single-subject or group study.

Baer, D. M., Wolf, M. M., & Risley, T. R. (1968). Some current dimensions of applied behavior analysis. Journal of Applied Behavior Analysis , 1 , 91–97.

Freud, S. (1961). Five lectures on psycho-analysis . New York, NY: Norton.

Kazdin, A. E. (1982). Single-case research designs: Methods for clinical and applied settings . New York, NY: Oxford University Press.

Skinner, B. F. (1938). The behavior of organisms: An experimental analysis . New York, NY: Appleton-Century-Crofts.

Watson, J. B., & Rayner, R. (1920). Conditioned emotional reactions. Journal of Experimental Psychology , 3 , 1–14.

Wolf, M. (1976). Social validity: The case for subjective measurement or how applied behavior analysis is finding its heart. Journal of Applied Behavior Analysis, 11 , 203–214.

Research Methods in Psychology Copyright © 2016 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

  • Privacy Policy

Buy Me a Coffee

Research Method

Home » Case Study – Methods, Examples and Guide

Case Study – Methods, Examples and Guide

Table of Contents

Case Study Research

A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation.

It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied. Case studies typically involve multiple sources of data, including interviews, observations, documents, and artifacts, which are analyzed using various techniques, such as content analysis, thematic analysis, and grounded theory. The findings of a case study are often used to develop theories, inform policy or practice, or generate new research questions.

Types of Case Study

Types and Methods of Case Study are as follows:

Single-Case Study

A single-case study is an in-depth analysis of a single case. This type of case study is useful when the researcher wants to understand a specific phenomenon in detail.

For Example , A researcher might conduct a single-case study on a particular individual to understand their experiences with a particular health condition or a specific organization to explore their management practices. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a single-case study are often used to generate new research questions, develop theories, or inform policy or practice.

Multiple-Case Study

A multiple-case study involves the analysis of several cases that are similar in nature. This type of case study is useful when the researcher wants to identify similarities and differences between the cases.

For Example, a researcher might conduct a multiple-case study on several companies to explore the factors that contribute to their success or failure. The researcher collects data from each case, compares and contrasts the findings, and uses various techniques to analyze the data, such as comparative analysis or pattern-matching. The findings of a multiple-case study can be used to develop theories, inform policy or practice, or generate new research questions.

Exploratory Case Study

An exploratory case study is used to explore a new or understudied phenomenon. This type of case study is useful when the researcher wants to generate hypotheses or theories about the phenomenon.

For Example, a researcher might conduct an exploratory case study on a new technology to understand its potential impact on society. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as grounded theory or content analysis. The findings of an exploratory case study can be used to generate new research questions, develop theories, or inform policy or practice.

Descriptive Case Study

A descriptive case study is used to describe a particular phenomenon in detail. This type of case study is useful when the researcher wants to provide a comprehensive account of the phenomenon.

For Example, a researcher might conduct a descriptive case study on a particular community to understand its social and economic characteristics. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a descriptive case study can be used to inform policy or practice or generate new research questions.

Instrumental Case Study

An instrumental case study is used to understand a particular phenomenon that is instrumental in achieving a particular goal. This type of case study is useful when the researcher wants to understand the role of the phenomenon in achieving the goal.

For Example, a researcher might conduct an instrumental case study on a particular policy to understand its impact on achieving a particular goal, such as reducing poverty. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of an instrumental case study can be used to inform policy or practice or generate new research questions.

Case Study Data Collection Methods

Here are some common data collection methods for case studies:

Interviews involve asking questions to individuals who have knowledge or experience relevant to the case study. Interviews can be structured (where the same questions are asked to all participants) or unstructured (where the interviewer follows up on the responses with further questions). Interviews can be conducted in person, over the phone, or through video conferencing.

Observations

Observations involve watching and recording the behavior and activities of individuals or groups relevant to the case study. Observations can be participant (where the researcher actively participates in the activities) or non-participant (where the researcher observes from a distance). Observations can be recorded using notes, audio or video recordings, or photographs.

Documents can be used as a source of information for case studies. Documents can include reports, memos, emails, letters, and other written materials related to the case study. Documents can be collected from the case study participants or from public sources.

Surveys involve asking a set of questions to a sample of individuals relevant to the case study. Surveys can be administered in person, over the phone, through mail or email, or online. Surveys can be used to gather information on attitudes, opinions, or behaviors related to the case study.

Artifacts are physical objects relevant to the case study. Artifacts can include tools, equipment, products, or other objects that provide insights into the case study phenomenon.

How to conduct Case Study Research

Conducting a case study research involves several steps that need to be followed to ensure the quality and rigor of the study. Here are the steps to conduct case study research:

  • Define the research questions: The first step in conducting a case study research is to define the research questions. The research questions should be specific, measurable, and relevant to the case study phenomenon under investigation.
  • Select the case: The next step is to select the case or cases to be studied. The case should be relevant to the research questions and should provide rich and diverse data that can be used to answer the research questions.
  • Collect data: Data can be collected using various methods, such as interviews, observations, documents, surveys, and artifacts. The data collection method should be selected based on the research questions and the nature of the case study phenomenon.
  • Analyze the data: The data collected from the case study should be analyzed using various techniques, such as content analysis, thematic analysis, or grounded theory. The analysis should be guided by the research questions and should aim to provide insights and conclusions relevant to the research questions.
  • Draw conclusions: The conclusions drawn from the case study should be based on the data analysis and should be relevant to the research questions. The conclusions should be supported by evidence and should be clearly stated.
  • Validate the findings: The findings of the case study should be validated by reviewing the data and the analysis with participants or other experts in the field. This helps to ensure the validity and reliability of the findings.
  • Write the report: The final step is to write the report of the case study research. The report should provide a clear description of the case study phenomenon, the research questions, the data collection methods, the data analysis, the findings, and the conclusions. The report should be written in a clear and concise manner and should follow the guidelines for academic writing.

Examples of Case Study

Here are some examples of case study research:

  • The Hawthorne Studies : Conducted between 1924 and 1932, the Hawthorne Studies were a series of case studies conducted by Elton Mayo and his colleagues to examine the impact of work environment on employee productivity. The studies were conducted at the Hawthorne Works plant of the Western Electric Company in Chicago and included interviews, observations, and experiments.
  • The Stanford Prison Experiment: Conducted in 1971, the Stanford Prison Experiment was a case study conducted by Philip Zimbardo to examine the psychological effects of power and authority. The study involved simulating a prison environment and assigning participants to the role of guards or prisoners. The study was controversial due to the ethical issues it raised.
  • The Challenger Disaster: The Challenger Disaster was a case study conducted to examine the causes of the Space Shuttle Challenger explosion in 1986. The study included interviews, observations, and analysis of data to identify the technical, organizational, and cultural factors that contributed to the disaster.
  • The Enron Scandal: The Enron Scandal was a case study conducted to examine the causes of the Enron Corporation’s bankruptcy in 2001. The study included interviews, analysis of financial data, and review of documents to identify the accounting practices, corporate culture, and ethical issues that led to the company’s downfall.
  • The Fukushima Nuclear Disaster : The Fukushima Nuclear Disaster was a case study conducted to examine the causes of the nuclear accident that occurred at the Fukushima Daiichi Nuclear Power Plant in Japan in 2011. The study included interviews, analysis of data, and review of documents to identify the technical, organizational, and cultural factors that contributed to the disaster.

Application of Case Study

Case studies have a wide range of applications across various fields and industries. Here are some examples:

Business and Management

Case studies are widely used in business and management to examine real-life situations and develop problem-solving skills. Case studies can help students and professionals to develop a deep understanding of business concepts, theories, and best practices.

Case studies are used in healthcare to examine patient care, treatment options, and outcomes. Case studies can help healthcare professionals to develop critical thinking skills, diagnose complex medical conditions, and develop effective treatment plans.

Case studies are used in education to examine teaching and learning practices. Case studies can help educators to develop effective teaching strategies, evaluate student progress, and identify areas for improvement.

Social Sciences

Case studies are widely used in social sciences to examine human behavior, social phenomena, and cultural practices. Case studies can help researchers to develop theories, test hypotheses, and gain insights into complex social issues.

Law and Ethics

Case studies are used in law and ethics to examine legal and ethical dilemmas. Case studies can help lawyers, policymakers, and ethical professionals to develop critical thinking skills, analyze complex cases, and make informed decisions.

Purpose of Case Study

The purpose of a case study is to provide a detailed analysis of a specific phenomenon, issue, or problem in its real-life context. A case study is a qualitative research method that involves the in-depth exploration and analysis of a particular case, which can be an individual, group, organization, event, or community.

The primary purpose of a case study is to generate a comprehensive and nuanced understanding of the case, including its history, context, and dynamics. Case studies can help researchers to identify and examine the underlying factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and detailed understanding of the case, which can inform future research, practice, or policy.

Case studies can also serve other purposes, including:

  • Illustrating a theory or concept: Case studies can be used to illustrate and explain theoretical concepts and frameworks, providing concrete examples of how they can be applied in real-life situations.
  • Developing hypotheses: Case studies can help to generate hypotheses about the causal relationships between different factors and outcomes, which can be tested through further research.
  • Providing insight into complex issues: Case studies can provide insights into complex and multifaceted issues, which may be difficult to understand through other research methods.
  • Informing practice or policy: Case studies can be used to inform practice or policy by identifying best practices, lessons learned, or areas for improvement.

Advantages of Case Study Research

There are several advantages of case study research, including:

  • In-depth exploration: Case study research allows for a detailed exploration and analysis of a specific phenomenon, issue, or problem in its real-life context. This can provide a comprehensive understanding of the case and its dynamics, which may not be possible through other research methods.
  • Rich data: Case study research can generate rich and detailed data, including qualitative data such as interviews, observations, and documents. This can provide a nuanced understanding of the case and its complexity.
  • Holistic perspective: Case study research allows for a holistic perspective of the case, taking into account the various factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and comprehensive understanding of the case.
  • Theory development: Case study research can help to develop and refine theories and concepts by providing empirical evidence and concrete examples of how they can be applied in real-life situations.
  • Practical application: Case study research can inform practice or policy by identifying best practices, lessons learned, or areas for improvement.
  • Contextualization: Case study research takes into account the specific context in which the case is situated, which can help to understand how the case is influenced by the social, cultural, and historical factors of its environment.

Limitations of Case Study Research

There are several limitations of case study research, including:

  • Limited generalizability : Case studies are typically focused on a single case or a small number of cases, which limits the generalizability of the findings. The unique characteristics of the case may not be applicable to other contexts or populations, which may limit the external validity of the research.
  • Biased sampling: Case studies may rely on purposive or convenience sampling, which can introduce bias into the sample selection process. This may limit the representativeness of the sample and the generalizability of the findings.
  • Subjectivity: Case studies rely on the interpretation of the researcher, which can introduce subjectivity into the analysis. The researcher’s own biases, assumptions, and perspectives may influence the findings, which may limit the objectivity of the research.
  • Limited control: Case studies are typically conducted in naturalistic settings, which limits the control that the researcher has over the environment and the variables being studied. This may limit the ability to establish causal relationships between variables.
  • Time-consuming: Case studies can be time-consuming to conduct, as they typically involve a detailed exploration and analysis of a specific case. This may limit the feasibility of conducting multiple case studies or conducting case studies in a timely manner.
  • Resource-intensive: Case studies may require significant resources, including time, funding, and expertise. This may limit the ability of researchers to conduct case studies in resource-constrained settings.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Questionnaire

Questionnaire – Definition, Types, and Examples

Observational Research

Observational Research – Methods and Guide

Quantitative Research

Quantitative Research – Methods, Types and...

Qualitative Research Methods

Qualitative Research Methods

Explanatory Research

Explanatory Research – Types, Methods, Guide

Survey Research

Survey Research – Types, Methods, Examples

  • Subject List
  • Take a Tour
  • For Authors
  • Subscriber Services
  • Publications
  • African American Studies
  • African Studies
  • American Literature
  • Anthropology
  • Architecture Planning and Preservation
  • Art History
  • Atlantic History
  • Biblical Studies
  • British and Irish Literature
  • Childhood Studies
  • Chinese Studies
  • Cinema and Media Studies
  • Communication
  • Criminology
  • Environmental Science
  • Evolutionary Biology
  • International Law
  • International Relations
  • Islamic Studies
  • Jewish Studies
  • Latin American Studies
  • Latino Studies
  • Linguistics
  • Literary and Critical Theory
  • Medieval Studies
  • Military History
  • Political Science
  • Public Health
  • Renaissance and Reformation
  • Social Work
  • Urban Studies
  • Victorian Literature
  • Browse All Subjects

How to Subscribe

  • Free Trials

In This Article Expand or collapse the "in this article" section Single-Case Experimental Designs

Introduction, general overviews and primary textbooks.

  • Textbooks in Applied Behavior Analysis
  • Types of Single-Case Experimental Designs
  • Model Building and Randomization in Single-Case Experimental Designs
  • Visual Analysis of Single-Case Experimental Designs
  • Effect Size Estimates in Single-Case Experimental Designs
  • Reporting Single-Case Design Intervention Research

Related Articles Expand or collapse the "related articles" section about

About related articles close popup.

Lorem Ipsum Sit Dolor Amet

Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam ligula odio, euismod ut aliquam et, vestibulum nec risus. Nulla viverra, arcu et iaculis consequat, justo diam ornare tellus, semper ultrices tellus nunc eu tellus.

  • Action Research
  • Ambulatory Assessment in Behavioral Science
  • Effect Size
  • Mediation Analysis
  • Path Models
  • Research Methods for Studying Daily Life

Other Subject Areas

Forthcoming articles expand or collapse the "forthcoming articles" section.

  • Data Visualization
  • Remote Work
  • Workforce Training Evaluation
  • Find more forthcoming articles...
  • Export Citations
  • Share This Facebook LinkedIn Twitter

Single-Case Experimental Designs by S. Andrew Garbacz , Thomas R. Kratochwill LAST REVIEWED: 29 July 2020 LAST MODIFIED: 29 July 2020 DOI: 10.1093/obo/9780199828340-0265

Single-case experimental designs are a family of experimental designs that are characterized by researcher manipulation of an independent variable and repeated measurement of a dependent variable before (i.e., baseline) and after (i.e., intervention phase) introducing the independent variable. In single-case experimental designs a case is the unit of intervention and analysis (e.g., a child, a school). Because measurement within each case is conducted before and after manipulation of the independent variable, the case typically serves as its own control. Experimental variants of single-case designs provide a basis for determining a causal relation by replication of the intervention through (a) introducing and withdrawing the independent variable, (b) manipulating the independent variable across different phases, and (c) introducing the independent variable in a staggered fashion across different points in time. Due to their economy of resources, single-case designs may be useful during development activities and allow for rapid replication across studies.

Several sources provide overviews of single-case experimental designs. Barlow, et al. 2009 includes an overview for the development of single-case experimental designs, describes key considerations for designing and conducting single-case experimental design research, and reviews procedural elements, assessment strategies, and replication considerations. Kazdin 2011 provides detailed coverage of single-case experimental design variants as well as approaches for evaluating data in single-case experimental designs. Kratochwill and Levin 2014 describes key methodological features that underlie single-case experimental designs, including philosophical and statistical foundations and data evaluation. Ledford and Gast 2018 covers research conceptualization and writing, design variants within single-case experimental design, definitions of variables and associated measurement, and approaches to organize and evaluate data. Riley-Tillman and Burns 2009 provides a practical orientation to single-case experimental designs to facilitate uptake and use in applied settings.

Barlow, D. H., M. K. Nock, and M. Hersen, eds. 2009. Single case experimental designs: Strategies for studying behavior change . 3d ed. New York: Pearson.

A comprehensive reference about the process of designing and conducting single-case experimental design studies. Chapters are integrative but can stand alone.

Kazdin, A. E. 2011. Single-case research designs: Methods for clinical and applied settings . 2d ed. New York: Oxford Univ. Press.

A complete overview and description of single-case experimental design variants as well as information about data evaluation.

Kratochwill, T. R., and J. R. Levin, eds. 2014. Single-case intervention research: Methodological and statistical advances . New York: Routledge.

The authors describe in depth the methodological and analytic considerations necessary for designing and conducting research that uses a single-case experimental design. In addition, the text includes chapters from leaders in psychology and education who provide critical perspectives about the use of single-case experimental designs.

Ledford, J. R., and D. L. Gast, eds. 2018. Single case research methodology: Applications in special education and behavioral sciences . New York: Routledge.

Covers the research process from writing literature reviews, to designing, conducting, and evaluating single-case experimental design studies.

Riley-Tillman, T. C., and M. K. Burns. 2009. Evaluating education interventions: Single-case design for measuring response to intervention . New York: Guilford Press.

Focuses on accelerating uptake and use of single-case experimental designs in applied settings. This book provides a practical, “nuts and bolts” orientation to conducting single-case experimental design research.

back to top

Users without a subscription are not able to see the full content on this page. Please subscribe or login .

Oxford Bibliographies Online is available by subscription and perpetual access to institutions. For more information or to contact an Oxford Sales Representative click here .

  • About Psychology »
  • Meet the Editorial Board »
  • Abnormal Psychology
  • Academic Assessment
  • Acculturation and Health
  • Action Regulation Theory
  • Addictive Behavior
  • Adolescence
  • Adoption, Social, Psychological, and Evolutionary Perspect...
  • Advanced Theory of Mind
  • Affective Forecasting
  • Affirmative Action
  • Ageism at Work
  • Allport, Gordon
  • Alzheimer’s Disease
  • Analysis of Covariance (ANCOVA)
  • Animal Behavior
  • Animal Learning
  • Anxiety Disorders
  • Art and Aesthetics, Psychology of
  • Artificial Intelligence, Machine Learning, and Psychology
  • Assessment and Clinical Applications of Individual Differe...
  • Attachment in Social and Emotional Development across the ...
  • Attention-Deficit/Hyperactivity Disorder (ADHD) in Adults
  • Attention-Deficit/Hyperactivity Disorder (ADHD) in Childre...
  • Attitudinal Ambivalence
  • Attraction in Close Relationships
  • Attribution Theory
  • Authoritarian Personality
  • Bayesian Statistical Methods in Psychology
  • Behavior Therapy, Rational Emotive
  • Behavioral Economics
  • Behavioral Genetics
  • Belief Perseverance
  • Bereavement and Grief
  • Biological Psychology
  • Birth Order
  • Body Image in Men and Women
  • Bystander Effect
  • Categorical Data Analysis in Psychology
  • Childhood and Adolescence, Peer Victimization and Bullying...
  • Clark, Mamie Phipps
  • Clinical Neuropsychology
  • Clinical Psychology
  • Cognitive Consistency Theories
  • Cognitive Dissonance Theory
  • Cognitive Neuroscience
  • Communication, Nonverbal Cues and
  • Comparative Psychology
  • Competence to Stand Trial: Restoration Services
  • Competency to Stand Trial
  • Computational Psychology
  • Conflict Management in the Workplace
  • Conformity, Compliance, and Obedience
  • Consciousness
  • Coping Processes
  • Correspondence Analysis in Psychology
  • Counseling Psychology
  • Creativity at Work
  • Critical Thinking
  • Cross-Cultural Psychology
  • Cultural Psychology
  • Daily Life, Research Methods for Studying
  • Data Science Methods for Psychology
  • Data Sharing in Psychology
  • Death and Dying
  • Deceiving and Detecting Deceit
  • Defensive Processes
  • Depressive Disorders
  • Development, Prenatal
  • Developmental Psychology (Cognitive)
  • Developmental Psychology (Social)
  • Diagnostic and Statistical Manual of Mental Disorders (DSM...
  • Discrimination
  • Dissociative Disorders
  • Drugs and Behavior
  • Eating Disorders
  • Ecological Psychology
  • Educational Settings, Assessment of Thinking in
  • Embodiment and Embodied Cognition
  • Emerging Adulthood
  • Emotional Intelligence
  • Empathy and Altruism
  • Employee Stress and Well-Being
  • Environmental Neuroscience and Environmental Psychology
  • Ethics in Psychological Practice
  • Event Perception
  • Evolutionary Psychology
  • Expansive Posture
  • Experimental Existential Psychology
  • Exploratory Data Analysis
  • Eyewitness Testimony
  • Eysenck, Hans
  • Factor Analysis
  • Festinger, Leon
  • Five-Factor Model of Personality
  • Flynn Effect, The
  • Forensic Psychology
  • Forgiveness
  • Friendships, Children's
  • Fundamental Attribution Error/Correspondence Bias
  • Gambler's Fallacy
  • Game Theory and Psychology
  • Geropsychology, Clinical
  • Global Mental Health
  • Habit Formation and Behavior Change
  • Health Psychology
  • Health Psychology Research and Practice, Measurement in
  • Heider, Fritz
  • Heuristics and Biases
  • History of Psychology
  • Human Factors
  • Humanistic Psychology
  • Implicit Association Test (IAT)
  • Industrial and Organizational Psychology
  • Inferential Statistics in Psychology
  • Insanity Defense, The
  • Intelligence
  • Intelligence, Crystallized and Fluid
  • Intercultural Psychology
  • Intergroup Conflict
  • International Classification of Diseases and Related Healt...
  • International Psychology
  • Interviewing in Forensic Settings
  • Intimate Partner Violence, Psychological Perspectives on
  • Introversion–Extraversion
  • Item Response Theory
  • Law, Psychology and
  • Lazarus, Richard
  • Learned Helplessness
  • Learning Theory
  • Learning versus Performance
  • LGBTQ+ Romantic Relationships
  • Lie Detection in a Forensic Context
  • Life-Span Development
  • Locus of Control
  • Loneliness and Health
  • Mathematical Psychology
  • Meaning in Life
  • Mechanisms and Processes of Peer Contagion
  • Media Violence, Psychological Perspectives on
  • Memories, Autobiographical
  • Memories, Flashbulb
  • Memories, Repressed and Recovered
  • Memory, False
  • Memory, Human
  • Memory, Implicit versus Explicit
  • Memory in Educational Settings
  • Memory, Semantic
  • Meta-Analysis
  • Metacognition
  • Metaphor, Psychological Perspectives on
  • Microaggressions
  • Military Psychology
  • Mindfulness
  • Mindfulness and Education
  • Minnesota Multiphasic Personality Inventory (MMPI)
  • Money, Psychology of
  • Moral Conviction
  • Moral Development
  • Moral Psychology
  • Moral Reasoning
  • Nature versus Nurture Debate in Psychology
  • Neuroscience of Associative Learning
  • Nonergodicity in Psychology and Neuroscience
  • Nonparametric Statistical Analysis in Psychology
  • Observational (Non-Randomized) Studies
  • Obsessive-Complusive Disorder (OCD)
  • Occupational Health Psychology
  • Olfaction, Human
  • Operant Conditioning
  • Optimism and Pessimism
  • Organizational Justice
  • Parenting Stress
  • Parenting Styles
  • Parents' Beliefs about Children
  • Peace Psychology
  • Perception, Person
  • Performance Appraisal
  • Personality and Health
  • Personality Disorders
  • Personality Psychology
  • Person-Centered and Experiential Psychotherapies: From Car...
  • Phenomenological Psychology
  • Placebo Effects in Psychology
  • Play Behavior
  • Positive Psychological Capital (PsyCap)
  • Positive Psychology
  • Posttraumatic Stress Disorder (PTSD)
  • Prejudice and Stereotyping
  • Pretrial Publicity
  • Prisoner's Dilemma
  • Problem Solving and Decision Making
  • Procrastination
  • Prosocial Behavior
  • Prosocial Spending and Well-Being
  • Protocol Analysis
  • Psycholinguistics
  • Psychological Literacy
  • Psychological Perspectives on Food and Eating
  • Psychology, Political
  • Psychoneuroimmunology
  • Psychophysics, Visual
  • Psychotherapy
  • Psychotic Disorders
  • Publication Bias in Psychology
  • Reasoning, Counterfactual
  • Rehabilitation Psychology
  • Relationships
  • Reliability–Contemporary Psychometric Conceptions
  • Religion, Psychology and
  • Replication Initiatives in Psychology
  • Research Methods
  • Risk Taking
  • Role of the Expert Witness in Forensic Psychology, The
  • Sample Size Planning for Statistical Power and Accurate Es...
  • Schizophrenic Disorders
  • School Psychology
  • School Psychology, Counseling Services in
  • Self, Gender and
  • Self, Psychology of the
  • Self-Construal
  • Self-Control
  • Self-Deception
  • Self-Determination Theory
  • Self-Efficacy
  • Self-Esteem
  • Self-Monitoring
  • Self-Regulation in Educational Settings
  • Self-Report Tests, Measures, and Inventories in Clinical P...
  • Sensation Seeking
  • Sex and Gender
  • Sexual Minority Parenting
  • Sexual Orientation
  • Signal Detection Theory and its Applications
  • Simpson's Paradox in Psychology
  • Single People
  • Single-Case Experimental Designs
  • Skinner, B.F.
  • Sleep and Dreaming
  • Small Groups
  • Social Class and Social Status
  • Social Cognition
  • Social Neuroscience
  • Social Support
  • Social Touch and Massage Therapy Research
  • Somatoform Disorders
  • Spatial Attention
  • Sports Psychology
  • Stanford Prison Experiment (SPE): Icon and Controversy
  • Stereotype Threat
  • Stereotypes
  • Stress and Coping, Psychology of
  • Student Success in College
  • Subjective Wellbeing Homeostasis
  • Taste, Psychological Perspectives on
  • Teaching of Psychology
  • Terror Management Theory
  • Testing and Assessment
  • The Concept of Validity in Psychological Assessment
  • The Neuroscience of Emotion Regulation
  • The Reasoned Action Approach and the Theories of Reasoned ...
  • The Weapon Focus Effect in Eyewitness Memory
  • Theory of Mind
  • Therapy, Cognitive-Behavioral
  • Thinking Skills in Educational Settings
  • Time Perception
  • Trait Perspective
  • Trauma Psychology
  • Twin Studies
  • Type A Behavior Pattern (Coronary Prone Personality)
  • Unconscious Processes
  • Video Games and Violent Content
  • Virtues and Character Strengths
  • Women and Science, Technology, Engineering, and Math (STEM...
  • Women, Psychology of
  • Work Well-Being
  • Wundt, Wilhelm
  • Privacy Policy
  • Cookie Policy
  • Legal Notice
  • Accessibility

Powered by:

  • [66.249.64.20|162.248.224.4]
  • 162.248.224.4

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Perspective
  • Published: 22 November 2022

Single case studies are a powerful tool for developing, testing and extending theories

  • Lyndsey Nickels   ORCID: orcid.org/0000-0002-0311-3524 1 , 2 ,
  • Simon Fischer-Baum   ORCID: orcid.org/0000-0002-6067-0538 3 &
  • Wendy Best   ORCID: orcid.org/0000-0001-8375-5916 4  

Nature Reviews Psychology volume  1 ,  pages 733–747 ( 2022 ) Cite this article

645 Accesses

5 Citations

26 Altmetric

Metrics details

  • Neurological disorders

Psychology embraces a diverse range of methodologies. However, most rely on averaging group data to draw conclusions. In this Perspective, we argue that single case methodology is a valuable tool for developing and extending psychological theories. We stress the importance of single case and case series research, drawing on classic and contemporary cases in which cognitive and perceptual deficits provide insights into typical cognitive processes in domains such as memory, delusions, reading and face perception. We unpack the key features of single case methodology, describe its strengths, its value in adjudicating between theories, and outline its benefits for a better understanding of deficits and hence more appropriate interventions. The unique insights that single case studies have provided illustrate the value of in-depth investigation within an individual. Single case methodology has an important place in the psychologist’s toolkit and it should be valued as a primary research tool.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 12 digital issues and online access to articles

$59.00 per year

only $4.92 per issue

Buy this article

  • Purchase on Springer Link
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

what is single case research studies

Similar content being viewed by others

what is single case research studies

Comparing meta-analyses and preregistered multiple-laboratory replication projects

Amanda Kvarven, Eirik Strømland & Magnus Johannesson

what is single case research studies

The fundamental importance of method to theory

Rick Dale, Anne S. Warlaumont & Kerri L. Johnson

what is single case research studies

A critical evaluation of the p-factor literature

Ashley L. Watts, Ashley L. Greene, … Eiko I. Fried

Corkin, S. Permanent Present Tense: The Unforgettable Life Of The Amnesic Patient, H. M . Vol. XIX, 364 (Basic Books, 2013).

Lilienfeld, S. O. Psychology: From Inquiry To Understanding (Pearson, 2019).

Schacter, D. L., Gilbert, D. T., Nock, M. K. & Wegner, D. M. Psychology (Worth Publishers, 2019).

Eysenck, M. W. & Brysbaert, M. Fundamentals Of Cognition (Routledge, 2018).

Squire, L. R. Memory and brain systems: 1969–2009. J. Neurosci. 29 , 12711–12716 (2009).

Article   PubMed   PubMed Central   Google Scholar  

Corkin, S. What’s new with the amnesic patient H.M.? Nat. Rev. Neurosci. 3 , 153–160 (2002).

Article   PubMed   Google Scholar  

Schubert, T. M. et al. Lack of awareness despite complex visual processing: evidence from event-related potentials in a case of selective metamorphopsia. Proc. Natl Acad. Sci. USA 117 , 16055–16064 (2020).

Behrmann, M. & Plaut, D. C. Bilateral hemispheric processing of words and faces: evidence from word impairments in prosopagnosia and face impairments in pure alexia. Cereb. Cortex 24 , 1102–1118 (2014).

Plaut, D. C. & Behrmann, M. Complementary neural representations for faces and words: a computational exploration. Cogn. Neuropsychol. 28 , 251–275 (2011).

Haxby, J. V. et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293 , 2425–2430 (2001).

Hirshorn, E. A. et al. Decoding and disrupting left midfusiform gyrus activity during word reading. Proc. Natl Acad. Sci. USA 113 , 8162–8167 (2016).

Kosakowski, H. L. et al. Selective responses to faces, scenes, and bodies in the ventral visual pathway of infants. Curr. Biol. 32 , 265–274.e5 (2022).

Harlow, J. Passage of an iron rod through the head. Boston Med. Surgical J . https://doi.org/10.1176/jnp.11.2.281 (1848).

Broca, P. Remarks on the seat of the faculty of articulated language, following an observation of aphemia (loss of speech). Bull. Soc. Anat. 6 , 330–357 (1861).

Google Scholar  

Dejerine, J. Contribution A L’étude Anatomo-pathologique Et Clinique Des Différentes Variétés De Cécité Verbale: I. Cécité Verbale Avec Agraphie Ou Troubles Très Marqués De L’écriture; II. Cécité Verbale Pure Avec Intégrité De L’écriture Spontanée Et Sous Dictée (Société de Biologie, 1892).

Liepmann, H. Das Krankheitsbild der Apraxie (“motorischen Asymbolie”) auf Grund eines Falles von einseitiger Apraxie (Fortsetzung). Eur. Neurol. 8 , 102–116 (1900).

Article   Google Scholar  

Basso, A., Spinnler, H., Vallar, G. & Zanobio, M. E. Left hemisphere damage and selective impairment of auditory verbal short-term memory. A case study. Neuropsychologia 20 , 263–274 (1982).

Humphreys, G. W. & Riddoch, M. J. The fractionation of visual agnosia. In Visual Object Processing: A Cognitive Neuropsychological Approach 281–306 (Lawrence Erlbaum, 1987).

Whitworth, A., Webster, J. & Howard, D. A Cognitive Neuropsychological Approach To Assessment And Intervention In Aphasia (Psychology Press, 2014).

Caramazza, A. On drawing inferences about the structure of normal cognitive systems from the analysis of patterns of impaired performance: the case for single-patient studies. Brain Cogn. 5 , 41–66 (1986).

Caramazza, A. & McCloskey, M. The case for single-patient studies. Cogn. Neuropsychol. 5 , 517–527 (1988).

Shallice, T. Cognitive neuropsychology and its vicissitudes: the fate of Caramazza’s axioms. Cogn. Neuropsychol. 32 , 385–411 (2015).

Shallice, T. From Neuropsychology To Mental Structure (Cambridge Univ. Press, 1988).

Coltheart, M. Assumptions and methods in cognitive neuropscyhology. In The Handbook Of Cognitive Neuropsychology: What Deficits Reveal About The Human Mind (ed. Rapp, B.) 3–22 (Psychology Press, 2001).

McCloskey, M. & Chaisilprungraung, T. The value of cognitive neuropsychology: the case of vision research. Cogn. Neuropsychol. 34 , 412–419 (2017).

McCloskey, M. The future of cognitive neuropsychology. In The Handbook Of Cognitive Neuropsychology: What Deficits Reveal About The Human Mind (ed. Rapp, B.) 593–610 (Psychology Press, 2001).

Lashley, K. S. In search of the engram. In Physiological Mechanisms in Animal Behavior 454–482 (Academic Press, 1950).

Squire, L. R. & Wixted, J. T. The cognitive neuroscience of human memory since H.M. Annu. Rev. Neurosci. 34 , 259–288 (2011).

Stone, G. O., Vanhoy, M. & Orden, G. C. V. Perception is a two-way street: feedforward and feedback phonology in visual word recognition. J. Mem. Lang. 36 , 337–359 (1997).

Perfetti, C. A. The psycholinguistics of spelling and reading. In Learning To Spell: Research, Theory, And Practice Across Languages 21–38 (Lawrence Erlbaum, 1997).

Nickels, L. The autocue? self-generated phonemic cues in the treatment of a disorder of reading and naming. Cogn. Neuropsychol. 9 , 155–182 (1992).

Rapp, B., Benzing, L. & Caramazza, A. The autonomy of lexical orthography. Cogn. Neuropsychol. 14 , 71–104 (1997).

Bonin, P., Roux, S. & Barry, C. Translating nonverbal pictures into verbal word names. Understanding lexical access and retrieval. In Past, Present, And Future Contributions Of Cognitive Writing Research To Cognitive Psychology 315–522 (Psychology Press, 2011).

Bonin, P., Fayol, M. & Gombert, J.-E. Role of phonological and orthographic codes in picture naming and writing: an interference paradigm study. Cah. Psychol. Cogn./Current Psychol. Cogn. 16 , 299–324 (1997).

Bonin, P., Fayol, M. & Peereman, R. Masked form priming in writing words from pictures: evidence for direct retrieval of orthographic codes. Acta Psychol. 99 , 311–328 (1998).

Bentin, S., Allison, T., Puce, A., Perez, E. & McCarthy, G. Electrophysiological studies of face perception in humans. J. Cogn. Neurosci. 8 , 551–565 (1996).

Jeffreys, D. A. Evoked potential studies of face and object processing. Vis. Cogn. 3 , 1–38 (1996).

Laganaro, M., Morand, S., Michel, C. M., Spinelli, L. & Schnider, A. ERP correlates of word production before and after stroke in an aphasic patient. J. Cogn. Neurosci. 23 , 374–381 (2011).

Indefrey, P. & Levelt, W. J. M. The spatial and temporal signatures of word production components. Cognition 92 , 101–144 (2004).

Valente, A., Burki, A. & Laganaro, M. ERP correlates of word production predictors in picture naming: a trial by trial multiple regression analysis from stimulus onset to response. Front. Neurosci. 8 , 390 (2014).

Kittredge, A. K., Dell, G. S., Verkuilen, J. & Schwartz, M. F. Where is the effect of frequency in word production? Insights from aphasic picture-naming errors. Cogn. Neuropsychol. 25 , 463–492 (2008).

Domdei, N. et al. Ultra-high contrast retinal display system for single photoreceptor psychophysics. Biomed. Opt. Express 9 , 157 (2018).

Poldrack, R. A. et al. Long-term neural and physiological phenotyping of a single human. Nat. Commun. 6 , 8885 (2015).

Coltheart, M. The assumptions of cognitive neuropsychology: reflections on Caramazza (1984, 1986). Cogn. Neuropsychol. 34 , 397–402 (2017).

Badecker, W. & Caramazza, A. A final brief in the case against agrammatism: the role of theory in the selection of data. Cognition 24 , 277–282 (1986).

Fischer-Baum, S. Making sense of deviance: Identifying dissociating cases within the case series approach. Cogn. Neuropsychol. 30 , 597–617 (2013).

Nickels, L., Howard, D. & Best, W. On the use of different methodologies in cognitive neuropsychology: drink deep and from several sources. Cogn. Neuropsychol. 28 , 475–485 (2011).

Dell, G. S. & Schwartz, M. F. Who’s in and who’s out? Inclusion criteria, model evaluation, and the treatment of exceptions in case series. Cogn. Neuropsychol. 28 , 515–520 (2011).

Schwartz, M. F. & Dell, G. S. Case series investigations in cognitive neuropsychology. Cogn. Neuropsychol. 27 , 477–494 (2010).

Cohen, J. A power primer. Psychol. Bull. 112 , 155–159 (1992).

Martin, R. C. & Allen, C. Case studies in neuropsychology. In APA Handbook Of Research Methods In Psychology Vol. 2 Research Designs: Quantitative, Qualitative, Neuropsychological, And Biological (eds Cooper, H. et al.) 633–646 (American Psychological Association, 2012).

Leivada, E., Westergaard, M., Duñabeitia, J. A. & Rothman, J. On the phantom-like appearance of bilingualism effects on neurocognition: (how) should we proceed? Bilingualism 24 , 197–210 (2021).

Arnett, J. J. The neglected 95%: why American psychology needs to become less American. Am. Psychol. 63 , 602–614 (2008).

Stolz, J. A., Besner, D. & Carr, T. H. Implications of measures of reliability for theories of priming: activity in semantic memory is inherently noisy and uncoordinated. Vis. Cogn. 12 , 284–336 (2005).

Cipora, K. et al. A minority pulls the sample mean: on the individual prevalence of robust group-level cognitive phenomena — the instance of the SNARC effect. Preprint at psyArXiv https://doi.org/10.31234/osf.io/bwyr3 (2019).

Andrews, S., Lo, S. & Xia, V. Individual differences in automatic semantic priming. J. Exp. Psychol. Hum. Percept. Perform. 43 , 1025–1039 (2017).

Tan, L. C. & Yap, M. J. Are individual differences in masked repetition and semantic priming reliable? Vis. Cogn. 24 , 182–200 (2016).

Olsson-Collentine, A., Wicherts, J. M. & van Assen, M. A. L. M. Heterogeneity in direct replications in psychology and its association with effect size. Psychol. Bull. 146 , 922–940 (2020).

Gratton, C. & Braga, R. M. Editorial overview: deep imaging of the individual brain: past, practice, and promise. Curr. Opin. Behav. Sci. 40 , iii–vi (2021).

Fedorenko, E. The early origins and the growing popularity of the individual-subject analytic approach in human neuroscience. Curr. Opin. Behav. Sci. 40 , 105–112 (2021).

Xue, A. et al. The detailed organization of the human cerebellum estimated by intrinsic functional connectivity within the individual. J. Neurophysiol. 125 , 358–384 (2021).

Petit, S. et al. Toward an individualized neural assessment of receptive language in children. J. Speech Lang. Hear. Res. 63 , 2361–2385 (2020).

Jung, K.-H. et al. Heterogeneity of cerebral white matter lesions and clinical correlates in older adults. Stroke 52 , 620–630 (2021).

Falcon, M. I., Jirsa, V. & Solodkin, A. A new neuroinformatics approach to personalized medicine in neurology: the virtual brain. Curr. Opin. Neurol. 29 , 429–436 (2016).

Duncan, G. J., Engel, M., Claessens, A. & Dowsett, C. J. Replication and robustness in developmental research. Dev. Psychol. 50 , 2417–2425 (2014).

Open Science Collaboration. Estimating the reproducibility of psychological science. Science 349 , aac4716 (2015).

Tackett, J. L., Brandes, C. M., King, K. M. & Markon, K. E. Psychology’s replication crisis and clinical psychological science. Annu. Rev. Clin. Psychol. 15 , 579–604 (2019).

Munafò, M. R. et al. A manifesto for reproducible science. Nat. Hum. Behav. 1 , 0021 (2017).

Oldfield, R. C. & Wingfield, A. The time it takes to name an object. Nature 202 , 1031–1032 (1964).

Oldfield, R. C. & Wingfield, A. Response latencies in naming objects. Q. J. Exp. Psychol. 17 , 273–281 (1965).

Brysbaert, M. How many participants do we have to include in properly powered experiments? A tutorial of power analysis with reference tables. J. Cogn. 2 , 16 (2019).

Brysbaert, M. Power considerations in bilingualism research: time to step up our game. Bilingualism https://doi.org/10.1017/S1366728920000437 (2020).

Machery, E. What is a replication? Phil. Sci. 87 , 545–567 (2020).

Nosek, B. A. & Errington, T. M. What is replication? PLoS Biol. 18 , e3000691 (2020).

Li, X., Huang, L., Yao, P. & Hyönä, J. Universal and specific reading mechanisms across different writing systems. Nat. Rev. Psychol. 1 , 133–144 (2022).

Rapp, B. (Ed.) The Handbook Of Cognitive Neuropsychology: What Deficits Reveal About The Human Mind (Psychology Press, 2001).

Code, C. et al. Classic Cases In Neuropsychology (Psychology Press, 1996).

Patterson, K., Marshall, J. C. & Coltheart, M. Surface Dyslexia: Neuropsychological And Cognitive Studies Of Phonological Reading (Routledge, 2017).

Marshall, J. C. & Newcombe, F. Patterns of paralexia: a psycholinguistic approach. J. Psycholinguist. Res. 2 , 175–199 (1973).

Castles, A. & Coltheart, M. Varieties of developmental dyslexia. Cognition 47 , 149–180 (1993).

Khentov-Kraus, L. & Friedmann, N. Vowel letter dyslexia. Cogn. Neuropsychol. 35 , 223–270 (2018).

Winskel, H. Orthographic and phonological parafoveal processing of consonants, vowels, and tones when reading Thai. Appl. Psycholinguist. 32 , 739–759 (2011).

Hepner, C., McCloskey, M. & Rapp, B. Do reading and spelling share orthographic representations? Evidence from developmental dysgraphia. Cogn. Neuropsychol. 34 , 119–143 (2017).

Hanley, J. R. & Sotiropoulos, A. Developmental surface dysgraphia without surface dyslexia. Cogn. Neuropsychol. 35 , 333–341 (2018).

Zihl, J. & Heywood, C. A. The contribution of single case studies to the neuroscience of vision: single case studies in vision neuroscience. Psych. J. 5 , 5–17 (2016).

Bouvier, S. E. & Engel, S. A. Behavioral deficits and cortical damage loci in cerebral achromatopsia. Cereb. Cortex 16 , 183–191 (2006).

Zihl, J. & Heywood, C. A. The contribution of LM to the neuroscience of movement vision. Front. Integr. Neurosci. 9 , 6 (2015).

Dotan, D. & Friedmann, N. Separate mechanisms for number reading and word reading: evidence from selective impairments. Cortex 114 , 176–192 (2019).

McCloskey, M. & Schubert, T. Shared versus separate processes for letter and digit identification. Cogn. Neuropsychol. 31 , 437–460 (2014).

Fayol, M. & Seron, X. On numerical representations. Insights from experimental, neuropsychological, and developmental research. In Handbook of Mathematical Cognition (ed. Campbell, J.) 3–23 (Psychological Press, 2005).

Bornstein, B. & Kidron, D. P. Prosopagnosia. J. Neurol. Neurosurg. Psychiat. 22 , 124–131 (1959).

Kühn, C. D., Gerlach, C., Andersen, K. B., Poulsen, M. & Starrfelt, R. Face recognition in developmental dyslexia: evidence for dissociation between faces and words. Cogn. Neuropsychol. 38 , 107–115 (2021).

Barton, J. J. S., Albonico, A., Susilo, T., Duchaine, B. & Corrow, S. L. Object recognition in acquired and developmental prosopagnosia. Cogn. Neuropsychol. 36 , 54–84 (2019).

Renault, B., Signoret, J.-L., Debruille, B., Breton, F. & Bolgert, F. Brain potentials reveal covert facial recognition in prosopagnosia. Neuropsychologia 27 , 905–912 (1989).

Bauer, R. M. Autonomic recognition of names and faces in prosopagnosia: a neuropsychological application of the guilty knowledge test. Neuropsychologia 22 , 457–469 (1984).

Haan, E. H. F., de, Young, A. & Newcombe, F. Face recognition without awareness. Cogn. Neuropsychol. 4 , 385–415 (1987).

Ellis, H. D. & Lewis, M. B. Capgras delusion: a window on face recognition. Trends Cogn. Sci. 5 , 149–156 (2001).

Ellis, H. D., Young, A. W., Quayle, A. H. & De Pauw, K. W. Reduced autonomic responses to faces in Capgras delusion. Proc. R. Soc. Lond. B 264 , 1085–1092 (1997).

Collins, M. N., Hawthorne, M. E., Gribbin, N. & Jacobson, R. Capgras’ syndrome with organic disorders. Postgrad. Med. J. 66 , 1064–1067 (1990).

Enoch, D., Puri, B. K. & Ball, H. Uncommon Psychiatric Syndromes 5th edn (Routledge, 2020).

Tranel, D., Damasio, H. & Damasio, A. R. Double dissociation between overt and covert face recognition. J. Cogn. Neurosci. 7 , 425–432 (1995).

Brighetti, G., Bonifacci, P., Borlimi, R. & Ottaviani, C. “Far from the heart far from the eye”: evidence from the Capgras delusion. Cogn. Neuropsychiat. 12 , 189–197 (2007).

Coltheart, M., Langdon, R. & McKay, R. Delusional belief. Annu. Rev. Psychol. 62 , 271–298 (2011).

Coltheart, M. Cognitive neuropsychiatry and delusional belief. Q. J. Exp. Psychol. 60 , 1041–1062 (2007).

Coltheart, M. & Davies, M. How unexpected observations lead to new beliefs: a Peircean pathway. Conscious. Cogn. 87 , 103037 (2021).

Coltheart, M. & Davies, M. Failure of hypothesis evaluation as a factor in delusional belief. Cogn. Neuropsychiat. 26 , 213–230 (2021).

McCloskey, M. et al. A developmental deficit in localizing objects from vision. Psychol. Sci. 6 , 112–117 (1995).

McCloskey, M., Valtonen, J. & Cohen Sherman, J. Representing orientation: a coordinate-system hypothesis and evidence from developmental deficits. Cogn. Neuropsychol. 23 , 680–713 (2006).

McCloskey, M. Spatial representations and multiple-visual-systems hypotheses: evidence from a developmental deficit in visual location and orientation processing. Cortex 40 , 677–694 (2004).

Gregory, E. & McCloskey, M. Mirror-image confusions: implications for representation and processing of object orientation. Cognition 116 , 110–129 (2010).

Gregory, E., Landau, B. & McCloskey, M. Representation of object orientation in children: evidence from mirror-image confusions. Vis. Cogn. 19 , 1035–1062 (2011).

Laine, M. & Martin, N. Cognitive neuropsychology has been, is, and will be significant to aphasiology. Aphasiology 26 , 1362–1376 (2012).

Howard, D. & Patterson, K. The Pyramids And Palm Trees Test: A Test Of Semantic Access From Words And Pictures (Thames Valley Test Co., 1992).

Kay, J., Lesser, R. & Coltheart, M. PALPA: Psycholinguistic Assessments Of Language Processing In Aphasia. 2: Picture & Word Semantics, Sentence Comprehension (Erlbaum, 2001).

Franklin, S. Dissociations in auditory word comprehension; evidence from nine fluent aphasic patients. Aphasiology 3 , 189–207 (1989).

Howard, D., Swinburn, K. & Porter, G. Putting the CAT out: what the comprehensive aphasia test has to offer. Aphasiology 24 , 56–74 (2010).

Conti-Ramsden, G., Crutchley, A. & Botting, N. The extent to which psychometric tests differentiate subgroups of children with SLI. J. Speech Lang. Hear. Res. 40 , 765–777 (1997).

Bishop, D. V. M. & McArthur, G. M. Individual differences in auditory processing in specific language impairment: a follow-up study using event-related potentials and behavioural thresholds. Cortex 41 , 327–341 (2005).

Bishop, D. V. M., Snowling, M. J., Thompson, P. A. & Greenhalgh, T., and the CATALISE-2 consortium. Phase 2 of CATALISE: a multinational and multidisciplinary Delphi consensus study of problems with language development: terminology. J. Child. Psychol. Psychiat. 58 , 1068–1080 (2017).

Wilson, A. J. et al. Principles underlying the design of ‘the number race’, an adaptive computer game for remediation of dyscalculia. Behav. Brain Funct. 2 , 19 (2006).

Basso, A. & Marangolo, P. Cognitive neuropsychological rehabilitation: the emperor’s new clothes? Neuropsychol. Rehabil. 10 , 219–229 (2000).

Murad, M. H., Asi, N., Alsawas, M. & Alahdab, F. New evidence pyramid. Evidence-based Med. 21 , 125–127 (2016).

Greenhalgh, T., Howick, J. & Maskrey, N., for the Evidence Based Medicine Renaissance Group. Evidence based medicine: a movement in crisis? Br. Med. J. 348 , g3725–g3725 (2014).

Best, W., Ping Sze, W., Edmundson, A. & Nickels, L. What counts as evidence? Swimming against the tide: valuing both clinically informed experimentally controlled case series and randomized controlled trials in intervention research. Evidence-based Commun. Assess. Interv. 13 , 107–135 (2019).

Best, W. et al. Understanding differing outcomes from semantic and phonological interventions with children with word-finding difficulties: a group and case series study. Cortex 134 , 145–161 (2021).

OCEBM Levels of Evidence Working Group. The Oxford Levels of Evidence 2. CEBM https://www.cebm.ox.ac.uk/resources/levels-of-evidence/ocebm-levels-of-evidence (2011).

Holler, D. E., Behrmann, M. & Snow, J. C. Real-world size coding of solid objects, but not 2-D or 3-D images, in visual agnosia patients with bilateral ventral lesions. Cortex 119 , 555–568 (2019).

Duchaine, B. C., Yovel, G., Butterworth, E. J. & Nakayama, K. Prosopagnosia as an impairment to face-specific mechanisms: elimination of the alternative hypotheses in a developmental case. Cogn. Neuropsychol. 23 , 714–747 (2006).

Hartley, T. et al. The hippocampus is required for short-term topographical memory in humans. Hippocampus 17 , 34–48 (2007).

Pishnamazi, M. et al. Attentional bias towards and away from fearful faces is modulated by developmental amygdala damage. Cortex 81 , 24–34 (2016).

Rapp, B., Fischer-Baum, S. & Miozzo, M. Modality and morphology: what we write may not be what we say. Psychol. Sci. 26 , 892–902 (2015).

Yong, K. X. X., Warren, J. D., Warrington, E. K. & Crutch, S. J. Intact reading in patients with profound early visual dysfunction. Cortex 49 , 2294–2306 (2013).

Rockland, K. S. & Van Hoesen, G. W. Direct temporal–occipital feedback connections to striate cortex (V1) in the macaque monkey. Cereb. Cortex 4 , 300–313 (1994).

Haynes, J.-D., Driver, J. & Rees, G. Visibility reflects dynamic changes of effective connectivity between V1 and fusiform cortex. Neuron 46 , 811–821 (2005).

Tanaka, K. Mechanisms of visual object recognition: monkey and human studies. Curr. Opin. Neurobiol. 7 , 523–529 (1997).

Fischer-Baum, S., McCloskey, M. & Rapp, B. Representation of letter position in spelling: evidence from acquired dysgraphia. Cognition 115 , 466–490 (2010).

Houghton, G. The problem of serial order: a neural network model of sequence learning and recall. In Current Research In Natural Language Generation (eds Dale, R., Mellish, C. & Zock, M.) 287–319 (Academic Press, 1990).

Fieder, N., Nickels, L., Biedermann, B. & Best, W. From “some butter” to “a butter”: an investigation of mass and count representation and processing. Cogn. Neuropsychol. 31 , 313–349 (2014).

Fieder, N., Nickels, L., Biedermann, B. & Best, W. How ‘some garlic’ becomes ‘a garlic’ or ‘some onion’: mass and count processing in aphasia. Neuropsychologia 75 , 626–645 (2015).

Schröder, A., Burchert, F. & Stadie, N. Training-induced improvement of noncanonical sentence production does not generalize to comprehension: evidence for modality-specific processes. Cogn. Neuropsychol. 32 , 195–220 (2015).

Stadie, N. et al. Unambiguous generalization effects after treatment of non-canonical sentence production in German agrammatism. Brain Lang. 104 , 211–229 (2008).

Schapiro, A. C., Gregory, E., Landau, B., McCloskey, M. & Turk-Browne, N. B. The necessity of the medial temporal lobe for statistical learning. J. Cogn. Neurosci. 26 , 1736–1747 (2014).

Schapiro, A. C., Kustner, L. V. & Turk-Browne, N. B. Shaping of object representations in the human medial temporal lobe based on temporal regularities. Curr. Biol. 22 , 1622–1627 (2012).

Baddeley, A., Vargha-Khadem, F. & Mishkin, M. Preserved recognition in a case of developmental amnesia: implications for the acaquisition of semantic memory? J. Cogn. Neurosci. 13 , 357–369 (2001).

Snyder, J. J. & Chatterjee, A. Spatial-temporal anisometries following right parietal damage. Neuropsychologia 42 , 1703–1708 (2004).

Ashkenazi, S., Henik, A., Ifergane, G. & Shelef, I. Basic numerical processing in left intraparietal sulcus (IPS) acalculia. Cortex 44 , 439–448 (2008).

Lebrun, M.-A., Moreau, P., McNally-Gagnon, A., Mignault Goulet, G. & Peretz, I. Congenital amusia in childhood: a case study. Cortex 48 , 683–688 (2012).

Vannuscorps, G., Andres, M. & Pillon, A. When does action comprehension need motor involvement? Evidence from upper limb aplasia. Cogn. Neuropsychol. 30 , 253–283 (2013).

Jeannerod, M. Neural simulation of action: a unifying mechanism for motor cognition. NeuroImage 14 , S103–S109 (2001).

Blakemore, S.-J. & Decety, J. From the perception of action to the understanding of intention. Nat. Rev. Neurosci. 2 , 561–567 (2001).

Rizzolatti, G. & Craighero, L. The mirror-neuron system. Annu. Rev. Neurosci. 27 , 169–192 (2004).

Forde, E. M. E., Humphreys, G. W. & Remoundou, M. Disordered knowledge of action order in action disorganisation syndrome. Neurocase 10 , 19–28 (2004).

Mazzi, C. & Savazzi, S. The glamor of old-style single-case studies in the neuroimaging era: insights from a patient with hemianopia. Front. Psychol. 10 , 965 (2019).

Coltheart, M. What has functional neuroimaging told us about the mind (so far)? (Position Paper Presented to the European Cognitive Neuropsychology Workshop, Bressanone, 2005). Cortex 42 , 323–331 (2006).

Page, M. P. A. What can’t functional neuroimaging tell the cognitive psychologist? Cortex 42 , 428–443 (2006).

Blank, I. A., Kiran, S. & Fedorenko, E. Can neuroimaging help aphasia researchers? Addressing generalizability, variability, and interpretability. Cogn. Neuropsychol. 34 , 377–393 (2017).

Niv, Y. The primacy of behavioral research for understanding the brain. Behav. Neurosci. 135 , 601–609 (2021).

Crawford, J. R. & Howell, D. C. Comparing an individual’s test score against norms derived from small samples. Clin. Neuropsychol. 12 , 482–486 (1998).

Crawford, J. R., Garthwaite, P. H. & Ryan, K. Comparing a single case to a control sample: testing for neuropsychological deficits and dissociations in the presence of covariates. Cortex 47 , 1166–1178 (2011).

McIntosh, R. D. & Rittmo, J. Ö. Power calculations in single-case neuropsychology: a practical primer. Cortex 135 , 146–158 (2021).

Patterson, K. & Plaut, D. C. “Shallow draughts intoxicate the brain”: lessons from cognitive science for cognitive neuropsychology. Top. Cogn. Sci. 1 , 39–58 (2009).

Lambon Ralph, M. A., Patterson, K. & Plaut, D. C. Finite case series or infinite single-case studies? Comments on “Case series investigations in cognitive neuropsychology” by Schwartz and Dell (2010). Cogn. Neuropsychol. 28 , 466–474 (2011).

Horien, C., Shen, X., Scheinost, D. & Constable, R. T. The individual functional connectome is unique and stable over months to years. NeuroImage 189 , 676–687 (2019).

Epelbaum, S. et al. Pure alexia as a disconnection syndrome: new diffusion imaging evidence for an old concept. Cortex 44 , 962–974 (2008).

Fischer-Baum, S. & Campana, G. Neuroplasticity and the logic of cognitive neuropsychology. Cogn. Neuropsychol. 34 , 403–411 (2017).

Paul, S., Baca, E. & Fischer-Baum, S. Cerebellar contributions to orthographic working memory: a single case cognitive neuropsychological investigation. Neuropsychologia 171 , 108242 (2022).

Feinstein, J. S., Adolphs, R., Damasio, A. & Tranel, D. The human amygdala and the induction and experience of fear. Curr. Biol. 21 , 34–38 (2011).

Crawford, J., Garthwaite, P. & Gray, C. Wanted: fully operational definitions of dissociations in single-case studies. Cortex 39 , 357–370 (2003).

McIntosh, R. D. Simple dissociations for a higher-powered neuropsychology. Cortex 103 , 256–265 (2018).

McIntosh, R. D. & Brooks, J. L. Current tests and trends in single-case neuropsychology. Cortex 47 , 1151–1159 (2011).

Best, W., Schröder, A. & Herbert, R. An investigation of a relative impairment in naming non-living items: theoretical and methodological implications. J. Neurolinguistics 19 , 96–123 (2006).

Franklin, S., Howard, D. & Patterson, K. Abstract word anomia. Cogn. Neuropsychol. 12 , 549–566 (1995).

Coltheart, M., Patterson, K. E. & Marshall, J. C. Deep Dyslexia (Routledge, 1980).

Nickels, L., Kohnen, S. & Biedermann, B. An untapped resource: treatment as a tool for revealing the nature of cognitive processes. Cogn. Neuropsychol. 27 , 539–562 (2010).

Download references

Acknowledgements

The authors thank all of those pioneers of and advocates for single case study research who have mentored, inspired and encouraged us over the years, and the many other colleagues with whom we have discussed these issues.

Author information

Authors and affiliations.

School of Psychological Sciences & Macquarie University Centre for Reading, Macquarie University, Sydney, New South Wales, Australia

Lyndsey Nickels

NHMRC Centre of Research Excellence in Aphasia Recovery and Rehabilitation, Australia

Psychological Sciences, Rice University, Houston, TX, USA

Simon Fischer-Baum

Psychology and Language Sciences, University College London, London, UK

You can also search for this author in PubMed   Google Scholar

Contributions

L.N. led and was primarily responsible for the structuring and writing of the manuscript. All authors contributed to all aspects of the article.

Corresponding author

Correspondence to Lyndsey Nickels .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Peer review

Peer review information.

Nature Reviews Psychology thanks Yanchao Bi, Rob McIntosh, and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Cite this article.

Nickels, L., Fischer-Baum, S. & Best, W. Single case studies are a powerful tool for developing, testing and extending theories. Nat Rev Psychol 1 , 733–747 (2022). https://doi.org/10.1038/s44159-022-00127-y

Download citation

Accepted : 13 October 2022

Published : 22 November 2022

Issue Date : December 2022

DOI : https://doi.org/10.1038/s44159-022-00127-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

what is single case research studies

Our websites may use cookies to personalize and enhance your experience. By continuing without changing your cookie settings, you agree to this collection. For more information, please see our University Websites Privacy Notice .

Neag School of Education

Educational Research Basics by Del Siegle

Single subject research.

“ Single subject research (also known as single case experiments) is popular in the fields of special education and counseling. This research design is useful when the researcher is attempting to change the behavior of an individual or a small group of individuals and wishes to document that change. Unlike true experiments where the researcher randomly assigns participants to a control and treatment group, in single subject research the participant serves as both the control and treatment group. The researcher uses line graphs to show the effects of a particular intervention or treatment.  An important factor of single subject research is that only one variable is changed at a time. Single subject research designs are “weak when it comes to external validity….Studies involving single-subject designs that show a particular treatment to be effective in changing behavior must rely on replication–across individuals rather than groups–if such results are be found worthy of generalization” (Fraenkel & Wallen, 2006, p. 318).

Suppose a researcher wished to investigate the effect of praise on reducing disruptive behavior over many days. First she would need to establish a baseline of how frequently the disruptions occurred. She would measure how many disruptions occurred each day for several days. In the example below, the target student was disruptive seven times on the first day, six times on the second day, and seven times on the third day. Note how the sequence of time is depicted on the x-axis (horizontal axis) and the dependent variable (outcome variable) is depicted on the y-axis (vertical axis).

image002

Once a baseline of behavior has been established (when a consistent pattern emerges with at least three data points), the intervention begins. The researcher continues to plot the frequency of behavior while implementing the intervention of praise.

image004

In this example, we can see that the frequency of disruptions decreased once praise began. The design in this example is known as an A-B design. The baseline period is referred to as A and the intervention period is identified as B.

image006

Another design is the A-B-A design. An A-B-A design (also known as a reversal design) involves discontinuing the intervention and returning to a nontreatment condition.

image008

Sometimes an individual’s behavior is so severe that the researcher cannot wait to establish a baseline and must begin with an intervention. In this case, a B-A-B design is used. The intervention is implemented immediately (before establishing a baseline). This is followed by a measurement without the intervention and then a repeat of the intervention.

image010

Multiple-Baseline Design

Sometimes, a researcher may be interested in addressing several issues for one student or a single issue for several students. In this case, a multiple-baseline design is used.

“In a multiple baseline across subjects design, the researcher introduces the intervention to different persons at different times. The significance of this is that if a behavior changes only after the intervention is presented, and this behavior change is seen successively in each subject’s data, the effects can more likely be credited to the intervention itself as opposed to other variables. Multiple-baseline designs do not require the intervention to be withdrawn. Instead, each subject’s own data are compared between intervention and nonintervention behaviors, resulting in each subject acting as his or her own control (Kazdin, 1982). An added benefit of this design, and all single-case designs, is the immediacy of the data. Instead of waiting until postintervention to take measures on the behavior, single-case research prescribes continuous data collection and visual monitoring of that data displayed graphically, allowing for immediate instructional decision-making. Students, therefore, do not linger in an intervention that is not working for them, making the graphic display of single-case research combined with differentiated instruction responsive to the needs of students.” (Geisler, Hessler, Gardner, & Lovelace, 2009)

image012

Regardless of the research design, the line graphs used to illustrate the data contain a set of common elements.

image014

Generally, in single subject research we count the number of times something occurs in a given time period and see if it occurs more or less often in that time period after implementing an intervention. For example, we might measure how many baskets someone makes while shooting for 2 minutes. We would repeat that at least three times to get our baseline. Next, we would test some intervention. We might play music while shooting, give encouragement while shooting, or video the person while shooting to see if our intervention influenced the number of shots made. After the 3 baseline measurements (3 sets of 2 minute shooting), we would measure several more times (sets of 2 minute shooting) after the intervention and plot the time points (number of baskets made in 2 minutes for each of the measured time points). This works well for behaviors that are distinct and can be counted.

Sometimes behaviors come and go over time (such as being off task in a classroom or not listening during a coaching session). The way we can record these is to select a period of time (say 5 minutes) and mark down every 10 seconds whether our participant is on task. We make a minimum of three sets of 5 minute observations for a baseline, implement an intervention, and then make more sets of 5 minute observations with the intervention in place. We use this method rather than counting how many times someone is off task because one could continually be off task and that would only be a count of 1 since the person was continually off task. Someone who might be off task twice for 15 second would be off task twice for a score of 2. However, the second person is certainly not off task twice as much as the first person. Therefore, recording whether the person is off task at 10-second intervals gives a more accurate picture. The person continually off task would have a score of 30 (off task at every second interval for 5 minutes) and the person off task twice for a short time would have a score of 2 (off task only during 2 of the 10 second interval measures.

I also have additional information about how to record single-subject research data .

I hope this helps you better understand single subject research.

I have created a PowerPoint on Single Subject Research , which also available below as a video.

I have also created instructions for creating single-subject research design graphs with Excel .

Fraenkel, J. R., & Wallen, N. E. (2006). How to design and evaluate research in education (6th ed.). Boston, MA: McGraw Hill.

Geisler, J. L., Hessler, T., Gardner, R., III, & Lovelace, T. S. (2009). Differentiated writing interventions for high-achieving urban African American elementary students. Journal of Advanced Academics, 20, 214–247.

Del Siegle, Ph.D. University of Connecticut [email protected] www.delsiegle.info

Revised 02/02/2024

what is single case research studies

The Advantages and Limitations of Single Case Study Analysis

what is single case research studies

As Andrew Bennett and Colin Elman have recently noted, qualitative research methods presently enjoy “an almost unprecedented popularity and vitality… in the international relations sub-field”, such that they are now “indisputably prominent, if not pre-eminent” (2010: 499). This is, they suggest, due in no small part to the considerable advantages that case study methods in particular have to offer in studying the “complex and relatively unstructured and infrequent phenomena that lie at the heart of the subfield” (Bennett and Elman, 2007: 171). Using selected examples from within the International Relations literature[1], this paper aims to provide a brief overview of the main principles and distinctive advantages and limitations of single case study analysis. Divided into three inter-related sections, the paper therefore begins by first identifying the underlying principles that serve to constitute the case study as a particular research strategy, noting the somewhat contested nature of the approach in ontological, epistemological, and methodological terms. The second part then looks to the principal single case study types and their associated advantages, including those from within the recent ‘third generation’ of qualitative International Relations (IR) research. The final section of the paper then discusses the most commonly articulated limitations of single case studies; while accepting their susceptibility to criticism, it is however suggested that such weaknesses are somewhat exaggerated. The paper concludes that single case study analysis has a great deal to offer as a means of both understanding and explaining contemporary international relations.

The term ‘case study’, John Gerring has suggested, is “a definitional morass… Evidently, researchers have many different things in mind when they talk about case study research” (2006a: 17). It is possible, however, to distil some of the more commonly-agreed principles. One of the most prominent advocates of case study research, Robert Yin (2009: 14) defines it as “an empirical enquiry that investigates a contemporary phenomenon in depth and within its real-life context, especially when the boundaries between phenomenon and context are not clearly evident”. What this definition usefully captures is that case studies are intended – unlike more superficial and generalising methods – to provide a level of detail and understanding, similar to the ethnographer Clifford Geertz’s (1973) notion of ‘thick description’, that allows for the thorough analysis of the complex and particularistic nature of distinct phenomena. Another frequently cited proponent of the approach, Robert Stake, notes that as a form of research the case study “is defined by interest in an individual case, not by the methods of inquiry used”, and that “the object of study is a specific, unique, bounded system” (2008: 443, 445). As such, three key points can be derived from this – respectively concerning issues of ontology, epistemology, and methodology – that are central to the principles of single case study research.

First, the vital notion of ‘boundedness’ when it comes to the particular unit of analysis means that defining principles should incorporate both the synchronic (spatial) and diachronic (temporal) elements of any so-called ‘case’. As Gerring puts it, a case study should be “an intensive study of a single unit… a spatially bounded phenomenon – e.g. a nation-state, revolution, political party, election, or person – observed at a single point in time or over some delimited period of time” (2004: 342). It is important to note, however, that – whereas Gerring refers to a single unit of analysis – it may be that attention also necessarily be given to particular sub-units. This points to the important difference between what Yin refers to as an ‘holistic’ case design, with a single unit of analysis, and an ’embedded’ case design with multiple units of analysis (Yin, 2009: 50-52). The former, for example, would examine only the overall nature of an international organization, whereas the latter would also look to specific departments, programmes, or policies etc.

Secondly, as Tim May notes of the case study approach, “even the most fervent advocates acknowledge that the term has entered into understandings with little specification or discussion of purpose and process” (2011: 220). One of the principal reasons for this, he argues, is the relationship between the use of case studies in social research and the differing epistemological traditions – positivist, interpretivist, and others – within which it has been utilised. Philosophy of science concerns are obviously a complex issue, and beyond the scope of much of this paper. That said, the issue of how it is that we know what we know – of whether or not a single independent reality exists of which we as researchers can seek to provide explanation – does lead us to an important distinction to be made between so-called idiographic and nomothetic case studies (Gerring, 2006b). The former refers to those which purport to explain only a single case, are concerned with particularisation, and hence are typically (although not exclusively) associated with more interpretivist approaches. The latter are those focused studies that reflect upon a larger population and are more concerned with generalisation, as is often so with more positivist approaches[2]. The importance of this distinction, and its relation to the advantages and limitations of single case study analysis, is returned to below.

Thirdly, in methodological terms, given that the case study has often been seen as more of an interpretivist and idiographic tool, it has also been associated with a distinctly qualitative approach (Bryman, 2009: 67-68). However, as Yin notes, case studies can – like all forms of social science research – be exploratory, descriptive, and/or explanatory in nature. It is “a common misconception”, he notes, “that the various research methods should be arrayed hierarchically… many social scientists still deeply believe that case studies are only appropriate for the exploratory phase of an investigation” (Yin, 2009: 6). If case studies can reliably perform any or all three of these roles – and given that their in-depth approach may also require multiple sources of data and the within-case triangulation of methods – then it becomes readily apparent that they should not be limited to only one research paradigm. Exploratory and descriptive studies usually tend toward the qualitative and inductive, whereas explanatory studies are more often quantitative and deductive (David and Sutton, 2011: 165-166). As such, the association of case study analysis with a qualitative approach is a “methodological affinity, not a definitional requirement” (Gerring, 2006a: 36). It is perhaps better to think of case studies as transparadigmatic; it is mistaken to assume single case study analysis to adhere exclusively to a qualitative methodology (or an interpretivist epistemology) even if it – or rather, practitioners of it – may be so inclined. By extension, this also implies that single case study analysis therefore remains an option for a multitude of IR theories and issue areas; it is how this can be put to researchers’ advantage that is the subject of the next section.

Having elucidated the defining principles of the single case study approach, the paper now turns to an overview of its main benefits. As noted above, a lack of consensus still exists within the wider social science literature on the principles and purposes – and by extension the advantages and limitations – of case study research. Given that this paper is directed towards the particular sub-field of International Relations, it suggests Bennett and Elman’s (2010) more discipline-specific understanding of contemporary case study methods as an analytical framework. It begins however, by discussing Harry Eckstein’s seminal (1975) contribution to the potential advantages of the case study approach within the wider social sciences.

Eckstein proposed a taxonomy which usefully identified what he considered to be the five most relevant types of case study. Firstly were so-called configurative-idiographic studies, distinctly interpretivist in orientation and predicated on the assumption that “one cannot attain prediction and control in the natural science sense, but only understanding ( verstehen )… subjective values and modes of cognition are crucial” (1975: 132). Eckstein’s own sceptical view was that any interpreter ‘simply’ considers a body of observations that are not self-explanatory and “without hard rules of interpretation, may discern in them any number of patterns that are more or less equally plausible” (1975: 134). Those of a more post-modernist bent, of course – sharing an “incredulity towards meta-narratives”, in Lyotard’s (1994: xxiv) evocative phrase – would instead suggest that this more free-form approach actually be advantageous in delving into the subtleties and particularities of individual cases.

Eckstein’s four other types of case study, meanwhile, promote a more nomothetic (and positivist) usage. As described, disciplined-configurative studies were essentially about the use of pre-existing general theories, with a case acting “passively, in the main, as a receptacle for putting theories to work” (Eckstein, 1975: 136). As opposed to the opportunity this presented primarily for theory application, Eckstein identified heuristic case studies as explicit theoretical stimulants – thus having instead the intended advantage of theory-building. So-called p lausibility probes entailed preliminary attempts to determine whether initial hypotheses should be considered sound enough to warrant more rigorous and extensive testing. Finally, and perhaps most notably, Eckstein then outlined the idea of crucial case studies , within which he also included the idea of ‘most-likely’ and ‘least-likely’ cases; the essential characteristic of crucial cases being their specific theory-testing function.

Whilst Eckstein’s was an early contribution to refining the case study approach, Yin’s (2009: 47-52) more recent delineation of possible single case designs similarly assigns them roles in the applying, testing, or building of theory, as well as in the study of unique cases[3]. As a subset of the latter, however, Jack Levy (2008) notes that the advantages of idiographic cases are actually twofold. Firstly, as inductive/descriptive cases – akin to Eckstein’s configurative-idiographic cases – whereby they are highly descriptive, lacking in an explicit theoretical framework and therefore taking the form of “total history”. Secondly, they can operate as theory-guided case studies, but ones that seek only to explain or interpret a single historical episode rather than generalise beyond the case. Not only does this therefore incorporate ‘single-outcome’ studies concerned with establishing causal inference (Gerring, 2006b), it also provides room for the more postmodern approaches within IR theory, such as discourse analysis, that may have developed a distinct methodology but do not seek traditional social scientific forms of explanation.

Applying specifically to the state of the field in contemporary IR, Bennett and Elman identify a ‘third generation’ of mainstream qualitative scholars – rooted in a pragmatic scientific realist epistemology and advocating a pluralistic approach to methodology – that have, over the last fifteen years, “revised or added to essentially every aspect of traditional case study research methods” (2010: 502). They identify ‘process tracing’ as having emerged from this as a central method of within-case analysis. As Bennett and Checkel observe, this carries the advantage of offering a methodologically rigorous “analysis of evidence on processes, sequences, and conjunctures of events within a case, for the purposes of either developing or testing hypotheses about causal mechanisms that might causally explain the case” (2012: 10).

Harnessing various methods, process tracing may entail the inductive use of evidence from within a case to develop explanatory hypotheses, and deductive examination of the observable implications of hypothesised causal mechanisms to test their explanatory capability[4]. It involves providing not only a coherent explanation of the key sequential steps in a hypothesised process, but also sensitivity to alternative explanations as well as potential biases in the available evidence (Bennett and Elman 2010: 503-504). John Owen (1994), for example, demonstrates the advantages of process tracing in analysing whether the causal factors underpinning democratic peace theory are – as liberalism suggests – not epiphenomenal, but variously normative, institutional, or some given combination of the two or other unexplained mechanism inherent to liberal states. Within-case process tracing has also been identified as advantageous in addressing the complexity of path-dependent explanations and critical junctures – as for example with the development of political regime types – and their constituent elements of causal possibility, contingency, closure, and constraint (Bennett and Elman, 2006b).

Bennett and Elman (2010: 505-506) also identify the advantages of single case studies that are implicitly comparative: deviant, most-likely, least-likely, and crucial cases. Of these, so-called deviant cases are those whose outcome does not fit with prior theoretical expectations or wider empirical patterns – again, the use of inductive process tracing has the advantage of potentially generating new hypotheses from these, either particular to that individual case or potentially generalisable to a broader population. A classic example here is that of post-independence India as an outlier to the standard modernisation theory of democratisation, which holds that higher levels of socio-economic development are typically required for the transition to, and consolidation of, democratic rule (Lipset, 1959; Diamond, 1992). Absent these factors, MacMillan’s single case study analysis (2008) suggests the particularistic importance of the British colonial heritage, the ideology and leadership of the Indian National Congress, and the size and heterogeneity of the federal state.

Most-likely cases, as per Eckstein above, are those in which a theory is to be considered likely to provide a good explanation if it is to have any application at all, whereas least-likely cases are ‘tough test’ ones in which the posited theory is unlikely to provide good explanation (Bennett and Elman, 2010: 505). Levy (2008) neatly refers to the inferential logic of the least-likely case as the ‘Sinatra inference’ – if a theory can make it here, it can make it anywhere. Conversely, if a theory cannot pass a most-likely case, it is seriously impugned. Single case analysis can therefore be valuable for the testing of theoretical propositions, provided that predictions are relatively precise and measurement error is low (Levy, 2008: 12-13). As Gerring rightly observes of this potential for falsification:

“a positivist orientation toward the work of social science militates toward a greater appreciation of the case study format, not a denigration of that format, as is usually supposed” (Gerring, 2007: 247, emphasis added).

In summary, the various forms of single case study analysis can – through the application of multiple qualitative and/or quantitative research methods – provide a nuanced, empirically-rich, holistic account of specific phenomena. This may be particularly appropriate for those phenomena that are simply less amenable to more superficial measures and tests (or indeed any substantive form of quantification) as well as those for which our reasons for understanding and/or explaining them are irreducibly subjective – as, for example, with many of the normative and ethical issues associated with the practice of international relations. From various epistemological and analytical standpoints, single case study analysis can incorporate both idiographic sui generis cases and, where the potential for generalisation may exist, nomothetic case studies suitable for the testing and building of causal hypotheses. Finally, it should not be ignored that a signal advantage of the case study – with particular relevance to international relations – also exists at a more practical rather than theoretical level. This is, as Eckstein noted, “that it is economical for all resources: money, manpower, time, effort… especially important, of course, if studies are inherently costly, as they are if units are complex collective individuals ” (1975: 149-150, emphasis added).

Limitations

Single case study analysis has, however, been subject to a number of criticisms, the most common of which concern the inter-related issues of methodological rigour, researcher subjectivity, and external validity. With regard to the first point, the prototypical view here is that of Zeev Maoz (2002: 164-165), who suggests that “the use of the case study absolves the author from any kind of methodological considerations. Case studies have become in many cases a synonym for freeform research where anything goes”. The absence of systematic procedures for case study research is something that Yin (2009: 14-15) sees as traditionally the greatest concern due to a relative absence of methodological guidelines. As the previous section suggests, this critique seems somewhat unfair; many contemporary case study practitioners – and representing various strands of IR theory – have increasingly sought to clarify and develop their methodological techniques and epistemological grounding (Bennett and Elman, 2010: 499-500).

A second issue, again also incorporating issues of construct validity, concerns that of the reliability and replicability of various forms of single case study analysis. This is usually tied to a broader critique of qualitative research methods as a whole. However, whereas the latter obviously tend toward an explicitly-acknowledged interpretive basis for meanings, reasons, and understandings:

“quantitative measures appear objective, but only so long as we don’t ask questions about where and how the data were produced… pure objectivity is not a meaningful concept if the goal is to measure intangibles [as] these concepts only exist because we can interpret them” (Berg and Lune, 2010: 340).

The question of researcher subjectivity is a valid one, and it may be intended only as a methodological critique of what are obviously less formalised and researcher-independent methods (Verschuren, 2003). Owen (1994) and Layne’s (1994) contradictory process tracing results of interdemocratic war-avoidance during the Anglo-American crisis of 1861 to 1863 – from liberal and realist standpoints respectively – are a useful example. However, it does also rest on certain assumptions that can raise deeper and potentially irreconcilable ontological and epistemological issues. There are, regardless, plenty such as Bent Flyvbjerg (2006: 237) who suggest that the case study contains no greater bias toward verification than other methods of inquiry, and that “on the contrary, experience indicates that the case study contains a greater bias toward falsification of preconceived notions than toward verification”.

The third and arguably most prominent critique of single case study analysis is the issue of external validity or generalisability. How is it that one case can reliably offer anything beyond the particular? “We always do better (or, in the extreme, no worse) with more observation as the basis of our generalization”, as King et al write; “in all social science research and all prediction, it is important that we be as explicit as possible about the degree of uncertainty that accompanies out prediction” (1994: 212). This is an unavoidably valid criticism. It may be that theories which pass a single crucial case study test, for example, require rare antecedent conditions and therefore actually have little explanatory range. These conditions may emerge more clearly, as Van Evera (1997: 51-54) notes, from large-N studies in which cases that lack them present themselves as outliers exhibiting a theory’s cause but without its predicted outcome. As with the case of Indian democratisation above, it would logically be preferable to conduct large-N analysis beforehand to identify that state’s non-representative nature in relation to the broader population.

There are, however, three important qualifiers to the argument about generalisation that deserve particular mention here. The first is that with regard to an idiographic single-outcome case study, as Eckstein notes, the criticism is “mitigated by the fact that its capability to do so [is] never claimed by its exponents; in fact it is often explicitly repudiated” (1975: 134). Criticism of generalisability is of little relevance when the intention is one of particularisation. A second qualifier relates to the difference between statistical and analytical generalisation; single case studies are clearly less appropriate for the former but arguably retain significant utility for the latter – the difference also between explanatory and exploratory, or theory-testing and theory-building, as discussed above. As Gerring puts it, “theory confirmation/disconfirmation is not the case study’s strong suit” (2004: 350). A third qualification relates to the issue of case selection. As Seawright and Gerring (2008) note, the generalisability of case studies can be increased by the strategic selection of cases. Representative or random samples may not be the most appropriate, given that they may not provide the richest insight (or indeed, that a random and unknown deviant case may appear). Instead, and properly used , atypical or extreme cases “often reveal more information because they activate more actors… and more basic mechanisms in the situation studied” (Flyvbjerg, 2006). Of course, this also points to the very serious limitation, as hinted at with the case of India above, that poor case selection may alternatively lead to overgeneralisation and/or grievous misunderstandings of the relationship between variables or processes (Bennett and Elman, 2006a: 460-463).

As Tim May (2011: 226) notes, “the goal for many proponents of case studies […] is to overcome dichotomies between generalizing and particularizing, quantitative and qualitative, deductive and inductive techniques”. Research aims should drive methodological choices, rather than narrow and dogmatic preconceived approaches. As demonstrated above, there are various advantages to both idiographic and nomothetic single case study analyses – notably the empirically-rich, context-specific, holistic accounts that they have to offer, and their contribution to theory-building and, to a lesser extent, that of theory-testing. Furthermore, while they do possess clear limitations, any research method involves necessary trade-offs; the inherent weaknesses of any one method, however, can potentially be offset by situating them within a broader, pluralistic mixed-method research strategy. Whether or not single case studies are used in this fashion, they clearly have a great deal to offer.

References 

Bennett, A. and Checkel, J. T. (2012) ‘Process Tracing: From Philosophical Roots to Best Practice’, Simons Papers in Security and Development, No. 21/2012, School for International Studies, Simon Fraser University: Vancouver.

Bennett, A. and Elman, C. (2006a) ‘Qualitative Research: Recent Developments in Case Study Methods’, Annual Review of Political Science , 9, 455-476.

Bennett, A. and Elman, C. (2006b) ‘Complex Causal Relations and Case Study Methods: The Example of Path Dependence’, Political Analysis , 14, 3, 250-267.

Bennett, A. and Elman, C. (2007) ‘Case Study Methods in the International Relations Subfield’, Comparative Political Studies , 40, 2, 170-195.

Bennett, A. and Elman, C. (2010) Case Study Methods. In C. Reus-Smit and D. Snidal (eds) The Oxford Handbook of International Relations . Oxford University Press: Oxford. Ch. 29.

Berg, B. and Lune, H. (2012) Qualitative Research Methods for the Social Sciences . Pearson: London.

Bryman, A. (2012) Social Research Methods . Oxford University Press: Oxford.

David, M. and Sutton, C. D. (2011) Social Research: An Introduction . SAGE Publications Ltd: London.

Diamond, J. (1992) ‘Economic development and democracy reconsidered’, American Behavioral Scientist , 35, 4/5, 450-499.

Eckstein, H. (1975) Case Study and Theory in Political Science. In R. Gomm, M. Hammersley, and P. Foster (eds) Case Study Method . SAGE Publications Ltd: London.

Flyvbjerg, B. (2006) ‘Five Misunderstandings About Case-Study Research’, Qualitative Inquiry , 12, 2, 219-245.

Geertz, C. (1973) The Interpretation of Cultures: Selected Essays by Clifford Geertz . Basic Books Inc: New York.

Gerring, J. (2004) ‘What is a Case Study and What Is It Good for?’, American Political Science Review , 98, 2, 341-354.

Gerring, J. (2006a) Case Study Research: Principles and Practices . Cambridge University Press: Cambridge.

Gerring, J. (2006b) ‘Single-Outcome Studies: A Methodological Primer’, International Sociology , 21, 5, 707-734.

Gerring, J. (2007) ‘Is There a (Viable) Crucial-Case Method?’, Comparative Political Studies , 40, 3, 231-253.

King, G., Keohane, R. O. and Verba, S. (1994) Designing Social Inquiry: Scientific Inference in Qualitative Research . Princeton University Press: Chichester.

Layne, C. (1994) ‘Kant or Cant: The Myth of the Democratic Peace’, International Security , 19, 2, 5-49.

Levy, J. S. (2008) ‘Case Studies: Types, Designs, and Logics of Inference’, Conflict Management and Peace Science , 25, 1-18.

Lipset, S. M. (1959) ‘Some Social Requisites of Democracy: Economic Development and Political Legitimacy’, The American Political Science Review , 53, 1, 69-105.

Lyotard, J-F. (1984) The Postmodern Condition: A Report on Knowledge . University of Minnesota Press: Minneapolis.

MacMillan, A. (2008) ‘Deviant Democratization in India’, Democratization , 15, 4, 733-749.

Maoz, Z. (2002) Case study methodology in international studies: from storytelling to hypothesis testing. In F. P. Harvey and M. Brecher (eds) Evaluating Methodology in International Studies . University of Michigan Press: Ann Arbor.

May, T. (2011) Social Research: Issues, Methods and Process . Open University Press: Maidenhead.

Owen, J. M. (1994) ‘How Liberalism Produces Democratic Peace’, International Security , 19, 2, 87-125.

Seawright, J. and Gerring, J. (2008) ‘Case Selection Techniques in Case Study Research: A Menu of Qualitative and Quantitative Options’, Political Research Quarterly , 61, 2, 294-308.

Stake, R. E. (2008) Qualitative Case Studies. In N. K. Denzin and Y. S. Lincoln (eds) Strategies of Qualitative Inquiry . Sage Publications: Los Angeles. Ch. 17.

Van Evera, S. (1997) Guide to Methods for Students of Political Science . Cornell University Press: Ithaca.

Verschuren, P. J. M. (2003) ‘Case study as a research strategy: some ambiguities and opportunities’, International Journal of Social Research Methodology , 6, 2, 121-139.

Yin, R. K. (2009) Case Study Research: Design and Methods . SAGE Publications Ltd: London.

[1] The paper follows convention by differentiating between ‘International Relations’ as the academic discipline and ‘international relations’ as the subject of study.

[2] There is some similarity here with Stake’s (2008: 445-447) notion of intrinsic cases, those undertaken for a better understanding of the particular case, and instrumental ones that provide insight for the purposes of a wider external interest.

[3] These may be unique in the idiographic sense, or in nomothetic terms as an exception to the generalising suppositions of either probabilistic or deterministic theories (as per deviant cases, below).

[4] Although there are “philosophical hurdles to mount”, according to Bennett and Checkel, there exists no a priori reason as to why process tracing (as typically grounded in scientific realism) is fundamentally incompatible with various strands of positivism or interpretivism (2012: 18-19). By extension, it can therefore be incorporated by a range of contemporary mainstream IR theories.

— Written by: Ben Willis Written at: University of Plymouth Written for: David Brockington Date written: January 2013

Further Reading on E-International Relations

  • Identity in International Conflicts: A Case Study of the Cuban Missile Crisis
  • Imperialism’s Legacy in the Study of Contemporary Politics: The Case of Hegemonic Stability Theory
  • Recreating a Nation’s Identity Through Symbolism: A Chinese Case Study
  • Ontological Insecurity: A Case Study on Israeli-Palestinian Conflict in Jerusalem
  • Terrorists or Freedom Fighters: A Case Study of ETA
  • A Critical Assessment of Eco-Marxism: A Ghanaian Case Study

Please Consider Donating

Before you download your free e-book, please consider donating to support open access publishing.

E-IR is an independent non-profit publisher run by an all volunteer team. Your donations allow us to invest in new open access titles and pay our bandwidth bills to ensure we keep our existing titles free to view. Any amount, in any currency, is appreciated. Many thanks!

Donations are voluntary and not required to download the e-book - your link to download is below.

what is single case research studies

Logo for BCcampus Open Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Chapter 10: Single-Subject Research

Overview of Single-Subject Research

Learning Objectives

  • Explain what single-subject research is, including how it differs from other types of psychological research.
  • Explain what case studies are, including some of their strengths and weaknesses.
  • Explain who uses single-subject research and why.

What Is Single-Subject Research?

Single-subject research  is a type of quantitative research that involves studying in detail the behaviour of each of a small number of participants. Note that the term  single-subject  does not mean that only one participant is studied; it is more typical for there to be somewhere between two and 10 participants. (This is why single-subject research designs are sometimes called small- n designs, where  n  is the statistical symbol for the sample size.) Single-subject research can be contrasted with  group research , which typically involves studying large numbers of participants and examining their behaviour primarily in terms of group means, standard deviations, and so on. The majority of this textbook is devoted to understanding group research, which is the most common approach in psychology. But single-subject research is an important alternative, and it is the primary approach in some areas of psychology.

Before continuing, it is important to distinguish single-subject research from two other approaches, both of which involve studying in detail a small number of participants. One is qualitative research, which focuses on understanding people’s subjective experience by collecting relatively unstructured data (e.g., detailed interviews) and analyzing those data using narrative rather than quantitative techniques. Single-subject research, in contrast, focuses on understanding objective behaviour through experimental manipulation and control, collecting highly structured data, and analyzing those data quantitatively.

It is also important to distinguish single-subject research from case studies. A case study  is a detailed description of an individual, which can include both qualitative and quantitative analyses. (Case studies that include only qualitative analyses can be considered a type of qualitative research.) The history of psychology is filled with influential cases studies, such as Sigmund Freud’s description of “Anna O.” (see Note 10.5 “The Case of “Anna O.””) and John Watson and Rosalie Rayner’s description of Little Albert (Watson & Rayner, 1920) [1] , who learned to fear a white rat—along with other furry objects—when the researchers made a loud noise while he was playing with the rat. Case studies can be useful for suggesting new research questions and for illustrating general principles. They can also help researchers understand rare phenomena, such as the effects of damage to a specific part of the human brain. As a general rule, however, case studies cannot substitute for carefully designed group or single-subject research studies. One reason is that case studies usually do not allow researchers to determine whether specific events are causally related, or even related at all. For example, if a patient is described in a case study as having been sexually abused as a child and then as having developed an eating disorder as a teenager, there is no way to determine whether these two events had anything to do with each other. A second reason is that an individual case can always be unusual in some way and therefore be unrepresentative of people more generally. Thus case studies have serious problems with both internal and external validity.

The Case of “Anna O.”

Sigmund Freud used the case of a young woman he called “Anna O.” to illustrate many principles of his theory of psychoanalysis (Freud, 1961) [2] . (Her real name was Bertha Pappenheim, and she was an early feminist who went on to make important contributions to the field of social work.) Anna had come to Freud’s colleague Josef Breuer around 1880 with a variety of odd physical and psychological symptoms. One of them was that for several weeks she was unable to drink any fluids. According to Freud,

She would take up the glass of water that she longed for, but as soon as it touched her lips she would push it away like someone suffering from hydrophobia.…She lived only on fruit, such as melons, etc., so as to lessen her tormenting thirst. (p. 9)

But according to Freud, a breakthrough came one day while Anna was under hypnosis.

[S]he grumbled about her English “lady-companion,” whom she did not care for, and went on to describe, with every sign of disgust, how she had once gone into this lady’s room and how her little dog—horrid creature!—had drunk out of a glass there. The patient had said nothing, as she had wanted to be polite. After giving further energetic expression to the anger she had held back, she asked for something to drink, drank a large quantity of water without any difficulty, and awoke from her hypnosis with the glass at her lips; and thereupon the disturbance vanished, never to return. (p.9)

Freud’s interpretation was that Anna had repressed the memory of this incident along with the emotion that it triggered and that this was what had caused her inability to drink. Furthermore, her recollection of the incident, along with her expression of the emotion she had repressed, caused the symptom to go away.

As an illustration of Freud’s theory, the case study of Anna O. is quite effective. As evidence for the theory, however, it is essentially worthless. The description provides no way of knowing whether Anna had really repressed the memory of the dog drinking from the glass, whether this repression had caused her inability to drink, or whether recalling this “trauma” relieved the symptom. It is also unclear from this case study how typical or atypical Anna’s experience was.

A woman in a floor-length dress with long sleeves. She holds a long white stick.

Assumptions of Single-Subject Research

Again, single-subject research involves studying a small number of participants and focusing intensively on the behaviour of each one. But why take this approach instead of the group approach? There are several important assumptions underlying single-subject research, and it will help to consider them now.

First and foremost is the assumption that it is important to focus intensively on the behaviour of individual participants. One reason for this is that group research can hide individual differences and generate results that do not represent the behaviour of any individual. For example, a treatment that has a positive effect for half the people exposed to it but a negative effect for the other half would, on average, appear to have no effect at all. Single-subject research, however, would likely reveal these individual differences. A second reason to focus intensively on individuals is that sometimes it is the behaviour of a particular individual that is primarily of interest. A school psychologist, for example, might be interested in changing the behaviour of a particular disruptive student. Although previous published research (both single-subject and group research) is likely to provide some guidance on how to do this, conducting a study on this student would be more direct and probably more effective.

A second assumption of single-subject research is that it is important to discover causal relationships through the manipulation of an independent variable, the careful measurement of a dependent variable, and the control of extraneous variables. For this reason, single-subject research is often considered a type of experimental research with good internal validity. Recall, for example, that Hall and his colleagues measured their dependent variable (studying) many times—first under a no-treatment control condition, then under a treatment condition (positive teacher attention), and then again under the control condition. Because there was a clear increase in studying when the treatment was introduced, a decrease when it was removed, and an increase when it was reintroduced, there is little doubt that the treatment was the cause of the improvement.

A third assumption of single-subject research is that it is important to study strong and consistent effects that have biological or social importance. Applied researchers, in particular, are interested in treatments that have substantial effects on important behaviours and that can be implemented reliably in the real-world contexts in which they occur. This is sometimes referred to as social validity  (Wolf, 1976) [3] . The study by Hall and his colleagues, for example, had good social validity because it showed strong and consistent effects of positive teacher attention on a behaviour that is of obvious importance to teachers, parents, and students. Furthermore, the teachers found the treatment easy to implement, even in their often-chaotic elementary school classrooms.

Who Uses Single-Subject Research?

Single-subject research has been around as long as the field of psychology itself. In the late 1800s, one of psychology’s founders, Wilhelm Wundt, studied sensation and consciousness by focusing intensively on each of a small number of research participants. Herman Ebbinghaus’s research on memory and Ivan Pavlov’s research on classical conditioning are other early examples, both of which are still described in almost every introductory psychology textbook.

In the middle of the 20th century, B. F. Skinner clarified many of the assumptions underlying single-subject research and refined many of its techniques (Skinner, 1938) [4] . He and other researchers then used it to describe how rewards, punishments, and other external factors affect behaviour over time. This work was carried out primarily using nonhuman subjects—mostly rats and pigeons. This approach, which Skinner called the experimental analysis of behaviour —remains an important subfield of psychology and continues to rely almost exclusively on single-subject research. For excellent examples of this work, look at any issue of the  Journal of the Experimental Analysis of Behaviour . By the 1960s, many researchers were interested in using this approach to conduct applied research primarily with humans—a subfield now called  applied behaviour analysis  (Baer, Wolf, & Risley, 1968) [5] . Applied behaviour analysis plays an especially important role in contemporary research on developmental disabilities, education, organizational behaviour, and health, among many other areas. Excellent examples of this work (including the study by Hall and his colleagues) can be found in the  Journal of Applied Behaviour Analysis .

Although most contemporary single-subject research is conducted from the behavioural perspective, it can in principle be used to address questions framed in terms of any theoretical perspective. For example, a studying technique based on cognitive principles of learning and memory could be evaluated by testing it on individual high school students using the single-subject approach. The single-subject approach can also be used by clinicians who take any theoretical perspective—behavioural, cognitive, psychodynamic, or humanistic—to study processes of therapeutic change with individual clients and to document their clients’ improvement (Kazdin, 1982) [6] .

Key Takeaways

  • Single-subject research—which involves testing a small number of participants and focusing intensively on the behaviour of each individual—is an important alternative to group research in psychology.
  • Single-subject studies must be distinguished from case studies, in which an individual case is described in detail. Case studies can be useful for generating new research questions, for studying rare phenomena, and for illustrating general principles. However, they cannot substitute for carefully controlled experimental or correlational studies because they are low in internal and external validity.
  • Single-subject research has been around since the beginning of the field of psychology. Today it is most strongly associated with the behavioural theoretical perspective, but it can in principle be used to study behaviour from any perspective.
  • Practice: Find and read a published article in psychology that reports new single-subject research. ( An archive of articles published in the Journal of Applied Behaviour Analysis can be found at http://www.ncbi.nlm.nih.gov/pmc/journals/309/) Write a short summary of the study.
  • Describe one problem related to internal validity.
  • Describe one problem related to external validity.
  • Generate one hypothesis suggested by the case study that might be interesting to test in a systematic single-subject or group study.

Media Attributions

  • Pappenheim 1882 by unknown is in the Public Domain .
  • Watson, J. B., & Rayner, R. (1920). Conditioned emotional reactions.  Journal of Experimental Psychology, 3 , 1–14. ↵
  • Freud, S. (1961).  Five lectures on psycho-analysis . New York, NY: Norton. ↵
  • Wolf, M. (1976). Social validity: The case for subjective measurement or how applied behaviour analysis is finding its heart.  Journal of Applied Behaviour Analysis, 11 , 203–214. ↵
  • Skinner, B. F. (1938). T he behaviour of organisms: An experimental analysis . New York, NY: Appleton-Century-Crofts. ↵
  • Baer, D. M., Wolf, M. M., & Risley, T. R. (1968). Some current dimensions of applied behaviour analysis.  Journal of Applied Behaviour Analysis, 1 , 91–97. ↵
  • Kazdin, A. E. (1982).  Single-case research designs: Methods for clinical and applied settings . New York, NY: Oxford University Press. ↵

A type of quantitative research that involves studying the behaviour of each small number of participants in detail.

The study of large numbers of participants and examining their behaviour primarily in terms of group means, standard deviations, and so on.

A detailed description of an individual, which can include both qualitative and quantitative analyses.

The study of strong and consistent effects that can be implemented reliably in the real-world contexts in which they occur.

Laboratory methods that rely on single-subject research; based upon B. F. Skinner’s philosophy of behaviourism which posits that everything organisms do is behaviour.

Starting in the 1960s, researchers began using single-subject techniques to conduct applied research with human subjects.

Research Methods in Psychology - 2nd Canadian Edition Copyright © 2015 by Paul C. Price, Rajiv Jhangiani, & I-Chant A. Chiang is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

what is single case research studies

Case Study Research Method in Psychology

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

Case studies are in-depth investigations of a person, group, event, or community. Typically, data is gathered from various sources using several methods (e.g., observations & interviews).

The case study research method originated in clinical medicine (the case history, i.e., the patient’s personal history). In psychology, case studies are often confined to the study of a particular individual.

The information is mainly biographical and relates to events in the individual’s past (i.e., retrospective), as well as to significant events that are currently occurring in his or her everyday life.

The case study is not a research method, but researchers select methods of data collection and analysis that will generate material suitable for case studies.

Freud (1909a, 1909b) conducted very detailed investigations into the private lives of his patients in an attempt to both understand and help them overcome their illnesses.

This makes it clear that the case study is a method that should only be used by a psychologist, therapist, or psychiatrist, i.e., someone with a professional qualification.

There is an ethical issue of competence. Only someone qualified to diagnose and treat a person can conduct a formal case study relating to atypical (i.e., abnormal) behavior or atypical development.

case study

 Famous Case Studies

  • Anna O – One of the most famous case studies, documenting psychoanalyst Josef Breuer’s treatment of “Anna O” (real name Bertha Pappenheim) for hysteria in the late 1800s using early psychoanalytic theory.
  • Little Hans – A child psychoanalysis case study published by Sigmund Freud in 1909 analyzing his five-year-old patient Herbert Graf’s house phobia as related to the Oedipus complex.
  • Bruce/Brenda – Gender identity case of the boy (Bruce) whose botched circumcision led psychologist John Money to advise gender reassignment and raise him as a girl (Brenda) in the 1960s.
  • Genie Wiley – Linguistics/psychological development case of the victim of extreme isolation abuse who was studied in 1970s California for effects of early language deprivation on acquiring speech later in life.
  • Phineas Gage – One of the most famous neuropsychology case studies analyzes personality changes in railroad worker Phineas Gage after an 1848 brain injury involving a tamping iron piercing his skull.

Clinical Case Studies

  • Studying the effectiveness of psychotherapy approaches with an individual patient
  • Assessing and treating mental illnesses like depression, anxiety disorders, PTSD
  • Neuropsychological cases investigating brain injuries or disorders

Child Psychology Case Studies

  • Studying psychological development from birth through adolescence
  • Cases of learning disabilities, autism spectrum disorders, ADHD
  • Effects of trauma, abuse, deprivation on development

Types of Case Studies

  • Explanatory case studies : Used to explore causation in order to find underlying principles. Helpful for doing qualitative analysis to explain presumed causal links.
  • Exploratory case studies : Used to explore situations where an intervention being evaluated has no clear set of outcomes. It helps define questions and hypotheses for future research.
  • Descriptive case studies : Describe an intervention or phenomenon and the real-life context in which it occurred. It is helpful for illustrating certain topics within an evaluation.
  • Multiple-case studies : Used to explore differences between cases and replicate findings across cases. Helpful for comparing and contrasting specific cases.
  • Intrinsic : Used to gain a better understanding of a particular case. Helpful for capturing the complexity of a single case.
  • Collective : Used to explore a general phenomenon using multiple case studies. Helpful for jointly studying a group of cases in order to inquire into the phenomenon.

Where Do You Find Data for a Case Study?

There are several places to find data for a case study. The key is to gather data from multiple sources to get a complete picture of the case and corroborate facts or findings through triangulation of evidence. Most of this information is likely qualitative (i.e., verbal description rather than measurement), but the psychologist might also collect numerical data.

1. Primary sources

  • Interviews – Interviewing key people related to the case to get their perspectives and insights. The interview is an extremely effective procedure for obtaining information about an individual, and it may be used to collect comments from the person’s friends, parents, employer, workmates, and others who have a good knowledge of the person, as well as to obtain facts from the person him or herself.
  • Observations – Observing behaviors, interactions, processes, etc., related to the case as they unfold in real-time.
  • Documents & Records – Reviewing private documents, diaries, public records, correspondence, meeting minutes, etc., relevant to the case.

2. Secondary sources

  • News/Media – News coverage of events related to the case study.
  • Academic articles – Journal articles, dissertations etc. that discuss the case.
  • Government reports – Official data and records related to the case context.
  • Books/films – Books, documentaries or films discussing the case.

3. Archival records

Searching historical archives, museum collections and databases to find relevant documents, visual/audio records related to the case history and context.

Public archives like newspapers, organizational records, photographic collections could all include potentially relevant pieces of information to shed light on attitudes, cultural perspectives, common practices and historical contexts related to psychology.

4. Organizational records

Organizational records offer the advantage of often having large datasets collected over time that can reveal or confirm psychological insights.

Of course, privacy and ethical concerns regarding confidential data must be navigated carefully.

However, with proper protocols, organizational records can provide invaluable context and empirical depth to qualitative case studies exploring the intersection of psychology and organizations.

  • Organizational/industrial psychology research : Organizational records like employee surveys, turnover/retention data, policies, incident reports etc. may provide insight into topics like job satisfaction, workplace culture and dynamics, leadership issues, employee behaviors etc.
  • Clinical psychology : Therapists/hospitals may grant access to anonymized medical records to study aspects like assessments, diagnoses, treatment plans etc. This could shed light on clinical practices.
  • School psychology : Studies could utilize anonymized student records like test scores, grades, disciplinary issues, and counseling referrals to study child development, learning barriers, effectiveness of support programs, and more.

How do I Write a Case Study in Psychology?

Follow specified case study guidelines provided by a journal or your psychology tutor. General components of clinical case studies include: background, symptoms, assessments, diagnosis, treatment, and outcomes. Interpreting the information means the researcher decides what to include or leave out. A good case study should always clarify which information is the factual description and which is an inference or the researcher’s opinion.

1. Introduction

  • Provide background on the case context and why it is of interest, presenting background information like demographics, relevant history, and presenting problem.
  • Compare briefly to similar published cases if applicable. Clearly state the focus/importance of the case.

2. Case Presentation

  • Describe the presenting problem in detail, including symptoms, duration,and impact on daily life.
  • Include client demographics like age and gender, information about social relationships, and mental health history.
  • Describe all physical, emotional, and/or sensory symptoms reported by the client.
  • Use patient quotes to describe the initial complaint verbatim. Follow with full-sentence summaries of relevant history details gathered, including key components that led to a working diagnosis.
  • Summarize clinical exam results, namely orthopedic/neurological tests, imaging, lab tests, etc. Note actual results rather than subjective conclusions. Provide images if clearly reproducible/anonymized.
  • Clearly state the working diagnosis or clinical impression before transitioning to management.

3. Management and Outcome

  • Indicate the total duration of care and number of treatments given over what timeframe. Use specific names/descriptions for any therapies/interventions applied.
  • Present the results of the intervention,including any quantitative or qualitative data collected.
  • For outcomes, utilize visual analog scales for pain, medication usage logs, etc., if possible. Include patient self-reports of improvement/worsening of symptoms. Note the reason for discharge/end of care.

4. Discussion

  • Analyze the case, exploring contributing factors, limitations of the study, and connections to existing research.
  • Analyze the effectiveness of the intervention,considering factors like participant adherence, limitations of the study, and potential alternative explanations for the results.
  • Identify any questions raised in the case analysis and relate insights to established theories and current research if applicable. Avoid definitive claims about physiological explanations.
  • Offer clinical implications, and suggest future research directions.

5. Additional Items

  • Thank specific assistants for writing support only. No patient acknowledgments.
  • References should directly support any key claims or quotes included.
  • Use tables/figures/images only if substantially informative. Include permissions and legends/explanatory notes.
  • Provides detailed (rich qualitative) information.
  • Provides insight for further research.
  • Permitting investigation of otherwise impractical (or unethical) situations.

Case studies allow a researcher to investigate a topic in far more detail than might be possible if they were trying to deal with a large number of research participants (nomothetic approach) with the aim of ‘averaging’.

Because of their in-depth, multi-sided approach, case studies often shed light on aspects of human thinking and behavior that would be unethical or impractical to study in other ways.

Research that only looks into the measurable aspects of human behavior is not likely to give us insights into the subjective dimension of experience, which is important to psychoanalytic and humanistic psychologists.

Case studies are often used in exploratory research. They can help us generate new ideas (that might be tested by other methods). They are an important way of illustrating theories and can help show how different aspects of a person’s life are related to each other.

The method is, therefore, important for psychologists who adopt a holistic point of view (i.e., humanistic psychologists ).

Limitations

  • Lacking scientific rigor and providing little basis for generalization of results to the wider population.
  • Researchers’ own subjective feelings may influence the case study (researcher bias).
  • Difficult to replicate.
  • Time-consuming and expensive.
  • The volume of data, together with the time restrictions in place, impacted the depth of analysis that was possible within the available resources.

Because a case study deals with only one person/event/group, we can never be sure if the case study investigated is representative of the wider body of “similar” instances. This means the conclusions drawn from a particular case may not be transferable to other settings.

Because case studies are based on the analysis of qualitative (i.e., descriptive) data , a lot depends on the psychologist’s interpretation of the information she has acquired.

This means that there is a lot of scope for Anna O , and it could be that the subjective opinions of the psychologist intrude in the assessment of what the data means.

For example, Freud has been criticized for producing case studies in which the information was sometimes distorted to fit particular behavioral theories (e.g., Little Hans ).

This is also true of Money’s interpretation of the Bruce/Brenda case study (Diamond, 1997) when he ignored evidence that went against his theory.

Breuer, J., & Freud, S. (1895).  Studies on hysteria . Standard Edition 2: London.

Curtiss, S. (1981). Genie: The case of a modern wild child .

Diamond, M., & Sigmundson, K. (1997). Sex Reassignment at Birth: Long-term Review and Clinical Implications. Archives of Pediatrics & Adolescent Medicine , 151(3), 298-304

Freud, S. (1909a). Analysis of a phobia of a five year old boy. In The Pelican Freud Library (1977), Vol 8, Case Histories 1, pages 169-306

Freud, S. (1909b). Bemerkungen über einen Fall von Zwangsneurose (Der “Rattenmann”). Jb. psychoanal. psychopathol. Forsch ., I, p. 357-421; GW, VII, p. 379-463; Notes upon a case of obsessional neurosis, SE , 10: 151-318.

Harlow J. M. (1848). Passage of an iron rod through the head.  Boston Medical and Surgical Journal, 39 , 389–393.

Harlow, J. M. (1868).  Recovery from the Passage of an Iron Bar through the Head .  Publications of the Massachusetts Medical Society. 2  (3), 327-347.

Money, J., & Ehrhardt, A. A. (1972).  Man & Woman, Boy & Girl : The Differentiation and Dimorphism of Gender Identity from Conception to Maturity. Baltimore, Maryland: Johns Hopkins University Press.

Money, J., & Tucker, P. (1975). Sexual signatures: On being a man or a woman.

Further Information

  • Case Study Approach
  • Case Study Method
  • Enhancing the Quality of Case Studies in Health Services Research
  • “We do things together” A case study of “couplehood” in dementia
  • Using mixed methods for evaluating an integrative approach to cancer care: a case study

Print Friendly, PDF & Email

Book cover

Research Design in Business and Management pp 171–186 Cite as

Multiple Case Research Design

  • Stefan Hunziker 3 &
  • Michael Blankenagel 3  
  • First Online: 10 November 2021

4924 Accesses

5 Citations

This chapter addresses the peculiarities, characteristics, and major fallacies of multiple case research designs. The major advantage of multiple case research lies in cross-case analysis. A multiple case research design shifts the focus from understanding a single case to the differences and similarities between cases. Thus, it is not just conducting more (second, third, etc.) case studies. Rather, it is the next step in developing a theory about factors driving differences and similarities. Also, researchers find relevant information on how to write a multiple case research design paper and learn about typical methodologies used for this research design. The chapter closes with referring to overlapping and adjacent research designs.

This is a preview of subscription content, log in via an institution .

Buying options

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF

Tax calculation will be finalised at checkout

Purchases are for personal use only

Bruns, W. J., & McKinnon, S. M. (1993). Information and managers: A field study. Journal of Management Accounting Research, 5 , 84–108.

Google Scholar  

Eisenhardt, K. M., & Graebner, M. E. (2007). Theory building from cases: Opportunities and challenges. Academy of Management Journal, 50 (1), 25–32.

Article   Google Scholar  

Ferreira, L. D. & Merchant, K. A. (1992). Field research in management accounting and control: A review and evaluation . Emerald Group Publishing Limited.

Keating, P. J. (1995). A framework for classifying and evaluating the theoretical contributions of case research in management accounting. Journal of Management Accounting Research, 7 , 66–86.

Lillis, A. M., & Mundy, J. (2005). Cross-sectional field studies in management accounting research—closing the gaps between surveys and case studies. Journal of Management Accounting Research, 17 (1), 119–141.

Ragin, C. C. (2009). Reflections on casing and case-oriented research (pp. 522–534). The Sage handbook of case-based method.

Ridder, H.-G. (2017). The theory contribution of case study research designs. Business Research, 10 (2), 281–305.

Stake, R. E. (2005). Qualitative case studies. In N.K. Denzin & Y.S. Lincoln (Eds.), The SAGE handbook of qualitative research (3rd ed., pp. 443–466).

Vaughan, D. (1992). Theory elaboration: The heuristics of case analysis. What is a case?. In C.C. Ragin & H.S. Becker (Eds.), Exploring the foundations of social inquiry (pp. 173–202). Cambridge University Press.

Walsham, G. (2006). Doing interpretive research. European Journal of Information Systems, 15 (3), 320–330.

Yin, R. K. (2014). Case study research. Design and methods (5th ed.). SAGE.

Download references

Author information

Authors and affiliations.

Wirtschaft/IFZ – Campus Zug-Rotkreuz, Hochschule Luzern, Zug-Rotkreuz, Zug , Switzerland

Stefan Hunziker & Michael Blankenagel

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Stefan Hunziker .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Fachmedien Wiesbaden GmbH, part of Springer Nature

About this chapter

Cite this chapter.

Hunziker, S., Blankenagel, M. (2021). Multiple Case Research Design. In: Research Design in Business and Management. Springer Gabler, Wiesbaden. https://doi.org/10.1007/978-3-658-34357-6_9

Download citation

DOI : https://doi.org/10.1007/978-3-658-34357-6_9

Published : 10 November 2021

Publisher Name : Springer Gabler, Wiesbaden

Print ISBN : 978-3-658-34356-9

Online ISBN : 978-3-658-34357-6

eBook Packages : Business and Economics (German Language)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

IMAGES

  1. PPT

    what is single case research studies

  2. Mixed Methods Single Case Research: State of the Art and Future

    what is single case research studies

  3. How to Write a Case Study

    what is single case research studies

  4. Embedded single-case study design

    what is single case research studies

  5. PPT

    what is single case research studies

  6. Single case study research

    what is single case research studies

VIDEO

  1. SAMPLING PROCEDURE AND SAMPLE (QUALITATIVE RESEARCH)

  2. Comparative Designs

  3. Chapter 7: Single-Case Research

  4. Charting in Single Case Research

  5. BCBA Task List 5: D 4

  6. Charting in Single Case Research

COMMENTS

  1. Single-Case Design, Analysis, and Quality Assessment for Intervention Research

    Single-case studies can provide a viable alternative to large group studies such as randomized clinical trials. Single case studies involve repeated measures, and manipulation of and independent variable. They can be designed to have strong internal validity for assessing causal relationships between interventions and outcomes, and external ...

  2. 10.1 Overview of Single-Subject Research

    Key Takeaways. Single-subject research—which involves testing a small number of participants and focusing intensively on the behavior of each individual—is an important alternative to group research in psychology. Single-subject studies must be distinguished from case studies, in which an individual case is described in detail.

  3. Case Study

    A single-case study is an in-depth analysis of a single case. This type of case study is useful when the researcher wants to understand a specific phenomenon in detail. For Example , A researcher might conduct a single-case study on a particular individual to understand their experiences with a particular health condition or a specific ...

  4. Case Study Methodology of Qualitative Research: Key Attributes and

    Within a case study research, one may study a single case or multiple cases. Single case studies are most common in case study researches. Yin (2014, p. 59) says that single cases are 'eminently justifiable' under certain conditions: (a) when the case under study is unique or atypical, and hence, its study is revelatory, (b) when the case ...

  5. Single Case Research Design

    Abstract. This chapter addresses the peculiarities, characteristics, and major fallacies of single case research designs. A single case study research design is a collective term for an in-depth analysis of a small non-random sample. The focus on this design is on in-depth.

  6. What Is a Case Study?

    Revised on November 20, 2023. A case study is a detailed study of a specific subject, such as a person, group, place, event, organization, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research. A case study research design usually involves qualitative methods, but quantitative methods are ...

  7. Single-Case Experimental Designs

    Single-case experimental designs are a family of experimental designs that are characterized by researcher manipulation of an independent variable and repeated measurement of a dependent variable before (i.e., baseline) and after (i.e., intervention phase) introducing the independent variable. In single-case experimental designs a case is the ...

  8. Single case studies are a powerful tool for developing ...

    This view aligns with ours that single case research, and, in intervention, replication across a series of individual cases, are powerful and essential tools for both theoretical and applied research.

  9. Advancing the Application and Use of Single-Case Research Designs

    A special issue of Perspectives on Behavior Science focused on methodological advances needed for single-case research is a timely contribution to the field. There are growing efforts to both articulate professional standards for single-case methods (Kratochwill et al., 2010; Tate et al., 2016), and advance new procedures for analysis and interpretation of single-case studies (Manolov ...

  10. Single Subject Research

    An added benefit of this design, and all single-case designs, is the immediacy of the data. Instead of waiting until postintervention to take measures on the behavior, single-case research prescribes continuous data collection and visual monitoring of that data displayed graphically, allowing for immediate instructional decision-making.

  11. Single Case Study

    The single case study is the most basic form of case-oriented research, but researchers may also conduct a series of case studies, each study building on the previous, or conduct simultaneous studies of several instances of the same phenomenon (as in comparative research). The key commonality of these different case-oriented approaches is that ...

  12. Single-Case Designs

    Either single-case or multiple-case designs may be used in case study research. Single-case designs are usually appropriate where the case represents a critical case (it meets all the necessary conditions for testing a theory), where it is an extreme or unique case, where it is a revelatory case, or where the research is exploratory (Yin 1994 ...

  13. The Advantages and Limitations of Single Case Study Analysis

    Single case study analyses offer empirically-rich, context-specific, holistic accounts and contribute to both theory-building and, to a lesser extent, theory-testing. ... single case studies are clearly less appropriate for the former but arguably retain significant utility for the latter - the difference also between explanatory and ...

  14. PDF Single Cases: The What, Why and How

    Single case research typically requires a large amount of data since the justification of. using one case is often unusual access to a level of granular detail not permitted by multiple. cases. Researchers can generally collect three types of qualitative data: (1) interviews, (2) archival data, and (3) observations.

  15. A systematic review of applied single-case research ...

    Single-case experimental designs (SCEDs) have become a popular research methodology in educational science, psychology, and beyond. The growing popularity has been accompanied by the development of specific guidelines for the conduct and analysis of SCEDs. In this paper, we examine recent practices in the conduct and analysis of SCEDs by systematically reviewing applied SCEDs published over a ...

  16. Single-Case Design, Analysis, and Quality Assessment for Int ...

    Single-case (SC) studies have been identified by a variety of names, including "n of 1 studies" and "single-subject" studies. The term "single-case study" is preferred over the previously mentioned terms because previous terms suggest these studies include only 1 participant.

  17. PDF Single-Case Design Research Methods

    Studies that use a single-case design (SCD) measure outcomes for cases (such as a child or family) repeatedly during multiple phases of a study to determine the success of an intervention. The number of phases in the study will depend on the research questions, intervention, and outcome(s) of interest (see Types of SCDs on page 4 for examples).

  18. Overview of Single-Subject Research

    Key Takeaways. Single-subject research—which involves testing a small number of participants and focusing intensively on the behaviour of each individual—is an important alternative to group research in psychology. Single-subject studies must be distinguished from case studies, in which an individual case is described in detail.

  19. Case Study Research Method in Psychology

    Case studies are in-depth investigations of a person, group, event, or community. Typically, data is gathered from various sources using several methods (e.g., observations & interviews). The case study research method originated in clinical medicine (the case history, i.e., the patient's personal history). In psychology, case studies are ...

  20. Single case studies vs. multiple case studies: A comparative study

    This study attempts to answer when to write a single case study and when to write a multiple case study. It will further answer the benefits and disadvantages with the different types. The literature review, which is based on secondary sources, is about case studies. Then the literature review is discussed and analysed to reach a conclusion ...

  21. Multiple Case Research Design

    The major advantage of multiple case research lies in cross-case analysis. A multiple case research design shifts the focus from understanding a single case to the differences and similarities between cases. Thus, it is not just conducting more (second, third, etc.) case studies. Rather, it is the next step in developing a theory about factors ...