methodology of case study example

The Ultimate Guide to Qualitative Research - Part 1: The Basics

methodology of case study example

  • Introduction and overview
  • What is qualitative research?
  • What is qualitative data?
  • Examples of qualitative data
  • Qualitative vs. quantitative research
  • Mixed methods
  • Qualitative research preparation
  • Theoretical perspective
  • Theoretical framework
  • Literature reviews

Research question

  • Conceptual framework
  • Conceptual vs. theoretical framework

Data collection

  • Qualitative research methods
  • Focus groups
  • Observational research

What is a case study?

Applications for case study research, what is a good case study, process of case study design, benefits and limitations of case studies.

  • Ethnographical research
  • Ethical considerations
  • Confidentiality and privacy
  • Power dynamics
  • Reflexivity

Case studies

Case studies are essential to qualitative research , offering a lens through which researchers can investigate complex phenomena within their real-life contexts. This chapter explores the concept, purpose, applications, examples, and types of case studies and provides guidance on how to conduct case study research effectively.

methodology of case study example

Whereas quantitative methods look at phenomena at scale, case study research looks at a concept or phenomenon in considerable detail. While analyzing a single case can help understand one perspective regarding the object of research inquiry, analyzing multiple cases can help obtain a more holistic sense of the topic or issue. Let's provide a basic definition of a case study, then explore its characteristics and role in the qualitative research process.

Definition of a case study

A case study in qualitative research is a strategy of inquiry that involves an in-depth investigation of a phenomenon within its real-world context. It provides researchers with the opportunity to acquire an in-depth understanding of intricate details that might not be as apparent or accessible through other methods of research. The specific case or cases being studied can be a single person, group, or organization – demarcating what constitutes a relevant case worth studying depends on the researcher and their research question .

Among qualitative research methods , a case study relies on multiple sources of evidence, such as documents, artifacts, interviews , or observations , to present a complete and nuanced understanding of the phenomenon under investigation. The objective is to illuminate the readers' understanding of the phenomenon beyond its abstract statistical or theoretical explanations.

Characteristics of case studies

Case studies typically possess a number of distinct characteristics that set them apart from other research methods. These characteristics include a focus on holistic description and explanation, flexibility in the design and data collection methods, reliance on multiple sources of evidence, and emphasis on the context in which the phenomenon occurs.

Furthermore, case studies can often involve a longitudinal examination of the case, meaning they study the case over a period of time. These characteristics allow case studies to yield comprehensive, in-depth, and richly contextualized insights about the phenomenon of interest.

The role of case studies in research

Case studies hold a unique position in the broader landscape of research methods aimed at theory development. They are instrumental when the primary research interest is to gain an intensive, detailed understanding of a phenomenon in its real-life context.

In addition, case studies can serve different purposes within research - they can be used for exploratory, descriptive, or explanatory purposes, depending on the research question and objectives. This flexibility and depth make case studies a valuable tool in the toolkit of qualitative researchers.

Remember, a well-conducted case study can offer a rich, insightful contribution to both academic and practical knowledge through theory development or theory verification, thus enhancing our understanding of complex phenomena in their real-world contexts.

What is the purpose of a case study?

Case study research aims for a more comprehensive understanding of phenomena, requiring various research methods to gather information for qualitative analysis . Ultimately, a case study can allow the researcher to gain insight into a particular object of inquiry and develop a theoretical framework relevant to the research inquiry.

Why use case studies in qualitative research?

Using case studies as a research strategy depends mainly on the nature of the research question and the researcher's access to the data.

Conducting case study research provides a level of detail and contextual richness that other research methods might not offer. They are beneficial when there's a need to understand complex social phenomena within their natural contexts.

The explanatory, exploratory, and descriptive roles of case studies

Case studies can take on various roles depending on the research objectives. They can be exploratory when the research aims to discover new phenomena or define new research questions; they are descriptive when the objective is to depict a phenomenon within its context in a detailed manner; and they can be explanatory if the goal is to understand specific relationships within the studied context. Thus, the versatility of case studies allows researchers to approach their topic from different angles, offering multiple ways to uncover and interpret the data .

The impact of case studies on knowledge development

Case studies play a significant role in knowledge development across various disciplines. Analysis of cases provides an avenue for researchers to explore phenomena within their context based on the collected data.

methodology of case study example

This can result in the production of rich, practical insights that can be instrumental in both theory-building and practice. Case studies allow researchers to delve into the intricacies and complexities of real-life situations, uncovering insights that might otherwise remain hidden.

Types of case studies

In qualitative research , a case study is not a one-size-fits-all approach. Depending on the nature of the research question and the specific objectives of the study, researchers might choose to use different types of case studies. These types differ in their focus, methodology, and the level of detail they provide about the phenomenon under investigation.

Understanding these types is crucial for selecting the most appropriate approach for your research project and effectively achieving your research goals. Let's briefly look at the main types of case studies.

Exploratory case studies

Exploratory case studies are typically conducted to develop a theory or framework around an understudied phenomenon. They can also serve as a precursor to a larger-scale research project. Exploratory case studies are useful when a researcher wants to identify the key issues or questions which can spur more extensive study or be used to develop propositions for further research. These case studies are characterized by flexibility, allowing researchers to explore various aspects of a phenomenon as they emerge, which can also form the foundation for subsequent studies.

Descriptive case studies

Descriptive case studies aim to provide a complete and accurate representation of a phenomenon or event within its context. These case studies are often based on an established theoretical framework, which guides how data is collected and analyzed. The researcher is concerned with describing the phenomenon in detail, as it occurs naturally, without trying to influence or manipulate it.

Explanatory case studies

Explanatory case studies are focused on explanation - they seek to clarify how or why certain phenomena occur. Often used in complex, real-life situations, they can be particularly valuable in clarifying causal relationships among concepts and understanding the interplay between different factors within a specific context.

methodology of case study example

Intrinsic, instrumental, and collective case studies

These three categories of case studies focus on the nature and purpose of the study. An intrinsic case study is conducted when a researcher has an inherent interest in the case itself. Instrumental case studies are employed when the case is used to provide insight into a particular issue or phenomenon. A collective case study, on the other hand, involves studying multiple cases simultaneously to investigate some general phenomena.

Each type of case study serves a different purpose and has its own strengths and challenges. The selection of the type should be guided by the research question and objectives, as well as the context and constraints of the research.

The flexibility, depth, and contextual richness offered by case studies make this approach an excellent research method for various fields of study. They enable researchers to investigate real-world phenomena within their specific contexts, capturing nuances that other research methods might miss. Across numerous fields, case studies provide valuable insights into complex issues.

Critical information systems research

Case studies provide a detailed understanding of the role and impact of information systems in different contexts. They offer a platform to explore how information systems are designed, implemented, and used and how they interact with various social, economic, and political factors. Case studies in this field often focus on examining the intricate relationship between technology, organizational processes, and user behavior, helping to uncover insights that can inform better system design and implementation.

Health research

Health research is another field where case studies are highly valuable. They offer a way to explore patient experiences, healthcare delivery processes, and the impact of various interventions in a real-world context.

methodology of case study example

Case studies can provide a deep understanding of a patient's journey, giving insights into the intricacies of disease progression, treatment effects, and the psychosocial aspects of health and illness.

Asthma research studies

Specifically within medical research, studies on asthma often employ case studies to explore the individual and environmental factors that influence asthma development, management, and outcomes. A case study can provide rich, detailed data about individual patients' experiences, from the triggers and symptoms they experience to the effectiveness of various management strategies. This can be crucial for developing patient-centered asthma care approaches.

Other fields

Apart from the fields mentioned, case studies are also extensively used in business and management research, education research, and political sciences, among many others. They provide an opportunity to delve into the intricacies of real-world situations, allowing for a comprehensive understanding of various phenomena.

Case studies, with their depth and contextual focus, offer unique insights across these varied fields. They allow researchers to illuminate the complexities of real-life situations, contributing to both theory and practice.

methodology of case study example

Whatever field you're in, ATLAS.ti puts your data to work for you

Download a free trial of ATLAS.ti to turn your data into insights.

Understanding the key elements of case study design is crucial for conducting rigorous and impactful case study research. A well-structured design guides the researcher through the process, ensuring that the study is methodologically sound and its findings are reliable and valid. The main elements of case study design include the research question , propositions, units of analysis, and the logic linking the data to the propositions.

The research question is the foundation of any research study. A good research question guides the direction of the study and informs the selection of the case, the methods of collecting data, and the analysis techniques. A well-formulated research question in case study research is typically clear, focused, and complex enough to merit further detailed examination of the relevant case(s).

Propositions

Propositions, though not necessary in every case study, provide a direction by stating what we might expect to find in the data collected. They guide how data is collected and analyzed by helping researchers focus on specific aspects of the case. They are particularly important in explanatory case studies, which seek to understand the relationships among concepts within the studied phenomenon.

Units of analysis

The unit of analysis refers to the case, or the main entity or entities that are being analyzed in the study. In case study research, the unit of analysis can be an individual, a group, an organization, a decision, an event, or even a time period. It's crucial to clearly define the unit of analysis, as it shapes the qualitative data analysis process by allowing the researcher to analyze a particular case and synthesize analysis across multiple case studies to draw conclusions.

Argumentation

This refers to the inferential model that allows researchers to draw conclusions from the data. The researcher needs to ensure that there is a clear link between the data, the propositions (if any), and the conclusions drawn. This argumentation is what enables the researcher to make valid and credible inferences about the phenomenon under study.

Understanding and carefully considering these elements in the design phase of a case study can significantly enhance the quality of the research. It can help ensure that the study is methodologically sound and its findings contribute meaningful insights about the case.

Ready to jumpstart your research with ATLAS.ti?

Conceptualize your research project with our intuitive data analysis interface. Download a free trial today.

Conducting a case study involves several steps, from defining the research question and selecting the case to collecting and analyzing data . This section outlines these key stages, providing a practical guide on how to conduct case study research.

Defining the research question

The first step in case study research is defining a clear, focused research question. This question should guide the entire research process, from case selection to analysis. It's crucial to ensure that the research question is suitable for a case study approach. Typically, such questions are exploratory or descriptive in nature and focus on understanding a phenomenon within its real-life context.

Selecting and defining the case

The selection of the case should be based on the research question and the objectives of the study. It involves choosing a unique example or a set of examples that provide rich, in-depth data about the phenomenon under investigation. After selecting the case, it's crucial to define it clearly, setting the boundaries of the case, including the time period and the specific context.

Previous research can help guide the case study design. When considering a case study, an example of a case could be taken from previous case study research and used to define cases in a new research inquiry. Considering recently published examples can help understand how to select and define cases effectively.

Developing a detailed case study protocol

A case study protocol outlines the procedures and general rules to be followed during the case study. This includes the data collection methods to be used, the sources of data, and the procedures for analysis. Having a detailed case study protocol ensures consistency and reliability in the study.

The protocol should also consider how to work with the people involved in the research context to grant the research team access to collecting data. As mentioned in previous sections of this guide, establishing rapport is an essential component of qualitative research as it shapes the overall potential for collecting and analyzing data.

Collecting data

Gathering data in case study research often involves multiple sources of evidence, including documents, archival records, interviews, observations, and physical artifacts. This allows for a comprehensive understanding of the case. The process for gathering data should be systematic and carefully documented to ensure the reliability and validity of the study.

Analyzing and interpreting data

The next step is analyzing the data. This involves organizing the data , categorizing it into themes or patterns , and interpreting these patterns to answer the research question. The analysis might also involve comparing the findings with prior research or theoretical propositions.

Writing the case study report

The final step is writing the case study report . This should provide a detailed description of the case, the data, the analysis process, and the findings. The report should be clear, organized, and carefully written to ensure that the reader can understand the case and the conclusions drawn from it.

Each of these steps is crucial in ensuring that the case study research is rigorous, reliable, and provides valuable insights about the case.

The type, depth, and quality of data in your study can significantly influence the validity and utility of the study. In case study research, data is usually collected from multiple sources to provide a comprehensive and nuanced understanding of the case. This section will outline the various methods of collecting data used in case study research and discuss considerations for ensuring the quality of the data.

Interviews are a common method of gathering data in case study research. They can provide rich, in-depth data about the perspectives, experiences, and interpretations of the individuals involved in the case. Interviews can be structured , semi-structured , or unstructured , depending on the research question and the degree of flexibility needed.

Observations

Observations involve the researcher observing the case in its natural setting, providing first-hand information about the case and its context. Observations can provide data that might not be revealed in interviews or documents, such as non-verbal cues or contextual information.

Documents and artifacts

Documents and archival records provide a valuable source of data in case study research. They can include reports, letters, memos, meeting minutes, email correspondence, and various public and private documents related to the case.

methodology of case study example

These records can provide historical context, corroborate evidence from other sources, and offer insights into the case that might not be apparent from interviews or observations.

Physical artifacts refer to any physical evidence related to the case, such as tools, products, or physical environments. These artifacts can provide tangible insights into the case, complementing the data gathered from other sources.

Ensuring the quality of data collection

Determining the quality of data in case study research requires careful planning and execution. It's crucial to ensure that the data is reliable, accurate, and relevant to the research question. This involves selecting appropriate methods of collecting data, properly training interviewers or observers, and systematically recording and storing the data. It also includes considering ethical issues related to collecting and handling data, such as obtaining informed consent and ensuring the privacy and confidentiality of the participants.

Data analysis

Analyzing case study research involves making sense of the rich, detailed data to answer the research question. This process can be challenging due to the volume and complexity of case study data. However, a systematic and rigorous approach to analysis can ensure that the findings are credible and meaningful. This section outlines the main steps and considerations in analyzing data in case study research.

Organizing the data

The first step in the analysis is organizing the data. This involves sorting the data into manageable sections, often according to the data source or the theme. This step can also involve transcribing interviews, digitizing physical artifacts, or organizing observational data.

Categorizing and coding the data

Once the data is organized, the next step is to categorize or code the data. This involves identifying common themes, patterns, or concepts in the data and assigning codes to relevant data segments. Coding can be done manually or with the help of software tools, and in either case, qualitative analysis software can greatly facilitate the entire coding process. Coding helps to reduce the data to a set of themes or categories that can be more easily analyzed.

Identifying patterns and themes

After coding the data, the researcher looks for patterns or themes in the coded data. This involves comparing and contrasting the codes and looking for relationships or patterns among them. The identified patterns and themes should help answer the research question.

Interpreting the data

Once patterns and themes have been identified, the next step is to interpret these findings. This involves explaining what the patterns or themes mean in the context of the research question and the case. This interpretation should be grounded in the data, but it can also involve drawing on theoretical concepts or prior research.

Verification of the data

The last step in the analysis is verification. This involves checking the accuracy and consistency of the analysis process and confirming that the findings are supported by the data. This can involve re-checking the original data, checking the consistency of codes, or seeking feedback from research participants or peers.

Like any research method , case study research has its strengths and limitations. Researchers must be aware of these, as they can influence the design, conduct, and interpretation of the study.

Understanding the strengths and limitations of case study research can also guide researchers in deciding whether this approach is suitable for their research question . This section outlines some of the key strengths and limitations of case study research.

Benefits include the following:

  • Rich, detailed data: One of the main strengths of case study research is that it can generate rich, detailed data about the case. This can provide a deep understanding of the case and its context, which can be valuable in exploring complex phenomena.
  • Flexibility: Case study research is flexible in terms of design , data collection , and analysis . A sufficient degree of flexibility allows the researcher to adapt the study according to the case and the emerging findings.
  • Real-world context: Case study research involves studying the case in its real-world context, which can provide valuable insights into the interplay between the case and its context.
  • Multiple sources of evidence: Case study research often involves collecting data from multiple sources , which can enhance the robustness and validity of the findings.

On the other hand, researchers should consider the following limitations:

  • Generalizability: A common criticism of case study research is that its findings might not be generalizable to other cases due to the specificity and uniqueness of each case.
  • Time and resource intensive: Case study research can be time and resource intensive due to the depth of the investigation and the amount of collected data.
  • Complexity of analysis: The rich, detailed data generated in case study research can make analyzing the data challenging.
  • Subjectivity: Given the nature of case study research, there may be a higher degree of subjectivity in interpreting the data , so researchers need to reflect on this and transparently convey to audiences how the research was conducted.

Being aware of these strengths and limitations can help researchers design and conduct case study research effectively and interpret and report the findings appropriately.

methodology of case study example

Ready to analyze your data with ATLAS.ti?

See how our intuitive software can draw key insights from your data with a free trial today.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Case Study | Definition, Examples & Methods

Case Study | Definition, Examples & Methods

Published on 5 May 2022 by Shona McCombes . Revised on 30 January 2023.

A case study is a detailed study of a specific subject, such as a person, group, place, event, organisation, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research.

A case study research design usually involves qualitative methods , but quantitative methods are sometimes also used. Case studies are good for describing , comparing, evaluating, and understanding different aspects of a research problem .

Table of contents

When to do a case study, step 1: select a case, step 2: build a theoretical framework, step 3: collect your data, step 4: describe and analyse the case.

A case study is an appropriate research design when you want to gain concrete, contextual, in-depth knowledge about a specific real-world subject. It allows you to explore the key characteristics, meanings, and implications of the case.

Case studies are often a good choice in a thesis or dissertation . They keep your project focused and manageable when you don’t have the time or resources to do large-scale research.

You might use just one complex case study where you explore a single subject in depth, or conduct multiple case studies to compare and illuminate different aspects of your research problem.

Prevent plagiarism, run a free check.

Once you have developed your problem statement and research questions , you should be ready to choose the specific case that you want to focus on. A good case study should have the potential to:

  • Provide new or unexpected insights into the subject
  • Challenge or complicate existing assumptions and theories
  • Propose practical courses of action to resolve a problem
  • Open up new directions for future research

Unlike quantitative or experimental research, a strong case study does not require a random or representative sample. In fact, case studies often deliberately focus on unusual, neglected, or outlying cases which may shed new light on the research problem.

If you find yourself aiming to simultaneously investigate and solve an issue, consider conducting action research . As its name suggests, action research conducts research and takes action at the same time, and is highly iterative and flexible. 

However, you can also choose a more common or representative case to exemplify a particular category, experience, or phenomenon.

While case studies focus more on concrete details than general theories, they should usually have some connection with theory in the field. This way the case study is not just an isolated description, but is integrated into existing knowledge about the topic. It might aim to:

  • Exemplify a theory by showing how it explains the case under investigation
  • Expand on a theory by uncovering new concepts and ideas that need to be incorporated
  • Challenge a theory by exploring an outlier case that doesn’t fit with established assumptions

To ensure that your analysis of the case has a solid academic grounding, you should conduct a literature review of sources related to the topic and develop a theoretical framework . This means identifying key concepts and theories to guide your analysis and interpretation.

There are many different research methods you can use to collect data on your subject. Case studies tend to focus on qualitative data using methods such as interviews, observations, and analysis of primary and secondary sources (e.g., newspaper articles, photographs, official records). Sometimes a case study will also collect quantitative data .

The aim is to gain as thorough an understanding as possible of the case and its context.

In writing up the case study, you need to bring together all the relevant aspects to give as complete a picture as possible of the subject.

How you report your findings depends on the type of research you are doing. Some case studies are structured like a standard scientific paper or thesis, with separate sections or chapters for the methods , results , and discussion .

Others are written in a more narrative style, aiming to explore the case from various angles and analyse its meanings and implications (for example, by using textual analysis or discourse analysis ).

In all cases, though, make sure to give contextual details about the case, connect it back to the literature and theory, and discuss how it fits into wider patterns or debates.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2023, January 30). Case Study | Definition, Examples & Methods. Scribbr. Retrieved 14 May 2024, from https://www.scribbr.co.uk/research-methods/case-studies/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, correlational research | guide, design & examples, a quick guide to experimental design | 5 steps & examples, descriptive research design | definition, methods & examples.

Organizing Your Social Sciences Research Assignments

  • Annotated Bibliography
  • Analyzing a Scholarly Journal Article
  • Group Presentations
  • Dealing with Nervousness
  • Using Visual Aids
  • Grading Someone Else's Paper
  • Types of Structured Group Activities
  • Group Project Survival Skills
  • Leading a Class Discussion
  • Multiple Book Review Essay
  • Reviewing Collected Works
  • Writing a Case Analysis Paper
  • Writing a Case Study
  • About Informed Consent
  • Writing Field Notes
  • Writing a Policy Memo
  • Writing a Reflective Paper
  • Writing a Research Proposal
  • Generative AI and Writing
  • Acknowledgments

A case study research paper examines a person, place, event, condition, phenomenon, or other type of subject of analysis in order to extrapolate  key themes and results that help predict future trends, illuminate previously hidden issues that can be applied to practice, and/or provide a means for understanding an important research problem with greater clarity. A case study research paper usually examines a single subject of analysis, but case study papers can also be designed as a comparative investigation that shows relationships between two or more subjects. The methods used to study a case can rest within a quantitative, qualitative, or mixed-method investigative paradigm.

Case Studies. Writing@CSU. Colorado State University; Mills, Albert J. , Gabrielle Durepos, and Eiden Wiebe, editors. Encyclopedia of Case Study Research . Thousand Oaks, CA: SAGE Publications, 2010 ; “What is a Case Study?” In Swanborn, Peter G. Case Study Research: What, Why and How? London: SAGE, 2010.

How to Approach Writing a Case Study Research Paper

General information about how to choose a topic to investigate can be found under the " Choosing a Research Problem " tab in the Organizing Your Social Sciences Research Paper writing guide. Review this page because it may help you identify a subject of analysis that can be investigated using a case study design.

However, identifying a case to investigate involves more than choosing the research problem . A case study encompasses a problem contextualized around the application of in-depth analysis, interpretation, and discussion, often resulting in specific recommendations for action or for improving existing conditions. As Seawright and Gerring note, practical considerations such as time and access to information can influence case selection, but these issues should not be the sole factors used in describing the methodological justification for identifying a particular case to study. Given this, selecting a case includes considering the following:

  • The case represents an unusual or atypical example of a research problem that requires more in-depth analysis? Cases often represent a topic that rests on the fringes of prior investigations because the case may provide new ways of understanding the research problem. For example, if the research problem is to identify strategies to improve policies that support girl's access to secondary education in predominantly Muslim nations, you could consider using Azerbaijan as a case study rather than selecting a more obvious nation in the Middle East. Doing so may reveal important new insights into recommending how governments in other predominantly Muslim nations can formulate policies that support improved access to education for girls.
  • The case provides important insight or illuminate a previously hidden problem? In-depth analysis of a case can be based on the hypothesis that the case study will reveal trends or issues that have not been exposed in prior research or will reveal new and important implications for practice. For example, anecdotal evidence may suggest drug use among homeless veterans is related to their patterns of travel throughout the day. Assuming prior studies have not looked at individual travel choices as a way to study access to illicit drug use, a case study that observes a homeless veteran could reveal how issues of personal mobility choices facilitate regular access to illicit drugs. Note that it is important to conduct a thorough literature review to ensure that your assumption about the need to reveal new insights or previously hidden problems is valid and evidence-based.
  • The case challenges and offers a counter-point to prevailing assumptions? Over time, research on any given topic can fall into a trap of developing assumptions based on outdated studies that are still applied to new or changing conditions or the idea that something should simply be accepted as "common sense," even though the issue has not been thoroughly tested in current practice. A case study analysis may offer an opportunity to gather evidence that challenges prevailing assumptions about a research problem and provide a new set of recommendations applied to practice that have not been tested previously. For example, perhaps there has been a long practice among scholars to apply a particular theory in explaining the relationship between two subjects of analysis. Your case could challenge this assumption by applying an innovative theoretical framework [perhaps borrowed from another discipline] to explore whether this approach offers new ways of understanding the research problem. Taking a contrarian stance is one of the most important ways that new knowledge and understanding develops from existing literature.
  • The case provides an opportunity to pursue action leading to the resolution of a problem? Another way to think about choosing a case to study is to consider how the results from investigating a particular case may result in findings that reveal ways in which to resolve an existing or emerging problem. For example, studying the case of an unforeseen incident, such as a fatal accident at a railroad crossing, can reveal hidden issues that could be applied to preventative measures that contribute to reducing the chance of accidents in the future. In this example, a case study investigating the accident could lead to a better understanding of where to strategically locate additional signals at other railroad crossings so as to better warn drivers of an approaching train, particularly when visibility is hindered by heavy rain, fog, or at night.
  • The case offers a new direction in future research? A case study can be used as a tool for an exploratory investigation that highlights the need for further research about the problem. A case can be used when there are few studies that help predict an outcome or that establish a clear understanding about how best to proceed in addressing a problem. For example, after conducting a thorough literature review [very important!], you discover that little research exists showing the ways in which women contribute to promoting water conservation in rural communities of east central Africa. A case study of how women contribute to saving water in a rural village of Uganda can lay the foundation for understanding the need for more thorough research that documents how women in their roles as cooks and family caregivers think about water as a valuable resource within their community. This example of a case study could also point to the need for scholars to build new theoretical frameworks around the topic [e.g., applying feminist theories of work and family to the issue of water conservation].

Eisenhardt, Kathleen M. “Building Theories from Case Study Research.” Academy of Management Review 14 (October 1989): 532-550; Emmel, Nick. Sampling and Choosing Cases in Qualitative Research: A Realist Approach . Thousand Oaks, CA: SAGE Publications, 2013; Gerring, John. “What Is a Case Study and What Is It Good for?” American Political Science Review 98 (May 2004): 341-354; Mills, Albert J. , Gabrielle Durepos, and Eiden Wiebe, editors. Encyclopedia of Case Study Research . Thousand Oaks, CA: SAGE Publications, 2010; Seawright, Jason and John Gerring. "Case Selection Techniques in Case Study Research." Political Research Quarterly 61 (June 2008): 294-308.

Structure and Writing Style

The purpose of a paper in the social sciences designed around a case study is to thoroughly investigate a subject of analysis in order to reveal a new understanding about the research problem and, in so doing, contributing new knowledge to what is already known from previous studies. In applied social sciences disciplines [e.g., education, social work, public administration, etc.], case studies may also be used to reveal best practices, highlight key programs, or investigate interesting aspects of professional work.

In general, the structure of a case study research paper is not all that different from a standard college-level research paper. However, there are subtle differences you should be aware of. Here are the key elements to organizing and writing a case study research paper.

I.  Introduction

As with any research paper, your introduction should serve as a roadmap for your readers to ascertain the scope and purpose of your study . The introduction to a case study research paper, however, should not only describe the research problem and its significance, but you should also succinctly describe why the case is being used and how it relates to addressing the problem. The two elements should be linked. With this in mind, a good introduction answers these four questions:

  • What is being studied? Describe the research problem and describe the subject of analysis [the case] you have chosen to address the problem. Explain how they are linked and what elements of the case will help to expand knowledge and understanding about the problem.
  • Why is this topic important to investigate? Describe the significance of the research problem and state why a case study design and the subject of analysis that the paper is designed around is appropriate in addressing the problem.
  • What did we know about this topic before I did this study? Provide background that helps lead the reader into the more in-depth literature review to follow. If applicable, summarize prior case study research applied to the research problem and why it fails to adequately address the problem. Describe why your case will be useful. If no prior case studies have been used to address the research problem, explain why you have selected this subject of analysis.
  • How will this study advance new knowledge or new ways of understanding? Explain why your case study will be suitable in helping to expand knowledge and understanding about the research problem.

Each of these questions should be addressed in no more than a few paragraphs. Exceptions to this can be when you are addressing a complex research problem or subject of analysis that requires more in-depth background information.

II.  Literature Review

The literature review for a case study research paper is generally structured the same as it is for any college-level research paper. The difference, however, is that the literature review is focused on providing background information and  enabling historical interpretation of the subject of analysis in relation to the research problem the case is intended to address . This includes synthesizing studies that help to:

  • Place relevant works in the context of their contribution to understanding the case study being investigated . This would involve summarizing studies that have used a similar subject of analysis to investigate the research problem. If there is literature using the same or a very similar case to study, you need to explain why duplicating past research is important [e.g., conditions have changed; prior studies were conducted long ago, etc.].
  • Describe the relationship each work has to the others under consideration that informs the reader why this case is applicable . Your literature review should include a description of any works that support using the case to investigate the research problem and the underlying research questions.
  • Identify new ways to interpret prior research using the case study . If applicable, review any research that has examined the research problem using a different research design. Explain how your use of a case study design may reveal new knowledge or a new perspective or that can redirect research in an important new direction.
  • Resolve conflicts amongst seemingly contradictory previous studies . This refers to synthesizing any literature that points to unresolved issues of concern about the research problem and describing how the subject of analysis that forms the case study can help resolve these existing contradictions.
  • Point the way in fulfilling a need for additional research . Your review should examine any literature that lays a foundation for understanding why your case study design and the subject of analysis around which you have designed your study may reveal a new way of approaching the research problem or offer a perspective that points to the need for additional research.
  • Expose any gaps that exist in the literature that the case study could help to fill . Summarize any literature that not only shows how your subject of analysis contributes to understanding the research problem, but how your case contributes to a new way of understanding the problem that prior research has failed to do.
  • Locate your own research within the context of existing literature [very important!] . Collectively, your literature review should always place your case study within the larger domain of prior research about the problem. The overarching purpose of reviewing pertinent literature in a case study paper is to demonstrate that you have thoroughly identified and synthesized prior studies in relation to explaining the relevance of the case in addressing the research problem.

III.  Method

In this section, you explain why you selected a particular case [i.e., subject of analysis] and the strategy you used to identify and ultimately decide that your case was appropriate in addressing the research problem. The way you describe the methods used varies depending on the type of subject of analysis that constitutes your case study.

If your subject of analysis is an incident or event . In the social and behavioral sciences, the event or incident that represents the case to be studied is usually bounded by time and place, with a clear beginning and end and with an identifiable location or position relative to its surroundings. The subject of analysis can be a rare or critical event or it can focus on a typical or regular event. The purpose of studying a rare event is to illuminate new ways of thinking about the broader research problem or to test a hypothesis. Critical incident case studies must describe the method by which you identified the event and explain the process by which you determined the validity of this case to inform broader perspectives about the research problem or to reveal new findings. However, the event does not have to be a rare or uniquely significant to support new thinking about the research problem or to challenge an existing hypothesis. For example, Walo, Bull, and Breen conducted a case study to identify and evaluate the direct and indirect economic benefits and costs of a local sports event in the City of Lismore, New South Wales, Australia. The purpose of their study was to provide new insights from measuring the impact of a typical local sports event that prior studies could not measure well because they focused on large "mega-events." Whether the event is rare or not, the methods section should include an explanation of the following characteristics of the event: a) when did it take place; b) what were the underlying circumstances leading to the event; and, c) what were the consequences of the event in relation to the research problem.

If your subject of analysis is a person. Explain why you selected this particular individual to be studied and describe what experiences they have had that provide an opportunity to advance new understandings about the research problem. Mention any background about this person which might help the reader understand the significance of their experiences that make them worthy of study. This includes describing the relationships this person has had with other people, institutions, and/or events that support using them as the subject for a case study research paper. It is particularly important to differentiate the person as the subject of analysis from others and to succinctly explain how the person relates to examining the research problem [e.g., why is one politician in a particular local election used to show an increase in voter turnout from any other candidate running in the election]. Note that these issues apply to a specific group of people used as a case study unit of analysis [e.g., a classroom of students].

If your subject of analysis is a place. In general, a case study that investigates a place suggests a subject of analysis that is unique or special in some way and that this uniqueness can be used to build new understanding or knowledge about the research problem. A case study of a place must not only describe its various attributes relevant to the research problem [e.g., physical, social, historical, cultural, economic, political], but you must state the method by which you determined that this place will illuminate new understandings about the research problem. It is also important to articulate why a particular place as the case for study is being used if similar places also exist [i.e., if you are studying patterns of homeless encampments of veterans in open spaces, explain why you are studying Echo Park in Los Angeles rather than Griffith Park?]. If applicable, describe what type of human activity involving this place makes it a good choice to study [e.g., prior research suggests Echo Park has more homeless veterans].

If your subject of analysis is a phenomenon. A phenomenon refers to a fact, occurrence, or circumstance that can be studied or observed but with the cause or explanation to be in question. In this sense, a phenomenon that forms your subject of analysis can encompass anything that can be observed or presumed to exist but is not fully understood. In the social and behavioral sciences, the case usually focuses on human interaction within a complex physical, social, economic, cultural, or political system. For example, the phenomenon could be the observation that many vehicles used by ISIS fighters are small trucks with English language advertisements on them. The research problem could be that ISIS fighters are difficult to combat because they are highly mobile. The research questions could be how and by what means are these vehicles used by ISIS being supplied to the militants and how might supply lines to these vehicles be cut off? How might knowing the suppliers of these trucks reveal larger networks of collaborators and financial support? A case study of a phenomenon most often encompasses an in-depth analysis of a cause and effect that is grounded in an interactive relationship between people and their environment in some way.

NOTE:   The choice of the case or set of cases to study cannot appear random. Evidence that supports the method by which you identified and chose your subject of analysis should clearly support investigation of the research problem and linked to key findings from your literature review. Be sure to cite any studies that helped you determine that the case you chose was appropriate for examining the problem.

IV.  Discussion

The main elements of your discussion section are generally the same as any research paper, but centered around interpreting and drawing conclusions about the key findings from your analysis of the case study. Note that a general social sciences research paper may contain a separate section to report findings. However, in a paper designed around a case study, it is common to combine a description of the results with the discussion about their implications. The objectives of your discussion section should include the following:

Reiterate the Research Problem/State the Major Findings Briefly reiterate the research problem you are investigating and explain why the subject of analysis around which you designed the case study were used. You should then describe the findings revealed from your study of the case using direct, declarative, and succinct proclamation of the study results. Highlight any findings that were unexpected or especially profound.

Explain the Meaning of the Findings and Why They are Important Systematically explain the meaning of your case study findings and why you believe they are important. Begin this part of the section by repeating what you consider to be your most important or surprising finding first, then systematically review each finding. Be sure to thoroughly extrapolate what your analysis of the case can tell the reader about situations or conditions beyond the actual case that was studied while, at the same time, being careful not to misconstrue or conflate a finding that undermines the external validity of your conclusions.

Relate the Findings to Similar Studies No study in the social sciences is so novel or possesses such a restricted focus that it has absolutely no relation to previously published research. The discussion section should relate your case study results to those found in other studies, particularly if questions raised from prior studies served as the motivation for choosing your subject of analysis. This is important because comparing and contrasting the findings of other studies helps support the overall importance of your results and it highlights how and in what ways your case study design and the subject of analysis differs from prior research about the topic.

Consider Alternative Explanations of the Findings Remember that the purpose of social science research is to discover and not to prove. When writing the discussion section, you should carefully consider all possible explanations revealed by the case study results, rather than just those that fit your hypothesis or prior assumptions and biases. Be alert to what the in-depth analysis of the case may reveal about the research problem, including offering a contrarian perspective to what scholars have stated in prior research if that is how the findings can be interpreted from your case.

Acknowledge the Study's Limitations You can state the study's limitations in the conclusion section of your paper but describing the limitations of your subject of analysis in the discussion section provides an opportunity to identify the limitations and explain why they are not significant. This part of the discussion section should also note any unanswered questions or issues your case study could not address. More detailed information about how to document any limitations to your research can be found here .

Suggest Areas for Further Research Although your case study may offer important insights about the research problem, there are likely additional questions related to the problem that remain unanswered or findings that unexpectedly revealed themselves as a result of your in-depth analysis of the case. Be sure that the recommendations for further research are linked to the research problem and that you explain why your recommendations are valid in other contexts and based on the original assumptions of your study.

V.  Conclusion

As with any research paper, you should summarize your conclusion in clear, simple language; emphasize how the findings from your case study differs from or supports prior research and why. Do not simply reiterate the discussion section. Provide a synthesis of key findings presented in the paper to show how these converge to address the research problem. If you haven't already done so in the discussion section, be sure to document the limitations of your case study and any need for further research.

The function of your paper's conclusion is to: 1) reiterate the main argument supported by the findings from your case study; 2) state clearly the context, background, and necessity of pursuing the research problem using a case study design in relation to an issue, controversy, or a gap found from reviewing the literature; and, 3) provide a place to persuasively and succinctly restate the significance of your research problem, given that the reader has now been presented with in-depth information about the topic.

Consider the following points to help ensure your conclusion is appropriate:

  • If the argument or purpose of your paper is complex, you may need to summarize these points for your reader.
  • If prior to your conclusion, you have not yet explained the significance of your findings or if you are proceeding inductively, use the conclusion of your paper to describe your main points and explain their significance.
  • Move from a detailed to a general level of consideration of the case study's findings that returns the topic to the context provided by the introduction or within a new context that emerges from your case study findings.

Note that, depending on the discipline you are writing in or the preferences of your professor, the concluding paragraph may contain your final reflections on the evidence presented as it applies to practice or on the essay's central research problem. However, the nature of being introspective about the subject of analysis you have investigated will depend on whether you are explicitly asked to express your observations in this way.

Problems to Avoid

Overgeneralization One of the goals of a case study is to lay a foundation for understanding broader trends and issues applied to similar circumstances. However, be careful when drawing conclusions from your case study. They must be evidence-based and grounded in the results of the study; otherwise, it is merely speculation. Looking at a prior example, it would be incorrect to state that a factor in improving girls access to education in Azerbaijan and the policy implications this may have for improving access in other Muslim nations is due to girls access to social media if there is no documentary evidence from your case study to indicate this. There may be anecdotal evidence that retention rates were better for girls who were engaged with social media, but this observation would only point to the need for further research and would not be a definitive finding if this was not a part of your original research agenda.

Failure to Document Limitations No case is going to reveal all that needs to be understood about a research problem. Therefore, just as you have to clearly state the limitations of a general research study , you must describe the specific limitations inherent in the subject of analysis. For example, the case of studying how women conceptualize the need for water conservation in a village in Uganda could have limited application in other cultural contexts or in areas where fresh water from rivers or lakes is plentiful and, therefore, conservation is understood more in terms of managing access rather than preserving access to a scarce resource.

Failure to Extrapolate All Possible Implications Just as you don't want to over-generalize from your case study findings, you also have to be thorough in the consideration of all possible outcomes or recommendations derived from your findings. If you do not, your reader may question the validity of your analysis, particularly if you failed to document an obvious outcome from your case study research. For example, in the case of studying the accident at the railroad crossing to evaluate where and what types of warning signals should be located, you failed to take into consideration speed limit signage as well as warning signals. When designing your case study, be sure you have thoroughly addressed all aspects of the problem and do not leave gaps in your analysis that leave the reader questioning the results.

Case Studies. Writing@CSU. Colorado State University; Gerring, John. Case Study Research: Principles and Practices . New York: Cambridge University Press, 2007; Merriam, Sharan B. Qualitative Research and Case Study Applications in Education . Rev. ed. San Francisco, CA: Jossey-Bass, 1998; Miller, Lisa L. “The Use of Case Studies in Law and Social Science Research.” Annual Review of Law and Social Science 14 (2018): TBD; Mills, Albert J., Gabrielle Durepos, and Eiden Wiebe, editors. Encyclopedia of Case Study Research . Thousand Oaks, CA: SAGE Publications, 2010; Putney, LeAnn Grogan. "Case Study." In Encyclopedia of Research Design , Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE Publications, 2010), pp. 116-120; Simons, Helen. Case Study Research in Practice . London: SAGE Publications, 2009;  Kratochwill,  Thomas R. and Joel R. Levin, editors. Single-Case Research Design and Analysis: New Development for Psychology and Education .  Hilldsale, NJ: Lawrence Erlbaum Associates, 1992; Swanborn, Peter G. Case Study Research: What, Why and How? London : SAGE, 2010; Yin, Robert K. Case Study Research: Design and Methods . 6th edition. Los Angeles, CA, SAGE Publications, 2014; Walo, Maree, Adrian Bull, and Helen Breen. “Achieving Economic Benefits at Local Events: A Case Study of a Local Sports Event.” Festival Management and Event Tourism 4 (1996): 95-106.

Writing Tip

At Least Five Misconceptions about Case Study Research

Social science case studies are often perceived as limited in their ability to create new knowledge because they are not randomly selected and findings cannot be generalized to larger populations. Flyvbjerg examines five misunderstandings about case study research and systematically "corrects" each one. To quote, these are:

Misunderstanding 1 :  General, theoretical [context-independent] knowledge is more valuable than concrete, practical [context-dependent] knowledge. Misunderstanding 2 :  One cannot generalize on the basis of an individual case; therefore, the case study cannot contribute to scientific development. Misunderstanding 3 :  The case study is most useful for generating hypotheses; that is, in the first stage of a total research process, whereas other methods are more suitable for hypotheses testing and theory building. Misunderstanding 4 :  The case study contains a bias toward verification, that is, a tendency to confirm the researcher’s preconceived notions. Misunderstanding 5 :  It is often difficult to summarize and develop general propositions and theories on the basis of specific case studies [p. 221].

While writing your paper, think introspectively about how you addressed these misconceptions because to do so can help you strengthen the validity and reliability of your research by clarifying issues of case selection, the testing and challenging of existing assumptions, the interpretation of key findings, and the summation of case outcomes. Think of a case study research paper as a complete, in-depth narrative about the specific properties and key characteristics of your subject of analysis applied to the research problem.

Flyvbjerg, Bent. “Five Misunderstandings About Case-Study Research.” Qualitative Inquiry 12 (April 2006): 219-245.

  • << Previous: Writing a Case Analysis Paper
  • Next: Writing a Field Report >>
  • Last Updated: May 7, 2024 9:45 AM
  • URL: https://libguides.usc.edu/writingguide/assignments
  • Open access
  • Published: 27 June 2011

The case study approach

  • Sarah Crowe 1 ,
  • Kathrin Cresswell 2 ,
  • Ann Robertson 2 ,
  • Guro Huby 3 ,
  • Anthony Avery 1 &
  • Aziz Sheikh 2  

BMC Medical Research Methodology volume  11 , Article number:  100 ( 2011 ) Cite this article

778k Accesses

1039 Citations

37 Altmetric

Metrics details

The case study approach allows in-depth, multi-faceted explorations of complex issues in their real-life settings. The value of the case study approach is well recognised in the fields of business, law and policy, but somewhat less so in health services research. Based on our experiences of conducting several health-related case studies, we reflect on the different types of case study design, the specific research questions this approach can help answer, the data sources that tend to be used, and the particular advantages and disadvantages of employing this methodological approach. The paper concludes with key pointers to aid those designing and appraising proposals for conducting case study research, and a checklist to help readers assess the quality of case study reports.

Peer Review reports

Introduction

The case study approach is particularly useful to employ when there is a need to obtain an in-depth appreciation of an issue, event or phenomenon of interest, in its natural real-life context. Our aim in writing this piece is to provide insights into when to consider employing this approach and an overview of key methodological considerations in relation to the design, planning, analysis, interpretation and reporting of case studies.

The illustrative 'grand round', 'case report' and 'case series' have a long tradition in clinical practice and research. Presenting detailed critiques, typically of one or more patients, aims to provide insights into aspects of the clinical case and, in doing so, illustrate broader lessons that may be learnt. In research, the conceptually-related case study approach can be used, for example, to describe in detail a patient's episode of care, explore professional attitudes to and experiences of a new policy initiative or service development or more generally to 'investigate contemporary phenomena within its real-life context' [ 1 ]. Based on our experiences of conducting a range of case studies, we reflect on when to consider using this approach, discuss the key steps involved and illustrate, with examples, some of the practical challenges of attaining an in-depth understanding of a 'case' as an integrated whole. In keeping with previously published work, we acknowledge the importance of theory to underpin the design, selection, conduct and interpretation of case studies[ 2 ]. In so doing, we make passing reference to the different epistemological approaches used in case study research by key theoreticians and methodologists in this field of enquiry.

This paper is structured around the following main questions: What is a case study? What are case studies used for? How are case studies conducted? What are the potential pitfalls and how can these be avoided? We draw in particular on four of our own recently published examples of case studies (see Tables 1 , 2 , 3 and 4 ) and those of others to illustrate our discussion[ 3 – 7 ].

What is a case study?

A case study is a research approach that is used to generate an in-depth, multi-faceted understanding of a complex issue in its real-life context. It is an established research design that is used extensively in a wide variety of disciplines, particularly in the social sciences. A case study can be defined in a variety of ways (Table 5 ), the central tenet being the need to explore an event or phenomenon in depth and in its natural context. It is for this reason sometimes referred to as a "naturalistic" design; this is in contrast to an "experimental" design (such as a randomised controlled trial) in which the investigator seeks to exert control over and manipulate the variable(s) of interest.

Stake's work has been particularly influential in defining the case study approach to scientific enquiry. He has helpfully characterised three main types of case study: intrinsic , instrumental and collective [ 8 ]. An intrinsic case study is typically undertaken to learn about a unique phenomenon. The researcher should define the uniqueness of the phenomenon, which distinguishes it from all others. In contrast, the instrumental case study uses a particular case (some of which may be better than others) to gain a broader appreciation of an issue or phenomenon. The collective case study involves studying multiple cases simultaneously or sequentially in an attempt to generate a still broader appreciation of a particular issue.

These are however not necessarily mutually exclusive categories. In the first of our examples (Table 1 ), we undertook an intrinsic case study to investigate the issue of recruitment of minority ethnic people into the specific context of asthma research studies, but it developed into a instrumental case study through seeking to understand the issue of recruitment of these marginalised populations more generally, generating a number of the findings that are potentially transferable to other disease contexts[ 3 ]. In contrast, the other three examples (see Tables 2 , 3 and 4 ) employed collective case study designs to study the introduction of workforce reconfiguration in primary care, the implementation of electronic health records into hospitals, and to understand the ways in which healthcare students learn about patient safety considerations[ 4 – 6 ]. Although our study focusing on the introduction of General Practitioners with Specialist Interests (Table 2 ) was explicitly collective in design (four contrasting primary care organisations were studied), is was also instrumental in that this particular professional group was studied as an exemplar of the more general phenomenon of workforce redesign[ 4 ].

What are case studies used for?

According to Yin, case studies can be used to explain, describe or explore events or phenomena in the everyday contexts in which they occur[ 1 ]. These can, for example, help to understand and explain causal links and pathways resulting from a new policy initiative or service development (see Tables 2 and 3 , for example)[ 1 ]. In contrast to experimental designs, which seek to test a specific hypothesis through deliberately manipulating the environment (like, for example, in a randomised controlled trial giving a new drug to randomly selected individuals and then comparing outcomes with controls),[ 9 ] the case study approach lends itself well to capturing information on more explanatory ' how ', 'what' and ' why ' questions, such as ' how is the intervention being implemented and received on the ground?'. The case study approach can offer additional insights into what gaps exist in its delivery or why one implementation strategy might be chosen over another. This in turn can help develop or refine theory, as shown in our study of the teaching of patient safety in undergraduate curricula (Table 4 )[ 6 , 10 ]. Key questions to consider when selecting the most appropriate study design are whether it is desirable or indeed possible to undertake a formal experimental investigation in which individuals and/or organisations are allocated to an intervention or control arm? Or whether the wish is to obtain a more naturalistic understanding of an issue? The former is ideally studied using a controlled experimental design, whereas the latter is more appropriately studied using a case study design.

Case studies may be approached in different ways depending on the epistemological standpoint of the researcher, that is, whether they take a critical (questioning one's own and others' assumptions), interpretivist (trying to understand individual and shared social meanings) or positivist approach (orientating towards the criteria of natural sciences, such as focusing on generalisability considerations) (Table 6 ). Whilst such a schema can be conceptually helpful, it may be appropriate to draw on more than one approach in any case study, particularly in the context of conducting health services research. Doolin has, for example, noted that in the context of undertaking interpretative case studies, researchers can usefully draw on a critical, reflective perspective which seeks to take into account the wider social and political environment that has shaped the case[ 11 ].

How are case studies conducted?

Here, we focus on the main stages of research activity when planning and undertaking a case study; the crucial stages are: defining the case; selecting the case(s); collecting and analysing the data; interpreting data; and reporting the findings.

Defining the case

Carefully formulated research question(s), informed by the existing literature and a prior appreciation of the theoretical issues and setting(s), are all important in appropriately and succinctly defining the case[ 8 , 12 ]. Crucially, each case should have a pre-defined boundary which clarifies the nature and time period covered by the case study (i.e. its scope, beginning and end), the relevant social group, organisation or geographical area of interest to the investigator, the types of evidence to be collected, and the priorities for data collection and analysis (see Table 7 )[ 1 ]. A theory driven approach to defining the case may help generate knowledge that is potentially transferable to a range of clinical contexts and behaviours; using theory is also likely to result in a more informed appreciation of, for example, how and why interventions have succeeded or failed[ 13 ].

For example, in our evaluation of the introduction of electronic health records in English hospitals (Table 3 ), we defined our cases as the NHS Trusts that were receiving the new technology[ 5 ]. Our focus was on how the technology was being implemented. However, if the primary research interest had been on the social and organisational dimensions of implementation, we might have defined our case differently as a grouping of healthcare professionals (e.g. doctors and/or nurses). The precise beginning and end of the case may however prove difficult to define. Pursuing this same example, when does the process of implementation and adoption of an electronic health record system really begin or end? Such judgements will inevitably be influenced by a range of factors, including the research question, theory of interest, the scope and richness of the gathered data and the resources available to the research team.

Selecting the case(s)

The decision on how to select the case(s) to study is a very important one that merits some reflection. In an intrinsic case study, the case is selected on its own merits[ 8 ]. The case is selected not because it is representative of other cases, but because of its uniqueness, which is of genuine interest to the researchers. This was, for example, the case in our study of the recruitment of minority ethnic participants into asthma research (Table 1 ) as our earlier work had demonstrated the marginalisation of minority ethnic people with asthma, despite evidence of disproportionate asthma morbidity[ 14 , 15 ]. In another example of an intrinsic case study, Hellstrom et al.[ 16 ] studied an elderly married couple living with dementia to explore how dementia had impacted on their understanding of home, their everyday life and their relationships.

For an instrumental case study, selecting a "typical" case can work well[ 8 ]. In contrast to the intrinsic case study, the particular case which is chosen is of less importance than selecting a case that allows the researcher to investigate an issue or phenomenon. For example, in order to gain an understanding of doctors' responses to health policy initiatives, Som undertook an instrumental case study interviewing clinicians who had a range of responsibilities for clinical governance in one NHS acute hospital trust[ 17 ]. Sampling a "deviant" or "atypical" case may however prove even more informative, potentially enabling the researcher to identify causal processes, generate hypotheses and develop theory.

In collective or multiple case studies, a number of cases are carefully selected. This offers the advantage of allowing comparisons to be made across several cases and/or replication. Choosing a "typical" case may enable the findings to be generalised to theory (i.e. analytical generalisation) or to test theory by replicating the findings in a second or even a third case (i.e. replication logic)[ 1 ]. Yin suggests two or three literal replications (i.e. predicting similar results) if the theory is straightforward and five or more if the theory is more subtle. However, critics might argue that selecting 'cases' in this way is insufficiently reflexive and ill-suited to the complexities of contemporary healthcare organisations.

The selected case study site(s) should allow the research team access to the group of individuals, the organisation, the processes or whatever else constitutes the chosen unit of analysis for the study. Access is therefore a central consideration; the researcher needs to come to know the case study site(s) well and to work cooperatively with them. Selected cases need to be not only interesting but also hospitable to the inquiry [ 8 ] if they are to be informative and answer the research question(s). Case study sites may also be pre-selected for the researcher, with decisions being influenced by key stakeholders. For example, our selection of case study sites in the evaluation of the implementation and adoption of electronic health record systems (see Table 3 ) was heavily influenced by NHS Connecting for Health, the government agency that was responsible for overseeing the National Programme for Information Technology (NPfIT)[ 5 ]. This prominent stakeholder had already selected the NHS sites (through a competitive bidding process) to be early adopters of the electronic health record systems and had negotiated contracts that detailed the deployment timelines.

It is also important to consider in advance the likely burden and risks associated with participation for those who (or the site(s) which) comprise the case study. Of particular importance is the obligation for the researcher to think through the ethical implications of the study (e.g. the risk of inadvertently breaching anonymity or confidentiality) and to ensure that potential participants/participating sites are provided with sufficient information to make an informed choice about joining the study. The outcome of providing this information might be that the emotive burden associated with participation, or the organisational disruption associated with supporting the fieldwork, is considered so high that the individuals or sites decide against participation.

In our example of evaluating implementations of electronic health record systems, given the restricted number of early adopter sites available to us, we sought purposively to select a diverse range of implementation cases among those that were available[ 5 ]. We chose a mixture of teaching, non-teaching and Foundation Trust hospitals, and examples of each of the three electronic health record systems procured centrally by the NPfIT. At one recruited site, it quickly became apparent that access was problematic because of competing demands on that organisation. Recognising the importance of full access and co-operative working for generating rich data, the research team decided not to pursue work at that site and instead to focus on other recruited sites.

Collecting the data

In order to develop a thorough understanding of the case, the case study approach usually involves the collection of multiple sources of evidence, using a range of quantitative (e.g. questionnaires, audits and analysis of routinely collected healthcare data) and more commonly qualitative techniques (e.g. interviews, focus groups and observations). The use of multiple sources of data (data triangulation) has been advocated as a way of increasing the internal validity of a study (i.e. the extent to which the method is appropriate to answer the research question)[ 8 , 18 – 21 ]. An underlying assumption is that data collected in different ways should lead to similar conclusions, and approaching the same issue from different angles can help develop a holistic picture of the phenomenon (Table 2 )[ 4 ].

Brazier and colleagues used a mixed-methods case study approach to investigate the impact of a cancer care programme[ 22 ]. Here, quantitative measures were collected with questionnaires before, and five months after, the start of the intervention which did not yield any statistically significant results. Qualitative interviews with patients however helped provide an insight into potentially beneficial process-related aspects of the programme, such as greater, perceived patient involvement in care. The authors reported how this case study approach provided a number of contextual factors likely to influence the effectiveness of the intervention and which were not likely to have been obtained from quantitative methods alone.

In collective or multiple case studies, data collection needs to be flexible enough to allow a detailed description of each individual case to be developed (e.g. the nature of different cancer care programmes), before considering the emerging similarities and differences in cross-case comparisons (e.g. to explore why one programme is more effective than another). It is important that data sources from different cases are, where possible, broadly comparable for this purpose even though they may vary in nature and depth.

Analysing, interpreting and reporting case studies

Making sense and offering a coherent interpretation of the typically disparate sources of data (whether qualitative alone or together with quantitative) is far from straightforward. Repeated reviewing and sorting of the voluminous and detail-rich data are integral to the process of analysis. In collective case studies, it is helpful to analyse data relating to the individual component cases first, before making comparisons across cases. Attention needs to be paid to variations within each case and, where relevant, the relationship between different causes, effects and outcomes[ 23 ]. Data will need to be organised and coded to allow the key issues, both derived from the literature and emerging from the dataset, to be easily retrieved at a later stage. An initial coding frame can help capture these issues and can be applied systematically to the whole dataset with the aid of a qualitative data analysis software package.

The Framework approach is a practical approach, comprising of five stages (familiarisation; identifying a thematic framework; indexing; charting; mapping and interpretation) , to managing and analysing large datasets particularly if time is limited, as was the case in our study of recruitment of South Asians into asthma research (Table 1 )[ 3 , 24 ]. Theoretical frameworks may also play an important role in integrating different sources of data and examining emerging themes. For example, we drew on a socio-technical framework to help explain the connections between different elements - technology; people; and the organisational settings within which they worked - in our study of the introduction of electronic health record systems (Table 3 )[ 5 ]. Our study of patient safety in undergraduate curricula drew on an evaluation-based approach to design and analysis, which emphasised the importance of the academic, organisational and practice contexts through which students learn (Table 4 )[ 6 ].

Case study findings can have implications both for theory development and theory testing. They may establish, strengthen or weaken historical explanations of a case and, in certain circumstances, allow theoretical (as opposed to statistical) generalisation beyond the particular cases studied[ 12 ]. These theoretical lenses should not, however, constitute a strait-jacket and the cases should not be "forced to fit" the particular theoretical framework that is being employed.

When reporting findings, it is important to provide the reader with enough contextual information to understand the processes that were followed and how the conclusions were reached. In a collective case study, researchers may choose to present the findings from individual cases separately before amalgamating across cases. Care must be taken to ensure the anonymity of both case sites and individual participants (if agreed in advance) by allocating appropriate codes or withholding descriptors. In the example given in Table 3 , we decided against providing detailed information on the NHS sites and individual participants in order to avoid the risk of inadvertent disclosure of identities[ 5 , 25 ].

What are the potential pitfalls and how can these be avoided?

The case study approach is, as with all research, not without its limitations. When investigating the formal and informal ways undergraduate students learn about patient safety (Table 4 ), for example, we rapidly accumulated a large quantity of data. The volume of data, together with the time restrictions in place, impacted on the depth of analysis that was possible within the available resources. This highlights a more general point of the importance of avoiding the temptation to collect as much data as possible; adequate time also needs to be set aside for data analysis and interpretation of what are often highly complex datasets.

Case study research has sometimes been criticised for lacking scientific rigour and providing little basis for generalisation (i.e. producing findings that may be transferable to other settings)[ 1 ]. There are several ways to address these concerns, including: the use of theoretical sampling (i.e. drawing on a particular conceptual framework); respondent validation (i.e. participants checking emerging findings and the researcher's interpretation, and providing an opinion as to whether they feel these are accurate); and transparency throughout the research process (see Table 8 )[ 8 , 18 – 21 , 23 , 26 ]. Transparency can be achieved by describing in detail the steps involved in case selection, data collection, the reasons for the particular methods chosen, and the researcher's background and level of involvement (i.e. being explicit about how the researcher has influenced data collection and interpretation). Seeking potential, alternative explanations, and being explicit about how interpretations and conclusions were reached, help readers to judge the trustworthiness of the case study report. Stake provides a critique checklist for a case study report (Table 9 )[ 8 ].

Conclusions

The case study approach allows, amongst other things, critical events, interventions, policy developments and programme-based service reforms to be studied in detail in a real-life context. It should therefore be considered when an experimental design is either inappropriate to answer the research questions posed or impossible to undertake. Considering the frequency with which implementations of innovations are now taking place in healthcare settings and how well the case study approach lends itself to in-depth, complex health service research, we believe this approach should be more widely considered by researchers. Though inherently challenging, the research case study can, if carefully conceptualised and thoughtfully undertaken and reported, yield powerful insights into many important aspects of health and healthcare delivery.

Yin RK: Case study research, design and method. 2009, London: Sage Publications Ltd., 4

Google Scholar  

Keen J, Packwood T: Qualitative research; case study evaluation. BMJ. 1995, 311: 444-446.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Sheikh A, Halani L, Bhopal R, Netuveli G, Partridge M, Car J, et al: Facilitating the Recruitment of Minority Ethnic People into Research: Qualitative Case Study of South Asians and Asthma. PLoS Med. 2009, 6 (10): 1-11.

Article   Google Scholar  

Pinnock H, Huby G, Powell A, Kielmann T, Price D, Williams S, et al: The process of planning, development and implementation of a General Practitioner with a Special Interest service in Primary Care Organisations in England and Wales: a comparative prospective case study. Report for the National Co-ordinating Centre for NHS Service Delivery and Organisation R&D (NCCSDO). 2008, [ http://www.sdo.nihr.ac.uk/files/project/99-final-report.pdf ]

Robertson A, Cresswell K, Takian A, Petrakaki D, Crowe S, Cornford T, et al: Prospective evaluation of the implementation and adoption of NHS Connecting for Health's national electronic health record in secondary care in England: interim findings. BMJ. 2010, 41: c4564-

Pearson P, Steven A, Howe A, Sheikh A, Ashcroft D, Smith P, the Patient Safety Education Study Group: Learning about patient safety: organisational context and culture in the education of healthcare professionals. J Health Serv Res Policy. 2010, 15: 4-10. 10.1258/jhsrp.2009.009052.

Article   PubMed   Google Scholar  

van Harten WH, Casparie TF, Fisscher OA: The evaluation of the introduction of a quality management system: a process-oriented case study in a large rehabilitation hospital. Health Policy. 2002, 60 (1): 17-37. 10.1016/S0168-8510(01)00187-7.

Stake RE: The art of case study research. 1995, London: Sage Publications Ltd.

Sheikh A, Smeeth L, Ashcroft R: Randomised controlled trials in primary care: scope and application. Br J Gen Pract. 2002, 52 (482): 746-51.

PubMed   PubMed Central   Google Scholar  

King G, Keohane R, Verba S: Designing Social Inquiry. 1996, Princeton: Princeton University Press

Doolin B: Information technology as disciplinary technology: being critical in interpretative research on information systems. Journal of Information Technology. 1998, 13: 301-311. 10.1057/jit.1998.8.

George AL, Bennett A: Case studies and theory development in the social sciences. 2005, Cambridge, MA: MIT Press

Eccles M, the Improved Clinical Effectiveness through Behavioural Research Group (ICEBeRG): Designing theoretically-informed implementation interventions. Implementation Science. 2006, 1: 1-8. 10.1186/1748-5908-1-1.

Article   PubMed Central   Google Scholar  

Netuveli G, Hurwitz B, Levy M, Fletcher M, Barnes G, Durham SR, Sheikh A: Ethnic variations in UK asthma frequency, morbidity, and health-service use: a systematic review and meta-analysis. Lancet. 2005, 365 (9456): 312-7.

Sheikh A, Panesar SS, Lasserson T, Netuveli G: Recruitment of ethnic minorities to asthma studies. Thorax. 2004, 59 (7): 634-

CAS   PubMed   PubMed Central   Google Scholar  

Hellström I, Nolan M, Lundh U: 'We do things together': A case study of 'couplehood' in dementia. Dementia. 2005, 4: 7-22. 10.1177/1471301205049188.

Som CV: Nothing seems to have changed, nothing seems to be changing and perhaps nothing will change in the NHS: doctors' response to clinical governance. International Journal of Public Sector Management. 2005, 18: 463-477. 10.1108/09513550510608903.

Lincoln Y, Guba E: Naturalistic inquiry. 1985, Newbury Park: Sage Publications

Barbour RS: Checklists for improving rigour in qualitative research: a case of the tail wagging the dog?. BMJ. 2001, 322: 1115-1117. 10.1136/bmj.322.7294.1115.

Mays N, Pope C: Qualitative research in health care: Assessing quality in qualitative research. BMJ. 2000, 320: 50-52. 10.1136/bmj.320.7226.50.

Mason J: Qualitative researching. 2002, London: Sage

Brazier A, Cooke K, Moravan V: Using Mixed Methods for Evaluating an Integrative Approach to Cancer Care: A Case Study. Integr Cancer Ther. 2008, 7: 5-17. 10.1177/1534735407313395.

Miles MB, Huberman M: Qualitative data analysis: an expanded sourcebook. 1994, CA: Sage Publications Inc., 2

Pope C, Ziebland S, Mays N: Analysing qualitative data. Qualitative research in health care. BMJ. 2000, 320: 114-116. 10.1136/bmj.320.7227.114.

Cresswell KM, Worth A, Sheikh A: Actor-Network Theory and its role in understanding the implementation of information technology developments in healthcare. BMC Med Inform Decis Mak. 2010, 10 (1): 67-10.1186/1472-6947-10-67.

Article   PubMed   PubMed Central   Google Scholar  

Malterud K: Qualitative research: standards, challenges, and guidelines. Lancet. 2001, 358: 483-488. 10.1016/S0140-6736(01)05627-6.

Article   CAS   PubMed   Google Scholar  

Yin R: Case study research: design and methods. 1994, Thousand Oaks, CA: Sage Publishing, 2

Yin R: Enhancing the quality of case studies in health services research. Health Serv Res. 1999, 34: 1209-1224.

Green J, Thorogood N: Qualitative methods for health research. 2009, Los Angeles: Sage, 2

Howcroft D, Trauth E: Handbook of Critical Information Systems Research, Theory and Application. 2005, Cheltenham, UK: Northampton, MA, USA: Edward Elgar

Book   Google Scholar  

Blakie N: Approaches to Social Enquiry. 1993, Cambridge: Polity Press

Doolin B: Power and resistance in the implementation of a medical management information system. Info Systems J. 2004, 14: 343-362. 10.1111/j.1365-2575.2004.00176.x.

Bloomfield BP, Best A: Management consultants: systems development, power and the translation of problems. Sociological Review. 1992, 40: 533-560.

Shanks G, Parr A: Positivist, single case study research in information systems: A critical analysis. Proceedings of the European Conference on Information Systems. 2003, Naples

Pre-publication history

The pre-publication history for this paper can be accessed here: http://www.biomedcentral.com/1471-2288/11/100/prepub

Download references

Acknowledgements

We are grateful to the participants and colleagues who contributed to the individual case studies that we have drawn on. This work received no direct funding, but it has been informed by projects funded by Asthma UK, the NHS Service Delivery Organisation, NHS Connecting for Health Evaluation Programme, and Patient Safety Research Portfolio. We would also like to thank the expert reviewers for their insightful and constructive feedback. Our thanks are also due to Dr. Allison Worth who commented on an earlier draft of this manuscript.

Author information

Authors and affiliations.

Division of Primary Care, The University of Nottingham, Nottingham, UK

Sarah Crowe & Anthony Avery

Centre for Population Health Sciences, The University of Edinburgh, Edinburgh, UK

Kathrin Cresswell, Ann Robertson & Aziz Sheikh

School of Health in Social Science, The University of Edinburgh, Edinburgh, UK

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Sarah Crowe .

Additional information

Competing interests.

The authors declare that they have no competing interests.

Authors' contributions

AS conceived this article. SC, KC and AR wrote this paper with GH, AA and AS all commenting on various drafts. SC and AS are guarantors.

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article.

Crowe, S., Cresswell, K., Robertson, A. et al. The case study approach. BMC Med Res Methodol 11 , 100 (2011). https://doi.org/10.1186/1471-2288-11-100

Download citation

Received : 29 November 2010

Accepted : 27 June 2011

Published : 27 June 2011

DOI : https://doi.org/10.1186/1471-2288-11-100

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Case Study Approach
  • Electronic Health Record System
  • Case Study Design
  • Case Study Site
  • Case Study Report

BMC Medical Research Methodology

ISSN: 1471-2288

methodology of case study example

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

What Is a Case Study?

Weighing the pros and cons of this method of research

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

methodology of case study example

Cara Lustik is a fact-checker and copywriter.

methodology of case study example

Verywell / Colleen Tighe

  • Pros and Cons

What Types of Case Studies Are Out There?

Where do you find data for a case study, how do i write a psychology case study.

A case study is an in-depth study of one person, group, or event. In a case study, nearly every aspect of the subject's life and history is analyzed to seek patterns and causes of behavior. Case studies can be used in many different fields, including psychology, medicine, education, anthropology, political science, and social work.

The point of a case study is to learn as much as possible about an individual or group so that the information can be generalized to many others. Unfortunately, case studies tend to be highly subjective, and it is sometimes difficult to generalize results to a larger population.

While case studies focus on a single individual or group, they follow a format similar to other types of psychology writing. If you are writing a case study, we got you—here are some rules of APA format to reference.  

At a Glance

A case study, or an in-depth study of a person, group, or event, can be a useful research tool when used wisely. In many cases, case studies are best used in situations where it would be difficult or impossible for you to conduct an experiment. They are helpful for looking at unique situations and allow researchers to gather a lot of˜ information about a specific individual or group of people. However, it's important to be cautious of any bias we draw from them as they are highly subjective.

What Are the Benefits and Limitations of Case Studies?

A case study can have its strengths and weaknesses. Researchers must consider these pros and cons before deciding if this type of study is appropriate for their needs.

One of the greatest advantages of a case study is that it allows researchers to investigate things that are often difficult or impossible to replicate in a lab. Some other benefits of a case study:

  • Allows researchers to capture information on the 'how,' 'what,' and 'why,' of something that's implemented
  • Gives researchers the chance to collect information on why one strategy might be chosen over another
  • Permits researchers to develop hypotheses that can be explored in experimental research

On the other hand, a case study can have some drawbacks:

  • It cannot necessarily be generalized to the larger population
  • Cannot demonstrate cause and effect
  • It may not be scientifically rigorous
  • It can lead to bias

Researchers may choose to perform a case study if they want to explore a unique or recently discovered phenomenon. Through their insights, researchers develop additional ideas and study questions that might be explored in future studies.

It's important to remember that the insights from case studies cannot be used to determine cause-and-effect relationships between variables. However, case studies may be used to develop hypotheses that can then be addressed in experimental research.

Case Study Examples

There have been a number of notable case studies in the history of psychology. Much of  Freud's work and theories were developed through individual case studies. Some great examples of case studies in psychology include:

  • Anna O : Anna O. was a pseudonym of a woman named Bertha Pappenheim, a patient of a physician named Josef Breuer. While she was never a patient of Freud's, Freud and Breuer discussed her case extensively. The woman was experiencing symptoms of a condition that was then known as hysteria and found that talking about her problems helped relieve her symptoms. Her case played an important part in the development of talk therapy as an approach to mental health treatment.
  • Phineas Gage : Phineas Gage was a railroad employee who experienced a terrible accident in which an explosion sent a metal rod through his skull, damaging important portions of his brain. Gage recovered from his accident but was left with serious changes in both personality and behavior.
  • Genie : Genie was a young girl subjected to horrific abuse and isolation. The case study of Genie allowed researchers to study whether language learning was possible, even after missing critical periods for language development. Her case also served as an example of how scientific research may interfere with treatment and lead to further abuse of vulnerable individuals.

Such cases demonstrate how case research can be used to study things that researchers could not replicate in experimental settings. In Genie's case, her horrific abuse denied her the opportunity to learn a language at critical points in her development.

This is clearly not something researchers could ethically replicate, but conducting a case study on Genie allowed researchers to study phenomena that are otherwise impossible to reproduce.

There are a few different types of case studies that psychologists and other researchers might use:

  • Collective case studies : These involve studying a group of individuals. Researchers might study a group of people in a certain setting or look at an entire community. For example, psychologists might explore how access to resources in a community has affected the collective mental well-being of those who live there.
  • Descriptive case studies : These involve starting with a descriptive theory. The subjects are then observed, and the information gathered is compared to the pre-existing theory.
  • Explanatory case studies : These   are often used to do causal investigations. In other words, researchers are interested in looking at factors that may have caused certain things to occur.
  • Exploratory case studies : These are sometimes used as a prelude to further, more in-depth research. This allows researchers to gather more information before developing their research questions and hypotheses .
  • Instrumental case studies : These occur when the individual or group allows researchers to understand more than what is initially obvious to observers.
  • Intrinsic case studies : This type of case study is when the researcher has a personal interest in the case. Jean Piaget's observations of his own children are good examples of how an intrinsic case study can contribute to the development of a psychological theory.

The three main case study types often used are intrinsic, instrumental, and collective. Intrinsic case studies are useful for learning about unique cases. Instrumental case studies help look at an individual to learn more about a broader issue. A collective case study can be useful for looking at several cases simultaneously.

The type of case study that psychology researchers use depends on the unique characteristics of the situation and the case itself.

There are a number of different sources and methods that researchers can use to gather information about an individual or group. Six major sources that have been identified by researchers are:

  • Archival records : Census records, survey records, and name lists are examples of archival records.
  • Direct observation : This strategy involves observing the subject, often in a natural setting . While an individual observer is sometimes used, it is more common to utilize a group of observers.
  • Documents : Letters, newspaper articles, administrative records, etc., are the types of documents often used as sources.
  • Interviews : Interviews are one of the most important methods for gathering information in case studies. An interview can involve structured survey questions or more open-ended questions.
  • Participant observation : When the researcher serves as a participant in events and observes the actions and outcomes, it is called participant observation.
  • Physical artifacts : Tools, objects, instruments, and other artifacts are often observed during a direct observation of the subject.

If you have been directed to write a case study for a psychology course, be sure to check with your instructor for any specific guidelines you need to follow. If you are writing your case study for a professional publication, check with the publisher for their specific guidelines for submitting a case study.

Here is a general outline of what should be included in a case study.

Section 1: A Case History

This section will have the following structure and content:

Background information : The first section of your paper will present your client's background. Include factors such as age, gender, work, health status, family mental health history, family and social relationships, drug and alcohol history, life difficulties, goals, and coping skills and weaknesses.

Description of the presenting problem : In the next section of your case study, you will describe the problem or symptoms that the client presented with.

Describe any physical, emotional, or sensory symptoms reported by the client. Thoughts, feelings, and perceptions related to the symptoms should also be noted. Any screening or diagnostic assessments that are used should also be described in detail and all scores reported.

Your diagnosis : Provide your diagnosis and give the appropriate Diagnostic and Statistical Manual code. Explain how you reached your diagnosis, how the client's symptoms fit the diagnostic criteria for the disorder(s), or any possible difficulties in reaching a diagnosis.

Section 2: Treatment Plan

This portion of the paper will address the chosen treatment for the condition. This might also include the theoretical basis for the chosen treatment or any other evidence that might exist to support why this approach was chosen.

  • Cognitive behavioral approach : Explain how a cognitive behavioral therapist would approach treatment. Offer background information on cognitive behavioral therapy and describe the treatment sessions, client response, and outcome of this type of treatment. Make note of any difficulties or successes encountered by your client during treatment.
  • Humanistic approach : Describe a humanistic approach that could be used to treat your client, such as client-centered therapy . Provide information on the type of treatment you chose, the client's reaction to the treatment, and the end result of this approach. Explain why the treatment was successful or unsuccessful.
  • Psychoanalytic approach : Describe how a psychoanalytic therapist would view the client's problem. Provide some background on the psychoanalytic approach and cite relevant references. Explain how psychoanalytic therapy would be used to treat the client, how the client would respond to therapy, and the effectiveness of this treatment approach.
  • Pharmacological approach : If treatment primarily involves the use of medications, explain which medications were used and why. Provide background on the effectiveness of these medications and how monotherapy may compare with an approach that combines medications with therapy or other treatments.

This section of a case study should also include information about the treatment goals, process, and outcomes.

When you are writing a case study, you should also include a section where you discuss the case study itself, including the strengths and limitiations of the study. You should note how the findings of your case study might support previous research. 

In your discussion section, you should also describe some of the implications of your case study. What ideas or findings might require further exploration? How might researchers go about exploring some of these questions in additional studies?

Need More Tips?

Here are a few additional pointers to keep in mind when formatting your case study:

  • Never refer to the subject of your case study as "the client." Instead, use their name or a pseudonym.
  • Read examples of case studies to gain an idea about the style and format.
  • Remember to use APA format when citing references .

Crowe S, Cresswell K, Robertson A, Huby G, Avery A, Sheikh A. The case study approach .  BMC Med Res Methodol . 2011;11:100.

Crowe S, Cresswell K, Robertson A, Huby G, Avery A, Sheikh A. The case study approach . BMC Med Res Methodol . 2011 Jun 27;11:100. doi:10.1186/1471-2288-11-100

Gagnon, Yves-Chantal.  The Case Study as Research Method: A Practical Handbook . Canada, Chicago Review Press Incorporated DBA Independent Pub Group, 2010.

Yin, Robert K. Case Study Research and Applications: Design and Methods . United States, SAGE Publications, 2017.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Case Study Research Method in Psychology

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

Case studies are in-depth investigations of a person, group, event, or community. Typically, data is gathered from various sources using several methods (e.g., observations & interviews).

The case study research method originated in clinical medicine (the case history, i.e., the patient’s personal history). In psychology, case studies are often confined to the study of a particular individual.

The information is mainly biographical and relates to events in the individual’s past (i.e., retrospective), as well as to significant events that are currently occurring in his or her everyday life.

The case study is not a research method, but researchers select methods of data collection and analysis that will generate material suitable for case studies.

Freud (1909a, 1909b) conducted very detailed investigations into the private lives of his patients in an attempt to both understand and help them overcome their illnesses.

This makes it clear that the case study is a method that should only be used by a psychologist, therapist, or psychiatrist, i.e., someone with a professional qualification.

There is an ethical issue of competence. Only someone qualified to diagnose and treat a person can conduct a formal case study relating to atypical (i.e., abnormal) behavior or atypical development.

case study

 Famous Case Studies

  • Anna O – One of the most famous case studies, documenting psychoanalyst Josef Breuer’s treatment of “Anna O” (real name Bertha Pappenheim) for hysteria in the late 1800s using early psychoanalytic theory.
  • Little Hans – A child psychoanalysis case study published by Sigmund Freud in 1909 analyzing his five-year-old patient Herbert Graf’s house phobia as related to the Oedipus complex.
  • Bruce/Brenda – Gender identity case of the boy (Bruce) whose botched circumcision led psychologist John Money to advise gender reassignment and raise him as a girl (Brenda) in the 1960s.
  • Genie Wiley – Linguistics/psychological development case of the victim of extreme isolation abuse who was studied in 1970s California for effects of early language deprivation on acquiring speech later in life.
  • Phineas Gage – One of the most famous neuropsychology case studies analyzes personality changes in railroad worker Phineas Gage after an 1848 brain injury involving a tamping iron piercing his skull.

Clinical Case Studies

  • Studying the effectiveness of psychotherapy approaches with an individual patient
  • Assessing and treating mental illnesses like depression, anxiety disorders, PTSD
  • Neuropsychological cases investigating brain injuries or disorders

Child Psychology Case Studies

  • Studying psychological development from birth through adolescence
  • Cases of learning disabilities, autism spectrum disorders, ADHD
  • Effects of trauma, abuse, deprivation on development

Types of Case Studies

  • Explanatory case studies : Used to explore causation in order to find underlying principles. Helpful for doing qualitative analysis to explain presumed causal links.
  • Exploratory case studies : Used to explore situations where an intervention being evaluated has no clear set of outcomes. It helps define questions and hypotheses for future research.
  • Descriptive case studies : Describe an intervention or phenomenon and the real-life context in which it occurred. It is helpful for illustrating certain topics within an evaluation.
  • Multiple-case studies : Used to explore differences between cases and replicate findings across cases. Helpful for comparing and contrasting specific cases.
  • Intrinsic : Used to gain a better understanding of a particular case. Helpful for capturing the complexity of a single case.
  • Collective : Used to explore a general phenomenon using multiple case studies. Helpful for jointly studying a group of cases in order to inquire into the phenomenon.

Where Do You Find Data for a Case Study?

There are several places to find data for a case study. The key is to gather data from multiple sources to get a complete picture of the case and corroborate facts or findings through triangulation of evidence. Most of this information is likely qualitative (i.e., verbal description rather than measurement), but the psychologist might also collect numerical data.

1. Primary sources

  • Interviews – Interviewing key people related to the case to get their perspectives and insights. The interview is an extremely effective procedure for obtaining information about an individual, and it may be used to collect comments from the person’s friends, parents, employer, workmates, and others who have a good knowledge of the person, as well as to obtain facts from the person him or herself.
  • Observations – Observing behaviors, interactions, processes, etc., related to the case as they unfold in real-time.
  • Documents & Records – Reviewing private documents, diaries, public records, correspondence, meeting minutes, etc., relevant to the case.

2. Secondary sources

  • News/Media – News coverage of events related to the case study.
  • Academic articles – Journal articles, dissertations etc. that discuss the case.
  • Government reports – Official data and records related to the case context.
  • Books/films – Books, documentaries or films discussing the case.

3. Archival records

Searching historical archives, museum collections and databases to find relevant documents, visual/audio records related to the case history and context.

Public archives like newspapers, organizational records, photographic collections could all include potentially relevant pieces of information to shed light on attitudes, cultural perspectives, common practices and historical contexts related to psychology.

4. Organizational records

Organizational records offer the advantage of often having large datasets collected over time that can reveal or confirm psychological insights.

Of course, privacy and ethical concerns regarding confidential data must be navigated carefully.

However, with proper protocols, organizational records can provide invaluable context and empirical depth to qualitative case studies exploring the intersection of psychology and organizations.

  • Organizational/industrial psychology research : Organizational records like employee surveys, turnover/retention data, policies, incident reports etc. may provide insight into topics like job satisfaction, workplace culture and dynamics, leadership issues, employee behaviors etc.
  • Clinical psychology : Therapists/hospitals may grant access to anonymized medical records to study aspects like assessments, diagnoses, treatment plans etc. This could shed light on clinical practices.
  • School psychology : Studies could utilize anonymized student records like test scores, grades, disciplinary issues, and counseling referrals to study child development, learning barriers, effectiveness of support programs, and more.

How do I Write a Case Study in Psychology?

Follow specified case study guidelines provided by a journal or your psychology tutor. General components of clinical case studies include: background, symptoms, assessments, diagnosis, treatment, and outcomes. Interpreting the information means the researcher decides what to include or leave out. A good case study should always clarify which information is the factual description and which is an inference or the researcher’s opinion.

1. Introduction

  • Provide background on the case context and why it is of interest, presenting background information like demographics, relevant history, and presenting problem.
  • Compare briefly to similar published cases if applicable. Clearly state the focus/importance of the case.

2. Case Presentation

  • Describe the presenting problem in detail, including symptoms, duration,and impact on daily life.
  • Include client demographics like age and gender, information about social relationships, and mental health history.
  • Describe all physical, emotional, and/or sensory symptoms reported by the client.
  • Use patient quotes to describe the initial complaint verbatim. Follow with full-sentence summaries of relevant history details gathered, including key components that led to a working diagnosis.
  • Summarize clinical exam results, namely orthopedic/neurological tests, imaging, lab tests, etc. Note actual results rather than subjective conclusions. Provide images if clearly reproducible/anonymized.
  • Clearly state the working diagnosis or clinical impression before transitioning to management.

3. Management and Outcome

  • Indicate the total duration of care and number of treatments given over what timeframe. Use specific names/descriptions for any therapies/interventions applied.
  • Present the results of the intervention,including any quantitative or qualitative data collected.
  • For outcomes, utilize visual analog scales for pain, medication usage logs, etc., if possible. Include patient self-reports of improvement/worsening of symptoms. Note the reason for discharge/end of care.

4. Discussion

  • Analyze the case, exploring contributing factors, limitations of the study, and connections to existing research.
  • Analyze the effectiveness of the intervention,considering factors like participant adherence, limitations of the study, and potential alternative explanations for the results.
  • Identify any questions raised in the case analysis and relate insights to established theories and current research if applicable. Avoid definitive claims about physiological explanations.
  • Offer clinical implications, and suggest future research directions.

5. Additional Items

  • Thank specific assistants for writing support only. No patient acknowledgments.
  • References should directly support any key claims or quotes included.
  • Use tables/figures/images only if substantially informative. Include permissions and legends/explanatory notes.
  • Provides detailed (rich qualitative) information.
  • Provides insight for further research.
  • Permitting investigation of otherwise impractical (or unethical) situations.

Case studies allow a researcher to investigate a topic in far more detail than might be possible if they were trying to deal with a large number of research participants (nomothetic approach) with the aim of ‘averaging’.

Because of their in-depth, multi-sided approach, case studies often shed light on aspects of human thinking and behavior that would be unethical or impractical to study in other ways.

Research that only looks into the measurable aspects of human behavior is not likely to give us insights into the subjective dimension of experience, which is important to psychoanalytic and humanistic psychologists.

Case studies are often used in exploratory research. They can help us generate new ideas (that might be tested by other methods). They are an important way of illustrating theories and can help show how different aspects of a person’s life are related to each other.

The method is, therefore, important for psychologists who adopt a holistic point of view (i.e., humanistic psychologists ).

Limitations

  • Lacking scientific rigor and providing little basis for generalization of results to the wider population.
  • Researchers’ own subjective feelings may influence the case study (researcher bias).
  • Difficult to replicate.
  • Time-consuming and expensive.
  • The volume of data, together with the time restrictions in place, impacted the depth of analysis that was possible within the available resources.

Because a case study deals with only one person/event/group, we can never be sure if the case study investigated is representative of the wider body of “similar” instances. This means the conclusions drawn from a particular case may not be transferable to other settings.

Because case studies are based on the analysis of qualitative (i.e., descriptive) data , a lot depends on the psychologist’s interpretation of the information she has acquired.

This means that there is a lot of scope for Anna O , and it could be that the subjective opinions of the psychologist intrude in the assessment of what the data means.

For example, Freud has been criticized for producing case studies in which the information was sometimes distorted to fit particular behavioral theories (e.g., Little Hans ).

This is also true of Money’s interpretation of the Bruce/Brenda case study (Diamond, 1997) when he ignored evidence that went against his theory.

Breuer, J., & Freud, S. (1895).  Studies on hysteria . Standard Edition 2: London.

Curtiss, S. (1981). Genie: The case of a modern wild child .

Diamond, M., & Sigmundson, K. (1997). Sex Reassignment at Birth: Long-term Review and Clinical Implications. Archives of Pediatrics & Adolescent Medicine , 151(3), 298-304

Freud, S. (1909a). Analysis of a phobia of a five year old boy. In The Pelican Freud Library (1977), Vol 8, Case Histories 1, pages 169-306

Freud, S. (1909b). Bemerkungen über einen Fall von Zwangsneurose (Der “Rattenmann”). Jb. psychoanal. psychopathol. Forsch ., I, p. 357-421; GW, VII, p. 379-463; Notes upon a case of obsessional neurosis, SE , 10: 151-318.

Harlow J. M. (1848). Passage of an iron rod through the head.  Boston Medical and Surgical Journal, 39 , 389–393.

Harlow, J. M. (1868).  Recovery from the Passage of an Iron Bar through the Head .  Publications of the Massachusetts Medical Society. 2  (3), 327-347.

Money, J., & Ehrhardt, A. A. (1972).  Man & Woman, Boy & Girl : The Differentiation and Dimorphism of Gender Identity from Conception to Maturity. Baltimore, Maryland: Johns Hopkins University Press.

Money, J., & Tucker, P. (1975). Sexual signatures: On being a man or a woman.

Further Information

  • Case Study Approach
  • Case Study Method
  • Enhancing the Quality of Case Studies in Health Services Research
  • “We do things together” A case study of “couplehood” in dementia
  • Using mixed methods for evaluating an integrative approach to cancer care: a case study

Print Friendly, PDF & Email

Related Articles

What Is a Focus Group?

Research Methodology

What Is a Focus Group?

Cross-Cultural Research Methodology In Psychology

Cross-Cultural Research Methodology In Psychology

What Is Internal Validity In Research?

What Is Internal Validity In Research?

What Is Face Validity In Research? Importance & How To Measure

Research Methodology , Statistics

What Is Face Validity In Research? Importance & How To Measure

Criterion Validity: Definition & Examples

Criterion Validity: Definition & Examples

Convergent Validity: Definition and Examples

Convergent Validity: Definition and Examples

Academic Success Center

Research Writing and Analysis

  • NVivo Group and Study Sessions
  • SPSS This link opens in a new window
  • Statistical Analysis Group sessions
  • Using Qualtrics
  • Dissertation and Data Analysis Group Sessions
  • Defense Schedule - Commons Calendar This link opens in a new window
  • Research Process Flow Chart
  • Research Alignment Chapter 1 This link opens in a new window
  • Step 1: Seek Out Evidence
  • Step 2: Explain
  • Step 3: The Big Picture
  • Step 4: Own It
  • Step 5: Illustrate
  • Annotated Bibliography
  • Literature Review This link opens in a new window
  • Systematic Reviews & Meta-Analyses
  • How to Synthesize and Analyze
  • Synthesis and Analysis Practice
  • Synthesis and Analysis Group Sessions
  • Problem Statement
  • Purpose Statement
  • Conceptual Framework
  • Theoretical Framework
  • Quantitative Research Questions
  • Qualitative Research Questions
  • Trustworthiness of Qualitative Data
  • Analysis and Coding Example- Qualitative Data
  • Thematic Data Analysis in Qualitative Design
  • Dissertation to Journal Article This link opens in a new window
  • International Journal of Online Graduate Education (IJOGE) This link opens in a new window
  • Journal of Research in Innovative Teaching & Learning (JRIT&L) This link opens in a new window

Writing a Case Study

Hands holding a world globe

What is a case study?

A Map of the world with hands holding a pen.

A Case study is: 

  • An in-depth research design that primarily uses a qualitative methodology but sometimes​​ includes quantitative methodology.
  • Used to examine an identifiable problem confirmed through research.
  • Used to investigate an individual, group of people, organization, or event.
  • Used to mostly answer "how" and "why" questions.

What are the different types of case studies?

Man and woman looking at a laptop

Note: These are the primary case studies. As you continue to research and learn

about case studies you will begin to find a robust list of different types. 

Who are your case study participants?

Boys looking through a camera

What is triangulation ? 

Validity and credibility are an essential part of the case study. Therefore, the researcher should include triangulation to ensure trustworthiness while accurately reflecting what the researcher seeks to investigate.

Triangulation image with examples

How to write a Case Study?

When developing a case study, there are different ways you could present the information, but remember to include the five parts for your case study.

Man holding his hand out to show five fingers.

Was this resource helpful?

  • << Previous: Thematic Data Analysis in Qualitative Design
  • Next: Journal Article Reporting Standards (JARS) >>
  • Last Updated: May 3, 2024 8:12 AM
  • URL: https://resources.nu.edu/researchtools

NCU Library Home

  • Open access
  • Published: 09 May 2024

Evaluation of integrated community case management of the common childhood illness program in Gondar city, northwest Ethiopia: a case study evaluation design

  • Mekides Geta 1 ,
  • Geta Asrade Alemayehu 2 ,
  • Wubshet Debebe Negash 2 ,
  • Tadele Biresaw Belachew 2 ,
  • Chalie Tadie Tsehay 2 &
  • Getachew Teshale 2  

BMC Pediatrics volume  24 , Article number:  310 ( 2024 ) Cite this article

103 Accesses

Metrics details

Integrated Community Case Management (ICCM) of common childhood illness is one of the global initiatives to reduce mortality among under-five children by two-thirds. It is also implemented in Ethiopia to improve community access and coverage of health services. However, as per our best knowledge the implementation status of integrated community case management in the study area is not well evaluated. Therefore, this study aimed to evaluate the implementation status of the integrated community case management program in Gondar City, Northwest Ethiopia.

A single case study design with mixed methods was employed to evaluate the process of integrated community case management for common childhood illness in Gondar town from March 17 to April 17, 2022. The availability, compliance, and acceptability dimensions of the program implementation were evaluated using 49 indicators. In this evaluation, 484 mothers or caregivers participated in exit interviews; 230 records were reviewed, 21 key informants were interviewed; and 42 observations were included. To identify the predictor variables associated with acceptability, we used a multivariable logistic regression analysis. Statistically significant variables were identified based on the adjusted odds ratio (AOR) with a 95% confidence interval (CI) and p-value. The qualitative data was recorded, transcribed, and translated into English, and thematic analysis was carried out.

The overall implementation of integrated community case management was 81.5%, of which availability (84.2%), compliance (83.1%), and acceptability (75.3%) contributed. Some drugs and medical equipment, like Cotrimoxazole, vitamin K, a timer, and a resuscitation bag, were stocked out. Health care providers complained that lack of refreshment training and continuous supportive supervision was the common challenges that led to a skill gap for effective program delivery. Educational status (primary AOR = 0.27, 95% CI:0.11–0.52), secondary AOR = 0.16, 95% CI:0.07–0.39), and college and above AOR = 0.08, 95% CI:0.07–0.39), prescribed drug availability (AOR = 2.17, 95% CI:1.14–4.10), travel time to the to the ICCM site (AOR = 3.8, 95% CI:1.99–7.35), and waiting time (AOR = 2.80, 95% CI:1.16–6.79) were factors associated with the acceptability of the program by caregivers.

Conclusion and recommendation

The overall implementation status of the integrated community case management program was judged as good. However, there were gaps observed in the assessment, classification, and treatment of diseases. Educational status, availability of the prescribed drugs, waiting time and travel time to integrated community case management sites were factors associated with the program acceptability. Continuous supportive supervision for health facilities, refreshment training for HEW’s to maximize compliance, construction clean water sources for HPs, and conducting longitudinal studies for the future are the forwarded recommendation.

Peer Review reports

Integrated Community Case Management (ICCM) is a critical public health strategy for expanding the coverage of quality child care services [ 1 , 2 ]. It mainly concentrated on curative care and also on the diagnosis, treatment, and referral of children who are ill with infectious diseases [ 3 , 4 ].

Based on the World Health Organization (WHO) and the United Nations Children’s Fund (UNICEF) recommendations, Ethiopia adopted and implemented a national policy supporting community-based treatment of common childhood illnesses like pneumonia, Diarrhea, uncomplicated malnutrition, malaria and other febrile illness and Amhara region was one the piloted regions in late 2010 [ 5 ]. The Ethiopian primary healthcare units, established at district levels include primary hospitals, health centers (HCs), and health posts (HPs). The HPs are run by Health Extension Workers (HEWs), and they have function of monitoring health programs and disease occurrence, providing health education, essential primary care services, and timely referrals to HCs [ 6 , 7 ]. The Health Extension Program (HEP) uses task shifting and community ownership to provide essential health services at the first level using the health development army and a network of woman volunteers. These groups are organized to promote health and prevent diseases through community participation and empowerment by identifying the salient local bottlenecks which hinder vital maternal, neonatal, and child health service utilization [ 8 , 9 ].

One of the key steps to enhance the clinical case of health extension staff is to encourage better growth and development among under-five children by health extension. Healthy family and neighborhood practices are also encouraged [ 10 , 11 ]. The program also combines immunization, community-based feeding, vitamin A and de-worming with multiple preventive measures [ 12 , 13 ]. Now a days rapidly scaling up of ICCM approach to efficiently manage the most common causes of morbidity and mortality of children under the age of five in an integrated manner at the community level is required [ 14 , 15 ].

Over 5.3 million children are died at a global level in 2018 and most causes (75%) are preventable or treatable diseases such as pneumonia, malaria and diarrhea [ 16 ]. About 99% of the global burden of mortality and morbidity of under-five children which exists in developing countries are due to common childhood diseases such as pneumonia, diarrhea, malaria and malnutrition [ 17 ].

In 2013, the mortality rate of under-five children in Sub-Saharan Africa decreased to 86 deaths per 1000 live birth and estimated to be 25 per 1000live births by 2030. However, it is a huge figure and the trends are not sufficient to reach the target [ 18 ]. About half of global under-five deaths occurred in sub-Saharan Africa. And from the top 26 nations burdened with 80% of the world’s under-five deaths, 19 are in sub-Saharan Africa [ 19 ].

To alleviate the burden, the Ethiopian government tries to deliver basic child care services at the community level by trained health extension workers. The program improves the health of the children not only in Ethiopia but also in some African nations. Despite its proven benefits, the program implementation had several challenges, in particular, non-adherence to the national guidelines among health care workers [ 20 ]. Addressing those challenges could further improve the program performance. Present treatment levels in sub-Saharan Africa are unacceptably poor; only 39% of children receive proper diarrhea treatment, 13% of children with suspected pneumonia receive antibiotics, 13% of children with fever receive a finger/heel stick to screen for malaria [ 21 ].

To improve the program performance, program gaps should be identified through scientific evaluations and stakeholder involvement. This evaluation not only identify gaps but also forward recommendations for the observed gaps. Furthermore, the implementation status of ICCM of common childhood illnesses has not been evaluated in the study area yet. Therefore, this work aimed to evaluate the implementation status of integrated community case management program implementation in Gondar town, northwest Ethiopia. The findings may be used by policy makers, healthcare providers, funders and researchers.

Method and material

Evaluation design and settings.

A single-case study design with concurrent mixed-methods evaluation was conducted in Gondar city, northwest Ethiopia, from March 17 to April 17, 2022. The evaluability assessment was done from December 15–30, 2021. Both qualitative and quantitative data were collected concurrently, analyzed separately, and integrated at the result interpretation phase.

The evaluation area, Gondar City, is located in northwest Ethiopia, 740 km from Addis Ababa, the capital city of the country. It has six sub-cities and thirty-six kebeles (25 urban and 11 rural). In 2019, the estimated total population of the town was 338,646, and 58,519 (17.3%) were under-five children. In the town there are eight public health centers and 14 health posts serving the population. All health posts provide ICCM service for more than 70,852 populations.

Evaluation approach and dimensions

Program stakeholders.

The evaluation followed a formative participatory approach by engaging the potential stakeholders in the program. Prior to the development of the proposal, an extensive discussion was held with the Gondar City Health Department to identify other key stakeholders in the program. Service providers at each health facility (HCs and HPs), caretakers of sick children, the Gondar City Health Office (GCHO), the Amhara Regional Health Bureau (ARHB), the Minister of Health (MoH), and NGOs (IFHP and Save the Children) were considered key stakeholders. During the Evaluability Assessment (EA), the stakeholders were involved in the development of evaluation questions, objectives, indicators, and judgment criteria of the evaluation.

Evaluation dimensions

The availability and acceptability dimensions from the access framework [ 22 ] and compliance dimension from the fidelity framework [ 23 ] were used to evaluate the implementation of ICCM.

Population and samplings

All under-five children and their caregivers attended at the HPs; program implementers (health extension workers, healthcare providers, healthcare managers, PHCU focal persons, MCH coordinators, and other stakeholders); and ICCM records and registries in the health posts of Gondar city administration were included in the evaluation. For quantitative data, the required sample size was proportionally allocated for each health post based on the number of cases served in the recent one month. But the qualitative sample size was determined by data saturation, and the samples were selected purposefully.

The data sources and sample size for the compliance dimension were all administrative records/reports and ICCM registration books (230 documents) in all health posts registered from December 1, 2021, to February 30, 2022 (three months retrospectively) included in the evaluation. The registries were assessed starting from the most recent registration number until the required sample size was obtained for each health post.

The sample size to measure the mothers’/caregivers’ acceptability towards ICCM was calculated by taking prevalence of caregivers’ satisfaction on ICCM program p  = 74% from previously similar study [ 24 ] and considering standard error 4% at 95% CI and 10% non- responses, which gave 508. Except those who were seriously ill, all caregivers attending the ICCM sites during data collection were selected and interviewed consecutively.

The availability of required supplies, materials and human resources for the program were assessed in all 14HPs. The data collectors observed the health posts and collected required data by using a resources inventory checklist.

A total of 70 non-participatory patient-provider interactions were also observed. The observations were conducted per each health post and for health posts which have more than one health extension workers one of them were selected randomly. The observation findings were used to triangulate the findings obtained through other data collection techniques. Since people may act accordingly to the standards when they know they are observed for their activities, we discarded the first two observations from analysis. It is one of the strategies to minimize the Hawthorne effect of the study. Finally a total of 42 (3 in each HPs) observations were included in the analysis.

Twenty one key informants (14 HEWs, 3 PHCU focal person, 3 health center heads and one MCH coordinator) were interviewed. These key informants were selected since they are assumed to be best teachers in the program. Besides originally developed key informant interview questions, the data collectors probed them to get more detail and clear information.

Variables and measurement

The availability of resources, including trained healthcare workers, was examined using 17 indicators, with weighted score of 35%. Compliance was used to assess HEWs’ adherence to the ICCM treatment guidelines by observing patient-provider interactions and conducting document reviews. We used 18 indicators and a weighted value of 40%.

Mothers’ /caregivers’/ acceptance of ICCM service was examined using 14 indicators and had a weighted score of 25%. The indicators were developed with a five-point Likert scale (1: strongly disagree, 2: disagree, 3: neutral, 4: agree and 5: strongly agree). The cut off point for this categorization was calculated using the demarcation threshold formula: ( \(\frac{\text{t}\text{o}\text{t}\text{a}\text{l}\, \text{h}\text{i}\text{g}\text{h}\text{e}\text{s}\text{t}\, \text{s}\text{c}\text{o}\text{r}\text{e}-\,\text{t}\text{o}\text{t}\text{a}\text{l}\, \text{l}\text{o}\text{w}\text{e}\text{s}\text{t} \,\text{s}\text{c}\text{o}\text{r}\text{e}}{2}) +total lowest score\) ( 25 – 27 ). Those mothers/caregivers/ who scored above cut point (42) were considered as “satisfied”, otherwise “dissatisfied”. The indicators were adapted from the national ICCM and IMNCI implementation guideline and other related evaluations with the participation of stakeholders. Indicator weight was given by the stakeholders during EA. Indicators score was calculated using the formula \(\left(achieved \,in \%=\frac{indicator \,score \,x \,100}{indicator\, weight} \right)\) [ 26 , 28 ].

The independent variables for the acceptability dimension were socio-demographic and economic variables (age, educational status, marital status, occupation of caregiver, family size, income level, and mode of transport), availability of prescribed drugs, waiting time, travel time to ICCM site, home to home visit, consultation time, appointment, and source of information.

The overall implementation of ICCM was measured by using 49 indicators over the three dimensions: availability (17 indicators), compliance (18 indicators) and acceptability (14 indicators).

Program logic model

Based on the constructed program logic model and trained health care providers, mothers/caregivers received health information and counseling on child feeding; children were assessed, classified, and treated for disease, received follow-up; they were checked for vitamin A; and deworming and immunization status were the expected outputs of the program activities. Improved knowledge of HEWs on ICCM, increased health-seeking behavior, improved quality of health services, increased utilization of services, improved data quality and information use, and improved child health conditions are considered outcomes of the program. Reduction of under-five morbidity and mortality and improving quality of life in the society are the distant outcomes or impacts of the program (Fig.  1 ).

figure 1

Integrated community case management of childhood illness program logic model in Gondar City in 2022

Data collection tools and procedure

Resource inventory and data extraction checklists were adapted from standard ICCM tool and check lists [ 29 ]. A structured interviewer administered questionnaire was adapted by referring different literatures [ 30 , 31 ] to measure the acceptability of ICCM. The key informant interview (KII) guide was also developed to explore the views of KIs. The interview questionnaire and guide were initially developed in English and translated into the local language (Amharic) and finally back to English to ensure consistency. All the interviews were done in the local language, Amharic.

Five trained clinical nurses and one BSC nurse were recruited from Gondar zuria and Wegera district as data collectors and supervisors, respectively. Two days training on the overall purpose of the evaluation and basic data collection procedures were provided prior to data collection. Then, both quantitative and qualitative data were gathered at the same time. The quantitative data were gathered from program documentation, charts of ICCM program visitors and, exit interview. Interviews with 21 KIIs and non-participatory observations of patient-provider interactions were used to acquire qualitative data. Key informant interviews were conducted to investigate the gaps and best practices in the implementation of the ICCM program.

A pretest was conducted to 26 mothers/caregivers/ at Maksegnit health post and appropriate modifications were made based on the pretest results. The data collectors were supervised and principal evaluator examined the completeness and consistency of the data on a daily basis.

Data management and analysis

For analysis, quantitative data were entered into epi-data version 4.6 and exported to Stata 14 software for analysis. Narration and tabular statistics were used to present descriptive statistics. Based on established judgment criteria, the total program implementation was examined and interpreted as a mix of the availability, compliance, and acceptability dimensions. To investigate the factors associated with ICCM acceptance, a binary logistic regression analysis was performed. During bivariable analysis, variables with p-values less than 0.25 were included in multivariable analysis. Finally, variables having a p-value less than 0.05 and an adjusted odds ratio (AOR) with a 95% confidence interval (CI) were judged statistically significant. Qualitative data were collected recorded, transcribed into Amharic, then translated into English and finally coded and thematically analyzed.

Judgment matrix analysis

The weighted values of availability, compliance, and acceptability dimensions were 35, 40, and 25 based on the stakeholder and investigator agreement on each indicator, respectively. The judgment parameters for each dimension and the overall implementation of the program were categorized as poor (< 60%), fair (60–74.9%), good (75-84.9%), and very good (85–100%).

Availability of resources

A total of 26 HEWs were assigned within the fourteen health posts, and 72.7% of them were trained on ICCM to manage common childhood illnesses in under-five children. However, the training was given before four years, and they didn’t get even refreshment training about ICCM. The KII responses also supported that the shortage of HEWs at the HPs was the problem in implementing the program properly.

I am the only HEW in this health post and I have not been trained on ICCM program. So, this may compromise the quality of service and client satisfaction.(25 years old HEW with two years’ experience)

All observed health posts had ICCM registration books, monthly report and referral formats, functional thermometer, weighting scale and MUAC tape meter. However, timer and resuscitation bag was not available in all HPs. Most of the key informant finding showed that, in all HPs there was no shortage of guideline, registration book and recording tool; however, there was no OTP card in some health posts.

“Guideline, ICCM registration book for 2–59 months of age, and other different recording and reporting formats and booklet charts are available since September/2016. However, OTP card is not available in most HPs.”. (A 30 years male health center director)

Only one-fifth (21%) of HPs had a clean water source for drinking and washing of equipment. Most of Key-informant interview findings showed that the availability of infrastructures like water was not available in most HPs. Poor linkage between HPs, HCs, town health department, and local Kebele administer were the reason for unavailability.

Since there is no water for hand washing, or drinking, we obligated to bring water from our home for daily consumptions. This increases the burden for us in our daily activity. (35 years old HEW)
Most medicines, such as anti-malaria drugs with RDT, Quartem, Albendazole, Amoxicillin, vitamin A capsules, ORS, and gloves, were available in all the health posts. Drugs like zinc, paracetamol, TTC eye ointment, and folic acid were available in some HPs. However, cotrimoxazole and vitamin K capsules were stocked-out in all health posts for the last six months. The key informant also revealed that: “Vitamin K was not available starting from the beginning of this program and Cotrimoxazole was not available for the past one year and they told us they would avail it soon but still not availed. Some essential ICCM drugs like anti malaria drugs, De-worming, Amoxicillin, vitamin A capsules, ORS and medical supplies were also not available in HCs regularly.”(28 years’ Female PHCU focal)

The overall availability of resources for ICCM implementation was 84.2% which was good based on our presetting judgment parameter (Table  1 ).

Health extension worker’s compliance

From the 42 patient-provider interactions, we found that 85.7%, 71.4%, 76.2%, and 95.2% of the children were checked for body temperature, weight, general danger signs, and immunization status respectively. Out of total (42) observation, 33(78.6%) of sick children were classified for their nutritional status. During observation time 29 (69.1%) of caregivers were counseled by HEWs on food, fluid and when to return back and 35 (83.3%) of children were appointed for next follow-up visit. Key informant interviews also affirmed that;

“Most of our health extension workers were trained on ICCM program guidelines but still there are problems on assessment classification and treatment of disease based on guidelines and standards this is mainly due to lack refreshment training on the program and lack of continuous supportive supervision from the respective body.” (27years’ Male health center head)

From 10 clients classified as having severe pneumonia cases, all of them were referred to a health center (with pre-referral treatment), and from those 57 pneumonia cases, 50 (87.7%) were treated at the HP with amoxicillin or cotrimoxazole. All children with severe diarrhea, very severe disease, and severe complicated malnutrition cases were referred to health centers with a pre-referral treatment for severe dehydration, very severe febrile disease, and severe complicated malnutrition, respectively. From those with some dehydration and no dehydration cases, (82.4%) and (86.8%) were treated at the HPs for some dehydration (ORS; plan B) and for no dehydration (ORS; plan A), respectively. Moreover, zinc sulfate was prescribed for 63 (90%) of under-five children with some dehydration or no dehydration. From 26 malaria cases and 32 severe uncomplicated malnutrition and moderate acute malnutrition cases, 20 (76.9%) and 25 (78.1%) were treated at the HPs, respectively. Of the total reviewed documents, 56 (93.3%), 66 (94.3%), 38 (84.4%), and 25 (78.1%) of them were given a follow-up date for pneumonia, diarrhea, malaria, and malnutrition, respectively.

Supportive supervision and performance review meetings were conducted only in 10 (71.4%) HPs, but all (100%) HPs sent timely reports to the next supervisory body.

Most of the key informants’ interview findings showed that supportive supervision was not conducted regularly and for all HPs.

I had mentored and supervised by supportive supervision teams who came to our health post at different times from health center, town health office and zonal health department. I received this integrated supervision from town health office irregularly, but every month from catchment health center and last integrated supportive supervision from HC was on January. The problem is the supervision was conducted for all programs.(32 years’ old and nine years experienced female HEW)

Moreover, the result showed that there was poor compliance of HEWs for the program mainly due to weak supportive supervision system of managerial and technical health workers. It was also supported by key informants as:

We conducted supportive supervision and performance review meeting at different time, but still there was not regular and not addressed all HPs. In addition to this the supervision and review meeting was conducted as integration of ICCM program with other services. The other problem is that most of the time we didn’t used checklist during supportive supervision. (Mid 30 years old male HC director)

Based on our observation and ICCM document review, 83.1% of the HEWs were complied with the ICCM guidelines and judged as fair (Table  2 ).

Acceptability of ICCM program

Sociodemographic and obstetric characteristics of participants.

A total of 484 study participants responded to the interviewer-administered questionnaire with a response rate of 95.3%. The mean age of study participants was 30.7 (SD ± 5.5) years. Of the total caregivers, the majority (38.6%) were categorized under the age group of 26–30 years. Among the total respondents, 89.3% were married, and regarding religion, the majorities (84.5%) were Orthodox Christian followers. Regarding educational status, over half of caregivers (52.1%) were illiterate (unable to read or write). Nearly two-thirds of the caregivers (62.6%) were housewives (Table  3 ).

All the caregivers came to the health post on foot, and most of them 418 (86.4%) arrived within one hour. The majority of 452 (93.4%) caregivers responded that the waiting time to get the service was less than 30 min. Caregivers who got the prescribed drugs at the health post were 409 (84.5%). Most of the respondents, 429 (88.6%) and 438 (90.5%), received counseling services on providing extra fluid and feeding for their sick child and were given a follow-up date.

Most 298 (61.6%) of the caregivers were satisfied with the convenience of the working hours of HPs, and more than three-fourths (80.8%) were satisfied with the counseling services they received. Most of the respondents, 366 (75.6%), were satisfied with the appropriateness of waiting time and 431 (89%) with the appropriateness of consultation time. The majority (448 (92.6%) of caregivers were satisfied with the way of communicating with HEWs, and 269 (55.6%) were satisfied with the knowledge and competence of HEWs. Nearly half of the caregivers (240, or 49.6%) were satisfied with the availability of drugs at health posts.

The overall acceptability of the ICCM program was 75.3%, which was judged as good. A low proportion of acceptability was measured on the cleanliness of the health posts, the appropriateness of the waiting area, and the competence and knowledge of the HEWs. On the other hand, high proportion of acceptability was measured on appropriateness of waiting time, way of communication with HEWs, and the availability of drugs (Table  4 ).

Factors associated with acceptability of ICCM program

In the final multivariable logistic regression analysis, educational status of caregivers, availability of prescribed drugs, time to arrive, and waiting time were factors significantly associated with the satisfaction of caregivers with the ICCM program.

Accordingly, the odds of caregivers with primary education, secondary education, and college and above were 73% (AOR = 0.27, 95% CI: 0.11–0.52), 84% (AOR = 0.16, 95% CI: 0.07–0.39), and 92% (AOR = 0.08, 95% CI: 0.07–0.40) less likely to accept the program as compared to mothers or caregivers who were not able to read and write, respectively. The odds of caregivers or mothers who received prescribed drugs were 2.17 times more likely to accept the program as compared to their counters (AOR = 2.17, 95% CI: 1.14–4.10). The odds of caregivers or mothers who waited for services for less than 30 min were 2.8 times more likely to accept the program as compared to those who waited for more than 30 min (AOR = 2.80, 95% CI: 1.16–6.79). Moreover, the odds of caregivers/mothers who traveled an hour or less for service were 3.8 times more likely to accept the ICCM program as compared to their counters (AOR = 3.82, 95% CI:1.99–7.35) (Table  5 ).

Overall ICCM program implementation and judgment

The implementation of the ICCM program in Gondar city administration was measured in terms of availability (84.2%), compliance (83.1%), and acceptability (75.3%) dimensions. In the availability dimension, amoxicillin, antimalarial drugs, albendazole, Vit. A, and ORS were available in all health posts, but only six HPs had Ready-to-Use Therapeutic Feedings, three HPs had ORT Corners, and none of the HPs had functional timers. In all health posts, the health extension workers asked the chief to complain, correctly assessed for pneumonia, diarrhea, malaria, and malnutrition, and sent reports based on the national schedule. However, only 70% of caretakers counseled about food, fluids, and when to return, 66% and 76% of the sick children were checked for anemia and other danger signs, respectively. The acceptability level of the program by caretakers and caretakers’/mothers’ educational status, waiting time to get the service and travel time ICCM sites were the factors affecting its acceptability. The overall ICCM program in Gondar city administration was 81.5% and judged as good (Fig.  2 ).

figure 2

Overall ICCM program implementation and the evaluation dimensions in Gondar city administration, 2022

The implementation status of ICCM was judged by using three dimensions including availability, compliance and acceptability of the program. The judgment cut of points was determined during evaluability assessment (EA) along with the stakeholders. As a result, we found that the overall implementation status of ICCM program was good as per the presetting judgment parameter. Availability of resources for the program implementation, compliance of HEWs to the treatment guideline and acceptability of the program services by users were also judged as good as per the judgment parameter.

This evaluation showed that most medications, equipment and recording and reporting materials available. This finding was comparable with the standard ICCM treatment guide line [ 10 ]. On the other hand trained health care providers, some medications like Zink, Paracetamol and TTC eye ointment, folic acid and syringes were not found in some HPs. However the finding was higher than the study conducted in SNNPR on selected health posts [ 33 ] and a study conducted in Soro district, southern Ethiopia [ 24 ]. The possible reason might be due to low interruption of drugs at town health office or regional health department stores, regular supplies of essential drugs and good supply management and distribution of drug from health centers to health post.

The result of this evaluation showed that only one fourth of health posts had functional ORT Corner which was lower compared to the study conducted in SNNPR [ 34 ]. This might be due poor coverage of functional pipe water in the kebeles and the installation was not set at the beginning of health post construction as reported from one of ICCM program coordinator.

Compliance of HEWs to the treatment guidelines in this evaluation was higher than the study done in southern Ethiopia (65.6%) [ 24 ]. This might be due to availability of essential drugs educational level of HEWs and good utilization of ICCM guideline and chart booklet by HEWs. The observations showed most of the sick children were assessed for danger sign, weight, and temperature respectively. This finding is lower than the study conducted in Rwanda [ 35 ]. This difference might be due to lack of refreshment training and regular supportive supervision for HEWs. This also higher compared to the study done in three regions of Ethiopia indicates that 88%, 92% and 93% of children classified as per standard for Pneumonia, diarrhea and malaria respectively [ 36 ]. The reason for this difference may be due to the presence of medical equipment and supplies including RDT kit for malaria, and good educational level of HEWs.

Moreover most HPs received supportive supervision and performance review meeting was conducted and all of them send reports timely to next level. The finding of this evaluation was lower than the study conducted on implementation evaluation of ICCM program southern Ethiopia [ 24 ] and study done in three regions of Ethiopia (Amhara, Tigray and SNNPR) [ 37 ]. This difference might be due sample size variation.

The overall acceptability of the ICCM program was less than the presetting judgment parameter but slightly higher compared to the study in southern Ethiopia [ 24 ]. This might be due to presence of essential drugs for treating children, reasonable waiting and counseling time provided by HEWs, and smooth communication between HEWs and caregivers. In contrast, this was lower than similar studies conducted in Wakiso district, Uganda [ 38 ]. The reason for this might be due to contextual difference between the two countries, inappropriate waiting area to receive the service and poor cleanness of the HPs in our study area. Low acceptability of caregivers to ICCM service was observed in the appropriateness of waiting area, availability of drugs, cleanness of health post, and competence of HEWs while high level of caregiver’s acceptability was consultation time, counseling service they received, communication with HEWs, treatment given for their sick children and interest to return back for ICCM service.

Caregivers who achieved primary, secondary, and college and above were more likely accept the program services than those who were illiterate. This may more educated mothers know about their child health condition and expect quality service from healthcare providers which is more likely reduce the acceptability of the service. The finding is congruent with a study done on implementation evaluation of ICCM program in southern Ethiopia [ 24 ]. However, inconsistent with a study conducted in wakiso district in Uganda [ 38 ]. The possible reason for this might be due to contextual differences between the two countries. The ICCM program acceptability was high in caregivers who received all prescribed drugs than those did not. Caregivers those waited less than 30 min for service were more accepted ICCM services compared to those more than 30 minutes’ waiting time. This finding is similar compared with the study conducted on implementation evaluation of ICCM program in southern Ethiopia [ 24 ]. In contrary, the result was incongruent with a survey result conducted by Ethiopian public health institute in all regions and two administrative cities of Ethiopia [ 39 ]. This variation might be due to smaller sample size in our study the previous one. Moreover, caregivers who traveled to HPs less than 60 min were more likely accepted the program than who traveled more and the finding was similar with the study finding in Jimma zone [ 40 ].

Strengths and limitations

This evaluation used three evaluation dimensions, mixed method and different data sources that would enhance the reliability and credibility of the findings. However, the study might have limitations like social desirability bias, recall bias and Hawthorne effect.

The implementation of the ICCM program in Gondar city administration was measured in terms of availability (84.2%), compliance (83.1%), and acceptability (75.3%) dimensions. In the availability dimension, amoxicillin, antimalarial drugs, albendazole, Vit. A, and ORS were available in all health posts, but only six HPs had Ready-to-Use Therapeutic Feedings, three HPs had ORT Corners, and none of the HPs had functional timers.

This evaluation assessed the implementation status of the ICCM program, focusing mainly on availability, compliance, and acceptability dimensions. The overall implementation status of the program was judged as good. The availability dimension is compromised due to stock-outs of chloroquine syrup, cotrimoxazole, and vitamin K and the inaccessibility of clean water supply in some health posts. Educational statuses of caregivers, availability of prescribed drugs at the HPs, time to arrive to HPs, and waiting time to receive the service were the factors associated with the acceptability of the ICCM program.

Therefore, continuous supportive supervision for health facilities, and refreshment training for HEW’s to maximize compliance are recommended. Materials and supplies shall be delivered directly to the health centers or health posts to solve the transportation problem. HEWs shall document the assessment findings and the services provided using the registration format to identify their gaps, limitations, and better performances. The health facilities and local administrations should construct clean water sources for health facilities. Furthermore, we recommend for future researchers and program evaluators to conduct longitudinal studies to know the causal relationship of the program interventions and the outcomes.

Data availability

Data will be available upon reasonable request from the corresponding author.

Abbreviations

Ethiopian Demographic and Health Survey

Health Center/Health Facility

Health Extension Program

Health Extension Workers

Health Post

Health Sector Development Plan

Integrated Community Case Management of Common Childhood Illnesses

Information Communication and Education

Integrated Family Health Program

Integrated Management of Neonatal and Childhood Illness

Integrated Supportive Supervision

Maternal and Child Health

Mid Upper Arm Circumference

Non-Government Organization

Oral Rehydration Salts

Outpatient Therapeutic program

Primary health care unit

Rapid Diagnostics Test

Ready to Use Therapeutic Foods

Sever Acute Malnutrition

South Nation Nationalities People Region

United Nations International Child Emergency Fund

World Health Organization

Brenner JL, Barigye C, Maling S, Kabakyenga J, Nettel-Aguirre A, Buchner D, et al. Where there is no doctor: can volunteer community health workers in rural Uganda provide integrated community case management? Afr Health Sci. 2017;17(1):237–46.

Article   PubMed   PubMed Central   Google Scholar  

Mubiru D, Byabasheija R, Bwanika JB, Meier JE, Magumba G, Kaggwa FM, et al. Evaluation of integrated community case management in eight districts of Central Uganda. PLoS ONE. 2015;10(8):e0134767.

Samuel S, Arba A. Utilization of integrated community case management service and associated factors among mothers/caregivers who have sick eligible children in southern Ethiopia. Risk Manage Healthc Policy. 2021;14:431.

Article   Google Scholar  

Kavle JA, Pacqué M, Dalglish S, Mbombeshayi E, Anzolo J, Mirindi J, et al. Strengthening nutrition services within integrated community case management (iCCM) of childhood illnesses in the Democratic Republic of Congo: evidence to guide implementation. Matern Child Nutr. 2019;15:e12725.

Miller NP, Amouzou A, Tafesse M, Hazel E, Legesse H, Degefie T, et al. Integrated community case management of childhood illness in Ethiopia: implementation strength and quality of care. Am J Trop Med Hyg. 2014;91(2):424.

WHO. Annual report 2016: Partnership and policy engagement. World Health Organization, 2017.

Banteyerga H. Ethiopia’s health extension program: improving health through community involvement. MEDICC Rev. 2011;13:46–9.

Article   PubMed   Google Scholar  

Wang H, Tesfaye R, Ramana NV, Chekagn G. CT. Ethiopia health extension program: an institutionalized community approach for universal health coverage. The World Bank; 2016.

Donnelly J. Ethiopia gears up for more major health reforms. Lancet. 2011;377(9781):1907–8.

Legesse H, Degefie T, Hiluf M, Sime K, Tesfaye C, Abebe H, et al. National scale-up of integrated community case management in rural Ethiopia: implementation and early lessons learned. Ethiop Med J. 2014;52(Suppl 3):15–26.

Google Scholar  

Miller NP, Amouzou A, Hazel E, Legesse H, Degefie T, Tafesse M et al. Assessment of the impact of quality improvement interventions on the quality of sick child care provided by Health Extension workers in Ethiopia. J Global Health. 2016;6(2).

Oliver K, Young M, Oliphant N, Diaz T, Kim JJNYU. Review of systematic challenges to the scale-up of integrated community case management. Emerging lessons & recommendations from the catalytic initiative (CI/IHSS); 2012.

FMoH E. Health Sector Transformation Plan 2015: https://www.slideshare.net . Accessed 12 Jan 2022.

McGorman L, Marsh DR, Guenther T, Gilroy K, Barat LM, Hammamy D, et al. A health systems approach to integrated community case management of childhood illness: methods and tools. The American Journal of Tropical Medicine and Hygiene. 2012;87(5 Suppl):69.

Young M, Wolfheim C, Marsh DR, Hammamy D. World Health Organization/United Nations Children’s Fund joint statement on integrated community case management: an equity-focused strategy to improve access to essential treatment services for children. The American journal of tropical medicine and hygiene. 2012;87(5 Suppl):6.

Ezbakhe F, Pérez-Foguet A. Child mortality levels and trends. Demographic Research.2020;43:1263-96.

UNICEF, Ending child deaths from pneumonia and diarrhoea. 2016 report: Available at https://data.unicef.org. accessed 13 Jan 2022.

UNITED NATIONS, The Millinium Development Goals Report 2015: Available at https://www.un.org.Accessed 12 Jan 2022

Bent W, Beyene W, Adamu A. Factors Affecting Implementation of Integrated Community Case Management Of Childhood Illness In South West Shoa Zone, Central Ethiopia 2015.

Abdosh B. The quality of hospital services in eastern Ethiopia: Patient’s perspective.The Ethiopian Journal of Health Development. 2006;20(3).

Young M, Wolfheim C, Marsh DR, Hammamy DJTAjotm, hygiene. World Health Organization/United Nations Children’s Fund joint statement on integrated community case management: an equity-focused strategy to improve access to essential treatment services for children.2012;87(5_Suppl):6–10.

Obrist B, Iteba N, Lengeler C, Makemba A, Mshana C, Nathan R, et al. Access to health care in contexts of livelihood insecurity: a framework for analysis and action.PLoS medicine. 2007;4(10):e308.

Carroll C, Patterson M, Wood S, Booth A, Rick J, Balain S. A conceptual framework for implementation fidelity. Implementation science. 2007;2(1):1–9.

Dunalo S, Tadesse B, Abraham G. Implementation Evaluation of Integrated Community Case Management of Common Childhood Illness (ICCM) Program in Soro Woreda, Hadiya Zone Southern Ethiopia 2017 2017.

Asefa G, Atnafu A, Dellie E, Gebremedhin T, Aschalew AY, Tsehay CT. Health System Responsiveness for HIV/AIDS Treatment and Care Services in Shewarobit, North Shewa Zone, Ethiopia. Patient preference and adherence. 2021;15:581.

Gebremedhin T, Daka DW, Alemayehu YK, Yitbarek K, Debie A. Process evaluation of the community-based newborn care program implementation in Geze Gofa district,south Ethiopia: a case study evaluation design. BMC pregnancy and childbirth. 2019;19(1):1–13.

Pitaloka DS, Rizal A. Patient’s satisfaction in antenatal clinic hospital Universiti Kebangsaan Malaysia. Jurnal Kesihatan Masyarakat (Malaysia). 2006;12(1):1–10.

Teshale G, Debie A, Dellie E, Gebremedhin T. Evaluation of the outpatient therapeutic program for severe acute malnourished children aged 6–59 months implementation in Dehana District, Northern Ethiopia: a mixed-methods evaluation. BMC pediatrics. 2022;22(1):1–13.

Mason E. WHO’s strategy on Integrated Management of Childhood Illness. Bulletin of the World Health Organization. 2006;84(8):595.

Shaw B, Amouzou A, Miller NP, Tafesse M, Bryce J, Surkan PJ. Access to integrated community case management of childhood illnesses services in rural Ethiopia: a qualitative study of the perspectives and experiences of caregivers. Health policy and planning.2016;31(5):656 – 66.

Organization WH. Annual report 2016: Partnership and policy engagement. World Health Organization, 2017.

Berhanu D, Avan B. Community Based Newborn Care Baseline Survey Report Ethiopia,October 2014.

Save the children, Enhancing Ethiopia’s Health Extension Package in the Southern Nations and Nationalities People’s Region (SNNPR) Shebedino and Lanfero Woredas report.Hawassa;. 2012: Avalable at https://ethiopia.savethechildren.net

Kolbe AR, Muggah R, Hutson RA, James L, Puccio M, Trzcinski E, et al. Assessing Needs After the Quake: Preliminary Findings from a Randomized Survey of Port-au-Prince Households. University of Michigan/Small Arms Survey: Available at https://deepbluelibumichedu PDF. 2010.

Teferi E, Teno D, Ali I, Alemu H, Bulto T. Quality and use of IMNCI services at health center under-five clinics after introduction of integrated community-based case management (ICCM) in three regions of Ethiopia. Ethiopian Medical Journal. 2014;52(Suppl 3):91 – 8.

Last 10 Km project, Integrated Community Case Management (iCCM) Survey report in Amhara, SNNP, and Tigray Regions, 2017: Avaialable at https://l10k.jsi.com

Tumuhamye N, Rutebemberwa E, Kwesiga D, Bagonza J, Mukose A. Client satisfaction with integrated community case management program in Wakiso District, Uganda, October 2012: A cross sectional survey. Health scrip org. 2013;2013.

EPHI. Ethiopia service provision assessment plus survey 2014 report: available at http://repository.iifphc.org

Gintamo B. EY, Assefa Y. Implementation Evaluation of IMNCI Program at Public Health Centers of Soro District, Hadiya Zone, Southern Ethiopia,. 2017: Available at https://repository.ju.edu.et

Download references

Acknowledgements

We are very grateful to University of Gondar and Gondar town health office for its welcoming approaches. We would also like to thank all of the study participants of this evaluation for their information and commitment. Our appreciation also goes to the data collectors and supervisors for their unreserved contribution.

No funding is secured for this evaluation study.

Author information

Authors and affiliations.

Metema District Health office, Gondar, Ethiopia

Mekides Geta

Department of Health Systems and Policy, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, P.O. Box 196, Gondar, Ethiopia

Geta Asrade Alemayehu, Wubshet Debebe Negash, Tadele Biresaw Belachew, Chalie Tadie Tsehay & Getachew Teshale

You can also search for this author in PubMed   Google Scholar

Contributions

All authors contributed to the preparation of the manuscript. M.G. conceived and designed the evaluation and performed the analysis then T.B.B., W.D.N., G.A.A., C.T.T. and G.T. revised the analysis. G.T. prepared the manuscript and all the authors revised and approved the final manuscript.

Corresponding author

Correspondence to Getachew Teshale .

Ethics declarations

Ethics approval and consent to participate.

Ethical approval was obtained from Institutional Review Board (IRB) of Institute of Public Health, College of Medicine and Health sciences, University of Gondar (Ref No/IPH/1482/2013). Informed consent was obtained from all subjects and/or their legal guardian(s).

Consent for publication

Not applicable.

Competing interests

All authors declared that they have no competing interest.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Geta, M., Alemayehu, G.A., Negash, W.D. et al. Evaluation of integrated community case management of the common childhood illness program in Gondar city, northwest Ethiopia: a case study evaluation design. BMC Pediatr 24 , 310 (2024). https://doi.org/10.1186/s12887-024-04785-0

Download citation

Received : 20 February 2024

Accepted : 22 April 2024

Published : 09 May 2024

DOI : https://doi.org/10.1186/s12887-024-04785-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Integrated community case management

BMC Pediatrics

ISSN: 1471-2431

methodology of case study example

APS

New Content From Advances in Methods and Practices in Psychological Science

  • Advances in Methods and Practices in Psychological Science
  • Cognitive Dissonance
  • Meta-Analysis
  • Methodology
  • Preregistration
  • Reproducibility

methodology of case study example

A Practical Guide to Conversation Research: How to Study What People Say to Each Other Michael Yeomans, F. Katelynn Boland, Hanne Collins, Nicole Abi-Esber, and Alison Wood Brooks  

Conversation—a verbal interaction between two or more people—is a complex, pervasive, and consequential human behavior. Conversations have been studied across many academic disciplines. However, advances in recording and analysis techniques over the last decade have allowed researchers to more directly and precisely examine conversations in natural contexts and at a larger scale than ever before, and these advances open new paths to understand humanity and the social world. Existing reviews of text analysis and conversation research have focused on text generated by a single author (e.g., product reviews, news articles, and public speeches) and thus leave open questions about the unique challenges presented by interactive conversation data (i.e., dialogue). In this article, we suggest approaches to overcome common challenges in the workflow of conversation science, including recording and transcribing conversations, structuring data (to merge turn-level and speaker-level data sets), extracting and aggregating linguistic features, estimating effects, and sharing data. This practical guide is meant to shed light on current best practices and empower more researchers to study conversations more directly—to expand the community of conversation scholars and contribute to a greater cumulative scientific understanding of the social world. 

Open-Science Guidance for Qualitative Research: An Empirically Validated Approach for De-Identifying Sensitive Narrative Data Rebecca Campbell, McKenzie Javorka, Jasmine Engleton, Kathryn Fishwick, Katie Gregory, and Rachael Goodman-Williams  

The open-science movement seeks to make research more transparent and accessible. To that end, researchers are increasingly expected to share de-identified data with other scholars for review, reanalysis, and reuse. In psychology, open-science practices have been explored primarily within the context of quantitative data, but demands to share qualitative data are becoming more prevalent. Narrative data are far more challenging to de-identify fully, and because qualitative methods are often used in studies with marginalized, minoritized, and/or traumatized populations, data sharing may pose substantial risks for participants if their information can be later reidentified. To date, there has been little guidance in the literature on how to de-identify qualitative data. To address this gap, we developed a methodological framework for remediating sensitive narrative data. This multiphase process is modeled on common qualitative-coding strategies. The first phase includes consultations with diverse stakeholders and sources to understand reidentifiability risks and data-sharing concerns. The second phase outlines an iterative process for recognizing potentially identifiable information and constructing individualized remediation strategies through group review and consensus. The third phase includes multiple strategies for assessing the validity of the de-identification analyses (i.e., whether the remediated transcripts adequately protect participants’ privacy). We applied this framework to a set of 32 qualitative interviews with sexual-assault survivors. We provide case examples of how blurring and redaction techniques can be used to protect names, dates, locations, trauma histories, help-seeking experiences, and other information about dyadic interactions. 

Impossible Hypotheses and Effect-Size Limits Wijnand van Tilburg and Lennert van Tilburg

Psychological science is moving toward further specification of effect sizes when formulating hypotheses, performing power analyses, and considering the relevance of findings. This development has sparked an appreciation for the wider context in which such effect sizes are found because the importance assigned to specific sizes may vary from situation to situation. We add to this development a crucial but in psychology hitherto underappreciated contingency: There are mathematical limits to the magnitudes that population effect sizes can take within the common multivariate context in which psychology is situated, and these limits can be far more restrictive than typically assumed. The implication is that some hypothesized or preregistered effect sizes may be impossible. At the same time, these restrictions offer a way of statistically triangulating the plausible range of unknown effect sizes. We explain the reason for the existence of these limits, illustrate how to identify them, and offer recommendations and tools for improving hypothesized effect sizes by exploiting the broader multivariate context in which they occur. 

methodology of case study example

It’s All About Timing: Exploring Different Temporal Resolutions for Analyzing Digital-Phenotyping Data Anna Langener, Gert Stulp, Nicholas Jacobson, Andrea Costanzo, Raj Jagesar, Martien Kas, and Laura Bringmann  

The use of smartphones and wearable sensors to passively collect data on behavior has great potential for better understanding psychological well-being and mental disorders with minimal burden. However, there are important methodological challenges that may hinder the widespread adoption of these passive measures. A crucial one is the issue of timescale: The chosen temporal resolution for summarizing and analyzing the data may affect how results are interpreted. Despite its importance, the choice of temporal resolution is rarely justified. In this study, we aim to improve current standards for analyzing digital-phenotyping data by addressing the time-related decisions faced by researchers. For illustrative purposes, we use data from 10 students whose behavior (e.g., GPS, app usage) was recorded for 28 days through the Behapp application on their mobile phones. In parallel, the participants actively answered questionnaires on their phones about their mood several times a day. We provide a walk-through on how to study different timescales by doing individualized correlation analyses and random-forest prediction models. By doing so, we demonstrate how choosing different resolutions can lead to different conclusions. Therefore, we propose conducting a multiverse analysis to investigate the consequences of choosing different temporal resolutions. This will improve current standards for analyzing digital-phenotyping data and may help combat the replications crisis caused in part by researchers making implicit decisions. 

Calculating Repeated-Measures Meta-Analytic Effects for Continuous Outcomes: A Tutorial on Pretest–Posttest-Controlled Designs David R. Skvarc, Matthew Fuller-Tyszkiewicz  

Meta-analysis is a statistical technique that combines the results of multiple studies to arrive at a more robust and reliable estimate of an overall effect or estimate of the true effect. Within the context of experimental study designs, standard meta-analyses generally use between-groups differences at a single time point. This approach fails to adequately account for preexisting differences that are likely to threaten causal inference. Meta-analyses that take into account the repeated-measures nature of these data are uncommon, and so this article serves as an instructive methodology for increasing the precision of meta-analyses by attempting to estimate the repeated-measures effect sizes, with particular focus on contexts with two time points and two groups (a between-groups pretest–posttest design)—a common scenario for clinical trials and experiments. In this article, we summarize the concept of a between-groups pretest–posttest meta-analysis and its applications. We then explain the basic steps involved in conducting this meta-analysis, including the extraction of data and several alternative approaches for the calculation of effect sizes. We also highlight the importance of considering the presence of within-subjects correlations when conducting this form of meta-analysis.   

Reliability and Feasibility of Linear Mixed Models in Fully Crossed Experimental Designs Michele Scandola, Emmanuele Tidoni  

The use of linear mixed models (LMMs) is increasing in psychology and neuroscience research In this article, we focus on the implementation of LMMs in fully crossed experimental designs. A key aspect of LMMs is choosing a random-effects structure according to the experimental needs. To date, opposite suggestions are present in the literature, spanning from keeping all random effects (maximal models), which produces several singularity and convergence issues, to removing random effects until the best fit is found, with the risk of inflating Type I error (reduced models). However, defining the random structure to fit a nonsingular and convergent model is not straightforward. Moreover, the lack of a standard approach may lead the researcher to make decisions that potentially inflate Type I errors. After reviewing LMMs, we introduce a step-by-step approach to avoid convergence and singularity issues and control for Type I error inflation during model reduction of fully crossed experimental designs. Specifically, we propose the use of complex random intercepts (CRIs) when maximal models are overparametrized. CRIs are multiple random intercepts that represent the residual variance of categorical fixed effects within a given grouping factor. We validated CRIs and the proposed procedure by extensive simulations and a real-case application. We demonstrate that CRIs can produce reliable results and require less computational resources. Moreover, we outline a few criteria and recommendations on how and when scholars should reduce overparametrized models. Overall, the proposed procedure provides clear solutions to avoid overinflated results using LMMs in psychology and neuroscience.   

Understanding Meta-Analysis Through Data Simulation With Applications to Power Analysis Filippo Gambarota, Gianmarco Altoè  

Meta-analysis is a powerful tool to combine evidence from existing literature. Despite several introductory and advanced materials about organizing, conducting, and reporting a meta-analysis, to our knowledge, there are no introductive materials about simulating the most common meta-analysis models. Data simulation is essential for developing and validating new statistical models and procedures. Furthermore, data simulation is a powerful educational tool for understanding a statistical method. In this tutorial, we show how to simulate equal-effects, random-effects, and metaregression models and illustrate how to estimate statistical power. Simulations for multilevel and multivariate models are available in the Supplemental Material available online. All materials associated with this article can be accessed on OSF ( https://osf.io/54djn/ ).   

Feedback on this article? Email  [email protected]  or login to comment.

APS regularly opens certain online articles for discussion on our website. Effective February 2021, you must be a logged-in APS member to post comments. By posting a comment, you agree to our Community Guidelines and the display of your profile information, including your name and affiliation. Any opinions, findings, conclusions, or recommendations present in article comments are those of the writers and do not necessarily reflect the views of APS or the article’s author. For more information, please see our Community Guidelines .

Please login with your APS account to comment.

Privacy Overview

  • Schedule an Appointment

Tufts Logo

  • Undergraduate Students in AS&E and SMFA
  • Graduate Students in AS&E and SMFA
  • Faculty & Staff
  • Parents and Families
  • What is a Career Community?
  • Reflect, Discover & Explore Multiple Interests
  • Arts, Communications & Media
  • Education, Nonprofit & Social Impact
  • Engineering, Technology & Physical Sciences
  • Finance, Consulting, Entrepreneurship & Business
  • Government, International Affairs & Law
  • Healthcare, Life Sciences & the Environment
  • Exploring Your Interests, Careers & Majors
  • Writing Resumes & Cover Letters
  • Finding an Internship
  • Finding Jobs & Fellowships
  • Preparing for Interviews
  • Applying to Graduate & Professional School
  • First Generation
  • International Students
  • Black, Indigenous & People of Color
  • Students with Disabilities
  • Students with Undocumented Status
  • Women & Gender
  • For Employers
  • Contact & Location
  • Career Fellows
  • Career Services by School

Case Interview: Complete Prep Guide

  • Share This: Share Case Interview: Complete Prep Guide on Facebook Share Case Interview: Complete Prep Guide on LinkedIn Share Case Interview: Complete Prep Guide on X

Welcome to our preparation tips for case interviews!  Whether you are just curious about case interviews or are planning to apply for consulting internships or full-time jobs, these tips and resources will help you feel more prepared and confident.

methodology of case study example

A case interview is a role playing exercise in which an employer assesses how logically and persuasively you can present a case. Rather than seeing if you get the “correct” answer, the objective is to evaluate your thought process. ( Adapted with permission from Case In Point: Complete Case Interview Preparation by Marc Cosentino). 

Case interviews are very commonly used in the interview process for consulting firms and companies in similar industries. In the case interview, you will typically be given a business problem and then asked to solve it in a structured way. Learning this structure takes preparation and practice. You can learn more and practice using the resources listed below.  

Why are Case Interviews Used?

Case interviews allow employers to test and evaluate the following skills:

  • Analytical skills and logical ability to solve problems
  • Structure and thought process
  • Ability to ask for relevant data/information
  • Tolerance for ambiguity and data overload
  • Poise and communication skills under pressure and in front of a client

How can I prepare for Case Interviews?

1.) Read Management Consulted’s “Case Interview: Complete Prep Guide (2024)”

Management Consulted is a FREE resource for Tufts students : case and consulting resources such as 500 sample cases, Case Interview Bootcamp,  Market Sizing Drills, Math Drills, case videos, consulting firm directory, and more

2.) Review additional resources:

  • Case in Point – This book, by Marc Cosentino, is a comprehensive guide that walks you through the case interview process from beginning to end. This guide has helped many students over the years and can serve as an excellent foundation for how to approach business problems
  • Casequestions.com – The companion website to Marc Cosentino’s book listed above offers preparation for case interviews, along with links to top 50 consulting firms
  • Management Consulting Case Interviews: Cracking The Case – tips for case interviews from the other side of the table, from Argopoint, a Boston management consulting firm specializing in legal department consulting for Fortune 500 companies
  • Preplounge.com – Free case preparation access for to up to 6 practice interviews with peers, selected cases, and video case solutions
  • RocketBlocks – Features consulting preparation such as drills and coaching
  • Practice sample online cases on consulting firm websites such as McKinsey , BCG , Bain , Deloitte and more!  

3.) Schedule a mock case interview appointment with  Karen Dankers or Kathy Spillane , our advisors for the Finance, Consulting, Entrepreneurship, and Business Career Community.

4.) PRACTICE PRACTICE PRACTICE cases out loud on your own (yes, that can feel odd) or preferably, with another person. See #2 and #3 above for resources and ideas to find partners to practice live cases

5.) Enjoy and have fun solving business problems!

' src=

Machine Learning and image analysis towards improved energy management in Industry 4.0: a practical case study on quality control

  • Original Article
  • Open access
  • Published: 13 May 2024
  • Volume 17 , article number  48 , ( 2024 )

Cite this article

You have full access to this open access article

methodology of case study example

  • Mattia Casini 1 ,
  • Paolo De Angelis 1 ,
  • Marco Porrati 2 ,
  • Paolo Vigo 1 ,
  • Matteo Fasano 1 ,
  • Eliodoro Chiavazzo 1 &
  • Luca Bergamasco   ORCID: orcid.org/0000-0001-6130-9544 1  

65 Accesses

1 Altmetric

Explore all metrics

With the advent of Industry 4.0, Artificial Intelligence (AI) has created a favorable environment for the digitalization of manufacturing and processing, helping industries to automate and optimize operations. In this work, we focus on a practical case study of a brake caliper quality control operation, which is usually accomplished by human inspection and requires a dedicated handling system, with a slow production rate and thus inefficient energy usage. We report on a developed Machine Learning (ML) methodology, based on Deep Convolutional Neural Networks (D-CNNs), to automatically extract information from images, to automate the process. A complete workflow has been developed on the target industrial test case. In order to find the best compromise between accuracy and computational demand of the model, several D-CNNs architectures have been tested. The results show that, a judicious choice of the ML model with a proper training, allows a fast and accurate quality control; thus, the proposed workflow could be implemented for an ML-powered version of the considered problem. This would eventually enable a better management of the available resources, in terms of time consumption and energy usage.

Avoid common mistakes on your manuscript.

Introduction

An efficient use of energy resources in industry is key for a sustainable future (Bilgen, 2014 ; Ocampo-Martinez et al., 2019 ). The advent of Industry 4.0, and of Artificial Intelligence, have created a favorable context for the digitalisation of manufacturing processes. In this view, Machine Learning (ML) techniques have the potential for assisting industries in a better and smart usage of the available data, helping to automate and improve operations (Narciso & Martins, 2020 ; Mazzei & Ramjattan, 2022 ). For example, ML tools can be used to analyze sensor data from industrial equipment for predictive maintenance (Carvalho et al., 2019 ; Dalzochio et al., 2020 ), which allows identification of potential failures in advance, and thus to a better planning of maintenance operations with reduced downtime. Similarly, energy consumption optimization (Shen et al., 2020 ; Qin et al., 2020 ) can be achieved via ML-enabled analysis of available consumption data, with consequent adjustments of the operating parameters, schedules, or configurations to minimize energy consumption while maintaining an optimal production efficiency. Energy consumption forecast (Liu et al., 2019 ; Zhang et al., 2018 ) can also be improved, especially in industrial plants relying on renewable energy sources (Bologna et al., 2020 ; Ismail et al., 2021 ), by analysis of historical data on weather patterns and forecast, to optimize the usage of energy resources, avoid energy peaks, and leverage alternative energy sources or storage systems (Li & Zheng, 2016 ; Ribezzo et al., 2022 ; Fasano et al., 2019 ; Trezza et al., 2022 ; Mishra et al., 2023 ). Finally, ML tools can also serve for fault or anomaly detection (Angelopoulos et al., 2019 ; Md et al., 2022 ), which allows prompt corrective actions to optimize energy usage and prevent energy inefficiencies. Within this context, ML techniques for image analysis (Casini et al., 2024 ) are also gaining increasing interest (Chen et al., 2023 ), for their application to e.g. materials design and optimization (Choudhury, 2021 ), quality control (Badmos et al., 2020 ), process monitoring (Ho et al., 2021 ), or detection of machine failures by converting time series data from sensors to 2D images (Wen et al., 2017 ).

Incorporating digitalisation and ML techniques into Industry 4.0 has led to significant energy savings (Maggiore et al., 2021 ; Nota et al., 2020 ). Projects adopting these technologies can achieve an average of 15% to 25% improvement in energy efficiency in the processes where they were implemented (Arana-Landín et al., 2023 ). For instance, in predictive maintenance, ML can reduce energy consumption by optimizing the operation of machinery (Agrawal et al., 2023 ; Pan et al., 2024 ). In process optimization, ML algorithms can improve energy efficiency by 10-20% by analyzing and adjusting machine operations for optimal performance, thereby reducing unnecessary energy usage (Leong et al., 2020 ). Furthermore, the implementation of ML algorithms for optimal control can lead to energy savings of 30%, because these systems can make real-time adjustments to production lines, ensuring that machines operate at peak energy efficiency (Rahul & Chiddarwar, 2023 ).

In automotive manufacturing, ML-driven quality control can lead to energy savings by reducing the need for redoing parts or running inefficient production cycles (Vater et al., 2019 ). In high-volume production environments such as consumer electronics, novel computer-based vision models for automated detection and classification of damaged packages from intact packages can speed up operations and reduce waste (Shahin et al., 2023 ). In heavy industries like steel or chemical manufacturing, ML can optimize the energy consumption of large machinery. By predicting the optimal operating conditions and maintenance schedules, these systems can save energy costs (Mypati et al., 2023 ). Compressed air is one of the most energy-intensive processes in manufacturing. ML can optimize the performance of these systems, potentially leading to energy savings by continuously monitoring and adjusting the air compressors for peak efficiency, avoiding energy losses due to leaks or inefficient operation (Benedetti et al., 2019 ). ML can also contribute to reducing energy consumption and minimizing incorrectly produced parts in polymer processing enterprises (Willenbacher et al., 2021 ).

Here we focus on a practical industrial case study of brake caliper processing. In detail, we focus on the quality control operation, which is typically accomplished by human visual inspection and requires a dedicated handling system. This eventually implies a slower production rate, and inefficient energy usage. We thus propose the integration of an ML-based system to automatically perform the quality control operation, without the need for a dedicated handling system and thus reduced operation time. To this, we rely on ML tools able to analyze and extract information from images, that is, deep convolutional neural networks, D-CNNs (Alzubaidi et al., 2021 ; Chai et al., 2021 ).

figure 1

Sample 3D model (GrabCAD ) of the considered brake caliper: (a) part without defects, and (b) part with three sample defects, namely a scratch, a partially missing letter in the logo, and a circular painting defect (shown by the yellow squares, from left to right respectively)

A complete workflow for the purpose has been developed and tested on a real industrial test case. This includes: a dedicated pre-processing of the brake caliper images, their labelling and analysis using two dedicated D-CNN architectures (one for background removal, and one for defect identification), post-processing and analysis of the neural network output. Several different D-CNN architectures have been tested, in order to find the best model in terms of accuracy and computational demand. The results show that, a judicious choice of the ML model with a proper training, allows to obtain fast and accurate recognition of possible defects. The best-performing models, indeed, reach over 98% accuracy on the target criteria for quality control, and take only few seconds to analyze each image. These results make the proposed workflow compliant with the typical industrial expectations; therefore, in perspective, it could be implemented for an ML-powered version of the considered industrial problem. This would eventually allow to achieve better performance of the manufacturing process and, ultimately, a better management of the available resources in terms of time consumption and energy expense.

figure 2

Different neural network architectures: convolutional encoder (a) and encoder-decoder (b)

The industrial quality control process that we target is the visual inspection of manufactured components, to verify the absence of possible defects. Due to industrial confidentiality reasons, a representative open-source 3D geometry (GrabCAD ) of the considered parts, similar to the original one, is shown in Fig. 1 . For illustrative purposes, the clean geometry without defects (Fig.  1 (a)) is compared to the geometry with three possible sample defects, namely: a scratch on the surface of the brake caliper, a partially missing letter in the logo, and a circular painting defect (highlighted by the yellow squares, from left to right respectively, in Fig.  1 (b)). Note that, one or multiple defects may be present on the geometry, and that other types of defects may also be considered.

Within the industrial production line, this quality control is typically time consuming, and requires a dedicated handling system with the associated slow production rate and energy inefficiencies. Thus, we developed a methodology to achieve an ML-powered version of the control process. The method relies on data analysis and, in particular, on information extraction from images of the brake calipers via Deep Convolutional Neural Networks, D-CNNs (Alzubaidi et al., 2021 ). The designed workflow for defect recognition is implemented in the following two steps: 1) removal of the background from the image of the caliper, in order to reduce noise and irrelevant features in the image, ultimately rendering the algorithms more flexible with respect to the background environment; 2) analysis of the geometry of the caliper to identify the different possible defects. These two serial steps are accomplished via two different and dedicated neural networks, whose architecture is discussed in the next section.

Convolutional Neural Networks (CNNs) pertain to a particular class of deep neural networks for information extraction from images. The feature extraction is accomplished via convolution operations; thus, the algorithms receive an image as an input, analyze it across several (deep) neural layers to identify target features, and provide the obtained information as an output (Casini et al., 2024 ). Regarding this latter output, different formats can be retrieved based on the considered architecture of the neural network. For a numerical data output, such as that required to obtain a classification of the content of an image (Bhatt et al., 2021 ), e.g. correct or defective caliper in our case, a typical layout of the network involving a convolutional backbone, and a fully-connected network can be adopted (see Fig. 2 (a)). On the other hand, if the required output is still an image, a more complex architecture with a convolutional backbone (encoder) and a deconvolutional head (decoder) can be used (see Fig. 2 (b)).

As previously introduced, our workflow targets the analysis of the brake calipers in a two-step procedure: first, the removal of the background from the input image (e.g. Fig. 1 ); second, the geometry of the caliper is analyzed and the part is classified as acceptable or not depending on the absence or presence of any defect, respectively. Thus, in the first step of the procedure, a dedicated encoder-decoder network (Minaee et al., 2021 ) is adopted to classify the pixels in the input image as brake or background. The output of this model will then be a new version of the input image, where the background pixels are blacked. This helps the algorithms in the subsequent analysis to achieve a better performance, and to avoid bias due to possible different environments in the input image. In the second step of the workflow, a dedicated encoder architecture is adopted. Here, the previous background-filtered image is fed to the convolutional network, and the geometry of the caliper is analyzed to spot possible defects and thus classify the part as acceptable or not. In this work, both deep learning models are supervised , that is, the algorithms are trained with the help of human-labeled data (LeCun et al., 2015 ). Particularly, the first algorithm for background removal is fed with the original image as well as with a ground truth (i.e. a binary image, also called mask , consisting of black and white pixels) which instructs the algorithm to learn which pixels pertain to the brake and which to the background. This latter task is usually called semantic segmentation in Machine Learning and Deep Learning (Géron, 2022 ). Analogously, the second algorithm is fed with the original image (without the background) along with an associated mask, which serves the neural networks with proper instructions to identify possible defects on the target geometry. The required pre-processing of the input images, as well as their use for training and validation of the developed algorithms, are explained in the next sections.

Image pre-processing

Machine Learning approaches rely on data analysis; thus, the quality of the final results is well known to depend strongly on the amount and quality of the available data for training of the algorithms (Banko & Brill, 2001 ; Chen et al., 2021 ). In our case, the input images should be well-representative for the target analysis and include adequate variability of the possible features to allow the neural networks to produce the correct output. In this view, the original images should include, e.g., different possible backgrounds, a different viewing angle of the considered geometry and a different light exposure (as local light reflections may affect the color of the geometry and thus the analysis). The creation of such a proper dataset for specific cases is not always straightforward; in our case, for example, it would imply a systematic acquisition of a large set of images in many different conditions. This would require, in turn, disposing of all the possible target defects on the real parts, and of an automatic acquisition system, e.g., a robotic arm with an integrated camera. Given that, in our case, the initial dataset could not be generated on real parts, we have chosen to generate a well-balanced dataset of images in silico , that is, based on image renderings of the real geometry. The key idea was that, if the rendered geometry is sufficiently close to a real photograph, the algorithms may be instructed on artificially-generated images and then tested on a few real ones. This approach, if properly automatized, clearly allows to easily produce a large amount of images in all the different conditions required for the analysis.

In a first step, starting from the CAD file of the brake calipers, we worked manually using the open-source software Blender (Blender ), to modify the material properties and achieve a realistic rendering. After that, defects were generated by means of Boolean (subtraction) operations between the geometry of the brake caliper and ad-hoc geometries for each defect. Fine tuning on the generated defects has allowed for a realistic representation of the different defects. Once the results were satisfactory, we developed an automated Python code for the procedures, to generate the renderings in different conditions. The Python code allows to: load a given CAD geometry, change the material properties, set different viewing angles for the geometry, add different types of defects (with given size, rotation and location on the geometry of the brake caliper), add a custom background, change the lighting conditions, render the scene and save it as an image.

In order to make the dataset as varied as possible, we introduced three light sources into the rendering environment: a diffuse natural lighting to simulate daylight conditions, and two additional artificial lights. The intensity of each light source and the viewing angle were then made vary randomly, to mimic different daylight conditions and illuminations of the object. This procedure was designed to provide different situations akin to real use, and to make the model invariant to lighting conditions and camera position. Moreover, to provide additional flexibility to the model, the training dataset of images was virtually expanded using data augmentation (Mumuni & Mumuni, 2022 ), where saturation, brightness and contrast were made randomly vary during training operations. This procedure has allowed to consistently increase the number and variety of the images in the training dataset.

The developed automated pre-processing steps easily allows for batch generation of thousands of different images to be used for training of the neural networks. This possibility is key for proper training of the neural networks, as the variability of the input images allows the models to learn all the possible features and details that may change during real operating conditions.

figure 3

Examples of the ground truth for the two target tasks: background removal (a) and defects recognition (b)

The first tests using such virtual database have shown that, although the generated images were very similar to real photographs, the models were not able to properly recognize the target features in the real images. Thus, in a tentative to get closer to a proper set of real images, we decided to adopt a hybrid dataset, where the virtually generated images were mixed with the available few real ones. However, given that some possible defects were missing in the real images, we also decided to manipulate the images to introduce virtual defects on real images. The obtained dataset finally included more than 4,000 images, where 90% was rendered, and 10% was obtained from real images. To avoid possible bias in the training dataset, defects were present in 50% of the cases in both the rendered and real image sets. Thus, in the overall dataset, the real original images with no defects were 5% of the total.

Along with the code for the rendering and manipulation of the images, dedicated Python routines were developed to generate the corresponding data labelling for the supervised training of the networks, namely the image masks. Particularly, two masks were generated for each input image: one for the background removal operation, and one for the defect identification. In both cases, the masks consist of a binary (i.e. black and white) image where all the pixels of a target feature (i.e. the geometry or defect) are assigned unitary values (white); whereas, all the remaining pixels are blacked (zero values). An example of these masks in relation to the geometry in Fig. 1 is shown in Fig. 3 .

All the generated images were then down-sampled, that is, their resolution was reduced to avoid unnecessary large computational times and (RAM) memory usage while maintaining the required level of detail for training of the neural networks. Finally, the input images and the related masks were split into a mosaic of smaller tiles, to achieve a suitable size for feeding the images to the neural networks with even more reduced requirements on the RAM memory. All the tiles were processed, and the whole image reconstructed at the end of the process to visualize the overall final results.

figure 4

Confusion matrix for accuracy assessment of the neural networks models

Choice of the model

Within the scope of the present application, a wide range of possibly suitable models is available (Chen et al., 2021 ). In general, the choice of the best model for a given problem should be made on a case-by-case basis, considering an acceptable compromise between the achievable accuracy and computational complexity/cost. Too simple models can indeed be very fast in the response yet have a reduced accuracy. On the other hand, more complex models can generally provide more accurate results, although typically requiring larger amounts of data for training, and thus longer computational times and energy expense. Hence, testing has the crucial role to allow identification of the best trade-off between these two extreme cases. A benchmark for model accuracy can generally be defined in terms of a confusion matrix, where the model response is summarized into the following possibilities: True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives (FN). This concept can be summarized as shown in Fig. 4 . For the background removal, Positive (P) stands for pixels belonging to the brake caliper, while Negative (N) for background pixels. For the defect identification model, Positive (P) stands for non-defective geometry, whereas Negative (N) stands for defective geometries. With respect to these two cases, the True/False statements stand for correct or incorrect identification, respectively. The model accuracy can be therefore assessed as Géron ( 2022 )

Based on this metrics, the accuracy for different models can then be evaluated on a given dataset, where typically 80% of the data is used for training and the remaining 20% for validation. For the defect recognition stage, the following models were tested: VGG-16 (Simonyan & Zisserman, 2014 ), ResNet50, ResNet101, ResNet152 (He et al., 2016 ), Inception V1 (Szegedy et al., 2015 ), Inception V4 and InceptionResNet V2 (Szegedy et al., 2017 ). Details on the assessment procedure for the different models are provided in the Supplementary Information file. For the background removal stage, the DeepLabV3 \(+\) (Chen et al., 2018 ) model was chosen as the first option, and no additional models were tested as it directly provided satisfactory results in terms of accuracy and processing time. This gives preliminary indication that, from the point of view of the task complexity of the problem, the defect identification stage can be more demanding with respect to the background removal operation for the case study at hand. Besides the assessment of the accuracy according to, e.g., the metrics discussed above, additional information can be generally collected, such as too low accuracy (indicating insufficient amount of training data), possible bias of the models on the data (indicating a non-well balanced training dataset), or other specific issues related to missing representative data in the training dataset (Géron, 2022 ). This information helps both to correctly shape the training dataset, and to gather useful indications for the fine tuning of the model after its choice has been made.

Background removal

An initial bias of the model for background removal arose on the color of the original target geometry (red color). The model was indeed identifying possible red spots on the background as part of the target geometry as an unwanted output. To improve the model flexibility, and thus its accuracy on the identification of the background, the training dataset was expanded using data augmentation (Géron, 2022 ). This technique allows to artificially increase the size of the training dataset by applying various transformations to the available images, with the goal to improve the performance and generalization ability of the models. This approach typically involves applying geometric and/or color transformations to the original images; in our case, to account for different viewing angles of the geometry, different light exposures, and different color reflections and shadowing effects. These improvements of the training dataset proved to be effective on the performance for the background removal operation, with a validation accuracy finally ranging above 99% and model response time around 1-2 seconds. An example of the output of this operation for the geometry in Fig.  1 is shown in Fig. 5 .

While the results obtained were satisfactory for the original (red) color of the calipers, we decided to test the model ability to be applied on brake calipers of other colors as well. To this, the model was trained and tested on a grayscale version of the images of the calipers, which allows to completely remove any possible bias of the model on a specific color. In this case, the validation accuracy of the model was still obtained to range above 99%; thus, this approach was found to be particularly interesting to make the model suitable for background removal operation even on images including calipers of different colors.

figure 5

Target geometry after background removal

Defect recognition

An overview of the performance of the tested models for the defect recognition operation on the original geometry of the caliper is reported in Table 1 (see also the Supplementary Information file for more details on the assessment of different models). The results report on the achieved validation accuracy ( \(A_v\) ) and on the number of parameters ( \(N_p\) ), with this latter being the total number of parameters that can be trained for each model (Géron, 2022 ) to determine the output. Here, this quantity is adopted as an indicator of the complexity of each model.

figure 6

Accuracy (a) and loss function (b) curves for the Resnet101 model during training

As the results in Table 1 show, the VGG-16 model was quite unprecise for our dataset, eventually showing underfitting (Géron, 2022 ). Thus, we decided to opt for the Resnet and Inception families of models. Both these families of models have demonstrated to be suitable for handling our dataset, with slightly less accurate results being provided by the Resnet50 and InceptionV1. The best results were obtained using Resnet101 and InceptionV4, with very high final accuracy and fast processing time (in the order \(\sim \) 1 second). Finally, Resnet152 and InceptionResnetV2 models proved to be slightly too complex or slower for our case; they indeed provided excellent results but taking longer response times (in the order of \(\sim \) 3-5 seconds). The response time is indeed affected by the complexity ( \(N_p\) ) of the model itself, and by the hardware used. In our work, GPUs were used for training and testing all the models, and the hardware conditions were kept the same for all models.

Based on the results obtained, ResNet101 model was chosen as the best solution for our application, in terms of accuracy and reduced complexity. After fine-tuning operations, the accuracy that we obtained with this model reached nearly 99%, both in the validation and test datasets. This latter includes target real images, that the models have never seen before; thus, it can be used for testing of the ability of the models to generalize the information learnt during the training/validation phase.

The trend in the accuracy increase and loss function decrease during training of the Resnet101 model on the original geometry are shown in Fig. 6 (a) and (b), respectively. Particularly, the loss function quantifies the error between the predicted output during training of the model and the actual target values in the dataset. In our case, the loss function is computed using the cross-entropy function and the Adam optimiser (Géron, 2022 ). The error is expected to reduce during the training, which eventually leads to more accurate predictions of the model on previously-unseen data. The combination of accuracy and loss function trends, along with other control parameters, is typically used and monitored to evaluate the training process, and avoid e.g. under- or over-fitting problems (Géron, 2022 ). As Fig. 6 (a) shows, the accuracy experiences a sudden step increase during the very first training phase (epochs, that is, the number of times the complete database is repeatedly scrutinized by the model during its training (Géron, 2022 )). The accuracy then increases in a smooth fashion with the epochs, until an asymptotic value is reached both for training and validation accuracy. These trends in the two accuracy curves can generally be associated with a proper training; indeed, being the two curves close to each other may be interpreted as an absence of under-fitting problems. On the other hand, Fig. 6 (b) shows that the loss function curves are close to each other, with a monotonically-decreasing trend. This can be interpreted as an absence of over-fitting problems, and thus of proper training of the model.

figure 7

Final results of the analysis on the defect identification: (a) considered input geometry, (b), (c) and (d) identification of a scratch on the surface, partially missing logo, and painting defect respectively (highlighted in the red frames)

Finally, an example output of the overall analysis is shown in Fig. 7 , where the considered input geometry is shown (a), along with the identification of the defects (b), (c) and (d) obtained from the developed protocol. Note that, here the different defects have been separated in several figures for illustrative purposes; however, the analysis yields the identification of defects on one single image. In this work, a binary classification was performed on the considered brake calipers, where the output of the models allows to discriminate between defective or non-defective components based on the presence or absence of any of the considered defects. Note that, fine tuning of this discrimination is ultimately with the user’s requirements. Indeed, the model output yields as the probability (from 0 to 100%) of the possible presence of defects; thus, the discrimination between a defective or non-defective part is ultimately with the user’s choice of the acceptance threshold for the considered part (50% in our case). Therefore, stricter or looser criteria can be readily adopted. Eventually, for particularly complex cases, multiple models may also be used concurrently for the same task, and the final output defined based on a cross-comparison of the results from different models. As a last remark on the proposed procedure, note that here we adopted a binary classification based on the presence or absence of any defect; however, further classification of the different defects could also be implemented, to distinguish among different types of defects (multi-class classification) on the brake calipers.

Energy saving

Illustrative scenarios.

Given that the proposed tools have not yet been implemented and tested within a real industrial production line, we analyze here three perspective scenarios to provide a practical example of the potential for energy savings in an industrial context. To this, we consider three scenarios, which compare traditional human-based control operations and a quality control system enhanced by the proposed Machine Learning (ML) tools. Specifically, here we analyze a generic brake caliper assembly line formed by 14 stations, as outlined in Table 1 in the work by Burduk and Górnicka ( 2017 ). This assembly line features a critical inspection station dedicated to defect detection, around which we construct three distinct scenarios to evaluate the efficacy of traditional human-based control operations versus a quality control system augmented by the proposed ML-based tools, namely:

First Scenario (S1): Human-Based Inspection. The traditional approach involves a human operator responsible for the inspection tasks.

Second Scenario (S2): Hybrid Inspection. This scenario introduces a hybrid inspection system where our proposed ML-based automatic detection tool assists the human inspector. The ML tool analyzes the brake calipers and alerts the human inspector only when it encounters difficulties in identifying defects, specifically when the probability of a defect being present or absent falls below a certain threshold. This collaborative approach aims to combine the precision of ML algorithms with the experience of human inspectors, and can be seen as a possible transition scenario between the human-based and a fully-automated quality control operation.

Third Scenario (S3): Fully Automated Inspection. In the final scenario, we conceive a completely automated defect inspection station powered exclusively by our ML-based detection system. This setup eliminates the need for human intervention, relying entirely on the capabilities of the ML tools to identify defects.

For simplicity, we assume that all the stations are aligned in series without buffers, minimizing unnecessary complications in our estimations. To quantify the beneficial effects of implementing ML-based quality control, we adopt the Overall Equipment Effectiveness (OEE) as the primary metric for the analysis. OEE is a comprehensive measure derived from the product of three critical factors, as outlined by Nota et al. ( 2020 ): Availability (the ratio of operating time with respect to planned production time); Performance (the ratio of actual output with respect to the theoretical maximum output); and Quality (the ratio of the good units with respect to the total units produced). In this section, we will discuss the details of how we calculate each of these factors for the various scenarios.

To calculate Availability ( A ), we consider an 8-hour work shift ( \(t_{shift}\) ) with 30 minutes of breaks ( \(t_{break}\) ) during which we assume production stop (except for the fully automated scenario), and 30 minutes of scheduled downtime ( \(t_{sched}\) ) required for machine cleaning and startup procedures. For unscheduled downtime ( \(t_{unsched}\) ), primarily due to machine breakdowns, we assume an average breakdown probability ( \(\rho _{down}\) ) of 5% for each machine, with an average repair time of one hour per incident ( \(t_{down}\) ). Based on these assumptions, since the Availability represents the ratio of run time ( \(t_{run}\) ) to production time ( \(t_{pt}\) ), it can be calculated using the following formula:

with the unscheduled downtime being computed as follows:

where N is the number of machines in the production line and \(1-\left( 1-\rho _{down}\right) ^{N}\) represents the probability that at least one machine breaks during the work shift. For the sake of simplicity, the \(t_{down}\) is assumed constant regardless of the number of failures.

Table  2 presents the numerical values used to calculate Availability in the three scenarios. In the second scenario, we can observe that integrating the automated station leads to a decrease in the first factor of the OEE analysis, which can be attributed to the additional station for automated quality-control (and the related potential failure). This ultimately increases the estimation of the unscheduled downtime. In the third scenario, the detrimental effect of the additional station compensates the beneficial effect of the automated quality control on reducing the need for pauses during operator breaks; thus, the Availability for the third scenario yields as substantially equivalent to the first one (baseline).

The second factor of OEE, Performance ( P ), assesses the operational efficiency of production equipment relative to its maximum designed speed ( \(t_{line}\) ). This evaluation includes accounting for reductions in cycle speed and minor stoppages, collectively termed as speed losses . These losses are challenging to measure in advance, as performance is typically measured using historical data from the production line. For this analysis, we are constrained to hypothesize a reasonable estimate of 60 seconds of time lost to speed losses ( \(t_{losses}\) ) for each work cycle. Although this assumption may appear strong, it will become evident later that, within the context of this analysis – particularly regarding the impact of automated inspection on energy savings – the Performance (like the Availability) is only marginally influenced by introducing an automated inspection station. To account for the effect of automated inspection on the assembly line speed, we keep the time required by the other 13 stations ( \(t^*_{line}\) ) constant while varying the time allocated for visual inspection ( \(t_{inspect}\) ). According to Burduk and Górnicka ( 2017 ), the total operation time of the production line, excluding inspection, is 1263 seconds, with manual visual inspection taking 38 seconds. For the fully automated third scenario, we assume an inspection time of 5 seconds, which encloses the photo collection, pre-processing, ML-analysis, and post-processing steps. In the second scenario, instead, we add an additional time to the pure automatic case to consider the cases when the confidence of the ML model falls below 90%. We assume this happens once in every 10 inspections, which is a conservative estimate, higher than that we observed during model testing. This results in adding 10% of the human inspection time to the fully automated time. Thus, when \(t_{losses}\) are known, Performance can be expressed as follows:

The calculated values for Performance are presented in Table  3 , and we can note that the modification in inspection time has a negligible impact on this factor since it does not affect the speed loss or, at least to our knowledge, there is no clear evidence to suggest that the introduction of a new inspection station would alter these losses. Moreover, given the specific linear layout of the considered production line, the inspection time change has only a marginal effect on enhancing the production speed. However, this approach could potentially bias our scenario towards always favouring automation. To evaluate this hypothesis, a sensitivity analysis which explores scenarios where the production line operates at a faster pace will be discussed in the next subsection.

The last factor, Quality ( Q ), quantifies the ratio of compliant products out of the total products manufactured, effectively filtering out items that fail to meet the quality standards due to defects. Given the objective of our automated algorithm, we anticipate this factor of the OEE to be significantly enhanced by implementing the ML-based automated inspection station. To estimate it, we assume a constant defect probability for the production line ( \(\rho _{def}\) ) at 5%. Consequently, the number of defective products ( \(N_{def}\) ) during the work shift is calculated as \(N_{unit} \cdot \rho _{def}\) , where \(N_{unit}\) represents the average number of units (brake calipers) assembled on the production line, defined as:

To quantify defective units identified, we consider the inspection accuracy ( \(\rho _{acc}\) ), where for human visual inspection, the typical accuracy is 80% (Sundaram & Zeid, 2023 ), and for the ML-based station, we use the accuracy of our best model, i.e., 99%. Additionally, we account for the probability of the station mistakenly identifying a caliper as with a defect even if it is defect-free, i.e., the false negative rate ( \(\rho _{FN}\) ), defined as

In the absence of any reasonable evidence to justify a bias on one mistake over others, we assume a uniform distribution for both human and automated inspections regarding error preference, i.e. we set \(\rho ^{H}_{FN} = \rho ^{ML}_{FN} = \rho _{FN} = 50\%\) . Thus, the number of final compliant goods ( \(N_{goods}\) ), i.e., the calipers that are identified as quality-compliant, can be calculated as:

where \(N_{detect}\) is the total number of detected defective units, comprising TN (true negatives, i.e. correctly identified defective calipers) and FN (false negatives, i.e. calipers mistakenly identified as defect-free). The Quality factor can then be computed as:

Table  4 summarizes the Quality factor calculation, showcasing the substantial improvement brought by the ML-based inspection station due to its higher accuracy compared to human operators.

figure 8

Overall Equipment Effectiveness (OEE) analysis for three scenarios (S1: Human-Based Inspection, S2: Hybrid Inspection, S3: Fully Automated Inspection). The height of the bars represents the percentage of the three factors A : Availability, P : Performance, and Q : Quality, which can be interpreted from the left axis. The green bars indicate the OEE value, derived from the product of these three factors. The red line shows the recall rate, i.e. the probability that a defective product is rejected by the client, with values displayed on the right red axis

Finally, we can determine the Overall Equipment Effectiveness by multiplying the three factors previously computed. Additionally, we can estimate the recall rate ( \(\rho _{R}\) ), which reflects the rate at which a customer might reject products. This is derived from the difference between the total number of defective units, \(N_{def}\) , and the number of units correctly identified as defective, TN , indicating the potential for defective brake calipers that may bypass the inspection process. In Fig.  8 we summarize the outcomes of the three scenarios. It is crucial to note that the scenarios incorporating the automated defect detector, S2 and S3, significantly enhance the Overall Equipment Effectiveness, primarily through substantial improvements in the Quality factor. Among these, the fully automated inspection scenario, S3, emerges as a slightly superior option, thanks to its additional benefit in removing the breaks and increasing the speed of the line. However, given the different assumptions required for this OEE study, we shall interpret these results as illustrative, and considering them primarily as comparative with the baseline scenario only. To analyze the sensitivity of the outlined scenarios on the adopted assumptions, we investigate the influence of the line speed and human accuracy on the results in the next subsection.

Sensitivity analysis

The scenarios described previously are illustrative and based on several simplifying hypotheses. One of such hypotheses is that the production chain layout operates entirely in series, with each station awaiting the arrival of the workpiece from the preceding station, resulting in a relatively slow production rate (1263 seconds). This setup can be quite different from reality, where slower operations can be accelerated by installing additional machines in parallel to balance the workload and enhance productivity. Moreover, we utilized a literature value of 80% for the accuracy of the human visual inspector operator, as reported by Sundaram and Zeid ( 2023 ). However, this accuracy can vary significantly due to factors such as the experience of the inspector and the defect type.

figure 9

Effect of assembly time for stations (excluding visual inspection), \(t^*_{line}\) , and human inspection accuracy, \(\rho _{acc}\) , on the OEE analysis. (a) The subplot shows the difference between the scenario S2 (Hybrid Inspection) and the baseline scenario S1 (Human Inspection), while subplot (b) displays the difference between scenario S3 (Fully Automated Inspection) and the baseline. The maps indicate in red the values of \(t^*_{line}\) and \(\rho _{acc}\) where the integration of automated inspection stations can significantly improve OEE, and in blue where it may lower the score. The dashed lines denote the breakeven points, and the circled points pinpoint the values of the scenarios used in the “Illustrative scenario” Subsection.

A sensitivity analysis on these two factors was conducted to address these variations. The assembly time of the stations (excluding visual inspection), \(t^*_{line}\) , was varied from 60 s to 1500 s, and the human inspection accuracy, \(\rho _{acc}\) , ranged from 50% (akin to a random guesser) to 100% (representing an ideal visual inspector); meanwhile, the other variables were kept fixed.

The comparison of the OEE enhancement for the two scenarios employing ML-based inspection against the baseline scenario is displayed in the two maps in Fig.  9 . As the figure shows, due to the high accuracy and rapid response of the proposed automated inspection station, the area representing regions where the process may benefit energy savings in the assembly lines (indicated in red shades) is significantly larger than the areas where its introduction could degrade performance (indicated in blue shades). However, it can be also observed that the automated inspection could be superfluous or even detrimental in those scenarios where human accuracy and assembly speed are very high, indicating an already highly accurate workflow. In these cases, and particularly for very fast production lines, short times for quality control can be expected to be key (beyond accuracy) for the optimization.

Finally, it is important to remark that the blue region (areas below the dashed break-even lines) might expand if the accuracy of the neural networks for defect detection is lower when implemented in an real production line. This indicates the necessity for new rounds of active learning and an augment of the ratio of real images in the database, to eventually enhance the performance of the ML model.

Conclusions

Industrial quality control processes on manufactured parts are typically achieved by human visual inspection. This usually requires a dedicated handling system, and generally results in a slower production rate, with the associated non-optimal use of the energy resources. Based on a practical test case for quality control on brake caliper manufacturing, in this work we have reported on a developed workflow for integration of Machine Learning methods to automatize the process. The proposed approach relies on image analysis via Deep Convolutional Neural Networks. These models allow to efficiently extract information from images, thus possibly representing a valuable alternative to human inspection.

The proposed workflow relies on a two-step procedure on the images of the brake calipers: first, the background is removed from the image; second, the geometry is inspected to identify possible defects. These two steps are accomplished thanks to two dedicated neural network models, an encoder-decoder and an encoder network, respectively. Training of these neural networks typically requires a large number of representative images for the problem. Given that, one such database is not always readily available, we have presented and discussed an alternative methodology for the generation of the input database using 3D renderings. While integration of the database with real photographs was required for optimal results, this approach has allowed fast and flexible generation of a large base of representative images. The pre-processing steps required for data feeding to the neural networks and their training has been also discussed.

Several models have been tested and evaluated, and the best one for the considered case identified. The obtained accuracy for defect identification reaches \(\sim \) 99% of the tested cases. Moreover, the response of the models is fast (in the order of few seconds) on each image, which makes them compliant with the most typical industrial expectations.

In order to provide a practical example of possible energy savings when implementing the proposed ML-based methodology for quality control, we have analyzed three perspective industrial scenarios: a baseline scenario, where quality control tasks are performed by a human inspector; a hybrid scenario, where the proposed ML automatic detection tool assists the human inspector; a fully-automated scenario, where we envision a completely automated defect inspection. The results show that the proposed tools may help increasing the Overall Equipment Effectiveness up to \(\sim \) 10% with respect to the considered baseline scenario. However, a sensitivity analysis on the speed of the production line and on the accuracy of the human inspector has also shown that the automated inspection could be superfluous or even detrimental in those cases where human accuracy and assembly speed are very high. In these cases, reducing the time required for quality control can be expected to be the major controlling parameter (beyond accuracy) for optimization.

Overall the results show that, with a proper tuning, these models may represent a valuable resource for integration into production lines, with positive outcomes on the overall effectiveness, and thus ultimately leading to a better use of the energy resources. To this, while the practical implementation of the proposed tools can be expected to require contained investments (e.g. a portable camera, a dedicated workstation and an operator with proper training), in field tests on a real industrial line would be required to confirm the potential of the proposed technology.

Agrawal, R., Majumdar, A., Kumar, A., & Luthra, S. (2023). Integration of artificial intelligence in sustainable manufacturing: Current status and future opportunities. Operations Management Research, 1–22.

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: Concepts, cnn architectures, challenges, applications, future directions. Journal of big Data, 8 , 1–74.

Article   Google Scholar  

Angelopoulos, A., Michailidis, E. T., Nomikos, N., Trakadas, P., Hatziefremidis, A., Voliotis, S., & Zahariadis, T. (2019). Tackling faults in the industry 4.0 era-a survey of machine—learning solutions and key aspects. Sensors, 20 (1), 109.

Arana-Landín, G., Uriarte-Gallastegi, N., Landeta-Manzano, B., & Laskurain-Iturbe, I. (2023). The contribution of lean management—industry 4.0 technologies to improving energy efficiency. Energies, 16 (5), 2124.

Badmos, O., Kopp, A., Bernthaler, T., & Schneider, G. (2020). Image-based defect detection in lithium-ion battery electrode using convolutional neural networks. Journal of Intelligent Manufacturing, 31 , 885–897. https://doi.org/10.1007/s10845-019-01484-x

Banko, M., & Brill, E. (2001). Scaling to very very large corpora for natural language disambiguation. In Proceedings of the 39th annual meeting of the association for computational linguistics (pp. 26–33).

Benedetti, M., Bonfà, F., Introna, V., Santolamazza, A., & Ubertini, S. (2019). Real time energy performance control for industrial compressed air systems: Methodology and applications. Energies, 12 (20), 3935.

Bhatt, D., Patel, C., Talsania, H., Patel, J., Vaghela, R., Pandya, S., Modi, K., & Ghayvat, H. (2021). Cnn variants for computer vision: History, architecture, application, challenges and future scope. Electronics, 10 (20), 2470.

Bilgen, S. (2014). Structure and environmental impact of global energy consumption. Renewable and Sustainable Energy Reviews, 38 , 890–902.

Blender. (2023). Open-source software. https://www.blender.org/ . Accessed 18 Apr 2023.

Bologna, A., Fasano, M., Bergamasco, L., Morciano, M., Bersani, F., Asinari, P., Meucci, L., & Chiavazzo, E. (2020). Techno-economic analysis of a solar thermal plant for large-scale water pasteurization. Applied Sciences, 10 (14), 4771.

Burduk, A., & Górnicka, D. (2017). Reduction of waste through reorganization of the component shipment logistics. Research in Logistics & Production, 7 (2), 77–90. https://doi.org/10.21008/j.2083-4950.2017.7.2.2

Carvalho, T. P., Soares, F. A., Vita, R., Francisco, R., d. P., Basto, J. P., & Alcalá, S. G. (2019). A systematic literature review of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering, 137 , 106024.

Casini, M., De Angelis, P., Chiavazzo, E., & Bergamasco, L. (2024). Current trends on the use of deep learning methods for image analysis in energy applications. Energy and AI, 15 , 100330. https://doi.org/10.1016/j.egyai.2023.100330

Chai, J., Zeng, H., Li, A., & Ngai, E. W. (2021). Deep learning in computer vision: A critical review of emerging techniques and application scenarios. Machine Learning with Applications, 6 , 100134.

Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H. (2018). Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European conference on computer vision (ECCV) (pp. 801–818).

Chen, L., Li, S., Bai, Q., Yang, J., Jiang, S., & Miao, Y. (2021). Review of image classification algorithms based on convolutional neural networks. Remote Sensing, 13 (22), 4712.

Chen, T., Sampath, V., May, M. C., Shan, S., Jorg, O. J., Aguilar Martín, J. J., Stamer, F., Fantoni, G., Tosello, G., & Calaon, M. (2023). Machine learning in manufacturing towards industry 4.0: From ‘for now’to ‘four-know’. Applied Sciences, 13 (3), 1903. https://doi.org/10.3390/app13031903

Choudhury, A. (2021). The role of machine learning algorithms in materials science: A state of art review on industry 4.0. Archives of Computational Methods in Engineering, 28 (5), 3361–3381. https://doi.org/10.1007/s11831-020-09503-4

Dalzochio, J., Kunst, R., Pignaton, E., Binotto, A., Sanyal, S., Favilla, J., & Barbosa, J. (2020). Machine learning and reasoning for predictive maintenance in industry 4.0: Current status and challenges. Computers in Industry, 123 , 103298.

Fasano, M., Bergamasco, L., Lombardo, A., Zanini, M., Chiavazzo, E., & Asinari, P. (2019). Water/ethanol and 13x zeolite pairs for long-term thermal energy storage at ambient pressure. Frontiers in Energy Research, 7 , 148.

Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow . O’Reilly Media, Inc.

GrabCAD. (2023). Brake caliper 3D model by Mitulkumar Sakariya from the GrabCAD free library (non-commercial public use). https://grabcad.com/library/brake-caliper-19 . Accessed 18 Apr 2023.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–778).

Ho, S., Zhang, W., Young, W., Buchholz, M., Al Jufout, S., Dajani, K., Bian, L., & Mozumdar, M. (2021). Dlam: Deep learning based real-time porosity prediction for additive manufacturing using thermal images of the melt pool. IEEE Access, 9 , 115100–115114. https://doi.org/10.1109/ACCESS.2021.3105362

Ismail, M. I., Yunus, N. A., & Hashim, H. (2021). Integration of solar heating systems for low-temperature heat demand in food processing industry-a review. Renewable and Sustainable Energy Reviews, 147 , 111192.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521 (7553), 436–444.

Leong, W. D., Teng, S. Y., How, B. S., Ngan, S. L., Abd Rahman, A., Tan, C. P., Ponnambalam, S., & Lam, H. L. (2020). Enhancing the adaptability: Lean and green strategy towards the industry revolution 4.0. Journal of cleaner production, 273 , 122870.

Liu, Z., Wang, X., Zhang, Q., & Huang, C. (2019). Empirical mode decomposition based hybrid ensemble model for electrical energy consumption forecasting of the cement grinding process. Measurement, 138 , 314–324.

Li, G., & Zheng, X. (2016). Thermal energy storage system integration forms for a sustainable future. Renewable and Sustainable Energy Reviews, 62 , 736–757.

Maggiore, S., Realini, A., Zagano, C., & Bazzocchi, F. (2021). Energy efficiency in industry 4.0: Assessing the potential of industry 4.0 to achieve 2030 decarbonisation targets. International Journal of Energy Production and Management, 6 (4), 371–381.

Mazzei, D., & Ramjattan, R. (2022). Machine learning for industry 4.0: A systematic review using deep learning-based topic modelling. Sensors, 22 (22), 8641.

Md, A. Q., Jha, K., Haneef, S., Sivaraman, A. K., & Tee, K. F. (2022). A review on data-driven quality prediction in the production process with machine learning for industry 4.0. Processes, 10 (10), 1966. https://doi.org/10.3390/pr10101966

Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., & Terzopoulos, D. (2021). Image segmentation using deep learning: A survey. IEEE transactions on pattern analysis and machine intelligence, 44 (7), 3523–3542.

Google Scholar  

Mishra, S., Srivastava, R., Muhammad, A., Amit, A., Chiavazzo, E., Fasano, M., & Asinari, P. (2023). The impact of physicochemical features of carbon electrodes on the capacitive performance of supercapacitors: a machine learning approach. Scientific Reports, 13 (1), 6494. https://doi.org/10.1038/s41598-023-33524-1

Mumuni, A., & Mumuni, F. (2022). Data augmentation: A comprehensive survey of modern approaches. Array, 16 , 100258. https://doi.org/10.1016/j.array.2022.100258

Mypati, O., Mukherjee, A., Mishra, D., Pal, S. K., Chakrabarti, P. P., & Pal, A. (2023). A critical review on applications of artificial intelligence in manufacturing. Artificial Intelligence Review, 56 (Suppl 1), 661–768.

Narciso, D. A., & Martins, F. (2020). Application of machine learning tools for energy efficiency in industry: A review. Energy Reports, 6 , 1181–1199.

Nota, G., Nota, F. D., Peluso, D., & Toro Lazo, A. (2020). Energy efficiency in industry 4.0: The case of batch production processes. Sustainability, 12 (16), 6631. https://doi.org/10.3390/su12166631

Ocampo-Martinez, C., et al. (2019). Energy efficiency in discrete-manufacturing systems: Insights, trends, and control strategies. Journal of Manufacturing Systems, 52 , 131–145.

Pan, Y., Hao, L., He, J., Ding, K., Yu, Q., & Wang, Y. (2024). Deep convolutional neural network based on self-distillation for tool wear recognition. Engineering Applications of Artificial Intelligence, 132 , 107851.

Qin, J., Liu, Y., Grosvenor, R., Lacan, F., & Jiang, Z. (2020). Deep learning-driven particle swarm optimisation for additive manufacturing energy optimisation. Journal of Cleaner Production, 245 , 118702.

Rahul, M., & Chiddarwar, S. S. (2023). Integrating virtual twin and deep neural networks for efficient and energy-aware robotic deburring in industry 4.0. International Journal of Precision Engineering and Manufacturing, 24 (9), 1517–1534.

Ribezzo, A., Falciani, G., Bergamasco, L., Fasano, M., & Chiavazzo, E. (2022). An overview on the use of additives and preparation procedure in phase change materials for thermal energy storage with a focus on long term applications. Journal of Energy Storage, 53 , 105140.

Shahin, M., Chen, F. F., Hosseinzadeh, A., Bouzary, H., & Shahin, A. (2023). Waste reduction via image classification algorithms: Beyond the human eye with an ai-based vision. International Journal of Production Research, 1–19.

Shen, F., Zhao, L., Du, W., Zhong, W., & Qian, F. (2020). Large-scale industrial energy systems optimization under uncertainty: A data-driven robust optimization approach. Applied Energy, 259 , 114199.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 .

Sundaram, S., & Zeid, A. (2023). Artificial Intelligence-Based Smart Quality Inspection for Manufacturing. Micromachines, 14 (3), 570. https://doi.org/10.3390/mi14030570

Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2017). Inception-v4, inception-resnet and the impact of residual connections on learning. In Proceedings of the AAAI conference on artificial intelligence (vol. 31).

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1–9).

Trezza, G., Bergamasco, L., Fasano, M., & Chiavazzo, E. (2022). Minimal crystallographic descriptors of sorption properties in hypothetical mofs and role in sequential learning optimization. npj Computational Materials, 8 (1), 123. https://doi.org/10.1038/s41524-022-00806-7

Vater, J., Schamberger, P., Knoll, A., & Winkle, D. (2019). Fault classification and correction based on convolutional neural networks exemplified by laser welding of hairpin windings. In 2019 9th International Electric Drives Production Conference (EDPC) (pp. 1–8). IEEE.

Wen, L., Li, X., Gao, L., & Zhang, Y. (2017). A new convolutional neural network-based data-driven fault diagnosis method. IEEE Transactions on Industrial Electronics, 65 (7), 5990–5998. https://doi.org/10.1109/TIE.2017.2774777

Willenbacher, M., Scholten, J., & Wohlgemuth, V. (2021). Machine learning for optimization of energy and plastic consumption in the production of thermoplastic parts in sme. Sustainability, 13 (12), 6800.

Zhang, X. H., Zhu, Q. X., He, Y. L., & Xu, Y. (2018). Energy modeling using an effective latent variable based functional link learning machine. Energy, 162 , 883–891.

Download references

Acknowledgements

This work has been supported by GEFIT S.p.a.

Open access funding provided by Politecnico di Torino within the CRUI-CARE Agreement.

Author information

Authors and affiliations.

Department of Energy, Politecnico di Torino, Turin, Italy

Mattia Casini, Paolo De Angelis, Paolo Vigo, Matteo Fasano, Eliodoro Chiavazzo & Luca Bergamasco

R &D Department, GEFIT S.p.a., Alessandria, Italy

Marco Porrati

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Luca Bergamasco .

Ethics declarations

Conflict of interest statement.

The authors declare no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 354 KB)

Rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Casini, M., De Angelis, P., Porrati, M. et al. Machine Learning and image analysis towards improved energy management in Industry 4.0: a practical case study on quality control. Energy Efficiency 17 , 48 (2024). https://doi.org/10.1007/s12053-024-10228-7

Download citation

Received : 22 July 2023

Accepted : 28 April 2024

Published : 13 May 2024

DOI : https://doi.org/10.1007/s12053-024-10228-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Industry 4.0
  • Energy management
  • Artificial intelligence
  • Machine learning
  • Deep learning
  • Convolutional neural networks
  • Computer vision
  • Find a journal
  • Publish with us
  • Track your research

en

All You Have To Know About Agile Project Management Methodologies !

Lisa

1 click unsubscribe at any time

This article aims to help you discover and master the art of agile project management so you can turn your challenges into concrete successes. 🏆

But first, I’m sure that the term “ project management “, which is a very general one, doesn’t speak to everyone and needs a little clarification! ⛏️

🎯 In this case, it encompasses all activities aimed at organizing the smooth running of a marketing project , and achieving objectives effectively and efficiently. That is, within the constraints of time, budget and quality.

➡️ When managing a project, there are 5 stages to go through: conception, planning, execution, monitoring, control and finalization. To do this :

  • We adopt a defined, pre-selected process for project execution.
  • Knowledge, skills, tools and techniques are applied to all activities.

🦄 There are many marketing project management methods , each with its own advantages and disadvantages. The choice depends on the nature of the project, the organization, the types of activities, the group’s preferences…

For our part, we’re going to take a closer look at agile project management methods (as opposed to traditional models). 🤸🏼‍♀️ If you don’t know what that is, get ready to move from chaos to clarity! 💡

⬇️ Here’s the program:

  • Agile project management: definition, context and benefits.
  • Top 4 agile project management methods
  • Case studies: Spotify and Twitter
  • Tips for choosing the right method and tools

We’re off! 🤩

Agile Project Management : Definition, Context And Benefits

The definition of agile project management.

👉🏼 As you’ll have gathered by now, the term “ agile ” refers to a project management method that combines iterative and incremental approaches (we’ll see exactly what these approaches are later on).

Agility focuses on value delivery and continuous improvement, but also on values such as collaboration, adaptation, self-organization and transversality. 💎

🤝 We speak of co-design between all stakeholders, who aim to find the best solutions to meet the project’s challenges and create maximum value.

The model is based on the setting of short-term iterative objectives , as well as on the evolution of requirements and solutions through. 🔄

🧩 A major project is broken down into stages and/or sequences taking place one after the other: these are known as sprint . 🏃🏻‍♂️ Sprints are made up of several stages, generally consisting of the following:

  • Retro-planning .
  • Development.
  • Testing and verification.
  • Demonstration and/or deployment.
  • Evaluation of results.
  • Gathering comments and/or information.
  • Establish new rules and move on to the next sprint (the solution doesn’t need to be completely finalized, just functional).

Flexibility and adaptability are the watchwords of this method. 🤸🏼‍♀️ We recommend using it when you’re unsure of the specifications from the outset, or when you lack visibility of how the project will evolve. 🧐

In short, agile project management is applicable to a multitude of activities and projects. That’s why it’s now a must-have and used by almost half of all organizations, according to an international study conducted in 2020 by Organize Agile. 🔍

Emergence Of The Agile Project Management Methods

📣 As a reminder, project management isn’t new, since it’s a concept that’s been used for hundreds of years. But the concept of “ agile project management ” is much more recent, having emerged in the 2000s.

Originally, organizations were dissatisfied with traditional project management approaches (predictive V-model method). They wanted to find a less constraining way of improving and accelerating the development process . ✨

After years of research, the Agile Manifesto that introduced the method, and proven feedback based on tangible indicators… 💥 Its effectiveness has finally been demonstrated with certainty.

🖱️ It first began to be democratized in the IT frameworks sector , and then beyond. These principles are now used by all functions in organizations, and several have been created.

Origins of agile project management.

At the end of the article, we provide examples of major companies using this method, along with their unavoidable principles. 🤩

But first, let’s explain what has convinced millions of organizations around the world to use it, and how they do it. 👇🏼

Benefits Of Agile Project Management

🎁 If agile methods has convinced so many people, it’s because it has more to offer than other models and its benefits are not negligible.

They are flexible and adapt easily to change. This means they can react quickly to new requirements and unforeseen events. In particular, thanks to the division of labor into small iterations, they can deliver results quickly and adapt to change. 🎢

💎 In short, what distinguishes the agile project management method is its ability to :

  • Offer a faster, more flexible and more efficient way of managing unforeseen, deadlines , adjusting or reducing.
  • Produce more in less time, and offer greater flexibility to take advantage of opportunities as the project progresses.
  • Integrate the customer into the construction of the project to improve their satisfaction and adapt more easily to their expectations.
  • Encourage employee autonomy and bring all professions within the same group to share knowledge.
  • Enhance management efficiency and the chances of achieving profitability targets, even in an uncertain and rapidly changing environment .
  • Strengthen an organization’s market position and culture through a constructive approach.

Finally, all agile project management frameworks share five main components (inspired by the 12 principles of the Agile Manifesto ): cadence, synchronization, and quality development practices. 📚

We’ve just listed all the reasons why others have chosen to use it. And, we’ve also listed the reasons why you should use it too 😉

Obviously, there are several agile project management methods to choose from. 🌈 So, stay with us, we’ll introduce you right away!

Top 4 Most Commonly Used Agile Project Management Methods

💡 It’s time to help you choose the agile project management method best suited to your project and/or business, from among the main existing models.

1. Scrum Method

Scrum is the most popular agile project management method today. 👑

👀 Quite simple, it is dedicated to single-team management and aims to make visible the effectiveness of management techniques, work environment, so that improvements can be made.

It is based on a lightweight and agile framework for developing and maintaining complex projects. It helps individuals, teams and organizations generate value through adaptive solutions. 🤸🏼‍♀️

This agile project management method is based on two concepts ♻️ :

  • Empiricism asserts that knowledge comes from experience and from making decisions based on what is observed, tested, approved and known.
  • Lean management , is an agile project management method in its own right, reducing waste and focusing on the essential value or added-value production.

It also uses an iterative and incremental approach, with three essential pillars involving specific roles, events and artifacts.

The entire model structure is designed to optimize predictability and control risk . ☢️

1. Transparency : the progress of the work must be visible to all stakeholders. 👀

  • What represents value here are the artifacts (product backlog , sprint backlog and increment ). They are designed to maximize the transparency of key information.
  • Artifacts with low transparency can lead to decisions that decrease value and increase risk.
  • Without “transparency”, there can be no inspection, as it would be misleading and costly.

2. Inspection : progress must be inspected. 🔍

  • This step enables us to detect any deviations or potentially undesirable problems.
  • To facilitate inspection and day-to-day organization, the pace is set by five events designed to facilitate change: the sprint, the planning sprint, the daily scrum , the sprint review and the sprint retrospective.
  • Without inspection, no adaptation would be considered useless.

3. Adaptation : occurs when certain aspects deviate from the desired result. 🎯

  • If the workflow deviates from acceptable limits, or if the result obtained is unacceptable, the process must be adjusted as soon as possible (to reduce any further deviation).
  • The group is expected to adapt as it learns something new through inspection. Adaptation becomes more difficult if members are not prepared for it.
  • The Scrum team must therefore bring together people who collectively have all the skills and expertise to apply the model, share or acquire skills… Team members include developers, a product owner and a scrum master (or the manager).

🏆 Scrum ‘s success depends on group members recognizing themselves through five values: commitment, focus, openness, respect and courage.

The structure of the method is deliberately incomplete , defining only the parts required. ❌ It builds on collective intelligence rather than providing detailed instructions.

2. SAFe Method

SAFe, or The Scaled Agile Framework , takes the agile method beyond the confines of a single team and integrates it into the company’s overall strategy. 🗺️

SAFe is a cross between Agile, Lean and DevOps. 🔀 It focuses on the detail of practices, roles and activities at the management of portfolio , program and team management levels.

🗓️ Work is planned in batches, so that problems can be identified earlier and progress is visible in real time. Ongoing rituals can also be regularly inspected and adapted.

SAFe, an agile project management method.

To integrate agility at all levels, the method provides a knowledge base and establishes a common language as well as common foundations through various core values 👇🏼 :

  • Alignment of business objectives to cope with rapid market changes.
  • Integrated quality at every level.
  • Exceed agility requirements.
  • Trust and transparency.
  • Program execution (ability to deliver a functional , high-quality project).
  • Lean/Agile management and leadership to create the right environment and transform systems.

➡️ Next, SaFe can be configured and implemented in 3 levels , distinguished by their level of ease of implementation, the type of organization or activity and finally the quantity of elements to be integrated (roles, events, artifacts and skills).

Typically, this model is used by companies with hundreds or thousands of teams, operating in ART mode (Agile Release Train ). That is, with a cross-functional team bringing together several agile and multiprofile groups . 👥 With smaller organizations, this method will have no impact.

✋🏼 It is used, for example, when the following needs are identified:

  • Bring greater coherence to the overall strategy.
  • Standardize objectives and organization.
  • Greater flexibility between groups and players.
  • Streamline and facilitate development/delivery.

If you’re interested, the latest version of the method is now based on 10 principles, derived from Agile and Lean methodologies, but also from observation of successful companies. 📈

Please note that the application of a new model is not a miracle solution. 🤷🏻‍♀️ Furthermore, the complexity of SAFe’s application could dissuade many from using it, as it requires :

  • Reorganization or even redesign of the entire organization.
  • Rewriting and introducing new processes.
  • Technical installation and familiarization with new tools.
  • Culture change and learning agile values .
  • A colossal task of adaptation and understanding.
  • A multitude of roles and events to set up.

⚙️ For your information, there are several sources providing a roadmap for implementing SAFe (with detailed steps for getting started and configuring the organization for widespread adoption across all portfolios).

🆙 Finally, there are others Scale-up techniques that we won’t detail here: LeSS, Nexus, Scrum@Scale, Scrum of scrums , Lean Software Development , Disciplined Agile Delivery (DAD)…

3. Kanban Method

Kanban is a flexible agile project management method based on the Lean approach. ♻️ It is inspired by an inventory control and stock management system that enables on-demand production.

⏱️ It is based on the principle of rapid delivery and aims to :

  • Continuous improvement and reduction of production costs.
  • Achieving balance between production and demand.
  • Eliminate waste and avoid stockpiling as much as possible.
  • Reduce lead times and achieve fair, high-quality production.
  • Foster collaboration to solve problems and improve quality.
  • Optimize team responsiveness.

ℹ️ Kanban is a visual information system that makes use of the programs already in place and encourages their improvement. It’s also the model that provides the quickest feedback and the best control of workflow, thanks to a chart. 👁️

It consists of a system of labels or pull cards. 🏷️ Each card corresponds to a request that triggers production, and contains the tasks to be carried out as well as various instructions.

Kanban, an agile project management method.

👩🏻‍🏫 The board is the major asset of this method, as it enables the team to :

  • Visualize and manage the flow.
  • Identify visible obstacles or opportunities.
  • Adjust process limits in real time.
  • Improve efficiency and productivity.
  • Collaborate, communicate and circulate information on tasks to be carried out.

💡 If you want to adopt this method, here are some tips:

  • Don’t try to change everything overnight, start with what you’ve got and agree to improve the existing system through gradual changes.
  • To eliminate the fear of change, respect the roles, responsibilities and professional titles of each group member.
  • All players within the organization must be involved in the process.
  • Labels provide a framework, but one that must remain flexible and adaptable.

Last but not least, the Kanban system can be adapted to a variety of working modes (individual, team or even organizational), but not to all production levels. When the production rhythm is irregular, the method no longer works. ❌

⚙️ Much software and marketing tools use the Kanban method, such as Click-up, Miro, Trello, Jira…

4. Dynamic Systems Development Method (DSDM)

DSDM , or Dynamic System Development Method, is an agile project management method, initially reserved for software, which follows an iterative, progressive and incremental logic; mainly inspired by the Rapid Application Development (RAD) model. 📲

🤝 DSDM actually came into being thanks to the cooperation of the industry’s RAD approach leaders , to solve a problem posed by RAD, namely its lack of structuring and the absence of common processes between teams.

It is mainly used for projects with very tight delivery deadlines, and aims to deliver at the end of each iteration. ⏱️ Of course, within budget, while adapting to changes and modifications.

🧑🏽‍⚖️ It applies Pareto’s law , so it doesn’t take long to reach a stage where the product can be said to working (80% system deployment in 20% time ).

The DSDM is therefore a lightweight, effective and adaptable method that provides a four-step framework, including 👇🏼 :

  • Feasibility and business study.
  • Functional model / prototype iteration .
  • Design and build iterations.
  • Execution/Application.

DSDM, une méthode de gestion de projet agile.

💎 The method is also based on four core values … :

  • Individual : Valuing people who work on the project and are more familiar with the practical side.
  • Functional software (version used by the end user).
  • Essential collaboration for a functional project (e.g. cross-functional team, co-location with customer, animation workshop…).
  • Responding to change : prioritize Welcoming and all changes required to adapt/respond in a highly innovative way.

…As well as nine fundamental principles , focused on business needs and distinguishing this model from others 👥 :

  • User involvement : Permanent, ongoing and active contact with a small, selected group to reduce errors in user perception, cost of rework, etc.
  • Empowered teams : Encourage empowered decision-making (⚠️ can potentially be a critical point).
  • Frequent delivery : Guarantee that errors/bugs are identified, dealt with and resolved/reversed/corrected at an early stage.
  • Ability : to meet a business need and accept modifications or improvements in a subsequent iteration. DSDM does not create ad hoc software. ❌ It keeps the process flow simple and efficient.
  • Incremental development : Breaking down a major project into several sequences of functionalities delivered to customers with each delivery (up to the complete package or finished product).
  • Reversible modifications: Iteration occurs in small increment and modifications are reversible (little risk of total loss of progress).
  • Define requirements : Limit the degree of freedom needed to make changes.
  • A/B testing integrated and carried out during development to ensure that the product(s) is (are) free from technical defects (solve problems early to reduce rework, costs and lead times).
  • Stakeholder cooperation : Value creation, compliance with precise requirements and honest feedback on results can only take place if trust and honesty prevail.

We’ve now finished presenting the four main agile project management methods: Scrum, Kanban , SAFe and DSDM. 🎬 If you’d like to find out about other existing models, we’ll give you a few pointers in conclusion .

To make it easier to understand, we’d like to share with you some use cases of agile project management techniques in large companies. 👇🏼

Get your first customers this week

Take advantage of the power of Waalaxy to generate leads every day. Start prospecting for free, today.

waalaxy dashboard

Agile Project Management Study Cases : Spotify And Twitter

Project tracking with twitter.

🐦 Twitter (new X) is an emblematic social media with thousands of employees and hundreds of different teams. The structure began to take an interest in agile project management methods in 2010.

In 2019, at Hack Week, a senior application engineer at Twitter, proposed modifying the Jira tool to help the experience development team better manage and track work . 🧠

So they developed a script that aligned a project model for all types of problems, flows and screens. 🤯 The project is called Experience Project Tracking and was an immediate success.

🎉 A second project was therefore immediately born and directly approved : Unified Project Tracking . This project is based on the same structure as Experience Project Tracking, but focuses on objectives, asynchronous mode and accessibility.

⚙️ New features have also been added to organize the work of each team:

  • The hierarchy of new and existing projects.
  • Follow-up and accountability.
  • Problem type customization.
  • Data-driven prioritization .
  • Link and dependency mapping.

↔️ By creating an experience with standardized flows between groups, unified project tracking has enabled teams and managers to :

  • Measure progress more easily and execute more efficiently.
  • Easily establish the critical path of a business plan and explore different variants.
  • Take the plunge, knowing where to focus your attention.
  • Strategic planning and monitoring.

Twitter’s use of agile project management techniques has transformed teamwork throughout the organization. 🏆 Which has therefore earned it the Best in Class (technical) award in 2021.

🎶 Spotify is a leading digital music service and is known for its dynamism and technological know-how. The company began applying agile project management techniques in 2008.

After several test phases, Spotify’s choice quickly fell on the Scrum method . Unlike Google’s “basic” strategy, Spotify adopted this model with a systemic approach. 🔍

Their vision and key principle was to live and breathe Scrum as a development methodology . 😮‍💨 Spotify’s Scrum masters then became experienced agile coaches or leading agile trainers.

The digital music service has formed small, totally independent teams called “squads”, which are treated like individual startups . 🚀

They are allowed to be totally autonomous and work independently to focus on specific functions assigned within the product. 🖱️

🦾 The added advantage of the latter is that they can make changes and provide upgrades without interfering with other teams’ projects.

This approach seems to balance independence with knowledge sharing between specialized groups, who do not engage in day-to-day collaboration. ⚖️ At the same time, Spotify has avoided scaling problems by decoupling where possible.

What made this approach so successful was the rapid removal of obstacles and problems as soon as they arose. It has enabled and continues to enable Spotify to act, grow and deliver software updates quickly. 🔄

As you can imagine, deploying and integrating agile project management methods is no mean feat. Spotify and Twitter took years to find their model. ⌛️

👉🏼 If you’re looking for other use cases for agile project management models in companies, here are a few: eBay, Walmart, Verizon, Airbus, AXA, Orange Bank…

Conclusion : How To Choose The Right Method And Tools?

In conclusion, choosing to invest in agile project management can be highly beneficial for groups and organizations, as it helps them achieve better results more efficiently. 🎯

💡 Here’s a rough guide for choosing the right agile project management method for your marketing strategy :

General method of agile project management.

1. Assess the situation and identify needs : type of project, time and budget constraints , SMART goals , level of customer or team involvement, appropriate methodology…

2. Research and analyze different agile models : In this article, we’ve talked about Scrum, SAFe, Kanban, Lean, RAD, DSDM… But there are plenty of others 👇🏼 :

  • Agile Unified Process (Agile UP or AUP),
  • eXtreme Programming (XP),
  • Feature-Driven Development (FDD),
  • Agile Data,
  • Adaptive software development (ASD)
  • Behavior-driven development (BDD)
  • DDD domain-driven design
  • Test-driven development (TDD)
  • Rational Unified Process (RUP)
  • Enterprise Unified Process (EUP)

3. Choose the right framework ✅ : factors to consider include team size, project complexity, culture, brand image … Finally, we recommend that you apply a single method, from the design stage through to project completion.

4. 📆 Plan and develop a plan for execution (definition of roles, training and resource requirements, communication plan …)

5. Pilot and test the methodology 🕹️ , for example on a small project or team, to assess its effectiveness and identify areas for improvement.

6. Monitor progress and evaluate feedbacks the effectiveness of the new methodology 🤔 (productivity and group dynamics, quality of results, customer satisfaction and overall success of the project…), then collect 🗣️ from all stakeholders in order to make adjustments if necessary.

7. 🪜 Scale up and extend : If you manage to apply the methodology successfully on your pilot project, then you can extend it to other projects and teams within the organization. At that point, you can choose your appropriate project management tools .

NB: The order and content of the above steps is indicative, and this roadmap may be modified according to project and organizational circumstances.

Have you noticed that we haven’t mentioned agile project management tools at all until now? ⚙️ In fact, there are dozens of marketing software packages specializing not only in agile project management, but also in certain agile project models.

We start from the most basic, i.e. agile project management on Excel (free) . 🤦🏻‍♀️ to the use of Enterprise Agile Planning (EAP) tools supporting agile frameworks .

Finally, as a reminder, integrating agile project managemen t methods requires training, constant effort, learn and continuous improvement to guarantee long-term success . 💪🏼 Despite its many benefits, this methodology is not for every company or every project.

Before taking the plunge, we therefore advise you to carefully analyze your needs, your capabilities and your chances of success by investing in this solution. 🍀

Frequently Asked Questions (FAQ)

🏁 To conclude, here are the answers to the most frequently asked questions on the subject. 👇🏼

What Is The Project Management Triangle ?

The project management triangle , also known as The Triple Constraint or Iron Triangle, is a fundamental concept which illustrates the interrelationship between three interconnected variables that determine the quality of the project :

  • Scope : Goals, deliverables , features, and tasks that need to be accomplished within the project. It defines what needs to be done and what is excluded from the project.
  • Time : Schedule or timeline for completing the project. It includes deadlines, milestones, and the overall duration of the project from start to finish.
  • Cost : Budget allocated for the project, including resources, materials, labor, and other expenses necessary to complete the project successfully.

Any change in one factor will invariably impact the other two, your project must carefully balance these constraints to achieve project success … For example:

  • Increasing the scope of a project without adjusting the time or cost will likely lead to delays and increased expenses.
  • Trying to shorten the timeline of a project may require additional resources or increased costs to meet the deadline.
  • Decreasing the budget of a project may necessitate reducing the scope or extending the timeline to accommodate the limited resources.

What Are The Main Stages In A Project’s Life Cycle?

🔄 The project life cycle refers to the process by which a project is imagined, executed and delivered.

As we briefly mentioned at the start of this article, there are 5 essential stages in a project’s lifecycle. ✅ Let’s break them down together:

  • Design : Defining the project, identifying stakeholders and obtaining their approval. It includes activities such as feasibility studies and resource selection.
  • Planning : Planning the project’s activities, defining the resources required, and drawing up a timetable or retro-planning. It includes activities such as breaking down the work, estimating the budget or costs, creating a communication plan…
  • Execution : This is the most difficult stage, executing the plan and carrying out the planned activities and/or tasks. Operationally, this includes monitoring progress and resolving problems.
  • Monitoring and control : Monitoring and ensuring that the project is progressing according to plan. It includes activities such as monitoring costs, measuring performance indicators and managing risks.
  • Finalization : This stage takes place when the products or services are delivered, and includes project documentation and performance evaluation.

What is PMO methodology?

The Project Management Office (PMO), is a centralized entity within an organization that is responsible for defining and maintaining standards and practices related to project management.

PMO methodology serves as a framework to promote consistency, efficiency, and effectiveness in project management practices across the organization, ultimately contributing to successful project delivery and organizational success.

It also refers to the set of processes, procedures, tools, and best practices established and managed by the PMO to support and govern project management activities across the organization.

The PMO methodology typically includes the following components :

  • Project Governance frameworks to ensure projects align with organizational goals and priorities.
  • Standardized Methodologies and Processes such as waterfall, agile, or lean, and associated processes tailored to the organization’s needs.
  • Standardized Templates, Tools and Guidelines to support project planning, execution, and reporting.
  • Resource Management processes for allocation, capacity planning, and resource optimization across projects.
  • Performance Measurement and Reporting of key performance indicators (KPIs) and metrics defined to measure project performance and progress.
  • Risk Management processes to identify, assess, mitigate, and monitor project risks.
  • Quality Management processes implemented to ensure project deliverables meet quality standards and customer requirements.
  • Change Management processes established to effectively manage changes to project scope, schedule, and budget.

What Are The Different Methodologies of Project Management ?

➡️ In marketing , there are 5 ways to manage a project:

  • Incremental : An approach that provides finished deliverables that the customer can use immediately.
  • Iterative : This criterion allows feedback on unfinished work, so that improvements and modifications can be made during the project.
  • Predictive : The more traditional approach (nicknamed V-cycle or waterfall ), with most of the planning upstream, then execution in a single pass; a sequential process.
  • Agile (detailed in this article): simultaneously iterative, incremental and to refine elements and deliver frequently.
  • Hybrid : A combination of predictive, iterative, incremental and/or agile approaches, allowing greater flexibility and delivering diverse results.

Now you know all about agile project management ! See you soon! 👽

Want to go further?

methodology of case study example

Sales techniques : The 10 essential methods

Cecile

What are the main Recruitment Channels?

Camila

Social media

Prospecting

Recruitement

7 examples of successful LinkedIn prospecting messages

Masterclasses

Dans la piscine

Sucess story

  • Open access
  • Published: 11 May 2024

Does a perceptual gap lead to actions against digital misinformation? A third-person effect study among medical students

  • Zongya Li   ORCID: orcid.org/0000-0002-4479-5971 1 &
  • Jun Yan   ORCID: orcid.org/0000-0002-9539-8466 1  

BMC Public Health volume  24 , Article number:  1291 ( 2024 ) Cite this article

217 Accesses

12 Altmetric

Metrics details

We are making progress in the fight against health-related misinformation, but mass participation and active engagement are far from adequate. Focusing on pre-professional medical students with above-average medical knowledge, our study examined whether and how third-person perceptions (TPP), which hypothesize that people tend to perceive media messages as having a greater effect on others than on themselves, would motivate their actions against misinformation.

We collected the cross-sectional data through a self-administered paper-and-pencil survey of 1,500 medical students in China during April 2022.

Structural equation modeling (SEM) analysis, showed that TPP was negatively associated with medical students’ actions against digital misinformation, including rebuttal of misinformation and promotion of corrective information. However, self-efficacy and collectivism served as positive predictors of both actions. Additionally, we found professional identification failed to play a significant role in influencing TPP, while digital misinformation self-efficacy was found to broaden the third-person perceptual gap and collectivism tended to reduce the perceptual bias significantly.

Conclusions

Our study contributes both to theory and practice. It extends the third-person effect theory by moving beyond the examination of restrictive actions and toward the exploration of corrective and promotional actions in the context of misinformation., It also lends a new perspective to the current efforts to counter digital misinformation; involving pre-professionals (in this case, medical students) in the fight.

Peer Review reports

Introduction

The widespread persistence of misinformation in the social media environment calls for effective strategies to mitigate the threat to our society [ 1 ]. Misinformation has received substantial scholarly attention in recent years [ 2 ], and solution-oriented explorations have long been a focus but the subject remains underexplored [ 3 ].

Health professionals, particularly physicians and nurses, are highly expected to play a role in the fight against misinformation as they serve as the most trusted information sources regarding medical topics [ 4 ]. However, some barriers, such as limitations regarding time and digital skills, greatly hinder their efforts to tackle misinformation on social media [ 5 ].

Medical students (i.e., college students majoring in health/medical science), in contrast to medical faculty, have a greater potential to become the major force in dealing with digital misinformation as they are not only equipped with basic medical knowledge but generally possess greater social media skills than the former generation [ 6 ]. Few studies, to our knowledge, have tried to explore the potential of these pre-professionals in tackling misinformation. Our research thus fills the gap by specifically exploring how these pre-professionals can be motivated to fight against digital health-related misinformation.

The third-person perception (TPP), which states that people tend to perceive media messages as having a greater effect on others than on themselves [ 7 ], has been found to play an important role in influencing individuals’ coping strategies related to misinformation. But empirical exploration from this line of studies has yielded contradictory results. Some studies revealed that individuals who perceived a greater negative influence of misinformation on others than on themselves were more likely to take corrective actions to debunk misinformation [ 8 ]. In contrast, some research found that stronger TPP reduced individuals’ willingness to engage in misinformation correction [ 9 , 10 ]. Such conflicting findings impel us to examine the association between the third-person perception and medical students’ corrective actions in response to misinformation, thus attempting to unveil the underlying mechanisms that promote or inhibit these pre-professionals’ engagement with misinformation.

Researchers have also identified several perceptual factors that motivate individuals’ actions against misinformation, especially efficacy-related concepts (e.g., self-efficacy and health literacy) and normative variables (e.g., subjective norms and perceived responsibility) [ 3 , 8 , 9 ]. However, most studies devote attention to the general population; little is known about whether and how these factors affect medical students’ intentions to deal with misinformation. We recruited Chinese medical students in order to study a social group that is mutually influenced by cultural norms (collectivism in Chinese society) and professional norms. Meanwhile, systematic education and training equip medical students with abundant clinical knowledge and good levels of eHealth literacy [ 5 ], which enable them to have potential efficacy in tackling misinformation. Our study thus aims to examine how medical students’ self-efficacy, cultural norms (i.e., collectivism) and professional norms (i.e., professional identification) impact their actions against misinformation.

Previous research has found self-efficacy to be a reliable moderator of optimistic bias, the tendency for individuals to consider themselves as less likely to experience negative events but more likely to experience positive events as compared to others [ 11 , 12 , 13 ]. As TPP is thought to be a product of optimistic bias, accordingly, self-efficacy should have the potential to influence the magnitude of third-person perception [ 14 , 15 ]. Meanwhile, scholars also suggest that the magnitude of TPP is influenced by social distance corollary [ 16 , 17 ]. Simply put, individuals tend to perceive those who are more socially distant from them to be more susceptible to the influence of undesirable media than those who are socially proximal [ 18 , 19 , 20 ]. From a social identity perspective, collectivism and professional identification might moderate the relative distance between oneself and others while the directions of such effects differ [ 21 , 22 ]. For example, collectivists tend to perceive a smaller social distance between self and others as “they are less likely to view themselves as distinct or unique from others” [ 23 ]. In contrast, individuals who are highly identified with their professional community (i.e., medical community) are more likely to perceive a larger social distance between in-group members (including themselves) and out-group members [ 24 ]. In this way, collectivism and professional identification might exert different effects on TPP. On this basis, this study aims to examine whether and how medical students’ perceptions of professional identity, self-efficacy and collectivism influence the magnitude of TPP and in turn influence their actions against misinformation.

Our study builds a model that reflects the theoretical linkages among self-efficacy, collectivism, professional identity, TPP, and actions against misinformation. The model, which clarifies the key antecedents of TPP and examines the mediating role of TPP, contribute to the third-person effect literature and offer practical contributions to countering digital misinformation.

Context of the study

As pre-professionals equipped with specialized knowledge and skills, medical students have been involved in efforts in health communication and promotion during the pandemic. For instance, thousands of medical students have participated in various volunteering activities in the fight against COVID-19, such as case data visualization [ 25 ], psychological counseling [ 26 ], and providing online consultations [ 27 ]. Due to the shortage of medical personnel and the burden of work, some medical schools also encouraged their students to participate in health care assistance in hospitals during the pandemic [ 28 , 29 ].

The flood of COVID-19 related misinformation has posed an additional threat to and burden on public health. We have an opportunity to address this issue and respond to the general public’s call for guidance from the medical community about COVID-19 by engaging medical students as a main force in the fight against coronavirus related misinformation.

Literature review

The third-person effect in the misinformation context.

Originally proposed by Davison [ 7 ], the third-person effect hypothesizes that people tend to perceive a greater effect of mass media on others than on themselves. Specifically, the TPE consists of two key components: the perceptual and the behavioral [ 16 ]. The perceptual component centers on the perceptual gap where individuals tend to perceive that others are more influenced by media messages than themselves. The behavioral component refers to the behavioral outcomes of the self-other perceptual gap in which people act in accordance with such perceptual asymmetry.

According to Perloff [ 30 ], the TPE is contingent upon situations. For instance, one general finding suggests that when media messages are considered socially undesirable, nonbeneficial, or involving risks, the TPE will get amplified [ 16 ]. Misinformation characterized as inaccurate, misleading, and even false, is regarded as undesirable in nature [ 31 ]. Based on this line of reasoning, we anticipate that people will tend to perceive that others would be more influenced by misinformation than themselves.

Recent studies also provide empirical evidence of the TPE in the context of misinformation [ 32 ]. For instance, an online survey of 511 Chinese respondents conducted by Liu and Huang [ 33 ] revealed that individuals would perceive others to be more vulnerable to the negative influence of COVID-19 digital disinformation. An examination of the TPE within a pre-professional group – the medical students–will allow our study to examine the TPE scholarship in a particular population in the context of tackling misinformation.

Why TPE occurs among medical students: a social identity perspective

Of the works that have provided explanations for the TPE, the well-known ones include self-enhancement [ 34 ], attributional bias [ 35 ], self-categorization theory [ 36 ], and the exposure hypothesis [ 19 ]. In this study, we argue for a social identity perspective as being an important explanation for third-person effects of misinformation among medical students [ 36 , 37 ].

The social identity explanation suggests that people define themselves in terms of their group memberships and seek to maintain a positive self-image through favoring the members of their own groups over members of an outgroup, which is also known as downward comparison [ 38 , 39 ]. In intergroup settings, the tendency to evaluate their ingroups more positively than the outgroups will lead to an ingroup bias [ 40 ]. Such an ingroup bias is typically described as a trigger for the third-person effect as individuals consider themselves and their group members superior and less vulnerable to undesirable media messages than are others and outgroup members [ 20 ].

In the context of our study, medical students highly identified with the medical community tend to maintain a positive social identity through an intergroup comparison that favors the ingroup and derogates the outgroup (i.e., the general public). It is likely that medical students consider themselves belonging to the medical community and thus are more knowledgeable and smarter than the general public in health-related topics, leading them to perceive the general public as more vulnerable to health-related misinformation than themselves. Accordingly, we propose the following hypothesis:

H1: As medical students’ identification with the medical community increases, the TPP concerning digital misinformation will become larger.

What influences the magnitude of TPP

Previous studies have demonstrated that the magnitude of the third-person perception is influenced by a host of factors including efficacy beliefs [ 3 ] and cultural differences in self-construal [ 22 , 23 ]. Self-construal is defined as “a constellation of thoughts, feelings, and actions concerning the relationship of the self to others, and the self as distinct from others” [ 41 ]. Markus and Kitayama (1991) identified two dimensions of self-construal: Independent and interdependent. Generally, collectivists hold an interdependent view of the self that emphasizes harmony, relatedness, and places importance on belonging, whereas individualists tend to have an independent view of the self and thus view themselves as distinct and unique from others [ 42 ]. Accordingly, cultural values such as collectivism-individualism should also play a role in shaping third-person perception due to the adjustment that people make of the self-other social identity distance [ 22 ].

Set in a Chinese context aiming to explore the potential of individual-level approaches to deal with misinformation, this study examines whether collectivism (the prevailing cultural value in China) and self-efficacy (an important determinant of ones’ behavioral intentions) would affect the magnitude of TPP concerning misinformation and how such impact in turn would influence their actions against misinformation.

The impact of self-efficacy on TPP

Bandura [ 43 ] refers to self-efficacy as one’s perceived capability to perform a desired action required to overcome barriers or manage challenging situations. He also suggests understanding self-efficacy as “a differentiated set of self-beliefs linked to distinct realms of functioning” [ 44 ]. That is to say, self-efficacy should be specifically conceptualized and operationalized in accordance with specific contexts, activities, and tasks [ 45 ]. In the context of digital misinformation, this study defines self-efficacy as one’s belief in his/her abilities to identify and verify misinformation within an affordance-bounded social media environment [ 3 ].

Previous studies have found self-efficacy to be a reliable moderator of biased optimism, which indicates that the more efficacious individuals consider themselves, the greater biased optimism will be invoked [ 12 , 23 , 46 ]. Even if self-efficacy deals only with one’s assessment of self in performing a task, it can still create the other-self perceptual gap; individuals who perceive a higher self-efficacy tend to believe that they are more capable of controlling a stressful or challenging situation [ 12 , 14 ]. As such, they are likely to consider themselves less vulnerable to negative events than are others [ 23 ]. That is, individuals with higher levels of self-efficacy tend to underestimate the impact of harmful messages on themselves, thereby widening the other-self perceptual gap.

In the context of fake news, which is closely related to misinformation, scholars have confirmed that fake news efficacy (i.e., a belief in one’s capability to evaluate fake news [ 3 ]) may lead to a larger third-person perception. Based upon previous research evidence, we thus propose the following hypothesis:

H2: As medical students’ digital misinformation self-efficacy increases, the TPP concerning digital misinformation will become larger.

The influence of collectivism on TPP

Originally conceptualized as a societal-level construct [ 47 ], collectivism reflects a culture that highlights the importance of collective goals over individual goals, defines the self in relation to the group, and places great emphasis on conformity, harmony and interdependence [ 48 ]. Some scholars propose to also examine cultural values at the individual level as culture is embedded within every individual and could vary significantly among individuals, further exerting effects on their perceptions, attitudes, and behaviors [ 49 ]. Corresponding to the construct at the macro-cultural level, micro-psychometric collectivism which reflects personality tendencies is characterized by an interdependent view of the self, a strong sense of other-orientation, and a great concern for the public good [ 50 ].

A few prior studies have indicated that collectivism might influence the magnitude of TPP. For instance, Lee and Tamborini [ 23 ] found that collectivism had a significant negative effect on the magnitude of TPP concerning Internet pornography. Such an impact can be understood in terms of biased optimism and social distance. Collectivists tend to view themselves as an integral part of a greater social whole and consider themselves less differentiated from others [ 51 ]. Collectivism thus would mitigate the third-person perception due to a smaller perceived social distance between individuals and other social members and a lower level of comparative optimism [ 22 , 23 ]. Based on this line of reasoning, we thus propose the following hypothesis:

H3: As medical students’ collectivism increases, the TPP concerning digital misinformation will become smaller.

Behavioral consequences of TPE in the misinformation context

The behavioral consequences trigged by TPE have been classified into three categories: restrictive actions refer to support for censorship or regulation of socially undesirable content such as pornography or violence on television [ 52 ]; corrective action is a specific type of behavior where people seek to voice their own opinions and correct the perceived harmful or ambiguous messages [ 53 ]; promotional actions target at media content with desirable influence, such as advocating for public service announcements [ 24 ]. In a word, restriction, correction and promotion are potential behavioral outcomes of TPE concerning messages with varying valence of social desirability [ 16 ].

Restrictive action as an outcome of third-person perceptual bias (i.e., the perceptual component of TPE positing that people tend to perceive media messages to have a greater impact on others than on themselves) has received substantial scholarly attention in past decades; scholars thus suggest that TPE scholarship to go beyond this tradition and move toward the exploration of corrective and promotional behaviors [ 16 , 24 ]. Moreover, individual-level corrective and promotional actions deserve more investigation specifically in the context of countering misinformation, as efforts from networked citizens have been documented as an important supplement beyond institutional regulations (e.g., drafting policy initiatives to counter misinformation) and platform-based measures (e.g., improving platform algorithms for detecting misinformation) [ 8 ].

In this study, corrective action specifically refers to individuals’ reactive behaviors that seek to rectify misinformation; these include such actions as debunking online misinformation by commenting, flagging, or reporting it [ 3 , 54 ]. Promotional action involves advancing correct information online, including in response to misinformation that has already been disseminated to the public [ 55 ].

The impact of TPP on corrective and promotional actions

Either paternalism theory [ 56 ] or the protective motivation theory [ 57 ] can act as an explanatory framework for behavioral outcomes triggered by third-person perception. According to these theories, people act upon TPP as they think themselves to know better and feel obligated to protect those who are more vulnerable to negative media influence [ 58 ]. That is, corrective and promotional actions as behavioral consequences of TPP might be driven by a protective concern for others and a positive sense of themselves.

To date, several empirical studies across contexts have examined the link between TPP and corrective actions. Koo et al. [ 8 ], for instance, found TPP was not only positively related to respondents’ willingness to correct misinformation propagated by others, but also was positively associated with their self-correction. Other studies suggest that TPP motivates individuals to engage in both online and offline corrective political participation [ 59 ], give a thumbs down to a biased story [ 60 ], and implement corrective behaviors concerning “problematic” TV reality shows [ 16 ]. Based on previous research evidence, we thus propose the following hypothesis:

H4: Medical students with higher degrees of TPP will report greater intentions to correct digital misinformation.

Compared to correction, promotional behavior has received less attention in the TPE research. Promotion commonly occurs in a situation where harmful messages have already been disseminated to the public and others appear to have been influenced by these messages, and it serves as a remedial action to amplify messages with positive influence which may in turn mitigate the detrimental effects of harmful messages [ 16 ].

Within this line of studies, however, empirical studies provide mixed findings. Wei and Golan [ 24 ] found a positive association between TPP of desirable political ads and promotional social media activism such as posting or linking the ad on their social media accounts. Sun et al. [ 16 ] found a negative association between TPP regarding clarity and community-connection public service announcements (PSAs) and promotion behaviors such as advocating for airing more PSAs in TV shows.

As promotional action is still underexplored in the TPE research, and existing evidence for the link between TPP and promotion is indeed mixed, we thus propose an exploratory research question:

RQ1: What is the relationship between TPP and medical students’ intentions to promote corrective information?

The impact of self-efficacy and collectivism on actions against misinformation

According to social cognitive theory, people with higher levels of self-efficacy tend to believe they are competent and capable and are more likely to execute specific actions [ 43 ]. Within the context of digital misinformation, individuals might become more willing to engage in misinformation correction if they have enough knowledge and confidence to evaluate information, and possess sufficient skills to verify information through digital tools and services [ 61 ].

Accordingly, we assumed medical students with higher levels of digital misinformation self-efficacy would be likely to become more active in the fight against misinformation.

H5: Medical students with higher levels of digital misinformation self-efficacy will report greater intentions to (a) correct misinformation and (b) promote corrective information on social media.

Social actions of collectivists are strongly guided by prevailing social norms, collective responsibilities, and common interest, goals, and obligations [ 48 ]. Hence, highly collectivistic individuals are more likely to self-sacrifice for group interests and are more oriented toward pro-social behaviors, such as adopting pro-environmental behaviors [ 62 ], sharing knowledge [ 23 ], and providing help for people in need [ 63 ].

Fighting against misinformation is also considered to comprise altruism, especially self-engaged corrective and promotional actions, as such actions are costly to the actor (i.e., taking up time and energy) but could benefit the general public [ 61 ]. Accordingly, we assume collectivism might play a role in prompting people to engage in reactive behaviors against misinformation.

It is also noted that collectivist values are deeply rooted in Chinese society and were especially strongly advocated during the outbreak of COVID-19 with an attempt to motivate prosocial behaviors [ 63 ]. Accordingly, we expected that the more the medical students were oriented toward collectivist values, the more likely they would feel personally obliged and normatively motivated to engage in misinformation correction. However, as empirical evidence was quite limited, we proposed exploratory research questions:

RQ2: Will medical students with higher levels of collectivism report greater intentions to (a) correct misinformation and (b) promote corrective information on social media?

The theoretical model

To integrate both the antecedents and consequences of TPP, we proposed a theoretical model (as shown in Fig. 1 ) to examine how professional identification, self-efficacy and collectivism would influence the magnitude of TPP, and how such impact would in turn influence medical students’ intentions to correct digital misinformation and promote corrective information. Thus, RQ3 was proposed:

RQ3: Will the TPP mediate the impact of self-efficacy and collectivism on medical students’ intentions to (a) correct misinformation, and (b) promote corrective information on social media? Fig. 1 The proposed theoretical model. DMSE = Digital Misinformation Self-efficacy; PIMC = Professional Identification with Medical Community; ICDM = Intention to Correct Digital Misinformation; IPCI = Intention to Promote Corrective Information Full size image

To examine the proposed hypotheses, this study utilized cross-sectional survey data from medical students in Tongji Medical College (TJMC) of China. TJMC is one of the birthplaces of Chinese modern medical education and among the first universities and colleges that offer eight-year curricula on clinical medicine. Further, TJMC is located in Wuhan, the epicenter of the initial COVID-19 outbreaks, thus its students might find the pandemic especially relevant – and threatening – to them.

The survey instrument was pilot tested using a convenience sample of 58 respondents, leading to minor refinements to a few items. Upon approval from the university’s Institutional Research Board (IRB), the formal investigation was launched in TJMC during April 2022. Given the challenges of reaching the whole target population and acquiring an appropriate sampling frame, this study employed purposive and convenience sampling.

We first contacted four school counselors as survey administrators through email with a letter explaining the objective of the study and requesting cooperation. All survey administrators were trained by the principal investigator to help with the data collection in four majors (i.e., basic medicine, clinical medicine, nursing, and public health). Paper-and-pencil questionnaires were distributed to students on regular weekly departmental meetings of each major as students in all grades (including undergraduates, master students, and doctoral students) were required to attend the meeting. The projected time of completion of the survey was approximately 10–15 min. The survey administrators indicated to students that participation was voluntary, their responses would remain confidential and secure, and the data would be used only for academic purposes. Though a total of 1,500 participants took the survey, 17 responses were excluded from the analysis as they failed the attention filters. Ultimately, a total of 1,483 surveys were deemed valid for analysis.

Of the 1,483 respondents, 624 (42.10%) were men and 855 (57.70%) were women, and four did not identify gender. The average age of the sample was 22.00 ( SD  = 2.54, ranging from 17 to 40). Regarding the distribution of respondents’ majors, 387 (26.10%) were in basic medicine, 390 (26.30%) in clinical medicine, 307 (20.70%) in nursing, and 399 (26.90%) in public health. In terms of university class, 1,041 (70.40%) were undergraduates, 291 (19.70%) were working on their master degrees, 146 (9.90%) were doctoral students, and five did not identify their class data.

Measurement of key variables

Perceived effects of digital misinformation on oneself and on others.

Three modified items adapted from previous research [ 33 , 64 ] were employed to measure perceived effects of digital misinformation on oneself. Respondents were asked to indicate to what extent they agreed with the following: (1) I am frequently concerned that the information about COVID-19 I read on social media might be false; (2) Misinformation on social media might misguide my understanding of the coronavirus; (3) Misinformation on social media might influence my decisions regarding COVID-19. The response categories used a 7-point scale, where 1 meant “strongly disagree” and 7 meant “strongly agree.” The measure of perceived effects of digital misinformation on others consisted of four parallel items with the same statement except replacing “I” and “my” with “the general others” and “their”. The three “self” items were averaged to create a measure of “perceived effects on oneself” ( M  = 3.98, SD  = 1.49, α  = 0.87). The three “others” items were also added and averaged to form an index of “perceived effects on others” ( M  = 4.62, SD  = 1.32, α  = 0.87).

The perceived self-other disparity (TPP)

TPP was derived by subtracting perceived effects on oneself from perceived effects on others.

Professional identification with medical community

Professional identification was measured using a three item, 7-point Likert-type scale (1 =  strongly disagree , 7 =  strongly agree ) adapted from previous studies [ 65 , 66 ] by asking respondents to indicate to what extent they agreed with the following statements: (1) I would be proud to be a medical staff member in the future; (2) I am committed to my major; and (3) I will be in an occupation that matches my current major. The three items were thus averaged to create a composite measure of professional identification ( M  = 5.34, SD  = 1.37, α  = 0.88).

Digital misinformation self-efficacy

Modified from previous studies [ 3 ], self-efficacy was measured with three items. Respondents were asked to indicate on a 7-point Linkert scale from 1 (strongly disagree) to 7 (strongly agree) their agreement with the following: (1) I think I can identify misinformation relating to COVID-19 on social media by myself; (2) I know how to verify misinformation regarding COVID-19 by using digital tools such as Tencent Jiaozhen Footnote 1 and Piyao.org.cn Footnote 2 ; (3) I am confident in my ability to identify digital misinformation relating to COVID-19. A composite measure of self-efficacy was constructed by averaging the three items ( M  = 4.38, SD  = 1.14, α  = 0.77).

  • Collectivism

Collectivism was measured using four items adapted from previous research [ 67 ], in which respondents were asked to indicate their agreement with the following statements on a 7-point scale, from 1 (strongly disagree) to 7 (strongly agree): (1) Individuals should sacrifice self-interest for the group; (2) Group welfare is more important than individual rewards; (3) Group success is more important than individual success; and (4) Group loyalty should be encouraged even if individual goals suffer. Therefore, the average of the four items was used to create a composite index of collectivism ( M  = 4.47, SD  = 1.30, α  = 0.89).

Intention to correct digital misinformation

We used three items adapted from past research [ 68 ] to measure respondents’ intention to correct misinformation on social media. All items were scored on a 7-point scale from 1 (very unlikely) to 7 (very likely): (1) I will post a comment saying that the information is wrong; (2) I will message the person who posts the misinformation to tell him/her the post is wrong; (3) I will track the progress of social media platforms in dealing with the wrong post (i.e., whether it’s deleted or corrected). A composite measure of “intention to correct digital misinformation” was constructed by adding the three items and dividing by three ( M  = 3.39, SD  = 1.43, α  = 0.81).

Intention to promote corrective information

On a 7-point scale ranging from 1 (very unlikely) to 7 (very likely), respondents were asked to indicate their intentions to (1) Retweet the corrective information about coronavirus on my social media account; (2) Share the corrective information about coronavirus with others through Social Networking Services. The two items were averaged to create a composite measure of “intention to promote corrective information” ( M  = 4.60, SD  = 1.68, r  = 0.77).

Control variables

We included gender, age, class (1 = undergraduate degree; 2 = master degree; 3 = doctoral degree), and clinical internship (0 = none; 1 = less than 0.5 year; 2 = 0.5 to 1.5 years; 3 = 1.5 to 3 years; 4 = more than 3 years) as control variables in the analyses. Additionally, coronavirus-related information exposure (i.e., how frequently they were exposed to information about COVID-19 on Weibo, WeChat, and QQ) and misinformation exposure on social media (i.e., how frequently they were exposed to misinformation about COVID-19 on Weibo, WeChat, and QQ) were also assessed as control variables because previous studies [ 69 , 70 ] had found them relevant to misinformation-related behaviors. Descriptive statistics and bivariate correlations between main variables were shown in Table 1 .

Statistical analysis

We ran confirmatory factor analysis (CFA) in Mplus (version 7.4, Muthén & Muthén, 1998) to ensure the construct validity of the scales. To examine the associations between variables and tested our hypotheses, we performed structural equation modeling (SEM). Mplus was chosen over other SEM statistical package mainly because the current data set included some missing data, and the Mplus has its strength in handling missing data using full-information maximum likelihood imputation, which enabled us to include all available data [ 71 , 72 ]. Meanwhile, Mplus also shows great flexibility in modelling when simultaneously handling continuous, categorical, observed, and latent variables in a variety of models. Further, Mplus provides a variety of useful information in a concise manner [ 73 ].

Table 2 shows the model fit information for the measurement and structural models. Five latent variables were specified in the measurement model. To test the measurement model, we examined the values of Cronbach’s alpha, composite reliability (CR), and average variance extracted (AVE) (Table 1 ). Cronbach’s alpha values ranged from 0.77 to 0.89. The CRs, which ranged from 0.78 to 0.91, exceeded the level of 0.70 recommended by Fornell (1982) and thus confirmed the internal consistency. The AVE estimates, which ranged from 0.54 to 0.78, exceeded the 0.50 lower limit recommended by Fornell and Larcker (1981), and thus supported convergent validity. All the square roots of AVE were greater than the off-diagonal correlations in the corresponding rows and columns [ 74 ]. Therefore, discriminant validity was assured. In a word, our measurement model showed sufficient convergence and discriminant validity.

Five model fit indices–the relative chi-square ratio (χ 2 / df ), the comparative fit index (CFI), the Tucker–Lewis index (TLI), the root mean square error of approximation (RMSEA), and the standardized root-mean-square residual (SRMR) were used to assess the model. Specifically, the normed chi-square between 1 and 5 is acceptable [ 75 ]. TLI and CFI over 0.95 are considered acceptable, SRMR value less than 0.08 and RMSEA value less than 0.06 indicate good fit [ 76 ]. Based on these criteria, the model was found to have an acceptable fit to the data.

Figure 2 presents the results of our hypothesized model. H1 was rejected as professional identification failed to predict TPP ( β  = 0.06, p  > 0.05). Self-efficacy was positively associated with TPP ( β  = 0.14, p  < 0.001) while collectivism was negatively related to TPP ( β  = -0.10, p  < 0.01), lending support to H2 and H3.

figure 2

Note. N  = 1,483. The coefficients of relationships between latent variables are standardized beta coefficients. Significant paths are indicated by solid line; non-significant paths are indicated by dotted lines. * p  < .05, ** p  < .01; *** p  < .001. DMSE = Digital Misinformation Self-efficacy; PIMC = Professional Identification with Medical Community; ICDM = Intention to Correct Digital Misinformation; IPCI = Intention to Promote Corrective Information

H4 posited that medical students with higher degrees of TPP would report greater intentions to correct digital misinformation. However, we found a negative association between TPP and intentions to correct misinformation ( β  = -0.12, p  < 0.001). H4 was thus rejected. Regarding RQ1, results revealed that TPP was negatively associated with intentions to promote corrective information ( β  = -0.08, p  < 0.05).

Further, our results supported H5 as we found that self-efficacy had a significant positive relationship with corrective intentions ( β  = 0.18, p  < 0.001) and promotional intentions ( β  = 0.32, p  < 0.001). Collectivism was also positively associated with intentions to correct misinformation ( β  = 0.14, p  < 0.001) and promote corrective information ( β  = 0.20, p  < 0.001), which answered RQ2.

Regarding RQ3 (see Table 3 ), TPP significantly mediated the relationship between self-efficacy and intentions to correct misinformation ( β  = -0.016), as well as the relationship between self-efficacy and intentions to promote corrective information ( β  = -0.011). However, TPP failed to mediate either the association between collectivism and corrective intentions ( β  = 0.011, ns ) or the association between collectivism and promotional intentions ( β  = 0.007, ns ).

Recent research has highlighted the role of health professionals and scientists in the fight against misinformation as they are considered knowledgeable, ethical, and reliable [ 5 , 77 ]. This study moved a step further by exploring the great potential of pre-professional medical students to tackle digital misinformation. Drawing on TPE theory, we investigated how medical students perceived the impact of digital misinformation, the influence of professional identification, self-efficacy and collectivism on these perceptions, and how these perceptions would in turn affect their actions against digital misinformation.

In line with prior studies [ 3 , 63 ], this research revealed that self-efficacy and collectivism played a significant role in influencing the magnitude of third-person perception, while professional identification had no significant impact on TPP. As shown in Table 1 , professional identification was positively associated with perceived effects of misinformation on oneself ( r  = 0.14, p  < 0.001) and on others ( r  = 0.20, p  < 0.001) simultaneously, which might result in a diminished TPP. What explains a shared or joint influence of professional identification on self and others? A potential explanation is that even medical staff had poor knowledge about the novel coronavirus during the initial outbreak [ 78 ]. Accordingly, identification with the medical community was insufficient to create an optimistic bias concerning identifying misinformation about COVID-19.

Our findings indicated that TPP was negatively associated with medical students’ intentions to correct misinformation and promote corrective information, which contradicted our hypotheses but was consistent with some previous TPP research conducted in the context of perceived risk [ 10 , 79 , 80 , 81 ]. For instance, Stavrositu and Kim (2014) found that increased TPP regarding cancer risk was negatively associated with behavioral intentions to engage in further cancer information search/exchange, as well as to adopt preventive lifestyle changes. Similarly, Wei et al. (2008) found concerning avian flu news that TPP negatively predicted the likelihood of engaging in actions such as seeking relevant information and getting vaccinated. In contrast, the perceived effects of avian flu news on oneself emerged as a positive predictor of intentions to take protective behavior.

Our study shows a similar pattern as perceived effects of misinformation on oneself were positively associated with intentions to correct misinformation ( r  = 0.06, p  < 0.05) and promote corrective information ( r  = 0.10, p  < 0.001, See Table 1 ). While the reasons for the behavioral patterns are rather elusive, such findings are indicative of human nature. When people perceive misinformation-related risk to be highly personally relevant, they do not take chances. However, when they perceive others to be more vulnerable than themselves, a set of sociopsychological dynamics such as self-defense mechanism, positive illusion, optimistic bias, and social comparison provide a restraint on people’s intention to engage in corrective and promotional actions against misinformation [ 81 ].

In addition to the indirect effects via TPP, our study also revealed that self-efficacy and collectivism serve as direct and powerful drivers of corrective and promotive actions. Consistent with previous literature [ 61 , 68 ], individuals will be more willing to engage in social corrections of misinformation if they possess enough knowledge, skills, abilities, and resources to identify misinformation, as correcting misinformation is difficult and their effort would not necessarily yield positive outcomes. Collectivists are also more likely to engage in misinformation correction as they are concerned for the public good and social benefits, aiming to protect vulnerable people from being misguided by misinformation [ 82 ].

This study offers some theoretical advancements. First, our study extends the TPE theory by moving beyond the examination of restrictive actions and toward the exploration of corrective and promotional actions in the context of misinformation. This exploratory investigation suggests that self-other asymmetry biased perception concerning misinformation did influence individuals’ actions against misinformation, but in an unexpected direction. The results also suggest that using TPP alone to predict behavioral outcomes was deficient as it only “focuses on differences between ‘self’ and ‘other’ while ignoring situations in which the ‘self’ and ‘other’ are jointly influenced” [ 83 ]. Future research, therefore, could provide a more sophisticated understanding of third-person effects on behavior by comparing the difference of perceived effects on oneself, perceived effects on others, and the third-person perception in the pattern and strength of the effects on behavioral outcomes.

Moreover, institutionalized corrective solutions such as government and platform regulation are non-exhaustive [ 84 , 85 ]; it thus becomes critical to tap the great potential of the crowd to engage in the fight against misinformation [ 8 ] while so far, research on the motivations underlying users’ active countering of misinformation has been scarce. The current paper helps bridge this gap by exploring the role of self-efficacy and collectivism in predicting medical students’ intentions to correct misinformation and promote corrective information. We found a parallel impact of the self-ability-related factor and the collective-responsibility-related factor on intentions to correct misinformation and promote corrective information. That is, in a collectivist society like China, cultivating a sense of collective responsibility and obligation in tackling misinformation (i.e., a persuasive story told with an emphasis on collective interests of social corrections of misinformation), in parallel with systematic medical education and digital literacy training (particularly, handling various fact-checking tools, acquiring Internet skills for information seeking and verification) would be effective methods to encourage medical students to engage in active countering behaviors against misinformation. Moreover, such an effective means of encouraging social corrections of misinformation might also be applied to the general public.

In practical terms, this study lends new perspectives to the current efforts in dealing with digital misinformation by involving pre-professionals (in this case, medical students) into the fight against misinformation. As digital natives, medical students usually spend more time online, have developed sophisticated digital competencies and are equipped with basic medical knowledge, thus possessing great potential in tackling digital misinformation. This study further sheds light on how to motivate medical students to become active in thwarting digital misinformation, which can help guide strategies to enlist pre-professionals to reduce the spread and threat of misinformation. For example, collectivism education in parallel with digital literacy training would help increase medical students’ sense of responsibility for and confidence in tackling misinformation, thus encouraging them to engage in active countering behaviors.

This study also has its limitations. First, the cross-sectional survey study did not allow us to justify causal claims. Granted, the proposed direction of causality in this study is in line with extant theorizing, but there is still a possibility of reverse causal relationships. To establish causality, experimental research or longitudinal studies would be more appropriate. Our second limitation lies in the generalizability of our findings. With the focus set on medical students in Chinese society, one should be cautious in generalizing the findings to other populations and cultures. For example, the effects of collectivism on actions against misinformation might differ in Eastern and Western cultures. Further studies would benefit from replication in diverse contexts and with diverse populations to increase the overall generalizability of our findings.

Drawing on TPE theory, our study revealed that TPP failed to motivate medical students to correct misinformation and promote corrective information. However, self-efficacy and collectivism were found to serve as direct and powerful drivers of corrective and promotive actions. Accordingly, in a collectivist society such as China’s, cultivating a sense of collective responsibility in tackling misinformation, in parallel with efficient personal efficacy interventions, would be effective methods to encourage medical students, even the general public, to actively engage in countering behaviors against misinformation.

Availability of data and materials

The datasets used and/or analyzed during the current study available from the corresponding author on reasonable request.

Tencent Jiaozhen Fact-Checking Platform which comprises the Tencent information verification tool allow users to check information authenticity through keyword searching. The tool is updated on a daily basis and adopts a human-machine collaboration approach to discovering, verifying, and refuting rumors and false information. For refuting rumors, Tencent Jiaozhen publishes verified content on the homepage of Tencent's rumor-refuting platform, and uses algorithms to accurately push this content to users exposed to the relevant rumors through the WeChat dispelling assistant.

Piyao.org.cn is hosted by the Internet Illegal Information Reporting Center under the Office of the Central Cyberspace Affairs Commission and operated by Xinhuanet.com. The platform is a website that collects statements from Twitter-like services, news portals and China's biggest search engine, Baidu, to refute online rumors and expose the scams of phishing websites. It has integrated over 40 local rumor-refuting platforms and uses artificial intelligence to identify rumors.

Dhawan D, Bekalu M, Pinnamaneni R, McCloud R, Viswanath K. COVID-19 news and misinformation: do they matter for public health prevention? J Health Commun. 2021;26:799–808.

Article   PubMed   Google Scholar  

Janmohamed K, Walter N, Nyhan K, Khoshnood K, Tucker JD, Sangngam N, et al. Interventions to mitigate COVID-19 misinformation: a systematic review and meta-analysis. J Health Commun. 2021;26:846–57.

Cheng Y, Chen ZF. The influence of presumed fake news influence: examining public support for corporate corrective response, media literacy interventions, and governmental regulation. Mass Commun Soc. 2020;23:705–29.

Article   Google Scholar  

Earnshaw VA, Katz IT. Educate, amplify, and focus to address COVID-19 misinformation. JAMA Health Forum. 2020;1:e200460.

Bautista JR, Zhang Y, Gwizdka J. Healthcare professionals’ acts of correcting health misinformation on social media. Int J Med Inf. 2021;148:104375.

O’Doherty D, Lougheed J, Hannigan A, Last J, Dromey M, O’Tuathaigh C, et al. Internet skills of medical faculty and students: is there a difference? BMC Med Educ. 2019;19:39.

Article   PubMed   PubMed Central   Google Scholar  

Davison WP. The third-person effect in communication.

Koo AZ-X, Su M-H, Lee S, Ahn S-Y, Rojas H. What motivates people to correct misinformation? Examining the effects of third-person perceptions and perceived norms. J Broadcast Electron Media. 2021;65:111–34.

Oktavianus J, Bautista JR. Motivating healthcare professionals to correct online health misinformation: the roles of subjective norm, third-person perception, and channel differences. Comput Hum Behav. 2023;147:107839.

Tang S, Willnat L, Zhang H. Fake news, information overload, and the third-person effect in China. Glob Media China. 2021;6:492–507.

Chapin J. Third-person perception and facebook. Int J Cyber Behav Psychol Learn. 2014;4:34–44.

Wei R, Lo V-H, Lu H-Y. Reconsidering the relationship between the third-person perception and optimistic bias. Commun Res. 2007;34:665–84.

Weinstein ND. Unrealistic optimism about future life events. J Pers Soc Psychol. 1980;39:802–20.

Liu X. Media exposure and third-person perception: the mediating role of social realism and proxy efficacy. 2021.

Yang J, Tian Y. “Others are more vulnerable to fake news than I Am”: Third-person effect of COVID-19 fake news on social media users. Comput Hum Behav. 2021;125:106950.

Sun Ye, Shen L, Pan Z. On the behavioral component of the third-person effect. Commun Res. 2008;35:257–78.

Article   CAS   Google Scholar  

Wei R, Lo V-H. The third-person effects of political attack ads in the 2004 U.S. Presidential election. Media Psychol. 2007;9:367–88.

Duck JM, Hogg MA, Terry DJ. Social identity and perceptions of media persuasion: are we always less influenced than others? 1. J Appl Soc Psychol. 1999;29(9):1879–99.

Eveland WP, Nathanson AI, Detenber BH, McLEOD DM. Rethinking the social distance corollary: perceived likelihood of expsoure and the third-person perception. Commun Res. 1999;26:275–302.

Scharrer E. Third-person perception and television violence: the role of out-group stereotyping in perceptions of susceptibility to effects. Commun Res. 2002;29:681–704.

Brownlee K, Halverson G, Chassie A. Multiple relationships: maintaining professional identity in rural social work practice. J Compar Soc Work. 2012;7(1):81–91.

Hogg MA, Reid SA. Social identity, self-categorization, and the communication of group norms. Commun Theory. 2006;16:7–30.

Lee B, Tamborini R. Third-person effect and internet pornography: the influence of collectivism and internet self-efficacy. J Commun. 2005;55:292–310.

Wei R, Golan G. Political advertising on social media in the 2012 presidential election: exploring the perceptual and behavioral components of the third-person effect. Electron News. 2013;7:223–42.

Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020;20:533–4. 

Jun Z, Weili W, Xin Z, Wei Z. Recommended psychological crisis intervention response to the 2019 novel coronavirus pneumonia outbreak in China: a model of West China Hospital. Precis Clin Med. 2020;3(1):3–8.

Shi Y, Zhang S, Fan L, Sun T. What motivates medical students to engage in volunteer behavior during the COVID-19 Outbreak? A large cross-sectional survey. Front Psychol. 2021;11:569765.

Passemard S, Faye A, Dubertret C, Peyre H, Vorms C, Boimare V, ... & Ricard JD. Covid-19 crisis impact on the next generation of physicians: a survey of 800 medical students. BMC Med Educ. 2021;21(1):1–13.

Tempski P, Arantes-Costa FM, Kobayasi R, Siqueira MA, Torsani MB, Amaro BQ, Martins MA. Medical students’ perceptions and motivations during the COVID-19 pandemic. PLoS ONE. 2021;16(3):e0248627.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Perloff RM. Third-person effect research 1983–1992: a review and synthesis. Int J Public Opin Res. 1993;5:167–84.

Chen L, Fu L. Let’s fight the infodemic: the third-person effect process of misinformation during public health emergencies. Internet Res. 2022;32:1357–77.

Lee T. How people perceive influence of fake news and why it matters. Commun Q. 2021;69:431–53.

Liu PL, Huang LV. Digital disinformation about COVID-19 and the third-person effect: examining the channel differences and negative emotional outcomes. Cyberpsychol Behav Soc Netw. 2020;23:789–93.

Gunther AC, Thorson E. Perceived persuasive effects of product commercials and public service announcements: third-person effects in new domains. Commun Res. 1992;19:574–96.

Gunther A. What we think others think: cause and consequence in the third-person effect. Commun Res. 1991;18:355–72.

Reid SA, Hogg MA. A self-categorization explanation for the third-person effect. Hum Commun Res. 2005;31:129–61.

Cao B, Chen Z, Huang Y, Lo WH. Conflict between Mainland Chinese and Hong Kongers: a social identity perspective in explaining the hostile media phenomenon and the third-person effect. J Appl J Media Stud. 2014;3:225–40.

Google Scholar  

Tajfel H. Experimental studies of intergroup behaviour. In: Cognitive analysis of social behavior: Proceedings of the NATO advanced study Institute on “The cognitive analysis of socio-psychological processes”, Aix-enProvence, France, July 12–31, 1981 Dordrecht: Springer Netherlands; 1982. p. 227–46.

Chapter   Google Scholar  

Tajfel H, Turner JC, Austin WG, Worchel S. An integrative theory of intergroup conflict. Organizational Identity. 1979;56(65):9780203505984–9780203505916.

Crocker J, Luhtanen R. Collective self-esteem and ingroup bias. J Pers Soc Psychol. 1990;58(1).

Singelis TM. The measurement of independent and interdependent self-construals. Pers Soc Psychol Bull. 1994;20(5):580–91.

Cho H, Lee JS. The influence of self-efficacy, subjective norms, and risk perception on behavioral intentions related to the H1N1 flu pandemic: a comparison between K orea and the US. Asian J Soc Psychol. 2015;18(4):311–24.

Bandura A, Freeman WH, Lightsey R. Self-efficacy: the exercise of control. J Cogn Psychother. 1999;13:158–66.

Bandura A, Guide for constructing self-efficacy scales. Self-efficacy beliefs of adolescents. 2006;5(1):307–37.

Pajares F. Self-efficacy beliefs in academic settings. Rev Educ Res. 1996;66:543–78.

Park JS, Ahn HY, Haley EJ. Optimistic bias, advertising skepticism, and consumer intentions for seeking information about the health risks of prescription medicine. Health Mark Q. 2017;34(2):81–96.

Hofstede GH. Culture’s consequences: comparing values, behaviors, institutions, and organizations across nations. 2nd ed. Thousand Oaks: Sage Publications; 2001.

Triandis HC. Individualism and Collectivism. 1st ed. New York: Routledge; 2018.

Wated G, Sanchez JI. Managerial tolerance of nepotism: the effects of individualism-collectivism in a Latin American Context. J Bus Ethics. 2015;130:45–57.

Markus HR, Kitayama S. Culture and the self."Implications for cognition, emotion, and motivation.

Sullivan D, Landau MJ, Kay AC, Rothschild ZK. Collectivism and the meaning of suffering. J Pers Soc Psychol. 2012;103:1023–39.

Lo V, Wei R. Third-person effect, gender, and pornography on the lnternet. J Broadcast Electron Media. 2002;46:13–33.

Barnidge M, Rojas H. Hostile media perceptions, presumed media influence, and political talk: expanding the corrective action hypothesis. Int J Public Opin Res. 2014;26:135–56.

Wintterlin F, Frischlich L, Boberg S, Schatto-Eckrodt T, Reer F, Quandt T. Corrective Actions in the information disorder. the role of presumed media influence and hostile media perceptions for the countering of distorted user-generated content. Polit Commun. 2021;38:773–91.

Wei R, Lo V-H, Lu H-Y, Hou H-Y. Examining multiple behavioral effects of third-person perception: evidence from the news about Fukushima nuclear crisis in Taiwan. Chin J Commun. 2015;8:95–111.

McLEOD DM, Eveland WP, Nathanson AI. Support for censorship of violent and misogynic rap lyrics: an analysis of the third-person effect. Commun Res. 1997;24:153–74.

Nathanson AI, Eveland WP Jr, Park H-S, Paul B. Perceived media influence and efficacy as predictors of caregivers’ protective behaviors. J Broadcast Electron Media. 2002;46:385–410.

McLeod DM, Detenber BH, Eveland WP. Behind the third-person effect: differentiating perceptual processes for self and other. J Commun. 2001;51:678–95.

Rojas H. “Corrective” Actions in the public sphere: how perceptions of media and media effects shape political behaviors. Int J Public Opin Res. 2010;22:343–63.

Chung M, Munno GJ, Moritz B. Triggering participation: exploring the effects of third-person and hostile media perceptions on online participation. Comput Hum Behav. 2015;53:452–61.

Zhao L, Yin J, Song Y. An exploration of rumor combating behavior on social media in the context of social crises. Comput Hum Behav. 2016;58:25–36.

Sherman DK, Updegraff JA, Handy MS, Eom K, Kim HS. Beliefs and social norms as precursors of environmental support: the joint influence of collectivism and socioeconomic status. Pers Soc Psychol Bull. 2022;48:463–77.

Zhu Y, Wei R, Lo V-H, Zhang M, Li Z. Collectivism and altruistic behavior: a third-person effect study of COVID-19 news among Wuhan residents. Glob Media China. 2021;6:476–91.

Yang F, Horning M. Reluctant to share: how third person perceptions of fake news discourage news readers from sharing “real news” on social media. Soc Media Soc. 2020;6:205630512095517.

Adams K, Hean S, Sturgis P, Clark JM. Investigating the factors influencing professional identity of first-year health and social care students. Learn Health Soc Care. 2006;5(2):55–68.

丁汉青, 王军. 冲突与协调: 传媒从业者后备军职业认同状况研究——以北京某高校新闻学院在校生为例. 国际新闻界, 2019;2 :113–131.

Yoo B, Donthu N, Lenartowicz T. Measuring Hofstede’s five dimensions of cultural values at the individual level: development and validation of. J Int Consum Mark. 2011;23(3-4):193-210.

Tandoc EC, Lim D, Ling R. Diffusion of disinformation: how social media users respond to fake news and why. Journalism. 2020;21:381–98.

Tan ASL, Lee C, Chae J. Exposure to health (Mis)Information: lagged effects on young adults’ health behaviors and potential pathways. J Commun. 2015.

Tully M, Bode L, Vraga EK. Mobilizing users: does exposure to misinformation and its correction affect users’ responses to a health misinformation post? Soc Media Soc. 2020;6:205630512097837.

Arbuckle JL. Full information estimation in the presence of in complete data. In: Marcoulides GA, Schumaker RE, editors. Advanced structural equation modeling: issues and techniques. Mahwah: Erlbaum; 1996. p. 243–77.

Narayanan A. A review of eight software packages for structural equation modeling. Am Stat. 2012;66(2):129–38.

Sakaria D, Maat SM, Mohd Matore MEE. Examining the optimal choice of SEM statistical software packages for sustainable mathematics education: a systematic review. Sustainability. 2023;15(4):3209.

Fornell C, Larcker DF. Evaluating structural equation models with unobservable variables and measurement error. J Mark Res. 1981;18(1):39–50.

Wheaton B, Muthen B, Alwin DF, Summers GF. Assessing reliability and stability in panel models. Sociol Methodol. 1977;8:84–136.

Hu LT, Bentler PM. Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct Equ Modeling. 1999;6(1):1–55.

Ho SS, Goh TJ, Leung YW. Let’s nab fake science news: predicting scientists’ support for interventions using the influence of presumed media influence model. Journalism. 2022;23:910–28.

Bhagavathula AS, Aldhaleei WA, Rahmani J, Mahabadi MA, Bandari DK. Knowledge and perceptions of COVID-19 among health care workers: cross-sectional study. JMIR Public Health Surveill. 2020;6(2):e19160.

Jung EH, Zhang L, Nekmat E. SNS usage and third-person effects in the risk perception of Zika virus among Singaporean Women. J Health Commun. 2020;25:736–44.

Stavrositu CD, Kim J. Social media metrics: third-person perceptions of health information. Comput Hum Behav. 2014;35:61–7.

Wei R, Lo VH, Lu HY. Third-person effects of health news: exploring the relationships among media exposure, presumed media influence, and behavioral intentions. Am Behav Sci. 2008;52:261–77.

Hong SC. Presumed effects of “fake news” on the global warming discussion in a cross-cultural context. Sustainability. 2020;12(5).

Neuwirth K, Frederick E. Extending the framework of third-, first-, and second-person effects. Mass Commun Soc. 2002;5:113–40.

Bastick Z. Would you notice if fake news changed your behavior? An experiment on the unconscious effects of disinformation. Comput Hum Behav. 2021;116.

Harff D, Bollen C, Schmuck D. Responses to social media influencers’ misinformation about COVID-19: a pre-registered multiple-exposure experiment. Media Psychol. 2022;25:831–50.

Download references

Acknowledgements

We thank all participants and staff working for the project.

This work was supported by Humanities and Social Sciences Youth Foundation of the Ministry of Education of China (Grant No. 21YJC860012).

Author information

Authors and affiliations.

Journalism and Information Communication School, Huazhong University of Science and Technology, Wuhan, Hubei, China

Zongya Li & Jun Yan

You can also search for this author in PubMed   Google Scholar

Contributions

Zongya Li wrote the main manuscript and Jun yan collected the data. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jun Yan .

Ethics declarations

Ethics approval and consent to participate.

This study was approved by the Medical Ethics Committee of Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology (approval number: 2022S009). All the participants provided informed consent to engage in this research.

Consent for publication

The authors give their consent for the publication of identifiable details, which can include photograph(s) and/or videos and/or case history and/or details within the manuscript to be published in the BMC Public Health.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Li, Z., Yan, J. Does a perceptual gap lead to actions against digital misinformation? A third-person effect study among medical students. BMC Public Health 24 , 1291 (2024). https://doi.org/10.1186/s12889-024-18763-9

Download citation

Received : 08 December 2023

Accepted : 02 May 2024

Published : 11 May 2024

DOI : https://doi.org/10.1186/s12889-024-18763-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Digital misinformation
  • Third-person perception
  • Pre-professionals
  • Professional identification

BMC Public Health

ISSN: 1471-2458

methodology of case study example

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • BMC Med Res Methodol

Logo of bmcmrm

The case study approach

Sarah crowe.

1 Division of Primary Care, The University of Nottingham, Nottingham, UK

Kathrin Cresswell

2 Centre for Population Health Sciences, The University of Edinburgh, Edinburgh, UK

Ann Robertson

3 School of Health in Social Science, The University of Edinburgh, Edinburgh, UK

Anthony Avery

Aziz sheikh.

The case study approach allows in-depth, multi-faceted explorations of complex issues in their real-life settings. The value of the case study approach is well recognised in the fields of business, law and policy, but somewhat less so in health services research. Based on our experiences of conducting several health-related case studies, we reflect on the different types of case study design, the specific research questions this approach can help answer, the data sources that tend to be used, and the particular advantages and disadvantages of employing this methodological approach. The paper concludes with key pointers to aid those designing and appraising proposals for conducting case study research, and a checklist to help readers assess the quality of case study reports.

Introduction

The case study approach is particularly useful to employ when there is a need to obtain an in-depth appreciation of an issue, event or phenomenon of interest, in its natural real-life context. Our aim in writing this piece is to provide insights into when to consider employing this approach and an overview of key methodological considerations in relation to the design, planning, analysis, interpretation and reporting of case studies.

The illustrative 'grand round', 'case report' and 'case series' have a long tradition in clinical practice and research. Presenting detailed critiques, typically of one or more patients, aims to provide insights into aspects of the clinical case and, in doing so, illustrate broader lessons that may be learnt. In research, the conceptually-related case study approach can be used, for example, to describe in detail a patient's episode of care, explore professional attitudes to and experiences of a new policy initiative or service development or more generally to 'investigate contemporary phenomena within its real-life context' [ 1 ]. Based on our experiences of conducting a range of case studies, we reflect on when to consider using this approach, discuss the key steps involved and illustrate, with examples, some of the practical challenges of attaining an in-depth understanding of a 'case' as an integrated whole. In keeping with previously published work, we acknowledge the importance of theory to underpin the design, selection, conduct and interpretation of case studies[ 2 ]. In so doing, we make passing reference to the different epistemological approaches used in case study research by key theoreticians and methodologists in this field of enquiry.

This paper is structured around the following main questions: What is a case study? What are case studies used for? How are case studies conducted? What are the potential pitfalls and how can these be avoided? We draw in particular on four of our own recently published examples of case studies (see Tables ​ Tables1, 1 , ​ ,2, 2 , ​ ,3 3 and ​ and4) 4 ) and those of others to illustrate our discussion[ 3 - 7 ].

Example of a case study investigating the reasons for differences in recruitment rates of minority ethnic people in asthma research[ 3 ]

Example of a case study investigating the process of planning and implementing a service in Primary Care Organisations[ 4 ]

Example of a case study investigating the introduction of the electronic health records[ 5 ]

Example of a case study investigating the formal and informal ways students learn about patient safety[ 6 ]

What is a case study?

A case study is a research approach that is used to generate an in-depth, multi-faceted understanding of a complex issue in its real-life context. It is an established research design that is used extensively in a wide variety of disciplines, particularly in the social sciences. A case study can be defined in a variety of ways (Table ​ (Table5), 5 ), the central tenet being the need to explore an event or phenomenon in depth and in its natural context. It is for this reason sometimes referred to as a "naturalistic" design; this is in contrast to an "experimental" design (such as a randomised controlled trial) in which the investigator seeks to exert control over and manipulate the variable(s) of interest.

Definitions of a case study

Stake's work has been particularly influential in defining the case study approach to scientific enquiry. He has helpfully characterised three main types of case study: intrinsic , instrumental and collective [ 8 ]. An intrinsic case study is typically undertaken to learn about a unique phenomenon. The researcher should define the uniqueness of the phenomenon, which distinguishes it from all others. In contrast, the instrumental case study uses a particular case (some of which may be better than others) to gain a broader appreciation of an issue or phenomenon. The collective case study involves studying multiple cases simultaneously or sequentially in an attempt to generate a still broader appreciation of a particular issue.

These are however not necessarily mutually exclusive categories. In the first of our examples (Table ​ (Table1), 1 ), we undertook an intrinsic case study to investigate the issue of recruitment of minority ethnic people into the specific context of asthma research studies, but it developed into a instrumental case study through seeking to understand the issue of recruitment of these marginalised populations more generally, generating a number of the findings that are potentially transferable to other disease contexts[ 3 ]. In contrast, the other three examples (see Tables ​ Tables2, 2 , ​ ,3 3 and ​ and4) 4 ) employed collective case study designs to study the introduction of workforce reconfiguration in primary care, the implementation of electronic health records into hospitals, and to understand the ways in which healthcare students learn about patient safety considerations[ 4 - 6 ]. Although our study focusing on the introduction of General Practitioners with Specialist Interests (Table ​ (Table2) 2 ) was explicitly collective in design (four contrasting primary care organisations were studied), is was also instrumental in that this particular professional group was studied as an exemplar of the more general phenomenon of workforce redesign[ 4 ].

What are case studies used for?

According to Yin, case studies can be used to explain, describe or explore events or phenomena in the everyday contexts in which they occur[ 1 ]. These can, for example, help to understand and explain causal links and pathways resulting from a new policy initiative or service development (see Tables ​ Tables2 2 and ​ and3, 3 , for example)[ 1 ]. In contrast to experimental designs, which seek to test a specific hypothesis through deliberately manipulating the environment (like, for example, in a randomised controlled trial giving a new drug to randomly selected individuals and then comparing outcomes with controls),[ 9 ] the case study approach lends itself well to capturing information on more explanatory ' how ', 'what' and ' why ' questions, such as ' how is the intervention being implemented and received on the ground?'. The case study approach can offer additional insights into what gaps exist in its delivery or why one implementation strategy might be chosen over another. This in turn can help develop or refine theory, as shown in our study of the teaching of patient safety in undergraduate curricula (Table ​ (Table4 4 )[ 6 , 10 ]. Key questions to consider when selecting the most appropriate study design are whether it is desirable or indeed possible to undertake a formal experimental investigation in which individuals and/or organisations are allocated to an intervention or control arm? Or whether the wish is to obtain a more naturalistic understanding of an issue? The former is ideally studied using a controlled experimental design, whereas the latter is more appropriately studied using a case study design.

Case studies may be approached in different ways depending on the epistemological standpoint of the researcher, that is, whether they take a critical (questioning one's own and others' assumptions), interpretivist (trying to understand individual and shared social meanings) or positivist approach (orientating towards the criteria of natural sciences, such as focusing on generalisability considerations) (Table ​ (Table6). 6 ). Whilst such a schema can be conceptually helpful, it may be appropriate to draw on more than one approach in any case study, particularly in the context of conducting health services research. Doolin has, for example, noted that in the context of undertaking interpretative case studies, researchers can usefully draw on a critical, reflective perspective which seeks to take into account the wider social and political environment that has shaped the case[ 11 ].

Example of epistemological approaches that may be used in case study research

How are case studies conducted?

Here, we focus on the main stages of research activity when planning and undertaking a case study; the crucial stages are: defining the case; selecting the case(s); collecting and analysing the data; interpreting data; and reporting the findings.

Defining the case

Carefully formulated research question(s), informed by the existing literature and a prior appreciation of the theoretical issues and setting(s), are all important in appropriately and succinctly defining the case[ 8 , 12 ]. Crucially, each case should have a pre-defined boundary which clarifies the nature and time period covered by the case study (i.e. its scope, beginning and end), the relevant social group, organisation or geographical area of interest to the investigator, the types of evidence to be collected, and the priorities for data collection and analysis (see Table ​ Table7 7 )[ 1 ]. A theory driven approach to defining the case may help generate knowledge that is potentially transferable to a range of clinical contexts and behaviours; using theory is also likely to result in a more informed appreciation of, for example, how and why interventions have succeeded or failed[ 13 ].

Example of a checklist for rating a case study proposal[ 8 ]

For example, in our evaluation of the introduction of electronic health records in English hospitals (Table ​ (Table3), 3 ), we defined our cases as the NHS Trusts that were receiving the new technology[ 5 ]. Our focus was on how the technology was being implemented. However, if the primary research interest had been on the social and organisational dimensions of implementation, we might have defined our case differently as a grouping of healthcare professionals (e.g. doctors and/or nurses). The precise beginning and end of the case may however prove difficult to define. Pursuing this same example, when does the process of implementation and adoption of an electronic health record system really begin or end? Such judgements will inevitably be influenced by a range of factors, including the research question, theory of interest, the scope and richness of the gathered data and the resources available to the research team.

Selecting the case(s)

The decision on how to select the case(s) to study is a very important one that merits some reflection. In an intrinsic case study, the case is selected on its own merits[ 8 ]. The case is selected not because it is representative of other cases, but because of its uniqueness, which is of genuine interest to the researchers. This was, for example, the case in our study of the recruitment of minority ethnic participants into asthma research (Table ​ (Table1) 1 ) as our earlier work had demonstrated the marginalisation of minority ethnic people with asthma, despite evidence of disproportionate asthma morbidity[ 14 , 15 ]. In another example of an intrinsic case study, Hellstrom et al.[ 16 ] studied an elderly married couple living with dementia to explore how dementia had impacted on their understanding of home, their everyday life and their relationships.

For an instrumental case study, selecting a "typical" case can work well[ 8 ]. In contrast to the intrinsic case study, the particular case which is chosen is of less importance than selecting a case that allows the researcher to investigate an issue or phenomenon. For example, in order to gain an understanding of doctors' responses to health policy initiatives, Som undertook an instrumental case study interviewing clinicians who had a range of responsibilities for clinical governance in one NHS acute hospital trust[ 17 ]. Sampling a "deviant" or "atypical" case may however prove even more informative, potentially enabling the researcher to identify causal processes, generate hypotheses and develop theory.

In collective or multiple case studies, a number of cases are carefully selected. This offers the advantage of allowing comparisons to be made across several cases and/or replication. Choosing a "typical" case may enable the findings to be generalised to theory (i.e. analytical generalisation) or to test theory by replicating the findings in a second or even a third case (i.e. replication logic)[ 1 ]. Yin suggests two or three literal replications (i.e. predicting similar results) if the theory is straightforward and five or more if the theory is more subtle. However, critics might argue that selecting 'cases' in this way is insufficiently reflexive and ill-suited to the complexities of contemporary healthcare organisations.

The selected case study site(s) should allow the research team access to the group of individuals, the organisation, the processes or whatever else constitutes the chosen unit of analysis for the study. Access is therefore a central consideration; the researcher needs to come to know the case study site(s) well and to work cooperatively with them. Selected cases need to be not only interesting but also hospitable to the inquiry [ 8 ] if they are to be informative and answer the research question(s). Case study sites may also be pre-selected for the researcher, with decisions being influenced by key stakeholders. For example, our selection of case study sites in the evaluation of the implementation and adoption of electronic health record systems (see Table ​ Table3) 3 ) was heavily influenced by NHS Connecting for Health, the government agency that was responsible for overseeing the National Programme for Information Technology (NPfIT)[ 5 ]. This prominent stakeholder had already selected the NHS sites (through a competitive bidding process) to be early adopters of the electronic health record systems and had negotiated contracts that detailed the deployment timelines.

It is also important to consider in advance the likely burden and risks associated with participation for those who (or the site(s) which) comprise the case study. Of particular importance is the obligation for the researcher to think through the ethical implications of the study (e.g. the risk of inadvertently breaching anonymity or confidentiality) and to ensure that potential participants/participating sites are provided with sufficient information to make an informed choice about joining the study. The outcome of providing this information might be that the emotive burden associated with participation, or the organisational disruption associated with supporting the fieldwork, is considered so high that the individuals or sites decide against participation.

In our example of evaluating implementations of electronic health record systems, given the restricted number of early adopter sites available to us, we sought purposively to select a diverse range of implementation cases among those that were available[ 5 ]. We chose a mixture of teaching, non-teaching and Foundation Trust hospitals, and examples of each of the three electronic health record systems procured centrally by the NPfIT. At one recruited site, it quickly became apparent that access was problematic because of competing demands on that organisation. Recognising the importance of full access and co-operative working for generating rich data, the research team decided not to pursue work at that site and instead to focus on other recruited sites.

Collecting the data

In order to develop a thorough understanding of the case, the case study approach usually involves the collection of multiple sources of evidence, using a range of quantitative (e.g. questionnaires, audits and analysis of routinely collected healthcare data) and more commonly qualitative techniques (e.g. interviews, focus groups and observations). The use of multiple sources of data (data triangulation) has been advocated as a way of increasing the internal validity of a study (i.e. the extent to which the method is appropriate to answer the research question)[ 8 , 18 - 21 ]. An underlying assumption is that data collected in different ways should lead to similar conclusions, and approaching the same issue from different angles can help develop a holistic picture of the phenomenon (Table ​ (Table2 2 )[ 4 ].

Brazier and colleagues used a mixed-methods case study approach to investigate the impact of a cancer care programme[ 22 ]. Here, quantitative measures were collected with questionnaires before, and five months after, the start of the intervention which did not yield any statistically significant results. Qualitative interviews with patients however helped provide an insight into potentially beneficial process-related aspects of the programme, such as greater, perceived patient involvement in care. The authors reported how this case study approach provided a number of contextual factors likely to influence the effectiveness of the intervention and which were not likely to have been obtained from quantitative methods alone.

In collective or multiple case studies, data collection needs to be flexible enough to allow a detailed description of each individual case to be developed (e.g. the nature of different cancer care programmes), before considering the emerging similarities and differences in cross-case comparisons (e.g. to explore why one programme is more effective than another). It is important that data sources from different cases are, where possible, broadly comparable for this purpose even though they may vary in nature and depth.

Analysing, interpreting and reporting case studies

Making sense and offering a coherent interpretation of the typically disparate sources of data (whether qualitative alone or together with quantitative) is far from straightforward. Repeated reviewing and sorting of the voluminous and detail-rich data are integral to the process of analysis. In collective case studies, it is helpful to analyse data relating to the individual component cases first, before making comparisons across cases. Attention needs to be paid to variations within each case and, where relevant, the relationship between different causes, effects and outcomes[ 23 ]. Data will need to be organised and coded to allow the key issues, both derived from the literature and emerging from the dataset, to be easily retrieved at a later stage. An initial coding frame can help capture these issues and can be applied systematically to the whole dataset with the aid of a qualitative data analysis software package.

The Framework approach is a practical approach, comprising of five stages (familiarisation; identifying a thematic framework; indexing; charting; mapping and interpretation) , to managing and analysing large datasets particularly if time is limited, as was the case in our study of recruitment of South Asians into asthma research (Table ​ (Table1 1 )[ 3 , 24 ]. Theoretical frameworks may also play an important role in integrating different sources of data and examining emerging themes. For example, we drew on a socio-technical framework to help explain the connections between different elements - technology; people; and the organisational settings within which they worked - in our study of the introduction of electronic health record systems (Table ​ (Table3 3 )[ 5 ]. Our study of patient safety in undergraduate curricula drew on an evaluation-based approach to design and analysis, which emphasised the importance of the academic, organisational and practice contexts through which students learn (Table ​ (Table4 4 )[ 6 ].

Case study findings can have implications both for theory development and theory testing. They may establish, strengthen or weaken historical explanations of a case and, in certain circumstances, allow theoretical (as opposed to statistical) generalisation beyond the particular cases studied[ 12 ]. These theoretical lenses should not, however, constitute a strait-jacket and the cases should not be "forced to fit" the particular theoretical framework that is being employed.

When reporting findings, it is important to provide the reader with enough contextual information to understand the processes that were followed and how the conclusions were reached. In a collective case study, researchers may choose to present the findings from individual cases separately before amalgamating across cases. Care must be taken to ensure the anonymity of both case sites and individual participants (if agreed in advance) by allocating appropriate codes or withholding descriptors. In the example given in Table ​ Table3, 3 , we decided against providing detailed information on the NHS sites and individual participants in order to avoid the risk of inadvertent disclosure of identities[ 5 , 25 ].

What are the potential pitfalls and how can these be avoided?

The case study approach is, as with all research, not without its limitations. When investigating the formal and informal ways undergraduate students learn about patient safety (Table ​ (Table4), 4 ), for example, we rapidly accumulated a large quantity of data. The volume of data, together with the time restrictions in place, impacted on the depth of analysis that was possible within the available resources. This highlights a more general point of the importance of avoiding the temptation to collect as much data as possible; adequate time also needs to be set aside for data analysis and interpretation of what are often highly complex datasets.

Case study research has sometimes been criticised for lacking scientific rigour and providing little basis for generalisation (i.e. producing findings that may be transferable to other settings)[ 1 ]. There are several ways to address these concerns, including: the use of theoretical sampling (i.e. drawing on a particular conceptual framework); respondent validation (i.e. participants checking emerging findings and the researcher's interpretation, and providing an opinion as to whether they feel these are accurate); and transparency throughout the research process (see Table ​ Table8 8 )[ 8 , 18 - 21 , 23 , 26 ]. Transparency can be achieved by describing in detail the steps involved in case selection, data collection, the reasons for the particular methods chosen, and the researcher's background and level of involvement (i.e. being explicit about how the researcher has influenced data collection and interpretation). Seeking potential, alternative explanations, and being explicit about how interpretations and conclusions were reached, help readers to judge the trustworthiness of the case study report. Stake provides a critique checklist for a case study report (Table ​ (Table9 9 )[ 8 ].

Potential pitfalls and mitigating actions when undertaking case study research

Stake's checklist for assessing the quality of a case study report[ 8 ]

Conclusions

The case study approach allows, amongst other things, critical events, interventions, policy developments and programme-based service reforms to be studied in detail in a real-life context. It should therefore be considered when an experimental design is either inappropriate to answer the research questions posed or impossible to undertake. Considering the frequency with which implementations of innovations are now taking place in healthcare settings and how well the case study approach lends itself to in-depth, complex health service research, we believe this approach should be more widely considered by researchers. Though inherently challenging, the research case study can, if carefully conceptualised and thoughtfully undertaken and reported, yield powerful insights into many important aspects of health and healthcare delivery.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

AS conceived this article. SC, KC and AR wrote this paper with GH, AA and AS all commenting on various drafts. SC and AS are guarantors.

Pre-publication history

The pre-publication history for this paper can be accessed here:

http://www.biomedcentral.com/1471-2288/11/100/prepub

Acknowledgements

We are grateful to the participants and colleagues who contributed to the individual case studies that we have drawn on. This work received no direct funding, but it has been informed by projects funded by Asthma UK, the NHS Service Delivery Organisation, NHS Connecting for Health Evaluation Programme, and Patient Safety Research Portfolio. We would also like to thank the expert reviewers for their insightful and constructive feedback. Our thanks are also due to Dr. Allison Worth who commented on an earlier draft of this manuscript.

  • Yin RK. Case study research, design and method. 4. London: Sage Publications Ltd.; 2009. [ Google Scholar ]
  • Keen J, Packwood T. Qualitative research; case study evaluation. BMJ. 1995; 311 :444–446. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Sheikh A, Halani L, Bhopal R, Netuveli G, Partridge M, Car J. et al. Facilitating the Recruitment of Minority Ethnic People into Research: Qualitative Case Study of South Asians and Asthma. PLoS Med. 2009; 6 (10):1–11. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Pinnock H, Huby G, Powell A, Kielmann T, Price D, Williams S, The process of planning, development and implementation of a General Practitioner with a Special Interest service in Primary Care Organisations in England and Wales: a comparative prospective case study. Report for the National Co-ordinating Centre for NHS Service Delivery and Organisation R&D (NCCSDO) 2008. http://www.sdo.nihr.ac.uk/files/project/99-final-report.pdf
  • Robertson A, Cresswell K, Takian A, Petrakaki D, Crowe S, Cornford T. et al. Prospective evaluation of the implementation and adoption of NHS Connecting for Health's national electronic health record in secondary care in England: interim findings. BMJ. 2010; 41 :c4564. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Pearson P, Steven A, Howe A, Sheikh A, Ashcroft D, Smith P. the Patient Safety Education Study Group. Learning about patient safety: organisational context and culture in the education of healthcare professionals. J Health Serv Res Policy. 2010; 15 :4–10. doi: 10.1258/jhsrp.2009.009052. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • van Harten WH, Casparie TF, Fisscher OA. The evaluation of the introduction of a quality management system: a process-oriented case study in a large rehabilitation hospital. Health Policy. 2002; 60 (1):17–37. doi: 10.1016/S0168-8510(01)00187-7. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Stake RE. The art of case study research. London: Sage Publications Ltd.; 1995. [ Google Scholar ]
  • Sheikh A, Smeeth L, Ashcroft R. Randomised controlled trials in primary care: scope and application. Br J Gen Pract. 2002; 52 (482):746–51. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • King G, Keohane R, Verba S. Designing Social Inquiry. Princeton: Princeton University Press; 1996. [ Google Scholar ]
  • Doolin B. Information technology as disciplinary technology: being critical in interpretative research on information systems. Journal of Information Technology. 1998; 13 :301–311. doi: 10.1057/jit.1998.8. [ CrossRef ] [ Google Scholar ]
  • George AL, Bennett A. Case studies and theory development in the social sciences. Cambridge, MA: MIT Press; 2005. [ Google Scholar ]
  • Eccles M. the Improved Clinical Effectiveness through Behavioural Research Group (ICEBeRG) Designing theoretically-informed implementation interventions. Implementation Science. 2006; 1 :1–8. doi: 10.1186/1748-5908-1-1. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Netuveli G, Hurwitz B, Levy M, Fletcher M, Barnes G, Durham SR, Sheikh A. Ethnic variations in UK asthma frequency, morbidity, and health-service use: a systematic review and meta-analysis. Lancet. 2005; 365 (9456):312–7. [ PubMed ] [ Google Scholar ]
  • Sheikh A, Panesar SS, Lasserson T, Netuveli G. Recruitment of ethnic minorities to asthma studies. Thorax. 2004; 59 (7):634. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Hellström I, Nolan M, Lundh U. 'We do things together': A case study of 'couplehood' in dementia. Dementia. 2005; 4 :7–22. doi: 10.1177/1471301205049188. [ CrossRef ] [ Google Scholar ]
  • Som CV. Nothing seems to have changed, nothing seems to be changing and perhaps nothing will change in the NHS: doctors' response to clinical governance. International Journal of Public Sector Management. 2005; 18 :463–477. doi: 10.1108/09513550510608903. [ CrossRef ] [ Google Scholar ]
  • Lincoln Y, Guba E. Naturalistic inquiry. Newbury Park: Sage Publications; 1985. [ Google Scholar ]
  • Barbour RS. Checklists for improving rigour in qualitative research: a case of the tail wagging the dog? BMJ. 2001; 322 :1115–1117. doi: 10.1136/bmj.322.7294.1115. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Mays N, Pope C. Qualitative research in health care: Assessing quality in qualitative research. BMJ. 2000; 320 :50–52. doi: 10.1136/bmj.320.7226.50. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Mason J. Qualitative researching. London: Sage; 2002. [ Google Scholar ]
  • Brazier A, Cooke K, Moravan V. Using Mixed Methods for Evaluating an Integrative Approach to Cancer Care: A Case Study. Integr Cancer Ther. 2008; 7 :5–17. doi: 10.1177/1534735407313395. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Miles MB, Huberman M. Qualitative data analysis: an expanded sourcebook. 2. CA: Sage Publications Inc.; 1994. [ Google Scholar ]
  • Pope C, Ziebland S, Mays N. Analysing qualitative data. Qualitative research in health care. BMJ. 2000; 320 :114–116. doi: 10.1136/bmj.320.7227.114. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cresswell KM, Worth A, Sheikh A. Actor-Network Theory and its role in understanding the implementation of information technology developments in healthcare. BMC Med Inform Decis Mak. 2010; 10 (1):67. doi: 10.1186/1472-6947-10-67. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Malterud K. Qualitative research: standards, challenges, and guidelines. Lancet. 2001; 358 :483–488. doi: 10.1016/S0140-6736(01)05627-6. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Yin R. Case study research: design and methods. 2. Thousand Oaks, CA: Sage Publishing; 1994. [ Google Scholar ]
  • Yin R. Enhancing the quality of case studies in health services research. Health Serv Res. 1999; 34 :1209–1224. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Green J, Thorogood N. Qualitative methods for health research. 2. Los Angeles: Sage; 2009. [ Google Scholar ]
  • Howcroft D, Trauth E. Handbook of Critical Information Systems Research, Theory and Application. Cheltenham, UK: Northampton, MA, USA: Edward Elgar; 2005. [ Google Scholar ]
  • Blakie N. Approaches to Social Enquiry. Cambridge: Polity Press; 1993. [ Google Scholar ]
  • Doolin B. Power and resistance in the implementation of a medical management information system. Info Systems J. 2004; 14 :343–362. doi: 10.1111/j.1365-2575.2004.00176.x. [ CrossRef ] [ Google Scholar ]
  • Bloomfield BP, Best A. Management consultants: systems development, power and the translation of problems. Sociological Review. 1992; 40 :533–560. [ Google Scholar ]
  • Shanks G, Parr A. Proceedings of the European Conference on Information Systems. Naples; 2003. Positivist, single case study research in information systems: A critical analysis. [ Google Scholar ]

COMMENTS

  1. Case Study Methods and Examples

    The purpose of case study research is twofold: (1) to provide descriptive information and (2) to suggest theoretical relevance. Rich description enables an in-depth or sharpened understanding of the case. It is unique given one characteristic: case studies draw from more than one data source. Case studies are inherently multimodal or mixed ...

  2. What Is a Case Study?

    A case study is a detailed study of a specific subject, such as a person, group, place, event, organization, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research. A case study research design usually involves qualitative methods, but quantitative methods are sometimes also used.

  3. (PDF) Qualitative Case Study Methodology: Study Design and

    McMaster University, West Hamilton, Ontario, Canada. Qualitative case study methodology prov ides tools for researchers to study. complex phenomena within their contexts. When the approach is ...

  4. What is a Case Study?

    A case study protocol outlines the procedures and general rules to be followed during the case study. This includes the data collection methods to be used, the sources of data, and the procedures for analysis. Having a detailed case study protocol ensures consistency and reliability in the study.

  5. Case Study

    Defnition: A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation. It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied.

  6. Case Study

    Case studies tend to focus on qualitative data using methods such as interviews, observations, and analysis of primary and secondary sources (e.g., newspaper articles, photographs, official records). Sometimes a case study will also collect quantitative data. Example: Mixed methods case study. For a case study of a wind farm development in a ...

  7. Writing a Case Study

    The methods used to study a case can rest within a quantitative, qualitative, or mixed-method investigative paradigm. Case Studies. Writing@CSU. ... This example of a case study could also point to the need for scholars to build new theoretical frameworks around the topic [e.g., applying feminist theories of work and family to the issue of ...

  8. The case study approach

    A case study is a research approach that is used to generate an in-depth, multi-faceted understanding of a complex issue in its real-life context. It is an established research design that is used extensively in a wide variety of disciplines, particularly in the social sciences. A case study can be defined in a variety of ways (Table 5 ), the ...

  9. Case Study: Definition, Examples, Types, and How to Write

    A case study is an in-depth study of one person, group, or event. In a case study, nearly every aspect of the subject's life and history is analyzed to seek patterns and causes of behavior. Case studies can be used in many different fields, including psychology, medicine, education, anthropology, political science, and social work.

  10. Continuing to enhance the quality of case study methodology in health

    Purpose of case study methodology. Case study methodology is often used to develop an in-depth, holistic understanding of a specific phenomenon within a specified context. 11 It focuses on studying one or multiple cases over time and uses an in-depth analysis of multiple information sources. 16,17 It is ideal for situations including, but not limited to, exploring under-researched and real ...

  11. Qualitative Case Study Methodology: Study Design and Implementation for

    Qualitative case study methodology provides tools for researchers to study complex phenomena within their contexts. When the approach is applied correctly, it becomes a valuable method for health science ... the second example the case would be focussing on an analysis of individuals or the experiences of 30 year old women. What is examined has ...

  12. What Is a Case-Control Study?

    Revised on June 22, 2023. A case-control study is an experimental design that compares a group of participants possessing a condition of interest to a very similar group lacking that condition. Here, the participants possessing the attribute of study, such as a disease, are called the "case," and those without it are the "control.".

  13. Case Study Research Method in Psychology

    The case study research method originated in clinical medicine (the case history, i.e., the patient's personal history). In psychology, case studies are often confined to the study of a particular individual. ... Examples Famous Case Studies. Anna O - One of the most famous case studies, documenting psychoanalyst Josef Breuer's treatment ...

  14. LibGuides: Research Writing and Analysis: Case Study

    A Case study is: An in-depth research design that primarily uses a qualitative methodology but sometimes includes quantitative methodology. Used to examine an identifiable problem confirmed through research. Used to investigate an individual, group of people, organization, or event. Used to mostly answer "how" and "why" questions.

  15. How to write up case-study methodology sections

    The case-study methodology section appropriately should include a table(s) summarizing the qualitative case studies using column headings including, for example, 'study and number of case(s) + time of study', 'research topic(s) examined', type of industry and geographical scope of activities', 'revenue and number of employees ...

  16. What Is a Case Study? How to Write, Examples, and Template

    Case study examples. Case studies are proven marketing strategies in a wide variety of B2B industries. Here are just a few examples of a case study: ... Today's buyers are tackling much of the case study research methodology independently. Many are understandably skeptical before making a buying decision. By connecting them with multiple case ...

  17. Methodology or method? A critical review of qualitative case study

    Definitions of qualitative case study research. Case study research is an investigation and analysis of a single or collective case, intended to capture the complexity of the object of study (Stake, 1995).Qualitative case study research, as described by Stake (), draws together "naturalistic, holistic, ethnographic, phenomenological, and biographic research methods" in a bricoleur design ...

  18. Case Study Methodology

    Case Study Methodology. Case study methodology has as a central purpose to study a bounded system, an individual, whether that individual is a person, an institution, or a group, such as a school class. The purpose is to provide an in-depth understanding of a case. ... Examples of the application of the marketing research questions that were ...

  19. 15 Real-Life Case Study Examples & Best Practices

    15 Real-Life Case Study Examples. Now that you understand what a case study is, let's look at real-life case study examples. In this section, we'll explore SaaS, marketing, sales, product and business case study examples with solutions. Take note of how these companies structured their case studies and included the key elements.

  20. AHRQ Seeks Examples of Impact for Development of Impact Case Studies

    Since 2004, the agency has developed more than 400 Impact Case Studies that illustrate AHRQ's contributions to healthcare improvement. Available online and searchable via an interactive map , the Impact Case Studies help to tell the story of how AHRQ-funded research findings, data and tools have made an impact on the lives of millions of ...

  21. Evaluation of integrated community case management of the common

    A single case study design with mixed methods was employed to evaluate the process of integrated community case management for common childhood illness in Gondar town from March 17 to April 17, 2022. The availability, compliance, and acceptability dimensions of the program implementation were evaluated using 49 indicators.

  22. New Content From Advances in Methods and Practices in Psychological

    We provide case examples of how blurring and redaction techniques can be used to protect names, dates, locations, trauma histories, help-seeking experiences, and other information about dyadic interactions. ... A Delphi Study to Strengthen Research-Methods Training in Undergraduate Psychology Programs Robert Thibault, Deborah Bailey-Rodriguez ...

  23. Case Interview: Complete Prep Guide

    Case in Point - This book, by Marc Cosentino, is a comprehensive guide that walks you through the case interview process from beginning to end. This guide has helped many students over the years and can serve as an excellent foundation for how to approach business problems ... Practice sample online cases on consulting firm websites such as ...

  24. Machine Learning and image analysis towards improved energy ...

    With the advent of Industry 4.0, Artificial Intelligence (AI) has created a favorable environment for the digitalization of manufacturing and processing, helping industries to automate and optimize operations. In this work, we focus on a practical case study of a brake caliper quality control operation, which is usually accomplished by human inspection and requires a dedicated handling system ...

  25. Agile project management in 4 methods and 2 study case

    Agile Project Management Study Cases : Spotify And Twitter Project Tracking With Twitter Twitter (new X) is an emblematic social media with thousands of employees and hundreds of different teams. The structure began to take an interest in agile project management methods in 2010.. In 2019, at Hack Week, a senior application engineer at Twitter, proposed modifying the Jira tool to help the ...

  26. Does a perceptual gap lead to actions against digital misinformation? A

    We are making progress in the fight against health-related misinformation, but mass participation and active engagement are far from adequate. Focusing on pre-professional medical students with above-average medical knowledge, our study examined whether and how third-person perceptions (TPP), which hypothesize that people tend to perceive media messages as having a greater effect on others ...

  27. The case study approach

    A case study is a research approach that is used to generate an in-depth, multi-faceted understanding of a complex issue in its real-life context. It is an established research design that is used extensively in a wide variety of disciplines, particularly in the social sciences. A case study can be defined in a variety of ways (Table.