Site's logo

Problem-Based Learning (PBL)

What is Problem-Based Learning (PBL)? PBL is a student-centered approach to learning that involves groups of students working to solve a real-world problem, quite different from the direct teaching method of a teacher presenting facts and concepts about a specific subject to a classroom of students. Through PBL, students not only strengthen their teamwork, communication, and research skills, but they also sharpen their critical thinking and problem-solving abilities essential for life-long learning.

See also: Just-in-Time Teaching

Problem-Based Learning (PBL)

In implementing PBL, the teaching role shifts from that of the more traditional model that follows a linear, sequential pattern where the teacher presents relevant material, informs the class what needs to be done, and provides details and information for students to apply their knowledge to a given problem. With PBL, the teacher acts as a facilitator; the learning is student-driven with the aim of solving the given problem (note: the problem is established at the onset of learning opposed to being presented last in the traditional model). Also, the assignments vary in length from relatively short to an entire semester with daily instructional time structured for group work.

Pbl

By working with PBL, students will:

  • Become engaged with open-ended situations that assimilate the world of work
  • Participate in groups to pinpoint what is known/ not known and the methods of finding information to help solve the given problem.
  • Investigate a problem; through critical thinking and problem solving, brainstorm a list of unique solutions.
  • Analyze the situation to see if the real problem is framed or if there are other problems that need to be solved.

How to Begin PBL

  • Establish the learning outcomes (i.e., what is it that you want your students to really learn and to be able to do after completing the learning project).
  • Find a real-world problem that is relevant to the students; often the problems are ones that students may encounter in their own life or future career.
  • Discuss pertinent rules for working in groups to maximize learning success.
  • Practice group processes: listening, involving others, assessing their work/peers.
  • Explore different roles for students to accomplish the work that needs to be done and/or to see the problem from various perspectives depending on the problem (e.g., for a problem about pollution, different roles may be a mayor, business owner, parent, child, neighboring city government officials, etc.).
  • Determine how the project will be evaluated and assessed. Most likely, both self-assessment and peer-assessment will factor into the assignment grade.

Designing Classroom Instruction

See also: Inclusive Teaching Strategies

  • Take the curriculum and divide it into various units. Decide on the types of problems that your students will solve. These will be your objectives.
  • Determine the specific problems that most likely have several answers; consider student interest.
  • Arrange appropriate resources available to students; utilize other teaching personnel to support students where needed (e.g., media specialists to orientate students to electronic references).
  • Decide on presentation formats to communicate learning (e.g., individual paper, group PowerPoint, an online blog, etc.) and appropriate grading mechanisms (e.g., rubric).
  • Decide how to incorporate group participation (e.g., what percent, possible peer evaluation, etc.).

How to Orchestrate a PBL Activity

  • Explain Problem-Based Learning to students: its rationale, daily instruction, class expectations, grading.
  • Serve as a model and resource to the PBL process; work in-tandem through the first problem
  • Help students secure various resources when needed.
  • Supply ample class time for collaborative group work.
  • Give feedback to each group after they share via the established format; critique the solution in quality and thoroughness. Reinforce to the students that the prior thinking and reasoning process in addition to the solution are important as well.

Teacher’s Role in PBL

See also: Flipped teaching

As previously mentioned, the teacher determines a problem that is interesting, relevant, and novel for the students. It also must be multi-faceted enough to engage students in doing research and finding several solutions. The problems stem from the unit curriculum and reflect possible use in future work situations.

  • Determine a problem aligned with the course and your students. The problem needs to be demanding enough that the students most likely cannot solve it on their own. It also needs to teach them new skills. When sharing the problem with students, state it in a narrative complete with pertinent background information without excessive information. Allow the students to find out more details as they work on the problem.
  • Place students in groups, well-mixed in diversity and skill levels, to strengthen the groups. Help students work successfully. One way is to have the students take on various roles in the group process after they self-assess their strengths and weaknesses.
  • Support the students with understanding the content on a deeper level and in ways to best orchestrate the various stages of the problem-solving process.

The Role of the Students

See also: ADDIE model

The students work collaboratively on all facets of the problem to determine the best possible solution.

  • Analyze the problem and the issues it presents. Break the problem down into various parts. Continue to read, discuss, and think about the problem.
  • Construct a list of what is known about the problem. What do your fellow students know about the problem? Do they have any experiences related to the problem? Discuss the contributions expected from the team members. What are their strengths and weaknesses? Follow the rules of brainstorming (i.e., accept all answers without passing judgment) to generate possible solutions for the problem.
  • Get agreement from the team members regarding the problem statement.
  • Put the problem statement in written form.
  • Solicit feedback from the teacher.
  • Be open to changing the written statement based on any new learning that is found or feedback provided.
  • Generate a list of possible solutions. Include relevant thoughts, ideas, and educated guesses as well as causes and possible ways to solve it. Then rank the solutions and select the solution that your group is most likely to perceive as the best in terms of meeting success.
  • Include what needs to be known and done to solve the identified problems.
  • Prioritize the various action steps.
  • Consider how the steps impact the possible solutions.
  • See if the group is in agreement with the timeline; if not, decide how to reach agreement.
  • What resources are available to help (e.g., textbooks, primary/secondary sources, Internet).
  • Determine research assignments per team members.
  • Establish due dates.
  • Determine how your group will present the problem solution and also identify the audience. Usually, in PBL, each group presents their solutions via a team presentation either to the class of other students or to those who are related to the problem.
  • Both the process and the results of the learning activity need to be covered. Include the following: problem statement, questions, data gathered, data analysis, reasons for the solution(s) and/or any recommendations reflective of the data analysis.
  • A well-stated problem and conclusion.
  • The process undertaken by the group in solving the problem, the various options discussed, and the resources used.
  • Your solution’s supporting documents, guests, interviews and their purpose to be convincing to your audience.
  • In addition, be prepared for any audience comments and questions. Determine who will respond and if your team doesn’t know the answer, admit this and be open to looking into the question at a later date.
  • Reflective thinking and transfer of knowledge are important components of PBL. This helps the students be more cognizant of their own learning and teaches them how to ask appropriate questions to address problems that need to be solved. It is important to look at both the individual student and the group effort/delivery throughout the entire process. From here, you can better determine what was learned and how to improve. The students should be asked how they can apply what was learned to a different situation, to their own lives, and to other course projects.

See also: Kirkpatrick Model: Four Levels of Learning Evaluation

' src=

I am a professor of Educational Technology. I have worked at several elite universities. I hold a PhD degree from the University of Illinois and a master's degree from Purdue University.

Similar Posts

How can we align learning objectives, instructional strategies, and assessments.

What is course alignment When a course is being designed, it is important to ensure that ensure that these three components of your course are aligned. In order to align various components of…

Concept Maps and How To Use Them

Concept maps help our brains take in information, mostly when there is visual information. The maps help us to see the big picture along with the connected and related data. They also help…

Definitions of Educational Technology

Educational Technology What is educational technology? There are a variety of definitions of educational technology. What is instructional design and technology? The Association for Educational Communications and Technology (AECT): Educational technology is the study…

Open Source Learning Management Systems (LMS)

Learning Management Systems (LMSs) are becoming a vital part of classrooms in the 21th Century. This is a list of open source learning management systems. By open source we mean that source code of…

SAMR Model: Substitution, Augmentation, Modification, and Redefinition

When integrating technology into education, the SAMR model serves as a foundational guide. Crafted by Ruben R. Puentedura, SAMR offers educators a structured way to think about incorporating technology effectively. It stands for…

How To Design A Course

This article includes tips on designing and building a course. Allow enough time to carefully plan and revise content for a new course. Careful planning will make teaching easier and more enjoyable. Talk…

Center for Teaching Innovation

Resource library.

  • Establishing Community Agreements and Classroom Norms
  • Sample group work rubric
  • Problem-Based Learning Clearinghouse of Activities, University of Delaware

Problem-Based Learning

Problem-based learning  (PBL) is a student-centered approach in which students learn about a subject by working in groups to solve an open-ended problem. This problem is what drives the motivation and the learning. 

Why Use Problem-Based Learning?

Nilson (2010) lists the following learning outcomes that are associated with PBL. A well-designed PBL project provides students with the opportunity to develop skills related to:

  • Working in teams.
  • Managing projects and holding leadership roles.
  • Oral and written communication.
  • Self-awareness and evaluation of group processes.
  • Working independently.
  • Critical thinking and analysis.
  • Explaining concepts.
  • Self-directed learning.
  • Applying course content to real-world examples.
  • Researching and information literacy.
  • Problem solving across disciplines.

Considerations for Using Problem-Based Learning

Rather than teaching relevant material and subsequently having students apply the knowledge to solve problems, the problem is presented first. PBL assignments can be short, or they can be more involved and take a whole semester. PBL is often group-oriented, so it is beneficial to set aside classroom time to prepare students to   work in groups  and to allow them to engage in their PBL project.

Students generally must:

  • Examine and define the problem.
  • Explore what they already know about underlying issues related to it.
  • Determine what they need to learn and where they can acquire the information and tools necessary to solve the problem.
  • Evaluate possible ways to solve the problem.
  • Solve the problem.
  • Report on their findings.

Getting Started with Problem-Based Learning

  • Articulate the learning outcomes of the project. What do you want students to know or be able to do as a result of participating in the assignment?
  • Create the problem. Ideally, this will be a real-world situation that resembles something students may encounter in their future careers or lives. Cases are often the basis of PBL activities. Previously developed PBL activities can be found online through the University of Delaware’s PBL Clearinghouse of Activities .
  • Establish ground rules at the beginning to prepare students to work effectively in groups.
  • Introduce students to group processes and do some warm up exercises to allow them to practice assessing both their own work and that of their peers.
  • Consider having students take on different roles or divide up the work up amongst themselves. Alternatively, the project might require students to assume various perspectives, such as those of government officials, local business owners, etc.
  • Establish how you will evaluate and assess the assignment. Consider making the self and peer assessments a part of the assignment grade.

Nilson, L. B. (2010).  Teaching at its best: A research-based resource for college instructors  (2nd ed.).  San Francisco, CA: Jossey-Bass. 

  • Illinois Online
  • Illinois Remote

teaching_learning_banner

  • TA Resources
  • Teaching Consultation
  • Teaching Portfolio Program
  • Grad Academy for College Teaching
  • Faculty Events
  • The Art of Teaching
  • 2022 Illinois Summer Teaching Institute
  • Large Classes
  • Leading Discussions
  • Laboratory Classes
  • Lecture-Based Classes
  • Planning a Class Session
  • Questioning Strategies
  • Classroom Assessment Techniques (CATs)
  • Problem-Based Learning (PBL)
  • The Case Method
  • Community-Based Learning: Service Learning
  • Group Learning
  • Just-in-Time Teaching
  • Creating a Syllabus
  • Motivating Students
  • Dealing With Cheating
  • Discouraging & Detecting Plagiarism
  • Diversity & Creating an Inclusive Classroom
  • Harassment & Discrimination
  • Professional Conduct
  • Foundations of Good Teaching
  • Student Engagement
  • Assessment Strategies
  • Course Design
  • Student Resources
  • Teaching Tips
  • Graduate Teacher Certificate
  • Certificate in Foundations of Teaching
  • Teacher Scholar Certificate
  • Certificate in Technology-Enhanced Teaching
  • Master Course in Online Teaching (MCOT)
  • 2022 Celebration of College Teaching
  • 2023 Celebration of College Teaching
  • Hybrid Teaching and Learning Certificate
  • 2024 Celebration of College Teaching
  • Classroom Observation Etiquette
  • Teaching Philosophy Statement
  • Pedagogical Literature Review
  • Scholarship of Teaching and Learning
  • Instructor Stories
  • Podcast: Teach Talk Listen Learn
  • Universal Design for Learning

Sign-Up to receive Teaching and Learning news and events

Problem-Based Learning (PBL) is a teaching method in which complex real-world problems are used as the vehicle to promote student learning of concepts and principles as opposed to direct presentation of facts and concepts. In addition to course content, PBL can promote the development of critical thinking skills, problem-solving abilities, and communication skills. It can also provide opportunities for working in groups, finding and evaluating research materials, and life-long learning (Duch et al, 2001).

PBL can be incorporated into any learning situation. In the strictest definition of PBL, the approach is used over the entire semester as the primary method of teaching. However, broader definitions and uses range from including PBL in lab and design classes, to using it simply to start a single discussion. PBL can also be used to create assessment items. The main thread connecting these various uses is the real-world problem.

Any subject area can be adapted to PBL with a little creativity. While the core problems will vary among disciplines, there are some characteristics of good PBL problems that transcend fields (Duch, Groh, and Allen, 2001):

  • The problem must motivate students to seek out a deeper understanding of concepts.
  • The problem should require students to make reasoned decisions and to defend them.
  • The problem should incorporate the content objectives in such a way as to connect it to previous courses/knowledge.
  • If used for a group project, the problem needs a level of complexity to ensure that the students must work together to solve it.
  • If used for a multistage project, the initial steps of the problem should be open-ended and engaging to draw students into the problem.

The problems can come from a variety of sources: newspapers, magazines, journals, books, textbooks, and television/ movies. Some are in such form that they can be used with little editing; however, others need to be rewritten to be of use. The following guidelines from The Power of Problem-Based Learning (Duch et al, 2001) are written for creating PBL problems for a class centered around the method; however, the general ideas can be applied in simpler uses of PBL:

  • Choose a central idea, concept, or principle that is always taught in a given course, and then think of a typical end-of-chapter problem, assignment, or homework that is usually assigned to students to help them learn that concept. List the learning objectives that students should meet when they work through the problem.
  • Think of a real-world context for the concept under consideration. Develop a storytelling aspect to an end-of-chapter problem, or research an actual case that can be adapted, adding some motivation for students to solve the problem. More complex problems will challenge students to go beyond simple plug-and-chug to solve it. Look at magazines, newspapers, and articles for ideas on the story line. Some PBL practitioners talk to professionals in the field, searching for ideas of realistic applications of the concept being taught.
  • What will the first page (or stage) look like? What open-ended questions can be asked? What learning issues will be identified?
  • How will the problem be structured?
  • How long will the problem be? How many class periods will it take to complete?
  • Will students be given information in subsequent pages (or stages) as they work through the problem?
  • What resources will the students need?
  • What end product will the students produce at the completion of the problem?
  • Write a teacher's guide detailing the instructional plans on using the problem in the course. If the course is a medium- to large-size class, a combination of mini-lectures, whole-class discussions, and small group work with regular reporting may be necessary. The teacher's guide can indicate plans or options for cycling through the pages of the problem interspersing the various modes of learning.
  • The final step is to identify key resources for students. Students need to learn to identify and utilize learning resources on their own, but it can be helpful if the instructor indicates a few good sources to get them started. Many students will want to limit their research to the Internet, so it will be important to guide them toward the library as well.

The method for distributing a PBL problem falls under three closely related teaching techniques: case studies, role-plays, and simulations. Case studies are presented to students in written form. Role-plays have students improvise scenes based on character descriptions given. Today, simulations often involve computer-based programs. Regardless of which technique is used, the heart of the method remains the same: the real-world problem.

Where can I learn more?

  • PBL through the Institute for Transforming Undergraduate Education at the University of Delaware
  • Duch, B. J., Groh, S. E, & Allen, D. E. (Eds.). (2001). The power of problem-based learning . Sterling, VA: Stylus.
  • Grasha, A. F. (1996). Teaching with style: A practical guide to enhancing learning by understanding teaching and learning styles. Pittsburgh: Alliance Publishers.

Center for Innovation in Teaching & Learning

249 Armory Building 505 East Armory Avenue Champaign, IL 61820

217 333-1462

Email: [email protected]

Office of the Provost

what is problem solving learning approach

Problem based learning: a teacher's guide

December 10, 2021

Find out how teachers use problem-based learning models to improve engagement and drive attainment.

Main, P (2021, December 10). Problem based learning: a teacher's guide. Retrieved from https://www.structural-learning.com/post/problem-based-learning-a-teachers-guide

What is problem-based learning?

Problem-based learning (PBL) is a style of teaching that encourages students to become the drivers of their learning process . Problem-based learning involves complex learning issues from real-world problems and makes them the classroom's topic of discussion ; encouraging students to understand concepts through problem-solving skills rather than simply learning facts. When schools find time in the curriculum for this style of teaching it offers students an authentic vehicle for the integration of knowledge .

Embracing this pedagogical approach enables schools to balance subject knowledge acquisition with a skills agenda . Often used in medical education, this approach has equal significance in mainstream education where pupils can apply their knowledge to real-life problems. 

PBL is not only helpful in learning course content , but it can also promote the development of problem-solving abilities , critical thinking skills , and communication skills while providing opportunities to work in groups , find and analyse research materials , and take part in life-long learning .

PBL is a student-centred teaching method in which students understand a topic by working in groups. They work out an open-ended problem , which drives the motivation to learn. These sorts of theories of teaching do require schools to invest time and resources into supporting self-directed learning. Not all curriculum knowledge is best acquired through this process, rote learning still has its place in certain situations. In this article, we will look at how we can equip our students to take more ownership of the learning process and utilise more sophisticated ways for the integration of knowledge .

Philosophical Underpinnings of PBL

Problem-Based Learning (PBL), with its roots in the philosophies of John Dewey, Maria Montessori, and Jerome Bruner, aligns closely with the social constructionist view of learning. This approach positions learners as active participants in the construction of knowledge, contrasting with traditional models of instruction where learners are seen as passive recipients of information.

Dewey, a seminal figure in progressive education, advocated for active learning and real-world problem-solving, asserting that learning is grounded in experience and interaction. In PBL, learners tackle complex, real-world problems, which mirrors Dewey's belief in the interconnectedness of education and practical life.

Montessori also endorsed learner-centric, self-directed learning, emphasizing the child's potential to construct their own learning experiences. This parallels with PBL’s emphasis on self-directed learning, where students take ownership of their learning process.

Jerome Bruner’s theories underscored the idea of learning as an active, social process. His concept of a 'spiral curriculum' – where learning is revisited in increasing complexity – can be seen reflected in the iterative problem-solving process in PBL.

Webb’s Depth of Knowledge (DOK) framework aligns with PBL as it encourages higher-order cognitive skills. The complex tasks in PBL often demand analytical and evaluative skills (Webb's DOK levels 3 and 4) as students engage with the problem, devise a solution, and reflect on their work.

The effectiveness of PBL is supported by psychological theories like the information processing theory, which highlights the role of active engagement in enhancing memory and recall. A study by Strobel and Van Barneveld (2009) found that PBL students show improved retention of knowledge, possibly due to the deep cognitive processing involved.

As cognitive scientist Daniel Willingham aptly puts it, "Memory is the residue of thought." PBL encourages learners to think critically and deeply, enhancing both learning and retention.

Here's a quick overview:

  • John Dewey : Emphasized learning through experience and the importance of problem-solving.
  • Maria Montessori : Advocated for child-centered, self-directed learning.
  • Jerome Bruner : Underlined learning as a social process and proposed the spiral curriculum.
  • Webb’s DOK : Supports PBL's encouragement of higher-order thinking skills.
  • Information Processing Theory : Reinforces the notion that active engagement in PBL enhances memory and recall.

This deep-rooted philosophical and psychological framework strengthens the validity of the problem-based learning approach, confirming its beneficial role in promoting valuable cognitive skills and fostering positive student learning outcomes.

Problem based learning cycle

What are the characteristics of problem-based learning?

Adding a little creativity can change a topic into a problem-based learning activity. The following are some of the characteristics of a good PBL model:

  • The problem encourages students to search for a deeper understanding of content knowledge;
  • Students are responsible for their learning. PBL has a student-centred learning approach . Students' motivation increases when responsibility for the process and solution to the problem rests with the learner;
  • The problem motivates pupils to gain desirable learning skills and to defend well-informed decisions ;
  • The problem connects the content learning goals with the previous knowledge. PBL allows students to access, integrate and study information from multiple disciplines that might relate to understanding and resolving a specific problem—just as persons in the real world recollect and use the application of knowledge that they have gained from diverse sources in their life.
  • In a multistage project, the first stage of the problem must be engaging and open-ended to make students interested in the problem. In the real world, problems are poorly-structured. Research suggests that well-structured problems make students less invested and less motivated in the development of the solution. The problem simulations used in problem-based contextual learning are less structured to enable students to make a free inquiry.

Frameworks for problem-based learning

  • In a group project, the problem must have some level of complexity that motivates students towards knowledge acquisition and to work together for finding the solution. PBL involves collaboration between learners. In professional life, most people will find themselves in employment where they would work productively and share information with others. PBL leads to the development of such essential skills . In a PBL session, the teacher would ask questions to make sure that knowledge has been shared between pupils;
  • At the end of each problem or PBL, self and peer assessments are performed. The main purpose of assessments is to sharpen a variety of metacognitive processing skills and to reinforce self-reflective learning.
  • Student assessments would evaluate student progress towards the objectives of problem-based learning. The learning goals of PBL are both process-based and knowledge-based. Students must be assessed on both these dimensions to ensure that they are prospering as intended from the PBL approach. Students must be able to identify and articulate what they understood and what they learned.

Problem based learning tools

Why is Problem-based learning a significant skill?

Using Problem-Based Learning across a school promotes critical competence, inquiry , and knowledge application in social, behavioural and biological sciences. Practice-based learning holds a strong track record of successful learning outcomes in higher education settings such as graduates of Medical Schools.

Educational models using PBL can improve learning outcomes by teaching students how to implement theory into practice and build problem-solving skills. For example, within the field of health sciences education, PBL makes the learning process for nurses and medical students self-centred and promotes their teamwork and leadership skills. Within primary and secondary education settings, this model of teaching, with the right sort of collaborative tools , can advance the wider skills development valued in society.

At Structural Learning, we have been developing a self-assessment tool designed to monitor the progress of children. Utilising these types of teaching theories curriculum wide can help a school develop the learning behaviours our students will need in the workplace.

Curriculum wide collaborative tools include Writers Block and the Universal Thinking Framework . Along with graphic organisers, these tools enable children to collaborate and entertain different perspectives that they might not otherwise see. Putting learning in action by using the block building methodology enables children to reach their learning goals by experimenting and iterating. 

Scaffolding problem based learning with classroom tools

How is problem-based learning different from inquiry-based learning?

The major difference between inquiry-based learning and PBL relates to the role of the teacher . In the case of inquiry-based learning, the teacher is both a provider of classroom knowledge and a facilitator of student learning (expecting/encouraging higher-order thinking). On the other hand, PBL is a deep learning approach, in which the teacher is the supporter of the learning process and expects students to have clear thinking, but the teacher is not the provider of classroom knowledge about the problem—the responsibility of providing information belongs to the learners themselves.

As well as being used systematically in medical education, this approach has significant implications for integrating learning skills into mainstream classrooms .

Using a critical thinking disposition inventory, schools can monitor the wider progress of their students as they apply their learning skills across the traditional curriculum. Authentic problems call students to apply their critical thinking abilities in new and purposeful ways. As students explain their ideas to one another, they develop communication skills that might not otherwise be nurtured.

Depending on the curriculum being delivered by a school, there may well be an emphasis on building critical thinking abilities in the classroom. Within the International Baccalaureate programs, these life-long skills are often cited in the IB learner profile . Critical thinking dispositions are highly valued in the workplace and this pedagogical approach can be used to harness these essential 21st-century skills.

Traditional vs problem based learning

What are the Benefits of Problem-Based Learning?

Student-led Problem-Based Learning is one of the most useful ways to make students drivers of their learning experience. It makes students creative, innovative, logical and open-minded. The educational practice of Problem-Based Learning also provides opportunities for self-directed and collaborative learning with others in an active learning and hands-on process. Below are the most significant benefits of problem-based learning processes:

  • Self-learning: As a self-directed learning method, problem-based learning encourages children to take responsibility and initiative for their learning processes . As children use creativity and research, they develop skills that will help them in their adulthood.
  • Engaging : Students don't just listen to the teacher, sit back and take notes. Problem-based learning processes encourages students to take part in learning activities, use learning resources , stay active , think outside the box and apply critical thinking skills to solve problems.
  • Teamwork : Most of the problem-based learning issues involve students collaborative learning to find a solution. The educational practice of PBL builds interpersonal skills, listening and communication skills and improves the skills of collaboration and compromise.
  • Intrinsic Rewards: In most problem-based learning projects, the reward is much bigger than good grades. Students gain the pride and satisfaction of finding an innovative solution, solving a riddle, or creating a tangible product.
  • Transferable Skills: The acquisition of knowledge through problem-based learning strategies don't just help learners in one class or a single subject area. Students can apply these skills to a plethora of subject matter as well as in real life.
  • Multiple Learning Opportunities : A PBL model offers an open-ended problem-based acquisition of knowledge, which presents a real-world problem and asks learners to come up with well-constructed responses. Students can use multiple sources such as they can access online resources, using their prior knowledge, and asking momentous questions to brainstorm and come up with solid learning outcomes. Unlike traditional approaches , there might be more than a single right way to do something, but this process motivates learners to explore potential solutions whilst staying active.

Solving authentic problems using problem based learning

Embracing problem-based learning

Problem-based learning can be seen as a deep learning approach and when implemented effectively as part of a broad and balanced curriculum , a successful teaching strategy in education. PBL has a solid epistemological and philosophical foundation and a strong track record of success in multiple areas of study. Learners must experience problem-based learning methods and engage in positive solution-finding activities. PBL models allow learners to gain knowledge through real-world problems, which offers more strength to their understanding and helps them find the connection between classroom learning and the real world at large.

As they solve problems, students can evolve as individuals and team-mates. One word of caution, not all classroom tasks will lend themselves to this learning theory. Take spellings , for example, this is usually delivered with low-stakes quizzing through a practice-based learning model. PBL allows students to apply their knowledge creatively but they need to have a certain level of background knowledge to do this, rote learning might still have its place after all.

Key Concepts and considerations for school leaders

1. Problem Based Learning (PBL)

Problem-based learning (PBL) is an educational method that involves active student participation in solving authentic problems. Students are given a task or question that they must answer using their prior knowledge and resources. They then collaborate with each other to come up with solutions to the problem. This collaborative effort leads to deeper learning than traditional lectures or classroom instruction .

Key question: Inside a traditional curriculum , what opportunities across subject areas do you immediately see?

2. Deep Learning

Deep learning is a term used to describe the ability to learn concepts deeply. For example, if you were asked to memorize a list of numbers, you would probably remember the first five numbers easily, but the last number would be difficult to recall. However, if you were taught to understand the concept behind the numbers, you would be able to remember the last number too.

Key question: How will you make sure that students use a full range of learning styles and learning skills ?

3. Epistemology

Epistemology is the branch of philosophy that deals with the nature of knowledge . It examines the conditions under which something counts as knowledge.

Key question:  As well as focusing on critical thinking dispositions, what subject knowledge should the students understand?

4. Philosophy

Philosophy is the study of general truths about human life. Philosophers examine questions such as “What makes us happy?”, “How should we live our lives?”, and “Why does anything exist?”

Key question: Are there any opportunities for embracing philosophical enquiry into the project to develop critical thinking abilities ?

5. Curriculum

A curriculum is a set of courses designed to teach specific subjects. These courses may include mathematics , science, social studies, language arts, etc.

Key question: How will subject leaders ensure that the integrity of the curriculum is maintained?

6. Broad and Balanced Curriculum

Broad and balanced curricula are those that cover a wide range of topics. Some examples of these types of curriculums include AP Biology, AP Chemistry, AP English Language, AP Physics 1, AP Psychology , AP Spanish Literature, AP Statistics, AP US History, AP World History, IB Diploma Programme, IB Primary Years Program, IB Middle Years Program, IB Diploma Programme .

Key question: Are the teachers who have identified opportunities for a problem-based curriculum?

7. Successful Teaching Strategy

Successful teaching strategies involve effective communication techniques, clear objectives, and appropriate assessments. Teachers must ensure that their lessons are well-planned and organized. They must also provide opportunities for students to interact with one another and share information.

Key question: What pedagogical approaches and teaching strategies will you use?

8. Positive Solution Finding

Positive solution finding is a type of problem-solving where students actively seek out answers rather than passively accept what others tell them.

Key question: How will you ensure your problem-based curriculum is met with a positive mindset from students and teachers?

9. Real World Application

Real-world application refers to applying what students have learned in class to situations that occur in everyday life.

Key question: Within your local school community , are there any opportunities to apply knowledge and skills to real-life problems?

10. Creativity

Creativity is the ability to think of ideas that no one else has thought of yet. Creative thinking requires divergent thinking, which means thinking in different directions.

Key question: What teaching techniques will you use to enable children to generate their own ideas ?

11. Teamwork

Teamwork is the act of working together towards a common goal. Teams often consist of two or more people who work together to achieve a shared objective.

Key question: What opportunities are there to engage students in dialogic teaching methods where they talk their way through the problem?

12. Knowledge Transfer

Knowledge transfer occurs when teachers use their expertise to help students develop skills and abilities .

Key question: Can teachers be able to track the success of the project using improvement scores?

13. Active Learning

Active learning is any form of instruction that engages students in the learning process. Examples of active learning include group discussions, role-playing, debates, presentations, and simulations .

Key question: Will there be an emphasis on learning to learn and developing independent learning skills ?

14. Student Engagement

Student engagement is the degree to which students feel motivated to participate in academic activities.

Key question: Are there any tools available to monitor student engagement during the problem-based curriculum ?

what is problem solving learning approach

Enhance Learner Outcomes Across Your School

Download an Overview of our Support and Resources

We'll send it over now.

Please fill in the details so we can send over the resources.

What type of school are you?

We'll get you the right resource

Is your school involved in any staff development projects?

Are your colleagues running any research projects or courses?

Do you have any immediate school priorities?

Please check the ones that apply.

what is problem solving learning approach

Download your resource

Thanks for taking the time to complete this form, submit the form to get the tool.

Classroom Practice

what is problem solving learning approach

Problem-Based Learning (PBL)

Problem-Based Learning (PBL) is an instructional method of hands-on, active learning centered on the investigation and resolution of messy, real-world problems.

Contributors Key Concepts Resources and References

Contributors

  • Late 1960s at the medical school at McMaster University in Canada

Key Concepts

Problem-Based Learning (PBL) is a pedagogical approach and curriculum design methodology often used in higher education and K-12 settings[1][2].

The following are some of the defining characteristics of PBL:

  • Learning is driven by challenging, open-ended problems with no one “right” answer
  • Problems/cases are context specific
  • Students work as self-directed, active investigators and problem-solvers in small collaborative groups (typically of about five students)
  • A key problem is identified and a solution is agreed upon and implemented
  • Teachers adopt the role as facilitators of learning, guiding the learning process and promoting an environment of inquiry

Rather than having a teacher provide facts and then testing students ability to recall these facts via memorization, PBL attempts to get students to apply knowledge to new situations. Students are faced with contextualized, ill-structured problems and are asked to investigate and discover meaningful solutions.

Proponents believe that PBL:

  • develops critical thinking and creative skills
  • improves problem-solving skills
  • increases motivation
  • helps students learn to transfer knowledge to new situations

PBL’s more recent influence can be traced to the late 1960s at the medical school at McMaster University in Canada[3][4]. Shortly thereafter, three other medical schools — the University of Limburg at Maastricht (the Netherlands), the University of Newcastle (Australia), and the University of New Mexico (United States) took on the McMaster model of problem-based learning. Various adaptations were made and the model soon found its way to various other disciplines — business, dentistry, health sciences, law, engineering, education, and so on.

One common criticism of PBL is that students cannot really know what might be important for them to learn, especially in areas which they have no prior experience[3]. Therefore teachers, as facilitators, must be careful to assess and account for the prior knowledge that students bring to the classroom.

Another criticism is that a teacher adopting a PBL approach may not be able to cover as much material as a conventional lecture-based course[3]. PBL can be very challenging to implement, as it requires a lot of planning and hard work for the teacher. It can be difficult at first for the teacher to “relinquish control” and become a facilitator, encouraging the students to ask the right questions rather than handing them solutions.

Additional Resources and References

  • Thinking Through Project-Based Learning: Guiding Deeper Inquiry : Krauss & Boss’s book contains many practical examples of how to teach and create critical thinking experiences in project-based learning.
  • Essential Readings in Problem-Based Learning: Exploring and Extending the Legacy of Howard S. Barrows : Walker, Hmelo-Silver & Ertmer’s book discusses developments in the field of PBL, bridging the gap between theory and practice.
  • Barrows, H. S. (1986). A taxonomy of problem?based learning methods.Medical education, 20(6), 481-486.
  • Savery, J. R., & Duffy, T. M. (1995). Problem based learning: An instructional model and its constructivist framework. Educational technology, 35(5), 31-38.
  • Boud, D., & Feletti, G. (1997). The challenge of problem-based learning. Psychology Press.
  • Barrows, H. S. (1996). Problem?based learning in medicine and beyond: A brief overview. New directions for teaching and learning, 1996(68), 3-12.

Leave a Reply

You must be logged in to post a comment.

Related Posts

what is problem solving learning approach

Situated Learning Theory (Lave)

what is problem solving learning approach

Stereotype Threat (Steele, Aronson)

Albert bandura, erik erikson.

Problem-Based Learning

  • 1 Understand
  • 2 Get Started
  • 3 Train Your Peers
  • 4 Related Links

What is Problem-Based Learning

Problem-based learning & the classroom, the problem-based learning process, problem-based learning & the common core, project example: a better community, project example: preserving appalachia, project example: make an impact.

All Toolkits

A Learning is Open toolkit written by the New Learning Institute.

Problem-based learning (PBL) challenges students to identify and examine real problems, then work together to address and solve those problems through advocacy and by mobilizing resources. Importantly, every aspect of the problem solving process involves students in real work—work that is a reflection of the range of expertise required to solve issues in the world outside of school.

While problem-based learning can use any type of problem as its basis, the approach described here is deliberately focused on local ones. Local problems allow students to have a meaningful voice, and be instrumental in a process where real, recognizable change results. It also gives students opportunities to source and interact with a variety of local experts.

In many classrooms teachers give students information and then ask them to solve problems at the culmination of a unit. Problem-based learning turns this on its head by challenging students to define the problem before finding the resources necessary to address or solve it. In this approach, teachers are facilitators: they set the context for the problem, ask questions to propel students’ interests and learning forward, help students locate necessary resources and experts, and provide multiple opportunities to critique students’ process and progress. In some cases, the teacher may identify a problem that is connected to existing curriculum; in others the teacher may assign a larger topic and challenge the students to identify a specific problem they are interested in addressing.

This approach is interdisciplinary and provides natural opportunities for integrating a variety of required content areas. Because recognizing and making relationships between content areas is a necessary part of the problem-solving process—as it is in the real world—students are building skills to prepare them for life, work, and civic participation. Problem-based learning gives students a variety of ways to address and tackle a problem. It encourages everyone to contribute and rewards different kinds of success. This builds confidence in students who have not always been successful in school. With the changing needs of today’s world, there is a growing urgency for people who are competent in a range of areas including the ability to apply critical thinking to complex problems, collaborate, network and gather resources, and communicate and persuade others to actively take up a cause.

Problem-based learning builds agency & independence

Although students work collaboratively throughout the process, applying a wide range of skills to new tasks requires them to develop their own specialties that lead to greater confidence and competency. And because the process is student-driven, students are challenged to define the problem, conduct comprehensive research, sort through multiple solutions and present the one that allows them best move forward. This reinforces a sense of self-agency and independence.

Problem-based learning promotes adaptability & flexibility

Investigating and solving problems requires students to work with many different types of people and encounter many unknowns throughout the process. These experiences help students learn to be adaptable and flexible during periods of uncertainty. From an academic standpoint, this flexible mindset is an opportunity for students to develop a range of communication aptitudes and styles. For example, in the beginning research phases, students must gather multiple perspectives and gain a clear understanding of their various audiences. As they move into the later project phases they must develop more nuanced ways to communicate with each audience, from clearly presenting information to persuasion to defending the merits of a new idea.

Problem-based learning is persistent

Educators recognize that when students are working towards a real goal they care about, they show increased investment and willingness to persist through challenges. Problem-based learning requires students to navigate many variables including the diverse personalities on a project team, the decisions and perspectives of stakeholders, challenging and rigorous content, and real world deadlines. Students will experience frustration and failure, but they will learn that working though that by trying new things will be its own reward. And this is a critical lesson that will be carried on into life and work.

Problem-based learning is civically engaged

Because problem-based learning focuses on using local issues as jumping off points it gives students a meaningful context in which to voice their opinions and take the initiative to find solutions. Problems within schools and communities also provide opportunities for students to work directly with stakeholders (i.e. the school principal or a town council member) and experts (i.e. local residents, professionals, and business owners). These local connections make it more likely that students will successfully implement some aspect of their plan and gives students firsthand experience with civic processes.

A problem well put is half solved. – John Dewey

The problem-based learning process described in this toolkit has been refined and tested through the Model Classroom Program, a project of the New Learning Institute. Educators throughout the United States participated in this program by designing, implementing, and documenting projects. The resulting problem-based learning approach provides a clear process and diverse set of tools to support problem-based learning.

The problem-based learning process can help students define problems in new ways, explore multiple perspectives, challenge their thinking, and develop the real-world skills needed for planning and carrying out a project. Beyond this, because the approach emphasizes local and community-based issues, this process develops student drive and motivation as they work towards a tangible end result with the potential to impact their community.

Make it Real

The world is full of unsolved problems and opportunities just waiting to be addressed. The Make It Real phase is about identifying a real problem within the local community, then conducting further investigation to define the problem.

Identify what you do and don’t know about the problem Brainstorm what is known about the problem. What do you know about it at the local level? Is this problem globally relevant? How? What questions would you investigate further?

Discover the problem’s root causes and impacts on the community While it’s easy to find a problem, it’s much harder to understand it. Investigate how the problem impacts different people and places. As a result of these investigations, students will gain a clearer understanding of the problem.

Make it Relevant

Problems are everywhere, but it can often be difficult to convince people that a specific problem should matter to them. The word relevant is from the Latin root meaning “to raise” or “to lift up.” To Make It Relevant, elevate the problem so that people in the community and beyond will take interest and become invested in its resolution. Make important connections in order to begin a plan to address the problem.

Field Studies

Collect as much information as possible on the problem. Conduct the kind of research experts in the field—scientists and historians—conduct. While online and library research is a good starting point, it’s important that students get out into the real world to conduct their own original research! This includes using methods such as surveys, interviews, photo and video documentation, collection of evidence (such as science related activities), and working with a variety of experts and viewpoints.

Develop an action-plan Have students analyze their field studies data and create charts, graphs, and other visual representations to understand their findings. After analyzing, students will have the information needed to develop a plan of action. Importantly, they’ll need to consider how best to meet the needs of all stakeholders, which will include a diverse community such as local businesses, community members, experts, and even the natural world.

Make an Impact

Make An Impact with a creative implementation based on the best research-supported ideas. In many cases, making an impact is about solving the problem. Sometimes it’s about addressing it, making representations to stakeholders, or presenting a possible solution for future implementation. At the most rigorous level, students will implement a project that has lasting impact on their community.

Put your plan into action See the hard work of researching and analyzing the problem pay off as students begin implementing their plans. In so doing, they’ll act as part of a team creating a product to share. Depending on the problem, purpose, and audience, their products might be anything from a website to an art installation to the planning of a community-wide event.

Share your findings and make an impact Share results with important stakeholders and the larger community. Depending on the project, this effort may include awareness campaigns, a persuasive presentation to stakeholders, an action-oriented campaign, a community-wide event, or a re-designed program. In many cases this “final” act leads to the beginning of another project!

With the Common Core implementation, teachers have found different strategies and resources to help align their practice to the standards. Indeed, many schools and districts have discovered a variety of solutions. When considering Common Core alignment, the opportunity presented by methods like problem-based learning hinges on a belief in the art of teaching and the importance of developing students’ passion and love of learning. In short, with the ultimate goal of making students college-, career-, and life-ready, it’s essential that educators put students in the driver’s seat to collaboratively solve real problems.

The Common Core ELA standards draw a portrait of a college- and career-ready student. This portrait includes characteristics such as independence, the ability to adapt communication to different audiences and purposes, the ability to comprehend and critique, appreciation for the value of evidence (when reading and when creating their own work), and the capability to make strategic use of digital media. Developing creative solutions to complex problems provides students with multiple opportunities to develop all of these skills.

Independence

Students are challenged to define the problem and conduct comprehensive research, then present solutions. This student-driven process requires students to find multiple answers and think critically about the best way to act, ultimately building confidence and independence.

Adapting Communication to Different Audiences and Purposes

In the initial research phases, students must gather multiple perspectives and gain a clear understanding of who those audiences are. As they move into the later project phases, they must communicate in a variety of ways (including informative and persuasive methods) to reach diverse audiences.

Comprehending and Critiquing

In examining multiple perspectives, students must summarize various viewpoints, addressing their strengths and critiquing their weaknesses. Furthermore, as students develop solutions they must analyze each idea for its potential success, which compels them to critique their own work in addition to the work of others.

Valuing Evidence

Collecting evidence is essential to the process, whether through visual documentation of a problem, uncovering key facts, or collecting narratives from the community.

Strategic Use of Digital Media

The use of digital media is naturally integrated throughout the entire process. The problem-based learning approach not only builds the specific 21st century skills called for by the Common Core, it also embraces practices supported by hundreds of years of educational theory. This is not the next new thing – problem-based learning is one example of how vetted best educational practices will meet the needs of a future economy and society; and, more immediately, the new Common Core Standards.

Language Arts

The Key Design Considerations for the English Language Arts standards describe an integrated literacy model in which all communication processes are closely connected. Likewise, the problem-based learning approach expects students to read, write, and speak about the issue (whether through interviews or speeches) in a variety of ways (expository, persuasive). In addition, the Key Design Considerations describe how literacy is a shared responsibility across subject areas. Because problem-based learning is rooted in real issues, these naturally connect to science content areas (environmental sciences, engineering and design, innovation and invention), social studies (community history, geography/land forms), math (including operations such as graphing, statistics, economics, and mathematical modeling), and art. As part of this interdisciplinary model, problem-based learning follows a process that touches on key ELA skill areas including research, a variety of writing styles and formats (both reading and writing in these formats), publishing, and integration of digital media.

It’s also important to note that the Common Core calls for an increase in informational and nonfiction text. This objective is easily met through examining real problems. Quite simply, informational and nonfiction text is everywhere – in newspaper articles, public surveys, government documents, etc. Very often, when reading out of context, many students struggle to work through and comprehend these types of complex texts. Because problem-based learning authentically integrates a real purpose with reading informational text, students work harder to comprehend and apply their reading.

Note: Each project has the potential to meet many additional standards. The standards outlined here are only a sampling of those addressed by this approach.

Reading Standards

CCSS.ELA-Literacy.CCRA.R.6 Assess how point of view or purpose shapes the content and style of a text. In the early phases of problem-based learning, students investigate the topic by reading a range of informational and persuasive texts, and by talking to a variety of experts and community members. As an essential component to these investigations on multiple perspectives, students must be able to understand the purpose of the text, the intended audience, and the individual’s position on the issue (if applicable).

CCSS.ELA-Literacy.CCRA.R.7 Integrate and evaluate content presented in diverse media and formats, including visually and quantitatively, as well as in words. As students consider multiple perspectives on their identified problem, they naturally will seek a wide range of print materials, media resources (videos, presentations), and formats (research studies, opinion pieces). Comparing and contrasting the viewpoints of these various texts will help students shape a more holistic view of the problem.

Writing Standards

CCSS.ELA-Literacy.CCRA.W.1 Write arguments to support claims in an analysis of substantive topics or texts using valid reasoning and relevant and sufficient evidence. As students analyze the problem, multiple opportunities for persuasive writing emerge. In the early project phases, students might summarize their perspective on the problem using key evidence from a variety of research (online, community polling, and discussions with experts). In the later project phases, students might develop a proposal or presentation to persuade others to change personal habits or consider a larger change in the community.

Speaking & Listening Standards

CCSS.ELA-Literacy.CCRA.SL.1 Prepare for and participate effectively in a range of conversations and collaborations with diverse partners, building on others’ ideas and expressing their own clearly and persuasively. Multiple perspectives are an essential component to any problem-based project. As students investigate, they must seek a wide range of opinions and personal stories on the issues. Furthermore, this process is collaborative. Students must trust and work with each other, they must trust and work with key experts, and, in some cases, they must convince others to collaborate with them around a shared purpose or cause.

CCSS.ELA-Literacy.CCRA.SL.5 Make strategic use of digital media and visual displays of data to express information and enhance understanding of presentations. Because each problem-based project requires students to analyze information, share their findings with others, and collaborate on a variety of levels, digital media is naturally integrated into these tasks. Students might create charts, graphs, or other illustrative/photo/video displays to communicate their research results. Students might use a variety of digital formats including graphic posters, video public service announcements (PSAs), and digital presentations to mobilize the community to their cause. Inherent to these processes is special consideration of how images, videos, and other media support key ideas and key evidence and further the effectiveness of their presentation on the intended audience.

Mathematics

Simply put, math is problem solving. Problem-based learning provides multiple opportunities for students to apply and develop their understanding of various mathematical concepts within real contexts. Through the various stages of problem-based learning, students engage in the same dispositions encouraged by the Standards for Mathematical Practice

CCSS.Math.Practice.MP1 Make sense of problems and persevere in solving them. Problem-based learning is all about problem solving. An essential first step is understanding the problem as deeply as possible, rather than rushing to solve it. This is a process that takes time and perseverance, both individually and in collaborative student groups.

CCSS.Math.Practice.MP3 Construct viable arguments and critique the reasoning of others. As students understand and deconstruct a problem, they must begin to form solutions. As part of this process, they must have evidence (including visual and mathematical evidence) to support their position. They must also understand other perspectives to solving the problem, and they must be prepared to critique those other perspectives based on verbal and mathematical reasoning.

CCSS.Math.Practice.MP4 Model with mathematics. Throughout the process, students must analyze information and data using a variety of mathematical models. These range from charts and graphs to 3-D modeling used in science or engineering projects.

CCSS.Math.Practice.MP5 Use appropriate tools strategically. According to the Common Core Math Practices standard, “Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software.” In addition to providing opportunities to use these tools, problem-based learning asks students to make effective use of digital and mobile media as they collect information, document the issue, share their findings, and mobilize others to their cause.

School Name | Big Horn Elementary Location | Big Horn, Wyoming Total Time | 1 year Subjects | English Language Arts, Social Studies, Math, Science Grade Level | 3rd Grade Number of Participants | 40 students in two classrooms

Students informed the school about the importance of recycling, developed systems to improve recycling options and implemented a school-wide recycling program that involved all students, other teachers, school principals, school custodians, and the county recycling center.

While investigating their local county history, students were challenged to recognize their role in the community and ultimately realize the importance of stewardship for the county’s land, history and culture. Students began by researching their local history through many first hand experiences including museum visits, local resident interviews and visits to places representing the current culture.

Challenged to find ways to make “A Better Community”, students chose to investigate recycling.

They conducted hands-on research to determine the need for a recycling program through a school survey, town trash pickup and visit to the local Landfill and Recycling Center.

Students then developed a proposal for a school-wide recycling program, interviewed the principal to address their concerns and began to carry out their plan.

Students designed recycling bins for each classroom and worked with school janitors to develop a plan for collection.

Students visited each classroom to distribute the recycling bins and describe how to use them. Students developed a schedule for collecting bins and sorting materials. The program continues beyond the initial school-year; students continue to expand their efforts.

School Name | Bates Middle School Location | Danville, Kentucky Total Time | 8 weeks Subjects | English Language Arts Grade Level | 6th Grade Number of Participants |25 students

Students created Project Playhouse, a live production for the local community. Audience members included community members, parents, and other students. In addition, students designed a quilt sharing Appalachian history, and recorded their work on a community website.

Appalachia has a rich culture full of unique traditions and an impressive heritage, yet many negative stereotypes persist. 6th grade students brainstormed existing stereotypes and their consequences on the community.

Students discussions led them to realize that, in their region, stereotypes were preventing people from overcoming adversity. They set about to conduct further research demonstrating the strengths of Appalachian heritage.

Students investigated Appalachian culture by working with local experts like Tammy Horn, professor at Eastern Kentucky University and specialist in Appalachian cultural traditions; taking a field trip to Logan Hubble Park to explore the natural region; talking with a “coon” hunter and other local Appalachians including quilters, cooks, artists, and writers.

Students developed a plan to curate an exhibition and live production for the local community. Finally, students connected virtually with museum expert Rebecca Kasemeyer, Associate Director of Education at the Smithsonian National Portrait Gallery to discuss exhibition design.

For their final projects students produced a series of works exhibiting Appalachian life, work, play and community structure including a quilt, a theatrical performance and a website.

Students invited the community to view their exhibit and theatrical performance.

School Name | Northwestern High School Location | Rock Hill, South Carolina Total Time | One Semester Subjects | Engineering Grade Level | High School Number of Participants | 20 students

Engineering teacher Bryan Coburn presented a scenario to his students inspired by the community’s very real drought, a drought so bad that cars could only be washed on specific days. Students identified and examined environmental issues related to water scarcity in their community.

Based on initial brainstorming, students divided into teams based on specific problems related to a water shortage. These included topics like watering gardens and lawns, watering cars, drinking water to name a few.

Based on their topic, students conducted online research on existing solutions to their specific problem.

Students analyzed their research to develop their own prototypes and plans for addressing the problem. Throughout the planning phase students received peer and teacher feedback on the viability of their prototypes, resulting in many edits before final designs were selected for creation.

Students created online portfolios showcasing their research, 3D designs, and multimedia presentations marketing their designs. Student portfolios included documentation of each stage of the design process, a design brief, decision matrix, a prototype using Autodesk Inventor 3D professional modeling tool, and a final presentation.

Students shared their presentations and portfolios in a public forum, pitching their proposed solution to a review committee consisting of local engineers from the community, the city water manager and the school principal.

Plan Your PBL Experience

Resources to help you plan.

Problem-based learning projects are inspired by students’ real world experiences and the pressing issues and concerns they want to address. Problem-based learning projects benefit teachers by increasing student motivation and engagement, while deepening knowledge and improving essential skills. In spite of the inherent value problem-based learning brings to any educational setting, planning a large project can be an overwhelming task.

Through the New Learning Institute’s Model Classroom, a range of problem-based learning planning tools have been developed and tested in a variety of educational settings. These tools make the planning process more manageable by supporting teachers in establishing the context and/or problem for a project, planning for and procuring the necessary resources for a real-world project (including community organizations, expert involvement, and tools needed for communicating, creating and sharing), and facilitating students through the project phases.

Here are some initial considerations when planning a problem-based learning project. (More detailed tips and planning tools follow.) These questions can help you determine where to begin your project planning. Once you have a clear idea, the problem-based learning planning tools will guide you through the process.

Are you starting from the curriculum? It’s probably tempting to jump in and define a problem for students based on the unit of study. And time constraints may make a teacher-defined problem necessary. If time permits, a problem-based learning project will be more successful if time is built-in for students to define a problem they’d like to address. Do this by building in topic exploration time, and then challenging students to define a problem based on their findings. Including this extra time will allow students to develop their own interests and questions about the topic, deepening engagement and ensuring that students are investigating a problem they’re invested in—all while covering curriculum requirements.

Are you starting from student interest? Perhaps your students want to solve a problem in the school, such as bullying or lack of recycling. Perhaps they’re concerned about a larger community problem, such as a contested piece of parkland that is up for development or a pollution problem in your local waterways. Starting with student interest can help ensure students’ investment and motivation. However, this starting point provides less direct navigation than existing projects or curriculum materials. When taking on a project of this nature, be sure to identify natural intersections with your curriculum. It also helps to enlist community or expert support.

Start Small – Focus on Practices as Entry Points

If you’re new to problem-based learning it makes sense to start small. Many teachers new to this approach report that starting with the smaller practices—such as integrating research methods or having students define a specific problem within a unit of study—ultimately sets the stage for larger projects and more easily leads them to implement a problem-based learning project.

Opportunities to address and solve problems are everywhere. Just look in your own backyard or schoolyard. Better yet, ask students to identify problems within the school community or based on a topic of interest within a unit of study. As you progress through the project, find natural opportunities for research and problem solving by working with the people who are affected by the issue and invested in solving it. Finally, make sure students share their work with an authentic audience who cares about the problem and its resolution.

Be Honest About Project Constraints

When you’re new to problem-based learning, the most important consideration is your project constraints. For example, perhaps you’re required to cover a designated set of standards and content. Or perhaps you have limited time for this project experience. Whatever the constraints, determine them in advance then plan backwards to determine the length and depth of your project.

Identify Intersections With Your Curriculum

Problem-based learning projects are interdisciplinary and have the ability to meet a range of standards. Identify where these intersections naturally occur with the topic students have selected, then design some activities or project requirements to ensure these content areas are covered.

Turn Limitations Into Opportunities

Many educators work in schools with pre-defined curriculum or schedule constraints that make implementing larger projects difficult. In these cases, it may help to find small windows of opportunity during the school day or after school to implement problem-based learning. For example, some teachers implement problem-based learning in special subject courses which have a more flexible curriculum. Others host afterschool “Genius Hour” programs that challenge students to explore and investigate their interests. Whatever opportunity you find, make the work highly visible to staff and parents. Make it an intention to get the school community exploring and designing possibilities of integrating these practices more holistically.

Take Risks and Model Perseverance

The problem-based learning process is messy and full of opportunities to fail, just like real life and real jobs. Many educators share that this is incredibly difficult for their students and themselves. Despite the initial letdown that comes with small failures, it’s important that students see the value in learning from failure and persevering through these challenges. Model risk taking for your students and when you make a mistake or face a challenge, welcome it with open arms by demonstrating what you’ve learned and what you’ll do differently next time around. Let students know that it’s okay to make mistakes; that mistakes are a welcome opportunity to learn and try something new.

Be Less Helpful

A key to building problem-solving and critical thinking capacities is to be less helpful. Let students figure things out on their own. In classroom implementation, teachers repeatedly share that handing over control to the students and “being less helpful” makes for a big mindshift. This shift is often described as becoming a facilitator, which means knowing when to stand back and knowing when to step-in and offer extra support.

Be Flexible

Recognize that there is no one-size-fits-all answer to any problem. Understanding this and being able to identify unique challenges will help students understand that an initial failure is just a bump in the road. Being flexible also helps students focus on the importance of process over product.

Experts are Everywhere

Experts are everywhere; their differing perspectives and expertise help bring learning to life. But think outside the box about who experts are and integrate multiple opportunities for their involvement. Parents and community members who are not often thought of as experts can speak to life, work, and lived historical experiences. Beyond that, the people usually thought of as experts—researchers, scientists, museum professionals, business professionals, university professors—are more available than many teachers think. It’s often just a matter of asking. And don’t take sole responsibility for finding experts! Seek your students’ help in identifying and securing expert or community support. And when trying to locate experts, don’t forget: students can also be experts.

Maintain a List of Your Support Networks

Some schools have brought the practice of working with the community and outside experts to scale by building databases of parent and community expertise and their interest in working with students. See if a school administrative assistant, student intern, or parent helper can take the lead in developing and maintaining this list for your school community.

Encourage Original Research

Online research is often a great starting point. It can be a way to identify a knowledge base, locate experts, and even find interest-based communities for the topic being approached. While online research is literally right at students’ fingertips, make sure your students spend time offline as well. Original research methods include student-conducted surveys, interviewing experts, and working alongside experts in the field.

This Learning is Open toolkit includes a number of tools and resources that may be helpful as you plan and reflect on your project.

Brainstorming Project Details (Google Presentation) This tool is designed to aid teachers as they brainstorm a project from a variety of starting-points. It’s a helpful tool for independent brainstorming, and would also make a useful workshop tool for teachers who are designing problem-based learning experiences.

Guide to Writing a Problem Statement (PDF) You’ve got to start somewhere. Finding—and defining—a problem is a great place to begin. This guide is a useful tool for teachers and students alike. It will walk you through the process of identifying a problem by providing inspiration on where to look. Then it will support you through the process of defining that problem clearly.

Project Planning Templates (PDF) Need a place to plan out each project phase? Use this project planner to record your ideas in one place. This template is great used alone or in tandem with the other problem-based learning tools.

Ladder of Real World Learning Experiences (PDF) Want to determine if your project is “real” enough? This ladder can be used to help teachers assess their project design based on the real world nature of the project’s learning context, type of activities, and the application of digital tools.

Digital Toolkit (Google Doc) This toolkit was developed in collaboration with teachers and continues to be a community-edited document. The toolkit provides extensive information on digital tools that can be used for planning, brainstorming, collaborating, creating, and sharing work.

Assessing student learning is a crucial part of any dynamic, nonlinear problem-based learning project. Problem-based projects have many parts to them. It’s important to understand each project as a whole as well as each individual component. This section of the toolkit will help you understand problem-based learning assessments and help you develop assessment tools for your problem-based learning experiences.

Because the subject of assessments is so complex, it may be helpful to define how it is approached here.

Portfolio-based Assessment

Each phase of problem-based learning has important tasks and outcomes associated with it. Assessing each phase of the process allows students to receive on-time feedback about their process and associated products and gives them the opportunity to refine and revise their work throughout the process.

Feedback-based Assessment

Problem-based learning emphasizes collaboration with classmates and a range of experts. Assessment should include multiple opportunities for peer feedback, teacher feedback, and expert feedback.

Assessment as a System of Interrelated Feedback Tools

These tools may include rubrics, checklists, observation, portfolios, or quizzes. Whatever the matrix of carefully selected tools, they should optimize the feedback that students receive about what and how they are learning and growing.

Assessment Tools

One way to approach developing assessment tools for your students’ specific problem-based learning project is to deconstruct the learning experience into various categories. Together, these categories make up a simple system through which students may receive feedback on their learning.

Assessing Process

Many students and teachers alike have been conditioned to emphasize and evaluate the end product. While problem-based learning projects often result in impressive end products, it’s important to emphasize each stage of the process with students.

Each phase of problem-based learning process emphasizes important skills, from research and data gathering in the early phases to problem solving, collaboration, and persuasion in the later phases. There are many opportunities to assess student understanding and skill throughout the process. The tools here provide many methods for students to self-assess their process, get feedback from peers, and get feedback from their teachers and other adults.

The Process Portfolio Tool (PDF) provides a place for students to collect their work, define their problem and goals, and reflect throughout the process. Use this as a self-assessment tool, as well as a place to organize the materials for student portfolios.

Driving & Reflection Questioning Guidelines (PDF) is a simple tool for teachers who are integrating problem-based learning into the learning process. The tool highlights the two types of questions teachers/facilitators should consider with students: driving questions and reflection questions. Driving questions push students in their thinking, challenging them to build upon ideas and try new ways to solve problems. Reflection questions ask students to reflect on a process phase once it’s complete, challenging them to think about how they think.

The Peer Feedback Guidelines (PDF) will help students frame how they provide feedback to their peers. The guide includes tips on how and when to use these guidelines in different types of forums (i.e. whole group, gallery-style, and peer-to-peer).

The Buck Institute has also developed a series of rubrics that address various project phases. Their Collaboration Rubric (PDF) can help students be better teammates. (Being an effective teammate is critical to the problem-based learning process.) Their Presentation Rubric (PDF) can help students, adult mentors, and outside experts evaluate final presentations. Final presentations are often one of the most exciting parts of a project.

Assessing Subject Matter and Content

A common concern that emerges in any problem-based learning design is whether projects are able to meet all required subject matter content targets. Because many students are required to learn specific content, there is often tension around the student-directed nature of problem-based learning. While teachers acknowledge that students go deeper into specific content during problem-based learning experiences, teachers also want to ensure that their students are meeting all content goals.

Many teachers in the New Learning Institute’s Model Classroom Program addressed this issue directly by carefully examining their curriculum requirements throughout the planning and implementation phases. Begin by planning activities and real world explorations that address core content. As the project evolves, revisit content standards to mark off and record additional standards met and create a contingency plan for those that have not been addressed.

The Buck Institute’s Rubric for Rubrics (DOC) is an excellent source for designing a rubric to fit your needs. Developing a rubric can be the most simple and effective tool for planning a project around required content targets.

Blended learning is another emerging trend that educators are moving towards as a way to both address individualized skill needs and to create space for real world project strategies, like problem-based learning. In these learning environments, students address skill acquisition through blended experiences and then apply their skills through projects and other real world applications. To learn more about blended models, visit Blend My Learning .

Assessing Mindsets and Skills

In addition to assessing process and subject matter content, it may be helpful to consider the other important mindsets and skills that the problem-based learning project experience fosters. These include persistence, problem solving, collaboration, and adaptability. While problem-based learning supports the development of a large suite of 21st century mindsets and skills, it may be helpful to focus assessments on one or two issues that are most relevant. Some helpful tools may include:

The Buck Institute offers rubrics for Critical Thinking (PDF), Collaboration (PDF), and Creativity and Innovation (PDF) that are aligned to the Common Core State Standards. These can be used as is or tailored to your specific needs.

The Character Growth Card (PDF) from the CharacterLab at Kipp is designed for school assessments more than it is for project assessment, but the list of skills and character traits are relevant to design thinking. With the inclusion of a more relevant, effective scale, these can easily be turned into a rubric, especially when paired with the Buck Institute’s Rubric for Rubrics tool.

Host a Teacher Workshop

Teachers are instrumental in sharing and spreading best practices and innovative strategies to other teachers. Once you’re confident in your conceptual and practical grasp of problem-based learning, share your knowledge and expertise with others.

The downloadable presentation decks below (PowerPoint) are adaptable tools for helping you spread the word to other educators. The presentations vary in length and depth. A 90-minute presentation introduces problem-based learning and provides a hands-on opportunity to complete an activity. The half-day and full day presentations provide in-depth opportunities to explore projects and consider their classroom applications. While this series is structured in a way that each presentation builds on the previous one, each one can also be used individually as appropriate. Each is designed to be interactive and participatory.

Getting Started with Problem-based Learning (PPT) A presentation deck for introducing educators to the Learning is Open problem-based learning process during a 90-minute peer workshop.

Dig Deeper with Problem-based Learning – Half-day (PPT) A presentation deck for training educators on the Learning is Open problem-based learning process during a half-day peer workshop.

Dig Deeper with Problem-based Learning – Full day (PPT) A presentation deck for training educators on the Learning is Open problem-based learning process during a full day peer workshop.

Related Links

Problem-based learning: detailed case studies from the model classroom.

For three years, the New Learning Institute’s Model Classroom program worked with teachers to design and implement projects. This report details the work and provides extensive case studies.

Title: Model Classroom: 3-Year Report (PDF) Type: PDF Source: New Learning Institute

Setting up Learning Experiences Using Real Problems

This New York Times Learning Blog article explores how projects can be set-up with real problems, providing many examples and suggestions for this approach.

Title: “ Guest Lesson | For Authentic Learning Start with Real Problems ” Type: Article Source: Suzie Boss. New York Times Learning Blog

Guest Lesson: Recycling as a Focus for Project-based Learning

There are many ways to set-up a project with a real world problem. This article describes the problem of recycling, providing multiple examples of student projects addressing the issue.

Title: “ Guest Lesson | Recycling as a Focus for Project-Based Learning ” Type: Article Source: Suzie Boss. New York Times Learning Blog

Problem-based Learning: Professional Development Inspires Classroom Project

This video features how the Model Classroom professional development workshop model worked in practice, challenging teachers to collaboratively problem-solve using real world places and experts. It also shows how one workshop participant used her experience to design a yearlong problem-based learning project for first-graders called the “Streamkeepers Project.”

Title: Mission Possible: the Model Classroom Type: Video Source: New Learning Institute

Problem-based Learning in an Engineering Class: Solutions to a Water Shortage

Engineering teacher Bryan Coburn used the problem of a local water shortage to inspire his students to conduct research and design solutions.

Title: “ National Project Aims to Inspire the Model Classroom ” Type: Article Source: eSchool News

Making Project-based Learning More Meaningful

This article provides great tips on how to design projects to be relevant and purposeful for students. While it addresses the larger umbrella of project-based learning, the suggestions and tips provided apply to problem-based learning.

Title: “ How to Reinvent Project-Based Learning to Make it More Meaningful ” Type: Article Source: KQED Mindshift

PBL Downloads

Guide to Writing a Problem Statement (PDF)

A walk-through guide for identifying and defining a problem.

Project Planning Templates (PDF)

A planning template for standalone use or to be used along with other problem-based learning tools.

Process Portfolio Tool (PDF)

A self-assessment tool to support students as they collect their work, define their problem and goals, and make reflections throughout the process.

More PBL Downloads

Getting Started with Problem-based Learning (PPT)

A presentation deck for introducing educators to the Project MASH problem-based learning process during a 90-minute peer workshop.

Dig Deeper with Problem-based Learning – Half-day (PPT)

A presentation deck for training educators on the PBL process during a half-day peer workshop.

Dig Deeper with Problem-based Learning – Full day (PPT)

A presentation deck for training educators on the PBL process during a full day peer workshop.

Center for Teaching

Teaching problem solving.

Print Version

Tips and Techniques

Expert vs. novice problem solvers, communicate.

  • Have students  identify specific problems, difficulties, or confusions . Don’t waste time working through problems that students already understand.
  • If students are unable to articulate their concerns, determine where they are having trouble by  asking them to identify the specific concepts or principles associated with the problem.
  • In a one-on-one tutoring session, ask the student to  work his/her problem out loud . This slows down the thinking process, making it more accurate and allowing you to access understanding.
  • When working with larger groups you can ask students to provide a written “two-column solution.” Have students write up their solution to a problem by putting all their calculations in one column and all of their reasoning (in complete sentences) in the other column. This helps them to think critically about their own problem solving and helps you to more easily identify where they may be having problems. Two-Column Solution (Math) Two-Column Solution (Physics)

Encourage Independence

  • Model the problem solving process rather than just giving students the answer. As you work through the problem, consider how a novice might struggle with the concepts and make your thinking clear
  • Have students work through problems on their own. Ask directing questions or give helpful suggestions, but  provide only minimal assistance and only when needed to overcome obstacles.
  • Don’t fear  group work ! Students can frequently help each other, and talking about a problem helps them think more critically about the steps needed to solve the problem. Additionally, group work helps students realize that problems often have multiple solution strategies, some that might be more effective than others

Be sensitive

  • Frequently, when working problems, students are unsure of themselves. This lack of confidence may hamper their learning. It is important to recognize this when students come to us for help, and to give each student some feeling of mastery. Do this by providing  positive reinforcement to let students know when they have mastered a new concept or skill.

Encourage Thoroughness and Patience

  • Try to communicate that  the process is more important than the answer so that the student learns that it is OK to not have an instant solution. This is learned through your acceptance of his/her pace of doing things, through your refusal to let anxiety pressure you into giving the right answer, and through your example of problem solving through a step-by step process.

Experts (teachers) in a particular field are often so fluent in solving problems from that field that they can find it difficult to articulate the problem solving principles and strategies they use to novices (students) in their field because these principles and strategies are second nature to the expert. To teach students problem solving skills,  a teacher should be aware of principles and strategies of good problem solving in his or her discipline .

The mathematician George Polya captured the problem solving principles and strategies he used in his discipline in the book  How to Solve It: A New Aspect of Mathematical Method (Princeton University Press, 1957). The book includes  a summary of Polya’s problem solving heuristic as well as advice on the teaching of problem solving.

what is problem solving learning approach

Teaching Guides

  • Online Course Development Resources
  • Principles & Frameworks
  • Pedagogies & Strategies
  • Reflecting & Assessing
  • Challenges & Opportunities
  • Populations & Contexts

Quick Links

  • Services for Departments and Schools
  • Examples of Online Instructional Modules

Problem-Based Learning: What and How Do Students Learn?

  • Published: September 2004
  • Volume 16 , pages 235–266, ( 2004 )

Cite this article

what is problem solving learning approach

  • Cindy E. Hmelo-Silver 1  

45k Accesses

2061 Citations

259 Altmetric

32 Mentions

Explore all metrics

Problem-based approaches to learning have a long history of advocating experience-based education. Psychological research and theory suggests that by having students learn through the experience of solving problems, they can learn both content and thinking strategies. Problem-based learning (PBL) is an instructional method in which students learn through facilitated problem solving. In PBL, student learning centers on a complex problem that does not have a single correct answer. Students work in collaborative groups to identify what they need to learn in order to solve a problem. They engage in self-directed learning (SDL) and then apply their new knowledge to the problem and reflect on what they learned and the effectiveness of the strategies employed. The teacher acts to facilitate the learning process rather than to provide knowledge. The goals of PBL include helping students develop 1) flexible knowledge, 2) effective problem-solving skills, 3) SDL skills, 4) effective collaboration skills, and 5) intrinsic motivation. This article discusses the nature of learning in PBL and examines the empirical evidence supporting it. There is considerable research on the first 3 goals of PBL but little on the last 2. Moreover, minimal research has been conducted outside medical and gifted education. Understanding how these goals are achieved with less skilled learners is an important part of a research agenda for PBL. The evidence suggests that PBL is an instructional approach that offers the potential to help students develop flexible understanding and lifelong learning skills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

Similar content being viewed by others

what is problem solving learning approach

Problem-Based Learning: Conception, Practice, and Future

what is problem solving learning approach

Designing Problem-Solving for Meaningful Learning: A Discussion of Asia-Pacific Research

what is problem solving learning approach

Effective Learning Behavior in Problem-Based Learning: a Scoping Review

Abrandt Dahlgren, M., and Dahlgren, L. O. (2002). Portraits of PBL: Students' experiences of the characteristics of problem-based learning in physiotherapy, computer engineering, and psychology. Instr. Sci. 30: 111-127.

Google Scholar  

Albanese, M. A., and Mitchell, S. (1993). Problem-based learning: A review of literature on its outcomes and implementation issues. Acad. Med. 68: 52-81.

Ames, C. (1992). Classrooms: Goals, structures, and student motivation. J. Educ. Psychol. 84: 261-271.

Bandura, A. (1997). Self-Efficacy: The Exercise of Control , Freeman, New York.

Barron, B. J. S. (2002). Achieving coordination in collaborative problem-solving groups. J. Learn. Sci. 9: 403-437.

Barrows, H. S. (2000). Problem-Based Learning Applied to Medical Education , Southern Illinois University Press, Springfield.

Barrows, H., and Kelson, A. C. (1995). Problem-Based Learning in Secondary Education and the Problem-Based Learning Institute (Monograph 1), Problem-Based Learning Institute, Springfield, IL.

Barrows, H. S., and Tamblyn, R. (1980). Problem-Based Learning: An Approach to Medical Education , Springer, New York.

Bereiter, C., and Scardamalia, M. (1989). Intentional learning as a goal of instruction. In Resnick, L. B. (ed.), Knowing, Learning, and Instruction: Essays in Honor of Robert Glaser , Erlbaum, Hillsdale, NJ, pp. 361-392.

Biggs, J. B. (1985). The role of metalearning in study processes. Br. J. Educ. Psychol. 55: 185-212.

Blumberg, P., and Michael, J. A. (1992). Development of self-directed learning behaviors in a partially teacher-directed problem-based learning curriculum. Teach. Learn. Med. 4: 3-8.

Blumenfeld, P. C., Marx, R. W., Soloway, E., and Krajcik, J. S. (1996). Learning with peers: From small group cooperation to collaborative communities. Educ. Res. 25(8): 37-40.

Boud, D., and Feletti, G. (1991). The Challenge of Problem Based Learning , St. Martin's Press, New York.

Bransford, J. D., Brown, A. L., and Cocking, R. (2000). How People Learn , National Academy Press, Washington, DC.

Bransford, J. D., and McCarrell, N. S. (1977). A sketch of a cognitive approach to comprehension: Some thoughts about understanding what it means to comprehend. In Johnson-Laird, P. N., and Wason, P. C. (eds.), Thinking: Readings in Cognitive Science , Cambridge University Press, Cambridge, UK, pp. 377-399.

Bransford, J. D., Vye, N., Kinzer, C., and Risko, R. (1990). Teaching thinking and content knowledge: Toward an integrated approach. In Jones, B. F., and Idol, L. (eds.), Dimensions of Thinking and Cognitive Instruction , Erlbaum, Hillsdale, NJ, pp. 381-413.

Bridges, E. M. (1992). Problem-Based Learning for Administrators , ERIC Clearinghouse on Educational Management, Eugene, OR.

Brown, A. L. (1995). The advancement of learning. Educ. Res. 23(8): 4-12.

Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., and Glaser, R. (1989). Self-explanations: How students study and use examples in learning to solve problems. Cogn. Sci. 13: 145-182.

Chi, M. T. H., DeLeeuw, N., Chiu, M., and LaVancher, C. (1994). Eliciting self-explanations improves understanding. Cogn. Sci. 18: 439-477.

Chi, M. T. H., Feltovich, P., and Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cogn. Sci. 5: 121-152.

Cognition and Technology Group at Vanderbilt (1997). The Jasper Project: Lessons in Curriculum, Instruction, Assessment, and Professional Development , Erlbaum, Mahwah, NJ.

Cohen, E. G. (1994). Restructuring the classroom: Conditions for productive small groups. Rev. Educ. Res. 64: 1-35.

Collins, A., Brown, J. S., and Newman, S. E. (1989). Cognitive apprenticeship: Teaching the crafts of reading, writing, and mathematics. In Resnick, L. B. (ed.), Knowing, Learning, and Instruction: Essays in Honor of Robert Glaser , Erlbaum, Hillsdale, NJ, pp. 453-494.

DeGrave, W. S., Boshuizen, H. P. A., and Schmidt, H. G. (1996). Problem-based learning: Cognitive and metacognitive processes during problem analysis. Instr. Sci. 24: 321-341.

Derry, S. J., Lee, J., Kim, J.-B., Seymour, J., and Steinkuehler, C. A. (2001, April). From ambitious vision to partially satisfying reality: Community and collaboration in teacher education . Paper presented at the Annual Meeting of the American Educational Research Association, Seattle, WA.

Derry, S. J., Levin, J. R., Osana, H. P., Jones, M. S., and Peterson, M. (2000). Fostering students' statistical and scientific thinking: Lessons learned from an innovative college course. Am. Educ. Res. J. 37: 747-773.

Derry, S. J., Siegel, M., Stampen, J., and the STEP team (2002). The STEP system for collaborative case-based teacher education: Design, evaluation, and future directions. In Stahl, G. (ed.), Proceedings of CSCL 2002 , Erlbaum, Hillsdale, NJ, pp. 209-216.

Dewey, J. (1938). Experience and Education , Macmillan, New York.

Dochy, F., Segers, M., Van den Bossche, P., and Gijbels, D. (2003). Effects of problem-based learning: A meta-analysis. Learn. Instr. 13: 533-568.

Dods, R. F. (1997). An action research study of the effectiveness of problem-based learning in promoting the acquisition and retention of knowledge. J. Educ. Gifted 20: 423-437.

Dolmans, D. H. J. M., and Schmidt, H. G. (2000). What directs self-directed learning in a problem-based curriculum? In Evensen, D. H., and Hmelo, C. E. (eds.), Problem-Based Learning: A Research Perspective on Learning Interactions Erlbaum, Mahwah, NJ, pp. 251-262.

Duch, B. J., Groh, S. E., and Allen, D. E. (2001). The Power of Problem-Based Learning , Stylus, Steerling, VA.

Dweck, C. S. (1991). Self-theories and goals: Their role in motivation, personality, and development. In Nebraska Symposium on Motivation, 1990 , University of Nebraska Press, Lincoln, pp. 199-235.

Ertmer, P., Newby, T. J., and MacDougall, M. (1996). Students' responses and approaches to case-based instruction: The role of reflective self-regulation. Am. Educ. Res. J. 33: 719-752.

Evensen, D. (2000). Observing self-directed learners in a problem-based learning context: Two case studies. In Evensen, D., and Hmelo, C. E. (eds.), Problem-Based Learning: A Research Perspective on Learning Interactions , Erlbaum, Mahwah, NJ, pp. 263-298.

Evensen, D. H., Salisbury-Glennon, J., and Glenn, J. (2001). A qualitative study of 6 medical students in a problem-based curriculum: Towards a situated model of self-regulation. J. Educ. Psychol. 93: 659-676.

Faidley, J., Evensen, D. H., Salisbury-Glennon, J., Glenn, J., and Hmelo, C. E. (2000). How are we doing? Methods of assessing group processing in a problem-based learning context. In Evensen, D. H., and Hmelo, C. E. (eds.), Problem-Based Learning: A Research Perspective on Learning Interactions , Erlbaum, Mahwah, NJ, pp. 109-135.

Ferrari, M., and Mahalingham, R. (1998). Personal cognitive development and its implications for teaching and learning. Educ. Psychol. 33: 35-44.

Gallagher, S., and Stepien, W. (1996). Content acquisition in problem-based learning: Depth versus breadth in American studies. J. Educ. Gifted 19: 257-275.

Gallagher, S. A., Stepien, W. J., and Rosenthal, H. (1992). The effects of problem-based learning on problem solving. Gifted Child Q. 36: 195-200.

Gick, M. L., and Holyoak, K. J. (1980). Analogical problem solving. Cogn. Psychol. 12: 306-355.

Gick, M. L., and Holyoak, K. J. (1983). Schema induction and analogical transfer. Cogn. Psychol. 15: 1-38.

Goodman, L. J., Erich, E., Brueschke, E. E., Bone, R. C., Rose, W. H., Williams, E. J., and Paul, H. A. (1991). An experiment in medical education: A critical analysis using traditional criteria. JAMA 265: 2373-2376.

Greeno, J. G., Collins, A., and Resnick, L. B. (1996). Cognition and learning. In Berliner, D. C., and Calfee, R. C. (eds.), Handbook of Educational Psychology , Macmillan, New York, pp. 15-46.

Hmelo, C. E. (1994). Development of Independent Thinking and Learning Skills: A Study of Medical Problem-Solving and Problem-Based Learning , Unpublished Doctoral Dissertation, Vanderbilt University, Nashville, TN.

Hmelo, C. E. (1998). Problem-based learning: Effects on the early acquisition of cognitive skill in medicine. J. Learn. Sci. 7: 173-208.

Hmelo, C. E., and Ferrari, M. (1997). The problem-based learning tutorial: Cultivating higher-order thinking skills. J. Educ. Gifted 20: 401-422.

Hmelo, C. E., Gotterer, G. S., and Bransford, J. D. (1997). A theory-driven approach to assessing the cognitive effects of PBL. Instr. Sci. 25: 387-408.

Hmelo, C. E., and Guzdial, M. (1996). Of black and glass boxes: Scaffolding for learning and doing. In Edelson, D. C., and Domeshek, E. A. (eds.), Proceedings of ICLS 96 , AACE, Charlottesville, VA, pp. 128-134.

Hmelo, C. E., Holton, D., and Kolodner, J. L. (2000). Designing to learn about complex systems. J. Learn. Sci. 9: 247-298.

Hmelo, C. E., and Lin, X. (2000). The development of self-directed learning strategies in problem-based learning. In Evensen, D., and Hmelo, C. E. (eds.), Problem-Based Learning: Research Perspectives on Learning Interactions , Erlbaum, Mahwah, NJ, pp. 227-250.

Hmelo, C., Shikano, T., Bras, B., Mulholland, J., Realff, M., and Vanegas, J. (1995). A problem-based course in sustainable technology. In Budny, D., Herrick, R., Bjedov, G., and Perry, J. B. (eds.), Frontiers in Education 1995 , American Society for Engineering Education, Washington, DC.

Hmelo-Silver, C. E. (2000). Knowledge recycling: Crisscrossing the landscape of educational psychology in a Problem-Based Learning Course for Preservice Teachers. J. Excell. Coll. Teach. 11: 41-56.

Hmelo-Silver, C. E. (2002). Collaborative ways of knowing: Issues in facilitation. In Stahl, G. (ed.), Proceedings of CSCL 2002 , Erlbaum, Hillsdale, NJ, pp. 199-208.

Hmelo-Silver, C. E., and Barrows, H. S. (2003). Facilitating collaborative ways of knowing . Manuscript submitted for publication.

Hmelo-Silver, C. E., and Barrows, H.S. (2002, April). Goals and strategies of a constructivist teacher . Paper presented at American Educational Research Association Annual Meeting, New Orleans, LA.

Kilpatrick, W. H. (1918). The project method. Teach. Coll. Rec. 19: 319-335.

Kilpatrick, W. H. (1921). Dangers and difficulties of the project method and how to overcome them: Introductory statement: Definition of terms. Teach. Coll. Rec. 22: 282-288.

Kolodner, J. L. (1993). Case-Based Reasoning , Morgan Kaufmann, San Mateo, CA.

Kolodner, J. L., Hmelo, C. E., and Narayanan, N. H. (1996). Problem-based learning meets case-based reasoning. In Edelson, D. C., and Domeshek, E. A. (eds.), Proceedings of ICLS 96 , AACE, Charlottesville, VA, pp. 188-195.

Koschmann, T. D., Myers, A. C., Feltovich, P. J., and Barrows, H. S. (1994). Using technology to assist in realizing effective learning and instruction: A principled approach to the use of computers in collaborative learning. J. Learn. Sci. 3: 225-262.

Krajcik, J., Blumenfeld, P., Marx, R., and Soloway, E. (2000). Instructional, curricular, and technological supports for inquiry in science classrooms. In Minstrell, J., and Van Zee, E. H. (eds.), Inquiring Into Inquiry Learning and Teaching in Science , American Association for the Advancement of Science, Washington, DC, pp. 283-315.

Krajcik, J., Marx, R., Blumenfeld, P., Soloway, E., and Fishman, B. (2000, April). Inquiry-based science supported by technology: Achievement among urban middle school students . Paper presented at the Annual Meeting of the American Educational Research Association, New Orleans, LA.

Lampert, M. (2001). Teaching Problems and the Problems of Teaching , Yale University Press, New Haven, CT.

Leontiev, A. N. (1978). Activity, Consciousness, and Personality (M. J. Hall, Trans.), Prentice-Hall, Englewood Cliffs, NJ.

Lesgold, A., Rubinson, H., Feltovich, P., Glaser, R., Klopfer, D., and Wang, Y. (1988). Expertise in a complex skill: Diagnosing x-ray pictures. In Chi, M. T. H., Glaser, R., and Farr, M. J. (eds.), The Nature of Expertise , Erlbaum. Hillsdale, NJ, pp. 311-342.

Linn, M. C., and Hsi, S. (2000). Computers, Teachers, Peers: Science Learning Partners , Erlbaum, Mahwah, NJ.

Mennin, S. P., Friedman, M., Skipper, B., Kalishman, S., and Snyder, J. (1993). Performances on the NBME I, II, and III by medical students in the problem-based and conventional tracks at the University of New Mexico. Acad. Med. 68: 616-624.

Needham, D. R., and Begg, I. M. (1991). Problem-oriented training promotes spontaneous analogical transfer. Memory-oriented training promotes memory for training. Mem. Cogn. 19: 543-557.

Norman, G. R., Brooks, L. R., Colle, C., and Hatala, H. (1998). Relative effectiveness of instruction in forward and backward reasoning . Paper presented at the Annual Meeting of the American Educational Research Association, San Diego, CA.

Norman, G. R., Trott, A. D., Brooks, L. R., and Smith, E. K. (1994). Cognitive differences in clinical reasoning related to postgraduate training. Teach. Learn. Med. 6: 114-120.

Novick, L. R., and Hmelo, C. E. (1994). Transferring symbolic representations across nonisomorphic problems. J. Exp. Psychol. Learn. Mem. Cogn. 20: 1296-1321.

Novick, L. R., and Holyoak, K. J. (1991). Mathematical problem solving by analogy. J. Exp. Psychol. Learn. Mem. Cogn. 17: 398-415.

O'Donnell, A. M. (1999). Structuring dyadic interaction through scripted cooperation. In O'Donnell, A. M., and King, A. (eds.), Cognitive Perspectives on Peer Learning , Erlbaum, Mahwah, NJ, pp. 179-196.

Palincsar, A. S., and Herrenkohl, L. R. (1999). Designing collaborative contexts: Lessons from three research programs. In O'Donnell, A. M., and King, A. (eds.), Cognitive Perspectives on Peer Learning ,Erlbaum, Mahwah, NJ, pp. 151-178.

Patel, V. L., Groen, G. J., and Norman, G. R. (1991). Effects of conventional and problem-based medical curricula on problem solving. Acad. Med. 66: 380-389.

Patel, V. L., Groen, G. J., and Norman, G. R. (1993). Reasoning and instruction in medical curricula. Cogn. Instr. 10: 335-378.

Pea, R. D. (1993). Practices of distributed intelligence and designs for education. In Salomon, G., and Perkins, D. (eds.), Distributed Cognitions: Psychological and Educational Considerations , Cambridge University Press, New York, pp. 47-87.

Perfetto, G. A., Bransford, J. D., and Franks, J. J. (1983). Constraints on access in a problem-solving context. Mem. Cogn. 11: 24-31.

Puntambekar, S., and Kolodner, J. L. (1998). The design diary: A tool to support students in learning science by design. In Bruckman, A. S., Guzdial, M., Kolodner, J., and Ram, A. (eds.), Proceedings of ICLS 98 , AACE, Charlottesville, VA, pp. 230-236.

Ram, P. (1999). Problem-based learning in undergraduate instruction: A sophomore chemistry laboratory. J. Chem. Educ. 76: 1122-1126.

Ramsden, P. (1992). Learning to Teach in Higher Education , Routledge, New York.

Salomon, G. (1993). No distribution without individual cognition: A dynamic interactional view. In Salomon, G., and Perkins, D. (eds.), Distributed Cognitions: Psychological and Educational Considerations ,Cambridge University Press, New York, pp. 111-138.

Salomon, G., and Perkins, D. N. (1989). Rocky roads to transfer: Rethinking mechanisms of a neglected phenomenon. Educ. Psychol. 24: 113-142.

Schmidt, H. G., DeVolder, M. L., De Grave, W. S., Moust, J. H. C., and Patel, V. L. (1989). Explanatory models in the processing of science text: The role of prior knowledge activation through small-group discussion. J. Educ. Psychol. 81: 610-619.

Schmidt, H. G., Machiels-Bongaerts, M., Hermans, H., ten Cate, T. J., Venekamp, R., and Boshuizen, H. P. A. (1996). The development of diagnostic competence: Comparison of a problem-based, an integrated, and a conventional medical curriculum. Acad. Med. 71: 658-664.

Schmidt, H. G., and Moust, J. H. C. (2000). Factors affecting small-group tutorial learning: A review of research. In Evensen, D., and Hmelo, C. E. (eds.), Problem-Based Learning: A Research Perspective on Learning Interactions , Erlbaum, Mahwah, NJ, pp. 19-51.

Schwartz, D. L., and Bransford, J. D. (1998). A time for telling. Cogn. Instr. 16: 475-522.

Schoenfeld, A. H. (1985). Mathematical Problem Solving , Academic Press, Orlando, FL.

Shikano, T., and Hmelo, C. E. (1996, April). Students' learning strategies in a problem-based curriculum for sustainable technology . Paper presented at American Educational Research Association Annual Meeting, New York.

Steinkuehler, C. A., Derry, S. J., Hmelo-Silver, C. E., and DelMarcelle, M. (2002). Cracking the resource nut with distributed problem-based learning in secondary teacher education. J. Distance Educ. 23: 23-39.

Stepien, W. J., and Gallagher, S. A. (1993). Problem-based learning: As authentic as it gets. Educ. Leadersh. 50(7): 25-29.

Torp, L., and Sage, S. (2002). Problems as Possibilities: Problem-Based Learning for K-12 Education , 2nd edn., ASCD, Alexandria, VA.

Vernon, D. T., and Blake, R. L. (1993). Does problem-based learning work?: A meta-analysis of evaluative research. Acad. Med. 68: 550-563.

Vye, N. J., Goldman, S. R., Voss, J. F., Hmelo, C., and Williams, S. (1997). Complex math problem-solving by individuals and dyads: When and why are two heads better than one? Cogn. Instr. 15: 435-484.

Webb, N. M., and Palincsar, A. S. (1996). Group processes in the classroom. In Berliner, D., and Calfee, R. (eds.), Handbook of Educational Psychology , MacMillan, New York, pp. 841-876.

Wenger, E. (1998). Communities of Practice: Learning, Meaning, and Identity , Cambridge University Press, New York.

White, B. Y., and Frederiksen, J. R. (1998). Inquiry, modeling, and metacognition: Making science accessible to all students. Cogn. Instr. 16: 3-118.

Williams, S. M. (1992). Putting case based learning into context: Examples from legal, business, and medical education. J. Learn. Sci. 2: 367-427.

Williams, S. M., Bransford, J. D., Vye, N. J., Goldman, S. R., and Carlson, K. (1993). Positive and negative effects of specific knowledge on mathematical problem solving . Paper presented at the American Educational Research Association Annual Meeting, Atlanta, GA.

Zimmerman, B. (2002). Becoming a self-regulated learner: An overview. Theory Pract . 41, 64-71.

Download references

Author information

Authors and affiliations.

Department of Educational Psychology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Cindy E. Hmelo-Silver

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Cindy E. Hmelo-Silver .

Rights and permissions

Reprints and permissions

About this article

Hmelo-Silver, C.E. Problem-Based Learning: What and How Do Students Learn?. Educational Psychology Review 16 , 235–266 (2004). https://doi.org/10.1023/B:EDPR.0000034022.16470.f3

Download citation

Issue Date : September 2004

DOI : https://doi.org/10.1023/B:EDPR.0000034022.16470.f3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • problem-based learning
  • constructivist learning environments
  • learning processes
  • problem solving
  • self-directed learning
  • Find a journal
  • Publish with us
  • Track your research

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Med Sci Educ
  • v.31(3); 2021 Jun

Logo of medsciedu

Effective Learning Behavior in Problem-Based Learning: a Scoping Review

Azril shahreez abdul ghani.

1 Department of Basic Medical Sciences, Kulliyah of Medicine, Bandar Indera Mahkota Campus, International Islamic University Malaysia, Kuantan, 25200 Pahang Malaysia

2 Department of Medical Education, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, 16150 Kelantan Malaysia

Ahmad Fuad Abdul Rahim

Muhamad saiful bahri yusoff, siti nurma hanim hadie.

3 Department of Anatomy, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150 Kota Bharu, Kelantan Malaysia

Problem-based learning (PBL) emphasizes learning behavior that leads to critical thinking, problem-solving, communication, and collaborative skills in preparing students for a professional medical career. However, learning behavior that develops these skills has not been systematically described. This review aimed to unearth the elements of effective learning behavior in a PBL context, using the protocol by Arksey and O’Malley. The protocol identified the research question, selected relevant studies, charted and collected data, and collated, summarized, and reported results. We discovered three categories of elements—intrinsic empowerment, entrustment, and functional skills—proven effective in the achievement of learning outcomes in PBL.

Introduction

Problem-based learning (PBL) is an educational approach that utilizes the principles of collaborative learning in small groups, first introduced by McMaster Medical University [ 1 ]. The shift of the higher education curriculum from traditional, lecture-based approaches to an integrated, student-centered approach was triggered by concern over the content-driven nature of medical knowledge with minimal clinical application [ 2 ]. The PBL pedagogy uses a systematic approach, starting with an authentic, real-life problem scenario as a context in which learning is not separated from practice as students collaborate and learn [ 3 ]. The tutor acts as a facilitator who guides the students’ learning, while students are required to solve the problems by discussing them with group members [ 4 ]. The essential aspect of the PBL process is the ability of the students to recognize their current knowledge, determine the gaps in their knowledge and experience, and acquire new knowledge to bridge the gaps [ 5 ]. PBL is a holistic approach that gives students an active role in their learning.

Since its inception, PBL has been used in many undergraduate and postgraduate degree programs, such as medicine [ 6 , 7 ], nursing [ 8 ], social work education [ 9 ], law [ 10 ], architecture [ 11 ], economics [ 12 ], business [ 13 ], science [ 14 ], and engineering [ 15 ]. It has also been applied in elementary and secondary education [ 16 – 18 ]. Despite its many applications, its implementation is based on a single universal workflow framework that contains three elements: problem as the initiator for learning, tutor as a facilitator in the group versions, and group work as a stimulus for collaborative interaction [ 19 ]. However, there are various versions of PBL workflow, such as the seven-step technique based on the Maastricht “seven jumps” process. The tutor’s role is to ensure the achievement of learning objectives and to assess students’ performance [ 20 , 21 ].

The PBL process revolves around four types of learning principles: constructive, self-directed, collaborative, and contextual [ 19 ]. Through the constructive learning process, the students are encouraged to think about what is already known and integrate their prior knowledge with their new understanding. This process helps the student understand the content, form a new opinion, and acquire new knowledge [ 22 ]. The PBL process encourages students to become self-directed learners who plan, monitor, and evaluate their own learning, enabling them to become lifelong learners [ 23 ]. The contextualized collaborative learning process also promotes interaction among students, who share similar responsibilities to achieve common goals relevant to the learning context [ 24 ]. By exchanging ideas and providing feedback during the learning session, the students can attain a greater understanding of the subject matter [ 25 ].

Dolmans et al. [ 19 ] pointed out two issues related to the implementation of PBL: dominant facilitators and dysfunctional PBL groups. These problems inhibit students’ self-directed learning and reduce their satisfaction level with the PBL session. A case study by Eryilmaz [ 26 ] that evaluated engineering students’ and tutors’ experience of PBL discovered that PBL increased the students’ self-confidence and improved essential skills such as problem-solving, communications, critical thinking, and collaboration. Although most of the participants in the study found PBL satisfactory, many complained about the tutor’s poor guidance and lack of preparation. Additionally, it was noted that 64% of the first-year students were unable to adapt to the PBL system because they had been accustomed to conventional learning settings and that 43% of students were not adequately prepared for the sessions and thus were minimally involved in the discussion.

In a case study by Cónsul-giribet [ 27 ], newly graduated nursing professionals reported a lack of perceived theoretical basic science knowledge at the end of their program, despite learning through PBL. The nurses perceived that this lack of knowledge might affect their expertise, identity, and professional image.

Likewise, a study by McKendree [ 28 ] reported the outcomes of a workshop that explored the strengths and weaknesses of PBL in an allied health sciences curriculum in the UK. The workshop found that problems related to PBL were mainly caused by students, the majority of whom came from conventional educational backgrounds either during high school or their first degree. They felt anxious when they were involved in PBL, concerned about “not knowing when to stop” in exploring the learning needs. Apart from a lack of basic science knowledge, the knowledge acquired during PBL sessions remains unorganized [ 29 ]. Hence, tutors must guide students in overcoming this situation by instilling appropriate insights and essential skills for the achievement of the learning outcomes [ 30 ]. It was also evident that the combination of intention and motivation to learn and desirable learning behavior determined the quality of learning outcomes [ 31 , 32 ]. However, effective learning behaviors that help develop these skills have not been systematically described. Thus, this scoping review aimed to unearth the elements of effective learning behavior in the PBL context.

Scoping Review Protocol

This scoping review was performed using a protocol by Arksey and O’Malley [ 33 ]. The protocol comprises five phases: (i) identification of research questions, (ii) identification of relevant articles, (iii) selection of relevant studies, (iv) data collection and charting, and (v) collating, summarizing, and reporting the results.

Identification of Research Questions

This scoping review was designed to unearth the elements of effective learning behavior that can be generated from learning through PBL instruction. The review aimed to answer one research question: “What are the effective learning behavior elements related to PBL?” For the purpose of the review, an operational definition of effective learning behavior was constructed, whereby it was defined as any learning behavior that is related to PBL instruction and has been shown to successfully attain the desired learning outcomes (i.e., cognitive, skill, or affective)—either quantitatively or qualitatively—in any intervention conducted in higher education institutions.

The positive outcome variables include student viewpoint or perception, student learning experience and performance, lecturer viewpoint and expert judgment, and other indirect variables that may be important indicators of successful PBL learning (i.e., attendance to PBL session, participation in PBL activity, number of interactions in PBL activity, and improvement in communication skills in PBL).

Identification of Relevant Articles

An extensive literature search was conducted on articles published in English between 2015 and 2019. Three databases—Google Scholar, Scopus, and PubMed—were used for the literature search. Seven search terms with the Boolean combination were used, whereby the keywords were identified from the Medical Subject Headings (MeSH) and Education Resources Information Center (ERIC) databases. The search terms were tested and refined with multiple test searches. The final search terms with the Boolean operation were as follows: “problem-based learning” AND (“learning behavior” OR “learning behaviour”) AND (student OR “medical students” OR undergraduate OR “medical education”).

Selection of Relevant Articles

The articles from the three databases were exported manually into Microsoft Excel. The duplicates were removed, and the remaining articles were reviewed based on the inclusion and exclusion criteria. These criteria were tested on titles and abstracts to ensure their robustness in capturing the articles related to learning behavior in PBL. The shortlisted articles were reviewed by two independent researchers, and a consensus was reached either to accept or reject each article based on the set criteria. When a disagreement occurred between the two reviewers, the particular article was re-evaluated independently by the third and fourth researchers (M.S.B.Y and A.F.A.R), who have vast experience in conducting qualitative research. The sets of criteria for selecting abstracts and final articles were developed. The inclusion and exclusion criteria are listed in Table ​ Table1 1 .

Inclusion and exclusion criteria

Data Charting

The selected final articles were reviewed, and several important data were extracted to provide an objective summary of the review. The extracted data were charted in a table, including the (i) title of the article, (ii) author(s), (iii) year of publication, (iv) aim or purpose of the study, (v) study design and method, (iv) intervention performed, and (v) study population and sample size.

Collating, Summarizing, and Reporting the Results

A content analysis was performed to identify the elements of effective learning behaviors in the literature by A.S.A.G and S.N.H.H, who have experience in conducting qualitative studies. The initial step of content analysis was to read the selected articles thoroughly to gain a general understanding of the articles and extract the elements of learning behavior which are available in the articles. Next, the elements of learning behavior that fulfil the inclusion criteria were extracted. The selected elements that were related to each other through their content or context were grouped into subtheme categories. Subsequently, the combinations of several subthemes expressing similar underlying meanings were grouped into themes. Each of the themes and subthemes was given a name, which was operationally defined based on the underlying elements. The selected themes and subthemes were presented to the independent researchers in the team (M.S.B.Y and A.F.A.R), and a consensus was reached either to accept or reformulate each of the themes and subthemes. The flow of the scoping review methods for this study is illustrated in Fig.  1 .

An external file that holds a picture, illustration, etc.
Object name is 40670_2021_1292_Fig1_HTML.jpg

The flow of literature search and article selection

Literature Search

Based on the keyword search, 1750 articles were obtained. Duplicate articles that were not original articles found in different databases and resources were removed. Based on the inclusion and exclusion criteria of title selection, the eligibility of 1750 abstracts was evaluated. The articles that did not fulfil the criteria were removed, leaving 328 articles for abstract screening. A total of 284 articles were screened according to the eligibility criteria for abstract selection. Based on these criteria, 284 articles were selected and screened according to the eligibility criteria for full article selection. Fourteen articles were selected for the final review. The information about these articles is summarized in Table ​ Table2 2 .

Studies characteristics

Study Characteristics

The final 14 articles were published between 2015 and 2019. The majority of the studies were conducted in Western Asian countries ( n  = 4), followed by China ( n  = 3), European countries ( n  = 2), Thailand ( n  = 2), Indonesia ( n  = 1), Singapore ( n  = 1), and South Africa ( n  = 1). Apart from traditional PBL, some studies incorporated other pedagogic modalities into their PBL sessions, such as online learning, blended learning, and gamification. The majority of the studies targeted a single-profession learner group, and one study was performed on mixed interprofessional health education learners.

Results of Thematic Analysis

The thematic analysis yielded three main themes of effective learning behavior: intrinsic empowerment, entrustment, and functional skills. Intrinsic empowerment overlies four proposed subthemes: proactivity, organization, diligence, and resourcefulness. For entrustment, there were four underlying subthemes: students as assessors, students as teachers, feedback-giving, and feedback-receiving. The functional skills theme contains four subthemes: time management, digital proficiency, data management, and collaboration.

Theme 1: Intrinsic Empowerment

Intrinsic empowerment enforces student learning behavior that can facilitate the achievement of learning outcomes. By empowering the development of these behaviors, students can become lifelong learners [ 34 ]. The first element of intrinsic empowerment is proactive behavior. In PBL, the students must be proactive in analyzing problems [ 35 , 36 ] and their learning needs [ 35 , 37 ], and this can be done by integrating prior knowledge and previous experience through a brainstorming session [ 35 , 38 ]. The students must be proactive in seeking guidance to ensure they stay focused and confident [ 39 , 40 ]. Finding ways to integrate content from different disciplines [ 35 , 41 ], formulate new explanations based on known facts [ 34 , 35 , 41 ], and incorporate hands-on activity [ 35 , 39 , 42 ] during a PBL session are also proactive behaviors.

The second element identified is “being organized” which reflects the ability of students to systematically manage their roles [ 43 ], ideas, and learning needs [ 34 ]. The students also need to understand the task for each learning role in PBL, such as chairperson or leader, scribe, recorder, and reflector. This role needs to be assigned appropriately to ensure that all members take part in the discussion [ 43 ]. Similarly, when discussing ideas or learning needs, the students need to follow the steps in the PBL process and organize and prioritize the information to ensure that the issues are discussed systematically and all aspects of the problems are covered accordingly [ 34 , 37 ]. This team organization and systematic thought process is an effective way for students to focus, plan, and finalize their learning tasks.

The third element of intrinsic empowerment is “being diligent.” Students must consistently conduct self-revision [ 40 ] and keep track of their learning plan to ensure the achievement of their learning goal [ 4 , 40 ]. The students must also be responsible for completing any given task and ensuring good understanding prior to their presentation [ 40 ]. Appropriate actions need to be undertaken to find solutions to unsolved problems [ 40 , 44 ]. This effort will help them think critically and apply their knowledge for problem-solving.

The fourth element identified is “being resourceful.” Students should be able to acquire knowledge from different resources, which include external resources (i.e., lecture notes, textbooks, journal articles, audiovisual instructions, the Internet) [ 38 , 40 , 45 ] and internal resources (i.e., students’ prior knowledge or experience) [ 35 , 39 ]. The resources must be evidence-based, and thus should be carefully selected by evaluating their cross-references and appraising them critically [ 37 ]. Students should also be able to understand and summarize the learned materials and explain them using their own words [ 4 , 34 ]. The subthemes of the intrinsic empowerment theme are summarized in Table ​ Table3 3 .

 Intrinsic empowerment subtheme with the learning behavior elements

Theme 2: Entrustment

Entrustment emphasizes the various roles of students in PBL that can promote effective learning. The first entrusted role identified is “student as an assessor.” This means that students evaluate their own performance in PBL [ 46 ]. The evaluation of their own performance must be based on the achievement of the learning outcomes and reflect actual understanding of the content as well as the ability to apply the learned information in problem-solving [ 46 ].

The second element identified in this review is “student as a teacher.” To ensure successful peer teaching in PBL, students need to comprehensively understand the content of the learning materials and summarize the content in an organized manner. The students should be able to explain the gist of the discussed information using their own words [ 4 , 34 ] and utilize teaching methods to cater to differences in learning styles (i.e., visual, auditory, and kinesthetic) [ 41 ]. These strategies help capture their group members’ attention and evoke interactive discussions among them.

The third element of entrustment is to “give feedback.” Students should try giving constructive feedback on individual and group performance in PBL. Feedback on individual performance must reflect the quality of the content and task presented in the PBL. Feedback on group performance should reflect the ways in which the group members communicate and complete the group task [ 47 ]. To ensure continuous constructive feedback, students should be able to generate feedback questions beforehand and immediately deliver them during the PBL sessions [ 44 , 47 ]. In addition, the feedback must include specific measures for improvement to help their peers to take appropriate action for the future [ 47 ].

The fourth element of entrustment is “receive feedback.” Students should listen carefully to the feedback given and ask questions to clarify the feedback [ 47 ]. They need to be attentive and learn to deal with negative feedback [ 47 ]. Also, if the student does not receive feedback, they should request it either from peers or teachers and ask specific questions, such as what aspects to improve and how to improve [ 47 ]. The data on the subthemes of the entrustment theme are summarized in Table ​ Table4 4 .

Entrustment subtheme with the learning behavior elements

Theme 3: Functional Skills

Functional skills refer to essential skills that can help students learn independently and competently. The first element identified is time management skills. In PBL, students must know how to prioritize learning tasks according to the needs and urgency of the tasks [ 40 ]. To ensure that students can self-pace their learning, a deadline should be set for each learning task within a manageable and achievable learning schedule [ 40 ].

Furthermore, students should have digital proficiency, the ability to utilize digital devices to support learning [ 38 , 40 , 44 ]. The student needs to know how to operate basic software (e.g., Words and PowerPoints) and the basic digital tools (i.e., social media, cloud storage, simulation, and online community learning platforms) to support their learning [ 39 , 40 ]. These skills are important for peer learning activities, which may require information sharing, information retrieval, online peer discussion, and online peer feedback [ 38 , 44 ].

The third functional skill identified is data management, the ability to collect key information in the PBL trigger and analyze that information to support the solution in a problem-solving activity [ 39 ]. Students need to work either individually or in a group to collect the key information from a different trigger or case format such as text lines, an interview, an investigation, or statistical results [ 39 ]. Subsequently, students also need to analyze the information and draw conclusions based on their analysis [ 39 ].

The fourth element of functional skill is collaboration. Students need to participate equally in the PBL discussion [ 41 , 46 ]. Through discussion, confusion and queries can be addressed and resolved by listening, respecting others’ viewpoints, and responding professionally [ 35 , 39 , 43 , 44 ]. In addition, the students need to learn from each other and reflect on their performance [ 48 ]. Table ​ Table5 5 summarizes the data on the subthemes of the functional skills theme.

Functional skills subtheme with the learning behavior elements

This scoping review outlines three themes of effective learning behavior elements in the PBL context: intrinsic empowerment, entrustment, and functional skills. Hence, it is evident from this review that successful PBL instruction demands students’ commitment to empower themselves with value-driven behaviors, skills, and roles.

In this review, intrinsic empowerment is viewed as enforcement of students’ internal strength in performing positive learning behaviors related to PBL. This theme requires the student to proactively engage in the learning process, organize their learning activities systematically, persevere in learning, and be intelligently resourceful. One of the elements of intrinsic empowerment is the identification and analysis of problems related to complex scenarios. This element is aligned with a study by Meyer [ 49 ], who observed students’ engagement in problem identification and clarification prior to problem-solving activities in a PBL session related to multiple engineering design. Rubenstein and colleagues [ 50 ] discovered in a semi-structured interview the importance of undergoing a problem identification process before proposing a solution during learning. It was reported that the problem identification process in PBL may enhance the attainment of learning outcomes, specifically in the domain of concept understanding [ 51 ].

The ability of the students to acquire and manage learning resources is essential for building their understanding of the learned materials and enriching discussion among team members during PBL. This is aligned with a study by Jeong and Hmelo-Silver [ 52 ], who studied the use of learning resources by students in PBL. The study concluded that in a resource-rich environment, the students need to learn how to access and understand the resources to ensure effective learning. Secondly, they need to process the content of the resources, integrate various resources, and apply them in problem-solving activities. Finally, they need to use the resources in collaborative learning activities, such as sharing and relating to peer resources.

Wong [ 53 ] documented that excellent students spent considerably more time managing academic resources than low achievers. The ability of the student to identify and utilize their internal learning resources, such as prior knowledge and experience, is also important. A study by Lee et al. [ 54 ] has shown that participants with high domain-specific prior knowledge displayed a more systematic approach and high accuracy in visual and motor reactions in solving problems compared to novice learners.

During the discussion phase in PBL, organizing ideas—e.g., arranging relevant information gathered from the learning resources into relevant categories—is essential for communicating the idea clearly [ 34 ]. This finding is in line with a typology study conducted by Larue [ 55 ] on second-year nursing students’ learning strategies during a group discussion. The study discovered that although the content presented by the student is adequate, they unable to make further progress in the group discussion until they are instructed by the tutor on how to organize the information given into a category [ 55 ].

Hence, the empowerment of student intrinsic behavior may enhance students’ learning in PBL by allowing them to make a decision in their learning objectives and instilling confidence in them to achieve goals. A study conducted by Kirk et al. [ 56 ] proved that highly empowered students obtain better grades, increase learning participation, and target higher educational aspirations.

Entrustment is the learning role given to students to be engaging and identify gaps in their learning. This theme requires the student to engage in self-assessment, prepare to teach others, give constructive feedback, and value the feedback received. One of the elements of entrustment is the ability to self-assess. In a study conducted by Mohd et al. [ 57 ] looking at the factors in PBL that can strengthen the capability of IT students, they discovered that one of the critical factors that contribute to these skills is the ability of the student to perform self-assessment in PBL. As mentioned by Daud, Kassim, and Daud [ 58 ], the self-assessment may be more reliable if the assessment is performed based on the objectives set beforehand and if the criteria of the assessment are understood by the learner. This is important to avoid the fact that the result of the self-assessment is influenced by the students’ perception of themselves rather than reflecting their true performance. However, having an assessment based on the learning objective only focuses on the immediate learning requirements in the PBL. To foster lifelong learning skills, it should also be balanced with the long-term focus of assessment, such as utilizing the assessment to foster the application of knowledge in solving real-life situations. This is aligned with the review by Boud and Falchikov [ 59 ] suggesting that students need to become assessors within the concept of participation in practice, that is, the kind that is within the context of real life and work.

The second subtheme of entrustment is “students as a teacher” in PBL. In our review, the student needs to be well prepared with the teaching materials. A cross-sectional study conducted by Charoensakulchai and colleagues discovered that student preparation is considered among the important factors in PBL success, alongside other factors such as “objective and contents,” “student assessment,” and “attitude towards group work” [ 60 ]. This is also aligned with a study conducted by Sukrajh [ 61 ] using focus group discussion on fifth-year medical students to explore their perception of preparedness before conducting peer teaching activity. In this study, the student in the focus group expressed that the preparation made them more confident in teaching others because preparing stimulated them to activate and revise prior knowledge, discover their knowledge gaps, construct new knowledge, reflect on their learning, improve their memory, inspire them to search several resources, and motivate them to learn the topics.

The next element of “student as a teacher” is using various learning styles to teach other members in the group. A study conducted by Almomani [ 62 ] showed that the most preferred learning pattern by the high school student is the visual pattern, followed by auditory pattern and then kinesthetic. However, in the university setting, Hamdani [ 63 ] discovered that students prefer a combination of the three learning styles. Anbarasi [ 64 ] also explained that incorporating teaching methods based on the student’s preferred learning style further promotes active learning among the students and significantly improved the long-term retrieval of knowledge. However, among the three learning styles group, he discovered that the kinesthetic group with the kinesthetic teaching method showed a significantly higher post-test score compared to the traditional group with the didactic teaching method, and he concluded that this is because of the involvement of more active learning activity in the kinesthetic group.

The ability of students to give constructive feedback on individual tasks is an important element in promoting student contribution in PBL because feedback from peers or teachers is needed to reassure themselves that they are on the right track in the learning process. Kamp et al. [ 65 ] performed a study on the effectiveness of midterm peer feedback on student individual cognitive, collaborative, and motivational contributions in PBL. The experimental group that received midterm peer feedback combined with goal-setting with face-to-face discussion showed an increased amount of individual contributions in PBL. Another element of effective feedback is that the feedback is given immediately after the observed behavior. Parikh and colleagues survey student feedback in PBL environments among 103 final-year medical students in five Ontario schools, including the University of Toronto, McMaster University, Queens University, the University of Ottawa, and the University of Western Ontario. They discovered that there was a dramatic difference between McMaster University and other universities in the immediacy of feedback they practiced. Seventy percent of students at McMaster reported receiving immediate feedback in PBL, compared to less than 40 percent of students from the other universities, in which most of them received feedback within one week or several weeks after the PBL had been conducted [ 66 ]. Another study, conducted among students of the International Medical University of Kuala Lumpur examining the student expectation on feedback, discovered that immediate feedback is effective if the feedback is in written form, simple but focused on the area of improvement, and delivered by a content expert. If the feedback is delivered by a content non-expert and using a model answer, it must be supplemented with teacher dialogue sessions to clarify the feedback received [ 67 ].

Requesting feedback from peers and teachers is an important element of the PBL learning environment, enabling students to discover their learning gaps and ways to fill them. This is aligned with a study conducted by de Jong and colleagues [ 68 ], who discovered that high-performing students are more motivated to seek feedback than low-performing students. The main reason for this is because high-performing students seek feedback as a tool to learn from, whereas low-performing students do so as an academic requirement. This resulted in high-performing students collecting more feedback. A study by Bose and Gijselaers [ 69 ] examined the factors that promote feedback-seeking behavior in medical residency. They discovered that feedback-seeking behavior can be promoted by providing residents with high-quality feedback to motivate them to ask for feedback for improvement.

By assigning an active role to students as teachers, assessors, and feedback providers, teachers give them the ownership and responsibility to craft their learning. The learner will then learn the skills to monitor and reflect on their learning to achieve academic success. Furthermore, an active role encourages students to be evaluative experts in their own learning, and promoting deep learning [ 70 ].

Functional skills refer to essential abilities for competently performing a task in PBL. This theme requires the student to organize and plan time for specific learning tasks, be digitally literate, use data effectively to support problem-solving, and work together efficiently to achieve agreed objectives. One of the elements in this theme is to have a schedule of learning tasks with deadlines. In a study conducted by Tadjer and colleagues [ 71 ], they discovered that setting deadlines with a restricted time period in a group activity improved students’ cognitive abilities and soft skills. Although the deadline may initially cause anxiety, coping with it encourages students to become more creative and energetic in performing various learning strategies [ 72 , 73 ]. Ballard et al. [ 74 ] reported that students tend to work harder to complete learning tasks if they face multiple deadlines.

The students also need to be digitally literate—i.e., able to demonstrate the use of technological devices and tools in PBL. Taradi et al. [ 75 ] discovered that incorporating technology in learning—blending web technology with PBL—removes time and place barriers in the creation of a collaborative environment. It was found that students who participated in web discussions achieved a significantly higher mean grade on a physiology final examination than those who used traditional methods. Also, the incorporation of an online platform in PBL can facilitate students to develop investigation and inquiry skills with high-level cognitive thought processes, which is crucial to successful problem-solving [ 76 ].

In PBL, students need to work collaboratively with their peers to solve problems. A study by Hidayati et al. [ 77 ] demonstrated that effective collaborative skills improve cognitive learning outcomes and problem-solving ability among students who undergo PBL integrated with digital mind maps. To ensure successful collaborative learning in PBL, professional communication among students is pertinent. Research by Zheng and Huang [ 78 ] has proven that co-regulation (i.e., warm and responsive communication that provides support to peers) improved collaborative effort and group performance among undergraduate and master’s students majoring in education and psychology. This is also in line with a study by Maraj and colleagues [ 79 ], which showed the strong team interaction within the PBL group leads to a high level of team efficacy and academic self-efficacy. Moreover, strengthening communication competence, such as by developing negotiation skills among partners during discussion sessions, improves student scores [ 80 ].

PBL also includes opportunities for students to learn from each other (i.e., peer learning). A study by Maraj et al. [ 79 ] discovered that the majority of the students in their study perceived improvement in their understanding of the learned subject when they learned from each other. Another study by Lyonga [ 81 ] documented the successful formation of cohesive group learning, where students could express and share their ideas with their friends and help each other. It was suggested that each student should be paired with a more knowledgeable student who has mastered certain learning components to promote purposeful structured learning within the group.

From this scoping review, it is clear that functional skills equip the students with abilities and knowledge needed for successful PBL. Studies have shown that strong time management skills, digital literacy, data management, and collaborative skills lead to positive academic achievement [ 77 , 82 , 83 ].

Limitation of the Study

This scoping review is aimed to capture the recent effective learning behavior in problem-based learning; therefore, the literature before 2015 was not included. Without denying the importance of publication before 2015, we are relying on Okoli and Schabram [ 84 ] who highlighted the impossibility of retrieving all the published articles when conducting a literature search. Based on this ground, we decided to focus on the time frame between 2015 and 2019, which is aligned with the concepts of study maturity (i.e., the more mature the field, the higher the published articles and therefore more topics were investigated) by Kraus et al. [ 85 ]. In fact, it was noted that within this time frame, a significant number of articles have been found as relevant to PBL with the recent discovery of effective learning behavior. Nevertheless, our time frame did not include the timing of the coronavirus disease 19 (COVID-19) pandemic outbreak, which began at the end of 2019. Hence, we might miss some important elements of learning behavior that are required for the successful implementation of PBL during the COVID-19 pandemic.

Surprisingly, the results obtained from this study are also applicable for the PBL sessions administration during the COVID-19 pandemic situation as one of the functional skills identified is digital proficiency. This skill is indeed important for the successful implementation of online PBL session.

This review identified the essential learning behaviors required for effective PBL in higher education and clustered them into three main themes: (i) intrinsic empowerment, (ii) entrustment, and (iii) functional skills. These learning behaviors must coexist to ensure the achievement of desired learning outcomes. In fact, the findings of this study indicated two important implications for future practice. Firstly, the identified learning behaviors can be incorporated as functional elements in the PBL framework and implementation. Secondly, the learning behaviors change and adaption can be considered to be a new domain of formative assessment related to PBL. It is noteworthy to highlight that these learning behaviors could help in fostering the development of lifelong skills for future workplace challenges. Nevertheless, considerably more work should be carried out to design a solid guideline on how to systematically adopt the learning behaviors in PBL sessions, especially during this COVID-19 pandemic situation.

This study was supported by Postgraduate Incentive Grant-PhD (GIPS-PhD, grant number: 311/PPSP/4404803).

Declarations

The study has received an ethical approval from the Human Research Ethics Committee of Universiti Sains Malaysia.

No informed consent required for the scoping review.

The authors declare no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Problem-Solving Method in Teaching

The problem-solving method is a highly effective teaching strategy that is designed to help students develop critical thinking skills and problem-solving abilities . It involves providing students with real-world problems and challenges that require them to apply their knowledge, skills, and creativity to find solutions. This method encourages active learning, promotes collaboration, and allows students to take ownership of their learning.

Table of Contents

Definition of problem-solving method.

Problem-solving is a process of identifying, analyzing, and resolving problems. The problem-solving method in teaching involves providing students with real-world problems that they must solve through collaboration and critical thinking. This method encourages students to apply their knowledge and creativity to develop solutions that are effective and practical.

Meaning of Problem-Solving Method

The meaning and Definition of problem-solving are given by different Scholars. These are-

Woodworth and Marquis(1948) : Problem-solving behavior occurs in novel or difficult situations in which a solution is not obtainable by the habitual methods of applying concepts and principles derived from past experience in very similar situations.

Skinner (1968): Problem-solving is a process of overcoming difficulties that appear to interfere with the attainment of a goal. It is the procedure of making adjustments in spite of interference

Benefits of Problem-Solving Method

The problem-solving method has several benefits for both students and teachers. These benefits include:

  • Encourages active learning: The problem-solving method encourages students to actively participate in their own learning by engaging them in real-world problems that require critical thinking and collaboration
  • Promotes collaboration: Problem-solving requires students to work together to find solutions. This promotes teamwork, communication, and cooperation.
  • Builds critical thinking skills: The problem-solving method helps students develop critical thinking skills by providing them with opportunities to analyze and evaluate problems
  • Increases motivation: When students are engaged in solving real-world problems, they are more motivated to learn and apply their knowledge.
  • Enhances creativity: The problem-solving method encourages students to be creative in finding solutions to problems.

Steps in Problem-Solving Method

The problem-solving method involves several steps that teachers can use to guide their students. These steps include

  • Identifying the problem: The first step in problem-solving is identifying the problem that needs to be solved. Teachers can present students with a real-world problem or challenge that requires critical thinking and collaboration.
  • Analyzing the problem: Once the problem is identified, students should analyze it to determine its scope and underlying causes.
  • Generating solutions: After analyzing the problem, students should generate possible solutions. This step requires creativity and critical thinking.
  • Evaluating solutions: The next step is to evaluate each solution based on its effectiveness and practicality
  • Selecting the best solution: The final step is to select the best solution and implement it.

Verification of the concluded solution or Hypothesis

The solution arrived at or the conclusion drawn must be further verified by utilizing it in solving various other likewise problems. In case, the derived solution helps in solving these problems, then and only then if one is free to agree with his finding regarding the solution. The verified solution may then become a useful product of his problem-solving behavior that can be utilized in solving further problems. The above steps can be utilized in solving various problems thereby fostering creative thinking ability in an individual.

The problem-solving method is an effective teaching strategy that promotes critical thinking, creativity, and collaboration. It provides students with real-world problems that require them to apply their knowledge and skills to find solutions. By using the problem-solving method, teachers can help their students develop the skills they need to succeed in school and in life.

  • Jonassen, D. (2011). Learning to solve problems: A handbook for designing problem-solving learning environments. Routledge.
  • Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn? Educational Psychology Review, 16(3), 235-266.
  • Mergendoller, J. R., Maxwell, N. L., & Bellisimo, Y. (2006). The effectiveness of problem-based instruction: A comparative study of instructional methods and student characteristics. Interdisciplinary Journal of Problem-based Learning, 1(2), 49-69.
  • Richey, R. C., Klein, J. D., & Tracey, M. W. (2011). The instructional design knowledge base: Theory, research, and practice. Routledge.
  • Savery, J. R., & Duffy, T. M. (2001). Problem-based learning: An instructional model and its constructivist framework. CRLT Technical Report No. 16-01, University of Michigan. Wojcikowski, J. (2013). Solving real-world problems through problem-based learning. College Teaching, 61(4), 153-156

Micro Teaching Skills

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Overview of the Problem-Solving Mental Process

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

what is problem solving learning approach

Rachel Goldman, PhD FTOS, is a licensed psychologist, clinical assistant professor, speaker, wellness expert specializing in eating behaviors, stress management, and health behavior change.

what is problem solving learning approach

  • Identify the Problem
  • Define the Problem
  • Form a Strategy
  • Organize Information
  • Allocate Resources
  • Monitor Progress
  • Evaluate the Results

Frequently Asked Questions

Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue.

The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything they can about the issue and then using factual knowledge to come up with a solution. In other instances, creativity and insight are the best options.

It is not necessary to follow problem-solving steps sequentially, It is common to skip steps or even go back through steps multiple times until the desired solution is reached.

In order to correctly solve a problem, it is often important to follow a series of steps. Researchers sometimes refer to this as the problem-solving cycle. While this cycle is portrayed sequentially, people rarely follow a rigid series of steps to find a solution.

The following steps include developing strategies and organizing knowledge.

1. Identifying the Problem

While it may seem like an obvious step, identifying the problem is not always as simple as it sounds. In some cases, people might mistakenly identify the wrong source of a problem, which will make attempts to solve it inefficient or even useless.

Some strategies that you might use to figure out the source of a problem include :

  • Asking questions about the problem
  • Breaking the problem down into smaller pieces
  • Looking at the problem from different perspectives
  • Conducting research to figure out what relationships exist between different variables

2. Defining the Problem

After the problem has been identified, it is important to fully define the problem so that it can be solved. You can define a problem by operationally defining each aspect of the problem and setting goals for what aspects of the problem you will address

At this point, you should focus on figuring out which aspects of the problems are facts and which are opinions. State the problem clearly and identify the scope of the solution.

3. Forming a Strategy

After the problem has been identified, it is time to start brainstorming potential solutions. This step usually involves generating as many ideas as possible without judging their quality. Once several possibilities have been generated, they can be evaluated and narrowed down.

The next step is to develop a strategy to solve the problem. The approach used will vary depending upon the situation and the individual's unique preferences. Common problem-solving strategies include heuristics and algorithms.

  • Heuristics are mental shortcuts that are often based on solutions that have worked in the past. They can work well if the problem is similar to something you have encountered before and are often the best choice if you need a fast solution.
  • Algorithms are step-by-step strategies that are guaranteed to produce a correct result. While this approach is great for accuracy, it can also consume time and resources.

Heuristics are often best used when time is of the essence, while algorithms are a better choice when a decision needs to be as accurate as possible.

4. Organizing Information

Before coming up with a solution, you need to first organize the available information. What do you know about the problem? What do you not know? The more information that is available the better prepared you will be to come up with an accurate solution.

When approaching a problem, it is important to make sure that you have all the data you need. Making a decision without adequate information can lead to biased or inaccurate results.

5. Allocating Resources

Of course, we don't always have unlimited money, time, and other resources to solve a problem. Before you begin to solve a problem, you need to determine how high priority it is.

If it is an important problem, it is probably worth allocating more resources to solving it. If, however, it is a fairly unimportant problem, then you do not want to spend too much of your available resources on coming up with a solution.

At this stage, it is important to consider all of the factors that might affect the problem at hand. This includes looking at the available resources, deadlines that need to be met, and any possible risks involved in each solution. After careful evaluation, a decision can be made about which solution to pursue.

6. Monitoring Progress

After selecting a problem-solving strategy, it is time to put the plan into action and see if it works. This step might involve trying out different solutions to see which one is the most effective.

It is also important to monitor the situation after implementing a solution to ensure that the problem has been solved and that no new problems have arisen as a result of the proposed solution.

Effective problem-solvers tend to monitor their progress as they work towards a solution. If they are not making good progress toward reaching their goal, they will reevaluate their approach or look for new strategies .

7. Evaluating the Results

After a solution has been reached, it is important to evaluate the results to determine if it is the best possible solution to the problem. This evaluation might be immediate, such as checking the results of a math problem to ensure the answer is correct, or it can be delayed, such as evaluating the success of a therapy program after several months of treatment.

Once a problem has been solved, it is important to take some time to reflect on the process that was used and evaluate the results. This will help you to improve your problem-solving skills and become more efficient at solving future problems.

A Word From Verywell​

It is important to remember that there are many different problem-solving processes with different steps, and this is just one example. Problem-solving in real-world situations requires a great deal of resourcefulness, flexibility, resilience, and continuous interaction with the environment.

Get Advice From The Verywell Mind Podcast

Hosted by therapist Amy Morin, LCSW, this episode of The Verywell Mind Podcast shares how you can stop dwelling in a negative mindset.

Follow Now : Apple Podcasts / Spotify / Google Podcasts

You can become a better problem solving by:

  • Practicing brainstorming and coming up with multiple potential solutions to problems
  • Being open-minded and considering all possible options before making a decision
  • Breaking down problems into smaller, more manageable pieces
  • Asking for help when needed
  • Researching different problem-solving techniques and trying out new ones
  • Learning from mistakes and using them as opportunities to grow

It's important to communicate openly and honestly with your partner about what's going on. Try to see things from their perspective as well as your own. Work together to find a resolution that works for both of you. Be willing to compromise and accept that there may not be a perfect solution.

Take breaks if things are getting too heated, and come back to the problem when you feel calm and collected. Don't try to fix every problem on your own—consider asking a therapist or counselor for help and insight.

If you've tried everything and there doesn't seem to be a way to fix the problem, you may have to learn to accept it. This can be difficult, but try to focus on the positive aspects of your life and remember that every situation is temporary. Don't dwell on what's going wrong—instead, think about what's going right. Find support by talking to friends or family. Seek professional help if you're having trouble coping.

Davidson JE, Sternberg RJ, editors.  The Psychology of Problem Solving .  Cambridge University Press; 2003. doi:10.1017/CBO9780511615771

Sarathy V. Real world problem-solving .  Front Hum Neurosci . 2018;12:261. Published 2018 Jun 26. doi:10.3389/fnhum.2018.00261

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

  • University of Notre Dame
  • Blog Network

Notes on Teaching and Learning

Shutting Down on 1/6/2022 – New Posts are at Learning.ND.edu

Problem-Based and Inquiry-Based Learning: What’s the difference?

Sep 30th, 2019 by Kathryn Mulholland

“If your goal is to engage students in critical thinking… you need to present interesting challenges to solve, rather than simply explaining how other smart people have already solved those challenges.” – Therese Huston

Problem-Based Learning (PBL) and Inquiry-Based Learning (IBL) are both student-centered teaching pedagogies that encourage active learning and critical thinking through investigation. Both methods offer students interesting problems to consider. And research shows that both PBL and IBL are effective models of learning. 

So, what’s the difference between the two?

According to Banchi and Bell [4], there are four different levels of inquiry.

  • Confirmation Inquiry: Students confirm a principle through an activity when the results are known in advance.
  • Structured Inquiry: Students investigate a teacher-presented question through a prescribed procedure. 
  • Guided Inquiry: Students investigate a teacher-presented question using student designed or selected procedures.
  • Open Inquiry: Students investigate questions that are student formulated through student designed or selected procedures.

Most academics define Inquiry-Based-Learning as a pedagogy that is based on one of these levels. So IBL can be as methodical as guiding students through a procedure to discover a known result or as free-form as encouraging students to formulate original questions. For example, in a Physics laboratory, suppose the topic is Newton’s Second Law of Motion. The lab instructions could define a procedure to record the mass and impact force of various objects. Multiplying the mass by the acceleration due to gravity, the students should recover the force they recorded, thus confirming Newton’s Second Law.

Problem-Based-Learning can be classified as guided inquiry where the teacher-presented question is an unsolved, real-world problem. For example, in a Middle Eastern Studies course, the main problem posed by the instructor could be “Propose a solution to the Israeli–Palestinian conflict.” This question will motivate the study of the history of the region, the theological differences between Judaism and Islam, and current events. At the end of the semester, students would be expected to present and justify their solution. 

Therefore, using the definition above, PBL is a type of IBL .

PBL is great because it motivates course content and maximizes learning via investigation, explanation, and resolution of real and meaningful problems. At any level, inquiry can be an effective method of learning because it is student-centered and encourages the development of practical skills and higher-level thinking. 

As you plan for your next class, I invite you to reflect on your method of content delivery. Is it motivated? How? Would your students benefit from a day based on inquiry?

References.

  • Inquiry Based Learning. University of Notre Dame Notes on Teaching and Learning. https://sites.nd.edu/kaneb/2014/11/10/inquiry-based-learning/ .
  • Problem-Based Learning. Cornell University Center for Teaching Innovation . https://teaching.cornell.edu/teaching-resources/engaging-students/problem-based-learning .
  • Hmelo-Silver, Cindy E.; Duncan, Ravit Golan; Chinn, Clark A. (2007). “Scaffolding and Achievement in Problem-Based and Inquiry Learning: A Response to Kirschner, Sweller, and Clark (2006)”. Educational Psychologi st. 42 (2): 99–107. doi : 10.1080/00461520701263368 .
  • Banchi, H., & Bell R. (2008). The many levels of inquiry. Science and Children.

Posted in Uncategorized

Comments are closed.

If you have questions about a topic related to teaching or learning, please email [email protected] or call 631-9146.

  • Search for:

Related Sites

   Kaneb Center – home page    Notre Dame Learning

  • February 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • October 2019
  • September 2019
  • August 2019
  • February 2019
  • January 2019
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • February 2017
  • January 2017
  • December 2016
  • November 2016
  • October 2016
  • September 2016
  • August 2016
  • February 2016
  • January 2016
  • December 2015
  • November 2015
  • October 2015
  • September 2015
  • August 2015
  • February 2015
  • January 2015
  • December 2014
  • November 2014
  • October 2014
  • September 2014
  • August 2014
  • February 2014
  • January 2014
  • December 2013
  • November 2013
  • October 2013
  • September 2013
  • February 2013
  • January 2013
  • November 2012
  • October 2012
  • September 2012
  • August 2012
  • February 2012
  • January 2012
  • January 2011
  • November 2010
  • September 2010
  • August 2010

Notes on Teaching and Learning © 2024 All Rights Reserved.

Free WordPress Themes

IEL

  • Spanish – español

Home icon

Approaches to Learning: Problem Solving

teacher shows child a toy

Birth to 9 months

7 months to 18 months, 16 months to 24 months, 21 months to 36 months.

Children attempt a variety of strategies to accomplish tasks, overcome obstacles, and find solutions to tasks, questions, and challenges.

Children build the foundation for problem-solving skills through nurturing relationships, active exploration, and social interactions. In infancy, children learn that their actions and behaviors have an effect on others. For example, children cry to signal hunger to their caregivers; in turn, their caregivers feed them. Caregivers’ consistent responses to children’s communication attempts teach children the earliest forms of problem solving. Children learn that they have the ability to solve a problem by completing certain actions. Children build this knowledge and translate it into how they interact and problem-solve in future situations.

Children discover that their actions and behaviors also have an impact on objects. They learn that certain actions produce certain results. For example, children may bang a toy over and over as they notice the sound that it makes. This behavior is intentional and purposeful; children learn that they have the ability to make something happen. As they get older, children will experiment with different ways to solve problems, such as moving puzzle pieces in different ways to place them correctly. They will use trial and error to find solutions to the tasks they are working on, and use communication skills to ask or gesture for help from caregivers.

By 36 months, children are able to decrease the amount of trial and error they use when solving problems. Their cognitive skills are maturing and they are able to use logic and reasoning when working through challenges. Increased attention allows children to focus for longer periods of time when working through challenges. Children still depend on their caregivers for help, but are likely to attempt problem solving on their own before asking someone for help.

Children are building the foundation for problem solving through active exploration and social interaction.

Indicators for children include:

  • Focuses on getting a caregiver’s attention through the use of sounds, cries, gestures, and facial expressions
  • Enjoys repeating actions, e.g., continues to drop toy from highchair after it is picked up by a caregiver or sibling
  • Communicates the need for assistance through verbal and/or nonverbal cues, e.g., pointing, reaching, vocalizing

Strategies for interaction

  • Respond thoughtfully and promptly to the child’s attempts for attention
  • Provide interesting and age-appropriate toys and objects for exploration
  • Engage and interact with the child frequently during the day

Children begin to discover that certain actions and behaviors can be solutions to challenges and obstacles they encounter. Children also recognize how to engage their caregiver(s) to assist in managing these challenges.

  • Repeats actions over and over again to figure out how an object works
  • Begins to recognize that certain actions will draw out certain responses, e.g., laughing and smiling will often result in an adult responding in the same manner
  • Attempts a variety of physical strategies to reach simple goals, e.g., pulls the string of a toy train to move it closer or crawls to get a ball that has rolled away
  • Demonstrate how to try things in different ways and encourage the child to do the same, e.g., using a plastic bucket as a drum
  • Gently guide the child in discovering and exploring, while allowing him or her enough independence to try new things
  • Respond thoughtfully and promptly to the child’s communication attempts

Children have an enhanced capacity to solve challenges they encounter through the use of objects and imitation. Children may take on a more autonomous role during this stage, yet, reach out to caregiver(s) in most instances.

  • Imitates a caregiver’s behavior to accomplish a task, e.g., attempts to turn a doorknob
  • Increases ability to recognize and solve problems through active exploration, play, and trial and error, e.g., tries inserting a shape at different angles to make it fit in a sorter
  • Uses objects in the environment to solve problems, e.g., uses a pail to move numerous books to the other side of the room
  • Uses communication to solve problems, e.g., runs out of glue during an art project and gestures to a caregiver for more
  • Validate and praise the child’s attempts to find solutions to challenges
  • Narrate while assisting the child in figuring out a solution, e.g., “Let’s try to turn the puzzle piece this way”
  • Provide the child with opportunities to solve problems with and without your help; minimize the possibility for the child to become frustrated
  • Respond to the child’s communication efforts

Children begin to discriminate which solutions work, with fewer trials. Children increasingly become more autonomous and will attempt to first overcome obstacles on their own or with limited support from caregiver(s).

  • Asks for help from a caregiver when needed
  • Begins to solve problems with less trial and error
  • Refuses assistance, e.g., calls for help but then pushes a hand away
  • Shows pride when accomplishing a task
  • Uses increasingly refined skills while solving problems, e.g., uses own napkin to clean up a spill without asking an adult for help
  • Follow the child’s lead and pay attention to his or her cues when assisting in a task
  • Share in the child’s joy and accomplishments
  • Model and narrate problem-solving skills through play
  • Provide the child with blocks of uninterrupted time to work on activities
  • Be available for the child and recognize when he or she needs guidance

Real World Story

Sebastian, who is 25 months old, is engaged in a fine-motor activity provided by his caregiver. He is holding large, plastic tweezers and is attempting to use them to pick up big, fuzzy balls off a plastic plate and move them into a plastic cup. He is holding the plastic tweezers in one hand, and holds the plate steady on the table. He repeatedly tries to use one hand, but cannot pinch the tweezers tightly enough to pick up one of the balls. Sebastian pauses, looks around, and picks up the balls with his thumb and forefinger.

Holding the plastic tweezers in one hand and the ball in the other, Sebastian places the ball in the tweezers and then pinches it closed. He moves it over to the plastic cup and drops it inside. He then grabs another fuzzy ball and places it in the tweezers. Again, he pinches it tightly and transfers it to the cup. Sebastian engages in the same method until all the fuzzy balls on his plate are now inside his cup. Once he is done, he empties out the cup onto the plate and starts all over. After successfully completing the process again, he holds out his full cup toward his caregiver, Maria. She sees him, smiles, and gives two thumbs up. Sebastian grabs his cup and walks over to her. He hands Maria the cup and walks away from the table.

Discover how this Real World Story is related to:

  • Self-Regulation: Foundation of Development Attention Regulation
  • Developmental Domain 1: Social & Emotional Development Self-Concept
  • Developmental Domain 2: Physical Development & Health Fine Motor
  • Developmental Domain 2: Physical Development & Health Perceptual
  • Developmental Domain 4: Cognitive Development Logic & Reasoning

THIS EXAMPLE HIGHLIGHTS how children use physical trial and error to solve problems. Sebastian is not successful in his initial attempts to pick up the small objects with his tweezers. However, he pauses to think about possible ways to work on this problem, and then changes his process. Instead of pinching the tweezers to grab the ball, he places the ball in between the tweezers and then pinches it closed. This is easier for him, as he is still developing the fine motor skills necessary to be able to complete this task. Once he realizes he is successful in accomplishing his goal, he engages in this task until he has finished placing every ball on his plate into the cup. He then repeats the activity all over again. Sebastian’s ability to successfully problem solve builds his self-confidence. Maria’s positive acknowledgment of his accomplishment further supports his social and emotional development. A positive self-concept and increasing self-confidence is very important for Sebastian’s future learning and overall healthy development.

Discover how Problem Solving is related to:

  • Self-Regulation: Foundation of Development Emotional Regulation
  • Developmental Domain 1: Social & Emotional Development Relationship with Adults
  • Developmental Domain 4: Cognitive Development Memory

Related Resources

  • Open access
  • Published: 11 May 2024

Nursing students’ stressors and coping strategies during their first clinical training: a qualitative study in the United Arab Emirates

  • Jacqueline Maria Dias 1 ,
  • Muhammad Arsyad Subu 1 ,
  • Nabeel Al-Yateem 1 ,
  • Fatma Refaat Ahmed 1 ,
  • Syed Azizur Rahman 1 , 2 ,
  • Mini Sara Abraham 1 ,
  • Sareh Mirza Forootan 1 ,
  • Farzaneh Ahmad Sarkhosh 1 &
  • Fatemeh Javanbakh 1  

BMC Nursing volume  23 , Article number:  322 ( 2024 ) Cite this article

142 Accesses

Metrics details

Understanding the stressors and coping strategies of nursing students in their first clinical training is important for improving student performance, helping students develop a professional identity and problem-solving skills, and improving the clinical teaching aspects of the curriculum in nursing programmes. While previous research have examined nurses’ sources of stress and coping styles in the Arab region, there is limited understanding of these stressors and coping strategies of nursing students within the UAE context thereby, highlighting the novelty and significance of the study.

A qualitative study was conducted using semi-structured interviews. Overall 30 students who were undergoing their first clinical placement in Year 2 at the University of Sharjah between May and June 2022 were recruited. All interviews were recorded and transcribed verbatim and analyzed for themes.

During their first clinical training, nursing students are exposed to stress from different sources, including the clinical environment, unfriendly clinical tutors, feelings of disconnection, multiple expectations of clinical staff and patients, and gaps between the curriculum of theory classes and labatories skills and students’ clinical experiences. We extracted three main themes that described students’ stress and use of coping strategies during clinical training: (1) managing expectations; (2) theory-practice gap; and (3) learning to cope. Learning to cope, included two subthemes: positive coping strategies and negative coping strategies.

Conclusions

This qualitative study sheds light from the students viewpoint about the intricate interplay between managing expectations, theory practice gap and learning to cope. Therefore, it is imperative for nursing faculty, clinical agencies and curriculum planners to ensure maximum learning in the clinical by recognizing the significance of the stressors encountered and help students develop positive coping strategies to manage the clinical stressors encountered. Further research is required look at the perspective of clinical stressors from clinical tutors who supervise students during their first clinical practicum.

Peer Review reports

Nursing education programmes aim to provide students with high-quality clinical learning experiences to ensure that nurses can provide safe, direct care to patients [ 1 ]. The nursing baccalaureate programme at the University of Sharjah is a four year program with 137 credits. The programmes has both theoretical and clinical components withs nine clinical courses spread over the four years The first clinical practicum which forms the basis of the study takes place in year 2 semester 2.

Clinical practice experience is an indispensable component of nursing education and links what students learn in the classroom and in skills laboratories to real-life clinical settings [ 2 , 3 , 4 ]. However, a gap exists between theory and practice as the curriculum in the classroom differs from nursing students’ experiences in the clinical nursing practicum [ 5 ]. Clinical nursing training places (or practicums, as they are commonly referred to), provide students with the necessary experiences to ensure that they become proficient in the delivery of patient care [ 6 ]. The clinical practicum takes place in an environment that combines numerous structural, psychological, emotional and organizational elements that influence student learning [ 7 ] and may affect the development of professional nursing competencies, such as compassion, communication and professional identity [ 8 ]. While clinical training is a major component of nursing education curricula, stress related to clinical training is common among students [ 9 ]. Furthermore, the nursing literature indicates that the first exposure to clinical learning is one of the most stressful experiences during undergraduate studies [ 8 , 10 ]. Thus, the clinical component of nursing education is considered more stressful than the theoretical component. Students often view clinical learning, where most learning takes place, as an unsupportive environment [ 11 ]. In addition, they note strained relationships between themselves and clinical preceptors and perceive that the negative attitudes of clinical staff produce stress [ 12 ].

The effects of stress on nursing students often involve a sense of uncertainty, uneasiness, or anxiety. The literature is replete with evidence that nursing students experience a variety of stressors during their clinical practicum, beginning with the first clinical rotation. Nursing is a complex profession that requires continuous interaction with a variety of individuals in a high-stress environment. Stress during clinical learning can have multiple negative consequences, including low academic achievement, elevated levels of burnout, and diminished personal well-being [ 13 , 14 ]. In addition, both theoretical and practical research has demonstrated that increased, continual exposure to stress leads to cognitive deficits, inability to concentrate, lack of memory or recall, misinterpretation of speech, and decreased learning capacity [ 15 ]. Furthermore, stress has been identified as a cause of attrition among nursing students [ 16 ].

Most sources of stress have been categorized as academic, clinical or personal. Each person copes with stress differently [ 17 ], and utilizes deliberate, planned, and psychological efforts to manage stressful demands [ 18 ]. Coping mechanisms are commonly termed adaptation strategies or coping skills. Labrague et al. [ 19 ] noted that students used critical coping strategies to handle stress and suggested that problem solving was the most common coping or adaptation mechanism used by nursing students. Nursing students’ coping strategies affect their physical and psychological well-being and the quality of nursing care they offer. Therefore, identifying the coping strategies that students use to manage stressors is important for early intervention [ 20 ].

Studies on nursing students’ coping strategies have been conducted in various countries. For example, Israeli nursing students were found to adopt a range of coping mechanisms, including talking to friends, engaging in sports, avoiding stress and sadness/misery, and consuming alcohol [ 21 ]. Other studies have examined stress levels among medical students in the Arab region. Chaabane et al. [ 15 ], conducted a systematic review of sudies in Arab countries, including Saudi Arabia, Egypt, Jordan, Iraq, Pakistan, Oman, Palestine and Bahrain, and reported that stress during clinical practicums was prevalent, although it could not be determined whether this was limited to the initial clinical course or occurred throughout clinical training. Stressors highlighted during the clinical period in the systematic review included assignments and workload during clinical practice, a feeling that the requirements of clinical practice exceeded students’ physical and emotional endurance and that their involvement in patient care was limited due to lack of experience. Furthermore, stress can have a direct effect on clinical performance, leading to mental disorders. Tung et al. [ 22 ], reported that the prevalence of depression among nursing students in Arab countries is 28%, which is almost six times greater than the rest of the world [ 22 ]. On the other hand, Saifan et al. [ 5 ], explored the theory-practice gap in the United Arab Emirates and found that clinical stressors could be decreased by preparing students better for clinical education with qualified clinical faculty and supportive preceptors.

The purpose of this study was to identify the stressors experienced by undergraduate nursing students in the United Arab Emirates during their first clinical training and the basic adaptation approaches or coping strategies they used. Recognizing or understanding different coping processes can inform the implementation of corrective measures when students experience clinical stress. The findings of this study may provide valuable information for nursing programmes, nurse educators, and clinical administrators to establish adaptive strategies to reduce stress among students going clinical practicums, particularly stressors from their first clinical training in different healthcare settings.

A qualitative approach was adopted to understand clinical stressors and coping strategies from the perspective of nurses’ lived experience. Qualitative content analysis was employed to obtain rich and detailed information from our qualitative data. Qualitative approaches seek to understand the phenomenon under study from the perspectives of individuals with lived experience [ 23 ]. Qualitative content analysis is an interpretive technique that examines the similarities and differences between and within different areas of text while focusing on the subject [ 24 ]. It is used to examine communication patterns in a repeatable and systematic way [ 25 ] and yields rich and detailed information on the topic under investigation [ 23 ]. It is a method of systematically coding and categorizing information and comprises a process of comprehending, interpreting, and conceptualizing the key meanings from qualitative data [ 26 ].

Setting and participants

This study was conducted after the clinical rotations ended in April 2022, between May and June in the nursing programme at the College of Health Sciences, University of Sharjah, in the United Arab Emirates. The study population comprised undergraduate nursing students who were undergoing their first clinical training and were recruited using purposive sampling. The inclusion criteria for this study were second-year nursing students in the first semester of clinical training who could speak English, were willing to participate in this research, and had no previous clinical work experience. The final sample consisted of 30 students.

Research instrument

The research instrument was a semi structured interview guide. The interview questions were based on an in-depth review of related literature. An intensive search included key words in Google Scholar, PubMed like the terms “nursing clinical stressors”, “nursing students”, and “coping mechanisms”. Once the questions were created, they were validated by two other faculty members who had relevant experience in mental health. A pilot test was conducted with five students and based on their feedback the following research questions, which were addressed in the study.

How would you describe your clinical experiences during your first clinical rotations?

In what ways did you find the first clinical rotation to be stressful?

What factors hindered your clinical training?

How did you cope with the stressors you encountered in clinical training?

Which strategies helped you cope with the clinical stressors you encountered?

Data collection

Semi-structured interviews were chosen as the method for data collection. Semi structured interviews are a well-established approach for gathering data in qualitative research and allow participants to discuss their views, experiences, attitudes, and beliefs in a positive environment [ 27 ]. This approach allows for flexibility in questioning thereby ensuring that key topics related to clinical learning stressors and coping strategies would be explored. Participants were given the opportunity to express their views, experiences, attitudes, and beliefs in a positive environment, encouraging open communication. These semi structured interviews were conducted by one member of the research team (MAS) who had a mental health background, and another member of the research team who attended the interviews as an observer (JMD). Neither of these researchers were involved in teaching the students during their clinical practicum, which helped to minimize bias. The interviews took place at the University of Sharjah, specifically in building M23, providing a familiar and comfortable environment for the participant. Before the interviews were all students who agreed to participate were provided with an explanation of the study’s purpose. The time and location of each interview were arranged. Before the interviews were conducted, all students who provided consent to participate received an explanation of the purpose of the study, and the time and place of each interview were arranged to accommodate the participants’ schedules and preferences. The interviews were conducted after the clinical rotation had ended in April, and after the final grades had been submitted to the coordinator. The timings of the interviews included the month of May and June which ensured that participants have completed their practicum experience and could reflect on the stressors more comprehensively. The interviews were audio-recorded with the participants’ consent, and each interview lasted 25–40 min. The data were collected until saturation was reached for 30 students. Memos and field notes were also recorded as part of the data collection process. These additional data allowed for triangulation to improve the credibility of the interpretations of the data [ 28 ]. Memos included the interviewers’ thoughts and interpretations about the interviews, the research process (including questions and gaps), and the analytic progress used for the research. Field notes were used to record the interviewers’ observations and reflections on the data. These additional data collection methods were important to guide the researchers in the interpretation of the data on the participants’ feelings, perspectives, experiences, attitudes, and beliefs. Finally, member checking was performed to ensure conformability.

Data analysis

The study used the content analysis method proposed by Graneheim and Lundman [ 24 ]. According to Graneheim and Lundman [ 24 ], content analysis is an interpretive technique that examines the similarities and differences between distinct parts of a text. This method allows researchers to determine exact theoretical and operational definitions of words, phrases, and symbols by elucidating their constituent properties [ 29 ]. First, we read the interview transcripts several times to reach an overall understanding of the data. All verbatim transcripts were read several times and discussed among all authors. We merged and used line-by-line coding of words, sentences, and paragraphs relevant to each other in terms of both the content and context of stressors and coping mechanisms. Next, we used data reduction to assess the relationships among themes using tables and diagrams to indicate conceptual patterns. Content related to stress encountered by students was extracted from the transcripts. In a separate document, we integrated and categorized all words and sentences that were related to each other in terms of both content and context. We analyzed all codes and units of meaning and compared them for similarities and differences in the context of this study. Furthermore, the emerging findings were discussed with other members of the researcher team. The final abstractions of meaningful subthemes into themes were discussed and agreed upon by the entire research team. This process resulted in the extraction of three main themes in addition to two subthemes related to stress and coping strategies.

Ethical considerations

The University of Sharjah Research Ethics Committee provided approval to conduct this study (Reference Number: REC 19-12-03-01-S). Before each interview, the goal and study procedures were explained to each participant, and written informed consent was obtained. The participants were informed that participation in the study was voluntary and that they could withdraw from the study at any time. In the event they wanted to withdraw from the study, all information related to the participant would be removed. No participant withdrew from the study. Furthermore, they were informed that their clinical practicum grade would not be affected by their participation in this study. We chose interview locations in Building M23that were private and quiet to ensure that the participants felt at ease and confident in verbalizing their opinions. No participant was paid directly for involvement in this study. In addition, participants were assured that their data would remain anonymous and confidential. Confidentiality means that the information provided by participants was kept private with restrictions on how and when data can be shared with others. The participants were informed that their information would not be duplicated or disseminated without their permission. Anonymity refers to the act of keeping people anonymous with respect to their participation in a research endeavor. No personal identifiers were used in this study, and each participant was assigned a random alpha-numeric code (e.g., P1 for participant 1). All digitally recorded interviews were downloaded to a secure computer protected by the principal investigator with a password. The researchers were the only people with access to the interview material (recordings and transcripts). All sensitive information and materials were kept secure in the principal researcher’s office at the University of Sharjah. The data will be maintained for five years after the study is completed, after which the material will be destroyed (the transcripts will be shredded, and the tapes will be demagnetized).

In total, 30 nursing students who were enrolled in the nursing programme at the Department of Nursing, College of Health Sciences, University of Sharjah, and who were undergoing their first clinical practicum participated in the study. Demographically, 80% ( n  = 24) were females and 20% ( n  = 6) were male participants. The majority (83%) of study participants ranged in age from 18 to 22 years. 20% ( n  = 6) were UAE nationals, 53% ( n  = 16) were from Gulf Cooperation Council countries, while 20% ( n  = 6) hailed from Africa and 7% ( n  = 2) were of South Asian descent. 67% of the respondents lived with their families while 33% lived in the hostel. (Table  1 )

Following the content analysis, we identified three main themes: (1) managing expectations, (2) theory-practice gap and 3)learning to cope. Learning to cope had two subthemes: positive coping strategies and negative coping strategies. An account of each theme is presented along with supporting excerpts for the identified themes. The identified themes provide valuable insight into the stressors encountered by students during their first clinical practicum. These themes will lead to targeted interventions and supportive mechanisms that can be built into the clinical training curriculum to support students during clinical practice.

Theme 1: managing expectations

In our examination of the stressors experienced by nursing students during their first clinical practicum and the coping strategies they employed, we identified the first theme as managing expectations.

The students encountered expectations from various parties, such as clinical staff, patients and patients’ relatives which they had to navigate. They attempted to fulfil their expectations as they progressed through training, which presented a source of stress. The students noted that the hospital staff and patients expected them to know how to perform a variety of tasks upon request, which made the students feel stressed and out of place if they did not know how to perform these tasks. Some participants noted that other nurses in the clinical unit did not allow them to participate in nursing procedures, which was considered an enormous impediment to clinical learning, as noted in the excerpt below:

“…Sometimes the nurses… They will not allow us to do some procedures or things during clinical. And sometimes the patients themselves don’t allow us to do procedures” (P5).

Some of the students noted that they felt they did not belong and felt like foreigners in the clinical unit. Excerpts from the students are presented in the following quotes;

“The clinical environment is so stressful. I don’t feel like I belong. There is too little time to build a rapport with hospital staff or the patient” (P22).

“… you ask the hospital staff for some guidance or the location of equipment, and they tell us to ask our clinical tutor …but she is not around … what should I do? It appears like we do not belong, and the sooner the shift is over, the better” (P18).

“The staff are unfriendly and expect too much from us students… I feel like I don’t belong, or I am wasting their (the hospital staff’s) time. I want to ask questions, but they have loads to do” (P26).

Other students were concerned about potential failure when working with patients during clinical training, which impacted their confidence. They were particularly afraid of failure when performing any clinical procedures.

“At the beginning, I was afraid to do procedures. I thought that maybe the patient would be hurt and that I would not be successful in doing it. I have low self-confidence in doing procedures” (P13).

The call bell rings, and I am told to answer Room No. XXX. The patient wants help to go to the toilet, but she has two IV lines. I don’t know how to transport the patient… should I take her on the wheelchair? My eyes glance around the room for a wheelchair. I am so confused …I tell the patient I will inform the sister at the nursing station. The relative in the room glares at me angrily … “you better hurry up”…Oh, I feel like I don’t belong, as I am not able to help the patient… how will I face the same patient again?” (P12).

Another major stressor mentioned in the narratives was related to communication and interactions with patients who spoke another language, so it was difficult to communicate.

“There was a challenge with my communication with the patients. Sometimes I have communication barriers because they (the patients) are of other nationalities. I had an experience with a patient [who was] Indian, and he couldn’t speak my language. I did not understand his language” (P9).

Thus, a variety of expectations from patients, relatives, hospital staff, and preceptors acted as sources of stress for students during their clinical training.

Theme 2: theory-practice gap

Theory-practice gaps have been identified in previous studies. In our study, there was complete dissonance between theory and actual clinical practice. The clinical procedures or practices nursing students were expected to perform differed from the theory they had covered in their university classes and skills lab. This was described as a theory–practice gap and often resulted in stress and confusion.

“For example …the procedures in the hospital are different. They are different from what we learned or from theory on campus. Or… the preceptors have different techniques than what we learned on campus. So, I was stress[ed] and confused about it” (P11).

Furthermore, some students reported that they did not feel that they received adequate briefing before going to clinical training. A related source of stress was overload because of the volume of clinical coursework and assignments in addition to clinical expectations. Additionally, the students reported that a lack of time and time management were major sources of stress in their first clinical training and impacted their ability to complete the required paperwork and assignments:

“…There is not enough time…also, time management at the hospital…for example, we start at seven a.m., and the handover takes 1 hour to finish. They (the nurses at the hospital) are very slow…They start with bed making and morning care like at 9.45 a.m. Then, we must fill [out] our assessment tool and the NCP (nursing care plan) at 10 a.m. So, 15 only minutes before going to our break. We (the students) cannot manage this time. This condition makes me and my friends very stressed out. -I cannot do my paperwork or assignments; no time, right?” (P10).

“Stressful. There is a lot of work to do in clinical. My experiences are not really good with this course. We have a lot of things to do, so many assignments and clinical procedures to complete” (P16).

The participants noted that the amount of required coursework and number of assignments also presented a challenge during their first clinical training and especially affected their opportunity to learn.

“I need to read the file, know about my patient’s condition and pathophysiology and the rationale for the medications the patient is receiving…These are big stressors for my learning. I think about assignments often. Like, we are just focusing on so many assignments and papers. We need to submit assessments and care plans for clinical cases. We focus our time to complete and finish the papers rather than doing the real clinical procedures, so we lose [the] chance to learn” (P25).

Another participant commented in a similar vein that there was not enough time to perform tasks related to clinical requirements during clinical placement.

“…there is a challenge because we do not have enough time. Always no time for us to submit papers, to complete assessment tools, and some nurses, they don’t help us. I think we need more time to get more experiences and do more procedures, reduce the paperwork that we have to submit. These are challenges …” (P14).

There were expectations that the students should be able to carry out their nursing duties without becoming ill or adversely affected. In addition, many students reported that the clinical environment was completely different from the skills laboratory at the college. Exposure to the clinical setting added to the theory-practice gap, and in some instances, the students fell ill.

One student made the following comment:

“I was assisting a doctor with a dressing, and the sight and smell from the oozing wound was too much for me. I was nauseated. As soon as the dressing was done, I ran to the bathroom and threw up. I asked myself… how will I survive the next 3 years of nursing?” (P14).

Theme 3: learning to cope

The study participants indicated that they used coping mechanisms (both positive and negative) to adapt to and manage the stressors in their first clinical practicum. Important strategies that were reportedly used to cope with stress were time management, good preparation for clinical practice, and positive thinking as well as engaging in physical activity and self-motivation.

“Time management. Yes, it is important. I was encouraging myself. I used time management and prepared myself before going to the clinical site. Also, eating good food like cereal…it helps me very much in the clinic” (P28).

“Oh yeah, for sure positive thinking. In the hospital, I always think positively. Then, after coming home, I get [to] rest and think about positive things that I can do. So, I will think something good [about] these things, and then I will be relieved of stress” (P21).

Other strategies commonly reported by the participants were managing their breathing (e.g., taking deep breaths, breathing slowly), taking breaks to relax, and talking with friends about the problems they encountered.

“I prefer to take deep breaths and breathe slowly and to have a cup of coffee and to talk to my friends about the case or the clinical preceptor and what made me sad so I will feel more relaxed” (P16).

“Maybe I will take my break so I feel relaxed and feel better. After clinical training, I go directly home and take a long shower, going over the day. I will not think about anything bad that happened that day. I just try to think about good things so that I forget the stress” (P27).

“Yes, my first clinical training was not easy. It was difficult and made me stressed out…. I felt that it was a very difficult time for me. I thought about leaving nursing” (P7).

I was not able to offer my prayers. For me, this was distressing because as a Muslim, I pray regularly. Now, my prayer time is pushed to the end of the shift” (P11).

“When I feel stress, I talk to my friends about the case and what made me stressed. Then I will feel more relaxed” (P26).

Self-support or self-motivation through positive self-talk was also used by the students to cope with stress.

“Yes, it is difficult in the first clinical training. When I am stress[ed], I go to the bathroom and stand in the front of the mirror; I talk to myself, and I say, “You can do it,” “you are a great student.” I motivate myself: “You can do it”… Then, I just take breaths slowly several times. This is better than shouting or crying because it makes me tired” (P11).

Other participants used physical activity to manage their stress.

“How do I cope with my stress? Actually, when I get stressed, I will go for a walk on campus” (P4).

“At home, I will go to my room and close the door and start doing my exercises. After that, I feel the negative energy goes out, then I start to calm down… and begin my clinical assignments” (P21).

Both positive and negative coping strategies were utilized by the students. Some participants described using negative coping strategies when they encountered stress during their clinical practice. These negative coping strategies included becoming irritable and angry, eating too much food, drinking too much coffee, and smoking cigarettes.

“…Negative adaptation? Maybe coping. If I am stressed, I get so angry easily. I am irritable all day also…It is negative energy, right? Then, at home, I am also angry. After that, it is good to be alone to think about my problems” (P12).

“Yeah, if I…feel stress or depressed, I will eat a lot of food. Yeah, ineffective, like I will be eating a lot, drinking coffee. Like I said, effective, like I will prepare myself and do breathing, ineffective, I will eat a lot of snacks in between my free time. This is the bad side” (P16).

“…During the first clinical practice? Yes, it was a difficult experience for us…not only me. When stressed, during a break at the hospital, I will drink two or three cups of coffee… Also, I smoke cigarettes… A lot. I can drink six cups [of coffee] a day when I am stressed. After drinking coffee, I feel more relaxed, I finish everything (food) in the refrigerator or whatever I have in the pantry, like chocolates, chips, etc” (P23).

These supporting excerpts for each theme and the analysis offers valuable insights into the specific stressors faced by nursing students during their first clinical practicum. These insights will form the basis for the development of targeted interventions and supportive mechanisms within the clinical training curriculum to better support students’ adjustment and well-being during clinical practice.

Our study identified the stressors students encounter in their first clinical practicum and the coping strategies, both positive and negative, that they employed. Although this study emphasizes the importance of clinical training to prepare nursing students to practice as nurses, it also demonstrates the correlation between stressors and coping strategies.The content analysis of the first theme, managing expectations, paves the way for clinical agencies to realize that the students of today will be the nurses of tomorrow. It is important to provide a welcoming environment where students can develop their identities and learn effectively. Additionally, clinical staff should foster an environment of individualized learning while also assisting students in gaining confidence and competence in their repertoire of nursing skills, including critical thinking, problem solving and communication skills [ 8 , 15 , 19 , 30 ]. Another challenge encountered by the students in our study was that they were prevented from participating in clinical procedures by some nurses or patients. This finding is consistent with previous studies reporting that key challenges for students in clinical learning include a lack of clinical support and poor attitudes among clinical staff and instructors [ 31 ]. Clinical staff with positive attitudes have a positive impact on students’ learning in clinical settings [ 32 ]. The presence, supervision, and guidance of clinical instructors and the assistance of clinical staff are essential motivating components in the clinical learning process and offer positive reinforcement [ 30 , 33 , 34 ]. Conversely, an unsupportive learning environment combined with unwelcoming clinical staff and a lack of sense of belonging negatively impact students’ clinical learning [ 35 ].

The sources of stress identified in this study were consistent with common sources of stress in clinical training reported in previous studies, including the attitudes of some staff, students’ status in their clinical placement and educational factors. Nursing students’ inexperience in the clinical setting and lack of social and emotional experience also resulted in stress and psychological difficulties [ 36 ]. Bhurtun et al. [ 33 ] noted that nursing staff are a major source of stress for students because the students feel like they are constantly being watched and evaluated.

We also found that students were concerned about potential failure when working with patients during their clinical training. Their fear of failure when performing clinical procedures may be attributable to low self-confidence. Previous studies have noted that students were concerned about injuring patients, being blamed or chastised, and failing examinations [ 37 , 38 ]. This was described as feeling “powerless” in a previous study [ 7 , 12 ]. In addition, patients’ attitudes towards “rejecting” nursing students or patients’ refusal of their help were sources of stress among the students in our study and affected their self-confidence. Self-confidence and a sense of belonging are important for nurses’ personal and professional identity, and low self-confidence is a problem for nursing students in clinical learning [ 8 , 39 , 40 ]. Our findings are consistent with a previous study that reported that a lack of self-confidence was a primary source of worry and anxiety for nursing students and affected their communication and intention to leave nursing [ 41 ].

In the second theme, our study suggests that students encounter a theory-practice gap in clinical settings, which creates confusion and presents an additional stressors. Theoretical and clinical training are complementary elements of nursing education [ 40 ], and this combination enables students to gain the knowledge, skills, and attitudes necessary to provide nursing care. This is consistent with the findings of a previous study that reported that inconsistencies between theoretical knowledge and practical experience presented a primary obstacle to the learning process in the clinical context [ 42 ], causing students to lose confidence and become anxious [ 43 ]. Additionally, the second theme, the theory-practice gap, authenticates Safian et al.’s [ 5 ] study of the theory-practice gap that exists United Arab Emirates among nursing students as well as the need for more supportive clinical faculty and the extension of clinical hours. The need for better time availability and time management to complete clinical tasks were also reported by the students in the study. Students indicated that they had insufficient time to complete clinical activities because of the volume of coursework and assignments. Our findings support those of Chaabane et al. [ 15 ]. A study conducted in Saudi Arabia [ 44 ] found that assignments and workload were among the greatest sources of stress for students in clinical settings. Effective time management skills have been linked to academic achievement, stress reduction, increased creativity [ 45 ], and student satisfaction [ 46 ]. Our findings are also consistent with previous studies that reported that a common source of stress among first-year students was the increased classroom workload [ 19 , 47 ]. As clinical assignments and workloads are major stressors for nursing students, it is important to promote activities to help them manage these assignments [ 48 ].

Another major challenge reported by the participants was related to communicating and interacting with other nurses and patients. The UAE nursing workforce and population are largely expatriate and diverse and have different cultural and linguistic backgrounds. Therefore, student nurses encounter difficulty in communication [ 49 ]. This cultural diversity that students encounter in communication with patients during clinical training needs to be addressed by curriculum planners through the offering of language courses and courses on cultural diversity [ 50 ].

Regarding the third and final theme, nursing students in clinical training are unable to avoid stressors and must learn to cope with or adapt to them. Previous research has reported a link between stressors and the coping mechanisms used by nursing students [ 51 , 52 , 53 ]. In particular, the inability to manage stress influences nurses’ performance, physical and mental health, attitude, and role satisfaction [ 54 ]. One such study suggested that nursing students commonly use problem-focused (dealing with the problem), emotion-focused (regulating emotion), and dysfunctional (e.g., venting emotions) stress coping mechanisms to alleviate stress during clinical training [ 15 ]. Labrague et al. [ 51 ] highlighted that nursing students use both active and passive coping techniques to manage stress. The pattern of clinical stress has been observed in several countries worldwide. The current study found that first-year students experienced stress during their first clinical training [ 35 , 41 , 55 ]. The stressors they encountered impacted their overall health and disrupted their clinical learning. Chaabane et al. [ 15 ] reported moderate and high stress levels among nursing students in Bahrain, Egypt, Iraq, Jordan, Oman, Pakistan, Palestine, Saudi Arabia, and Sudan. Another study from Bahrain reported that all nursing students experienced moderate to severe stress in their first clinical placement [ 56 ]. Similarly, nursing students in Spain experienced a moderate level of stress, and this stress was significantly correlated with anxiety [ 30 ]. Therefore, it is imperative that pastoral systems at the university address students’ stress and mental health so that it does not affect their clinical performance. Faculty need to utilize evidence-based interventions to support students so that anxiety-producing situations and attrition are minimized.

In our study, students reported a variety of positive and negative coping mechanisms and strategies they used when they experienced stress during their clinical practice. Positive coping strategies included time management, positive thinking, self-support/motivation, breathing, taking breaks, talking with friends, and physical activity. These findings are consistent with those of a previous study in which healthy coping mechanisms used by students included effective time management, social support, positive reappraisal, and participation in leisure activities [ 57 ]. Our study found that relaxing and talking with friends were stress management strategies commonly used by students. Communication with friends to cope with stress may be considered social support. A previous study also reported that people seek social support to cope with stress [ 58 ]. Some students in our study used physical activity to cope with stress, consistent with the findings of previous research. Stretching exercises can be used to counteract the poor posture and positioning associated with stress and to assist in reducing physical tension. Promoting such exercise among nursing students may assist them in coping with stress in their clinical training [ 59 ].

Our study also showed that when students felt stressed, some adopted negative coping strategies, such as showing anger/irritability, engaging in unhealthy eating habits (e.g., consumption of too much food or coffee), or smoking cigarettes. Previous studies have reported that high levels of perceived stress affect eating habits [ 60 ] and are linked to poor diet quality, increased snacking, and low fruit intake [ 61 ]. Stress in clinical settings has also been linked to sleep problems, substance misuse, and high-risk behaviors’ and plays a major role in student’s decision to continue in their programme.

Implications of the study

The implications of the study results can be grouped at multiple levels including; clinical, educational, and organizational level. A comprehensive approach to addressing the stressors encountered by nursing students during their clinical practicum can be overcome by offering some practical strategies to address the stressors faced by nursing students during their clinical practicum. By integrating study findings into curriculum planning, mentorship programs, and organizational support structures, a supportive and nurturing environment that enhances students’ learning, resilience, and overall success can be envisioned.

Clinical level

Introducing simulation in the skills lab with standardized patients and the use of moulage to demonstrate wounds, ostomies, and purulent dressings enhances students’ practical skills and prepares them for real-world clinical scenarios. Organizing orientation days at clinical facilities helps familiarize students with the clinical environment, identify potential stressors, and introduce interventions to enhance professionalism, social skills, and coping abilities Furthermore, creating a WhatsApp group facilitates communication and collaboration among hospital staff, clinical tutors, nursing faculty, and students, enabling immediate support and problem-solving for clinical situations as they arise, Moreover, involving chief nursing officers of clinical facilities in the Nursing Advisory Group at the Department of Nursing promotes collaboration between academia and clinical practice, ensuring alignment between educational objectives and the needs of the clinical setting [ 62 ].

Educational level

Sharing study findings at conferences (we presented the results of this study at Sigma Theta Tau International in July 2023 in Abu Dhabi, UAE) and journal clubs disseminates knowledge and best practices among educators and clinicians, promoting awareness and implementation of measures to improve students’ learning experiences. Additionally we hold mentorship training sessions annually in January and so we shared with the clinical mentors and preceptors the findings of this study so that they proactively they are equipped with strategies to support students’ coping with stressors during clinical placements.

Organizational level

At the organizational we relooked at the available student support structures, including counseling, faculty advising, and career advice, throughout the nursing program emphasizing the importance of holistic support for students’ well-being and academic success as well as retention in the nursing program. Also, offering language courses as electives recognizes the value of communication skills in nursing practice and provides opportunities for personal and professional development.

For first-year nursing students, clinical stressors are inevitable and must be given proper attention. Recognizing nursing students’ perspectives on the challenges and stressors experienced in clinical training is the first step in overcoming these challenges. In nursing schools, providing an optimal clinical environment as well as increasing supervision and evaluation of students’ practices should be emphasized. Our findings demonstrate that first-year nursing students are exposed to a variety of different stressors. Identifying the stressors, pressures, and obstacles that first-year students encounter in the clinical setting can assist nursing educators in resolving these issues and can contribute to students’ professional development and survival to allow them to remain in the profession. To overcome stressors, students frequently employ problem-solving approaches or coping mechanisms. The majority of nursing students report stress at different levels and use a variety of positive and negative coping techniques to manage stress.

The present results may not be generalizable to other nursing institutions because this study used a purposive sample along with a qualitative approach and was limited to one university in the Middle East. Furthermore, the students self-reported their stress and its causes, which may have introduced reporting bias. The students may also have over or underreported stress or coping mechanisms because of fear of repercussions or personal reasons, even though the confidentiality of their data was ensured. Further studies are needed to evaluate student stressors and coping now that measures have been introduced to support students. Time will tell if these strategies are being used effectively by both students and clinical personnel or if they need to be readdressed. Finally, we need to explore the perceptions of clinical faculty towards supervising students in their first clinical practicum so that clinical stressors can be handled effectively.

Data availability

The data sets are available with the corresponding author upon reasonable request.

Almarwani AM. The effect of integrating a nursing licensure examination preparation course into a nursing program curriculum: a quasi-experimental study. Saudi J Health Sci. 2022;11:184–9.

Article   Google Scholar  

Horntvedt MT, Nordsteien A, Fermann T, Severinsson E. Strategies for teaching evidence-based practice in nursing education: a thematic literature review. BMC Med Educ. 2018;18:172.

Article   PubMed   PubMed Central   Google Scholar  

Larsson M, Sundler AJ, Blomberg K, Bisholt B. The clinical learning environment during clinical practice in postgraduate district nursing students’ education: a cross-sectional study. Nurs Open. 2023;10:879–88.

Article   PubMed   Google Scholar  

Sellberg M, Palmgren PJ, Möller R. A cross-sectional study of clinical learning environments across four undergraduate programs using the undergraduate clinical education environment measure. BMC Med Educ. 2021;21:258.

Saifan A, Devadas B, Mekkawi M, Amoor H, Matizha P, James J, et al. Managing the theory-practice gap in nursing education and practice: hearing the voices of nursing students in the United Arab Emirates. J Nurs Manag. 2021;29:1869–79.

Flott EA, Linden L. The clinical learning environment in nursing education: a concept analysis. J Adv Nurs. 2016;72:501–13.

Kalyani MN, Jamshidi N, Molazem Z, Torabizadeh C, Sharif F. How do nursing students experience the clinical learning environment and respond to their experiences? A qualitative study. BMJ Open. 2019;9:e028052.

Mahasneh D, Shoqirat N, Alsaraireh A, Singh C, Thorpe L. From learning on mannequins to practicing on patients: nursing students’ first-time experience of clinical placement in Jordan. SAGE Open Nurs. 2021;7:23779608211004298.

PubMed   PubMed Central   Google Scholar  

Stubin C. Clinical stress among undergraduate nursing students: perceptions of clinical nursing faculty. Int J Nurs Educ Scholarsh. 2020;17:20190111.

Ahmed WAM. Anxiety and related symptoms among critical care nurses in Albaha, Kingdom of Saudi Arabia. AIMS Med Sci. 2015;2:303–9.

Alhassan. Duke Phillips. 2024.

Ekstedt M, Lindblad M, Löfmark A. Nursing students’ perception of the clinical learning environment and supervision in relation to two different supervision models - a comparative cross-sectional study. BMC Nurs. 2019;18:49.

Bradshaw C, Murphy Tighe S, Doody O. Midwifery students’ experiences of their clinical internship: a qualitative descriptive study. Nurse Educ Today. 2018;68:213–7.

McCarthy B, Trace A, O’Donovan M, O’Regan P, Brady-Nevin C, O’Shea M, et al. Coping with stressful events: a pre-post-test of a psycho-educational intervention for undergraduate nursing and midwifery students. Nurse Educ Today. 2018;61:273–80.

Chaabane S, Chaabna K, Bhagat S, Abraham A, Doraiswamy S, Mamtani R, et al. Perceived stress, stressors, and coping strategies among nursing students in the Middle East and North Africa: an overview of systematic reviews. Syst Rev. 2021;10:136.

Pines EW, Rauschhuber ML, Norgan GH, Cook JD, Canchola L, Richardson C, et al. Stress resiliency, psychological empowerment and conflict management styles among baccalaureate nursing students. J Adv Nurs. 2012;68:1482–93.

Lazarus RS. Coping theory and research: past, present, and future. Psychosom Med. 1993;55:234–47.

Article   CAS   PubMed   Google Scholar  

Boyd MA. Essentials of psychiatric nursing. Philadelphia, PA: Wolters Kluwer; 2017.

Google Scholar  

Labrague LJ, McEnroe-Petitte DM, Gloe D, Thomas L, Papathanasiou IV, Tsaras K. A literature review on stress and coping strategies in nursing students. J Ment Health. 2017;26:471–80.

Ni C, Lo D, Liu X, Ma J, Xu S, Li L. Chinese female nursing students’ coping strategies, self-esteem and related factors in different years of school. J Nurs Educ Pract. 2012;2:33–41.

Jan LK, Popescu L. Israel’s nursing students’ stress sources and coping strategies during their first clinical experience in hospital wards-a qualitative research. Soc Work Rev / Rev Asistenta Soc. 2014;13:163–88.

Tung YJ, Lo KKH, Ho RCM, Tam WSW. Prevalence of depression among nursing students: a systematic review and meta-analysis. Nurse Educ Today. 2018;63:119–29.

Speziale HS, Streubert HJ, Carpenter DR. Qualitative research in nursing: advancing the humanistic imperative. Philadelphia, PA: Lippincott Williams & Wilkins; 2011.

Graneheim UH, Lundman B. Qualitative content analysis in nursing research: concepts, procedures and measures to achieve trustworthiness. Nurse Educ Today. 2004;24:105–12.

Bryman A. Integrating quantitative and qualitative research: how is it done? Qual Res. 2006;6:97–113.

Holloway I, Wheeler S. Qualitative research in nursing and healthcare. New York, NY: Wiley; 2013.

Richards L, Morse J. A user’s guide to qualitative methods. London, UK: Sage; 2007.

Lincoln Y, Guba EG. The SAGE handbook of qualitative research. Newbury Park, CA: SAGE Publications Inc; 2017.

Park S, Park KS. Family stigma: a concept analysis. Asian Nurs Res. 2014;8:165–71.

Onieva-Zafra MD, Fernández-Muñoz JJ, Fernández-Martínez E, García-Sánchez FJ, Abreu-Sánchez A, Parra-Fernández ML. Anxiety, perceived stress and coping strategies in nursing students: a cross-sectional, correlational, descriptive study. BMC Med Educ. 2020;20:370.

Albloushi M, Ferguson L, Stamler L, Bassendowski S, Hellsten L, Kent-Wilkinson A. Saudi female nursing students experiences of sense of belonging in the clinical settings: a qualitative study. Nurse Educ Pract. 2019;35:69–74.

Arkan B, Ordin Y, Yılmaz D. Undergraduate nursing students’ experience related to their clinical learning environment and factors affecting to their clinical learning process. Nurse Educ Pract. 2018;29:127–32.

Bhurtun HD, Azimirad M, Saaranen T, Turunen H. Stress and coping among nursing students during clinical training: an integrative review. J Nurs Educ. 2019;58:266–72.

Jamshidi N, Molazem Z, Sharif F, Torabizadeh C, Kalyani MN. The challenges of nursing students in the clinical learning environment: a qualitative study. ScientificWorldJournal. 2016;2016:1846178.

Porter SL. First year nursing students’ perceptions of stress and resilience during their initial clinical placement and the introduction of a stress management app: a mixed methods approach. A thesis submitted in partial fulfilment of the requirements of Edinburgh Napier University, for the award of Doctor of Philosophy. 2019. https://www.napier.ac.uk/~/media/worktribe/output-2086663/first-year-nursing-students-perceptions-of-stress-and-resilience-during-their-initial.pdf

Panda S, Dash M, John J, Rath K, Debata A, Swain D, et al. Challenges faced by student nurses and midwives in clinical learning environment - A systematic review and meta-synthesis. Nurse Educ Today. 2021;101:104875.

Ahmadi G, Shahriari M, Keyvanara M, Kohan S. Midwifery students’ experiences of learning clinical skills in Iran: a qualitative study. Int J Med Educ. 2018;9:64–71.

Harrison-White K, Owens J. Nurse link lecturers’ perceptions of the challenges facing student nurses in clinical learning environments: a qualitative study. Nurse Educ Pract. 2018;32:78–83.

Grobecker PA. A sense of belonging and perceived stress among baccalaureate nursing students in clinical placements. Nurse Educ Today. 2016;36:178–83.

Msiska G, Kamanga M, Chilemba E, Msosa A, Munkhondya TE. Sources of stress among undergraduate nursing students during clinical practice: a Malawian perspective. Open J Nurs. 2019;9:1.

Joolaee S, Amiri SRJ, Farahani MA, Varaei S. Iranian nursing students’ preparedness for clinical training: a qualitative study. Nurse Educ Today. 2015;35:e13–7.

Günay U, Kılınç G. The transfer of theoretical knowledge to clinical practice by nursing students and the difficulties they experience: a qualitative study. Nurse Educ Today. 2018;65:81–6.

Farzi S, Shahriari M, Farzi S. Exploring the challenges of clinical education in nursing and strategies to improve it: a qualitative study. J Educ Health Promot. 2018;7:115.

Hamaideh SH, Al-Omari H, Al-Modallal H. Nursing students’ perceived stress and coping behaviors in clinical training in Saudi Arabia. J Ment Health. 2017;26:197–203.

Yaghoobi A, Mohagheghi H, Zade MY, Ganji K, Olfatii N. The effect of time management training on test anxiety and academic achievement motivation among high school students. J Sch Psychol. 2014;3:131–44.

Kebriaei A, Bidgoli MS, Saeedi A. Relationship between use of time management skills and satisfaction with spending time among students of Zahedan University of Medical Sciences. J Med Educ Dev. 2014;6:79–88.

Chen YW, Hung CH. Predictors of Taiwanese baccalaureate nursing students’ physio-psycho-social responses during clinical practicum. Nurse Educ Today. 2014;34:73–7.

Ab Latif R, Mat Nor MZ. Stressors and coping strategies during clinical practice among diploma nursing students. Malays J Med Sci. 2019;26:88–98.

Al-Yateem N, Almarzouqi A, Dias JM, Saifan A, Timmins F. Nursing in the United Arab Emirates: current challenges and opportunities. J Nurs Manag. 2021;29:109–12.

Baraz-Pordanjani S, Memarian R, Vanaki Z. Damaged professional identity as a barrier to Iranian nursing students’ clinical learning: a qualitative study. J Clin Nurs Midwifery. 2014;3:1–15.

Labrague LJ, McEnroe-Petitte DM, Papathanasiou IV, Edet OB, Tsaras K, Leocadio MC, et al. Stress and coping strategies among nursing students: an international study. J Ment Health. 2018;27:402–8.

Madian AAEM, Abdelaziz MM, Ahmed HAE. Level of stress and coping strategies among nursing students at Damanhour University, Egypt. Am J Nurs Res. 2019;7:684–96.

Wu CS, Rong JR, Huang MZ. Factors associated with perceived stress of clinical practice among associate degree nursing students in Taiwan. BMC Nurs. 2021;20:89.

Zhao FF, Lei XL, He W, Gu YH, Li DW. The study of perceived stress, coping strategy and self-efficacy of Chinese undergraduate nursing students in clinical practice. Int J Nurs Pract. 2015;21:401–9.

Bektaş H, Terkes N, Özer Z. Stress and ways of coping among first year nursing students: a Turkish perspective. J Hum Sci. 2018;15:319–30.

John B, Al-Sawad M. Perceived stress in clinical areas and emotional intelligence among baccalaureate nursing students. J Indian Acad Appl Psychol. 2015;41:76–85.

Mapfumo JS, Chitsiko N, Chireshe R. Teaching practice generated stressors and coping mechanisms among student teachers in Zimbabwe. S Afr J Educ. 2012;32:155–66.

Timmins F, Corroon AM, Byrne G, Mooney B. The challenge of contemporary nurse education programmes. Perceived stressors of nursing students: mental health and related lifestyle issues. J Psychiatr Ment Health Nurs. 2011;18:758–66.

Hegberg NJ, Tone EB. Physical activity and stress resilience: considering those at-risk for developing mental health problems. Ment Health Phys Act. 2015;8:1–7.

Shudifat RM, Al-Husban RY. Perceived sources of stress among first-year nursing students in Jordan. J Psychosoc Nurs Ment Health Serv. 2015;53:37–43.

El Ansari W, Adetunji H, Oskrochi R. Food and mental health: relationship between food and perceived stress and depressive symptoms among university students in the United Kingdom. Cent Eur J Public Health. 2014;22:90–7.

Dias JM, Aderibigbe SA, Abraham MS. Undergraduate nursing students’ mentoring experiences in the clinical practicum: the United Arab Emirates (UAE) perspective. J Nurs Manag. 2022;30:4304–13.

Download references

Acknowledgements

The authors are grateful to all second year nursing students who voluntarily participated in the study.

No funding was received. Not applicable.

Author information

Authors and affiliations.

Department of Nursing, College of Health Sciences, University of Sharjah, POBox, Sharjah, 272272, UAE

Jacqueline Maria Dias, Muhammad Arsyad Subu, Nabeel Al-Yateem, Fatma Refaat Ahmed, Syed Azizur Rahman, Mini Sara Abraham, Sareh Mirza Forootan, Farzaneh Ahmad Sarkhosh & Fatemeh Javanbakh

Health Care Management, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates

Syed Azizur Rahman

You can also search for this author in PubMed   Google Scholar

Contributions

JMD conceptualized the idea and designed the methodology, formal analysis, writing original draft and project supervision and mentoring. MAS prepared the methodology and conducted the qualitative interviews and analyzed the methodology and writing of original draft and project supervision. NY, FRA, SAR, MSA writing review and revising the draft. SMF, FAS, FJ worked with MAS on the formal analysis and prepared the first draft.All authors reviewed the final manuscipt of the article.

Corresponding author

Correspondence to Jacqueline Maria Dias .

Ethics declarations

Ethics approval and consent to participate.

The Research Ethics Committee (REC) under) the Office of the Vice Chancellor for Research and Graduate Studies UOS approved this study (REC 19-12-03-01-S). Additionally, a written consent was obtained from all participants and the process followed the recommended policies and guidelines of the Declaration of Helsinki.

Consent for publication

Not applicable.

Competing interests

Dr Fatma Refaat Ahmed is an editorial board member in BMC Nursing. Other authors do not have any conflict of interest

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Dias, J.M., Subu, M.A., Al-Yateem, N. et al. Nursing students’ stressors and coping strategies during their first clinical training: a qualitative study in the United Arab Emirates. BMC Nurs 23 , 322 (2024). https://doi.org/10.1186/s12912-024-01962-5

Download citation

Received : 06 January 2024

Accepted : 22 April 2024

Published : 11 May 2024

DOI : https://doi.org/10.1186/s12912-024-01962-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Clinical practicums
  • Coping strategies
  • Nursing students

BMC Nursing

ISSN: 1472-6955

what is problem solving learning approach

  • Guidelines to Write Experiences
  • Write Interview Experience
  • Write Work Experience
  • Write Admission Experience
  • Write Campus Experience
  • Write Engineering Experience
  • Write Coaching Experience
  • Write Professional Degree Experience
  • Write Govt. Exam Experiences
  • JP Morgan Interview Experience Through Code For Good(CFG)
  • Contest Experiences | My first Leetcode Coding Contest Experince
  • Contest Experience - How to begin Coding on GeeksforGeeks
  • What coding habits improve timing in coding contest?
  • How to Write Coding Contest Experiences on GeeksForGeeks
  • Contest Experiences: Beginner's Guide to Coding Contests
  • Contest Experience - My First Coding Contest
  • Contest Experiences | GeeksforGeeks Weekly Coding Contest
  • Most Popular Weekly Coding Contest Platforms
  • My Code Frenzy Experience: Challenging Rounds and a Valuable Learning Journey
  • How to use Chat-GPT to solve Coding Problems?
  • Can ChatGPT be used to solve Competitive Coding Problems?
  • Contest Experience - GeeksForGeeks Weekly Coding Contest 119
  • Contest Experience - Google Summer of Code (GSoC)
  • Contest Experiences | Geeksforgeeks: Bi-Wizard School Coding Tournament 16.0
  • Contest Experiences | Geeksforgeeks GFG Weekly Coding Contest - 105
  • Google's Coding Competitions You Can Consider
  • Code India Code - Challenge Your Coding Skills with GeeksforGeeks
  • Contest Experiences | Bi-Wizard School Coding Tournament 17.0

My Journey of Learning Problem-Solving Skills through Coding Contests

I still remember the day I gave my first coding contest because I learned many things afterwards. when I was in my first year I didn’t know how to strengthen my problem-solving skills so I went to my seniors and ask a solution for it and then they gave a solution if you want to test your problem-solving skills you should participate in weekly coding contests. but firstly you should have learned some basic patterns of DSA . it will enhance your problem-solving skills and your speed will gradually increase do not overthink if you are not able to solve the problem you can see the solution after the contest and learn how the problem will solved. I took this advice seriously.

My first coding contest

when I was in my first year I knew that Geeksforgeeks conducted a weekly coding contest and it also provided amazing goodies who scored a good rank in the contest so I registered for the contest there were 4 questions in the contest and I solved the first question easily because it is related to a prime number which I recently learned but the second question seems tough to me I find the right approach but not able to implement it during the contest. After all, it is related to an array and at that time did not know the concept of prefix sum . but was not demotivated by this because it was the first time I had given such kind of contest and remembered what my senior said to me after the contest ended I saw the solution and learned the concept of prefix sum and the next time I gave the contest this approach helped a lot of times.

Tips I want to give from my learnings

  • Participate in weekly contests will give you different benefits
  • Your timing and problem-solving speed will be increased by giving weekly contest
  • And never demotivated when a new question comes and you are not able to solve it just see the solution after the contest ends and learn how the question solved
  • Whenever you learn a new concept like binary search, sliding window or two pointers solve different questions using these concepts and you never forget these concepts
  • Remember you can not become a proficient problem solver in a day it takes time so trust the process and believe in consistency.

Please Login to comment...

Similar reads.

  • Write It Up 2024
  • Experiences

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

Ten Factorial Rocks

Ten Factorial Rocks

What Is Montessori Parenting? Here Are 10 Tips To Get Started

Posted: March 13, 2024 | Last updated: March 13, 2024

<p><span>Montessori parenting is all about fostering independence, curiosity, and love for learning in your child. It’s a way of being that values the child’s choice, supports their natural development, and encourages them to explore the world at their own pace. This approach doesn’t just apply to education; it’s a holistic way of raising confident, responsible, and aware individuals. It involves setting up environments where kids can thrive, offering choices within limits, and modeling respectful communication. Imagine creating a space where your child feels valued, understood, and empowered to learn from their surroundings. That’s Montessori parenting in a nutshell.</span></p>

Montessori parenting is all about fostering independence, curiosity, and love for learning in your child. It’s a way of being that values the child’s choice, supports their natural development, and encourages them to explore the world at their own pace. This approach doesn’t just apply to education; it’s a holistic way of raising confident, responsible, and aware individuals. It involves setting up environments where kids can thrive, offering choices within limits, and modeling respectful communication. Imagine creating a space where your child feels valued, understood, and empowered to learn from their surroundings. That’s Montessori parenting in a nutshell.

<p><span>Make it clear your kiddo is a big deal in your world. Listen more than you talk, making eye contact and hearing what they say. When they share their thoughts, validate them. It shows you respect their voice. Spend quality time together without distractions. It’s about making those small moments count, letting them know they’re your top priority.</span></p>

Show Your Child They Are Important

Make it clear your kiddo is a big deal in your world. Listen more than you talk, making eye contact and hearing what they say. When they share their thoughts, validate them. It shows you respect their voice. Spend quality time together without distractions. It’s about making those small moments count, letting them know they’re your top priority.

<p><span>Kids thrive on knowing what’s expected of them. Be clear about rules and why they exist. It’s not about strict enforcement but guiding them to understand boundaries. When they know what to expect, they feel secure. Always be consistent; it helps them trust the framework you’re setting up. And when they test limits, as they will, gentle reminders work wonders.</span></p>

Set Consistent Expectations and Limits

Kids thrive on knowing what’s expected of them. Be clear about rules and why they exist. It’s not about strict enforcement but guiding them to understand boundaries. When they know what to expect, they feel secure. Always be consistent; it helps them trust the framework you’re setting up. And when they test limits, as they will, gentle reminders work wonders.

<p><span>Routine is like a comfy blanket for kids. It doesn’t have to be rigid, just predictable enough to give them a sense of security. Establish a flow to the day with regular times for meals, play, and sleep. This predictability makes the world feel more manageable. Plus, it helps avoid meltdowns (for both of you!). Think of routine as the rhythm of your family life.</span></p>

Nurture Feelings of Safety Through Routine

Routine is like a comfy blanket for kids. It doesn’t have to be rigid, just predictable enough to give them a sense of security. Establish a flow to the day with regular times for meals, play, and sleep. This predictability makes the world feel more manageable. Plus, it helps avoid meltdowns (for both of you!). Think of routine as the rhythm of your family life.

<p><span>Kids love to feel in charge sometimes. Give them options within boundaries, like choosing between two snacks or activities. It’s empowering and teaches decision-making. Remember, the key is offering choices you’re okay with. This approach also cuts down on power struggles. Plus, it’s a sneak peek into their preferences and personality.</span></p>

Offer Controlled Choices to Show You Value Their Input

Kids love to feel in charge sometimes. Give them options within boundaries, like choosing between two snacks or activities. It’s empowering and teaches decision-making. Remember, the key is offering choices you’re okay with. This approach also cuts down on power struggles. Plus, it’s a sneak peek into their preferences and personality.

<p><span>Actions speak louder than words. Model the behavior you want to see. They’re more likely to mirror that if you’re calm and respectful. Show them how to do things rather than just telling them. This could be anything from cleaning up toys to saying ‘please’ and ‘thank you.’ It’s about leading by example and letting them learn through observation.</span></p>

Show, Don’t Tell

Actions speak louder than words. Model the behavior you want to see. They’re more likely to mirror that if you’re calm and respectful. Show them how to do things rather than just telling them. This could be anything from cleaning up toys to saying ‘please’ and ‘thank you.’ It’s about leading by example and letting them learn through observation.

<p><span>Take the time to just watch your child play and interact. It’s not about hovering but understanding their interests and needs. Observation lets you tailor your support and environment to their unique learning style. You’ll discover their passions and challenges. Plus, it’s a great way to connect on their level. Think of it as gathering intel for being the best parent you can be.</span></p>

Observe Your Child

Take the time to just watch your child play and interact. It’s not about hovering but understanding their interests and needs. Observation lets you tailor your support and environment to their unique learning style. You’ll discover their passions and challenges. Plus, it’s a great way to connect on their level. Think of it as gathering intel for being the best parent you can be.

<p><span>Ask questions that make them think instead of jumping in to fix things. “What could you try next?” is a great starter. It encourages them to find solutions on their own. This builds critical thinking and confidence. It’s about guiding rather than telling. And when they do solve something, the pride in their achievement is priceless.</span></p>

Use Prompting Questions to Encourage Problem-Solving

Ask questions that make them think instead of jumping in to fix things. “What could you try next?” is a great starter. It encourages them to find solutions on their own. This builds critical thinking and confidence. It’s about guiding rather than telling. And when they do solve something, the pride in their achievement is priceless.

<p><span>A tidy space is more than just neat; it’s calming and conducive to learning. Ensure everything has a place, and teach your child to return items after use. This not only keeps your home organized but also teaches responsibility. An orderly environment supports focus and self-reliance. Plus, it makes finding that favorite toy a lot easier!</span></p>

Everything in Its Place

A tidy space is more than just neat; it’s calming and conducive to learning. Ensure everything has a place, and teach your child to return items after use. This not only keeps your home organized but also teaches responsibility. An orderly environment supports focus and self-reliance. Plus, it makes finding that favorite toy a lot easier!

<p><span>Encourage your child to do things for themselves, from getting dressed to choosing what to play with. Provide tools and resources that are accessible and child-friendly. This fosters a sense of independence and capability. It might be slower, but it’s worth it. Celebrate their successes, no matter how small. It’s about empowering them to be confident in their abilities.</span></p>

Foster Independence and Autonomy

Encourage your child to do things for themselves, from getting dressed to choosing what to play with. Provide tools and resources that are accessible and child-friendly. This fosters a sense of independence and capability. It might be slower, but it’s worth it. Celebrate their successes, no matter how small. It’s about empowering them to be confident in their abilities.

<p><span>Resist the urge to micromanage. Give your child the time and space to explore, make mistakes, and learn at their own pace. Slowing down allows them to engage and enjoy the learning process fully. It’s tough to step back, but it’s essential for their growth. This approach helps build resilience and creativity. After all, the best discoveries often come from the freedom to explore.</span></p>

Slow Down and Stand Back

Resist the urge to micromanage. Give your child the time and space to explore, make mistakes, and learn at their own pace. Slowing down allows them to engage and enjoy the learning process fully. It’s tough to step back, but it’s essential for their growth. This approach helps build resilience and creativity. After all, the best discoveries often come from the freedom to explore.

More for You

Rescuers, a collapsed billboard

Billboard collapses onto group of pedestrians, killing at least 14

15 Mistakes People Make When Living Alone That Put Their Safety in Danger

15 Mistakes People Make When Living Alone That Put Their Safety in Danger

royal_carribean_ship_2

Royal Caribbean making major pricing change Biden has pushed for

Tom Brady

'The Roast of Tom Brady' Tops Netflix's Most-Watched TV List With 13.8 Million Views

Your iPhone’s Volume Buttons Are Loaded with Hidden Features

Your iPhone’s Volume Buttons Are Loaded with Hidden Features

Grammy Award-winning musician dies aged 78

Grammy Award-winning musician dies aged 78

Home prices are overvalued in much of the U.S. — with these 5 states leading the list

Homes are overvalued in much of the U.S. — with these 5 states leading the list

Person looking at cluttered room

Declutter Your Home With The 21 Item Toss Method

4 different types of salt and when to use them while cooking

4 different types of salt and when to use them while cooking

I grew up in the US, while my wife grew up in the UK. She had a better education and now has a better understanding of the world.

I grew up in the US, while my wife grew up in the UK. She had a better education and now has a better understanding of the world.

15 Phrases Narcissists Use to Manipulate and Control

15 Phrases Narcissists Use to Manipulate and Control

How to Use Banana Water for Plants to Make Your Garden Flourish

How to Use Banana Water for Plants to Make Your Garden Flourish

Joel Pett/Tribune Content Agency

Opinion: The latest political cartoons

The 'Dune: Prophecy' Cast is Stacked

The ‘Dune: Prophecy’ Cast Is Stacked

Average 401(k) balances went up in 2023

Here's the average balance Americans held in their 401(k)s at the end of 2023. How does your nest egg compare?

Sierra Nevada mountain range

Warning Issued to California Hikers After Deaths

JJ Redick explains why he wants to coach the Lakers

JJ Redick explains why he wants to coach the Lakers

The best thrillers to watch on Netflix this May

The best thrillers to watch on Netflix this May

An original 19th century Conestoga wagon at the Conestoga Area Historical Society in Conestoga, Pennsylvania in 2024. - Peter Valdes-Dapena/CNN

Here’s why Americans drive on the right and the UK drives on the left

U.N.'s new breakdown of Gaza death toll sparks confusion and anger

U.N.'s new breakdown of Gaza death toll sparks confusion and anger

IMAGES

  1. Problem-Solving Strategies: Definition and 5 Techniques to Try

    what is problem solving learning approach

  2. Developing Problem-Solving Skills for Kids

    what is problem solving learning approach

  3. Introduction to Problem Solving Skills

    what is problem solving learning approach

  4. The 5 Steps of Problem Solving

    what is problem solving learning approach

  5. What are the problem solving steps?

    what is problem solving learning approach

  6. theory of problem solving skills

    what is problem solving learning approach

VIDEO

  1. EDUCATIONAL TECHNOLOGY IN PROBLEM SOLVING LEARNING ISSUES

  2. What is chain learning, Problem-solving , Stimulus-response learning and Conditioned-reflex learning

  3. Recipe Fun Playset Printable #chanafavors

  4. Lean Coach: Problem Solving Coaching / Avoiding Jumping to Solutions

  5. DSA AND PROBLEM SOLVING (Learning) Day 1

  6. DSA AND PROBLEM SOLVING (Learning) Day 5+ (Apti and reasoning)

COMMENTS

  1. Problem-Based Learning (PBL)

    PBL is a student-centered approach to learning that involves groups of students working to solve a real-world problem, quite different from the direct teaching method of a teacher presenting facts and concepts about a specific subject to a classroom of students. Through PBL, students not only strengthen their teamwork, communication, and ...

  2. Problem-Based Learning

    Problem-based learning (PBL) is a student-centered approach in which students learn about a subject by working in groups to solve an open-ended problem. This problem is what drives the motivation and the learning. ... Problem solving across disciplines. Considerations for Using Problem-Based Learning.

  3. Problem-Based Learning (PBL)

    Problem-Based Learning (PBL) is a teaching method in which complex real-world problems are used as the vehicle to promote student learning of concepts and principles as opposed to direct presentation of facts and concepts. In addition to course content, PBL can promote the development of critical thinking skills, problem-solving abilities, and ...

  4. What is Problem-Based Learning (PBL)

    An Overview of Problem-Based Learning. Problem-based learning (PBL) is a teaching style that pushes students to become the drivers of their learning education. Problem-based learning uses complex, real-world issues as the classroom's subject matter, encouraging students to develop problem-solving skills and learn concepts instead of just ...

  5. Problem-based learning

    Problem-based learning (PBL) is a student-centered pedagogy in which students learn about a subject through the experience of solving an open-ended problem found in trigger material. The PBL process does not focus on problem solving with a defined solution, but it allows for the development of other desirable skills and attributes.

  6. Problem based learning: a teacher's guide

    Problem-based learning (PBL) is a style of teaching that encourages students to become the drivers of their learning process. Problem-based learning involves complex learning issues from real-world problems and makes them the classroom's topic of discussion; encouraging students to understand concepts through problem-solving skills rather than ...

  7. Problem-Based Learning (PBL)

    Problem-Based Learning (PBL) is a pedagogical approach and curriculum design methodology often used in higher education and K-12 settings [1] [2]. The following are some of the defining characteristics of PBL: Learning is driven by challenging, open-ended problems with no one "right" answer. Problems/cases are context specific.

  8. Problem-Based Learning: An Overview of its Process and Impact on

    Problem-based learning (PBL) has been widely adopted in diverse fields and educational contexts to promote critical thinking and problem-solving in authentic learning situations. Its close affiliation with workplace collaboration and interdisciplinary learning contributed to its spread beyond the traditional realm of clinical education 1 to ...

  9. Problem-Based Learning

    Problem-based learning (PBL) challenges students to identify and examine real problems, then work together to address and solve those problems through advocacy and by mobilizing resources. Importantly, every aspect of the problem solving process involves students in real work—work that is a reflection of the range of expertise required to ...

  10. PDF Problem Based Learning: A Student-Centered Approach

    Keywords: problem based learning, curriculum, collaborative learning, team work, approach, method 1. Introduction Problem based learning is a student-centered educational method which aims to develop problem - solving skills through a self- directed learning as a life time habit and team work skills. Untidy, messy, ill structured situations

  11. Teaching Problem Solving

    Make students articulate their problem solving process . In a one-on-one tutoring session, ask the student to work his/her problem out loud. This slows down the thinking process, making it more accurate and allowing you to access understanding. When working with larger groups you can ask students to provide a written "two-column solution.".

  12. Problem-Based Learning: What and How Do Students Learn?

    Problem-based approaches to learning have a long history of advocating experience-based education. Psychological research and theory suggests that by having students learn through the experience of solving problems, they can learn both content and thinking strategies. Problem-based learning (PBL) is an instructional method in which students learn through facilitated problem solving. In PBL ...

  13. Effective Learning Behavior in Problem-Based Learning: a Scoping Review

    Introduction. Problem-based learning (PBL) is an educational approach that utilizes the principles of collaborative learning in small groups, first introduced by McMaster Medical University [].The shift of the higher education curriculum from traditional, lecture-based approaches to an integrated, student-centered approach was triggered by concern over the content-driven nature of medical ...

  14. Problem-based Learning

    Problem-based learning is a method of teaching where students are presented with a real or realistic problem, such as a case study or hypothetical situation, and use inductive reasoning to learn both information about the topic and how to think critically about it. Instead of passively listening to lectures or even being led through the ...

  15. Problem-Solving Method In Teaching

    The problem-solving method is an effective teaching strategy that promotes critical thinking, creativity, and collaboration. It provides students with real-world problems that require them to apply their knowledge and skills to find solutions. By using the problem-solving method, teachers can help their students develop the skills they need to ...

  16. The process of implementing problem-based learning in a teacher

    Problem-based learning (PBL) is a student-centred instructional approach in which complex real-world problems are used as the vehicle to promote students' learning of concepts and principles. This paper presents a case study that explored the learning experiences of 18 pre-service teachers and how the instructor was affected when implementing ...

  17. Teaching Problem Solving

    Problem solving is a necessary skill in all disciplines and one that the Sheridan Center is focusing on as part of the Brown Learning Collaborative, which provides students the opportunity to achieve new levels of excellence in six key skills traditionally honed in a liberal arts education ­- critical reading, writing, research, data ...

  18. The Problem-Solving Process

    Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything ...

  19. Problem-Based and Inquiry-Based Learning: What's the difference?

    Problem-Based-Learning can be classified as guided inquiry where the teacher-presented question is an unsolved, real-world problem. For example, in a Middle Eastern Studies course, the main problem posed by the instructor could be "Propose a solution to the Israeli-Palestinian conflict.". This question will motivate the study of the ...

  20. Full article: Understanding and explaining pedagogical problem solving

    In this approach problem solving involves diagnosing the issue and identifying alternative potential solutions, whereas decision making is concerned with evaluating and choosing among these options then committing and implementing this choice. ... "Problem‐Based Learning: A Framework for Prospective Teachers' Pedagogical Problem Solving ...

  21. Problem Based Learning: A Student-Centered Approach

    Problem based learning is a student-centered educational method which aims to develop problem - solving skills. thr ou gh a sel f- dir ect ed lea rni n g as a life time habit and team work skills ...

  22. Problem-Solving Powerhouse: Tools for Kids Future Success

    Problem-solving is an indispensable facet of learning, encompassing the ability to analyse situations, brainstorm solutions, and implement them effectively. In a world that is increasingly reliant on innovation and adaptability, fostering these skills in young learners has never been more crucial.

  23. Approaches to Learning: Problem Solving

    Birth to 9 months. Children are building the foundation for problem solving through active exploration and social interaction. Indicators for children include: Focuses on getting a caregiver's attention through the use of sounds, cries, gestures, and facial expressions. Enjoys repeating actions, e.g., continues to drop toy from highchair ...

  24. What is Problem Solving? Steps, Process & Techniques

    Finding a suitable solution for issues can be accomplished by following the basic four-step problem-solving process and methodology outlined below. Step. Characteristics. 1. Define the problem. Differentiate fact from opinion. Specify underlying causes. Consult each faction involved for information. State the problem specifically.

  25. Boost Problem Solving Skills in Your Classroom

    Understand Individual Learning Styles: Recognize that each student has a unique way of learning and problem-solving. By understanding their preferred learning styles, you can tailor your teaching ...

  26. The Effect of Case-Based Learning on Students' Problem-Solving Ability

    This investigation stems from the observed low problem-solving skills among students as indicated in prior research. The primary objective is to evaluate the impact of employing case-based learning on students' problem-solving aptitude concerning buffer solutions. Carried out during April-May 2023, the study involved 11th-grade students at a public high school in Jakarta, Indonesia.

  27. Nursing students' stressors and coping strategies during their first

    Understanding the stressors and coping strategies of nursing students in their first clinical training is important for improving student performance, helping students develop a professional identity and problem-solving skills, and improving the clinical teaching aspects of the curriculum in nursing programmes. While previous research have examined nurses' sources of stress and coping styles ...

  28. Sustainability

    This approach allows students to connect theoretical concepts to practical situations, fostering critical thinking, problem-solving skills, and creativity. Additionally, experiential learning promotes a deeper level of understanding and long-term retention of information by immersing students in meaningful learning experiences.

  29. My Journey of Learning Problem-Solving Skills through ...

    My Journey of Learning Problem-Solving Skills through Coding Contests. I still remember the day I gave my first coding contest because I learned many things afterwards. when I was in my first year I didn't know how to strengthen my problem-solving skills so I went to my seniors and ask a solution for it and then they gave a solution if you ...

  30. What Is Montessori Parenting? Here Are 10 Tips To Get Started

    Slow Down and Stand Back. Resist the urge to micromanage. Give your child the time and space to explore, make mistakes, and learn at their own pace. Slowing down allows them to engage and enjoy ...